More stories

  • in

    A whole-ecosystem experiment reveals flow-induced shifts in a stream community

    Study areaThe study was conducted in the headwaters of the Chalpi Grande River watershed, 95 km2, located inside the Cayambe-Coca National Park in the northern Andes of Ecuador at an elevation range of 3789 to 3835 m (S 0°16′ 45″, W 78° 4′49″). This watershed harbors the primary water supply system for Quito. The system includes two reservoirs and 10 water intakes placed on first and second-order streams that, altogether, provide 39% of Quito’s water supply28. We monitored the Chalpi Norte stream for ~1.5 years prior to conducting our experiment for ~0.5 years (176 days), and ~0.4 years after the manipulation. Further, in the nearby area, we monitored 21 stream sites distributed upstream and downstream water intakes from the supply system (Fig. S4).Experiment for flow manipulation and monitoring flow reduction and recoveryWe conducted our experimental flow manipulation between October 2018 and April 2019 in a mainly rain-fed stream45. The experiment manipulated natural flows encompassing stable low flows and sporadic spates characterizing the high temporal variability of headwaters45,28 (Figs. 2a, b and S1). We set up a full Before-After/Control- Impact (BACI) experiment29 to evaluate ecosystem variables under natural and manipulated flow conditions. We identified a free-flowing stream reach on the Chalpi Norte that was above any water intakes that allowed us to divert flow with an ecohydraulic structure31. The structure was located above a meander, which we used to divert flow and return it to the stream below the meander (Fig. S4). The experimental site was comprised of an upstream/free-flowing reach (L = 25 m) (reference conditions), located ~32 m above the ecohydraulic structure and a downstream/regulated reach (L = 97 m) located immediately below the flow manipulation structure (Fig. 1b–d)31. The control site was located in a free-flowing stream, a tributary of the Chalpi Norte stream, with an upstream reach separated from a downstream reach by a distance of 16 m. We manipulated the instantaneous flow of the Chalpi Norte stream through a series of fixed percentages using different v-notch weir pairs31. We started diversions to maintain in the meander 100, 80, 60, 50, 40, 30, and 20% of the incoming flow for 7-day periods (based on local observations of benthic algal colonization); then we maintained 10% of the upstream flow for 36 days. We started to return flow gradually to recover 20, 30, 40, 50, 60, 80, and 100% of the upstream flow. In response to a natural spate while we maintained the 10% of upstream flow, the manipulated flow briefly (during ~9 h) increased above the targeted reduction (i.e., 54% instead of 10%) (Fig. 2a). We registered the spate of flow on the upstream reach of the experimental site (Figs. 2b and S1).Stream monitoring in adjacent streamsWe monitored 21 stream sites between July 2017 and July 2019. We selected seven streams with water intakes placed on the main channel (Chalpi Norte, Gonzalito, Quillugsha 1, 2, 3, Venado, and Guaytaloma). We sampled one site upstream of the water intake and two sites (i.e., 10 m and 500 m) downstream to obtain a wide range of flow reduction levels (Fig. S4) (see, 30 for further details on stream sites).Global literature surveyWe performed a systematic literature review to explore benthic algae responses to flow alterations (increase or decrease), focusing on cyanobacteria in streams. We used ISI Web of Science, Google Scholar, and Google Search for the entries: “benthic cyanobacteria” + “stream”, and “river”, “benthic algal bloom” + “flow” and all available combinations (Table S1). We selected papers containing information on benthic cyanobacteria and algae biomass and flow or water level measurements; specifically, we explored detailed information regarding experiments, spatial studies with upstream and downstream sites, and temporal replicates, as well seasonal associated benthic cyanobacteria blooms. We used published and/or publicly available data to calculate the percent of flow alteration in streams and calculated a factor on cyanobacteria biomass increase or decrease (quantitative studies) according to reported baseline conditions (either temporal or spatial). Only three out of 53 study sites reported a qualitative decrease in benthic cyanobacteria biomass attributable to flow reduction (Fig. 1d). Most studies (94%, n = 50) reported biomass increases with flow reductions. Among these studies sites, 44% reported qualitative observations where low flows were proposed as one of the environmental drivers responsible for benthic cyanobacteria blooms. While 66% of study sites (n = 33) related cyanobacterium biomass increase in time or space due to flow reductions caused by droughts, extreme low flow events, water abstractions, and experimental flumes manipulations.Abiotic and biotic variables sampling and analysesWater level sensors recording every 30 min (HOBO U40L, Onset USA) were installed at both upstream and downstream sites of water intakes, and on the experimental and control stream reaches (BACI desing), where we conducted multiple wading-rod flow measurements to convert water level into discharge via stage-discharge relationships (ADC current meter, OTT Hydromet, Germany). Streamwater’s physical and chemical in situ parameters (i.e., pH, temperature, conductivity, dissolved oxygen) were measured three times during biotic sampling on both stream sites and adjacent streams using a portable sonde (YSI, Xylem, USA). We collected water samples (500 ml) during in situ samplings to analyze nutrients (i.e., nitrate and phosphate) at the water supply company’s (EPMAPS) laboratory. We also measured precipitation from a rain gauge (HOBO Onset USA) installed in the Chalpi Norte stream.Our biotic variables included three benthic algae: cyanobacteria, diatoms, and green algae), and aquatic invertebrates biomass (Table 1). To measure Chl-a from cyanobacteria and benthic algae on artificial substrates, we used a BenthoTorch® (bbe Moldaenke GmbH, Germany) on unglazed ceramic plates (200 mm × 400 mm) with a grid of 25 squares of 2500 mm2 to allow algal accrual on a standardized surface. We allowed 21 days for colonization (based on previous observations) and then we placed all substrates5 at the beginning of the experiment. We performed five readings on five squares randomly selected within each plate. To consider the effect of benthic invertebrates to flow variations, we sampled stream sites using a Surber net (mesh size = 250 µm, area = 0.0625 m2). On the experimental and control sites we measured biotic, physical, and chemical in situ parameters every two days (n = 1760), and nutrients and invertebrates every seven days (n = 500) for the duration of the flow manipulation (~0.5 years). On the monitored sites, we measured biotic, physical, and chemical in situ parameters every seven days (n = 1456) and nutrients and invertebrates every 30 days (n = 336). To evaluate differences we calculated mean abiotic and biotic variables during the different phases (BL: baseline, FR: flow reduction, FI: gradual reset to initial flow) in the four-stream reaches to apply the BACI design29: upstream and downstream reaches on the experimental and control sites. We applied a paired one-tail t-test at α = 0.05 to compare FR and FI phases to baseline conditions, based on the expected direction of the response 1,14.Statistics and reproducibilityTo quantify the relationships between environmental variables and cyanobacteria biomass under manipulated and natural flow conditions, including interaction among algae and with invertebrates, we used multivariate autoregressive state-space modeling (MARSS)14,30. We fitted models with Gaussian errors for flow, conductivity, pH, water temperature, nitrate, phosphate, cyanobacteria, benthic algae, and invertebrate biomass time series via maximum likelihood (MARSS R-package)48. The state processes Xt includes state measurements for all four benthic components (cyanobacteria, diatoms, green algae, and invertebrates’ biomasses) considering the interactions between benthic components and environmental covariates (flow, conductivity, pH, water temperature, nitrate, phosphate) evolving through time, as follows:$${X}_{t}={{BX}}_{t-1}+U+{C}_{{Ct}}+{W}_{t}; {W}_{t} sim {MVN}(0,Q)$$
    (1)
    $${Y}_{t}={{ZX}}_{t}+{V}_{t} ; {V}_{t} sim {MVN}(0,R)$$
    (2)
    with Xt a matrix of states at time t, Yt a matrix of observations at time t, Wt a matrix of process errors (multivariate normally distributed with mean 0 and variance Q), Vt is a matrix of observation errors (normally distributed with mean 0 and variance R). Z is a matrix linking the observations Yt and the correspondent state Xt. B is an interaction matrix with inter-specific interaction (diatom and green algae) and with invertebrate strengths, Ct is a matrix of environmental variables (flow, conductivity, pH, water temperature, nitrate, phosphate) at time t. C is a matrix of coefficients indicating the effect of Ct to states Xt. U describes the mean trend. We computed a total of 12 models from the most complete to the simplest, the best-fitting model was identified as having the lowest Akaike Information Criterion adjusted for small sample sizes (AICc)14,30. To detect structural breaks in cyanobacteria biomass time series we calculated the differences between the smoothed state estimates at time t and t-1 based on the multivariate models. Sudden changes in the level were detected when the standardized smoothed state residuals exceed the 95% confidence interval for a t-distribution. We estimated the strength of environmental variables on cyanobacteria biomass and fitted models independently for each stream reach.To analyze cyanobacteria biomass across a gradient of flow alterations we compared weekly paired data (n = 1456) from upstream and downstream sites (i.e., at 10 m and 500 m). We thus calculated how much downstream site(s) biomass changed in comparison to upstream site biomass and assigned a factor for the increase or decrease. We determined the relative fraction of the instantaneous upstream flow in the downstream site measured within a 30-min time-step. We applied the same analysis to data from experiments obtained on the web search. We applied the Ramer–Douglas–Peucker (RDP) algorithm to find a breakpoint (ε lower distance to breakpoint) and the best line of fit for the local and global survey data distribution, we used the kmlShape-R package 48.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Carbon benefits of enlisting nature for crop protection

    Tonitto, C., Woodbury, P. B. & McLellan, E. L. Environ. Sci. Policy 87, 64–73 (2018).Article 

    Google Scholar 
    Carlson, K. M. et al. Nat. Clim. Change 7, 63–68 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Carson, R., Darling, L. & Darling, L. Silent Spring (Houghton Mifflin, 1962).Audsley, E., Stacey, K. F., Parsons, D. J. & Williams, A. G. Estimation of the Greenhouse Gas Emissions from Agricultural Pesticide Manufacture and Use (Cranfield Univ., 2009).Heimpel, G. E., Yang, Y., Hill, J. D. & Ragsdale, D. W. PLoS ONE 8, e72293 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Lal, R. Environ. Int. 30, 981–990 (2004).CAS 
    Article 

    Google Scholar 
    Crippa, M. et al. Nat. Food 2, 198–209 (2021).CAS 
    Article 

    Google Scholar 
    Labrie, G. et al. PLoS ONE 15, e0229136 (2020).CAS 
    Article 

    Google Scholar 
    Tang, F. H., Lenzen, M., McBratney, A. & Maggi, F. Nat. Geosci. 14, 206–210 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Mason, P. G. Biological Control: Global Impacts, Challenges and Future Directions of Pest Management (CSIRO, 2021).Deguine, J. P. et al. Agron. Sustain. Dev. 41, 1–35 (2021).Article 

    Google Scholar 
    Wyckhuys, K. A. G. et al. J. Environ. Manage. 307, 114529 (2022).Article 

    Google Scholar 
    Van den Berg, H. & Jiggins, J. World Dev. 35, 663–686 (2007).Article 

    Google Scholar 
    Godfray, H. C. J. et al. Science 327, 812–818 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Huang, J. et al. Environ. Res. Lett. 13, 064027 (2018).ADS 
    Article 

    Google Scholar 
    Pecenka, J. R. et al. Proc. Natl Acad. Sci. USA 118, e2108429118 (2021).CAS 
    Article 

    Google Scholar 
    Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Annu. Rev. Entomol. 60, 621–645 (2015).CAS 
    Article 

    Google Scholar 
    Tamburini, G. et al. Sci. Adv. 6, eaba1715 (2020).ADS 
    Article 

    Google Scholar 
    Wolf, S. A. & Ghosh, R. Land Use Policy 96, 103552 (2020).Article 

    Google Scholar 
    Wyckhuys, K. A. G. et al. Environ. Res. Lett. 13, 094005 (2018).ADS 
    Article 

    Google Scholar 
    Bridge, G. et al. Prog. Hum. Geogr. 44, 724–742 (2020).Article 

    Google Scholar 
    Gautam, M. et al. Repurposing Agricultural Policies and Support: Options to Transform Agriculture and Food Systems to Better Serve the Health of People, Economies, and the Planet (The World Bank and IFPRI, 2022).Tooker, J. F., O’Neal, M. E. & Rodriguez-Saona, C. Annu. Rev. Entomol. 65, 81–100 (2020).CAS 
    Article 

    Google Scholar 
    van Lenteren, J. C. et al. BioControl 63, 39–59 (2018).Article 

    Google Scholar 
    Parnell, J. J. et al. Front. Plant Sci. 7, 1110 (2016).Article 

    Google Scholar 
    Herrero, M. et al. Nat. Food 1, 266–272 (2020).Article 

    Google Scholar 
    Rosenzweig, C. et al. Nat. Food 1, 94–97 (2020).Article 

    Google Scholar 
    Rana, J. & Paul, J. J. Retail. Consum. Serv. 38, 157–165 (2017).Article 

    Google Scholar  More

  • in

    Survival strategies of an anoxic microbial ecosystem in Lake Untersee, a potential analog for Enceladus

    Water samples were filtered twice (see Methods), first through a large filter (0.45 µm, LF or “Large Filter”) and then the filtrate was passed through a small filter (0.05 µm, UF or “Ultrafine Fraction”). Using whole genome shotgun metagenomics from four water samples (LF92 and UF92 from the 92 m depth, LF99 and UF99 from the 99 m depth) as well as one sediment sample, we provide the first comprehensive whole genome shotgun metagenomics investigation of this section of the lake and highlight both the taxonomic composition and potential metabolic strategies for survival, as well as identify areas for deeper investigation.Cell counts and dissolved nutrientsIn order to determine the habitability of the anoxic basin, the cell counts were measured in the oxycline (75 m depth) and the anoxic region (92 and 99 m depth), where oxygen content is  More

  • in

    Novel passive detection approach reveals low breeding season survival and apparent lactation cost in a critically endangered cave bat

    Odonnell, C. Population dynamics and survivorship in bats. In Ecology and Behavioral Methods for the Study of Bats (eds Kunz, T. H. & Parsons, S.) 158–176 (The Johns University Press, 2009).
    Google Scholar 
    Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).Article 

    Google Scholar 
    Gibbons, J. W. & Andrews, K. M. PIT tagging: Simple technology at its best. Bioscience 54, 447–454 (2004).Article 

    Google Scholar 
    Ellison, L. E. et al. A comparison of conventional capture versus PIT reader techniques for estimating survival and capture probabilities of big brown bats (Eptesicus fuscus). Acta Chiropterologica 9, 149–160 (2007).Article 

    Google Scholar 
    van Harten, E. et al. High detectability with low impact: Optimizing large PIT tracking systems for cave-dwelling bats. Ecol. Evol. 9, 10916–10928 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schorr, R. A., Ellison, L. E. & Lukacs, P. M. Estimating sample size for landscape-scale mark-recapture studies of North American migratory tree bats. Acta Chiropterologica 16, 231–239 (2014).Article 

    Google Scholar 
    Baker, G. B. et al. The effect of forearm bands on insectivorous bats (Microchiroptera) in Australia. Wildl. Res. 28, 229–237 (2001).Article 

    Google Scholar 
    O’Shea, T. J., Ellison, L. E. & Stanley, T. R. Survival estimation in bats: Historical overview, critical appraisal, and suggestions for new approaches. In Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters (ed. Thompson, W. L.) 297–336 (Island Press, 2004).
    Google Scholar 
    O’Shea, T. J. et al. Recruitment in a Colorado population of big brown bats: Breeding probabilities, litter size, and first-year survival. J. Mammal. 91, 418–428 (2010).Article 

    Google Scholar 
    O’Shea, T. J., Ellison, L. E. & Stanley, T. R. Adult survival and population growth rate in Colorado big brown bats (Eptesicus fuscus). J. Mammal. 92, 433–443 (2011).Article 

    Google Scholar 
    Schorr, R. A. & Siemers, J. L. Population dynamics of little brown bats (Myotis lucifugus) at summer roosts: Apparent survival, fidelity, abundance, and the influence of winter conditions. Ecol. Evol. 11, 7427–7438 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Donnell, C. F. J., Edmonds, H. & Hoare, J. M. Survival of PIT-tagged lesser short-tailed bats (Mystacina tuberculata) through a pest control operation using the toxin pindone in bait stations. N. Z. J. Ecol. 35, 291–295 (2011).
    Google Scholar 
    Edmonds, H., Pryde, M. & O’Donnell, C. Survival of PIT-tagged lesser short-tailed bats (Mystacina tuberculata) through an aerial 1080 pest control operation. N. Z. J. Ecol. 41, 186–192 (2017).
    Google Scholar 
    Reusch, C. et al. Differences in seasonal survival suggest species-specific reactions to climate change in two sympatric bat species. Ecol. Evol. 9, 7957–7965 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    IUCN. The IUCN red list of threatened species. Version 2020-2. http://www.iucnredlist.org (2020).Lentini, P. E., Bird, T. J., Griffiths, S. R., Godinho, L. N. & Wintle, B. A. A global synthesis of survival estimates for microbats. Biol. Lett. 11, 20150371 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Culina, A., Linton, D. M. & Macdonald, D. W. Age, sex, and climate factors show different effects on survival of three different bat species in a woodland bat community. Glob. Ecol. Conserv. 12, 263–271 (2017).Article 

    Google Scholar 
    Frick, W. F., Reynolds, D. S. & Kunz, T. H. Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J. Anim. Ecol. 79, 128–136 (2010).PubMed 
    Article 

    Google Scholar 
    Schorcht, W., Bontadina, F. & Schaub, M. Variation of adult survival drives population dynamics in a migrating forest bat. J. Anim. Ecol. 78, 1182–1190 (2009).PubMed 
    Article 

    Google Scholar 
    Sendor, T. & Simon, M. Population dynamics of the pipistrelle bat: Effects of sex, age and winter weather on seasonal survival. J. Anim. Ecol. 72, 308–320 (2003).Article 

    Google Scholar 
    Sripathi, K., Raghuram, H., Rajasekar, R., Karuppudurai, T. & Abraham, S. G. Population size and survival in the indian false vampire bat Megaderma lyra. Acta Chiropterologica 6, 145–154 (2004).Article 

    Google Scholar 
    Papadatou, E., Butlin, R. K., Pradel, R. & Altringham, J. D. Sex-specific roost movements and population dynamics of the vulnerable long-fingered bat, Myotis capaccinii. Biol. Conserv. 142, 280–289 (2009).Article 

    Google Scholar 
    López-Roig, M. & Serra-Cobo, J. Impact of human disturbance, density, and environmental conditions on the survival probabilities of pipistrelle bat (Pipistrellus pipistrellus). Popul. Ecol. 56, 471–480 (2014).Article 

    Google Scholar 
    Wilkinson, G. S. & Adams, D. M. Recurrent evolution of extreme longevity in bats. Biol. Lett. 15, 20180860 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DELWP. National Recovery Plan for the Southern Bent-wing Bat Miniopterus orianae bassanii (2020).Lumsden, L. & Gray, P. Longevity record for a southern bent-wing bat Miniopterus schreibersii bassanii. Australas. Bat Soc. Newsl. 16, 43–44 (2001).
    Google Scholar 
    Holz, P. H. et al. Virus survey in populations of two subspecies of bent-winged bats (Miniopterus orianae bassanii and oceanensis) in south-eastern Australia reveals a high prevalence of diverse herpesviruses. PLoS ONE 13, e0197625 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holz, P. H., Lumsden, L. F., Marenda, M. S., Browning, G. F. & Hufschmid, J. Two subspecies of bent-winged bats (Miniopterus orianae bassanii and oceanensis) in southern Australia have diverse fungal skin flora but not Pseudogymnoascus destructans. PLoS ONE 13, e0204282 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holz, P. H., Lumsden, L. F. & Hufschmid, J. Ectoparasites are unlikely to be a primary cause of population declines of bent-winged bats in south-eastern Australia. Int. J. Parasitol. Parasites Wildl. 7, 423–428 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holz, P. H., Lumsden, L. F., Legione, A. R. & Hufschmid, J. Polychromophilus melanipherus and haemoplasma infections not associated with clinical signs in southern bent-winged bats (Miniopterus orianae bassanii) and eastern bent-winged bats (Miniopterus orianae oceanensis). Int. J. Parasitol. Parasites Wildl. 8, 10–18 (2019).PubMed 
    Article 

    Google Scholar 
    Holz, P. H., Clark, P., McLelland, D. J., Lumsden, L. F. & Hufschmid, J. Haematology of southern bent-winged bats (Miniopterus orianae bassanii) from the Naracoorte Caves National Park, South Australia. Comp. Clin. Pathol. 29, 231–237 (2020).CAS 
    Article 

    Google Scholar 
    Dwyer, P. D. The population pattern of Miniopterus schreibersii (Chiroptera) in north-eastern New South Wales. Aust. J. Zool. 14, 1073–1137 (1966).Article 

    Google Scholar 
    Dwyer, P. D. Mortality factors of the bent-winged bat. Vic. Nat. 83, 31–36 (1966).
    Google Scholar 
    Dwyer, P. D. Seasonal changes in activity and weight of Miniopterus schreibersii blepotis (Chiroptera) in north-eastern NSW. Aust. J. Zool. 12, 52–69 (1964).Article 

    Google Scholar 
    Bureau of Meteorology. Drought archive. http://www.bom.gov.au/climate/drought/archive.shtml (2019).Dwyer, P. D. Population ranges of Miniopterus schreibersii (Chiroptera) in south-eastern Australia. Aust. J. Zool. 17, 665–686 (1969).Article 

    Google Scholar 
    Fleischer, T., Gampe, J., Scheuerlein, A. & Kerth, G. Rare catastrophic events drive population dynamics in a bat species with negligible senescence. Sci. Rep. 7, 7370 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Thomas, D. W. Hibernating bats are sensitive to nontactile human disturbance. J. Mammal. 76, 940–946 (1995).Article 

    Google Scholar 
    Reeder, D. M. et al. Frequent arousal from hibernation linked to severity of infection and mortality in bats with white-nose syndrome. PLoS ONE 7, e38920 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turbill, C., Bieber, C. & Ruf, T. Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc. R. Soc. B Biol. Sci. 278, 3355–3363 (2011).Article 

    Google Scholar 
    van Harten, E. Population Dynamics of the Critically Endangered, Southern Bent-Winged Bat Miniopterus orianae bassanii (La Trobe University, 2020).
    Google Scholar 
    PIRSA. History of the south east drainage system – summary. https://www.pir.sa.gov.au/aghistory/natural_resources/water_resources_ag_dev/history_of_the_south_east_drainage_system_-_summary/history_of_the_south_east_drainage_system_-_summary#_ftnref2 (2017).Harding, C., Herpich, D. & Cranswick, R. H. Examining temporal and spatial changes in surface water hydrology of groundwater dependent ecosystems using WOfS (Water Observations from Space): Southern Border Groundwaters Agreement area, South East South Australia. (2018).Holz, P. H., Lumsden, L. F., Reardon, T., Gray, P. & Hufschmid, J. Does size matter? Morphometrics of southern bent-winged bats (Miniopterus orianae bassanii) and eastern bent-winged bats (Miniopterus orianae oceanensis). Aust. Zool. AZ https://doi.org/10.7882/AZ.2019.019 (2020).Article 

    Google Scholar 
    Rashid, M. M. & Beecham, S. Characterization of meteorological droughts across South Australia. Meteorol. Appl. 26, 556–568 (2019).Article 

    Google Scholar 
    Culina, A., Linton, D. M., Pradel, R., Bouwhuis, S. & Macdonald, D. W. Live fast, don’t die young: Survival–reproduction trade-offs in long-lived income breeders. J. Anim. Ecol. 88, 746–756 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kunz, T. H., Whitaker, J. O. & Wadanoli, M. D. Dietary energetics of the insectivorous Mexican free-tailed bat (Tadarida brasiliensis) during pregnancy and lactation. Oecologia 101, 407–415 (1995).CAS 
    PubMed 
    Article 

    Google Scholar 
    Adams, R. A. & Hayes, M. A. Water availability and successful lactation by bats as related to climate change in arid regions of western North America. J. Anim. Ecol. 77, 1115–1121 (2008).PubMed 
    Article 

    Google Scholar 
    Henry, M., Thomas, D. W., Vaudry, R. & Carrier, M. Foraging distances and home range of pregnant and lactating little brown bats (Myotis lucifugus). J. Mammal. 83, 767–774 (2002).Article 

    Google Scholar 
    Lučan, R. & Radil, J. Variability of foraging and roosting activities in adult females of Daubenton’s bat (Myotis daubentonii) in different seasons. Biologia (Bratisl.) 65 (2010).Amorim, F., Jorge, I., Beja, P. & Rebelo, H. Following the water? Landscape-scale temporal changes in bat spatial distribution in relation to Mediterranean summer drought. Ecol. Evol. 8, 5801–5814 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    O’Donnell, C. F. J. Timing of breeding, productivity and survival of long-tailed bats Chalinolobus tuberculatus (Chiroptera: Vespertilionidae) in cold-temperate rainforest in New Zealand. J. Zool. 257, 311–323 (2002).Article 

    Google Scholar 
    Holz, P. H., Stent, A., Lumsden, L. F. & Hufschmid, J. Trauma found to be a significant cause of death in a pathological investigation of bent-winged bats (Miniopterus orianae). J. Zoo Wildl. Med. 50, 966–971 (2020).PubMed 
    Article 

    Google Scholar 
    Hughes, P. M., Rayner, J. M. V. & Jonesg, G. Ontogeny of ‘true’ flight and other aspects of growth in the bat Pipistrellus pipistrellus. J. Zool. 236, 291–318 (1995).Article 

    Google Scholar 
    Wund, M. A. Learning and the development of habitat-specific bat echolocation. Anim. Behav. 70, 441–450 (2005).Article 

    Google Scholar 
    McGuire, L. P. et al. Common condition indices are no more effective than body mass for estimating fat stores in insectivorous bats. J. Mammal. 99, 1065–1071 (2018).Article 

    Google Scholar 
    Mispagel, C. et al. DDT and metabolites residues in the southern bent-wing bat (Miniopterus schreibersii bassanii) of south-eastern Australia. Chemosphere 55, 997–1003 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allinson, G. et al. Organochlorine and trace metal residues in adult southern bent-wing bat (Miniopterus schreibersii bassanii) in southeastern Australia. Chemosphere 64, 1464–1471 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kolkert, H., Andrew, R., Smith, R., Rader, R. & Reid, N. Insectivorous bats selectively source moths and eat mostly pest insects on dryland and irrigated cotton farms. Ecol. Evol. https://doi.org/10.1002/ece3.5901 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sherwin, H. A., Montgomery, W. I. & Lundy, M. G. The impact and implications of climate change for bats. Mammal Rev. 43, 171–182 (2013).Article 

    Google Scholar 
    O’Shea, T. J., Cryan, P. M., Hayman, D. T. S., Plowright, R. K. & Streicker, D. G. Multiple mortality events in bats: A global review. Mammal Rev. 46, 175–190 (2016).Article 

    Google Scholar 
    Mundinger, C., Scheuerlein, A. & Kerth, G. Long-term study shows that increasing body size in response to warmer summers is associated with a higher mortality risk in a long-lived bat species. Proc. R. Soc. B Biol. Sci. 288, 20210508 (2021).Article 

    Google Scholar 
    Adams, R. A. & Hayes, M. A. Assemblage-level analysis of sex-ratios in Coloradan bats in relation to climate variables: A model for future expectations. Glob. Ecol. Conserv. 14, e00379 (2018).Article 

    Google Scholar 
    Crichton, E. G., Seamark, R. F. & Krutzsch, P. H. The status of the corpus luteum during pregnancy in Miniopterus schreibersii (Chiroptera: Vespertilionidae) with emphasis on its role in developmental delay. Cell Tissue Res. 258, 183–201 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Olsen, I. C. The analysis of continuous mark-recapture data (Norwegian University of Science and Technology, 2006).
    Google Scholar 
    Barbour, A. B., Ponciano, J. M. & Lorenzen, K. Apparent survival estimation from continuous mark-recapture/resighting data. Methods Ecol. Evol. 4, 846–853 (2013).Article 

    Google Scholar 
    van Harten, E. et al. Recovery of southern bent-winged bats (Miniopterus orianae bassanii) after PIT-tagging and the use of surgical adhesive. Aust. Mammal. 42, 216–219 (2020).Article 

    Google Scholar 
    McDonald, T. L., Amstrup, S. C. & Manly, B. F. Tag loss can bias Jolly-Seber capture-recapture estimates. Wildl. Soc. Bull. 31, 814–822 (2003).
    Google Scholar 
    van Harten, E. et al. Low rates of PIT-tag loss in an insectivorous bat species. J. Wildl. Manag. 85, 1739–1743 (2021).Article 

    Google Scholar 
    Lebl, K. & Ruf, T. An easy way to reduce PIT-tag loss in rodents. Ecol. Res. 25, 251–253 (2010).Article 

    Google Scholar 
    Rigby, E. L., Aegerter, J., Brash, M. & Altringham, J. D. Impact of PIT tagging on recapture rates, body condition and reproductive success of wild Daubenton’s bats (Myotis daubentonii). Vet. Rec. 170, 101 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Locatelli, A. G., Ciuti, S., Presetnik, P., Toffoli, R. & Teeling, E. Long-term monitoring of the effects of weather and marking techniques on body condition in the Kuhl’s pipistrelle bat, Pipistrellus kuhlii. Acta Chiropterologica 21, 87–102 (2019).Article 

    Google Scholar 
    Paniw, M. et al. The myriad of complex demographic responses of terrestrial mammals to climate change and gaps of knowledge: A global analysis. J. Anim. Ecol. 90, 1398–1407 (2021).PubMed 
    Article 

    Google Scholar 
    Frick, W. F., Kingston, T. & Flanders, J. A review of the major threats and challenges to global bat conservation. Ann. N. Y. Acad. Sci. 1469, 5–25 (2020).PubMed 
    Article 

    Google Scholar 
    Brunet-Rossinni, A. K. & Wilkinson, G. S. Methods for age estimation and the study of senescence in bats. In Ecological and Behavioral Methods for the Study of Bats (eds Kunz, T. H. & Parsons, S.) 315–325 (Johns Hopkins University Press, 2009).
    Google Scholar 
    Churchill, S. Australian Bats (Allen and Unwin, 2008).
    Google Scholar 
    Laake, J. L. RMark: An R interface for analysis of capture-recapture data with MARK. 25 (2013).Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference (Springer, 2002). https://doi.org/10.1007/b97636.Book 
    MATH 

    Google Scholar 
    Caswell, H. Matrix population models. In Encyclopedia of Environmetrics (eds El-Shaarawi, A. H. & Piegorsch, W. W.) (Wiley, Berlin, 2006). https://doi.org/10.1002/9780470057339.vam006m.Chapter 

    Google Scholar 
    Dwyer, P. D. The breeding biology of Miniopterus schreibersii blepotis (Termminck) (Chiroptera) in north-eastern NSW. Aust. J. Zool. 11, 219–240 (1963).Article 

    Google Scholar 
    Richardson, E. G. The biology and evolution of the reproductive cycle of Miniopterus schreibersii and M. australis (Chiroptera: Vespertilionidae). J. Zool. 183, 353–375 (1977).Article 

    Google Scholar  More

  • in

    Understanding flammability and bark thickness in the genus Pinus using a phylogenetic approach

    Richardson, D.M., & Rundel, P.W. Ecology and biogeography of Pinus: An introduction. in Ecology and Biogeography of Pinus (Richardson, D.M. Ed.). 3–40. (Cambridge Press, 1998).Keeley, J. E. Ecology and evolution of pine life histories. Ann. For. Sci. 69, 445–453 (2012).Article 

    Google Scholar 
    Agee, J.K. Fire and pine ecosystems. in Ecology and Biogeography of Pinus (Richardson, D.M. Ed.). 193–217. (Cambridge Press, 1998).Keeley, J.E., & Zedler, P.H. Evolution of life histories in Pinus. in Ecology and Biogeography of Pinus (Richardson, D.M. Ed.). 219–251. (Cambridge Press, 1998).Pausas, J. G., Bradstock, R., Keith, D. A. & Keeley, J. E. Plant functional traits in relation to fire in crown-fire ecosystems. Ecology 85, 1085–1100 (2004).Article 

    Google Scholar 
    Hare, R. C. Contribution of bark to fire resistance of southern trees. J. For. 63, 248–251 (1965).
    Google Scholar 
    Jackson, J. F., Adams, D. C. & Jackson, U. B. Allometry of constitutive defense: A model and a comparative test with tree bark and fire regime. Am. Nat. 153, 614–632 (1999).PubMed 
    Article 

    Google Scholar 
    Stephens, S. L. & Libby, W. J. Anthropogenic fire and bark thickness in coastal and island pine populations from Alta and Baja California. J. Biogeogr. 33, 648–652 (2006).Article 

    Google Scholar 
    Chapman, H. H. Is the longleaf type a climax?. Ecology 13, 328–334 (1932).Article 

    Google Scholar 
    Pile, L. S., Wang, G. G., Knapp, B. O., Liu, G. & Yu, D. Comparing morphology and physiology of southeastern US Pinus seedlings: Implications for adaptation to surface fire regimes. Ann. For. Sci. 74, 68 (2017).Article 

    Google Scholar 
    Rodríguez-Trejo, D. A. & Fulé, P. Z. Fire ecology of Mexican pines and a fire management proposal. Int. J. Wildl. Fire 12, 23–37 (2003).Article 

    Google Scholar 
    Pausas, J. G. Bark thickness and fire regime. Funct. Ecol. 29, 315–327 (2015).Article 

    Google Scholar 
    Little, S. & Mergen, F. External and internal changes associated with basal-crook formation in pitch and shortleaf pines. For. Sci. 12, 268–275 (1966).
    Google Scholar 
    Kolström, T. & Kellomäki, S. Tree survival in wildfires. Silva Fenn. 27, 277–281 (1993).Article 

    Google Scholar 
    Schwilk, D. W. & Ackerly, D. D. Flammability and serotiny as strategies: Correlated evolution in pines. Oikos 94, 326–236 (2001).Article 

    Google Scholar 
    Reyes, O. & Casal, M. Effect of high temperatures on cone opening and on the release and viability of Pinus pinaster and P. radiata seeds in NW Spain. Ann. For. Sci. 59, 327–334 (2002).Article 

    Google Scholar 
    Pausas, J. G. & Keeley, J. E. Epicormic resprouting in fire-prone ecosystems. Trends Plant Sci. 22, 1008–1015 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fonda, R. W., Bellanger, L. A. & Burley, L. L. Burning characteristics of western conifer needles. Northwest Sci. 72, 1–9 (1998).
    Google Scholar 
    Fonda, R. W. Burning characteristics of needles from eight pine species. For. Sci. 47, 390–396 (2001).
    Google Scholar 
    Anderson, H. E. Forest fuel ignitability. Fire Tech. 6, 312–319 (1970).CAS 
    Article 

    Google Scholar 
    Martin, R.E., et al. Assessing the flammability of domestic and wildland vegetation. in Proceedings of the 12th Conference Fire and Forest Meteorology. Jekyll Island. 130–137. (1993)Varner, J. M., Kane, J. M., Kreye, J. K. & Engber, E. The flammability of forest and wildland litter: A synthesis. Curr. For. Rep. 1, 91–99 (2015).
    Google Scholar 
    Fernandes, P. M. & Cruz, M. G. Plant flammability experiments offer limited insight into vegetation–fire dynamics interactions. New Phytol. 194, 606–609 (2012).PubMed 
    Article 

    Google Scholar 
    Wenk, E. S., Wang, G. G. & Walker, J. L. Within-stand variation in understorey vegetation affects fire behaviour in longleaf pine xeric sandhills. Int. J. Wildl. Fire 20, 866–875 (2012).Article 

    Google Scholar 
    Whelan, A. W., Bigelow, S. W. & O’Brien, J. J. Overstory longleaf pines and hardwoods create diverse patterns of energy release and fire effects during prescribed fire. Front. For. Glob. Change. 4, 25 (2021).Article 

    Google Scholar 
    Mutch, R. W. Wildland fires and ecosystems—A hypothesis. Ecology 51, 1046–1051 (1970).Article 

    Google Scholar 
    Troumbis, A. S. & Trabaud, L. Some questions about flammability in fire ecology. Acta Oecol. 10, 167–175 (1989).
    Google Scholar 
    Midgley, J. J. Flammability is not selected for, it emerges. Aust. J. Bot. 61, 102–106 (2013).Article 

    Google Scholar 
    Snyder, J. R. The role of fire: Mutch ado about nothing?. Oikos 43, 404–405 (1984).Article 

    Google Scholar 
    Bond, W. J. & Midgley, J. J. Kill thy neighbour: An individualistic argument for theevolution of flammability. Oikos 73, 79–85 (1995).Article 

    Google Scholar 
    Gagnon, P. R. et al. Does pyrogenicity protect burning plants?. Ecology 91, 3481–3486 (2010).PubMed 
    Article 

    Google Scholar 
    Vines, R. G. Heat transfer through bark, and the resistance of trees to fire. Aust. J. Bot. 16, 499–514 (1968).Article 

    Google Scholar 
    Harmon, M. E. Survival of trees after low-intensity surface fires in Great Smoky Mountains National Park. Ecology 65, 796–802 (1984).Article 

    Google Scholar 
    Schwilk, D. W., Gaetani, M. S. & Poulos, H. M. Oak bark allometry and fire survival strategies in the Chihuahuan Desert Sky Islands, Texas, USA. PLoS ONE 8, e79285 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stevens, J., Kling, M., Schwilk, D., Varner, J. M. & Kane, J. M. Biogeography of fire regimes in western US conifer forests: a trait-based approach. Glob. Ecol. Biogeogr. 29, 944–955 (2020).Article 

    Google Scholar 
    Rosell, J. A. Bark thickness across the angiosperms: More than just fire. New Phytol. 211, 90–102 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kane, J. M., Varner, J. M. & Hiers, J. K. The burning characteristics of southeastern oaks: discriminating fire facilitators from fire impeders. For. Ecol. Manag. 256, 2039–2045 (2008).Article 

    Google Scholar 
    Engber, E. A. & Varner, J. M. Patterns of flammability of the California oaks: The role of leaf traits. Can. J. For. Res. 42, 1965–1975 (2012).Article 

    Google Scholar 
    Guyette, R. P., Stambaugh, M. C., Dey, D. C. & Muzika, R. Predicting fire frequency with chemistry and climate. Ecosystems 15, 322–335 (2012).Article 

    Google Scholar 
    Stambaugh, M.C., Varner, J.M., & Jackson, S.T. Biogeography: An interweave of climate, fire, and humans. in Ecological Restoration and Management of Longleaf Pine Forests (Kirkman, K., Jack, S. B. Eds.). 17–38. (CRC Press, 2017).Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).Article 

    Google Scholar 
    Schwilk, D. W. & Caprio, A. C. Scaling from leaf traits to fire behavior: community composition predicts fire severity in a temperate forest. J. Ecol. 99, 970–980 (2011).Article 

    Google Scholar 
    Ormeño, E. et al. The relationship between terpenes and flammability of leaf litter. For. Ecol. Manag. 257, 471–482 (2009).Article 

    Google Scholar 
    Mirov, N. T. The terpenes (in relation to the biology of genus Pinus). Ann. Rev. Biochem. 17, 521–540 (1948).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mitić, Z. S. et al. Needle terpenes as chemotaxonomic markers in Pinus: Subsections Pinus and Pinaster. Chem. Biodivers. 14, e1600453 (2017).Article 

    Google Scholar 
    Baradat, P. & Yazdani, R. Genetic expression for monoterpenes in clones of Pinus sylvestris grown on different sites. Scand. J. For. Res. 3, 25–36 (1987).Article 

    Google Scholar 
    Hanover, J. W. Applications of terpene analysis in forest genetics. New For. 6, 159–178 (1992).Article 

    Google Scholar 
    He, T., Pausas, J. G., Belcher, C. M., Schwilk, D. W. & Lamont, B. B. Fire-adapted traits of Pinus arose in the fiery Cretaceous. New Phytol. 194, 751–759 (2012).PubMed 
    Article 

    Google Scholar 
    Saladin, B. et al. Fossils matter: Improved estimates of divergence times in Pinus reveal older diversification. Evol. Biol. 17, 95 (2017).
    Google Scholar 
    Kreye, J. K. et al. Effects of solar heating on the moisture dynamics of forest floor litter in humid environments: Composition, structure, and position matter. Can. J. For. Res. 48, 1331–1342 (2018).Article 

    Google Scholar 
    Ganteaume, A., Jappiot, M., Curt, T., Lampin, C. & Borgniet, L. Flammability of litter sampled according to two different methods: Comparison of results in laboratory experiments. Int. J. Wildl. Fire 23, 1061–1075 (2014).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019). https://www.R-project.org/.Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).Article 

    Google Scholar 
    Orme, D., et al. Caper: Comparative Analyses of Phylogenetics and Evolution in R. Version 1.0.1. https://CRAN.R-project.org/package=caper. (2018).Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freckleton, R. P., Harvey, P. H. & Pagel, M. Phylogenetic analysis and comparative data: A test and review of evidence. Am. Nat. 160, 712–726 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Barton, K. MuMIn: Multi-Model Inference. R Package Version 1.43.6. https://CRAN.R-project.org/package=MuMIn. (2019).Little, E.L. Atlas of United States Trees. Vol. 1. Conifers and Important Hardwoods. 1–320. (Miscellaneous Publication 1146, USDA, Forest Service, 1971).Prasad, A.M. & Iverson, L.R. Little’s Range and FIA Importance Value Database for 135 Eastern US Tree Species. http://www.fs.fed.us/ne/delaware/4153/global/littlefia/index.html. (Northeastern Research Station, USDA Forest Service). More

  • in

    Risk factors for antibiotic-resistant bacteria colonisation in children with chronic complex conditions

    Meropol, S. B., Haupt, A. A. & Debanne, S. M. Incidence and outcomes of infections caused by multidrug-resistant Enterobacteriaceae in Children, 2007–2015. J. Pediatr. Infect. Dis. Soc. 7, 36–45 (2018).Article 

    Google Scholar 
    Moxon, C. A. & Paulus, S. Beta-lactamases in Enterobacteriaceae infections in children. J. Infect. 72, S41–S49 (2016).PubMed 
    Article 

    Google Scholar 
    Morrissey, I. et al. A review of ten years of the study for monitoring antimicrobial resistance trends (SMART) from 2002 to 2011. Pharmaceuticals 6, 1335–1346 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Junnila, J. et al. Changing epidemiology of methicillin-resistant Staphylococcus aureus in a low endemicity area—new challenges for MRSA control. Eur. J. Clin. Microbiol. Infect. Dis. 39, 2299–2307 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milstone, A. M. et al. Methicillin-resistant Staphylococcus aureus colonization and risk of subsequent infection in critically ill children: Importance of preventing nosocomial methicillin-resistant Staphylococcus aureus transmission. Clin. Infect. Dis. 53, 853–859 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lakhundi, S. & Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 31, e00020-18 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schlesinger, Y. et al. Methicillin-resistant nasal colonization in children in Jerusalem: Community vs. chronic care institutions. Isr. Med. Assoc. J. 5, 847–851 (2003).PubMed 

    Google Scholar 
    Liang, B. et al. Active surveillance, drug resistance, and genotypic profiling of Staphylococcus aureus among school-age children in China. Front. Med. 8, 701494 (2021).Article 

    Google Scholar 
    Del Rosal, T. et al. Staphylococcus aureus nasal colonization in Spanish children. The COSACO Nationwide Surveillance Study. Infect. Drug Resist. 13, 4643–4651 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Feudtner, C., Feinstein, J. A., Zhong, W., Hall, M. & Dai, D. Pediatric complex chronic conditions classification system version 2: Updated for ICD-10 and complex medical technology dependence and transplantation. BMC Pediatr. 14, 199 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Climent Alcalá, F. J., García Fernández de Villalta, M., Escosa García, L., Rodríguez Alonso, A. & Albajara Velasco, L. A. Unidad de niños con patología crónica compleja. Un modelo necesario en nuestros hospitales. Anales de Pediatría 88, 12–18 (2018).PubMed 
    Article 

    Google Scholar 
    Gesualdo, F. et al. Methicillin-resistant Staphylococcus aureus nasal colonization in a department of pediatrics: A cross-sectional study. Ital. J. Pediatr. 40, 3 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yamamoto, M. et al. Effective surveillance to identify the surgical patients carrying methicillin-resistant Staphylococcus aureus on admission in a pediatric ward. Osaka City Med. J. 62, 1–9 (2016).PubMed 

    Google Scholar 
    Lukac, P. J., Bonomo, R. A. & Logan, L. K. Extended-spectrum-lactamase-producing Enterobacteriaceae in children: Old foe, emerging threat. Clin. Infect. Dis. https://doi.org/10.1093/cid/civ020 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fedler, K. A., Biedenbach, D. J. & Jones, R. N. Assessment of pathogen frequency and resistance patterns among pediatric patient isolates: Report from the 2004 SENTRY Antimicrobial Surveillance Program on 3 continents. Diagn. Microbiol. Infect. Dis. 56, 427–436 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Caselli, D. et al. Incidence of colonization and bloodstream infection with carbapenem-resistant Enterobacteriaceae in children receiving antineoplastic chemotherapy in Italy. Infect. Dis. 48, 152–155 (2016).Article 

    Google Scholar 
    Logan, L. K. et al. Multidrug- and Carbapenem-Resistant Pseudomonas aeruginosa in Children, United States, 1999–2012. JPIDSJ piw064 (2016) https://doi.org/10.1093/jpids/piw064.Flokas, M. E., Alevizakos, M., Shehadeh, F., Andreatos, N. & Mylonakis, E. Extended-spectrum β-lactamase-producing Enterobacteriaceae colonisation in long-term care facilities: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 50, 649–656 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bharadwaj, R. et al. Drug-resistant Enterobacteriaceae colonization is associated with healthcare utilization and antimicrobial use among inpatients in Pune, India. BMC Infect. Dis. 18, 504 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Logan, L. K. Carbapenem-resistant Enterobacteriaceae: An emerging problem in children. Clin. Infect. Dis. 55, 852–859 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Badal, R. E. et al. Etiology, extended-spectrum β-lactamase rates and antimicrobial susceptibility of gram-negative bacilli causing intra-abdominal infections in patients in general pediatric and pediatric intensive care units—global data from the Study for Monitoring Antimicrobial Resistance Trends 2008 to 2010. Pediatr. Infect. Dis. J. 32, 636–640 (2013).PubMed 
    Article 

    Google Scholar 
    Wang, Q. et al. Risk factors and clinical outcomes for carbapenem-resistant Enterobacteriaceae nosocomial infections. Eur. J. Clin. Microbiol. Infect. Dis. 35, 1679–1689 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sahbudak Bal, Z. et al. The prospective evaluation of risk factors and clinical influence of carbapenem resistance in children with gram-negative bacteria infection. Am. J. Infect. Control 46, 147–153 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simon, T. D. et al. Pediatric medical complexity algorithm: A new method to stratify children by medical complexity. Pediatrics 133, e1647–e1654 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Román, F. et al. Characterization of methicillin-resistant Staphylococcus aureus strains colonizing the nostrils of Spanish children. MicrobiologyOpen 10, e1235 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    EUCAST. European committee on antimicrobial susceptibility testing breakpoint tables for interpretation of MICs and zone diameters. The European Committee on Antimicrobial Susceptibility Testing. (2018).Oteo, J. et al. Prospective multicenter study of carbapenemase-producing Enterobacteriaceae from 83 hospitals in Spain reveals high in vitro susceptibility to colistin and meropenem. Antimicrob. Agents Chemother. 59, 3406–3412 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maseda, E. et al. Risk factors for colonization by carbapenemase-producing enterobacteria at admission to a Surgical ICU: A retrospective study. Enferm. Infecc. Microbiol. Clin. 35, 333–337 (2017).PubMed 
    Article 

    Google Scholar 
    Bassetti, M., Nicco, E. & Mikulska, M. Why is community-associated MRSA spreading across the world and how will it change clinical practice?. Int. J. Antimicrob. Agents 34, S15–S19 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    El Cheikh, M. R., Barbosa, J. M., Caixêta, J. A. S. & Avelino, M. A. G. Microbiology of tracheal secretions: What to expect with children and adolescents with tracheostomies. Int. Arch. Otorhinolaryngol. 22, 50–54 (2018).PubMed 
    Article 

    Google Scholar 
    González-Del Castillo, J. et al. BAHNG score: Predictive model for detection of subjects with the oropharynx colonized by uncommon microorganisms. Rev. Esp Quimioter. 30, 422–428 (2017).PubMed 

    Google Scholar 
    Hu, X. et al. Risk factors for methicillin-resistant Staphylococcus aureus colonization and infection in patients with human immunodeficiency virus infection: A systematic review and meta-analysis. J. Int. Med. Res. 50, 3000605211063019 (2022).CAS 
    PubMed 

    Google Scholar 
    Gleeson, A., Larkin, P., Walsh, C. & O’Sullivan, N. Methicillin-resistant Staphylococcus aureus: Prevalence, incidence, risk factors, and effects on survival of patients in a specialist palliative care unit: A prospective observational study. Palliat. Med. 30, 374–381 (2016).PubMed 
    Article 

    Google Scholar 
    Hogardt, M. et al. Current prevalence of multidrug-resistant organisms in long-term care facilities in the Rhine-Main district, Germany, 2013. Euro Surveill. 20, 21171 (2015).PubMed 
    Article 

    Google Scholar 
    Warren, D. K. et al. Epidemiology of methicillin-resistant Staphylococcus aureus colonization in a surgical intensive care unit. Infect. Control Hosp. Epidemiol. 27, 1032–1040 (2006).PubMed 
    Article 

    Google Scholar 
    Folgori, L. et al. Healthcare-associated infections in pediatric and neonatal intensive care units: Impact of underlying risk factors and antimicrobial resistance on 30-day case-fatality in Italy and Brazil. Infect. Control Hosp. Epidemiol. 37, 1302–1309 (2016).PubMed 
    Article 

    Google Scholar 
    Béranger, A. et al. Early bacterial infections after pediatric liver transplantation in the era of multidrug-resistant bacteria: Nine-year single-center retrospective experience. Pediatr. Infect. Dis. J. 39, e169–e175 (2020).PubMed 
    Article 

    Google Scholar 
    Bouras, D. et al. Staphylococcus aureus osteoarticular infections in children: An 8-year review of molecular microbiology, antibiotic resistance and clinical characteristics. J. Med. Microbiol. 67, 1753–1760 (2018).MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodriguez, M., Hogan, P. G., Krauss, M., Warren, D. K. & Fritz, S. A. Measurement and impact of Staphylococcus aureus colonization pressure in households. J. Pediatr. Infect. Dis. Soc. 2, 147–154 (2013).Article 

    Google Scholar 
    Messina, N. L., Williamson, D. A., Robins-Browne, R., Bryant, P. A. & Curtis, N. Risk factors for carriage of antibiotic-resistant bacteria in healthy children in the community: A systematic review. Pediatr. Infect. Dis. J. 39, 397–405 (2020).PubMed 
    Article 

    Google Scholar 
    Dualleh, N. et al. Colonization with multiresistant bacteria in acute hospital care: The association of prior antibiotic consumption as a risk factor. J. Antimicrob. Chemother. 75, 3675–3681 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Daskalaki, M. et al. Panton-Valentine leukocidin-positive Staphylococcus aureus skin and soft tissue infections among children in an emergency department in Madrid, Spain. Clin. Microbiol. Infect. 16, 74–77 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aguilera-Alonso, D., Escosa-García, L., Saavedra-Lozano, J., Cercenado, E. & Baquero-Artigao, F. Carbapenem-resistant gram-negative bacterial infections in children. Antimicrob. Agents Chemother. 64, e02183-e2219 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phichaphop, C. et al. High prevalence of multidrug-resistant gram-negative bacterial infection following pediatric liver transplantation. Medicine 99, e23169 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tacconelli, E. et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin. Microbiol. Infect. 20, 1–55 (2014).PubMed 
    Article 

    Google Scholar 
    McConville, T. H., Sullivan, S. B., Gomez-Simmonds, A., Whittier, S. & Uhlemann, A.-C. Carbapenem-resistant Enterobacteriaceae colonization (CRE) and subsequent risk of infection and 90-day mortality in critically ill patients, an observational study. PLoS ONE 12, e0186195 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tamma, P. D. et al. The likelihood of developing a carbapenem-resistant Enterobacteriaceae Infection during a hospital stay. Antimicrob. Agents Chemother. 63, e00757-e819 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Detsis, M., Karanika, S. & Mylonakis, E. ICU acquisition rate, risk factors, and clinical significance of digestive tract colonization with extended-spectrum beta-lactamase-producing Enterobacteriaceae: A systematic review and meta-analysis. Crit. Care Med. 45, 705–714 (2017).PubMed 
    Article 

    Google Scholar  More

  • in

    Molecular confirmation of the hybrid origin of Sparganium longifolium (Typhaceae)

    The haplotype networks, PCoA analysis and STRUCTURE analysis based on the six nuclear loci confirm that S. longifolium is a hybrid between S. emersum and S. gramineum, providing molecular support for previous morphological analyses5. Furthermore, all individuals with intermediate admixture coefficient (Fig. 2b) and private haplotypes only present in one out of six nuclear loci (Fig. 1) suggest that S. longifolium is most likely a F1 hybrid. We thus hypothesized that S. emersum and S. gramineum could likely maintain their species boundary through the post-zygote reproductive isolation mechanism of F1 generation sterility. This hypothesis is possible based on the observations from hybrids in European Russia. The pollen viability was checked in S. longifolium samples from Vysokovskoe Lake and Sabro Lake, and the vast majority of checked pollens were sterile5. In addition, flowering plants of S. longifolium often do not form seeds, or the seeds are puny and significantly inferior to normal seeds in size5. However, the hypothesis is only based on our limited sampling, which is contrary to the conclusion inferred from morphological characteristics that it is fertile and may backcross with parental species1. Further studies with extensive sampling are necessary to test our hypothesis.The chloroplast DNA fragment trnH-psbA was used to infer the direction of hybridization between S. emersum and S. gramineum because chloroplast DNA is maternal inheritance in Sparganium3,4. The hybrid S. longifolium shared haplotypes with S. emersum and S. gramineum simultaneously (Fig. 1). This finding clearly indicates that bidirectional hybridization exists between S. emersum and S. gramineum. At the same time, the different frequency of these two haplotypes in the hybrid (H1, 19.1% vs. H2, 80.9%) means that the direction of hybridization is asymmetric. A variety of factors can lead to asymmetry in natural hybridization, such as flowering time, preference of pollinators, quality and quantity of pollen, cross incompatibility and the abundance of parent species7,8. Rare species usually act as maternal species relative to abundant species9,10. S. gramineum is confined to oligotrophic lakes and its abundance is obviously lower than that of S. emersum1,11. The relatively scarcity combined with the ecology of S. gramineum make it more often act as maternal species when hybridizing with S. emersum.As described by5, the morphological diversification of S. longifolium was also observed in this study. For example, individuals of S. longifolium with emergent and floating-leaved life forms occur concurrently in Zaozer’ye Lake (Supplementary Fig. S2). However, all individuals had the same haplotype H2 as S. gramineum (Fig. 1), suggesting that the direction of hybridization do not determine life form of S. longifolium. In addition, all individuals of S. longifolium sampled here are likely F1 hybrid. Their variable phenotypes could not be associated with traits segregation due to F2 generation or backcross. Detailed ecological investigation combining with research at the genomic level are essential to find out the potential factors leading to morphological diversification of S. longifolium.Here, using sequences of six nuclear loci and one chloroplast DNA fragment, we confirmed that S. longifolium is the hybrid between S. emersum and S. gramineum. The natural hybridization between S. emersum and S. gramineum is bidirectional but the latter mainly acts as maternal species. We also found that all samples of S. longifolium were F1 generations, indicating that S. emersum and S. gramineum could maintain their species boundary through the post-zygote reproductive isolation mechanism of F1 generation sterility. More

  • in

    Invasions of an obligate asexual daphnid species support the nearly neutral theory

    Miyata, T., Miyazawa, S. & Yasunaga, T. Two types of amino acid substitutions in protein evolution. J. Mol. Evol. 12, 219–236 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, W.-H., Wu, C.-I. & Luo, C.-C. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol. Biol. Evol. 2, 150–174 (1985).PubMed 

    Google Scholar 
    Bielawski, J. P. & Yang, Z. Positive and negative selection in the DAZ gene family. Mol. Biol. Evol. 18, 523–529 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ohta, T. Slightly deleterious mutant substitutions in evolution. Nature 246, 96–98 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ohta, T. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Evol. Syst. 23, 263–286 (1992).Article 

    Google Scholar 
    Johnson, K. P. & Seger, J. Elevated rates of nonsynonymous substitution in island birds. Mol. Biol. Evol. 18, 874–881 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Woolfit, M. & Bromham, L. Population size and molecular evolution on islands. Proc. Biol. Sci. 272, 2277–2282 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ross, L., Hardy, N. B., Okusu, A. & Normark, B. B. Large population size predicts the distribution of asexuality in scale insects. Evolution 67, 196–206 (2013).PubMed 
    Article 

    Google Scholar 
    Weber, C. C., Nabholz, B., Romiguier, J. & Ellegren, H. Kr/Kc but not dN/dS correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. Genome Biol. 15, 542 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brandt, A. et al. Effective purifying selection in ancient asexual oribatid mites. Nat. Commun. 8, 873 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Figuet, E. et al. Life history traits, protein evolution, and the nearly neutral theory in amniotes. Mol. Biol. Evol. 33(6), 1517–1527 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Saclier, N. et al. Life history traits impact the nuclear rate of substitution but not the mitochondrial rate in isopods. Mol. Biol. Evol. 35, 2900–2912 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hebert, P. D. The Daphnia of North America: An Illustrated Fauna (on CD-ROM) (CyberNatural Software, Guelph, 1995).
    Google Scholar 
    Colbourne, J. K. et al. Phylogenetics and evolution of a circumarctic species complex (Cladocera: Daphnia pulex). Biol. J. Linn. Soc. 65, 347–365 (1998).
    Google Scholar 
    Crease, T. J., Omilian, A. R., Costanzo, K. S. & Taylor, D. J. Transcontinental phylogeography of the Daphnia pulex species complex. PLoS ONE 7, e46620 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mergeay, J., Verschuren, D. & De Meester, L. Cryptic invasion and dispersal of an American Daphnia in East Africa. Limnol. Oceanogr. 50, 1278–1283 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Ma, X. et al. Lineage diversity and reproductive modes of the Daphnia pulex group in Chinese lakes and reservoirs. Mol. Phylogenet. Evol. 130, 424–433 (2019).PubMed 
    Article 

    Google Scholar 
    So, M. et al. Invasion and molecular evolution of Daphnia pulex in Japan. Limnol. Oceanogr. 60, 1129–1138 (2015).ADS 
    Article 

    Google Scholar 
    Duggan, I. C. et al. Identifying invertebrate invasions using morphological and molecular analyses: North American Daphnia ‘pulex’ in New Zealand fresh waters. Aquat. Invasions 7, 585–590 (2012).Article 

    Google Scholar 
    Ye, Z. et al. The rapid, mass invasion of New Zealand by North American Daphnia “pulex”. Limnol. Oceanogr. 66, 2673–2683 (2021).ADS 
    Article 

    Google Scholar 
    Paland, S., Colbourne, J. K. & Lynch, M. Evolutionary history of contagious asexuality in Daphnia pulex. Evolution 59, 800–813 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 106, 2–9 (1964).CAS 
    PubMed 
    Article 

    Google Scholar 
    Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paland, S. & Lynch, M. Transitions to asexuality result in excess amino acid substitutions. Science 311, 990–992 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnson, S. G. & Howard, R. S. Contrasting patterns of synonymous and nonsynonymous sequence evolution in asexual and sexual freshwater snail lineages. Evolution 61, 2728–2735 (2007).PubMed 
    Article 

    Google Scholar 
    Neiman, M. et al. Accelerated mutation accumulation in asexual lineages of a freshwater snail. Mol. Biol. Evol. 27, 954–963 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henry, L., Schwander, T. & Crespi, B. J. Deleterious mutation accumulation in asexual Timema stick insects. Mol. Biol. Evol. 29, 401–408 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tucker, A. E. et al. Population-genomic insights into the evolutionary origin and fate of obligately asexual Daphnia pulex. Proc. Natl. Acad. Sci. 110, 15740–15745 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colbourne, J. K. et al. The ecoresponsive genome of Daphnia pulex. Science 331, 555–561 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ye, Z. et al. A new reference genome assembly for the microcrustacean Daphnia pulex. G3 (Bethesda) 7, 1405–1416 (2017).CAS 
    Article 

    Google Scholar 
    Keith, N. et al. High mutational rates of large-scale duplication and deletion in Daphnia pulex. Genome Res. 26, 60–69 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall, D. J. An experimental approach to the dynamics of a natural population of Daphnia galeata mendotae. Ecology 45, 94–112 (1964).Article 

    Google Scholar 
    McCauley, E., Murdoch, W. W. & Nisbet, R. M. Growth, reproduction, and mortality of Daphnia pulex Leydig: Life at low food. Ecology 4, 505–514 (1990).
    Google Scholar 
    Xu, S. et al. High mutation rates in the mitochondrial genomes of Daphnia pulex. Mol. Biol. Evol. 29, 763–769 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zheng, Y., Peng, R., Kuro-o, M. & Zeng, X. Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: A case study of salamanders (Order Caudata). Mol. Biol. Evol. 28, 2521–2535 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zaret, T. M. Predation and Freshwater Communities (Yale University Press, New Haven, 1980).
    Google Scholar 
    Lynch, M. Predation, competition, and zooplankton community structure: An experimental study. Limnol. Oceanogr. 24, 253–272 (1979).ADS 
    Article 

    Google Scholar 
    Mills, E. L. & Forney, J. L. Impact on Daphnia pulex of predation by young yellow perch in Oneida Lake, New York. Trans. Am. Fish. Soc. 112(2A), 154–161 (1983).Article 

    Google Scholar 
    Craddock, D. R. Effects of increased water temperature on Daphnia pulex. Fish. Bull. 74, 403–408 (1976).
    Google Scholar 
    Maruoka, N. & Urabe, J. Inter and intraspecific competitive abilities and the distribution ranges of two Daphnia species in Eurasian continental islands. Popul. Ecol. 62, 353–363 (2020).Article 

    Google Scholar 
    Dodson, S. I. & Hanazato, T. Commentary on effects of anthropogenic and natural organic chemicals on development, swimming behavior, and reproduction of Daphnia, a key member of aquatic ecosystems. Environ. Health Perspect. 103(Suppl 4), 7–11 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Claska, M. E. & Gilbert, J. J. The effect of temperature on the response of Daphnia to toxic cyanobacteria. Freshw. Biol. 39, 221–232 (1998).Article 

    Google Scholar 
    Bast, J. et al. Consequences of asexuality in natural populations: Insights from stick insects. Mol. Biol. Evol. 35, 1668–1677 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hartfield, M. Evolutionary genetic consequences of facultative sex and outcrossing. J Evol Biol 29, 5–22 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hörandl, E. et al. Genome evolution of asexual organisms and the paradox of sex in eukaryotes. In Evolutionary Biology—A Transdisciplinary Approach (ed. Pontarotti, P.) (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-57246-4_7.Chapter 

    Google Scholar 
    Lynch, M., Bürger, R., Butcher, D. & Gabriel, W. The mutational meltdown in asexual populations. J. Hered. 84, 339–344 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gordo, I. & Charlesworth, B. The degeneration of asexual haploid populations and the speed of Muller’s ratchet. Genetics 154, 1379–1387 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).ADS 
    Article 

    Google Scholar 
    McDonald, C. P., Rover, J. A., Stets, E. G. & Striegl, R. G. The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of global lake extent. Limnol. Oceanogr. 57, 597–606 (2012).ADS 
    Article 

    Google Scholar 
    De Meester, L., Góme, A., Okamura, B. & Schwenk, K. The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecol. 23, 121–135 (2002).ADS 
    Article 

    Google Scholar 
    Fukami, T., Bezemer, T. M., Mortimer, S. R. & Van Der Putten, W. H. Species divergence and trait convergence in experimental plant community assembly. Ecol. Lett. 8, 1283–1290 (2005).Article 

    Google Scholar 
    Makino, T. & Kawata, M. Invasive invertebrates associated with highly duplicated gene content. Mol. Ecol. 28, 1652–1663 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kondrashov, F. A. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc. R. Soc. Lond. B Biol. Sci. 279, 5048–5057 (2012).
    Google Scholar 
    Barrick, J. E. & Lenski, R. E. Genome dynamics during experimental evolution. Nat. Rev. Genet. 14, 827–839 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rocha, E. P. C. Neutral theory, microbial practice: Challenges in bacterial population genetics. Mol. Biol. Evol. 35, 1338–1347 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tanabe, A. S. Kakusan4 and Aminosan: Two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol. Ecol. Resour. 11, 914–921 (2011).PubMed 
    Article 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tian, X., Ohtsuki, H. & Urabe, J. Evolution of asexual Daphnia pulex in Japan: Variations and covariations of the digestive, morphological and life history traits. BMC Evol. Biol. 19, 122 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, Y. et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2019).Article 
    CAS 

    Google Scholar 
    Lee, T. H. et al. SNPhylo: A pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15, 162 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019). https://www.R-project.org/ More