More stories

  • in

    Exposure of domestic dogs and cats to ticks (Acari: Ixodida) and selected tick-borne diseases in urban and recreational areas in southern Poland

    Siński, E. & Welc-Falęciak, R. Risk of Infections Transmitted by Ticks in Forest Ecosystems of Poland. (Zarządzanie Ochroną Przyrody w Lasach 6, 2012).Kantar Public. Zwierzęta w polskich domach, 2017. http://www.tnsglobal.pl/archiwumraportow/files/2017/05/K.021_Zwierzeta_domowe_O04a-17.pdf.Maia, C. et al. Bacterial and protozoal agents of feline vector-borne diseases in domestic and stray cats from southern Portugal. Parasit. Vectors. 7, 115. https://doi.org/10.1186/1756-3305-7-115 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maia, C. et al. Bacterial and protozoal agents of canine vector-borne diseases in the blood of domestic and stray dogs from southern Portugal. Parasit. Vectors. 23(8), 138. https://doi.org/10.1186/s13071-015-0759-8 (2015).Article 

    Google Scholar 
    Baturo, I.M. Parki narodowe i krajobrazowe, rezerwaty przyrody. (Departament Turystyki, Sportu, Promocji Urzędu Marszłkowskiego Województwa Małopolskiego, 2010).Dulias, R. & Hibszer, A. Województwo śląskie—przyroda, gospodarka, dziedzictwo kulturowe (Wydawnictwo Kubajak, 2004).
    Google Scholar 
    Siuda, K. Kleszcze Polski Acari Ixodida). Część II. Systematyka i Rozmieszczenie (Polskie Towarzystwo Parazytologiczne, 1993).
    Google Scholar 
    Nowak-Chmura, M. Fauna kleszczy (Ixodida) Europy Środkowej (Wydawnictwo Naukowe Uniwersytetu Pedagogicznego, 2013).
    Google Scholar 
    Rijpkema, S., Golubić, D., Molkenboer, M., Verbeek-De Kruif, N. & Schellekens, J. Identification of four genomic groups of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected in a Lyme borreliosis endemic region of northern Croatia. Exp. Appl. Acarol. 20, 23–30 (1996).CAS 
    Article 

    Google Scholar 
    Wójcik-Fatla, A., Szymańska, J., Wdowiak, L., Buczek, A. & Dutkiewicz, J. Coincidence of three pathogens (Borrelia burgdorferi sensu lato, Anaplasma phagocytophilum and Babesia microti) in Ixodes ricinus ticks in the Lublin makroregion. Ann. Agric. Environ. Med. 16(1), 151–158 (2009).PubMed 

    Google Scholar 
    Massung, R. F. et al. Nested PCR assay for detection of granulocytic ehrlichiae. J. Clin. Microbiol. 36(4), 1090–1095 (1998).CAS 
    Article 

    Google Scholar 
    Persing, D. H. et al. Detection of Babesia microti by polymerase chain reaction. J. Clin. Microbiol. 30, 2097–2103 (1992).CAS 
    Article 

    Google Scholar 
    Sroka, J., Szymańska, J. & Wójcik-Fatla, A. The occurence of Toxoplasma gondii and Borrelia burgdorferi sensu lato in Ixodes ricinus ticks from east Poland with the use of PCR. Ann. Agric. Environ. Med. 16(2), 313–319 (2009).PubMed 

    Google Scholar 
    Siuda, K., Nowak, M., Gierczak, M., Wierzbowska, I. & Faber, M. Kleszcze (Acari: Ixodida) pasożytujące na psach i kotach domowych w Polsce. Wiad. Parazytol. 53, 155 (2007).
    Google Scholar 
    Zajkowska, P. Ticks (Acari:Ixodida) attacking domestic dogs in the Malopolska voivodeship, Poland. In Arthropods: In the contemporary world (eds Buczek, A. & Błaszak, C. Z.) 87–99 (Koliber, 2015).Chapter 

    Google Scholar 
    Szymański, S. Przypadek masowego rozwoju kleszcza Rhipicephalus sanguineus (Latreile, 1806) w warszawskim mieszkaniu. Wiad. Parazytol. 25, 453–458 (1979).PubMed 

    Google Scholar 
    Król, N., Obiegala, A., Pfeffer, M., Lonc, E. & Kiewra, D. Detection of selected pathogens in ticks collected from cats and dogs in the Wrocław Agglomeration South-West Poland. Parasit. Vectors. 9(1), 351. https://doi.org/10.1186/s13071-016-1632-0 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kocoń, A., Nowak-Chmura, M., Kłyś, M. & Siuda, K. Ticks (Acari: Ixodida) attacking domestic cats (Felis catus L.) in southern Poland. In Arthropods in Urban and Suburban Environments (eds Buczek, A. & Błaszak, C.) 51–61 (Koliber, 2017).
    Google Scholar 
    Roczeń-Karczmarz, M. et al. Comparison of the occurrence of tick-borne diseases in ticks collected from vegetation and animals in the same area. Med. Weter. 74(8), 484–488. https://doi.org/10.21521/mw.6107 (2018).Article 

    Google Scholar 
    Cuber, P., Asman, M., Solarz, K., Szilman, E. & Szilman, P. Pierwsze stwierdzenia obecności wybranych patogenów chorób transmisyjnych w kleszczach Ixodes ricinus (Acari: Ixididae) zebranych w okolicach zbiorników wodnych w Rogoźniku (województwo śląskie) in Stawonogi. Ekologiczne i patologiczne aspekty układu pasożyt – żywiciel (eds. Buczek, C. & Błaszak, Cz.). 155-164 (Akapit, Lublin, 2010).Asman, M. et al. The risk of exposure to Anaplasma phagocytophilum, Borrelia burgdorferi sensu lato, Babesia sp. and co-infections in Ixodes ricinus ticks on the territory of Niepołomice Forest (southern Poland). Ann. Parasitol. 59(1), 13–19 (2013).PubMed 

    Google Scholar 
    Pawełczyk, O. et al. The PCR detection of Anaplasma phagocytophilum, Babesia microti and Borrelia burgdorferi sensu lato in ticks and fleas collected from pets in the Będzin district area (Upper Silesia, Poland) – the preliminary studies in Stawonogi: zagrożenie zdrowia człowieka i zwierząt (eds. Buczek, C. & Błaszak, Cz.). 111–119 (Koliber, Lublin, 2014).Strzelczyk, J. K. et al. Prevalence of Borrelia burgdorferi sensu lato in Ixodes ricinus ticks collected from southern Poland. Acta Parasitol. 60(4), 666–674. https://doi.org/10.1515/ap-2015-0095 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zygner, W. & Wędrychowicz, H. Occurrence of hard ticks in dogs from Warsaw area. Ann. Agric. Environ. Med. 13(2), 355–359 (2006).PubMed 

    Google Scholar 
    Kilar, P. Ticks attacking domestic dogs in the area of the Rymanów district, Subcarpathian province Poland. Wiad. Parazytol. 57(3), 189–1991 (2011).PubMed 

    Google Scholar 
    Claerebout, E. et al. Ticks and associated pathogens collected from dogs and cats in Belgium. Parasit. Vectors. 6, 183. https://doi.org/10.1186/1756-3305-6-183 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schreiber, C. et al. Pathogens in ticks collected from dogs in Berlin/Brandenburg, Germany. Parasit. Vectors. 7, 535. https://doi.org/10.1186/s13071-014-0535-1 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eichenberger, R. M., Deplazes, P. & Mathis, A. Ticks on dogs and cats: A pet owner-based survey in a rural town in northeastern Switzerland. Ticks Tick-borne Dis. 6, 267–271. https://doi.org/10.1016/j.ttbdis.2015.01.007 (2015).Article 
    PubMed 

    Google Scholar 
    Michalski, M. M. Skład gatunkowy kleszczy psów (Acari: Ixodida) z terenu aglomeracji miejskiej w cyklu wieloletnim. Med. Weter. 73(11), 698–701 (2017).
    Google Scholar 
    Geurden, T. et al. Detection of tick-borne pathogens in ticks from dogs and cats in different European countries. Ticks. Tick. Borne. Dis. 9(6), 1431–1436. https://doi.org/10.1016/j.ttbdis.2018.06.013 (2018).Article 
    PubMed 

    Google Scholar 
    Namina, A. et al. Tick-borne pathogens in ticks collected from dogs, Latvia, 2011–2016. BMC Vet. Res. 15, 398. https://doi.org/10.1186/s12917-019-2149-5 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bhide, M., Travnicek, M., Curlik, J. & Stefancikova, A. The importance of dogs in eco-epidemiology of Lyme borreliosis: a review. Vet. Med. Czech 49(4), 135–142 (2004).Article 

    Google Scholar 
    Burgess, E. C. Experimentally induced infection of cats with Borrelia burgdorferi. Am. J. Vet. Res. 53, 1507–1511 (1992).CAS 
    PubMed 

    Google Scholar 
    Skotarczak, B. & Wodecka, B. Identification of Borrelia burgdorferi genospecies inducing Lyme disease in dogs from western Poland. Acta Vet. Hung. 53(1), 13–21 (2005).Article 

    Google Scholar 
    Skotarczak, B. et al. Prevalence of DNA and antibodies to Borrelia burgdorferi sensu lato in dogs suspected of borreliosis. Ann. Agric. Environm. Med. 12(2), 199–205 (2005).CAS 

    Google Scholar 
    Adaszek, Ł, Winiarczyk, S., Kutrzeba, J., Puchalski, A. & Dębiak, P. Przypadki boreliozy u psow na Lubelszczyźnie. Życie Wet. 83, 311–313 (2008).
    Google Scholar 
    Hovius, K. E. Borreliosis. In Arthropod-borne Infectious Diseases of the Dog and Cat (eds Shaw, S. E. & Day, M. J.) 100–109 (Manson Publishing, 2005).Chapter 

    Google Scholar 
    Zygner, W., Jaros, S. & Wędrychowicz, H. Prevalence of Babesia canis, Borrelia afzelii, and Anaplasma phagocytophilum infection in hard ticks removed from dogs in Warsaw (central Poland). Vet. Parasitol. 153, 139–142. https://doi.org/10.1016/j.vetpar.2008.01.036 (2008).Article 
    PubMed 

    Google Scholar 
    Welc-Falęciak, R., Rodo, A., Siński, E. & Bajer, A. Babesia canis and other tick-borne infections in dogs in Central Poland. Vet. Parasitol. 166(3–4), 191–198. https://doi.org/10.1016/j.vetpar.2009.09.038 (2009).Article 
    PubMed 

    Google Scholar 
    Michalski, M. M., Kubiak, K., Szczotko, M., Chajęcka, M. & Dmitryjuk, M. Molecular Detection of Borrelia burgdorferi Sensu Lato and Anaplasma phagocytophilum in Ticks Collected from Dogs in Urban Areas of North-Eastern Poland. Pathogens. 9(6), 455. https://doi.org/10.3390/pathogens9060455 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Nijhof, A. M. et al. Ticks and associated pathogens collected from domestic animals in the Netherlands. Vector. Borne. Zoonot. Dis. 7, 585–595. https://doi.org/10.1089/vbz.2007.0130 (2007).Article 

    Google Scholar 
    Adaszek, Ł, Martinez, A. C. & Winiarczyk, S. The factors affecting the distribution of babesiosis in dogs in Poland. Vet. Parasitol. 181, 160–165. https://doi.org/10.1016/j.vetpar.2011.03.059 (2011).Article 
    PubMed 

    Google Scholar 
    Adaszek, Ł, Łukaszewska, J., Winiarczyk, S. & Kunkel, M. Pierwszy przypadek babeszjozy u kota w Polsce. Życie Wet. 83(8), 668–670 (2008).
    Google Scholar 
    Kocoń, A. et al. Molecular detection of tick-borne pathogens in ticks collected from pets in selected mountainous areas of Tatra County (Tatra Mountains, Poland). Sci. Rep. 10, 15865. https://doi.org/10.1038/s41598-020-72981-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Asman, M. et al. Detection of protozoans Babesia microti and Toxoplasma gondii and their co-existence in ticks (Acari: Ixodida) collected in Tarnogórski district (Upper Silesia, Poland). Ann. Agric. Environ. Med. 22(1), 80–83. https://doi.org/10.5604/12321966.1141373 (2015).Article 
    PubMed 

    Google Scholar 
    Stensvold, C. R. et al. Babesia spp. and other pathogens in ticks recovered from domestic dogs in Denmark. Parasit. Vectors. 8(8), 262. https://doi.org/10.1186/s13071-015-0843-0 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abdullah, S., Helps, C., Tasker, S., Newbury, H. & Wall, R. Prevalence and distribution of Borrelia and Babesia species in ticks feeding on dogs in the UK. Med. Vet. Entomol. 32(1), 14–22. https://doi.org/10.1111/mve.12257 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bjoersdorff, A., Svendenius, L., Owens, J. H. & Massung, R. F. Feline granulocytic ehrlichiosis– a report of a new clinical entity and characterisation of the infectious agent. J. Small. Anim. Pract. 40(1), 20–24. https://doi.org/10.1111/j.1748-5827.1999.tb03249 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lappin, M. R. et al. Molecular and serologic evidence of Anaplasma phagocytophilum infection in cats in North America. J. Am. Vet. Med. Assoc. 225(6), 893–896. https://doi.org/10.2460/javma.2004.225.893 (2004).Article 
    PubMed 

    Google Scholar 
    Shaw, S. E. et al. Molecular evidence of tick-transmitted infections in dogs and cats in the United Kingdom. Vet. Rec. 157(21), 645–648. https://doi.org/10.1136/vr.157.21.645 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tarello, W. Microscopic and clinical evidence for Anaplasma (Ehrlichia) phagocytophilum infection in Italian cats. Vet. Rec. 156(24), 772–774. https://doi.org/10.1136/vr.156.24.772 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schaarschmidt-Kiener, D., Graf, F., von Loewenich, F. D. & Muller, W. Anaplasma phagocytophilum infection in a cat in Switzerland. Schweiz. Arch. Tierheilkd. 151(7), 336–341. https://doi.org/10.1024/0036-7281.151.7.336 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Heikkila, H. M., Bondarenko, A., Mihalkov, A., Pfister, K. & Spillmann, T. Anaplasma phagocytophilum infection in a domestic cat in Finland. Acta. Vet. Scand. 52(1), 62. https://doi.org/10.1186/1751-0147-52-62 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hamel, D., Bondarenko, A., Silaghi, C., Nolte, I. & Pfister, K. Seroprevalence and bacteremia of Anaplasma phagocytophilum in cats from Bavaria and Lower Saxony (Germany). Berl. Munch. Tierarztl. Wochenschr. 125(3–4), 163–167 (2012).PubMed 

    Google Scholar 
    Morgenthal, D. et al. Prevalence of haemotropic Mycoplasma spp., Bartonella spp. and Anaplasma phagocytophilum in cats in Berlin/Brandenburg (Northeast Germany). Berl. Munch Tierarztl. Wochenschr. 125(9–10), 418–427 (2012).PubMed 

    Google Scholar 
    Adaszek, Ł, Winiarczyk, S. & Łukaszewska, J. A first case of ehrlichiosis in a horse in Poland. Dtsch. Tierarztl. Wchschr. 116(9), 330–334 (2009).
    Google Scholar 
    Adaszek, Ł, Policht, K., Gorna, M., Kutrzuba, J. & Winiarczyk, S. Pierwszy w Polsce przypadek anaplazmozy (erlichiozy) granulocytarnej u kota. Życie Wet. 86, 132–135 (2011).
    Google Scholar 
    Adaszek, Ł, Kotowicz, W., Klimiuk, P., Gorna, M. & Winiarczyk, S. Ostry przebieg anaplazmozy granulocytarnej u psa—przypadek własny. Wet. w Praktyce 9, 59–62 (2011).
    Google Scholar 
    Adaszek, Ł et al. Three clinical cases of Anaplasma phagocytophilum infection in cats in Poland. J. Feline Med. Surg. 15, 333–337. https://doi.org/10.1177/1098612X12466552 (2013).Article 
    PubMed 

    Google Scholar 
    Pusterla, N. et al. Seroprevalence of Ehrlichia canis and of canine granulocytic ehrlichia infection in dogs in Switzerland. J. Clin. Microbiol. 36, 3460–3462. https://doi.org/10.1128/JCM.36.12.3460-3462.1998 (1998).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Egenvall, A. et al. Detection of granulocytic Ehrlichia species DNA by PCR in persistently infected dogs. Vet. Rec. 146(7), 186–190. https://doi.org/10.1136/vr.146.7.186 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shaw, S. E. et al. Review of exotic infectious dise-ases in small animals entering the United Kingdom from abroad diagnosed by PCR. Vet. Rec. 152(6), 176–177. https://doi.org/10.1136/vr.152.6.176 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Skotarczak, B., Adamska, M. & Supron, M. Blood DNA analysis for Ehrlichia (Anaplasma) phagocytophila and Babesia spp in dogs from Northern Poland. Acta Vet. Brno. 73, 347–351. https://doi.org/10.1136/vr.152.6.176 (2004).Article 

    Google Scholar 
    Adaszek, Ł. Wybrane Aspekty Epidemiologii Babeszjozy, Boreliozy i Erlichiozy Psów (Praca doktorska, 2007).
    Google Scholar 
    Kybicová, K. et al. Detection of Anaplasma phagocytophilum and Borrelia burgdorferi sensu lato in dogs in the Czech Republic. Vec. Born Zoon Dis. 9(6), 655–661. https://doi.org/10.1089/vbz.2008.0127 (2009).Article 

    Google Scholar  More

  • in

    Understanding the diversity and biogeography of Colombian edible plants

    Carvalho, A. M. & Barata, A. M. The consumption of wild edible plants. In Wild plants, mushrooms and nuts: functional food properties and applications (eds Isabel, C. F. R. et al.) (John Wiley & Sons, New York City, 2017).
    Google Scholar 
    Diazgranados, M. et al. World checklist of useful plant species. Royal Botanic Gardens, Kew. (Richmond, UK, 2020).
    Google Scholar 
    Ulian, T. et al. Unlocking plant resources to support food security and promote sustainable agriculture. Plants People Planet 12(5), 421–445 (2020).Article 

    Google Scholar 
    Shaheen, S., Ahmad, M., Haroon, N. Edible wild plants: a solution to overcome food insecurity. In: Edible Wild Plants: An alternative approach to food security (eds Shaheen, S., et al.) 41–57. Springer, Cham. https://doi.org/10.1007/978-3-319-63037-3_2 (2017).Chapter 

    Google Scholar 
    Food and Agriculture Organization. World programme for the census of agriculture 2020, Vol. 1. FAO, (Rome, Italy, 2015).
    Google Scholar 
    Wolff, F. Legal factors driving agrobiodiversity loss. Environ. Law Netw. Int. 1, 1–11 (2004).
    Google Scholar 
    Padulosi, S., Heywood, V., Hunter, D. & Jarvis, A. Underutilized species and climate change: current status and outlook. In Crop Adaptation to Climate Change (eds Shyam, S. Y. et al.) 507–517 (Blackwell Publishers, 2011).Chapter 

    Google Scholar 
    Kalamandeen, M., Gloor, E. & Mitchard, E. Pervasive raise of small-scale deforestation in Amazonia. Sci. Rep. 8(1600), 1–10 (2018).CAS 

    Google Scholar 
    Kor, L., Homewood, K., Dawson, T. P. & Diazgranados, M. Sustainability of wild plant use in the Andean community of South America. Ambio 50, 1681–1697 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nogueira, S. & Nogueira-Filho, S. Wildlife farming: an alternative to unsustainable hunting and deforestation in neotropical forests?. Biodivers. Consrv. 20, 1385–1397 (2011).Article 

    Google Scholar 
    Pilgrim, S. E., Cullen, L. C., Smith, D. J. & Pretty, J. Ecological knowledge is lost in wealthier communities and countries. Environ. Sci. Technol. 42(4), 1004–1009 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez-Cuervo, A. M. & Mitchell-Aide, T. Consequences of the armed conflict forced human displacement, and land abandonment on forest cover change in Colombia: a multi-scaled analysis. Ecosystems 16, 1052–1070 (2013).Article 

    Google Scholar 
    Rodriguez-Eraso, N., Armenteras-Pascual, D. & Retana-Alumbreros, J. Land use and land cover change in the Colombian Andes: dynamics and future scenarios. J. Land Use Sci. 8(2), 154–174 (2013).Article 

    Google Scholar 
    Food and Agriculture Organization. in The State of the World’s biodiversity for food and agriculture. FAO Commission on Genetic Resources for Food and Agriculture Assessments (eds Bélanger, J., Pilling, D.). (FAO, Rome, Italy, 2019).Borelli, T. et al. Local solutions for sustainable food systems: the contribution of orphan crops and wild edible species. Agronomy 10(2), 231–256 (2020).CAS 
    Article 

    Google Scholar 
    Padulosi, S., Thompson, J. & Rudebjer, P. Fighting poverty, hunger and malnutrition with neglected and underutilized species (NUS): needs, challenges and the way forward (Bioversity International, 2013).
    Google Scholar 
    Hunter, D. et al. The potential of neglected and underutilized species for improving diets and nutrition. Planta 250, 709–729 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brehmy, J. M., Maxted, N., Martin-Louçao, M. A. & Frod-Lloyd, B. V. New approaches for establishing conservation priorities for socio-economically important plant species. Biodivers. Conserv. 19(9), 2715–2740 (2010).Article 

    Google Scholar 
    N’Danikou, S., Achigan-Dako, E. G. & Wong, J. L. G. Eliciting local values of wild edible plants in Southern Benin to identify priority species for conservation. Econ. Bot. 65, 381–395 (2011).Article 

    Google Scholar 
    Dulloo, M. E. et al. Conserving agricultural biodiversity for use in sustainable food systems. (2017).de Oliveira Beltrame, D. M. et al. Brazilian underutilised species to promote dietary diversity, local food procurement, and biodiversity conservation: a food composition gap analysis. Lancet Planet. Health. 2, S22. (2018).Article 

    Google Scholar 
    Raven, P. H. et al. The distribution of biodiversity richness in the tropics. Sci. Adv. 6(37), 1–5 (2020).Article 

    Google Scholar 
    Renjifo, L. M., Amaya-Villareal, A. M. & Butchart, S. H. M. Tracking extinction risk trends and patterns in a mega-diverse country: a red list index for birds in Colombia. PLoSONE 15(1), 1–19 (2020).Article 

    Google Scholar 
    Clerici, N., Salazar, C., Pardo-Díaz, C., Jiggins, C. D. & Linares, M. Peace in Colombia is a critical moment for neotropical connectivity and conservation: save the northern Andes-Amazon biodiversity bridge. Conserv. Lett. 12, 1–7 (2019).Article 

    Google Scholar 
    Hurtado-Bermudez, L. J., Vélez-Torres, I. & Méndez, F. No land for food: prevalence of food insecurity in ethnic communities enclosed by sugarcane monocrop in Colombia. Int. J. Public Health 65, 1087–1096 (2020).PubMed 
    Article 

    Google Scholar 
    Boron, V., Payan, E., McMillan, D. & Tzanopulos, J. Achieving sustainable development in rural areas in Colombia: future scenarios for biodiversity conservation under land use change. Land Use Policy 59, 27–37 (2016).Article 

    Google Scholar 
    Grau, H. R. & Aide, M. Globalization and land-use transitions in Latin America. Ecol. Soc. 13(2), 1–16 (2008).Article 

    Google Scholar 
    Rivas Abadía, X., Pazos, S. C., Castillo, S. K. & Pachón, H. Indigenous foods of the indigenous and Afro-descendant communities of Colombia (International Center for Tropical Agriculture (CIAT), Cali, 2010) ((In Spanish, English summary)).
    Google Scholar 
    López Diago, D. & García, N. Wild edible fruits of Colombia: diversity and use prospects. Biota Colomb. 22(2), 16–55 (2021).Article 

    Google Scholar 
    Pieroni, A., Pawera, L. & Shah, G. M. Gastronomic ethnobiology. In Introduction to Ethnobiology (eds Albuquerque, U. P. & Alves, R. N.) 53–62 (Springer, 2016).Chapter 

    Google Scholar 
    Castañeda, R. R. Frutas silvestres de Colombia. Instituto Colombiano de Cultura Hispánica. (1991).Medina, C. I., Martínez, E. & López, C. A. Phenological scale for the mortiño or agraz (Vaccinium meridionale Swartz) in the high Colombian Andean area. Revista Facultad Nacional de Agronomía Medellín 72(3), 8897–8908 (2019).Article 

    Google Scholar 
    Asprilla-Perea, J. & Díaz-Puente, J. M. Traditional use of wild edible food in rural territories within tropical forest zones: a case study from the northwestern Colombia. New Trends Issues Proc. Humanit. Soc. Sci. 5(1), 162–181 (2018).
    Google Scholar 
    López Estupiñán, L. Potatoes and land in Boyacá: ethnobotanical and ethnohistorical research of one of the main products of Colombian food. Boletín de Antropología Universidad de Antioquia 30(50), 170–190 (2015) ((In Spanish)).
    Google Scholar 
    Marín Santamaría, C.M. Potential for food use for human consumption of wild fruits in Encenillo Biological Reserve, Guasca, Cundinamarca. Thesis in Biological Sciences. Pontificia Universidad Javeriana. Bogotá, Colombia. (2010) (In Spanish).Molina Samacá, J. R. Ancestral Food Plant Heritage: Construction of the Baseline in the Province of Sumapaz. Master thesis in Agricultural Sciences. University of Cundinamarca, Colombia (2019) (In Spanish).Pasquini, M. W., Sánchez-Ospina, C. & Mendoza, J. S. Traditional food plant knowledge and use in three afro-descendant communities in the Colombian Caribbean Coast: Part II drivers of change. Econ. Bot. 72(3), 295–310 (2018).Article 

    Google Scholar 
    Villa Villegas, M. Análisis del conocimiento asociado al uso de la flora alimenticia y medicinal en la comunidad de San Francisco, Acandí (Chocó. Pontificia Universidad Javeriana, 2020).
    Google Scholar 
    Cook, E. M. F. Economic botany data collection standard (Royal Botanic Gardens, Kew, Richmond, 1995).
    Google Scholar 
    Diazgranados, M. & Kor, L. Notes on the biogeographic distribution of the useful plants of Colombia. In: Catalogue of useful plants of Colombia (eds Negrão, R. et al.) 147–161. Royal Botanic Gardens, Kew. Kew Publishing, London (in press).Diazgranados, M. et al. Annotated checklist of useful plants of Colombia. In: Catalogue of useful plants of Colombia (eds Negrão, R. et al.) 165–473. Royal Botanic Gardens, Kew. Kew Publishing, London (in press).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. Available at: https://www.R-project.org/. (2021)POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Retrieved on 14 April, 2021, from: http://www.plantsoftheworldonline.org/ (2021).Missouri Botanical Gardens. Tropicos.org. Retrieved on 10 April 2021, https://tropicos.org (2021)Wickham, H. The split-apply-combine strategy for data analysis. J. Stat. Softw. 40(1), 1–29 (2011).Article 

    Google Scholar 
    Wickham, H., Francois, R. Dplyr: A Grammar of Data Manipulation. R Package Version 0.4.3 (2021).GBIF Sectretaria. GBIF backbone taxonomy. Retrieved on 22 April 2021, from: https://www.gbif.org/ (2021)Food and Agriculture Organization. The second report on the State of The World’s plant genetic resources for food and agriculture. (FAO, Rome, Italy, 2015).Bystriakova, N. et al. Colombia’s bioregions as a source of useful plants. PLoS One 16(8), 1–19 (2021).Article 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on earth a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. BioScience 51(11), 933–938 (2001).Article 

    Google Scholar 
    Chamberlain, S., Oldoni, D., Barve, V., Desmet, P., Geffert, L., Mcglinn, D., Ram, K. Rgbif: interface to the global “Biodiversity” information facility API. R Package Version 3.6.0. (2021)Ondo, I. et al. ShinyCCleaner: an interactive app for cleaning species occurrence records. Unpublished (2021).Bivand, R., Keitt, T., Rowlingson, B., Pebesma, E., Summer, M., Hijmans, R., Baston, D., Rouault, E., et al. Rgdal: bindings for the “Geospatial” data abstraction library. R Package Version 1.5-23. Retrieved from: https://cran.r-project.org/web/packages/rgdal/index.html (2021)Hijmans, R. J., van Etten, J. Raster: geographic analysis and modeling with raster data. R package version 2.0-12. Available at: http://CRAN.R-project.org/package=raster (2012)Bivand, R.S., Pebesma, E., Gomez-Rubio, V. Applied spatial data analysis with R, Second edition. Springer, NY. Available at: https://asdar-book.org/ (2013)Brown, J. L., Bennett, J. & French, C. M. SDMtoolbox: the next generation python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5, e4095 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DANE. Indigenous population of Colombia. In: Results of the national population and housing census 2018 (eds DANE). (Bogotá, Colombia, 2019) (In Spanish).Minority Rights Home Minorities and indigenous peoples in Colombia. Retrieved on 20 October, 2021, from: Colombia – World Directory of Minorities & Indigenous Peoples (minorityrights.org) (2021).Maffi, L. & Woodley, E. Biocultural diversity conservation: a global sourcebook 304 (Routledge, 2012).Book 

    Google Scholar 
    van Zonnevelda, M. et al. Human diets drive range expansion of megafauna-dispersed fruit species. PNAS 115(13), 3326–3331 (2018).Article 

    Google Scholar 
    Diazgranados, M., Mendoza, J. E., Peñuela, M., Ramírez, W. Comida, identidad, paisaje… ¿articulación o antagonismo? Universitas Humanistica pp. 119–127. ISSN-0120-4807 (1997).Rojas, T.M., Cortés, C., Pizano, M.N., Ulian, T., Diazgranados, M. Evaluación del estado de los desarrollos bioeconómicos colombianos en plantas y hongos. Royal Botanic Gardens, Kew and Instituto de Investigaciones en Recursos Biológicos Alexander von Humboldt (2020).Departamento Administrativo de la Función Pública. Decree 690 of 2021, Article 10. Bogotá, Colombia (2021).Ahoyo, C. C. et al. A quantitative ethnobotanical approach toward biodiversity conservation of useful woody species in Wari-Maro forest reserve (Benin, West Africa). Environ. Dev. Sustain. https://doi.org/10.1007/s10668-017-9990-0 (2017).Article 

    Google Scholar 
    Suwardi, A. B., Navia, Z. I., Harmawan, T. & Syamsuardi, E. Ethnobotany and conservation of indigenous edible fruit plants in South Aceh, Indonesia. Biodiversitas 12(5), 1850–1860 (2020).
    Google Scholar 
    Pei, S., Alan, H. & Wang, Y. Vital roles for ethnobotany in conservation and sustainable development. Plant Divers. 42(6), 399 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bernal, M. H. Y. & Correa, Q. J. E. Erythrina edulis. In Promising plant species from countries of the Convenio Andrés Bello Vol. 8 (eds Bernal, M. H. Y. & Correa, Q. J. E.) 231–278 (Editora Guadalupe Ltda, Bogotá, 1992) ((In Spanish)).
    Google Scholar 
    Bernal, M.H.Y., Correa, Q.J.E. Food plants of Colombia. in Promising plant species from the Andrés Bello Convention countries (andean countries). First edition. (eds Bernal M.H.Y., Correa, Q.J.E.) Editora Guadalupe Ltda. Bogotá, D.C., Colombia. Volume I, p. 547; Volume II, 462; Volume III, 485; Volume IV, 489; Volume V, 569; Volume VI, 507; Volume VII, p. 684; Volume VIII, p. 547; Volume IX, p. 482; Volume X, 549; Volume XI, p. 516 and Volume XII, p. 621 (1989–1998) (In Spanish).Bernal, M.H.Y., Farfán, M.M. Guide for the cultivation and use of the “chachafruto” or “balú” (Erythrina edulis Triana ex Micheli). Bogotá: Editoria Guadalupe Ltda. 50 p. (1996) (In Spanish).Bernal, M.H.Y., Jiménez, L.C. The “Creole bean” Canavalia ensiformis (Linnaeus) De Candolle (Fabaceae-Faboideae). Bogotá: Editoria Guadalupe Ltda. 533 p. (1990) (In Spanish).Jiménez, B.L.C., Bernal, M.H.Y. The “inchi” Caryodendron orinocense Karsten (Euphorbiaceae). Bogotá: Editora Guadalupe Ltda. p. 429 (1992) (In Spanish).Melgarejo, L.M., Hernández, M.S., Barrera, J.A., Carrillo, M. Offers and potential of a germplasm bank of the genus Theobroma for the enrichment of Amazonian systems. Instituto de Investigaciones Científicas Sinchi. Universidad Nacional de Colombia. Bogotá, Colombia. p. 225 (2006) (In Spanish).Bernal, R., Galeano, G., Rodríguez, A., Sarmiento, H., Gutiérrez, M. Nombres Comunes de las Plantas de Colombia. Retrieved 15 June, 2021, from: http://www.biovirtual.unal.edu.co/nombrescomunes/ (2017)Food Plants International. Retrieved on 14 March 2021 at Articles & Books – Food Plants International (2021).Lorenzi, H., Bacher, L., Lacerda, M. & Sartori, S. Brazilian fruits and cultivated exotics (Instituto Plantarum De Estudos Da Flora LTDA, Nova Odessa, 2000).
    Google Scholar 
    Martín, F.W., Campbell, C.W., Ruberté, R.M. Perennial Edible Fruits of the Tropics: An Inventory. U.S. Department of Agriculture, Agricultural Research Service. (1987)Marrugo, S. L. Como Pepa’e Guama: Lo que no sabías acerca de la vida de los guamos (Royal Botanic Gardens Kew, Richmond, 2019).
    Google Scholar 
    Leon, J. Central American and West Indian Species of Inga (Leguminosae). Ann. Mo. Bot. Gard. 53(3), 265–359 (1966).Article 

    Google Scholar 
    Blombery, A. & Rodd, T. Palms of the world (Angus and Robertson, 1992).
    Google Scholar 
    Wickens, G. E. Edible nuts: non-wood forest products, handbook 5 (FAO, 1995).
    Google Scholar 
    Chízmar, C. Plantas comestibles de Centroamérica. Santo Domingo de Heredia, Costa Rica: Editorial INBio. p. 358 (2009)Rodríguez, L. M. G. Growth and fruit production study of Bactris guineesis (güiscoyol) in Agroforestry Systems as development potential in the Chorotega Region (Universidad Técnica Nacional Investigación y transferencia, 2019).
    Google Scholar 
    Bax, V. & Francesconi, W. Conservation gaps and priorities in the Tropical Andes biodiversity hotspot: Implications for the expansion of protected areas. J. Environ. Manage. 232, 387–396 (2019).PubMed 
    Article 

    Google Scholar 
    Noh, J. K. et al. Warning about conservation status of forest ecosystems in tropical Andes: National assessment based on IUCN criteria. PLoS One 15(8), e0237877 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brooks, M. T. et al. Habitat loss and extinction in the hotspots of biodiversity. Biodivers. Conserv. 16(4), 909–923 (2002).
    Google Scholar 
    Ocampo, J. Diversidad y distribución de las Passifloraceae en el departamento del Huila en Colombia. Acta biologica Colombiana 18(3), 511–516 (2013).
    Google Scholar 
    Durán-Izquierdo, M. & Olivero-Verbel, J. Vulnerability assessment of Sierra Nevada de Santa Marta Colombia World’s most irreplaceable nature reserve. Glob. Ecol. Conserv. 28, e01592 (2021).Article 

    Google Scholar 
    Cabrera Gaviria, L.D., Gil Pereira, L.F. Comparative analysis of the loss of natural coverage in the protected areas Nukak and Puinawai and their effects on the ecosystems present in the period between the years 2000–2020. Thesis in Environmental and Sanitary Engineering. Universidad de La Salle, Bogotá. Available at: https://ciencia.lasalle.edu.co/ing_ambiental_sanitaria/1943 (2021) (In Spanish).Castillo, H. M. N. A story of the indigenous struggle against mining: the creation of the Yaigojé-Apaporis National Natural Park in the Colombian Amazon (Universidade Federal De Minas Gerais, 2018) ((In Portuguese)).
    Google Scholar 
    Walsh, J. & Sanchez, G. The spreading of illicit crops in Colombia (Instituto de Estudios para el Desarrollo y la Paz, Bogotá, 2008).
    Google Scholar 
    MAPS, OPS, ICBF. Encuesta Nacional de la Situacion Nutricional-ENSIN. Retrieved on 12 October, 2-21, from: http://www.ensin.gov.co/Documents/Documento-metodologico-ENSIN-2015.pdf (2015)Correa-García, E., Vélez-Correa, J., Zapata-Caldas, E., Vélez-Torres, I. & Figueroa-Casas, A. Territorial transformations produced by the sugarcane agroindustry in the ethnic communities of López Adentro and El Tiple, Colombia. Land Use Policy 76, 847–860 (2018).Article 

    Google Scholar 
    Hurtado, D. & Vélez-Torres, I. Toxic dispossession: on the social impacts of the aerial use of glyphosate by the sugarcane agroindustry in Colombia. Crit. Criminol. 28, 557–576 (2020).Article 

    Google Scholar 
    Vélez-Torres, I., Varela-Corredor, D., Rátiva-Gaona, S., Salcedo-Fidalgo, A. Agroindustry and extractivism in the Alto Cauca: impact on the livelihood systems of Afro-descendent Farmers and Resistance (1950–2011). CS, 12: 157–188. (2013) (In Spanish, English summary).Fernández Lucero, M. Protocol for the use of Guáimaro (Brosimum alicastrum Sw.) seeds in Montes de María and Serranía del Perijá, Colombian Caribbean. Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt (2021) (In Spanish).Santillán-Fernández, A. et al. Brosimum alicastrum Swartz as an alternative for the productive reconversion of agrosilvopastoral areas in Campeche. Revista Mexicana de Ciencias Forestales 11(61), 51–69 (2020).Article 

    Google Scholar 
    Subiria-Cueto, R. et al. Brosimum alicastrum Sw. (Ramón): an alternative to improve the nutritional properties and functional potential of the wheat flour tortilla. Foods 8(12), 613 (2019).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Quiñones-Hoyos, C., Rengifo-Fernández, A., Bernal-Galeano, S., Peña, R., Fernández, M., Tatiana Rojas, M., Diazgranados, M. A look at useful plants and fungi in three biodiverse areas of Colombia. Royal Botanic Gardens, Kew and Instituto de Investigaciones en Recursos Biológicos Alexander von Humboldt. Bogotá, Colombia (2021) (In Spanish)Royal Botanic Gardens, Kew. Discovering the Guáimaro trails: promote a market for native species. Retrieved on 18 February 2022 from https://storymaps.arcgis.com/stories/f540b764fc6c47db886b38515560852f (2022)Gottesch, B. et al. Extinction risk of Mesoamerican crop wild relatives. Plants People Planet 3, 775–795 (2021).Article 

    Google Scholar 
    French, B. Food plants international database of edible plants of the world, a free resource for all. Acta Hort. 1241, 1–6 (2019).
    Google Scholar 
    Meyers, N., Mittermeier, R., Mittermeier, C. G. & Kent, J. Biodiversity hotspot for conservation priority. Nature 403(6772), 853–858 (2000).Article 

    Google Scholar  More

  • in

    Age-based spatial distribution of workers is resilient to worker loss in a subterranean termite

    Gordon, D. M. From division of labor to the collective behavior of social insects. Behav. Ecol. Sociobiol. 70, 1101–1108 (2016).PubMed 
    Article 

    Google Scholar 
    Gordon, D. M. The organization of work in social insect colonies. Nature 380, 121–124 (1996).CAS 
    Article 

    Google Scholar 
    Bonabeau, E., Theraulaz, G. & Deneubourg, J.-L. Quantitative study of the fixed threshold model for the regulation of division of labour in insect societies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 263, 1565–1569 (1996).Article 

    Google Scholar 
    Pankiw, T. & Page, R. E. Jr. The effect of genotype, age, sex, and caste on response thresholds to sucrose and foraging behavior of honey bees (Apis mellifera L.). J. Comp. Physiol. A 185, 207–213 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonabeau, E., Sobkowski, A., Theraulaz, G. & Deneubourg, J.-L. Adaptive task allocation inspired by a model of division of labor in social insects. In BCEC 36–45 (1997).Robinson, G. E. & Page, R. E. J. Genetic basis for division of labor in an insect society. In The Genetics of Social Evolution (ed. Breed, R. P.) 61–80 (Westview Press, 1989).
    Google Scholar 
    Hogeweg, P. & Hesper, B. The ontogeny of the interaction structure in bumble bee colonies: A MIRROR model. Behav. Ecol. Sociobiol. 12, 271–283 (1983).Article 

    Google Scholar 
    Theraulaz, G., Bonabeau, E. & Denuebourg, J. N. Response threshold reinforcements and division of labour in insect societies. Proc. R. Soc. Lond. Ser. B Biol. Sci. 265, 327–332 (1998).Article 

    Google Scholar 
    Robinson, G. E. Labor in insect societies. Annu. Rev. Entomol. 37, 637–665 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hölldobler, B. & Wilson, E. O. The Superorganism: The Beauty, Elegance, and Strangeness of Insect Societies (WW Norton & Company, 2009).
    Google Scholar 
    Gordon, D. M. The organization of work in social insect colonies. Complexity 8, 43–46 (2002).Article 

    Google Scholar 
    Bourke, A. F. G. & Franks, N. R. Social Evolution in Ants (Princeton University Press, 1995).
    Google Scholar 
    Robinson, E. J. H., Feinerman, O. & Franks, N. R. Flexible task allocation and the organization of work in ants. Proc. R. Soc. B Biol. Sci. 276, 4373–4380 (2009).Article 

    Google Scholar 
    Pinter-Wollman, N., Hubler, J., Holley, J.-A., Franks, N. R. & Dornhaus, A. How is activity distributed among and within tasks in Temnothorax ants?. Behav. Ecol. Sociobiol. 66, 1407–1420 (2012).Article 

    Google Scholar 
    Ishii, Y. & Hasgeawa, E. The mechanism underlying the regulation of work-related behaviors in the monomorphic ant, Myrmica kotokui. J. Ethol. 31, 61–69 (2013).Article 

    Google Scholar 
    Baudier, K. M. et al. Changing of the guard: Mixed specialization and flexibility in nest defense (Tetragonisca angustula). Behav. Ecol. 30, 1041–1049 (2019).Article 

    Google Scholar 
    Schmid-Hempel, P. & Schmid-Hempel, R. Life duration and turnover of foragers in the antcataglyphis bicolor (hymenoptera, formicidae). Insectes Soc. 31, 345–360 (1984).Article 

    Google Scholar 
    O’Donnell, S. & Jeanne, R. L. Lifelong patterns of forager behaviour in a tropical swarm-founding wasp: Effects of specialization and activity level on longevity. Anim. Behav. 44, 1021–1027 (1992).Article 

    Google Scholar 
    Calabi, P. Behavioral flexibility in Hymenoptera: a re-examination of the concept of caste. In Advances in Myrmecology (ed. J. C. Trager) 237–258 (Leiden,1988).Gordon, D. M. Dynamics of task switching in harvester ants. Anim. Behav. 38, 194–204 (1989).Article 

    Google Scholar 
    Giray, T. & Robinson, G. E. Effects of intracolony variability in behavioral development on plasticity of division of labor in honey bee colonies. Behav. Ecol. Sociobiol. 35, 13–20 (1994).Article 

    Google Scholar 
    Cartar, R. V. Adjustment of foraging effort and task switching in energy-manipulated wild bumblebee colonies. Anim. Behav. 44, 75–87 (1992).Article 

    Google Scholar 
    Huang, Z. Y. & Robinson, G. E. Regulation of honey bee division of labor by colony age demography. Behav. Ecol. Sociobiol. 39, 147–158 (1996).Article 

    Google Scholar 
    Gordon, D. M. The dynamics of the daily round of the harvester ant colony (Pogonomyrmex barbatus). Anim. Behav. 34, 1402–1419 (1986).Article 

    Google Scholar 
    Wilson, E. O. Caste and division of labor in leaf-cutter ants (Hymenoptera: Formicidae: Atta): III. Ergonomic resiliency in foraging by A. cephalotes. Behav. Ecol. Sociobiol. 14, 47–54 (1983).Article 

    Google Scholar 
    Middleton, E. J. T. & Latty, T. Resilience in social insect infrastructure systems. J. R. Soc. Interface 13, 20151022 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nalepa, C. A. Origin of termite eusociality: Trophallaxis integrates the social, nutritional, and microbial environments. Ecol. Entomol. 40, 323–335 (2015).Article 

    Google Scholar 
    McMahan, E. A. Mound repair and foraging polyethism in workers of Nasutitermes exitiosus (Hill):(Isoptera: Termitidae). Insectes Soc. 24, 225–232 (1977).Article 

    Google Scholar 
    Watson, J. A. L. & McMahan, E. A. Polyethism in the Australian harvester Termite Drepanotermes (Isoptera, Termitinae). Insectes Soc. 25, 53–62 (1978).Article 

    Google Scholar 
    Du, H., Chouvenc, T. & Su, N.-Y. Development of age polyethism with colony maturity in Coptotermes formosanus (Isoptera: Rhinotermitidae). Environ. Entomol. 46, 311–318 (2017).PubMed 

    Google Scholar 
    Gerber, C., Badertscher, S. & Leuthold, R. H. Polyethism in Macrotermes bellicosus (Isoptera). Insectes Soc. 35, 226–240 (1988).Article 

    Google Scholar 
    Rosengaus, R. B. & Traniello, J. F. A. Temporal polyethism in incipient colonies of the primitive termite Zootermopsis angusticollis: A single multiage caste. J. Insect Behav. 6, 237–252 (1993).Article 

    Google Scholar 
    Crosland, M. W. J., Lok, C. M., Wong, T. C., Shakarad, M. & Traniello, J. F. A. Division of labour in a lower termite: The majority of tasks are performed by older workers. Anim. Behav. 54, 999–1012 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miura, T. & Matsumoto, T. Foraging organization of the open-air processional lichen-feeding termite Hospitalitermes (Isoptera, Termitidae) in Borneo. Insectes Soc. 45, 17–32 (1998).Article 

    Google Scholar 
    Hinze, B. & Leuthold, R. H. Age related polyethism and activity rhythms in the nest of the termite Macrotermes bellicosus (Isoptera, Termitidae). Insectes Soc. 46, 392–397 (1999).Article 

    Google Scholar 
    Konate, S., Leuthold, R., Hari, M. & Veivers, P. Colour variation and polyethism of the soldier caste in the termite Macrotermes bellicosus. Entomol. Exp. Appl. 94, 51–55 (2000).Article 

    Google Scholar 
    Yang, R.-L., Su, N.-Y. & Bardunias, P. Individual task load in tunnel excavation by the Formosan subterranean termite (Isoptera: Rhinotermitidae). Ann. Entomol. Soc. Am. 102, 906–910 (2009).Article 

    Google Scholar 
    Yanagihara, S., Suehiro, W., Mitaka, Y. & Matsuura, K. Age-based soldier polyethism: Old termite soldiers take more risks than young soldiers. Biol. Lett. 14, 20180025 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Su, N. & Scheffrahn, R. H. Foraging population and territory of the Formosan subterranean termite (Isoptera, Rhinotermitidae) in an urban-environment. Sociobiology 14, 353–360 (1988).
    Google Scholar 
    King, E. G. & Spink, W. T. Foraging galleries of the Formosan subterranean termite, Coptotermes formosanus, in Louisiana. Ann. Entomol. Soc. Am. 62, 536–542 (1969).Article 

    Google Scholar 
    Abe, T. Evolution of life types in termites. In Evolution and Coadaptation in Biotic Communities (eds. J.H. Connell and J. Hidaka) 125-148 (University of Tokyo Press, 1987)Shellman-Reeve, J. S. The Spectrum of Eusociality in Termites. The Evolution of Social Behavior in Insects and Arachnids (Cambridge University Press, 1997).
    Google Scholar 
    Legendre, F. et al. The phylogeny of termites (Dictyoptera: Isoptera) based on mitochondrial and nuclear markers: Implications for the evolution of the worker and pseudergate castes, and foraging behaviors. Mol. Phylogenet. Evol. 48, 615–627 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Du, H., Chouvenc, T., Osbrink, W. L. A. & Su, N. Y. Heterogeneous distribution of castes/instars and behaviors in the nest of Coptotermes formosanus Shiraki. Insectes Soc. 64, 103–112 (2017).Article 

    Google Scholar 
    Su, N. Y., Osbrink, W., Kakkar, G., Mullins, A. & Chouvenc, T. Foraging distance and population size of juvenile colonies of the Formosan subterranean termite (Isoptera: Rhinotermitidae) in laboratory extended arenas. J. Econ. Entomol. 110, 1728–1735 (2017).PubMed 
    Article 

    Google Scholar 
    Osbrink, W. L. A., Cornelius, M. L. & Lax, A. R. Effects of flooding on field populations of Formosan subterranean termites (Isoptera: Rhinotermitidae) in New Orleans, Louisiana. J. Econ. Entomol. 101, 1367–1372 (2008).PubMed 
    Article 

    Google Scholar 
    Tuma, J., Eggleton, P. & Fayle, T. M. Ant-termite interactions: An important but under-explored ecological linkage. Biol. Rev. 95, 555–572 (2020).PubMed 
    Article 

    Google Scholar 
    Rust, M. K. & Su, N.-Y. Managing social insects of urban importance. Annu. Rev. Entomol. 57, 355–375 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Evans, T. A., Forschler, B. T. & Grace, J. K. Biology of invasive termites: A worldwide review. Annu. Rev. Entomol. 58, 455–474 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beverly, B. D., McLendon, H., Nacu, S., Holmes, S. & Gordon, D. M. How site fidelity leads to individual differences in the foraging activity of harvester ants. Behav. Ecol. 20, 633–638 (2009).Article 

    Google Scholar 
    Tenczar, P., Lutz, C. C., Rao, V. D., Goldenfeld, N. & Robinson, G. E. Automated monitoring reveals extreme interindividual variation and plasticity in honeybee foraging activity levels. Anim. Behav. 95, 41–48 (2014).Article 

    Google Scholar 
    O’Donnell, S. Effects of experimental forager removals on division of labour in the primitively eusocial wasp Polistes instabilis (Hymenoptera: Vespidae). Behaviour 135, 173–193 (1998).Article 

    Google Scholar 
    Crall, J. D. et al. Spatial fidelity of workers predicts collective response to disturbance in a social insect. Nat. Commun. 9, 1–13 (2018).Article 

    Google Scholar 
    Charbonneau, D. & Dornhaus, A. When doing nothing is something. How task allocation strategies compromise between flexibility, efficiency, and inactive agents. J. Bioeconomics 17, 217–242 (2015).Article 

    Google Scholar 
    Gordon, D. M. The regulation of foraging activity in red harvester ant colonies. Am. Nat. 159, 509–518 (2002).PubMed 
    Article 

    Google Scholar 
    O’Donnell, S. Polybia wasp biting interactions recruit foragers following experimental worker removals. Anim. Behav. 71, 709–715 (2006).Article 

    Google Scholar 
    Gentry, J. B. Response to predation by colonies of the Florida harvester ant, Pogonomyrmex badius. Ecology 55, 1328–1338 (1974).Article 

    Google Scholar 
    Schafer, R. J., Holmes, S. & Gordon, D. M. Forager activation and food availability in harvester ants. Anim. Behav. 71, 815–822 (2006).Article 

    Google Scholar 
    Tschinkel, W. R. Biomantling and bioturbation by colonies of the Florida harvester ant, Pogonomyrmex badius. PLoS ONE 10, e0120407 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kwapich, C. L. & Tschinkel, W. R. Demography, demand, death, and the seasonal allocation of labor in the Florida harvester ant (Pogonomyrmex badius). Behav. Ecol. Sociobiol. 67, 2011–2027 (2013).Article 

    Google Scholar 
    Perry, C. J., Søvik, E., Myerscough, M. R. & Barron, A. B. Rapid behavioral maturation accelerates failure of stressed honey bee colonies. Proc. Natl. Acad. Sci. 112, 3427–3432 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vance, J. T., Williams, J. B., Elekonich, M. M. & Roberts, S. P. The effects of age and behavioral development on honey bee (Apis mellifera) flight performance. J. Exp. Biol. 212, 2604–2611 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nalepa, C. A. Body size and termite evolution. Evol. Biol. 38, 243–257 (2011).Article 

    Google Scholar 
    Chouvenc, T. & Su, N. Y. Colony age-dependent pathway in caste development of Coptotermes formosanus Shiraki. Insectes Soc. 61, 171–182 (2014).Article 

    Google Scholar 
    Robinson, G. E., Page, R. E. Jr. & Huang, Z. Y. Temporal polyethism in social insects is a developmental process. Anim. Behav. 48, 467–469 (1994).Article 

    Google Scholar 
    Kakkar, G., Chouvenc, T., Osbrink, W. & Su, N. Y. Temporal assessment of molting in workers of Formosan subterranean termites (Isoptera: Rhinotermitidae). J. Econ. Entomol. 109, 2175–2181 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kakkar, G., Osbrink, W., Mullins, A. & Su, N. Y. Molting site fidelity in workers of Formosan subterranean termites (Isoptera: Rhinotermitidae). J. Econ. Entomol. https://doi.org/10.1093/jee/tox246 (2017).Article 
    PubMed 

    Google Scholar 
    Raina, A., Park, Y. I. & Gelman, D. Molting in workers of the Formosan subterranean termite Coptotermes formosanus. J. Insect Physiol. 54, 155–161 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, S.-B., Chouvenc, T. & Su, N.-Y. Differential time allocation of foraging workers in the subterranean termite. Front. Zool. 18, 1–8 (2021).Article 

    Google Scholar 
    Lee, S.-B., Chouvenc, T. & Su, N.-Y. A reproductives excluder for subterranean termites in laboratory experiments. J. Econ. Entomol. 112, 2882–2887 (2019).PubMed 
    Article 

    Google Scholar 
    Team, R. C. R: A language and environment for statistical computing. (2022). More

  • in

    Unravelling seasonal trends in coastal marine heatwave metrics across global biogeographical realms

    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change https://doi.org/10.1038/s41558-019-0412-1 (2019).Article 

    Google Scholar 
    Smith, K. E. et al. Socioeconomic impacts of marine heatwaves: Global issues and opportunities. Science 374, eabj3593 (2021).CAS 
    Article 

    Google Scholar 
    Frolicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364. https://doi.org/10.1038/s41586-018-0383-9 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Oliver, et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. https://doi.org/10.1038/s41467-018-03732-9 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, et al. Projected marine heatwaves in the 21st century and the potential for ecological impact. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00734 (2019).Article 

    Google Scholar 
    Hobday, A. J. et al. A hierarchical approach to defining marine heatwaves. Prog. Oceanogr. 141, 227–238 (2016).ADS 
    Article 

    Google Scholar 
    Banzon, V., Smith, T. M., Chin, T. M., Liu, C. & Hankins, W. A long-term record of blended satellite and in situ sea-surface temperature for climate monitoring, modeling and environmental studies. Earth Syst. Sci. Data 8, 165–176 (2016).ADS 
    Article 

    Google Scholar 
    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82. https://doi.org/10.1038/nclimate1627 (2013).ADS 
    Article 

    Google Scholar 
    Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change https://doi.org/10.1038/s41558-018-0096-y (2018).Article 

    Google Scholar 
    Smale, D. A. Impacts of ocean warming on kelp forest ecosystems. New Phytol. 225, 1447–1454 (2020).Article 

    Google Scholar 
    Couch, C. S. et al. Mass coral bleaching due to unprecedented marine heatwave in Papahānaumokuākea Marine National Monument (Northwestern Hawaiian Islands). PLoS ONE 12, e0185121. https://doi.org/10.1371/journal.pone.0185121 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, E. C. J. et al. The unprecedented 2015/16 Tasman Sea marine heatwave. Nat. Commun. https://doi.org/10.1038/ncomms16101 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montie, S., Thomsen, M. S., Rack, W. & Broady, P. A. Extreme summer marine heatwaves increase chlorophyll a in the Southern Ocean. Antarct. Sci. 32, 508–509 (2020).ADS 
    Article 

    Google Scholar 
    Gupta, A. S. et al. Drivers and impacts of the most extreme marine heatwaves events. Sci. Rep. 10, 1–15 (2020).ADS 
    Article 

    Google Scholar 
    Holbrook, N. J. et al. A global assessment of marine heatwaves and their drivers. Nat. Commun. 10, 1–13 (2019).CAS 
    Article 

    Google Scholar 
    La Sorte, F. A., Johnston, A. & Ault, T. R. Global trends in the frequency and duration of temperature extremes. Clim. Change 166, 1. https://doi.org/10.1007/s10584-021-03094-0 (2021).ADS 
    Article 

    Google Scholar 
    Thomsen, et al. Local extinction of bull kelp (Durvillaea spp.) due to a marine heatwave. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00084 (2019).Article 

    Google Scholar 
    Strydom, S. et al. Too hot to handle: Unprecedented seagrass death driven by marine heatwave in a World Heritage Area. Glob. Change Biol. 26, 3525–3538. https://doi.org/10.1111/gcb.15065 (2020).ADS 
    Article 

    Google Scholar 
    Leggat, W. P. et al. Rapid coral decay is associated with marine heatwave mortality events on reefs. Curr. Biol. 29, 2723-2730.e2724. https://doi.org/10.1016/j.cub.2019.06.077 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wernberg, T. et al. Climate-driven regime shift of a temperate marine ecosystem. Science 353, 169–172. https://doi.org/10.1126/science.aad8745 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thomsen, M. S. & McGlathery, K. Facilitation of macroalgae by the sedimentary tube forming polychaete Diopatra cuprea. Estuar. Coast. Shelf Sci. 62, 63–73. https://doi.org/10.1016/j.ecss.2004.08.007 (2005).ADS 
    Article 

    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).Article 

    Google Scholar 
    Costello, M. J. & Chaudhary, C. Marine biodiversity, biogeography, deep-sea gradients, and conservation. Curr. Biol. 27, R511–R527. https://doi.org/10.1016/j.cub.2017.04.060 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tait, L. W., Thoral, F., Pinkerton, M. H., Thomsen, M. S. & Schiel, D. R. Loss of giant kelp, Macrocystis pyrifera, driven by marine heatwaves and exacerbated by poor water clarity in New Zealand. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.721087 (2021).Article 

    Google Scholar 
    Marin, M., Feng, M., Phillips, H. E. & Bindoff, N. L. A global, multiproduct analysis of coastal marine heatwaves: Distribution, characteristics, and long-term trends. J. Geophys. Res. Oceans 126, e2020JC016708. https://doi.org/10.1029/2020JC016708 (2021).ADS 
    Article 

    Google Scholar 
    Kain, J. M. The seasons in the subtidal. Brit. Phycol. J. 24, 203–215 (1989).Article 

    Google Scholar 
    Atkinson, J., King, N. G., Wilmes, S. B. & Moore, P. J. Summer and winter marine heatwaves favor an invasive over native seaweeds. J. Phycol. 56, 1591–1600. https://doi.org/10.1111/jpy.13051 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Salinger, M. J. et al. The unprecedented coupled ocean-atmosphere summer heatwave in the New Zealand region 2017/18: Drivers, mechanisms and impacts. Environ. Res. Lett. 14, 044023 (2019).ADS 
    Article 

    Google Scholar 
    Amaya, D. J., Miller, A. J., Xie, S.-P. & Kosaka, Y. Physical drivers of the summer 2019 North Pacific marine heatwave. Nat. Commun. 11, 1–9 (2020).Article 

    Google Scholar 
    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047. https://doi.org/10.1038/nclimate3082 (2016).ADS 
    Article 

    Google Scholar 
    Cayan, D. R. Large-scale relationships between sea surface temperature and surface air temperature. Mon. Weather Rev. 108, 1293–1301 (1980).ADS 
    Article 

    Google Scholar 
    Hipel, K. W. & McLeod, A. I. Time Series Modelling of Water Resources and Environmental Systems (Elsevier, 1994).
    Google Scholar 
    trend: non-parametric trend tests and changepoint detection.–R package ver. 1.1. 2 (2020).Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Halpern, B. S. et al. A global map of human impact on marine ecosystems. Science 319, 948–952 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Harley, C. D. et al. The impacts of climate change in coastal marine systems. Ecol. Lett. 9, 228–241. https://doi.org/10.1111/j.1461-0248.2005.00871.x (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    Thomsen, M. S. & South, P. M. Communities and attachment networks associated with primary, secondary and alternative foundation species; a case study of stressed and disturbed stands of southern bull kelp. Diversity 11, 56. https://doi.org/10.3390/d11040056 (2019).Article 

    Google Scholar 
    Smale, D. A. & Wernberg, T. Extreme climatic event drives range contraction of a habitat-forming species. Proc. R. Soc. B Biol. Sci. 280, 20122829 (2013).Article 

    Google Scholar 
    Thomsen, M. S. et al. Cascading impacts of earthquakes and extreme heatwaves have destroyed populations of an iconic marine foundation species. Divers. Distrib. (2021).Rogers-Bennett, L. & Catton, C. Marine heat wave and multiple stressors tip bull kelp forest to sea urchin barrens. Sci. Rep. 9, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 1–11 (2020).Article 

    Google Scholar 
    Thomson, J. A. et al. Extreme temperatures, foundation species, and abrupt ecosystem change: An example from an iconic seagrass ecosystem. Glob. Change Biol. 21, 1463–1474. https://doi.org/10.1111/gcb.12694 (2015).ADS 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Le Nohaïc, M. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 14999. https://doi.org/10.1038/s41598-017-14794-y (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smale, D. A., Wernberg, T. & Vanderklift, M. A. Regional-scale variability in the response of benthic macroinvertebrate assemblages to a marine heatwave. Mar. Ecol. Prog. Ser. 568, 17–30. https://doi.org/10.3354/meps12080 (2017).ADS 
    Article 

    Google Scholar 
    Cavole, L. et al. Biological impacts of the 2013–2015 warm-water anomaly in the Northeast Pacific: Winners, losers, and the future. Oceanography (Washington D.C.) https://doi.org/10.5670/oceanog.2016.32 (2016).Article 

    Google Scholar 
    Coleman, M. A., Minne, A. J. P., Vranken, S. & Wernberg, T. Genetic tropicalisation following a marine heatwave. Sci. Rep. 10, 12726. https://doi.org/10.1038/s41598-020-69665-w (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Collette, B. B. in Reproduction and sexuality in marine fishes 21–64 (University of California Press, 2010).Yatsu, A. & Shimada, H. Distributions of Epipelagic Fishes, Squids, Marine Mammals. Bulletin 53 North Pacific Commission, 111–146.Hirst, A., Roff, J. & Lampitt, R. A synthesis of growth rates in marine epipelagic invertebrate zooplankton. Adv. Mar. Biol. 44, 1–142 (2003).CAS 
    Article 

    Google Scholar 
    Smale, D. A. & Wernberg, T. Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Mar. Ecol. Prog. Ser. 387, 27–37 (2009).ADS 
    Article 

    Google Scholar 
    Bernardello, R., Serrano, E., Coma, R., Ribes, M. & Bahamon, N. A comparison of remote-sensing SST and in situ seawater temperature in near-shore habitats in the western Mediterranean Sea. Mar. Ecol. Prog. Ser. 559, 21–34 (2016).ADS 
    Article 

    Google Scholar 
    Brewin, R. J. et al. Evaluating operational AVHRR sea surface temperature data at the coastline using benthic temperature loggers. Remote Sens. 10, 925 (2018).ADS 
    Article 

    Google Scholar 
    Smit, A. J. et al. A coastal seawater temperature dataset for biogeographical studies: Large biases between in situ and remotely-sensed data sets around the Coast of South Africa. PLoS ONE 8, e81944. https://doi.org/10.1371/journal.pone.0081944 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marin, M., Bindoff, N. L., Feng, M. & Phillips, H. E. Slower long-term coastal warming drives dampened trends in coastal marine heatwave exposure. J. Geophys. Res. Oceans https://doi.org/10.1029/2021jc017930 (2021).Article 

    Google Scholar 
    Lourenço, C. R. et al. Upwelling areas as climate change refugia for the distribution and genetic diversity of a marine macroalga. J. Biogeogr. 43, 1595–1607. https://doi.org/10.1111/jbi.12744 (2016).Article 

    Google Scholar 
    Riegl, B. & Piller, W. E. Possible refugia for reefs in times of environmental stress. Int. J. Earth Sci. 92, 520–531. https://doi.org/10.1007/s00531-003-0328-9 (2003).Article 

    Google Scholar 
    El Glynn, P. W. Nino-southern oscillation 1982–1983: Nearshore population, community, and ecosystem responses. Annu. Rev. Ecol. Syst. 19, 309–346. https://doi.org/10.1146/annurev.es.19.110188.001521 (1988).Article 

    Google Scholar 
    Glynn, P. W. & D’Croz, L. Experimental evidence for high temperature stress as the cause of El Niño-coincident coral mortality. Coral Reefs 8, 181–191. https://doi.org/10.1007/bf00265009 (1990).ADS 
    Article 

    Google Scholar 
    Glynn, P. W., Maté, J. L., Baker, A. C. & Calderón, M. O. Coral bleaching and mortality in panama and ecuador during the 1997–1998 El Niño-Southern Oscillation Event: Spatial/temporal patterns and comparisons with the 1982–1983 event. Bull. Mar. Sci. 69, 79–109 (2001).
    Google Scholar 
    Podestá, G. P. & Glynn, P. W. The 1997–98 El Niño event in Panama and Galápagos: An update of thermal stress indices relative to coral bleaching. Bull. Mar. Sci. 69, 43–59 (2001).
    Google Scholar 
    Ladah, L. B. & Zertuche-Gonzalez, J. A. Giant kelp (Macrocystis pyrifera) survival in deep water (25–40 m) during El Nino of 1997–1998 in Baja California, Mexico. Bot. Marina 47, 367–372. https://doi.org/10.1515/bot.2004.054 (2004).Article 

    Google Scholar 
    Kayanne, H. Validation of degree heating weeks as a coral bleaching index in the northwestern Pacific. Coral Reefs 36, 63–70 (2017).ADS 
    Article 

    Google Scholar 
    Le Nohaïc, M. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 1–11 (2017).ADS 
    Article 

    Google Scholar 
    Marba, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Change Biol. 16, 2366–2375. https://doi.org/10.1111/j.1365-2486.2009.02130.x (2010).ADS 
    Article 

    Google Scholar 
    Bennett, S., Wernberg, T., Arackal Joy, B., de Bettignies, T. & Campbell, A. H. Central and rear-edge populations can be equally vulnerable to warming. Nat. Commun. 6, 10280. https://doi.org/10.1038/ncomms10280 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Filbee-Dexter, K. et al. Marine heatwaves and the collapse of marginal North Atlantic kelp forests. Sci. Rep. 10, 13388. https://doi.org/10.1038/s41598-020-70273-x (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Snover, M. L. Ontogenetic habitat shifts in marine organisms: Influencing factors and the impact of climate variability. Bull. Mar. Sci. 83, 53–67 (2008).
    Google Scholar 
    Harley, C. D. Climate change, keystone predation, and biodiversity loss. Science 334, 1124–1127 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Kelaher, B. P., Coleman, M. A. & Bishop, M. J. Ocean warming, but not acidification, accelerates seagrass decomposition under near-future climate scenarios. Mar. Ecol. Prog. Ser. 605, 103–110 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    De Senerpont Domis, L. N. et al. Plankton dynamics under different climatic conditions in space and time. Freshw. Biol. 58, 463–482 (2013).Article 

    Google Scholar 
    Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677. https://doi.org/10.1038/nclimate2647 (2015).ADS 
    Article 

    Google Scholar 
    Morales-Nin, B. & Panfili, J. Seasonality in the deep sea and tropics revisited: What can otoliths tell us?. Mar. Freshw. Res. 56, 585–598 (2005).Article 

    Google Scholar 
    Alongi, D. M. Ecology of tropical soft-bottom benthos: A review with emphasis on emerging concepts. Rev. Biol. Trop. 37, 85–100 (1989).
    Google Scholar 
    Hobday, A. J., Spillman, C. M., Paige Eveson, J. & Hartog, J. R. Seasonal forecasting for decision support in marine fisheries and aquaculture. Fish. Oceanogr. 25, 45–56. https://doi.org/10.1111/fog.12083 (2016).Article 

    Google Scholar 
    Spillman, C. M., Smith, G. A., Hobday, A. J. & Hartog, J. R. Onset and decline rates of marine heatwaves: Global trends, seasonal forecasts and marine management. Front. Clim. https://doi.org/10.3389/fclim.2021.801217 (2021).Article 

    Google Scholar 
    Schlegel, R. W., Oliver, E. C. J., Wernberg, T. & Smit, A. J. Nearshore and offshore co-occurrence of marine heatwaves and cold-spells. Prog. Oceanogr. 151, 189–205. https://doi.org/10.1016/j.pocean.2017.01.004 (2017).ADS 
    Article 

    Google Scholar 
    Huang, B. et al. Improvements of the daily optimum interpolation sea surface temperature (DOISST) Version 2.1. J. Clim. 34, 2923–2939. https://doi.org/10.1175/jcli-d-20-0166.1 (2021).ADS 
    Article 

    Google Scholar 
    OBPG, N. & Stumpf, R. P. Distance to Nearest Coastline: 0.01-Degree Grid. Distributed by the Pacific Islands Ocean Observing System (PacIOOS). http://pacioos.org/metadata/dist2coast_1deg.html and https://data.noaa.gov/dataset/dataset/distance-to-nearest-coastline-0-01-degree-grid2http://www.pacioos.hawaii.edu/metadata/dist2coast_1deg.html (2012).Schlegel, R. W. & Smit, A. J. heatwaveR: A central algorithm for the detection of heatwaves and cold-spells. J. Open Source Softw. 3(27), 821 (2018).ADS 
    Article 

    Google Scholar 
    Sakurai, T., Yukio, K. & Kuragano, T. in Proceedings. 2005 IEEE International Geoscience and Remote Sensing Symposium, 2005. IGARSS’05. 2606–2608 (IEEE). More

  • in

    Taking metagenomics under the wings

    AffiliationsSanger Institute, Wellcome Trust Genome Campus, Hinxton, UKPhysilia Ying Shi ChuaLaboratory of Genomics and Molecular Medicine, Department of Biology, University of Copenhagen, Copenhagen, DenmarkJacob Agerbo RasmussenCenter for Evolutionary Hologenomics, Globe Institute, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, DenmarkJacob Agerbo RasmussenAuthorsPhysilia Ying Shi ChuaJacob Agerbo RasmussenCorresponding authorCorrespondence to
    Physilia Ying Shi Chua. More

  • in

    Reef larval recruitment in response to seascape dynamics in the SW Atlantic

    McCauley, D. J. et al. Marine defaunation: Animal loss in the global ocean. Science 347, 1255641. https://doi.org/10.1126/science.1255641 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Smale, D. A. et al. Marine heatwaves threaten global biodiversity and the provision of ecosystem services. Nat. Clim. Change 9, 306–312. https://doi.org/10.1038/s41558-019-0412-1 (2019).ADS 
    Article 

    Google Scholar 
    IPBES The global assessment report on biodiversity and ecosystem services. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. https://ipbes.net/global-assessment (2019).Boyce, D. G., Lewis, M. R. & Worm, B. Global phytoplankton decline over the past century. Nature 466, 591–596. https://doi.org/10.1038/nature09268 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Canonico, G. et al. Global observational needs and resources for marine biodiversity. Front. Mar. Sci. 6, 367. https://doi.org/10.3389/fmars.2019.00367 (2019).Article 

    Google Scholar 
    Muller-Karger, F. E. et al. Advancing marine biological observations and data requirements of the complementary essential ocean variables (EOVs) and essential biodiversity variables (EBVs) frameworks. Front. Mar. Sci. 5, 211. https://doi.org/10.3389/fmars.2018.00211 (2018).Article 

    Google Scholar 
    Ehrnsten, E., Norkko, A., Timmermann, K. & Gustafsson, B. G. Benthic-pelagic coupling in coastal seas—Modelling macrofaunal biomass and carbon processing in response to organic matter supply. J. Mar. Sys. 196, 36–47. https://doi.org/10.1016/j.jmarsys.2019.04.003 (2019).Article 

    Google Scholar 
    Centurioni, L. R. et al. Global in situ observations of essential climate and ocean variables at the air-sea interface. Front. Mar. Sci. 6, 419. https://doi.org/10.3389/fmars.2019.00419 (2019).Article 

    Google Scholar 
    Murphy, S. E. et al. Fifteen years of lessons from the Seascape approach: A framework for improving ocean management at scale. Conserv. Sci. Pract. 3, e423. https://doi.org/10.1111/csp2.423 (2021).Article 

    Google Scholar 
    Pittman, S. J. et al. Seascape ecology: Identifying research priorities for an emerging ocean sustainability science. Mar. Ecol. Prog. Ser. 663, 1–29. https://doi.org/10.3354/meps13661 (2021).ADS 
    Article 

    Google Scholar 
    Swanborn, D. J., Huvenne, V. A., Pittman, S. J. & Woodall, L. C. Bringing seascape ecology to the deep seabed: A review and framework for its application. Limnol. Oceanogr. 67, 66–88. https://doi.org/10.1002/lno.11976 (2022).ADS 
    Article 

    Google Scholar 
    Flint, L. E. & Flint, A. L. Downscaling future climate scenarios to fine scales for hydrologic and ecological modeling and analysis. Ecol. Process 1, 2. https://doi.org/10.1186/2192-1709-1-2 (2012).Article 

    Google Scholar 
    Fagundes, M. et al. Downscaling global ocean climate models improves estimates of exposure regimes in coastal environments. Sci. Rep. 10, 14227. https://doi.org/10.1038/s41598-020-71169-6 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zacarias, M. A. & Roff, J. C. Use of focal species in marine conservation and management: A review and critique. Aquatic Conser: Mar. Freshw. Ecosyst. 11, 59–76. https://doi.org/10.1002/aqc.429 (2001).Article 

    Google Scholar 
    Jackson, S. T. & Sax, D. F. Balancing biodiversity in a changing environment: Extinction debt, immigration credit and species turnover. Trends Ecol. Evol. 25(3155), 153–160. https://doi.org/10.1016/j.tree.2009.10.001 (2009).Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. & Tanner, J. E. Recruitment failure, life histories, and long-term decline of Caribbean corals. Ecology 81(8), 2250–2263. https://doi.org/10.1890/0012-9658(2000)081[2250:RFLHAL]2.0.CO;2 (2000).Article 

    Google Scholar 
    Samhouri, J. F. et al. Sea sick? Setting targets to assess ocean health and ecosystem services. Ecosphere 3(5), 41. https://doi.org/10.1890/ES11-00366.1 (2012).Article 

    Google Scholar 
    Caley, M. J. et al. Recruitment and the local dynamics of open marine populations. Annu. Rev. Ecol. Syst. 27, 477–500. https://doi.org/10.1146/annurev.ecolsys.27.1.477 (1996).Article 

    Google Scholar 
    Strathmann, R. R. et al. Evolution of local recruitment and its consequences for marine populations. Bull. Mar. Sci. 70(1), 377–396 (2002).
    Google Scholar 
    Roughgarden, J., Gaines, S. & Iwasa, Y. Recruitment dynamics in complex life cycles. Science 241, 1460–1466. https://doi.org/10.1126/science.11538249 (1988).ADS 
    MathSciNet 
    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 
    Gilg, M. R. & Hilbish, T. J. The geography of marine larval dispersal: coupling genetics with fine-scale physical oceanography. Ecology 84(11), 2989–2998. https://doi.org/10.1890/02-0498 (2003).Article 

    Google Scholar 
    D’Aloia, C. C. et al. Patterns, causes, and consequences of marine larval dispersal. Proc. Natl. Acad. Sci. USA 112(45), 13940–13945. https://doi.org/10.1073/pnas.1513754112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fogarty, M. J., Sissenwine, M. P. & Cohen, E. B. Recruitment variability and the dynamics of exploited marine populations. Trends Ecol. Evol. 6(8), 241–246. https://doi.org/10.1016/0169-5347(91)90069-A (1991).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wahle, R. A. Revealing stock–recruitment relationships in lobsters and crabs:is experimental ecology the key?. Fish. Res. 65, 3–32. https://doi.org/10.1016/j.fishres.2003.09.004 (2003).Article 

    Google Scholar 
    Gosselin, L. A. & Qian, P. Y. Early post-settlement mortality of an intertidal barnacle: a critical period for survival. Mar. Ecol. Prog. Ser. 135, 69–75. https://doi.org/10.3354/meps135069 (1996).ADS 
    Article 

    Google Scholar 
    Penin, L. et al. Early post-settlement mortality and the structure of coral assemblages. Mar. Ecol. Prog. Ser. 408, 55–64. https://doi.org/10.3354/meps08554 (2010).ADS 
    Article 

    Google Scholar 
    Broitman, B. R., Mieszkowaska, N., Helmuth, B. & Blanchette, C. A. Climate recruitment of rocky shore intertidal invertebrates in the eastern North Atlantic. Ecology 89(11), S81–S90. https://doi.org/10.1890/08-0635.1 (2008).Article 
    PubMed 

    Google Scholar 
    Sponaugle, S., Grorud-Colvert, K. & Pinkard, D. Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Mar. Ecol. Prog. Ser. 308, 1–15. https://doi.org/10.3354/meps308001 (2006).ADS 
    Article 

    Google Scholar 
    Mazzuco, A. C. A., Christofoletti, R. A., Coutinho, R. & Ciotti, A. M. The influence of atmospheric cold fronts on larval supply and settlement of intertidal invertebrates: Case studies in the Cabo Frio coastal upwelling system (SE Brazil). J. Sea Res. 137, 47–56. https://doi.org/10.1016/j.seares.2018.02.010 (2018).Article 

    Google Scholar 
    Morgan, S. G., Fisher, J. L. & Mace, A. J. Larval recruitment in a region of strong, persistent upwelling and recruitment limitation. Mar. Ecol. Prog. Ser. 394, 79–99. https://doi.org/10.3354/meps08216 (2009).ADS 
    Article 

    Google Scholar 
    Pfaff, M. C., Branch, G. M., Wieters, E. A., Branch, R. A. & Broitman, B. R. Upwelling intensity and wave exposure determine recruitment of intertidal mussels and barnacles in the southern Benguela upwelling region. Mar. Ecol. Prog. Ser. 425, 141–152. https://doi.org/10.3354/meps09003 (2001).ADS 
    Article 

    Google Scholar 
    Munday, P. L. et al. Climate change and coral reef connectivity. Coral Reefs 28, 379–395. https://doi.org/10.1007/s00338-008-0461-9 (2009).ADS 
    Article 

    Google Scholar 
    Groom, S. et al. Satellite ocean colour: Current status and future perspective. Front. Mar. Sci. 6, 485. https://doi.org/10.3389/fmars.2019.00485 (2019).Article 

    Google Scholar 
    Moltmann, T. et al. A global ocean observing system (GOOS), delivered through enhanced collaboration across regions, communities, and new technologies. Front. Mar. Sci. 6, 291. https://doi.org/10.3389/fmars.2019.00291 (2019).Article 

    Google Scholar 
    Kavanaugh, M. T. et al. Hierarchical and dynamic seascapes: A quantitative framework for scaling pelagic biogeochemistry and ecology. Prog. Oceanogr. 120, 291–304. https://doi.org/10.1016/j.pocean.2013.10.013 (2014).ADS 
    Article 

    Google Scholar 
    Kavanaugh, M. T. et al. Seascapes as a new vernacular for ocean monitoring, management and conservation. ICES J. Mar. Sci. 73(7), 1839–1850. https://doi.org/10.1093/icesjms/fsw086 (2016).Article 

    Google Scholar 
    Wernberg, T. et al. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot. Nat. Clim. Change 3, 78–82. https://doi.org/10.1038/nclimate1627 (2013).ADS 
    Article 

    Google Scholar 
    Montes, E. et al. Dynamic satellite seascapes as a biogeographic framework for understanding phytoplankton assemblages in the Florida Keys National Marine Sanctuary United States. Front. Mar. Sci. 7, 575. https://doi.org/10.3389/fmars.2020.00575 (2020).Article 

    Google Scholar 
    Mazzuco, A. C. A. et al. Lower diversity of recruits in coastal reef assemblages are associated with higher sea temperatures in the tropical South Atlantic. Mar. Environ. Res. 148, 87–98. https://doi.org/10.1016/j.marenvres.2019.05.008 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mazzuco, A. C. A., Stelzer, P. S. & Bernardino, A. F. Substrate rugosity and temperature matters: Patterns of benthic diversity at tropical intertidal reefs in the SW Atlantic. PeerJ Life Environ. 8, e8289. https://doi.org/10.7717/peerj.8289 (2020).Article 

    Google Scholar 
    Stelzer, P. S. et al. Taxonomic and functional diversity of benthic macrofauna associated with rhodolith beds in SE Brazil. PeerJ 9, e11903. https://doi.org/10.7717/peerj.11903 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bernardino, A. F. et al. Predicting ecological changes on benthic estuarine assemblages through decadal climate trends along Brazilian Marine Ecoregions. Estuar. Coast. Shelf S. 166, 74–82. https://doi.org/10.1016/j.ecss.2015.05.021 (2015).ADS 
    Article 

    Google Scholar 
    Francini-Filho, R. B. et al. Dynamics of coral reef benthic assemblages of the Abrolhos bank, eastern Brazil: Inferences on natural and anthropogenic drivers. PLoS ONE 8(1), e54260. https://doi.org/10.1371/journal.pone.0054260 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Araújo, M. E. et al. Diversity patterns of reef fish along the Brazilian tropical coast. Mar. Environ. Res. 160, 105038. https://doi.org/10.1016/j.marenvres.2020.105038 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fulton, E. A. et al. Modelling marine protected areas: insights and hurdles. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 370(1681), 201. https://doi.org/10.1098/rstb.2014.0278 (2015).Article 

    Google Scholar 
    Carr, M. H. et al. The central importance of ecological spatial connectivity to effective coastal marine protected areas and to meeting the challenges of climate change in the marine environment. Aquat. Conserv. Mar. Freshw. Ecosyst. 27(S1), 6–29. https://doi.org/10.1002/aqc.2800 (2017).Article 

    Google Scholar 
    Krueck, N. C. et al. Incorporating larval dispersal into MPA design for both conservation and fisheries. Ecol. Appl. 27, 925–941. https://doi.org/10.1002/eap.1495 (2017).Article 
    PubMed 

    Google Scholar 
    Ekau, W. & Knoppers, B. An introduction to the pelagic system of the Northeast and East Brazilian shelf. Arch. Fish. Mar. Res. 47(2/3), 5–24 (1999).
    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57(7), 573–583. https://doi.org/10.1641/B570707 (2007).Article 

    Google Scholar 
    Vermeij, M. J. A., Fogarty, N. D. & Miller, M. W. Pelagic conditions affect larval behavior, survival, and settlement patterns in the Caribbean coral Montastraea faveolata. Mar. Ecol. Prog. Ser. 310, 119–128. https://doi.org/10.3354/meps310119 (2006).ADS 
    Article 

    Google Scholar 
    Gímenez, L. Relationships between habitat conditions, larval traits, and juvenile performance in a marine invertebrate. Ecology 91(5), 1401–1403. https://doi.org/10.1890/09-1028.1 (2010).Article 
    PubMed 

    Google Scholar 
    Jenkins, S. R., Marshall, D. & Fraschetti, S. Settlement and Recruitment. In Marine Hard Bottom Communities. Ecological Studies Analysis and Synthesis (ed. Wahl, M.) (Springer, 2009). https://doi.org/10.1007/b76710_12.Chapter 

    Google Scholar 
    von der Meden, C. E. O., Porri, F., Radloff, S. & McQuaid, C. D. Settlement intensification and coastline topography: Understanding the role of habitat availability in the pelagic–benthic transition. Mar. Ecol. Prog. Ser. 459, 63–71. https://doi.org/10.3354/meps09762 (2012).ADS 
    Article 

    Google Scholar 
    Gorman, D. et al. Decadal losses of canopy-forming algae along the warm temperate coastline of Brazil. Glob. Change Biol. 26, 1446–1457. https://doi.org/10.1111/gcb.14956 (2020).ADS 
    Article 

    Google Scholar 
    Pianca, C., Mazzini, P. L. F. & Siegle, E. Brazilian offshore wave climate based on NWW3 reanalysis. Braz. J. Oceanogr. 58(1), 53–70. https://doi.org/10.1590/S1679-87592010000100006 (2010).Article 

    Google Scholar 
    Muñiz, C., McQuaid, C. D. & Weidberg, N. Seasonality of primary productivity affects coastal species more than its magnitude. Sci. Total Environ. 757, 143740. https://doi.org/10.1016/j.scitotenv.2020.143740 (2021).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Edmunds, P. J. Finding signals in the noise of coral recruitment. Coral Reefs 41, 81–93. https://doi.org/10.1007/s00338-021-02204-9 (2022).Article 

    Google Scholar 
    Zuercher, R. Pelagic-benthic coupling in kelp forests of central California. Mar. Ecol. Prog. Ser. 682, 79–96. https://doi.org/10.3354/meps13937 (2022).ADS 
    Article 

    Google Scholar 
    Manríquez, P. H. & Castilla, J. C. Significance of marine protected areas in central Chile as seeding grounds for the gastropod Concholepas concholepas. Mar. Ecol. Prog. Ser. 215, 201–211. https://doi.org/10.3354/meps215201 (2001).ADS 
    Article 

    Google Scholar 
    Domingues, C. P., Nolasco, R., Dubert, J. & Queiroga, H. Model-derived dispersal pathways from multiple source populations explain variability of invertebrate larval supply. PLoS ONE 7(4), e35794. https://doi.org/10.1371/journal.pone.0035794 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nickols, K. J., Miller, S. H., Gaylord, B., Morgan, S. G. & Largier, J. L. Spatial differences in larval abundance within the coastal boundary layer impact supply to shoreline habitats. Mar. Ecol. Prog. Ser. 494, 191–203. https://doi.org/10.3354/meps10572 (2013).ADS 
    Article 

    Google Scholar 
    Le Nohaïc, M. et al. Marine heatwave causes unprecedented regional mass bleaching of thermally resistant corals in northwestern Australia. Sci. Rep. 7, 14999. https://doi.org/10.1038/s41598-017-14794-y (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, T. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377. https://doi.org/10.1038/nature21707 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Meehl, G. A. & Tebaldi, C. More Intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997. https://doi.org/10.1126/science.1098704 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Oliver, E. C. J. et al. Longer and more frequent marine heatwaves over the past century. Nat. Commun. 9, 1324. https://doi.org/10.1038/s41467-018-03732-9 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Le, C., Lehrter, J. C., Hu, C. & Obenour, D. R. Satellite-based empirical models linking river plume dynamics with hypoxic area and volume. Geophys. Res. Lett. 43, 2693–2699. https://doi.org/10.1002/2015GL067521 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Runge, J. et al. Inferring causation from time series in earth system sciences. Nat. Commun. 10, 2553. https://doi.org/10.1038/s41467-019-10105-3 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abbas, M. M., Melesse, A. M., Scinto, L. J. & Rehage, J. S. Satellite estimation of chlorophyll-a using moderate resolution imaging spectroradiometer (MODIS) sensor in shallow coastal water bodies: validation and improvement. Water 11, 1621. https://doi.org/10.3390/w11081621 (2019).CAS 
    Article 

    Google Scholar 
    Scrosati, R. A. & Ellrich, J. A. A 12-year record of intertidal barnacle recruitment in Atlantic Canada (2005–2016): relationships with sea surface temperature and phytoplankton abundance. PeerJ Life Environ. 4, e2623. https://doi.org/10.7717/peerj.2623 (2016).Article 

    Google Scholar 
    Miloslavich, P. et al. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes. Glob. Change Biol. 24(6), 2416–2433. https://doi.org/10.1111/gcb.14108 (2018).ADS 
    Article 

    Google Scholar 
    Muelbert, J. H. et al. ILTER-the International long-term ecological research network as a platform for global coastal and ocean observation. Front. Mar. Sci. 6, 527. https://doi.org/10.3389/fmars.2019.00527 (2019).Article 

    Google Scholar 
    Pereira, A. F., Belém, A. L., Castro, B. M. & Geremias, R. G. Tide-topography interaction along the eastern Brazilian shelf. Cont. Shelf Res. 25, 1521–1539. https://doi.org/10.1016/j.csr.2005.04.008 (2005).ADS 
    Article 

    Google Scholar 
    Longo, P.A.S., Fernandes, M.C., Leite, F.P.P. & Passos, F.D. Gastropoda (Mollusca) associados a bancos de Sargassum sp. no Canal de São Sebastião–São Paulo, Brasil. Biota Neotropica 14(4), e20140115; doi: https://doi.org/10.1590/1676-06032014011514 (2014)Broitman, B. et al. Spatial and temporal patterns of invertebrate recruitment along the West coast of the United States. Ecol. Monogr. 78, S81–S90. https://doi.org/10.1890/06-1805.1 (2008).Article 

    Google Scholar 
    Todd, C. D. Larval supply and recruitment of benthic invertebrates: do larvae always disperse as much as we believe?. Hydrobiologia 375, 1–21. https://doi.org/10.1023/A:1017007527490 (1998).Article 

    Google Scholar 
    Jenkins, S.R., Marshall, D. & Fraschetti, S. Settlement and Recruitment in Marine Hard Bottom Communities Ecological Studies (Analysis and Synthesis) (ed. Wahl, M.), vol 206; doi: https://doi.org/10.1007/b76710_12 (Springer, 2009)Shanks, A.L. An Identification Guide to the Larval Marine Invertebrates of the Pacific Northwest. Oregon State University Press, Corvallis, Oregon. 320 pages. ISBN 0–87071–531–3 (2001).Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Climate 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1 (2007).ADS 
    Article 

    Google Scholar 
    Simons, R.A. ERDDAP. Monterey, CA: NOAA/NMFS/SWFSC/ERD; https://coastwatch.pfeg.noaa.gov/erddap . (2020).Anderson, M.J. Permutational Multivariate Analysis of Variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online, John Wiley & Sons Ltd; doi: https://doi.org/10.1002/9781118445112.stat07841 (2017).Sokal, R. & Rohlf, F. J. Biometry: the principles and practice of statistics in biological research. (WH Freeman and Company, 2003).Gotelli, N. J. & Colwell, R. K. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 4, 379–391. https://doi.org/10.1046/j.1461-0248.2001.00230.x (2001).Article 

    Google Scholar 
    Colwell, R. K. et al. Models and estimators linking individual-based and sample-based rarefaction, extrapolation and comparison of assemblages. J. Plant Ecol. 5(1), 3–21. https://doi.org/10.1093/jpe/rtr044 (2012).Article 

    Google Scholar 
    Marshall, D. J. & Keough, M. J. The evolutionary ecology of offspring size in marine invertebrates. Adv. Mar. Biol. 53, 1–60. https://doi.org/10.1016/S0065-2881(07)53001-4 (2007).Article 
    PubMed 

    Google Scholar 
    Anderson, M. J. & Willis, T. J. Canonical analysis of principal coordinates: A useful method of constrained ordination for ecology. Ecology 84, 511–525. https://doi.org/10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2 (2003).Article 

    Google Scholar 
    Quintana, C. O., Bernardino, A. F., Moraes, P. C., Valdemarsen, T. & Sumida, P. Y. G. Effects of coastal upwelling on the structure of macrofaunal communities in SE Brazil. J. Mar. Syst. 143, 120–129. https://doi.org/10.1016/j.jmarsys.2014.11.003 (2015).Article 

    Google Scholar 
    Hastie, T. & Tibshirani, R. Generalized Additive Models. (Chapman and Hall, 1990).Hastie, T. Generalized additive models in Statistical Models (eds. Chambers, J. M., Hastie, T.J.) (Wadsworth & Brooks, 1992).Garcia, L. Escaping the bonferroni iron claw in ecological studies. Oikos 105, 657–663. https://doi.org/10.1111/j.0030-1299.2004.13046.x (2004).Article 

    Google Scholar 
    Verhoeven, J. F., Simonsen, K. L. & McIntyre, L. Implementing false discovery rate control: increasing your power. Oikos 108, 643–647. https://doi.org/10.1111/j.0030-1299.2005.13727.x (2005).Article 

    Google Scholar 
    Schmunk, R. B. Panoply 3.2.1. Available at http://www.giss.nasa.gov/ tools/panoply (2013).R Core Team 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Sandrini-Neto, L. & Camargo, M.G. GAD: an R package for ANOVA designs from general principles. Available on CRAN (2020).Komsta, L. outliers: Tests for outliers. R package version 0.14. https://CRAN.R-project.org/package=outliers (2011).Oksanen J., et al. vegan: Community Ecology Package. R package version 2.5–4. https://CRAN.R-project.org/package=vegan (2019).Rossi, J.-P. rich: an R package to analyse species richness. Diversity 3(1), 112–120 (2011).Article 

    Google Scholar 
    Hastie, T. gam: Generalized Additive Models. R package version 1.16.1. https://CRAN.R-project.org/package=gam (2019). More

  • in

    Retinas revived after donor's death open door to new science

    Listen to the latest from the world of science, with Shamini Bundell and Benjamin Thompson.

    Your browser does not support the audio element.

    Download MP3

    In this episode:00:57 Reviving retinas to understand eyesResearch efforts to learn more about diseases of the human eye have been hampered as these organs degrade rapidly after death, and animal eyes are quite different to those from humans. To address this, a team have developed a new method to revive retinas taken from donors shortly after their death. They hope this will provide tissue for new studies looking into the workings of the human eye and nervous system.Research article: Abbas et al.08:05 Research HighlightsA technique that simplifies chocolate making yields fragrant flavours, and 3D imaging reveals some of the largest-known Native American cave art.Research Highlight: How to make a fruitier, more floral chocolateResearch Highlight: Cramped chamber hides some of North America’s biggest cave art10:54 Did life emerge in an ‘RNA world’?How did the earliest biochemical process evolve from Earth’s primordial soup? One popular theory is that life began in an ‘RNA world’ from which proteins and DNA evolved. However, this week a new paper suggests that a world composed of RNA alone is unlikely, and that life is more likely to have begun with molecules that were part RNA and part protein.Research article: Müller et al.News and Views: A possible path towards encoded protein synthesis on ancient Earth17:52 Briefing ChatWe discuss some highlights from the Nature Briefing. This time, the ‘polarised sunglasses’ that helped astronomers identify an ultra-bright pulsar, and how a chemical in sunscreen becomes toxic to coral.Nature: A ‘galaxy’ is unmasked as a pulsar — the brightest outside the Milky WayNature: A common sunscreen ingredient turns toxic in the sea — anemones suggest whySubscribe to Nature Briefing, an unmissable daily round-up of science news, opinion and analysis free in your inbox every weekday.Never miss an episode: Subscribe to the Nature Podcast on Apple Podcasts, Google Podcasts, Spotify or your favourite podcast app. Head here for the Nature Podcast RSS feed. More

  • in

    Deep learning of a bacterial and archaeal universal language of life enables transfer learning and illuminates microbial dark matter

    LookingGlass design and optimizationDataset generationThe taxonomic organization of representative Bacterial and Archaeal genomes was determined from the Genome Taxonomy Database, GTDB51 (release 89.0). The complete genome sequences were downloaded via the NCBI Genbank ftp52. This resulted in 24,706 genomes, comprising 23,458 Bacterial and 1248 Archaeal genomes.Each genome was split into read-length chunks. To determine the distribution of realistic read lengths produced by next-generation short-read sequencing machines, we obtained the BioSample IDs52 for each genome, where they existed, and downloaded their sequencing metadata from the MetaSeek53 database using the MetaSeek API. We excluded samples with average read lengths less than 60 or greater than 300 base pairs. This procedure resulted in 7909 BioSample IDs. The average read lengths for these sequencing samples produced the read-length distribution (Supplementary Fig. 1) with a mean read length of 136 bp. Each genome was split into read-length chunks (with zero overlap in order to maximize information density and reduce data redundancy in the dataset): a sequence length was randomly selected with replacement from the read-length distribution and a sequence fragment of that length was subset from the genome, with a 50% chance that the reverse complement was used. The next sequence fragment was chosen from the genome starting at the end point of the previous read-length chunk, using a new randomly selected read length, and so on. These data were partitioned into a training set used for optimization of the model; a validation set used to evaluate model performance during parameter tuning and as a benchmark to avoid overfitting during training; and a test set used for final evaluation of model performance. To ensure that genomes in the training, validation, and test sets had low sequence similarity, the sets were split along taxonomic branches such that genomes from the Actinomycetales, Rhodobacterales, Thermoplasmata, and Bathyarchaeia were partitioned into the validation set; genomes from the Bacteroidales, Rhizobiales, Methanosarcinales, and Nitrososphaerales were partitioned into the test set; and the remaining genomes remained in the training set. This resulted in 529,578,444 sequences in the training set, 57,977,217 sequences in the validation set, and 66,185,518 sequences in the test set. We term this set of reads the GTDB representative set (Table 1).Table 1 Summary table of datasets used.Full size tableThe amount of data needed for training was also evaluated (Supplementary Fig. 2). Progressively larger amounts of data were tested by selecting at random 1, 10, 100, or 500 read-length chunks from each of the GTDB representative genomes in the GTDB representative training set. Additionally, the performance of smaller but more carefully selected datasets, representing the diversity of the microbial tree of life, were tested by selecting for training one genome at random from each taxonomic class or order in the GTDB taxonomy tree. In general, better accuracy was achieved in fewer epochs with a greater amount of sequencing data (Supplementary Fig. 2); however, a much smaller amount of data performed better if a representative genome was selected from each GTDB taxonomy class.The final LookingGlass model was trained on this class-level partition of the microbial tree of life. We term this dataset the GTDB class set (Table 1). The training, validation, and test sets were split such that no classes overlapped across sets: the validation set included 8 genomes from each of the classes Actinobacteria, Alphaproteobacteria, Thermoplasmata, and Bathyarchaeia (32 total genomes); the test set included 8 genomes from each of the classes Bacteroidia, Clostridia, Methanosarcinia, and Nitrososphaeria (32 total genomes); and the training set included 1 genome from each of the remaining classes (32 archaeal genomes and 298 bacterial genomes for a total of 330 genomes). This resulted in a total of 6,641,723 read-length sequences in the training set, 949,511 in the validation set, and 632,388 in the test set (Supplementary Data 1).Architecture design and trainingRecurrent neural networks (RNNs) are a type of neural network designed to take advantage of the context dependence of sequential data (such as text, video, audio, or biological sequences), by passing information from previous items in a sequence to the current item in a sequence54. Long short-term memory networks (LSTMs)55 are an extension of RNNs, which better learn long-term dependencies by handling the RNN tendency to “forget” information farther away in a sequence56. LSTMs maintain a cell state which contains the “memory” of the information in the previous items in the sequence. LSTMs learn additional parameters which decide at each step in the sequence which information in the cell state to “forget” or “update”.LookingGlass uses a three-layer LSTM encoder model with 1152 units in each hidden layer and an embedding size of 104 based on the results of hyperparameter tuning (see below). It divides the sequence into characters using a kmer size of 1 and a stride of 1, i.e., is a character-level language model. LookingGlass is trained in a self-supervised manner to predict a masked nucleotide, given the context of the preceding nucleotides in the sequence. For each read in the training sequence, multiple training inputs are considered, shifting the nucleotide that is masked along the length of the sequence from the second position to the final position in the sequence. Because it is a character-level model, a linear decoder predicts the next nucleotide in the sequence from the possible vocabulary items “A”, “C”, “G”, and “T”, with special tokens for “beginning of read”, “unknown nucleotide” (for the case of ambiguous sequences), “end of read” (only “beginning of read” was tokenized during LookingGlass training), and a “padding” token (used for classification only).Regularization and optimization of LSTMs require special approaches to dropout and gradient descent for best performance57. The fastai library58 offers default implementations of these approaches for natural language text, and so we adopt the fastai library for all training presented in this paper. We provide the open source fastBio python package59 which extends the fastai library for use with biological sequences.LookingGlass was trained on a Pascal P100 GPU with 16GB memory on Microsoft Azure, using a batch size of 512, a back propagation through time (bptt) window of 100 base pairs, the Adam optimizer60, and utilizing a Cross Entropy loss function (Supplementary Table 1). Dropout was applied at variable rates across the model (Supplementary Table 1). LookingGlass was trained for a total of 12 days for 75 epochs, with progressively decreasing learning rates based on the results of hyperparameter optimization (see below): for 15 epochs at a learning rate of 1e−2, for 15 epochs at a learning rate of 2e−3, and for 45 epochs at a learning rate of 1e−3.Hyperparameter optimizationHyperparameters used for the final training of LookingGlass were tuned using a randomized search of hyperparameter settings. The tuned hyperparameters included kmer size, stride, number of LSTM layers, number of hidden nodes per layer, dropout rate, weight decay, momentum, embedding size, bptt size, learning rate, and batch size. An abbreviated dataset consisting of ten randomly selected read-length chunks from the GTDB representative set was created for testing many parameter settings rapidly. A language model was trained for two epochs for each randomly selected hyperparameter combination, and those conditions with the maximum performance were accepted. The hyperparameter combinations tested and the selected settings are described in the associated Github repository61.LookingGlass validation and analysis of embeddingsFunctional relevanceDataset generation
    In order to assess the ability of the LookingGlass embeddings to inform the molecular function of sequences, metagenomic sequences from a diverse set of environments were downloaded from the Sequence Read Archive (SRA)62. We used MetaSeek53 to choose ten metagenomes at random from each of the environmental packages defined by the MIxS metadata standards63: built environment, host-associated, human gut, microbial mat/biofilm, miscellaneous, plant-associated, sediment, soil, wastewater/sludge, and water, for a total of 100 metagenomes. The SRA IDs used are available in (Supplementary Table 2). The raw DNA reads for these 100 metagenomes were downloaded from the SRA with the NCBI e-utilities. These 100 metagenomes were annotated with the mi-faser tool27 with the read-map option to generate predicted functional annotation labels (to the fourth digit of the Enzyme Commission (EC) number), out of 1247 possible EC labels, for each annotatable read in each metagenome. These reads were then split 80%/20% into training/validation candidate sets of reads. To ensure that there was minimal overlap in sequence similarity between the training and validation set, we compared the validation candidate sets of each EC annotation to the training set for that EC number with CD-HIT64, and filtered out any reads with >80% DNA sequence similarity to the reads of that EC number in the training set (the minimum CD-HIT DNA sequence similarity cutoff). In order to balance EC classes in the training set, overrepresented ECs in the training set were downsampled to the mean count of read annotations (52,353 reads) before filtering with CD-HIT. After CD-HIT processing, any underrepresented EC numbers in the training set were oversampled to the mean count of read annotations (52,353 reads). The validation set was left unbalanced to retain a distribution more realistic to environmental settings. The final training set contained 61,378,672 reads, while the validation set contained 2,706,869 reads. We term this set of reads and their annotations the mi-faser functional set (Table 1).
    As an external test set, we used a smaller number of DNA sequences from genes with experimentally validated molecular functions. We linked the manually curated entries of Bacterial or Archaeal proteins from the Swiss-Prot database65 corresponding to the 1247 EC labels in the mi-faser functional set with their corresponding genes in the EMBL database66. We downloaded the DNA sequences, and selected ten read-length chunks at random per CDS. This resulted in 1,414,342 read-length sequences in the test set. We term this set of reads and their annotations the Swiss-Prot functional set (Table 1).

    Fine-tuning procedure
    We fine-tuned the LookingGlass language model to predict the functional annotation of DNA reads, to demonstrate the speed with which an accurate model can be trained using our pretrained LookingGlass language model. The architecture of the model retained the 3-layer LSTM encoder and the weights of the LookingGlass language model encoder, but replaced the language model decoder with a new multiclass classification layer with pooling (with randomly initialized weights). This pooling classification layer is a sequential model consisting of the following layers: a layer concatenating the output of the LookingGlass encoder with min, max, and average pooling of the outputs (for a total dimension of 104*3 = 312), a batch normalization67 layer with dropout, a linear layer taking the 312-dimensional output of the batch norm layer and producing a 50-dimensional output, another batch normalization layer with dropout, and finally a linear classification layer that is passed through the log(Softmax(x)) function to output the predicted functional annotation of a read as a probability distribution of the 1247 possible mi-faser EC annotation labels. We then trained the functional classifier on the mi-faser functional set described above. Because the >61 million reads in the training set were too many to fit into memory, training was done in 13 chunks of ~5-million reads each until one total epoch was completed. Hyperparameter settings for the functional classifier training are seen in Supplementary Table 1.

    Encoder embeddings and MANOVA test
    To test whether the LookingGlass language model embeddings (before fine-tuning, above) are distinct across functional annotations, a random subset of ten reads per functional annotation was selected from each of the 100 SRA metagenomes (or the maximum number of reads present in that metagenome for that annotation, whichever was greater). This also ensured that reads were evenly distributed across environments. The corresponding fixed-length embedding vectors for each read was produced by saving the output from the LookingGlass encoder (before the embedding vector is passed to the language model decoder) for the final nucleotide in the sequence. This vector represents a contextually relevant embedding for the overall sequence. The statistical significance of the difference between embedding vectors across all functional annotation groups was tested with a MANOVA test using the R stats package68.
    Evolutionary relevance
    Dataset generation
    The OrthoDB database69 provides orthologous groups (OGs) of proteins at various levels of taxonomic distance. For instance, the OrthoDB group “77at2284” corresponds to proteins belonging to “Glucan 1,3-alpha-glucosidase at the Sulfolobus level”, where “2284” is the NCBI taxonomy ID for the genus Sulfolobus.
    We tested whether embedding similarity of homologous sequences (sequences within the same OG) is higher than that of nonhomologous sequences (sequences from different OGs). We tested this in OGs at multiple levels of taxonomic distance—genus, family, order, class, and phylum. At each taxonomic level, ten individual taxa at that level were chosen from across the prokaryotic tree of life (e.g., for the genus level, Acinetobacter, Enterococcus, Methanosarcina, Pseudomonas, Sulfolobus, Bacillus, Lactobacillus, Mycobacterium, Streptomyces, and Thermococcus were chosen). For each taxon, 1000 randomly selected OGs corresponding to that taxon were chosen; for each of these OGs, five randomly chosen genes within this OG were chosen.
    OrthoDB cross-references OGs to UniProt65 IDs of the corresponding proteins. We mapped these to the corresponding EMBL CDS IDs66 via the UniProt database API65; DNA sequences of these EMBL CDSs were downloaded via the EMBL database API. For each of these sequences, we generated LookingGlass embedding vectors.

    Homologous and nonhomologous sequence pairs
    To create a balanced dataset of homologous and nonhomologous sequence pairs, we compared all homologous pairs of the five sequences in an OG (total of ten homologous pairs) to an equal number of randomly selected out-of-OG comparisons for the same sequences; i.e., each of the five OG sequences was compared to 2 other randomly selected sequences from any other randomly selected OG (total of ten nonhomologous pairs). We term this set of sequences, and their corresponding LookingGlass embeddings, the OG homolog set (Table 1).

    Embedding and sequence similarity
    For each sequence pair, the sequence and embedding similarity were determined. The embedding similarity was calculated as the cosine similarity between embedding vectors. The sequence similarity was calculated as the Smith-Waterman alignment score using the BioPython70 pairwise2 package, with a gap open penalty of −10 and a gap extension penalty of −1. The IDs of chosen OGs, the cosine similarities of the embedding vectors, and sequence similarities of the DNA sequences are available in the associated Github repository61.

    Comparison to HMM-based domain searches for distant homology detection
    Distantly related homologous sequences that share, e.g., Pfam71, domains can be identified using HMM-based search methods. We used hmmscan25 (e-val threshold = 1e−10) to compare homologous (at the phylum level) sequences in the OG homolog set, for which the alignment score was less than 50 bits and the embedding similarity was greater than 0.62 (total: 21,376 gene pairs). Specifically, we identified Pfam domains in each sequence and compared whether the most significant (lowest e-value) domain for each sequence was identified in common for each homologous pair.
    Environmental relevance
    Encoder embeddings and MANOVA test
    The LookingGlass embeddings and the environment of origin for each read in the mi-faser functional set were used to test the significance of the difference between the embedding vectors across environmental contexts. The statistical significance of this difference was evaluated with a MANOVA test using the R stats package68.
    Oxidoreductase classifier
    Dataset generation
    The manually curated, reviewed entries of the Swiss-Prot database65 were downloaded (June 2, 2020). Of these, 23,653 entries were oxidoreductases (EC number 1.-.-.-) of Archaeal or Bacterial origin (988 unique ECs). We mapped their UniProt IDs to both their EMBL CDS IDs and their UniRef50 IDs via the UniProt database mapper API. Uniref50 IDs identify clusters of sequences with >50% amino acid identity. This cross-reference identified 28,149 EMBL CDS IDs corresponding to prokaryotic oxidoreductases, belonging to 5451 unique UniRef50 clusters. We split this data into training, validation, and test sets such that each UniRef50 cluster was contained in only one of the sets, i.e., there was no overlap in EMBL CDS IDs corresponding to the same UniRef50 cluster across sets. This ensures that the oxidoreductase sequences in the validation and test sets are dissimilar to those seen during training. The DNA sequences for each EMBL CDS ID were downloaded via the EMBL database API. These data generation process were repeated for a random selection of non-oxidoreductase UniRef50 clusters, which resulted in 28,149 non-oxidoreductase EMBL CDS IDs from 13,248 unique UniRef50 clusters.
    Approximately 50 nucleotide read-length chunks (selected from the representative read-length distribution, as above) were selected from each EMBL CDS DNA sequence, with randomly selected start positions on the gene and a 50% chance of selecting the reverse complement, such that an even number of read-length sequences with “oxidoreductase” and “not oxidoreductase” labels were generated for the final dataset. This procedure produced a balanced dataset with 2,372,200 read-length sequences in the training set, 279,200 sequences in the validation set, and 141,801 sequences in the test set. We term this set of reads and their annotations the oxidoreductase model set (Table 1). In order to compare the oxidoreductase classifier performance to an HMM-based method, reads with “oxidoreductase” labels in the oxidoreductase model test set (71,451 reads) were 6-frame translated and searched against the Swiss-Prot protein database using phmmer25 (reporting e-val threshold = 0.05, using all other defaults).

    Fine-tuning procedure
    Since our functional annotation classifier addresses a closer classification task to the oxidoreductase classifier than LookingGlass itself, the architecture of the oxidoreductase classifier was fine-tuned starting from the functional annotation classifier, replacing the decoder with a new pooling classification layer (as described above for the functional annotation classifier) and with a final output size of 2 to predict “oxidoreductase” or “not oxidoreductase”. Fine tuning of the oxidoreductase classifier layers was done successively, training later layers in isolation and then progressively including earlier layers into training, using discriminative learning rates ranging from 1e−2 to 5e−4, as previously described72. The fine-tuned model was trained for 30 epochs, over 18 h, on a single P100 GPU node with 16GB memory.

    Model performance in metagenomes
    Sixteen marine metagenomes from the surface (SRF, ~5 meters) and mesopelagic (MES, 175–800 meters) from eight stations sampled as part of the TARA expedition37 were downloaded from the SRA62 (Supplementary Table 3, SRA accession numbers ERR598981, ERR599063, ERR599115, ERR599052, ERR599020, ERR599039, ERR599076, ERR598989, ERR599048, ERR599105, ERR598964, ERR598963, ERR599125, ERR599176, ERR3589593, and ERR3589586). Metagenomes were chosen from a latitudinal gradient spanning polar, temperate, and tropical regions and ranging from −62 to 76 degrees latitude. Mesopelagic depths from four out of the eight stations were sampled from oxygen minimum zones (OMZs, where oxygen More