More stories

  • in

    Validation of quantitative fatty acid signature analysis for estimating the diet composition of free-ranging killer whales

    Springer, A. M. et al. Sequential megafaunal collapse in the North Pacific Ocean: an ongoing legacy of industrial whaling?. Proc. Natl. Acad. Sci. 100, 12223–12228. https://doi.org/10.1073/pnas.1635156100 (2003).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116. https://doi.org/10.1146/annurev-environ-110615-085622 (2016).Article 

    Google Scholar 
    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mamm. Sci. 26, 509–572. https://doi.org/10.1111/j.1748-7692.2009.00354.x (2010).CAS 
    Article 

    Google Scholar 
    Bowen, W. D. & Iverson, S. J. Methods of estimating marine mammal diets: a review of validation experiments and sources of bias and uncertainty. Mar. Mamm. Sci. 29, 719–754. https://doi.org/10.1111/j.1748-7692.2012.00604.x (2013).Article 

    Google Scholar 
    Krahn, M. M. et al. Use of chemical tracers in assessing the diet and foraging regions of eastern North Pacific killer whales. Mar. Environ. Res. 63, 91–114. https://doi.org/10.1016/j.marenvres.2006.07.002 (2007).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Remili, A. et al. Individual prey specialization drives PCBs in Icelandic killer whales. Environ. Sci. Technol. 55, 4923–4931. https://doi.org/10.1021/acs.est.0c08563 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Foote, A. D., Vester, H., Vikingsson, G. A. & Newton, J. Dietary variation within and between populations of northeast Atlantic killer whales, Orcinus orca, inferred from d13C and d15N analyses. Mar. Mamm. Sci. 28, E472–E485. https://doi.org/10.1111/j.1748-7692.2012.00563.x (2012).CAS 
    Article 

    Google Scholar 
    Remili, A. et al. Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches. Environ. Pollut. 267, 115575. https://doi.org/10.1016/j.envpol.2020.115575 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pinzone, M., Damseaux, F., Michel, L. N. & Das, K. Stable isotope ratios of carbon, nitrogen and sulphur and mercury concentrations as descriptors of trophic ecology and contamination sources of Mediterranean whales. Chemosphere 237, 124448. https://doi.org/10.1016/j.chemosphere.2019.124448 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bourque, J. et al. Feeding habits of a new Arctic predator: insight from full-depth blubber fatty acid signatures of Greenland, Faroe Islands, Denmark, and managed-care killer whales Orcinus orca. Mar. Ecol. Prog. Ser. 603, 1–12. https://doi.org/10.3354/meps12723 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Krahn, M. M., Pitman, R. L., Burrows, D. G., Herman, D. P. & Pearce, R. W. Use of chemical tracers to assess diet and persistent organic pollutants in Antarctic Type C killer whales. Mar. Mamm. Sci. 24, 643–663. https://doi.org/10.1111/j.1748-7692.2008.00213.x (2008).CAS 
    Article 

    Google Scholar 
    Groß, J. et al. Interannual variability in the lipid and fatty acid profiles of east Australia-migrating humpback whales (Megaptera novaeangliae) across a 10-year timeline. Sci. Rep. 10, 18274. https://doi.org/10.1038/s41598-020-75370-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jory, C. et al. Individual and population dietary specialization decline in fin whales during a period of ecosystem shift. Sci. Rep. 11, 17181. https://doi.org/10.1038/s41598-021-96283-x (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iverson, S. J., Field, C., Bowen, W. D. & Blanchard, W. Quantitative fatty acid signature analysis: a new method of estimating predator diets. Ecol. Monogr. 74, 211–235. https://doi.org/10.1890/02-4105 (2004).Article 

    Google Scholar 
    McKinney, M. A. et al. Global change effects on the long-term feeding ecology and contaminant exposures of East Greenland polar bears. Glob. Change Biol. 19, 2360–2372. https://doi.org/10.1111/gcb.12241 (2013).ADS 
    Article 

    Google Scholar 
    Nordstrom, C. A., Wilson, L. J., Iverson, S. J. & Tollit, D. J. Evaluating quantitative fatty acid signature analysis (QFASA) using harbour seals Phoca vitulina richardsi in captive feeding studies. Mar. Ecol. Prog. Ser. 360, 245–263. https://doi.org/10.3354/meps07378 (2008).ADS 
    Article 

    Google Scholar 
    Bourque, J., Atwood, T. C., Divoky, G. J., Stewart, C. & McKinney, M. A. Fatty acid-based diet estimates suggest ringed seal remain the main prey of southern Beaufort Sea polar bears despite recent use of onshore food resources. Ecol. Evol. https://doi.org/10.1002/ece3.6043 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thiemann, G. W., Derocher, A. E. & Stirling, I. Polar bear Ursus maritimus conservation in Canada: an ecological basis for identifying designatable units. Oryx 42, 504–515. https://doi.org/10.1017/S0030605308001877 (2008).Article 

    Google Scholar 
    Choy, E. S. et al. A comparison of diet estimates of captive beluga whales using fatty acid mixing models with their true diets. J. Exp. Mar. Biol. Ecol. 516, 132–139. https://doi.org/10.1016/j.jembe.2019.05.005 (2019).ADS 
    Article 

    Google Scholar 
    Kirsch, P. E., Iverson, S. J. & Bowen, W. D. Effect of a low-fat diet on body composition and blubber fatty acids of captive Juvenile Harp Seals (Phoca groenlandica). Physiol. Biochem. Zool. 73, 45–59. https://doi.org/10.1086/316723 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Koopman, H. N. Phylogenetic, ecological, and ontogenetic factors influencing the biochemical structure of the blubber of odontocetes. Mar. Biol. 151, 277–291. https://doi.org/10.1007/s00227-006-0489-8 (2007).Article 

    Google Scholar 
    Strandberg, U. et al. Stratification, composition, and function of marine mammal blubber: the ecology of fatty acids in marine mammals. Physiol. Biochem. Zool 81, 473–485. https://doi.org/10.1086/589108 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Choy, E. S. et al. Variation in the diet of beluga whales in response to changes in prey availability: insights on changes in the Beaufort Sea ecosystem. Mar. Ecol. Prog. Ser. 647, 195–210 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Koopman, H. N., Iverson, S. J. & Gaskin, D. E. Stratification and age-related differences in blubber fatty acids of the male harbour porpoise (Phocoena phocoena). J. Comp. Physiol. B. 165, 628–639. https://doi.org/10.1007/BF00301131 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Budge, S. M., Iverson, S. J. & Koopman, H. N. Studying trophic ecology in marine ecosystems using fatty acids: a primer on analysis and interpretation. Mar. Mamm. Sci. 22, 759–801. https://doi.org/10.1111/j.1748-7692.2006.00079.x (2006).Article 

    Google Scholar 
    Krahn, M. M. et al. Stratification of lipids, fatty acids and organochlorine contaminants in blubber of white whales and killer whales. J. Cetacean Res. Manag. 6, 175–189 (2004).
    Google Scholar 
    Loseto, L. L. et al. Summer diet of beluga whales inferred by fatty acid analysis of the eastern Beaufort Sea food web. J. Exp. Mar. Biol. Ecol. 374, 12–18. https://doi.org/10.1016/j.jembe.2009.03.015 (2009).CAS 
    Article 

    Google Scholar 
    Heide-Jørgensen, M.-P. Occurrence and hunting of killer whales in Greenland. Rit Fiskedeildar 11, 115–135 (1988).
    Google Scholar 
    Nøttestad, L. et al. Prey selection of offshore killer whales Orcinus orca in the Northeast Atlantic in late summer: spatial associations with mackerel. Mar. Ecol. Prog. Ser. 499, 275–283 (2014).ADS 
    Article 

    Google Scholar 
    Nikolioudakis, N. et al. Drivers of the summer-distribution of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2011 to 2017; a Bayesian hierarchical modelling approach. ICES J. Mar. Sci. 76, 530–548. https://doi.org/10.1093/icesjms/fsy085 (2019).Article 

    Google Scholar 
    Olafsdottir, A. H. et al. Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep Sea Res. Part II 159, 152–168. https://doi.org/10.1016/j.dsr2.2018.05.023 (2019).Article 

    Google Scholar 
    Jansen, T. et al. Ocean warming expands habitat of a rich natural resource and benefits a national economy. Ecol. Appl. 26, 2021–2032. https://doi.org/10.1002/eap.1384 (2016).Article 
    PubMed 

    Google Scholar 
    Ferguson, S. H., Higdon, J. W. & Westdal, K. H. Prey items and predation behavior of killer whales (Orcinus orca) in Nunavut, Canada based on Inuit hunter interviews. Aquat. Biosyst. 8, 3–3. https://doi.org/10.1186/2046-9063-8-3 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laidre, K. L., Heide-Jørgensen, M. P. & Orr, J. R. Reactions of narwhals, Monodon monoceros, to killer whale, Orcinus orca, attacks in the eastern Canadian Arctic. Can. Field-Naturalist 120, 457–465 (2006).Article 

    Google Scholar 
    Willoughby, A. L., Ferguson, M. C., Stimmelmayr, R., Clarke, J. T. & Brower, A. A. Bowhead whale (Balaena mysticetus) and killer whale (Orcinus orca) co-occurrence in the U.S. Pacific Arctic, 2009–2018: evidence from bowhead whale carcasses. Polar Biol. 43, 1669–1679. https://doi.org/10.1007/s00300-020-02734-y (2020).Article 

    Google Scholar 
    Bloch, D. & Lockyer, C. Killer whales (Orcinus orca) in Faroese waters. Rit Fiskideildar 11, 55–64 (1988).
    Google Scholar 
    Pedro, S. et al. Blubber-depth distribution and bioaccumulation of PCBs and organochlorine pesticides in Arctic-invading killer whales. Sci. Total Environ. 601, 237–246. https://doi.org/10.1016/j.scitotenv.2017.05.193 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Samarra, F. I. P. et al. Prey of killer whales (Orcinus orca) in Iceland. PLoS ONE 13, 20. https://doi.org/10.1371/journal.pone.0207287 (2018).CAS 
    Article 

    Google Scholar 
    Jourdain, E. et al. Isotopic niche differs between seal and fish-eating killer whales (Orcinus orca) in northern Norway. Ecol. Evol. 10, 4115–4127. https://doi.org/10.1002/ece3.6182 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bromaghin, J. F., Budge, S. M., Thiemann, G. W. & Rode, K. D. Assessing the robustness of quantitative fatty acid signature analysis to assumption violations. Methods Ecol. Evol. 7, 51–59. https://doi.org/10.1111/2041-210X.12456 (2016).Article 

    Google Scholar 
    Jefferson, T. A., Stacey, P. J. & Baird, R. W. A review of Killer Whale interactions with other marine mammals: predation to co-existence. Mamm. Rev. 21, 151–180. https://doi.org/10.1111/j.1365-2907.1991.tb00291.x (1991).Article 

    Google Scholar 
    Bromaghin, J. F. QFASAR: quantitative fatty acid signature analysis with R. Methods Ecol. Evol. 8, 1158–1162. https://doi.org/10.1111/2041-210x.12740 (2017).Article 

    Google Scholar 
    Stewart, C., Iverson, S. & Field, C. Testing for a change in diet using fatty acid signatures. Environ. Ecol. Stat. 21, 775–792. https://doi.org/10.1007/s10651-014-0280-9 (2014).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Zhang, J. et al. Review of estimating trophic relationships by quantitative fatty acid signature analysis. J. Marine Sci. Eng. 8, 1030 (2020).Article 

    Google Scholar 
    Budge, S. M., Penney, S. N., Lall, S. P. & Trudel, M. Estimating diets of Atlantic salmon (Salmo salar) using fatty acid signature analyses; validation with controlled feeding studies. Can. J. Fish. Aquat. Sci. 69, 1033–1046. https://doi.org/10.1139/f2012-039 (2012).CAS 
    Article 

    Google Scholar 
    Happel, A. et al. Evaluating quantitative fatty acid signature analysis (QFASA) in fish using controlled feeding experiments. Can. J. Fish. Aquat. Sci. 73, 1222–1229. https://doi.org/10.1139/cjfas-2015-0328 (2016).CAS 
    Article 

    Google Scholar 
    Bromaghin, J. F. Simulating realistic predator signatures in quantitative fatty acid signature analysis. Eco. Inform. 30, 68–71. https://doi.org/10.1016/j.ecoinf.2015.09.011 (2015).Article 

    Google Scholar 
    Bromaghin, J. F., Budge, S. M., Thiemann, G. W. & Rode, K. D. Simultaneous estimation of diet composition and calibration coefficients with fatty acid signature data. Ecol. Evol. 7, 6103–6113. https://doi.org/10.1002/ece3.3179 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burns, J. M., Costa, D. P., Frost, K. & Harvey, J. T. Development of body oxygen stores in harbor seals: effects of age, mass, and body composition. Physiol. Biochem. Zool. 78, 1057–1068. https://doi.org/10.1086/432922 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Noren, D. P. & Mocklin, J. A. Review of cetacean biopsy techniques: Factors contributing to successful sample collection and physiological and behavioral impacts. Mar. Mamm. Sci. 28, 154–199. https://doi.org/10.1111/j.1748-7692.2011.00469.x (2012).Article 

    Google Scholar  More

  • in

    Cohort dominance rank and “robbing and bartering” among subadult male long-tailed macaques at Uluwatu, Bali

    Study siteWe conducted this research at the Uluwatu temple site in Bali, Indonesia. Uluwatu is located on the Island’s southern coast, in the Badung Regency. The temple at Uluwatu is a Pura Luhur, which is a significant temple for Balinese Hindus across the island and is therefore visited regularly for significant regional, community, family, and household rituals by Balinese people from different regions throughout the year18. During the period of data collection hundreds of tourists also visit the Uluwatu temple each day. The temple sits on top of a promontory cliff edge, with walking paths in front of it that continue in loops to the North and South. These looping pathways surround scrub forests, which the macaques frequently inhabit but the humans rarely enter.In 2017–2018 there were five macaque groups at Uluwatu, which ranged throughout the temple complex area, and beyond. All groups are provisioned daily with a mixed diet of corn, cucumbers, and bananas by temple staff members. The two groups included in this research are the Celagi and Riting groups. We selected these groups because they previously exhibited significant differences in robbing frequencies whereby Riting was observed exhibiting robbing and bartering more frequently than Celagi1. Furthermore, both groups include the same highly trafficked tourist areas in their overlapping home ranges relative to the other groups at Uluwatu, theoretically minimizing between group differences in the contexts of human interaction1,19.Data collectionJVP collected data from May, 2017 to March, 2018 totaling 197 focal observation hours on all 13 subadult males in Celagi and Riting that were identified in May–June 2017. Subadult male long-tailed macaques exhibit characteristic patterns of incomplete canine eruption, sex organ development, and body size growth, which achieves a maximum of 80% of total adult size18. Mean sampling effort per individual was 15.2 hours (h), with a range of 1.75 h, totaling 102.75 h for Riting and 94.75 h for Celagi. The data collection protocol consisted of focal-animal sampling and instantaneous scan sampling20 on all six subadult males in the Celagi group, and all seven subadult males in the Riting group. Focal follows were 15 minutes in length. Sampling effort per individual is presented in Table 1. A random number generator determined the order of focal follows each morning. In the event a target focal animal could not be located within 10 minutes of locating the group, the next in line was located and observed. Data presented here come from focal animal sampling records of state and event behaviors. Relevant event behaviors consist of agonistic gestures used for calculating dominance relationships, including the target, or interaction partner, of all communicative event behaviors and the time of its occurrence. All changes in the focal animal’s state behavior were noted, recording the time of the change to the minute.Table 1 Focal Subadult male long-tailed macaques in Celagi and Riting at Uluwatu, Bali, Indonesia.Full size tableDuring focal samples we recorded robbing and bartering as a sequence of mixed event and state behaviors. We scored both the robbery and exchange phases as event behaviors, and the interim phase of item possession as a state behavior. We record a robbery as successful if the focal animal took an object from a human and established control of the object with their hands or teeth, and as unsuccessful if the focal animal touched the object but was not able to establish control of it. For each successful robbery we recorded the object taken. Unsuccessful robberies end the sequence, whereas successful robberies are typically followed by various forms of manipulating the object.The robbing and bartering sequence ends with one of several event behavior exchange outcomes: (1) “Successful exchanges” consist of the focal animal receiving a food reward from a human and releasing the stolen object; (2) “forced exchanges” are when a human takes the object back without a bartering event; (3) “dropped objects” describe when the macaque loses control of the object while carrying it or otherwise locomoting, and is akin to an “accidental drop”; (4) “no exchange” includes instances of the macaque releasing the object for no reward after manipulating it; and (5) “expired observation” consists of instances in which the final result of the robbing and bartering event was unobserved in the sample period (i.e., the sample period ended while the macaque still had possession of the object). A 6th exchange outcome is “rejected exchange,” which occurs when the focal animal does not drop the stolen object after being offered, or in some cases even accepting, a food reward. The “rejected exchange” outcome is unique in that it does not end the robbing and bartering sequence because a human may have one or more exchange attempts rejected before eventually facilitating a successful exchange, or before one of the other outcomes (2–5) occurs. For each successful exchange we recorded the food item the macaques received. Food items are grouped into four categories: fruits, peanuts, eggs, and human snacks. Snacks include packaged and processed food items such as candy or chips.Data analysisWe grouped the broad range of stolen items into classes of general types. “Eyewear” combines eyeglasses and sunglasses, while “footwear” combines sandals and shoes. “Ornaments” includes objects attached to and/or hanging from backpacks, such as keychains, while “accessories” includes decorative objects attached to an individual’s body or clothing like bracelets and hair ties. “Electronics” covers cellular phones and tablets. “Hats” encompasses removable forms of headwear, most typically represented by baseball-style hats or sun hats. “Plastics” is an item class consisting of lighters and bottles, which may be filled with water, soda, or juice. The “unidentified” category is used for stolen items which could not be clearly observed during or after the robbing and bartering sequence.“Robbery attempts” refers to the combined total number of successful and unsuccessful robberies. “Robbery efficiency” is a novel metric referring to the number of successful robberies divided by the total number of robbery attempts. The “Exchange Outcome Index” is calculated by dividing the number of successful exchanges by the total number of robbery attempts. We make this calculation using robbery attempts instead of successful robberies to account for total robbery effort because failed robberies still factor into an individual’s total energy expenditure toward receiving a bartered food reward and their total exposure to the risks (e.g., physical retaliation) of stealing from humans relative to achieving the desired end result of a food reward.Social rank was measured with David’s Score, calculated using dyadic agonistic interactions. We coded “winners” of contests as those who exhibited the agonistic behavior, while “losers” were the recipients of those agonistic behaviors21,22. We excluded intergroup agonistic interactions in our calculations of David’s Score.To account for potential variation in the overall patterns of interaction with humans between groups we calculated a Human Interaction Rate, which is the sum of human-directed interactions from focal animals in each group divided by the total number of observation hours on focal animals in that group.Statistical analysisWe ran statistical tests in SYSTAT software with a significance level set at 0.05. We used chi-square goodness-of-fit tests to assess the significance of differences in successful robberies between individuals for each group. To avoid having cells with values of zero, two focal subjects, Minion and Spot from Celagi, are excluded from this test because neither were observed making a successful robbery during the observation period. We also used chi-square goodness-of-fit tests to assess exchange outcome occurrences within each group, as well as a Fisher’s exact to test for significant differences in robbery outcomes between groups due to low expected counts in 40% of the cells. “Rejected exchange” events were not included in the analysis of robbery outcomes because they do not end the sequence and are therefore not mutually exclusive with the other robbery outcomes.We further tested for the effect of dominance position on robbery outcomes. Due to our small sample size and the preliminary nature of this investigation, we used Spearman correlations to assess the relationship between subadult male dominance position via David’s Score and (1) robbing efficiency and (2) the Exchange Outcome Index.Compliance with ethical standardsThis research complied with the standards and protocols for observational fieldwork with nonhuman primates and was approved by the University of Notre Dame Compliance IACUC board (protocol ID: 16-02-2932), where JVP and AF were affiliated at the time of this research. This study did not involve human subjects. This research further received a research permit from RISTEK in Indonesia (permit number: 2C21EB0881-R), and complied with local laws and customary practices in Bali. More

  • in

    Six decades of warming and drought in the world’s top wheat-producing countries offset the benefits of rising CO2 to yield

    Wheat production and yield vis-à-vis climate trendsWheat is currently grown in all six continents except Antarctica. The leading producers include China, the Russian Federation, Ukraine, Kazakhstan (RUK), India, USA, France, Canada, Pakistan, Germany, Argentina, Turkey, Australia, and United Kingdom (Fig. 1 and Supplementary Table 1). The total grain production of these twelve countries is estimated at 600 megatons (2019 data), which accounts for over 78% of the global wheat production. The top three producers are China with 133.6 megatons per year (Mt y−1), RUK with 114.1 Mt y−1, and India with 103.6 Mt y−1. RUK contains the largest harvested area of 45.8 million hectares, followed by India with 29.3 million hectares and China with 23.7 million hectares (Fig. 1A). Despite a relatively small harvested area of 10.1 million hectares (only 22% of RUK’s harvested area), the United Kingdom, France, and Germany account for the world’s highest yields per hectare, with 8.93 tons ha−1, 7.74 tons ha−1, and 7.40 tons ha−1, respectively (compared with the world’s average yield of only 3.2 tons ha−1), accounting for a total yearly production of 79.9 Mt y−1.Figure 1Global wheat area and trends in wheat yield and climate in top-twelve global wheat producers (1961–2019). (A) Worldwide wheat cropping area (%)29, total harvested area (106 hectares in 2019), and wheat production (megatons for 2019) of the top 12 global wheat producers (China, RUK—Russia, Ukraine, and Kazakhstan, India, USA—hard red winter (HRW) and hard red spring (HRS), France, Canada, Pakistan, Germany, Argentina, Turkey, Australia, and United Kingdom) (Map was generated in Python 3.8.5; http://www.python.org). (B) Changes in wheat yield (tons per hectare) and (C) climate—mean daily temperature (red dashed line; °C) and the seasonal water balance represented as potential evaporation minus precipitation (blue line; PET—P in millimeters of H2O). A positive trend in PET-P indicates an increase in water deficit. The seasonal atmospheric [CO2] in μmol CO2 per mol−1 air is also shown in the insert of C (black line). Temperature, PET-P, and [CO2] shown in C are averaged values over the wheat-growing period and the shared area of the wheat-growing areas of the top 12 global wheat producers. Decadal trends in temperature (red) and PET-P (blue) as well as the significance levels of these trends are presented in C.Full size imageWhile all these twelve major wheat producers saw an increase in yield during the last six decades (Fig. 1B), China displayed the most noteworthy increase with a nearly sevenfold higher yield in 2019 than in 1961 and a mean total increase of 5.19 tons ha−1 for the period of 1961–2019. Germany, the UK, and France reported comparable yield increases of 5.20 tons ha−1, 5.19 tons ha−1, and 4.81 tons ha−1, respectively, during this period, suggesting an approximately 1.6-fold improvement since 1961 (Fig. 1B). Australia, RUK, and Turkey reported the lowest gains with only 0.87 tons ha−1, 1.26 tons ha−1, and 1.71 tons ha−1, respectively, representing improvements of 67%, 150%, and 175% in yield per hectare since 1961.Yield increase occurred despite the steep rise in temperature (nearly 1.2 °C) in the twelve countries during the last six decades (Fig. 1C). Water deficit—calculated as the difference between potential evaporative demand and precipitation (PET—P; mm H2O y−1)—also increased by an average of (sim) 29 mm of H2O for the same period. Increases in yield since the early 1960s were likely due to breeding and agrotechnological advances, improved management, and a steep rise in atmospheric [CO2] of (sim) 98 μmol mol−1, from 315.9 μmol mol−1 in 1961 to 413.4 μmol mol−1 in 2019 (insert in Fig. 1C).Unraveling the impacts of climate and [CO2] on yieldBased on previous studies30,31, we used a log-linear model to quantify the impact of [CO2] and daily minimum (Tmin), maximum (Tmax), and mean (Tmean) temperatures, as well as seasonal water deficit (PET-P), and rainfall distribution on wheat yield. Climate variables were obtained from the TerraClimate data set32, while monthly records of [CO2] from the Mauna Loa station were used to model the effects of CO2 (see “Methods”). To quantify wheat yield as a function of climate variables and [CO2], we included all 12 countries in the regression analysis. Supplementary Table 2 presents summary statistics of all variables, while Supplementary Fig. 1 depicts trends in Tmean and PET-P per country.Since climate variables tend to be correlated over time (Supplementary Table 3), controlling for all of these variables in the model facilitates the estimation of their distinct effect on yield. We used country-specific trends to distinguish changes in wheat yield related to climate and [CO2] from those attributed to agrotechnological advancements, changes in country-specific policies, and other local-changing factors (e.g., economic and population growth; more information on how this was done can be found in “Methods”). We also included country-specific effects across all models to account for unobserved time-invariant heterogeneity at the country level, such as geographical properties, edaphic characteristics, and other local-specific features (see “Methods”).Table 1 reports the estimated regression coefficients of four models, (1) using only temperature variables (T), (2) temperature and water-related (i.e., seasonal rainfall distribution and water deficit as PET-P) variables (T + W), (3) including [CO2] (T + W + C), and (4) the interaction between [CO2] and climate variables (T + W + C + interactions).Table 1 Effects of climate variables and [CO2] on log wheat yields of the world’s major wheat producers.Full size tableAmong the temperature measures, only Tmean had a consistently significant effect on yield (p  More

  • in

    Physiological and morphological effects of a marine heatwave on the seagrass Cymodocea nodosa

    IPCC: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [Pörtner, H.-O. et al.] In press (2019).Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gibble, C. et al. Investigation of a largescale Common Murre (Uria aalge) mortality event in California, USA, in 2015. J. Wildl. Dis. 54, 569–574 (2018).PubMed 
    Article 

    Google Scholar 
    Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 212 (2019).Article 

    Google Scholar 
    Le Nohaïc, M. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 1–11 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Genevier, L. G., Jamil, T., Raitsos, D. E., Krokos, G. & Hoteit, I. Marine heatwaves reveal coral reef zones susceptible to bleaching in the Red Sea. Glob. Change Biol. 25, 2338–2351 (2019).ADS 
    Article 

    Google Scholar 
    Leggat, W. P. et al. Rapid coral decay is associated with marine heatwave mortality events on reefs. Curr. Biol. 29, 2723–2730 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Green, E. P. & Short, F. T. World Atlas of Seagrasses (University of California Press, 2003).Duarte, C. M. The future of seagrass meadows. Environ. Conserv. 29, 192–206 (2002).Article 

    Google Scholar 
    Alongi, D. M. Blue Carbon: Coastal Sequestration for Climate Change Mitigation (Springer, Berlin, 2018).Book 

    Google Scholar 
    Blandon, A. & ZuErmgassen, P. S. Quantitative estimate of commercial fish enhancement by seagrass habitat in southern Australia. Estuarine Coast. Shelf Sci. 141, 1–8 (2014).ADS 
    Article 

    Google Scholar 
    Boudouresque, C. F., Mayot, N. & Pergent, G. The outstanding traits of the functioning of the Posidonia oceanica seagrass ecosystem. Biol. Mar. Medit. 13, 109–113 (2006).
    Google Scholar 
    Carr, J., D’odorico, P., McGlathery, K. & Wiberg, P. L. Stability and bistability of seagrass ecosystems in shallow coastal lagoons: Role of feedbacks with sediment resuspension and light attenuation. J. Geophys. Res. Biogeosci. https://doi.org/10.1029/2009JG001103 (2010).Article 

    Google Scholar 
    Welsh, D. T. Nitrogen fixation in seagrass meadows: regulation, plant–bacteria interactions and significance to primary productivity. Ecol. Lett. 3, 58–71. https://doi.org/10.1046/j.1461-0248.2000.00111.x (2000).Article 

    Google Scholar 
    Duarte, C. M. et al. Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Glob. Biogeochem. Cycles. https://doi.org/10.1029/2010GB003793 (2010).Article 

    Google Scholar 
    Cabaço, S. & Santos, R. Human-induced changes of the seagrass Cymodocea nodosa in Ria Formosa lagoon (Southern Portugal) after a decade. Cah. Biol. Mar. 55, 101–108 (2014).
    Google Scholar 
    Marbà, N., Krause-Jensen, D., Masqué, P. & Duarte, C. M. Expanding Greenland seagrass meadows contribute new sediment carbon sinks. Sci. Rep. 8, 1–8 (2018).Article 
    CAS 

    Google Scholar 
    Bañolas, G., Fernández, S., Espino, F., Haroun, R. & Tuya, F. Evaluation of carbon sinks by the seagrass Cymodocea nodosa at an oceanic island: Spatial variation and economic valuation. Ocean Coast. Manag. 187, 105112 (2020).Article 

    Google Scholar 
    Duarte, C. M. & Krause-Jensen, D. Export from seagrass meadows contributes to marine carbon sequestration. Front. Mar. Sci. 4, 13 (2017).
    Google Scholar 
    Duarte, C. M., Middelburg, J. J. & Caraco, N. Major role of marine vegetation on the oceanic carbon cycle. Biogeosci. 2, 1–8 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Kennedy, H. et al. Seagrass sediments as a global carbon sink: Isotopic constraints. Glob. Biogeochem. Cycles https://doi.org/10.1029/2010GB003848 (2010).Article 

    Google Scholar 
    Orth, R. J. et al. A global crisis for seagrass ecosystems. Bioscience 56, 987–996 (2006).Article 

    Google Scholar 
    Waycott, M. et al. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proc. Natl. Acad. Sci. 106, 12377–12381 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change 8, 338 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Collier, C. J. et al. Optimum temperatures for net primary productivity of three tropical seagrass species. Front. Plant Sci. 8, 1446 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    George, R., Gullström, M., Mangora, M. M., Mtolera, M. S. & Björk, M. High midday temperature stress has stronger effects on biomass than on photosynthesis: a mesocosm experiment on four tropical seagrass species. Ecol. Evol. 8, 4508–4517 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Savva, I., Bennett, S., Roca, G., Jordà, G. & Marbà, N. Thermal tolerance of Mediterranean marine macrophytes: Vulnerability to global warming. Ecol. Evol. 8, 12032–12043 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Massa, S. I., Arnaud-Haond, S., Pearson, G. A. & Serrão, E. A. Temperature tolerance and survival of intertidal populations of the seagrass Zostera noltii (Hornemann) in Southern Europe (Ria Formosa, Portugal). Hydrobiologia 619, 195–201 (2009).Article 

    Google Scholar 
    Bergmann, N. et al. Population-specificity of heat stress gene induction in northern and southern eelgrass Zostera marina populations under simulated global warming. Mol. Ecol. 19, 2870–2883 (2010).PubMed 
    Article 

    Google Scholar 
    Franssen, S. U. et al. Genome-wide transcriptomic responses of the seagrasses Zostera marina and Nanozostera noltii under a simulated heatwave confirm functional types. Mar. Genomics 15, 65–73 (2014).PubMed 
    Article 

    Google Scholar 
    Qin, L. Z. et al. Influence of regional water temperature variability on the flowering phenology and sexual reproduction of the seagrass Zostera marina in Korean coastal waters. Estuaries Coasts 43, 449–462 (2020).CAS 
    Article 

    Google Scholar 
    Gao, Y. et al. Photosynthetic and metabolic responses of eelgrass Zostera marina L. to short-term high-temperature exposure. J. Oceanol. Limnol. 37, 199–209 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Marín-Guirao, L. et al. Carbon economy of Mediterranean seagrasses in response to thermal stress. Mar. Pollut. Bull. 135, 617–629 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Costa, M. M., Silva, J., Barrote, I. & Santos, R. Heatwave effects on the photosynthesis and antioxidant activity of the seagrass Cymodocea nodosa under contrasting light regimes. Oceans 2, 448–460 (2021).Article 

    Google Scholar 
    de los Santos, C. et al. Recent trend reversal for declining European seagrass meadows. Nat. Commun. 10, 3356 (2019).Cunha, A. H., Assis, J. F. & Serrão, E. A. Reprint of “Seagrasses in Portugal: A most endangered marine habitat”. Aquat. Bot. 115, 3–13 (2014).Article 

    Google Scholar 
    Olsen, Y. S., Sánchez-Camacho, M., Marbà, N. & Duarte, C. M. Mediterranean seagrass growth and demography responses to experimental warming. Estuaries Coasts 35, 1205–1213 (2012).Article 

    Google Scholar 
    Marín-Guirao, L., Ruiz, J. M., Dattolo, E., Garcia-Munoz, R. & Procaccini, G. Physiological and molecular evidence of differential short-term heat tolerance in Mediterranean seagrasses. Sci. Rep. 6, 1–13 (2016).Article 
    CAS 

    Google Scholar 
    Lüning, K. Seaweeds. Their Environment, Biogeography, and Ecophysiology (Wiley-Interscience, New York, 1990).Lee, K. S., Park, S. R. & Kim, Y. K. Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J. Exp. Mar. Biol. Ecol. 350, 144–175 (2007).Article 

    Google Scholar 
    Franssen, S. U. et al. Transcriptomic resilience to global warming in the seagrass Zostera marina, a marine foundation species. Proc. Natl. Acad. Sci. 108, 19276–19281 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Winters, G., Nelle, P., Fricke, B., Rauch, G. & Reusch, T. B. H. Effects of a simulated heat wave on photophysiology and gene expression of high- and low-latitude populations of Zostera marina. Mar. Ecol. Prog. Ser. 435, 83–95 (2011).ADS 
    Article 

    Google Scholar 
    Maxwell, K. & Johnson, G. N. Chlorophyll fluorescence—A practical guide. J. Exp. Bot. 51, 659–668 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schubert, N. et al. Photoacclimation strategies in northeastern Atlantic seagrasses: Integrating responses across plant organizational levels. Sci. Rep. 8, 1–14 (2018).CAS 
    Article 

    Google Scholar 
    Miyake, C., Yonekura, K., Kobayashi, Y. & Yokota, A. Cyclic electron flow within PSII functions in intact chloroplasts from spinach leaves. Plant Cell Physiol. 43, 951–957 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rasmusson, L. M., Gullström, M., Gunnarsson, P. C. B., George, R. & Björk, M. Estimation of a whole plant Q10 to assess seagrass productivity during temperature shifts. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    Buapet, P. & Björk, M. The role of O2 as an electron acceptor alternative to CO2 in photosynthesis of the common marine angiosperm Zostera marina L. Photosynth. Res. 129, 59–69 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mehler, A. H. Studies on reactions of illuminated chloroplasts. II Stimulation and inhibition of the reaction with molecular oxygen. Arch. Biochem. Biophys. 34, 339–51 (1951).CAS 
    PubMed 
    Article 

    Google Scholar 
    Apel, K. & Hirt, H. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55, 373–399 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chalanika De Silva, H. C. & Asaeda, T. Effects of heat stress on growth, photosynthetic pigments, oxidative damage and competitive capacity of three submerged macrophytes. J. Plant Interact. 12, 228–236 (2017).Article 
    CAS 

    Google Scholar 
    Beer, S., Björk, M., Gademann, R. & Ralph, P. Measurements of photosynthetic rates in seagrasses. In Global Seagrass Research Methods pp. 183–198 (Elsevier Science, 2001).Brodersen, K. E., Kühl, M., Nielsen, D. A., Pedersen, O. & Larkum, A. W. Rhizome, root/sediment interactions, aerenchyma and internal pressure changes in seagrasses. In Seagrasses of Australia pp. 393–418; https://doi.org/10.1007/978-3-319-71354-0_13 (Springer, Cham, 2018).Purnama, P. R., Purnama, E. R., Manuhara, Y. S. W., Hariyanto, S. & Purnobasuki, H. Effect of high temperature stress on changes in morphology, anatomy and chlorophyll content in tropical seagrass Thalassia hemprichii. AACL Bioflux 11, 1825–1833 (2018).
    Google Scholar 
    Rosalina, D., Herawati, E. Y., Musa, M., Sofarini, D. & Risjani, Y. Anatomical changes in the roots, rhizomes and leaves of seagrass (Cymodocea serrulata) in response to lead. Biodiversitas 20, 2583–2588; https://doi.org/10.13057/biodiv/d200921 (2019).Beca-Carretero, P., Olesen, B., Marbà, N. & Krause-Jensen, D. Response to experimental warming in northern eelgrass populations: comparison across a range of temperature adaptations. Mar. Ecol. Progr. Ser. 589, 59–72; https://doi.org/10.3354/meps12439 (2018).Beca-Carretero, P., Guihéneuf, F., Krause-Jensen, D. & Stengel, D. B. Seagrass fatty acid profiles as a sensitive indicator of climate settings across seasons and latitudes. Mar. Env. Res. 161, 105075; https://doi.org/10.1016/j.marenvres.2020.105075 (2020).Pérez, M. & Romero, J. Photosynthetic response to light and temperature of the seagrass Cymodocea nodosa and the prediction of its seasonality. Aquat. Bot. 43, 51–62; https://doi.org/10.1016/0304-3770(92)90013-9 (1992).Saha, M. et al. Response of foundation macrophytes to near‐natural simulated marine heatwaves. Global Change Biol. 26, 417–430; https://doi.org/10.1111/gcb.14801 (2020).Tutar, O., Marín-Guirao, L., Ruiz, J. M. & Procaccini, G. Antioxidant response to heat stress in seagrasses. A gene expression study. Mar. Environ. Res. 132, 94–102; https://doi.org/10.1016/j.marenvres.2017.10.011 (2017).Moreno‐Marín, F., Brun, F. G. & Pedersen, M. F. Additive response to multiple environmental stressors in the seagrass Zostera marina L. Limnol. Oceanogr. 63, 1528–1544; https://doi.org/10.1002/lno.10789 (2018).Kim, M. et al. Influence of water temperature anomalies on the growth of Zostera marina plants held under high and low irradiance levels. Estuaries Coasts 43, 463–476; https://doi.org/10.1007/s12237-019-00578-2 (2020).Egea, L. G., Jiménez-Ramos, R., Vergara, J. J., Hernández, I. & Brun, F. G. Interactive effect of temperature, acidification and ammonium enrichment on the seagrass Cymodocea nodosa. Mar. Pollut. Bull. 134, 14–26; https://doi.org/10.1016/j.marpolbul.2018.02.029 (2018).Newton, A. & Mudge, S. M. Temperature and salinity regimes in a shallow, mesotidal lagoon, the Ria Formosa, Portugal. Estuarine Coastal Shelf Sci. 57, 73–85; https://doi.org/10.1016/S0272-7714(02)00332-3 (2003).Instituto Hidrográfico. Marés 81/82 Ria de Faro. Estudo das marés de oito estacões da Ria de Faro pp. 13 (Lisbon: Instituto Hidrográfico, 1986).Andrade, J. P. Aspectos Geomorfológicos, Ecológicos e Socioeconómicos da Ria Formosa pp. 91 (Faro: Universidade do Algarve, 1985).Hobday, A.J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238; https://doi.org/10.1016/j.pocean.2015.12.014 (2016).Hobday, A. J. et al. Categorizing and naming marine heatwaves. Oceanogr. 31, 162–173; https://doi.org/10.5670/oceanog.2018.205 (2018).Cunha, A. H., Paulo, D. S., Sousa, I. & Serrão, E. The rediscovery of Caulerpa prolifera in Ria Formosa, Portugal, 60 years after the previous record. Cah. Biol. Mar. 54, 359–364 (2013).
    Google Scholar 
    Huang, B. et al. Improvements of the daily optimum interpolation sea surface temperature (DOISST) Version 2.1. J. Clim. 34, 2923–2939 (2020).ADS 
    Article 

    Google Scholar 
    Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496 (2007).ADS 
    Article 

    Google Scholar 
    Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modelling and environmental studies. Earth Syst. Sci. Data 8, 165–176 (2016).ADS 
    Article 

    Google Scholar 
    Schlegel, R. W. Marine Heatwave Tracker. http://www.marineheatwaves.org/tracker; 10.5281/zenodo.3787872 (2020).Field, C. B., Barros, V., Stocker, T. F. & Dahe, Q. (Eds.). Managing the risks of extreme events and disasters to advance climate change adaptation: special report of the intergovernmental panel on climate change (IPCC) (Cambridge University Press, 2012).Silva, J., Barrote, I., Costa, M. M., Albano, S. & Santos, R. Physiological responses of Zostera marina and Cymodocea nodosa to light-limitation stress. PLoS One 8, e81058 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Silva, J. & Santos, R. Can chlorophyll fluorescence be used to estimate photosynthetic production in the seagrass Zostera noltii?. J. Exp. Mar. Biol. Ecol. 307, 207–216 (2004).CAS 
    Article 

    Google Scholar 
    Jassby, A. D. & Platt, T. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnol. Oceanogr. 21, 540–547 (1976).ADS 
    CAS 
    Article 

    Google Scholar 
    Henley, W. J. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29, 729–739 (1993).Article 

    Google Scholar 
    Genty, B., Briantais, J. M. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta 990, 87–92 (1989).CAS 
    Article 

    Google Scholar 
    Folin, O. & Ciocalteu, V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 73, 627–650 (1927).CAS 
    Article 

    Google Scholar 
    Booker, F. L. & Miller, J. E. Phenylpropanoid metabolism and phenolic composition of soybean [Glycine max (L) Merr] leaves following exposure to ozone. J. Exp. Bot. 49, 1191–1202 (1998).CAS 
    Article 

    Google Scholar 
    Re, R. et al. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26, 1231–1237 (1999).CAS 
    Article 

    Google Scholar 
    Gillespie, K. M., Chae, J. M. & Ainsworth, E. A. Rapid measurement of total antioxidant capacity in plants. Nat. Protoc. 2, 867–870 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A. & Prior, R. L. High-Throughput Assay of Oxygen Radical Absorbance Capacity (ORAC) Using a Multichannel Liquid Handling System Coupled with a Microplate Fluorescence Reader in 96-Well Format. J. Agric. Food Chem. 50, 4437–4444 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hodges, D. M., DeLong, J. M., Forney, C. F. & Prange, R. K. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta 207, 604–611 (1999).CAS 
    Article 

    Google Scholar 
    Rasband, W.S. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA, 1997–2018. https://imagej.nih.gov/ij/ (1997).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/ (2014).Devore, J. & Farnum, N. Applied Statistics for Engineers and Scientists (ed. Brooks/Cole) pp. 656 (Pacific Grove, CA, USA, 1999). More

  • in

    Microbial functional changes mark irreversible course of Tibetan grassland degradation

    Literature studyLiterature considering the effect of pasture degradation on SOC, N, and clay content, as well as bulk density (BD), was assembled by searching (i) Web of Science V.5.22.1, (ii) ScienceDirect (Elsevier B.V.) (iii) Google Scholar, and (iv) the China Knowledge Resource Integrated Database (CNKI). Search terms were “degradation gradient”, “degradation stages”, “alpine meadow”, “Tibetan Plateau”, “soil”, “soil organic carbon”, and “soil organic matter” in different combinations. The criteria for including a study in the analysis were: (i) a clear and comprehensible classification of degradation stages was presented, (ii) data on SOC, N, and/or BD were reported, (iii) a non-degraded pasture site was included as a reference to enable an effect size analysis and the calculation of SOC and N losses, (iv) sampling depths and study location were clearly presented. (v) Studies were only considered that took samples in 10 cm depth intervals, to maintain comparability to the analyses from our own study site. The degradation stages in the literature studies were regrouped into the six successive stages (S0–S5) according to the respective degradation descriptions. In total, we compiled the results of 49 publications published between 2002 and 2020.When SOM content was presented, this was converted to SOC content using a conversion factor of 2.032. SOC and N stocks were calculated using the following equation:$${{{{{rm{Elemental; stock}}}}}}=100* {{{{{rm{content}}}}}}* {{{{{rm{BD}}}}}}* {{{{{rm{depth}}}}}}$$
    (1)
    where elemental stock is SOC or N stock [kg ha−1]; content is SOC or N content [g kg−1]; BD is soil bulk density [g cm−3] and depth is the soil sampling depth [cm].The effect sizes of individual variables (i.e., SOC and N stocks as well as BD) were quantified as follows:$${{{{{rm{ES}}}}}}=,frac{(D-R)}{R* 100 % }$$
    (2)
    where ES is the effect size in %, D is the value of the corresponding variable in the relevant degradation stage and R is the value of each variable in the non-degraded stage (reference site). When ES is positive, zero, or negative, this indicates an increase, no change, or decrease, respectively, of the parameter compared to the non-degraded stage.Experimental design of the field studyLarge areas in the study region are impacted by grassland degradation. In total, 45% of the surface area of the Kobresia pasture ecosystem on the TP is already degraded2. The experiment was designed to differentiate and quantify SOC losses by erosion vs. net decomposition and identify underlying shifts in microbial community composition and link these to changes in key microbial functions in the soil C cycle. We categorized the range of Kobresia root-mat degradation from non-degraded to bare soils into six successive degradation stages (S0–S5). Stage S0 represented non-degraded root mats, while stages S1–S4 represented increasing degrees of surface cracks, and bare soil patches without root mats defined stage S5 (Supplementary Fig. 1). All six degradation stages were selected within an area of about 4 ha to ensure equal environmental conditions and each stage was sampled in four field replicates. However, the studied degradation patterns are common for the entire Kobresia ecosystem (Supplementary Fig. 1).Site descriptionThe field study was conducted near Nagqu (Tibet, China) in the late summer 2013 and 2015. The study site of about 4 ha (NW: 31.274748°N, 92.108963°E; NE: 31.274995°N, 92.111482°E; SW: 31.273488°N, 92.108906°E; SE: 31.273421°N, 92.112025°E) was located on gentle slopes (2–5%) at 4,484 m a.s.l. in the core area of the Kobresia pygmaea ecosystem according to Miehe et al.8. The vegetation consists mainly of K. pygmaea, which covers up to 61% of the surface. Other grasses, sedges, or dwarf rosette plants (Carex ivanoviae, Carex spp., Festuca spp., Kobresia pusilla, Poa spp., Stipa purpurea, Trisetum spp.) rarely cover more than 40%. The growing season is strongly restricted by temperature and water availability. At most, it lasts from mid-May to mid-September, but varies strongly depending on the onset and duration of the summer monsoon. Mean annual precipitation is 431 mm, with roughly 80% falling as summer rains. The mean annual temperature is −1.2 °C, while the mean maximum temperature of the warmest month (July) is +9.0 °C2.A characteristic feature of Kobresia pastures is their very compact root mats, with an average thickness of 15 cm at the study site. These consist mainly of living and dead K. pygmaea roots and rhizomes, leaf bases, large amounts of plant residue, and mineral particles. Intact soil is a Stagnic Eutric Cambisol (Humic), developed on a loess layer overlying glacial sediments and containing 50% sand, 33% silt, and 17% clay in the topsoil (0–25 cm). The topsoil is free of carbonates and is of neutral pH (pH in H2O: 6.8)5. Total soil depth was on average 35 cm.The site is used as a winter pasture for yaks, sheep, and goats from January to April. Besides livestock, large numbers of plateau pikas (Ochotona) are found on the sites. These animals have a considerable impact on the plant cover through their burrowing activity, in particular the soil thrown out of their burrows, which can cover and destroy the Kobresia turf.Sampling designThe vertical and horizontal extent of the surface cracks was measured for each plot (Supplementary Table 2). Vegetation cover was measured and the aboveground biomass was collected in the cracks (Supplementary Table 2). In general, intact Kobresia turf (S0) provided high resistance to penetration as measured by a penetrologger (Eijkelkamp Soil and Water, Giesbeek, NL) in 1 cm increments and four replicates per plot.Soil sampling was conducted using soil pits (30 cm length × 30 cm width × 40 cm depth). Horizons were classified and then soil and roots were sampled for each horizon directly below the cracks. Bulk density and root biomass were determined in undisturbed soil samples, using soil cores (10 cm height and 10 cm diameter). Living roots were separated from dead roots and root debris by their bright color and soft texture using tweezers under magnification, and the roots were subsequently washed with distilled water to remove the remaining soil. Because over 95% of the roots occurred in the upper 25 cm5, we did not sample for root biomass below this depth.Additional soil samples were taken from each horizon for further analysis. Microbial community and functional characterization were performed on samples from the same pits but with a fixed depth classification (0–5 cm, 5–15 cm, 15–35 cm) to reduce the number of samples.Plant and soil analysesSoil and roots were separated by sieving (2 mm) and the roots subsequently washed with distilled water. Bulk density and root density were determined by dividing the dry soil mass (dried at 105 °C for 24 h) and the dry root biomass (60 °C) by the volume of the sampling core. To reflect the root biomass, root density was expressed per soil volume (mg cm−3). Soil and root samples were milled for subsequent analysis.Elemental concentrations and SOC characteristicsTotal SOC and total N contents and stable isotope signatures (δ13C and δ15N) were analyzed using an isotope ratio mass spectrometer (Delta plus, Conflo III, Thermo Electron Cooperation, Bremen, Germany) coupled to an elemental analyzer (NA 1500, Fisons Instruments, Milano, Italy). Measurements were conducted at the Centre for Stable Isotope Research and Analysis (KOSI) of the University of Göttingen. The δ13C and δ15N values were calculated by relating the isotope ratio of each sample (Rsample = 13C/12C or 15N/14N) to the international standards (Pee Dee Belemnite 13C/12C ratio for δ13C; the atmospheric 15N/14N composition for δ15N).Soil pH of air-dried soil was measured potentiometrically at a ratio (v/v) of 1.0:2.5 in distilled water.Lignin phenols were depolymerized using the CuO oxidation method25 and analyzed with a gas chromatography-mass spectrometry (GC–MS) system (GC 7820 A, MS 5977B, Agilent Technologies, Waldbronn, Germany). Vanillyl and syringyl units were calculated from the corresponding aldehydes, ketones, and carboxylic acids. Cinnamyl units were derived from the sum of p-coumaric acid and ferulic acid. The sum of the three structural units (VSC = V + S + C) was considered to reflect the lignin phenol content in a sample.DNA extraction and PCRSamples were directly frozen on site at −20 °C and transported to Germany for analysis of microbial community structure. Total DNA was extracted from the soil samples with the PowerSoil DNA isolation kit (MoBio Laboratories Inc., Carlsbad, CA, USA) according to the manufacturer’s instructions, and DNA concentration was determined using a NanoDrop 1000 spectrophotometer (Thermo Fisher Scientific, Wilmington, DE, USA). The extracted DNA was amplified with forward and reverse primer sets suitable for either t-RFLP (fluorescence marked, FAM) or Illumina MiSeq sequencing (Illumina Inc., San Diego, USA): V3 (5’-CCT ACG GGN GGC WGC AG-3’) and V4 (5’-GAC TAC HVG GGT ATC TAA TCC-3’) primers were used for bacterial 16 S rRNA genes whereas ITS1 (5’-CTT GGT CAT TTA GAG GAA GTA A-3’), ITS1-F_KYO1 (5’-CTH GGT CAT TTA GAG GAA STA A-3’), ITS2 (5’-GCT GCG TTC TTC ATC GAT GC-3’) and ITS4 (5’-TCC TCC GCT TAT TGA TAT GC-3’) were used for fungi33,34. Primers for Illumina MiSeq sequencing included adaptor sequences (forward: 5’-TCG TCG GCA GCG TCA GAT GTG TAT AAG AGA CAG-3’; reverse: 5’-GTC TCG TGG GCT CGG AGA TGT GTA TAA GAG ACA G-3’)33. PCR was performed with the Phusion High-Fidelity PCR kit (New England Biolabs Inc., Ipswich, MA, USA) creating a 50 µl master mix with 28.8 µl H2Omolec, 2.5 µl DMSO, 10 µl Phusion GC buffer, 1 µl of forward and reverse primer, 0.2 µl MgCl2, 1 µl dNTPs, 0.5 µl Phusion HF DNA Polymerase, and 5 µl template DNA. PCR temperatures started with initial denaturation at 98 °C for 1 min, followed by denaturation (98 °C, 45 s), annealing (48/60 °C, 45 s), and extension (72 °C, 30 s). These steps were repeated 25 times, finalized again with a final extension (72 °C, 5 min), and cooling to 10 °C. Agarose gel electrophoresis was used to assess the success of the PCR and the amount of amplified DNA (0.8% gel:1.0 g Rotigarose, 5 µl Roti-Safe Gelstain, Carl Roth GmbH & Co. KG, Karlsruhe, Germany; and 100 ml 1× TAE-buffer). PCR product was purified after initial PCR and restriction digestion (t-RFLP) with either NucleoMag 96 PCR (16 S rRNA gene amplicons, Macherey-Nagel GmbH & Co. KG, Düren, Germany) or a modified clean-up protocol after Moreau (t-RFLP)35: 3× the volume of the reaction solution as 100% ethanol and ¼x vol. 125 mM EDTA was added and mixed by inversion or vortex. After incubation at room temperature for 15 min, the product was centrifuged at 25,000 × g for 30 min at 4 °C. Afterwards the supernatant was removed, and the inverted 96-well plate was centrifuged shortly for 2 min. Seventy microliters ethanol (70%) were added and centrifuged at 25,000 × g for 30 min at 4 °C. Again, the supernatant was removed, and the pallet was dried at room temperature for 30 min. Finally, the ethanol-free pallet was resuspended in H2Omolec.T-RFLP fingerprintingThe purified fluorescence-labeled PCR products were digested with three different restriction enzymes (MspI and BstUI, HaeIII) according to the manufacturer’s guidelines (New England Biolabs Inc., Ipswich, MA, USA) with a 20 µl master mix: 16.75 µl H2Omolec, 2 µl CutSmart buffer, 0.25 or 0.5 µl restriction enzyme, and 1 µl PCR product for 15 min at 37 °C (MspI) and 60 °C (BstUI, HaeIII), respectively. The digested PCR product was purified a second time35, dissolved in Super-DI Formamide (MCLAB, San Francisco, CA, USA) and, along with Red DNA size standard (MCLAB, San Francisco, USA), analyzed in an ABI Prism 3130 Genetic Analyzer (Applied Biosystems, Carlsbad, CA, USA). Terminal restriction fragments shorter than 50 bp and longer than 800 bp were removed from the t-RFLP fingerprints.16 S rRNA gene and internal transcribed spacer (ITS) sequencing and sequence processingThe 16 S rRNA gene and ITS paired-end raw reads for the bacterial and fungal community analyses were deposited in the National Center for Biotechnology Information (NCBI) Sequence Read Archive (SRA) and can be found under the BioProject accession number PRJNA626504. This BioProject contains 70 samples and 139 SRA experiments (SRR11570615–SRR11570753) which were processed using CASAVA software (Illumina, San Diego, CA, USA) for demultiplexing of MiSeq raw sequences (2 × 300 bp, MiSeq Reagent Kit v3).Paired-end sequences were quality-filtered with fastp (version 0.19.4)36 using default settings with the addition of an increased per base phred score of 20, base-pair corrections by overlap (-c), as well as 5′- and 3′-end read trimming with a sliding window of 4, a mean quality of 20 and minimum sequence size of 50 bp. Paired-end sequences were merged using PEAR v0.9.1137 with default parameters. Subsequently, unclipped reverse and forward primer sequences were removed with cutadapt v1.1838 with default settings. Sequences were then processed using VSEARCH (v2.9.1)39. This included sorting and size-filtering (—sortbylength,—minseqlength) of the paired reads to ≥300 bp for bacteria and ≥140 bp for ITS1, dereplication (—derep_fulllength). Dereplicated sequences were denoised with UNOISE340 using default settings (—cluster_unoise—minsize 8) and chimeras were removed (—uchime3_denovo). An additional reference-based chimera removal was performed (—uchime_ref) against the SILVA41 SSU NR database (v132) and UNITE42 database (v7.2) resulting in the final set of amplicon sequence variants (ASVs)43. Quality-filtered and merged reads were mapped to ASVs (—usearch_global–id 0.97). Classification of ASVs was performed with BLAST 2.7.1+ against the SILVA SSU NR (v132) and UNITE (v7.2) database with an identity of at least 90%. The ITS sequences contained unidentified fungal ASVs after UNITE classification, these sequences were checked (blastn)44 against the “nt” database (Nov 2018) to remove non-fungal ASVs and only as fungi classified reads were kept. Sample comparisons were performed at the same surveying effort, utilizing the lowest number of sequences by random selection (total 15,800 bacteria, 20,500 fungi). Species richness, alpha and beta diversity estimates, and rarefaction curves were determined using the QIIME 1.9.145 script alpha_rarefaction.py.The final ASV tables were used to compute heatmaps showing the effect of degradation on the community using R (Version 3.6.1, R Foundation for Statistical Computing, Vienna, Austria) and R packages “gplots”, “vegan”, “permute” and “RColorBrewer”. Fungal community functions were obtained from the FunGuild database46. Plant mycorrhizal association types were compiled from the literature38,39,40,41,47,48,49,50. If no direct species match was available, the mycorrhizal association was assumed to remain constant within the same genus.Enzyme activityEnzyme activity was measured to characterize the functional activity of the soil microorganisms. The following extracellular enzymes, involved in C, N, and P transformations, were considered: two hydrolases (β-glucosidase and xylanase), phenoloxidase, urease, and alkaline phosphatase. Enzyme activities were measured directly at the sampling site according to protocols after Schinner et al.51. Beta-glucosidase was incubated with saligenin for 3 h at 37 °C, xylanase with glucose for 24 h at 50 °C, phenoloxidase with L-3,4-dihydroxy phenylalanine (DOPA) for 1 h at 25 °C, urease with urea for 2 h at 37 °C and alkaline phosphatase on P-nitrophenyl phosphate for 1 h at 37 °C. Reaction products were measured photometrically at recommended wavelengths (578, 690, 475, 660, and 400 nm, respectively).SOC stocks and SOC lossThe SOC stocks (in kg C m−2) for the upper 30 cm were determined by multiplying the SOC content (g C kg−1) by the BD (g cm−3) and the thickness of the soil horizons (m). SOC losses (%) were calculated for each degradation stage and horizon and were related to the mean C stock of the reference stage (S0). The erosion-induced SOC loss of the upper horizon was estimated by considering the topsoil removal (extent of vertical soil cracks) of all degraded soil profiles (S1–S5) and the SOC content and BD of the reference (S0). To calculate the mineralization-derived SOC loss, we accounted for the effects of SOC and root mineralization on both SOC content and BD. Thus, we used the SOC content and BD from each degradation stage (S1–S5) and multiplied it by the mean thickness of each horizon (down to 30 cm) from the reference site (S0). The disentanglement of erosion-derived SOC loss from mineralization-derived SOC loss was based on explicit assumptions that (i) erosion-derived SOC losses are mainly associated with losses from the topsoil, and (ii) the decreasing SOC contents in the erosion-unaffected horizons were mainly driven by mineralization and decreasing root C input.Statistical analysesStatistical analyses were performed using PASW Statistics (IBM SPSS Statistics) and R software (Version 3.6.1). Soil and plant characteristics are presented as means and standard errors (means ± SE). The significance of treatment effects (S0–S5) and depth was tested by one-way ANOVA at p  More

  • in

    Male-biased sex ratio in the crawling individuals of an invasive naticid snail during summer: implications for population management

    Allendorf, F. W. & Lundquist, L. L. Introduction: Population biology, evolution, and control of invasive species. Conserv. Biol. 17, 24–30 (2003).Article 

    Google Scholar 
    Kopf, R. K. et al. Confronting the risks of large-scale invasive species control. Nat. Ecol. Evol. 1, 0172 (2017).Article 

    Google Scholar 
    Luque, G. M. et al. The 100th of the world’s worst invasive alien species. Biol. Invasions 16, 981–985 (2014).Article 

    Google Scholar 
    Genovesi, P. Eradications of invasive alien species in Europe: A review. Biol. Invasions 7, 127–133 (2005).Article 

    Google Scholar 
    Simberloff, D. How much information on population biology is needed to manage introduced species?. Conserv. Biol. 17, 83–92 (2003).Article 

    Google Scholar 
    Takeshita, F. & Maekawa, T. Paratectonatica tigrina (Gastropoda: Naticidae) adjusts its predation tactics depending on the chosen prey and their shell weight relative to its own. J. Mar. Biol. Assoc. U. K. 100, 921–926 (2020).Article 

    Google Scholar 
    Wiltse, W. I. Effects of Polinices duplicatus (Gastropoda: Naticidae) on infaunal community structure at Barnstable Harbor, Massachusetts, USA. Mar. Biol. 56, 301–310 (1980).Article 

    Google Scholar 
    Commito, J. A. Effects of Lunatia heros predation on the population dynamics of Mya arenaria and Macoma balthica in Maine, USA. Mar. Biol. 69, 187–193 (1982).Article 

    Google Scholar 
    Ansell, A. D. Experimental studies of a benthic predator–prey relationship. I. Feeding, growth, and egg-collar production in long-term cultures of the gastropod drill Polinices alderi (Forbes) feeding on the bivalve Tellina tenuis (da Costa). J. Exp. Mar. Biol. Ecol. 56, 235–255 (1982).Article 

    Google Scholar 
    Savazzi, E. & Reyment, R. A. Subaerial hunting behaviour in Natica gualteriana (naticid gastropod). Palaeogeogr. Palaeoclimatol. Palaeoecol. 74, 355–364 (1989).Article 

    Google Scholar 
    Gonor, J. J. Predator–prey reactions between two marine prosobranch gastropods. The Veliger 7, 228–232 (1969).
    Google Scholar 
    Hughes, R. N. Predatory behaviour of Natica unifasciata feeding intertidally on gastropods. J. Molluscan Stud. 51, 331–335 (1985).Article 

    Google Scholar 
    Pahari, A. et al. Subaerial naticid gastropod drilling predation by Natica tigrina on the intertidal molluscan community of Chandipur, Eastern Coast of India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 451, 110–123 (2016).Article 

    Google Scholar 
    Sakai, K. Predation of the moon snail Neverita didyma, on the Manila clam Ruditapes philippinarum, at the culture ground in Mangoku-ura Inlet. Bull. Miyagi Prefect. Fish. Res. Dev. Cent. 16, 109–111 (2000) (in Japanese).
    Google Scholar 
    Tomiyama, T. et al. Unintentional introduction and the distribution of the nonindigenous moonsnail Euspira fortunei in Matsukawaura Lagoon, Japan. Nippon Suisan Gakkaishi 77, 1020–1026 (2011) (in Japanese with English abstract).Article 

    Google Scholar 
    Okoshi, K. Alien species introduced with imported clams: The clam-eating moon snail Euspira fortunei and other unintentionally introduced species. Japanese J. Benthol. 59, 74–82 (2004) (in Japanese with English abstract).
    Google Scholar 
    Okoshi, K. & Sato-Okoshi, W. Euspira fortunei: Biology and fisheries science of an invasive species (Kouseishakouseikaku Press, 2011).
    Google Scholar 
    Tomiyama, T. Lethal and non-lethal effects of an invasive naticid gastropod on the production of a native clam. Biol. Invasions 20, 2005–2014 (2018).Article 

    Google Scholar 
    Sato, S., Chiba, T. & Hasegawa, H. Long-term fluctuations in mollusk populations before and after the appearance of the alien predator Euspira fortunei on the Tona coast, Miyagi Prefecture, northern Japan. Fish. Sci. 78, 589–595 (2012).CAS 
    Article 

    Google Scholar 
    Kinoshita, K., Sasaki, N., Seki, A., Matsumasa, M. & Takehara, A. Distribution of the invasive snail Laguncula pulchella and the effect of its predation on the mollusk populations in the Orikasa River Estuary after the 2011 off the Pacific Coast of Tohoku Earthquake. Japanese J. Benthol. 72, 61–70 (2018) (in Japanese with English abstract).
    Google Scholar 
    Sato, T., Iwasaki, T., Narita, K. & Matsumoto, I. Occurrence of the moonsnail Euspira fortunei after the earthquake in Matsukawaura Lagoon Japan. Bull. Fukushima Prefect. Fish. Exp. Stn. 79–82 (2016). (in Japanese).Chiba, T. & Sato, S. Size-selective predation and drillhole-site selectivity in Euspira fortunei (Gastropoda: Naticidae): Implications for ecological and palaeoecological studies. J. Molluscan Stud. 78, 205–212 (2012).Article 

    Google Scholar 
    Tanabe, T. Relationship between the shell height of the predatory moon snail Euspira fortunei and drilled hole diameter on the prey shell of manila clam Ruditapes philippinarum. Nippon Suisan Gakkaishi 78, 37–42 (2012) (in Japanese with English abstract).Article 

    Google Scholar 
    Hasegawa, H. & Sato, S. Predatory behaviour of the naticid Euspira fortunei: Why does it drill the left shell valve of Ruditapes philippinarum?. J. Molluscan Stud. 75, 147–151 (2009).Article 

    Google Scholar 
    Kingsley-Smith, P. R., Richardson, C. A. & Seed, R. Size-related and seasonal patterns of egg collar production in Polinices pulchellus (Gastropoda: Naticidae) Risso 1826. J. Exp. Mar. Biol. Ecol. 295, 191–206 (2003).Article 

    Google Scholar 
    Tomiyama, T. Timing and frequency of egg-collar production of the moonsnail Euspira fortunei. Fish. Sci. 79, 905–910 (2013).CAS 
    Article 

    Google Scholar 
    Sakai, K. & Suto, A. Early development and behavior of the moon snail Neverita didyma. Miyagi Prefect. Rep. Fish. Sci. 5, 55–58 (2005) (in Japanese).
    Google Scholar 
    Cook, N. & Bendell-Young, L. Determining the ecological role of Euspira lewisii: Part I: Feeding ecology. J. Shellfish Res. 29, 223–232 (2010).Article 

    Google Scholar 
    Peitso, E., Hui, E., Hartwick, B. & Bourne, N. Predation by the naticid gastropod Polinices lewisii (Gould) on littleneck clams Protothaca staminea (Conrad) in British Columbia. Can. J. Zool. 72, 319–325 (1994).Article 

    Google Scholar 
    Johannesson, K., Saltin, S. H., Duranovic, I., Havenhand, J. N. & Jonsson, P. R. Indiscriminate males: Mating behaviour of a marine snail compromised by a sexual conflict?. PLoS ONE 5, e12005 (2010).ADS 
    Article 

    Google Scholar 
    Vaughn, D., Turnross, O. R. & Carrington, E. Sex-specific temperature dependence of foraging and growth of intertidal snails. Mar. Biol. 161, 75–87 (2014).Article 

    Google Scholar 
    Watson, P. J., Arnqvist, G. & Stallmann, R. R. Sexual conflict and the energetic costs of mating and mate choice in water striders. Am. Nat. 151, 46–58 (1998).CAS 
    Article 

    Google Scholar 
    Schlacher, T. A. & Wooldridge, T. H. Patterns of selective predation by juvenile, benthivorous fish on estuarine macrofauna. Mar. Biol. 125, 241–247 (1996).Article 

    Google Scholar 
    Sudo, H. & Azeta, M. Selective predation on mature male Byblis japonicus (Amphipoda: Gammaridea) by the barface cardinalfish, Apogon semilineatus. Mar. Biol. 114, 211–217 (1992).Article 

    Google Scholar 
    Vadas, R. L., Burrows, M. T. & Hughes, R. N. Foraging strategies of dogwhelks, Nucella lapillus (L.): Interacting effects of age, diet and chemical cues to the threat of predation. Oecologia 100, 439–450 (1994).ADS 
    Article 

    Google Scholar 
    Donelan, S. C. & Trussell, G. C. Sex-specific differences in the response of prey to predation risk. Funct. Ecol. 34, 1235–1243 (2020).Article 

    Google Scholar 
    Yoshida, K., Sato, T., Narita, K. & Tomiyama, T. Abundance and body size of the moonsnail Laguncula pulchella in the Misuji River estuary, Seto Inland Sea, Japan: Comparison with a population in northern Japan. Plankt. Benthos Res. 12, 53–60 (2017).Article 

    Google Scholar 
    Sato, T., Ogata, Y., Nemoto, Y. & Shimamura, S. Status review and current concerns of the fishery for the short-neck clam, Ruditapes philippinarum, in Matsukawaura Lagoon, Fukushima Prefecture. Bull. Fukushima Prefect. Fish. Exp. Stn. 14, 57–67 (2007) (in Japanese).
    Google Scholar 
    Tomiyama, T. & Sato, T. Effects of translocation on the asari clam Ruditapes philippinarum at small spatial scales in Matsukawaura, Japan. Bull. Mar. Sci. 97, 647–664 (2021).Article 

    Google Scholar 
    Chiba, T. & Sato, S. Invasion of Laguncula pulchella (Gastropoda: Naticidae) and predator–prey interactions with bivalves on the Tona coast, Miyagi prefecture, northern Japan. Biol. Invasions 15, 587–598 (2013).Article 

    Google Scholar  More

  • in

    Phylogeography of the veined squid, Loligo forbesii, in European waters

    Doubleday, Z. A. et al. Global proliferation of cephalopods. Curr. Biol. 26, R406–R407 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jereb, P. et al. Cephalopod biology and fisheries in Europe: II. Species Accounts. ICES Cooperative Research Report No vol. 325 (2015).ICES. ICES WGCEPH REPORT 2015 Interim Report of the Working Group on Cephalopod Fisheries and Life History (WGCEPH). 8–11 (2019).Quetglas, A. et al. Long-term spatiotemporal dynamics of cephalopod assemblages in the Mediterranean sea. Sci. Mar. 83, 33–42 (2019).Article 

    Google Scholar 
    Martins, H. R. Biological studies of the exploited stock of Loligo forbesi (Mollusca: Cephalopoda) in the Azores. J. Mar. Biol. Assoc. United Kingdom 62, 799–808 (1982).Article 

    Google Scholar 
    Guerra, A. & Rocha, F. The life history of Loligo vulgaris and Loligo forbesi (Cephalopoda: Loliginidae) in Galician waters (NW Spain). Fish. Res. 21, 43–69 (1994).Article 

    Google Scholar 
    Pierce, G. J. & Boyle, P. R. Empirical modelling of interannual trends in abundance of squid (Loligo forbesi) in Scottish waters. Fish. Res. 59, 305–326 (2003).Article 

    Google Scholar 
    Lishchenko, F. et al. A review of recent studies on the life history and ecology of European cephalopods with emphasis on species with the greatest commercial fishery and culture potential. Fish. Res. 236, 105847 (2021).Article 

    Google Scholar 
    Laptikhovsky, V. et al. Identification of benthic egg masses and spawning grounds in commercial squid in the English Channel and Celtic Sea: Loligo vulgaris vs L. forbesii. Fish. Res. 241, 106004 (2021).Article 

    Google Scholar 
    Souza, H. V. et al. Analysis of the mitochondrial COI gene and its informative potential for evolutionary inferences in the families Coreidae and Pentatomidae (Heteroptera). Genet. Mol. Res. 15, 1–14 (2016).CAS 

    Google Scholar 
    Brierley, A. S. et al. Genetic variation in the neritic squid Loligo forbesi (Myopsida: Loliginidae) in the northeast Atlantic Ocean. Mar. Biol. 122, 79–86 (1995).Article 

    Google Scholar 
    Shaw, P. W. et al. Subtle population structuring within a highly vagile marine invertebrate, the veined squid Loligo forbesi, demonstrated with microsatellite DNA markers. Mol. Ecol. 8, 407–417 (1999).CAS 
    Article 

    Google Scholar 
    Ellegren, H. Microsatellites: Simple sequences with complex evolution. Nat. Rev. Genet. 5, 435–445 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Begg, G. A. & Waldman, J. R. An holistic approach to fish stock identification. Fish. Res. 43, 35–44 (1999).Article 

    Google Scholar 
    Shaw, P. W. Polymorphic microsatellite markers in a cephalopod: The veined squid Loligo forbesi. Mol. Ecol. 6, 297–298 (1997).CAS 
    Article 

    Google Scholar 
    Emery, A. M. et al. New microsatellite markers for assessment of paternity in the squid Loligo forbesi (Mollusca: Cephalopoda). Mol. Ecol. 9, 110–112 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Butler, J. M. Advanced Topics in Forensic DNA Typing: Interpretation (Elsevier Academic Press, 2015).
    Google Scholar 
    Park, S. D. E. Trypanotolerance in West African Cattle and the Population Genetics Effects of Selection. Trinity Coll. (2001).Nei, M. Molecular Evolutionary Genetics (Columbia University Press, 1987).
    Google Scholar 
    Hedrick, P. W. Genetics of Populations (Science Books International, 1983).
    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F statistics for Population Structure. Evolution 38, 1358–1370 (1984).CAS 
    PubMed 

    Google Scholar 
    Raymond, M. & Rousset, F. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 86, 248–249 (1995).Article 

    Google Scholar 
    Rousset, F. GENEPOP’007: A complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106 (2008).PubMed 
    Article 

    Google Scholar 
    Kalinowski, S. T. HP-RARE 1.0: A computer program for performing rarefaction on measures of allelic richness. Mol. Ecol. Notes 5, 187–189 (2005).CAS 
    Article 

    Google Scholar 
    Excoffier, L. et al. Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evol. Bioinforma. 1, 117693430500100 (2005).Article 

    Google Scholar 
    Pritchard, J. K. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gilbert, K. J. et al. Recommendations for utilizing and reporting population genetic analyses: The reproducibility of genetic clustering using the program structure. Mol. Ecol. 21, 4925–4930 (2012).PubMed 
    Article 

    Google Scholar 
    Porras-Hurtado, L. et al. An overview of STRUCTURE: Applications, parameter settings, and supporting software. Front. Genet. 4, 1–13 (2013).CAS 
    Article 

    Google Scholar 
    Evanno, G. et al. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kopelman, N. M. et al. Clumpak: A program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Folmer, O. et al. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 
    PubMed 

    Google Scholar 
    Hall, T. A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Anderson, F. E. Phylogeny and historical biogeography of the loliginid squids (Mollusca: Cephalopoda) based on mitochondrial DNA sequence data. Mol. Phylogenet. Evol. 15, 191–214 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gebhardt, K. & Knebelsberger, T. Identification of cephalopod species from the North and Baltic Seas using morphology, COI and 18S rDNA sequences. Helgol. Mar. Res. 69, 259–271 (2015).ADS 
    Article 

    Google Scholar 
    Lobo, J. et al. Enhanced primers for amplification of DNA barcodes from a broad range of marine metazoans. BMC Ecol. 13, 1–8 (2013).Article 
    CAS 

    Google Scholar 
    de Luna Sales, J. B. et al. New molecular phylogeny of the squids of the family Loliginidae with emphasis on the genus Doryteuthis Naef ,1912: Mitochondrial and nuclear sequences indicate the presence of cryptic species in the southern Atlantic Ocean. Mol. Phylogenet. Evol. 68, 293–299 (2013).Article 

    Google Scholar 
    Tatulli, G. et al. A rapid colorimetric assay for on-site authentication of cephalopod species. Biosensors 10, 3–10 (2020).Article 
    CAS 

    Google Scholar 
    Velasco, A. et al. A new rapid method for the authentication of common octopus (Octopus vulgaris) in seafood products using recombinase polymerase amplification (rpa) and lateral flow assay (lfa). Foods 10, 1825 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Luz, A. & Keskin, E. Building Reference Library for Marine Fish Species of Azores Archipelago and Bio-monitoring via DNA Metabarcoding. https://www.ncbi.nlm.nih.gov/nuccore/MT491734 (2020).BoldSystems. https://boldsystems.org/index.php/Public_RecordView?processid=AZB030-20 (2018). (Accessed 2 May 2022).Tamura, K. et al. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725–2729 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ronquist, F. & Huelsenbeck, J. P. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rambaut, A. et al. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bandelt, H.-J. et al. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48 (2009).Article 

    Google Scholar 
    Librado, P. & Rozas, J. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlitzer, R. Ocean Data View. (2013).Shaw, P. W. & Boyle, P. R. Multiple paternity within the brood of single females of Loligo forbesi (Cephalopoda: Loliginidae), demonstrated with microsatellite DNA markers. Mar. Ecol. Prog. Ser. 160, 279–282 (1997).ADS 
    Article 

    Google Scholar 
    Emery, A. M. et al. Assignment of paternity groups without access to parental genotypes: Multiple mating and developmental plasticity in squid. Mol. Ecol. 10, 1265–1278 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Catarino, D. et al. The role of the Strait of Gibraltar in shaping the genetic structure of the Mediterranean Grenadier, Coryphaenoides mediterraneus, between the Atlantic and Mediterranean Sea. PLoS ONE 12, 1–24 (2017).
    Google Scholar 
    Gonzalez, E. G. & Zardoya, R. Relative role of life-history traits and historical factors in shaping genetic population structure of sardines (Sardina pilchardus). BMC Evol. Biol. 7, 1–12 (2007).Article 
    CAS 

    Google Scholar 
    Reichow, D. & Smith, M. J. Microsatellites reveal high levels of gene flow among populations of the California squid Loligo opalescens. Mol. Ecol. 10, 1101–1109 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shaw, P. W. et al. DNA markers indicate that distinct spawning cohorts and aggregations of Patagonian squid, Loligo gahi, do not represent genetically discrete subpopulations. Mar. Biol. 144, 961–970 (2004).CAS 
    Article 

    Google Scholar 
    Göpel, A. Populationsgenetik und Phylogeographie des Nordischen Kalmars Loligo forbesii Steenstrup, 1856 in Europäischen Gewässern. Masterthesis, Univ. Rostock in German, 76pp (2020).Oesterwind, D. et al. Biology and meso-scale distribution patterns of North Sea cephalopods. Fish. Res. 106, 141–150 (2010).Article 

    Google Scholar 
    Sauer, W. H. H. et al. Tag recapture studies of the chokka squid Loligo vulgaris reynaudii d’Orbigny, 1845 on inshore spawning grounds on the south-east coast of South Africa. Fish. Res. 45, 283–289 (2000).ADS 
    Article 

    Google Scholar 
    Knowlton, N. & Weigt, L. A. New dates and new rates for divergence across the Isthmus of Panama. Proc. R. Soc. B Biol. Sci. 265, 2257–2263 (1998).Article 

    Google Scholar 
    Pérez-Losada, M. et al. Testing hypotheses of population structuring in the Northeast Atlantic Ocean and Mediterranean Sea using the common cuttlefish Sepia officinalis. Mol. Ecol. 16, 2667–2679 (2007).PubMed 
    Article 

    Google Scholar 
    O’Dor, R. K. Can understanding squid life-history strategies and recruitment improve management?. South African J. Mar. Sci. 7615, 193–206 (1998).Article 

    Google Scholar 
    Izquierdo, A. et al. Modelling in the Strait of Gibraltar: From operational oceanography to scale interactions. Fundam. i Prikl. Gidrofiz. 9, 15–24 (2016).
    Google Scholar 
    Clarke, M. & Hart, M. Treatise Online no. 102: Part M, Chapter 11: Statoliths and coleoid evolution. Treatise Online (2018).Hsü, K. J. et al. Late Miocene desiccation of the mediterranean. Nature 242, 240–244 (1973).ADS 
    Article 

    Google Scholar 
    Garcia-Castellanos, D. et al. Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature 462, 778–781 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Thunell, R. C. et al. Atlantic-mediterranean water exchange during the late neocene. Paleoceanography 2(6), 661 (1987).ADS 
    Article 

    Google Scholar 
    Green, C. P. et al. Combining statolith element composition and fourier shape data allows discrimination of spatial and temporal stock structure of arrow squid (Nototodarus gouldi). Can. J. Fish. Aquat. Sci. 72, 1609–1618 (2015).Article 

    Google Scholar  More

  • in

    Effects of planted pollinator habitat on pathogen prevalence and interspecific detection between bee species

    Paull, S. H. et al. From superspreaders to disease hotspots: Linking transmission across hosts and space. Front. Ecol. Environ. 10, 75–82 (2012).PubMed 
    Article 

    Google Scholar 
    Sorensen, A., Van Beest, F. M. & Brook, R. K. Impacts of wildlife baiting and supplemental feeding on infectious disease transmission risk: A synthesis of knowledge. Prev. Vet. Med. 113, 356–363 (2014).PubMed 
    Article 

    Google Scholar 
    Gortázar, C., Acevedo, P., Ruíz-Fons, F. & Vicente, J. Disease risks and overabundance of game species. Eur. J. Wildl. Res. 52, 81–87 (2006).Article 

    Google Scholar 
    Brittingham, M. C. & Temple, S. A. Avian disease and winter bird feeding. Passeng. Pigeon 50, (1998).Franz, M., Kramer-Schadt, S., Greenwood, A. D. & Courtiol, A. Sickness-induced lethargy can increase host contact rates and pathogen spread in water-limited landscapes. Funct. Ecol. 32, 2194–2204 (2018).Article 

    Google Scholar 
    Galbraith, J. A., Stanley, M. C., Jones, D. N. & Beggs, J. R. Experimental feeding regime influences urban bird disease dynamics. J. Avian Biol. 48, 700–713 (2017).Article 

    Google Scholar 
    Moyers, S. C., Adelman, J. S., Farine, D. R., Thomason, C. A. & Hawley, D. M. Feeder density enhances house finch disease transmission in experimental epidemics. Philos. Trans. R. Soc. B Biol. Sci. 373(1745), 20170090 (2018).Article 
    CAS 

    Google Scholar 
    Keesing, F., Holt, R. D. & Ostfeld, R. S. Effects of species diversity on disease risk. Ecol. Lett. 9, 485–498 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mathiasson, M. E. & Rehan, S. M. Status changes in the wild bees of north-eastern North America over 125 years revealed through museum specimens. Insect Conserv. Divers. 12, 278–288 (2019).
    Google Scholar 
    Vanbergen, A. J. & Initiative, I. P. Threats to an ecosystem service: pressures on pollinators. Front. Ecol. Env. 11, 251–259 (2013).Article 

    Google Scholar 
    Buhk, C. et al. Flower strip networks offer promising long term effects on pollinator species richness in intensively cultivated agricultural areas. BMC Ecol. 18(1), 1–13 (2018).Article 

    Google Scholar 
    Morandin, L. A. & Kremen, C. Hedgerow restoration promotes pollinator populations and exports native bees to adjacent fields. Ecol. Appl. 23, 829–839 (2013).PubMed 
    Article 

    Google Scholar 
    Williams, N. M. et al. Native wildflower plantings support wild bee abundance and diversity in agricultural landscapes across the United States. Ecol. Appl. 25, 2119–2131 (2015).PubMed 
    Article 

    Google Scholar 
    Graystock, P. et al. Dominant bee species and floral abundance drive parasite temporal dynamics in plant-pollinator communities. Nat. Ecol. Evol. 4, 1358–1367 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Adler, L. S. et al. Disease where you dine: Plant species and floral traits associated with pathogen transmission in bumble bees. Ecology 99, 2535–2545 (2018).PubMed 
    Article 

    Google Scholar 
    Alger, S. A., Burnham, P. A. & Brody, A. K. Flowers as viral hot spots: Honey bees (Apis mellifera) unevenly deposit viruses across plant species. PLoS ONE 14(9), e0221800 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McNeil, D. J. et al. Bumble bees in landscapes with abundant floral resources have lower pathogen loads. Sci. Rep. 10, 1–12 (2020).Article 
    CAS 

    Google Scholar 
    Daughenbaugh, K. F. et al. Metatranscriptome analysis of sympatric bee species identifies bee virus variants and a new virus, andrena-associated bee virus-1. Viruses 13, 291 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alger, S. A., Alexander Burnham, P., Boncristiani, H. F. & Brody, A. K. RNA virus spillover from managed honeybees (Apis mellifera) to wild bumblebees (Bombus spp.). PLoS ONE 14, e0217822 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ravoet, J. et al. Widespread occurrence of honey bee pathogens in solitary bees. J. Invertebr. Pathol. 122, 55–58 (2014).PubMed 
    Article 

    Google Scholar 
    Hayes, S. E., Tuiwawa, M., Stevens, M. I. & Schwarz, M. P. A recipe for weed disaster in islands: A super-generalist native pollinator aided by a ‘Parlourmaid’ plant welcome new arrivals in Fiji. Biol. Invasions 21, 1643–1655 (2019).Article 

    Google Scholar 
    Levenson, H. & Tarpy, D. R. Pollinator community response to planted pollinator habitat in agroecosystems over time. Authorea https://doi.org/10.22541/au.164191433.37143936/v1 (2022).Article 

    Google Scholar 
    Graystock, P., Yates, K., Darvill, B., Goulson, D. & Hughes, W. O. H. Emerging dangers: Deadly effects of an emergent parasite in a new pollinator host. J. Invertebr. Pathol. 114, 114–119 (2013).PubMed 
    Article 

    Google Scholar 
    Genersch, E., Yue, C., Fries, I. & De Miranda, J. R. Detection of Deformed wing virus, a honey bee viral pathogen, in bumble bees (Bombus terrestris and Bombus pascuorum) with wing deformities. J. Invertebr. Pathol. 91, 61–63 (2006).PubMed 
    Article 

    Google Scholar 
    Müller, U., McMahon, D. P. & Rolff, J. Exposure of the wild bee Osmia bicornis to the honey bee pathogen Nosema ceranae. Agric. For. Entomol. 21, 363–371 (2019).Article 

    Google Scholar 
    Strobl, V., Yañez, O., Straub, L., Albrecht, M. & Neumann, P. Trypanosomatid parasites infecting managed honeybees and wild solitary bees. Int. J. Parasitol. 49, 605–613 (2019).PubMed 
    Article 

    Google Scholar 
    Gisder, S. et al. Rapid gastrointestinal passage may protect Bombus terrestris from becoming a true host for Nosema ceranae. Appl. Environ. Microbiol. 86(12), e00629-20 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tehel, A., Streicher, T., Tragust, S. & Paxton, R. J. Experimental infection of bumblebees with honeybee-associated viruses: No direct fitness costs but potential future threats to novel wild bee hosts. R. Soc. Open Sci. 7(7), 200480 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reynaldi, F. J., Sguazza, G. H., Albicoro, F. J., Pecoraro, M. R. & Galosi, C. M. First molecular detection of co-infection of honey bee viruses in asymptomatic Bombus atratus in South America. Braz. J. Biol. 73, 797–800 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schoonvaere, K. et al. Unbiased RNA shotgun metagenomics in social and solitary wild bees detects associations with eukaryote parasites and new viruses. PLoS ONE 11(12), e0168456 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Melathopoulos, A. et al. Viruses of managed alfalfa leafcutting bees (Megachille rotundata Fabricus) and honey bees (Apis mellifera L.) in Western Canada: Incidence, impacts, and prospects of cross-species viral transmission. J. Invertebr. Pathol. 146, 24–30 (2017).PubMed 
    Article 

    Google Scholar 
    Schoonvaere, K., Smagghe, G., Francis, F. & de Graaf, D. C. Study of the metatranscriptome of eight social and solitary wild bee species reveals novel viruses and bee parasites. Front. Microbiol. 9, 177 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Payne, A. N., Shepherd, T. F. & Rangel, J. The detection of honey bee (Apis mellifera)-associated viruses in ants. Sci. Rep. 10(1), 1–8 (2020).Article 
    CAS 

    Google Scholar 
    Dalmon, A. et al. Possible spillover of pathogens between bee communities foraging on the same floral resource. Insects 12(2), 122 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kojima, Y. et al. Infestation of Japanese native honey bees by tracheal mite and virus from non-native European honey Bees in Japan. Microb. Ecol. 62, 895–906 (2011).PubMed 
    Article 

    Google Scholar 
    Graystock, P. et al. The Trojan hives: Pollinator pathogens, imported and distributed in bumblebee colonies. J. Appl. Ecol. 50, 1207–1215 (2013).Article 

    Google Scholar 
    Plischuk, S. et al. South American native bumblebees (Hymenoptera: Apidae) infected by Nosema ceranae (Microsporidia), an emerging pathogen of honeybees (Apis mellifera). Environ. Microbiol. Rep. 1, 131–135 (2009).PubMed 
    Article 

    Google Scholar 
    Evison, S. E. et al. Pervasiveness of parasites in pollinators. PLoS ONE 7(1), e30641 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graystock, P., Goulson, D. & Hughes, W. O. H. The relationship between managed bees and the prevalence of parasites in bumblebees. PeerJ 2, e522 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Graystock, P., Goulson, D. & Hughes, W. O. Parasites in bloom: Flowers aid dispersal and transmission of pollinator parasites within and between bee species. Proc. R. Soc. B Biol. Sci. 282(1813), 20151371 (2015).Article 

    Google Scholar 
    Tripodi, A. D., Szalanski, A. L. & Strange, J. P. Novel multiplex PCR reveals multiple trypanosomatid species infecting North American bumble bees (Hymenoptera: Apidae: Bombus). J. Invertebr. Pathol. 153, 147–155 (2018).PubMed 
    Article 

    Google Scholar 
    Singh, R. et al. RNA viruses in hymenopteran pollinators: evidence of inter-taxa virus transmission via pollen and potential impact on non-Apis hymenopteran species. PLoS ONE 5(12), e14357 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Peng, W. et al. Host range expansion of honey bee Black Queen Cell Virus in the bumble bee, Bombus huntii. Apidologie 42, 650–658 (2011).Article 

    Google Scholar 
    Levitt, A. L. et al. Cross-species transmission of honey bee viruses in associated arthropods. Virus Res. 176, 232–240 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fürst, M. A., McMahon, D. P., Osborne, J. L., Paxton, R. J. & Brown, M. J. F. Disease associations between honeybees and bumblebees as a threat to wild pollinators. Nature 506, 364–366 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gamboa, V. et al. Bee pathogens found in Bombus atratus from Colombia: A case study. J. Invertebr. Pathol. 129, 36–39 (2015).PubMed 
    Article 

    Google Scholar 
    Radzevičiūtė, R. et al. Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan. J. Invertebr. Pathol. 146, 14–23 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Murray, E. A. et al. Viral transmission in honey bees and native bees, supported by a global black queen cell virus phylogeny. Environ. Microbiol. 21, 972–983 (2019).PubMed 
    Article 

    Google Scholar 
    Dobelmann, J., Felden, A. & Lester, P. J. Genetic strain diversity of multi-host RNA viruses that infect a wide range of pollinators and associates is shaped by geographic origins. Viruses 12, 13–15 (2020).Article 
    CAS 

    Google Scholar 
    Olgun, T., Everhart, S. E., Anderson, T. & Wu-Smart, J. Comparative analysis of viruses in four bee species collected from agricultural, urban, and natural landscapes. PLoS ONE 15(6), e0234431 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fearon, M. L. & Tibbetts, E. A. Pollinator community species richness dilutes prevalence of multiple viruses within multiple host species. Ecology 102(5), e03305 (2021).PubMed 
    Article 

    Google Scholar 
    Sokół, R., Michalczyk, M. & Michołap, P. Preliminary studies on the occurrence of honeybee pathogens in the national bumblebee population. Ann. Parasitol. 64, 385–390 (2018).PubMed 

    Google Scholar 
    Bravi, M. E. et al. Wild bumble bees (Hymenoptera: Apidae: Bombini) as a potential reservoir for bee pathogens in northeastern Argentina. J. Apic. Res. 58, 710–713 (2019).Article 

    Google Scholar 
    Mazzei, M. et al. Detection of replicative Kashmir Bee Virus and Black Queen Cell Virus in Asian hornet Vespa velutina (Lepelieter 1836) in Italy. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    Li, J. et al. Cross-species infection of deformed wing virus poses a new threat to pollinator conservation. J. Econ. Entomol. 104, 732–739 (2011).PubMed 
    Article 

    Google Scholar 
    Sachman-Ruiz, B., Narváez-Padilla, V. & Reynaud, E. Commercial Bombus impatiens as reservoirs of emerging infectious diseases in central México. Biol. Invasions 17, 2043–2053 (2015).Article 

    Google Scholar 
    Jones, L. J., Ford, R. P., Schilder, R. J. & López-Uribe, M. M. Honey bee viruses are highly prevalent but at low intensities in wild pollinators of cucurbit agroecosystems. J. Invertebr. Pathol. 185, 107667 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dolezal, A. G. et al. Honey bee viruses in wild bees: Viral prevalence, loads, and experimental inoculation. PLoS ONE 11(11), e0166190 (2016).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mazzei, M. et al. First detection of replicative deformed wing virus (DWV) in Vespa velutina nigrithorax. Bull. Insectology 71, 211–216 (2018).
    Google Scholar 
    Plischuk, S. et al. Parasites and pathogens associated with native bumble bees (Hymenoptera: Apidae: Bombus spp.) from highlands in Bolivia and Peru. Stud. Neotrop. Fauna Environ. Stud. https://doi.org/10.1080/01650521.2020.1743551 (2020).Article 

    Google Scholar 
    McMahon, D. P. et al. A sting in the spit: Widespread cross-infection of multiple RNA viruses across wild and managed bees. J. Anim. Ecol. 84, 615–624 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bailes, E. J. et al. First detection of bee viruses in hoverfly (syrphid) pollinators. Biol. Lett. 14(2), 20180001 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pritchard, Z. A. et al. Do viruses from managed honey bees (Hymenoptera: Apidae) endanger wild bees in native prairies?. Environ. Entomol. 50, 455–466 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Danforth, B. N., Mitchell, P. L. & Packer, L. Mitochondrial DNA differentiation between two cryptic Halictus (Hymenoptera: Halictidae) species. Ann. Entomol. Soc. Am. 91, 387–391 (1998).CAS 
    Article 

    Google Scholar 
    Grozinger, C. M. & Flenniken, M. L. Bee viruses: Ecology, pathogenicity, and impacts. Annu. Rev. Entomol. 64, 205–226 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Antúnez, K. et al. Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ. Microbiol. 11, 2284–2290 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cameron, S. A. et al. Patterns of widespread decline in North American bumble bees. PNAS 108, 662–667 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leite, G. M., Magan, N. & Medina, A. Comparison of different bead-beating RNA extraction strategies: An optimized method for filamentous fungi. J. Microbiol. Methods 88, 413–418 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simms, D., Cizdziel, P. & Chomczynski, P. TRIzol: A new reagent for optimal single-step isolation of RNA. Focus (Madison) 15, 99–102 (1993).
    Google Scholar 
    Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3(7), 1–12 (2002).Article 

    Google Scholar 
    Mwalili, S. M., Lesaffre, E. & Declerck, D. The zero-inflated negative binomial regression model with correction for misclassification: An example in caries research. Stat. Methods Med. Res. 17, 123–139 (2008).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    R Core Team. R: Language and Environment for Statistical Computing. R Foundation for Statistical Computer (2018). Available at: https://www.r-project.org/.Jackman, S. et al. Package ‘pscl’. (2020).Canty, A. & Ripley, B. Package ‘boot’. (2021).Figueroa, L. L. et al. Landscape simplification shapes pathogen prevalence in plant-pollinator networks. Ecol. Lett. 23, 1212–1222 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    National Heritage Program. Species/Community Search. National Heritage Program: Natural and Cultural Resources (2021). Available at: https://ncnhp.org/data/speciescommunity-search.Hatfield, R. et al. IUCN Assessments for North American Bombus spp. (2014).Sersic, A. N., Masco, M. & Noy-Meir, I. Natural hybridization between species of Calceolaria with different pollination syndromes in southern Patagonia, Argentina. Plant Syst. Evol. 230, 111–124 (2001).Article 

    Google Scholar 
    Otti, O. & Schmid-Hempel, P. Nosema bombi: A pollinator parasite with detrimental fitness effects. J. Invertebr. Pathol. 96, 118–124 (2007).PubMed 
    Article 

    Google Scholar 
    Crabbe, J. C., Wahlsten, D. & Dudek, B. C. Genetics of mouse behavior: Interactions with laboratory environment. Science 284(5420), 1670–1672 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wahlsten, D. et al. Different data from different labs: Lessons from studies of gene-environment interaction. J. Nuerobiol. 54, 283–311 (2003).Article 

    Google Scholar 
    Brownie, J. et al. The elimination of primer-dimer accumulation in PCR. Nucleic Acids Res. 25(16), 3235–3241 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Boncristiani, H. F. et al. In vitro infection of pupae with israeli acute paralysis virus suggests disturbance of transcriptional homeostasis in honey bees (Apis mellifera). PLoS ONE 8(9), e73429 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More