More stories

  • in

    The effect of climate variability in the efficacy of the entomopathogenic fungus Metarhizium acridum against the desert locust Schistocerca gregaria

    Biological control in IPM systems in Africa. (CABI, 2002). https://doi.org/10.1079/9780851996394.0000Kvakkestad, V., Sundbye, A., Gwynn, R. & Klingen, I. Authorization of microbial plant protection products in the Scandinavian countries: A comparative analysis. Environ. Sci. Policy 106, 115–124 (2020).Article 

    Google Scholar 
    Barzman, M. et al. Eight principles of integrated pest management. Agron. Sustain. Dev. 35, 1199–1215 (2015).Article 

    Google Scholar 
    Popp, J., Pető, K. & Nagy, J. Pesticide productivity and food security. A review. Agron. Sustain. Dev. 33, 243–255 (2013).Article 

    Google Scholar 
    Bale, J., van Lenteren, J. & Bigler, F. Biological control and sustainable food production. Philos. Trans. R. Soc. B Biol. Sci. 363, 761–776 (2008).CAS 
    Article 

    Google Scholar 
    Vacante, V. & Bonsignore, C. P. Natural enemies and pest control. In Handbook of Pest Management in Organic Farming 60–77 (CABI, 2018). https://doi.org/10.1079/9781780644998.0060Eilenberg, J., Hajek, A. & Lomer, C. Suggestions for unifying the terminology in biological control. Biocontrol 46, 387–400 (2001).Article 

    Google Scholar 
    Lacey, L. A. et al. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 132, 1–41 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hatting, J. L., Moore, S. D. & Malan, A. P. Microbial control of phytophagous invertebrate pests in South Africa: Current status and future prospects. J. Invertebr. Pathol. 165, 54–66 (2019).PubMed 
    Article 

    Google Scholar 
    Karimi, S., Askari Seyahooei, M., Izadi, H., Bagheri, A. & Khodaygan, P. Effect of arsenophonus endosymbiont elimination on fitness of the date palm hopper, ommatissus lybicus (Hemiptera: Tropiduchidae). Environ. Entomol. 48, 614–622 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kumar, K. K. et al. Microbial biopesticides for insect pest management in India: Current status and future prospects. J. Invertebr. Pathol. 165, 74–81 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mascarin, G. M. et al. Current status and perspectives of fungal entomopathogens used for microbial control of arthropod pests in Brazil. J. Invertebr. Pathol. 165, 46–53 (2019).PubMed 
    Article 

    Google Scholar 
    Shapiro-Ilan, D. I., Bruck, D. J. & Lacey, L. A. Principles of epizootiology and microbial control. Insect Pathol. https://doi.org/10.1016/B978-0-12-384984-7.00003-8 (2012).Article 

    Google Scholar 
    Hawkins, B. A. & Cornell, H. V. Theoretical Approaches to Biological Control. https://doi.org/10.1017/CBO9780511542077 (Cambridge University Press, 2009).Tonnang, H. E. Z., Nedorezov, L. V., Ochanda, H., Owino, J. & Löhr, B. Assessing the impact of biological control of Plutella xylostella through the application of Lotka—Volterra model. Ecol. Model. 220, 60–70 (2009).Article 

    Google Scholar 
    Hesketh, H., Roy, H. E., Eilenberg, J., Pell, J. K. & Hails, R. S. Challenges in modelling complexity of fungal entomopathogens in semi-natural populations of insects. Biocontrol 55, 55–73 (2010).Article 

    Google Scholar 
    Fuxa, J. R. & Tanada, Y. Epizootiology of Insect Diseases (Wiley, 1987).
    Google Scholar 
    Lacey, L. A. Manual of Techniques in Insect Pathology. Manual of Techniques in Insect Pathology (Academic, 1997). https://doi.org/10.1016/b978-0-12-432555-5.x5000-3.Book 

    Google Scholar 
    Lomer, C. J., Bateman, R. P., Johnson, D. L., Langewald, J. & Thomas, M. Biological control of locusts and grasshoppers. Annu. Rev. Entomol. 46, 667–702 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arthurs, S. & Thomas, M. B. Effects of a mycoinsecticide on feeding and fecundity of the brown locust Locustana pardalina. Biocontrol Sci. Technol. 10, 321–329 (2000).Article 

    Google Scholar 
    Jiang, W. et al. Effects of the entomopathogenic fungus Metarhizium anisopliae on the mortality and immune response of Locusta migratoria. Insects 11, 36 (2020).Article 

    Google Scholar 
    Thomas, M. B. & Blanford, S. Thermal biology in insect-parasite interactions. Trends Ecol. Evol. 18, 344–350 (2003).Article 

    Google Scholar 
    Douthwaite, M. B. Development and Commercialization of the Green Muscle Biopesticide 21 (2001).Douthwaite, B., Langewald, J., & Harris, J. Development and commercialization of the Green Muscle biopesticide. (International Institute of Tropical Agriculture, 2002).CABI. Green Muscle providing strength against devastating locusts in the horn of Africa—CABI.org. CABI.org https://www.cabi.org/news-article/green-muscle-providing-strength-against-devastating-locusts-in-the-horn-of-africa/ (2020).Geoff, G. & Steve, W. Biological Control (Springer, 1996). https://doi.org/10.1007/978-1-4613-1157-7.Book 

    Google Scholar 
    Fargues, J., Ouedraogo, A., Goettel, M. S. & Lomer, C. J. Effects of temperature, humidity and inoculation method on susceptibility of Schistocerca gregaria to Metarhizium flavoviride. Biocontrol Sci. Technol. 7, 345–356 (1997).Article 

    Google Scholar 
    Aragón, P., Coca-Abia, M. M., Llorente, V. & Lobo, J. M. Estimation of climatic favourable areas for locust outbreaks in Spain: Integrating species’ presence records and spatial information on outbreaks. J. Appl. Entomol. 137, 610–623 (2013).Article 

    Google Scholar 
    Arthurs, S. & Thomas, M. B. Effect of dose, pre-mortem host incubation temperature and thermal behaviour on host mortality, mycosis and sporulation of Metarhizium anisopliae var. acridum in Schistocerca gregaria. Biocontrol Sci. Technol. 11, 411–420 (2001).Article 

    Google Scholar 
    van der Valk, H. Review of the efficacy of Metarhizium anisopliae var. acridum. FAO—U.N. Publ. (2007).Klass, J. I., Blanford, S. & Thomas, M. B. Development of a model for evaluating the effects of environmental temperature and thermal behaviour on biological control of locusts and grasshoppers using pathogens. Agric. For. Entomol. 9, 189–199 (2007).Article 

    Google Scholar 
    Devi, K. U., Sridevi, V., Mohan, C. M. & Padmavathi, J. Effect of high temperature and water stress on in vitro germination and growth in isolates of the entomopathogenic fungus Beauveria bassiana (Bals.) Vuillemin. J. Invertebr. Pathol. 88, 181–189 (2005).PubMed 
    Article 

    Google Scholar 
    Dimbi, S., Maniania, N. K., Lux, S. A. & Mueke, J. M. Effect of constant temperatures on germination, radial growth and virulence of Metarhizium anisopliae to three species of African tephritid fruit flies. Biocontrol 49, 83–94 (2004).Article 

    Google Scholar 
    Ekesi, S., Maniania, N. K. & Ampong-Nyarko, K. Effect of temperature on germination, radial growth and virulence of Metarhizium anisopliae and Beauveria bassiana on Megalurothrips sjostedti. Biocontrol Sci. Technol. 9, 177–185 (1999).Article 

    Google Scholar 
    Thomas, M. B. & Jenkins, N. E. Effects of temperature on growth of Metarhizium flavoviride and virulence to the variegated grasshopper Zonocerus variegatus. Mycol. Res. 101, 1469–1474 (1997).Article 

    Google Scholar 
    Klass, J. I., Blanford, S. & Thomas, M. B. Use of a geographic information system to explore spatial variation in pathogen virulence and the implications for biological control of locusts and grasshoppers. Agric. For. Entomol. 9, 201–208 (2007).Article 

    Google Scholar 
    Castro, T., Moral, R., Demétrio, C., Delalibera, I. & Klingen, I. Prediction of sporulation and germination by the spider mite pathogenic fungus Neozygites floridana (Neozygitomycetes: Neozygitales: Neozygitaceae) based on temperature, humidity and time. Insects 9, 69 (2018).PubMed Central 
    Article 

    Google Scholar 
    Hajek, A. E., Larkin, T. S., Carruthers, R. I. & Soper, R. S. Modelling the dynamics of Entomophaga maimaga (Zygomycetes: Entomophtorales) epizootics in gypsy moth (Lepidoptera: Lymantridae) populations. Environ. Entomol. 22, 1172–1187 (1993).Article 

    Google Scholar 
    Gul, H. T., Saeed, S. & Khan, F. A. Z. Entomopathogenic fungi as effective insect pest management tactic: A review. Appl. Sci. Bus. Econ. 1, 10–18 (2014).
    Google Scholar 
    Davidson, G. et al. Study of temperature—Growth interactions of entomopathogenic fungi with potential for control of Varroa destructor (Acari: Mesostigmata) using a nonlinear model of poikilotherm development. J. Appl. Microbiol. 94, 816–825 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hallsworth, J. E. & Magan, N. Water and temperature relations of growth of the entomogenous fungi Beauveria bassiana, Metarhizium anisopliae, and Paecilomyces farinosus. J. Invertebr. Pathol. 74, 261–266 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fargues, J. et al. Climatic factors on entomopathogenic hyphomycetes infection of Trialeurodes vaporariorum (Homoptera: Aleyrodidae) in Mediterranean glasshouse tomato. Biol. Control 28, 320–331 (2003).Article 

    Google Scholar 
    Boulard, T. et al. Effect of greenhouse ventilation on humidity of inside air and in leaf boundary-layer. Agric. For. Meteorol. 125, 225–239 (2004).ADS 
    Article 

    Google Scholar 
    Mishra, S., Kumar, P. & Malik, A. Effect of temperature and humidity on pathogenicity of native Beauveria bassiana isolate against Musca domestica L. J. Parasit. Dis. 39, 697–704 (2015).PubMed 
    Article 

    Google Scholar 
    Klingen, I., Westrum, K. & Meyling, N. V. Effect of Norwegian entomopathogenic fungal isolates against Otiorhynchus sulcatus larvae at low temperatures and persistence in strawberry rhizospheres. Biol. Control 81, 1–7 (2015).Article 

    Google Scholar 
    Thaochan, N., Benarlee, R., Shekhar Prabhakar, C. & Hu, Q. Impact of temperature and relative humidity on effectiveness of Metarhizium guizhouense PSUM02 against longkong bark eating caterpillar Cossus chloratus Swinhoe under laboratory and field conditions. J. Asia. Pac. Entomol. 23, 285–290 (2020).Article 

    Google Scholar 
    Kryukov, V. et al. Ecological preferences of Metarhizium spp. from Russia and neighboring territories and their activity against Colorado potato beetle larvae. J. Invertebr. Pathol. 149, 1–7 (2017).PubMed 
    Article 

    Google Scholar 
    Saldarriaga Ausique, J. J., D’Alessandro, C. P., Conceschi, M. R., Mascarin, G. M. & Delalibera Júnior, I. Efficacy of entomopathogenic fungi against adult Diaphorina citri from laboratory to field applications. J. Pest Sci. 2017 903 90, 947–960 (2017).
    Google Scholar 
    Dwyer, G. Density dependence and spatial structure in the dynamics of insect pathogens. Am. Nat. 143, 533–562 (1994).ADS 
    Article 

    Google Scholar 
    Dwyer, G., Elkinton, J. & Hajek, A. Spatial scale and the spread of a fungal pathogen of gypsy moth. Am. Nat. 152, 485–494 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Knudsen, G. R. & Schotzko, D. J. Spatial simulation of epizootics caused by Beauveria bassiana in Russian wheat aphid populations. Biol. Control 16, 318–326 (1999).Article 

    Google Scholar 
    Weseloh, R. M. Effect of conidial dispersal of the fungal pathogen Entomophaga maimaiga (Zygomycetes: Entomophthorales) on survival of its gypsy moth (Lepidoptera: Lymantriidae) host. Biol. Control 29, 138–144 (2004).Article 

    Google Scholar 
    Meynard, C. N. et al. Climate-driven geographic distribution of the desert locust during recession periods: Subspecies’ niche differentiation and relative risks under scenarios of climate change. Glob. Chang. Biol. 23, 4739–4749 (2017).ADS 
    PubMed 
    Article 

    Google Scholar 
    Anderson, R. M. & May, R. M. Infectious diseases of humans: Dynamics and control. Aust. J. Public Health 16, 208–212 (1991).
    Google Scholar 
    Cáceres, C. E. et al. Complex Daphnia interactions with parasites and competitors. Math. Biosci. 258, 148–161 (2014).MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Briggs, C. J. & Godfray, H. C. J. The dynamics of insect-pathogen interactions stage-structured populations c. J. Am. Nat. 145, 855–887 (1995).Article 

    Google Scholar 
    Rapti, Z. & Cáceres, C. E. Effects of intrinsic and extrinsic host mortality on disease spread. Bull. Math. Biol. 78, 235–253 (2016).MathSciNet 
    CAS 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    Hartemink, N. A., Randolph, S. E., Davis, S. A. & Heesterbeek, J. A. P. The basic reproduction number for complex disease systems: Defining R0 for tick-borne infections. Am. Nat. 171, 743–754 (2014).Article 

    Google Scholar 
    Arthur, F. H. Toxicity of diatomaceous earth to red flour beetles and confused flour beetles (Coleoptera: Tenebrionidae): Effects of temperature and relative humidity. J. Econ. Entomol. 93, 526–532 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Arthurs, S. & Thomas, M. B. Effects of temperature and relative humidity on sporulation of Metarhizium anisopliae var. acridum in mycosed cadavers of Schistocerca gregaria. J. Invertebr. Pathol. 78, 59–65 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Whipps, J. M. & Davies, K. G. Success in Biological Control of Plant Pathogens and Nematodes by Microorganisms. In Biological Control: Measures of Success 1st edn, (eds Gurr, G. & Wratten, S.) 429. https://doi.org/10.1007/978-94-011-4014-0_8 (Springer, Dordrecht, 2000).Gilchrist, M. A., Sulsky, D. L. & Pringle, A. Identifying fitness and optimal life-history strategies for an asexual filamentous fungus. Evolution 60, 970–979 (2006).PubMed 
    Article 

    Google Scholar 
    Frank, S. A. Spatial processes in host-parasite genetics. In Metapopulation Biology, 1st edn, (eds Hanski, I. A. & Gilpin, M. E.) 325–352. https://doi.org/10.1016/B978-012323445-2/50018-3 (Elsevier, 1997).Yan, Y., Wang, Y.-C., Feng, C.-C., Wan, P.-H.M. & Chang, K.T.-T. Potential distributional changes of invasive crop pest species associated with global climate change. Appl. Geogr. 82, 83–92 (2017).Article 

    Google Scholar 
    Inglis, G. D., Johnson, D. L. & Goettel, M. S. Effects of temperature and thermoregulation on mycosis by Beauveria bassianain grasshoppers. Biol. Control 7, 131–139 (1996).Article 

    Google Scholar 
    Lactin, D. J. & Johnson, D. L. Temperature-dependent feeding rates of Melanoplus sanguinipes nymphs (Orthoptera: Acrididae) laboratory trials. Environ. Entomol. 24, 1291–1296 (1995).Article 

    Google Scholar 
    FAO. Biopesticides for locust control | FAO Stories | Food and Agriculture Organization of the United Nations. Food and Agriculture Organisation of the UN http://www.fao.org/fao-stories/article/en/c/1267098/ (2021).Kimathi, E. et al. Prediction of breeding regions for the desert locust Schistocerca gregaria in East Africa. Sci. Rep. 10, 11937 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cordovez, J. M., Rendon, L. M., Gonzalez, C. & Guhl, F. Using the basic reproduction number to assess the effects of climate change in the risk of Chagas disease transmission in Colombia. Acta Trop. 129, 74–82 (2014).PubMed 
    Article 

    Google Scholar 
    Hartemink, N. A. et al. Mapping the basic reproduction number ( R 0) for vector-borne diseases: A case study on bluetongue virus. EPIDEM 1, 153–161 (2009).CAS 
    Article 

    Google Scholar 
    Jamison, A., Tuttle, E., Jensen, R., Bierly, G. & Gonser, R. Spatial ecology, landscapes, and the geography of vector-borne disease: A multi-disciplinary review. Appl. Geogr. 63, 418–426 (2015).Article 

    Google Scholar 
    Moukam Kakmeni, F. M. et al. Spatial panorama of malaria prevalence in Africa under climate change and interventions scenarios. Int. J. Health Geogr. 17, 2 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ngarakana-Gwasira, E. T., Bhunu, C. P., Masocha, M. & Mashonjowa, E. Transmission dynamics of schistosomiasis in Zimbabwe: A mathematical and GIS approach. Commun. Nonlinear Sci. Numer. Simul. 35, 137–147 (2016).ADS 
    MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Ogden, N. H. & Radojevic, M. Estimated effects of projected climate change on the basic reproductive number of the Lyme disease vector ixodes scapularis. Environ. Health Perspect. 122, 631–639 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parham, P. E. & Michael, E. Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2010).PubMed 
    Article 

    Google Scholar 
    Phillips, J. Climate change and surface mining: A review of environment-human interactions & their spatial dynamics. Appl. Geogr. 74, 95–108 (2016).Article 

    Google Scholar 
    Rogers, D. J. & Randolphz, S. E. The global spread of malaria in a future. Warmer World Sci. 2, 1763–1766 (2000).
    Google Scholar 
    Wu, X. et al. Developing a temperature-driven map of the basic reproductive number of the emerging tick vector of Lyme disease Ixodes scapularis in Canada. J. Theor. Biol. 319, 50–61 (2013).ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 
    CABI. Green Muscle providing strength against devastating locusts in the horn of Africa. https://www.cabi.org/news-article/green-muscle-providing-strength-against-devastating-locusts-in-the-horn-of-africa/ (2020).Piou, C. et al. Mapping the spatiotemporal distributions of the Desert Locust in Mauritania and Morocco to improve preventive management. Basic Appl. Ecol. 25, 37–47 (2017).Article 

    Google Scholar 
    FAO. FAO Locust Hub. https://locust-hub-hqfao.hub.arcgis.com/ (2021).Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    DeJesus, E. X. & Kaufman, C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations. Phys. Rev. A 35, 5288–5290 (1987).ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. Qgisorg (2014).RCoreTeam. R: A language and environment for statistical computing. The R Foundation for Statistical Computing. (2020).Marino, S., Hogue, I. B., Ray, C. J. & Kirschner, D. E. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008).ADS 
    MathSciNet 
    PubMed 
    PubMed Central 
    MATH 
    Article 

    Google Scholar  More

  • in

    Animal-vehicle collisions during the COVID-19 lockdown in early 2020 in the Krakow metropolitan region, Poland

    Soulsbury, C. D. & White, P. C. L. Human–wildlife interactions in urban areas: A review of conflicts, benefits and opportunities. Wildl. Res. 42, 541 (2015).Article 

    Google Scholar 
    Tucker, M. A. et al. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359, 466–469 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wilson, M. W. et al. Ecological impacts of human-induced animal behaviour change. Ecol. Lett. 23, 1522–1536 (2020).PubMed 
    Article 

    Google Scholar 
    Silva-Rodríguez, E. A., Gálvez, N., Swan, G. J. F., Cusack, J. J. & Moreira-Arce, D. Urban wildlife in times of COVID-19: What can we infer from novel carnivore records in urban areas?. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.142713 (2020).Article 
    PubMed 

    Google Scholar 
    Joshi, Y. V. & Musalem, A. Lockdowns lose one third of their impact on mobility in a month. Sci Rep 11, 22658 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chung, P.-C. & Chan, T.-C. Impact of physical distancing policy on reducing transmission of SARS-CoV-2 globally: Perspective from government’s response and residents’ compliance. PLoS ONE 16, e0255873 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Corlett, R. T. et al. Impacts of the coronavirus pandemic on biodiversity conservation. Biol. Conserv. 246, 108571 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Connellan, I. The ‘anthropause’ during COVID-19. Cosmos Magazine https://cosmosmagazine.com/nature/animals/the-anthropause-during-covid-19/ (2020).Rutz, C. et al. COVID-19 lockdown allows researchers to quantify the effects of human activity on wildlife. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-020-1237-z (2020).Article 
    PubMed 

    Google Scholar 
    Derryberry, E. P., Phillips, J. N., Derryberry, G. E., Blum, M. J. & Luther, D. Singing in a silent spring: Birds respond to a half-century soundscape reversion during the COVID-19 shutdown. Science 370, 575–579 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gordo, O., Brotons, L., Herrando, S. & Gargallo, G. Rapid behavioural response of urban birds to COVID-19 lockdown. Proc. R. Soc. B Biol. Sci. 288, 20202513 (2021).CAS 
    Article 

    Google Scholar 
    Gaynor, K. M. et al. Anticipating the impacts of the COVID-19 pandemic on wildlife. Front. Ecol. Environ. 18, 542–543 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Humphrey, C. Under cover of COVID-19, loggers plunder Cambodian wildlife sanctuary. Mongabay Environmental News https://news.mongabay.com/2020/08/under-cover-of-covid-19-loggers-plunder-cambodian-wildlife-sanctuary/ (2020).Bates, A. E., Primack, R. B., Moraga, P. & Duarte, C. M. COVID-19 pandemic and associated lockdown as a “Global Human Confinement Experiment” to investigate biodiversity conservation. Biol. Cons. 248, 108665 (2020).Article 

    Google Scholar 
    Nickel, B. A., Suraci, J. P., Allen, M. L. & Wilmers, C. C. Human presence and human footprint have non-equivalent effects on wildlife spatiotemporal habitat use. Biol. Cons. 241, 108383 (2020).Article 

    Google Scholar 
    Zellmer, A. J. et al. What can we learn from wildlife sightings during the COVID-19 global shutdown?. Ecosphere 11, e03215 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jägerbrand, A. K., Antonson, H. & Ahlström, C. Speed reduction effects over distance of animal-vehicle collision countermeasures – a driving simulator study. Eur. Transp. Res. Rev. 10, 40 (2018).Article 

    Google Scholar 
    Abra, F. D. et al. Pay or prevent? Human safety, costs to society and legal perspectives on animal-vehicle collisions in São Paulo state. Brazil. PLoS One 14, e0215152 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Canal, D., Martín, B., de Lucas, M. & Ferrer, M. Dogs are the main species involved in animal-vehicle collisions in southern Spain: Daily, seasonal and spatial analyses of collisions. PLoS One 13, e0203693 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Visintin, C., van der Ree, R. & McCarthy, M. A. Consistent patterns of vehicle collision risk for six mammal species. J. Environ. Manage. 201, 397–406 (2017).PubMed 
    Article 

    Google Scholar 
    Kreling, S. E. S., Gaynor, K. M. & Coon, C. A. C. Roadkill distribution at the wildland-urban interface. J. Wildl. Manag. 83, 1427–1436 (2019).Article 

    Google Scholar 
    Bíl, M. et al. COVID-19 related travel restrictions prevented numerous wildlife deaths on roads: A comparative analysis of results from 11 countries. Biol. Cons. 256, 109076 (2021).Article 

    Google Scholar 
    Langbein, J., Putman, R. & Pokorny, B. Traffic collisions involving deer and other ungulates in Europe and available measures for mitigation. Ungulate management in Europe: problems and practices 215–259 (2010).Filonchyk, M., Hurynovich, V. & Yan, H. Impact of Covid-19 lockdown on air quality in the Poland, Eastern Europe. Environ. Res. 198, 110454 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Porębska, A. et al. Lockdown in a disneyfied city: Kraków Old Town and the first wave of the Covid-19 pandemic. Urban Des Int 26, 315–331 (2021).Article 

    Google Scholar 
    Tarkowski, M., Puzdrakiewicz, K., Jaczewska, J. & Połom, M. COVID-19 lockdown in Poland – changes in regional and local mobility patterns based on Google Maps data. Prace Komisji Geografii Komunikacji PTG 2020, 46–55 (2020).Article 

    Google Scholar 
    Dean, W. R. J., Seymour, C. L., Joseph, G. S. & Foord, S. H. A review of the impacts of roads on wildlife in semi-arid regions. Diversity 11, 81 (2019).Article 

    Google Scholar 
    Saint-Andrieux, C., Calenge, C. & Bonenfant, C. Comparison of environmental, biological and anthropogenic causes of wildlife–vehicle collisions among three large herbivore species. Popul. Ecol. 62, 64–79 (2020).Article 

    Google Scholar 
    Grosman, P. D., Jaeger, J. A. G., Biron, P. M., Dussault, C. & Ouellet, J.-P. Trade-off between road avoidance and attraction by roadside salt pools in moose: An agent-based model to assess measures for reducing moose-vehicle collisions. Ecol. Model. 222, 1423–1435 (2011).Article 

    Google Scholar 
    Barbosa, P., Schumaker, N. H., Brandon, K. R., Bager, A. & Grilo, C. Simulating the consequences of roads for wildlife population dynamics. Landsc. Urban Plan. 193, 103672 (2020).PubMed 
    Article 

    Google Scholar 
    Silva, C., Simões, M. P., Mira, A. & Santos, S. M. Factors influencing predator roadkills: The availability of prey in road verges. J Environ Manage 247, 644–650 (2019).PubMed 
    Article 

    Google Scholar 
    Sullivan, J. M. Trends and characteristics of animal-vehicle collisions in the United States. J. Safety Res. 42, 9–16 (2011).PubMed 
    Article 

    Google Scholar 
    Morelle, К, Lehaire, F. & Lejeune, P. Spatio-temporal patterns of wildlife-vehicle collisions in a region with a high-density road network. Nature Conservation 5, 53–73 (2013).Article 

    Google Scholar 
    Bartonička, T., Andrášik, R., Duľa, M., Sedoník, J. & Bíl, M. Identification of local factors causing clustering of animal-vehicle collisions. J. Wildl. Manag. 82, 940–947 (2018).Article 

    Google Scholar 
    Saxena, A., Chatterjee, N., Rajvanshi, A. & Habib, B. Integrating large mammal behaviour and traffic flow to determine traversability of roads with heterogeneous traffic on a Central Indian Highway. Sci Rep 10, 18888 (2020).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Basak, S. M. et al. Human-wildlife conflicts in Krakow City, Southern Poland. Animals 10, 1014 (2020).PubMed Central 
    Article 

    Google Scholar 
    Gil-Fernández, M., Harcourt, R., Newsome, T., Towerton, A. & Carthey, A. Adaptations of the red fox (Vulpes vulpes) to urban environments in Sydney, Australia. J. Urban Ecol. https://doi.org/10.1093/jue/juaa009 (2020).Article 

    Google Scholar 
    Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. J Mammal 94, 109–119 (2013).Article 

    Google Scholar 
    Steiner, W., Schöll, E. M., Leisch, F. & Hackländer, K. Temporal patterns of roe deer traffic accidents: Effects of season, daytime and lunar phase. PLoS ONE 16, e0249082 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cagnacci, F. et al. Partial migration in roe deer: migratory and resident tactics are end points of a behavioural gradient determined by ecological factors. Oikos 120, 1790–1802 (2011).Article 

    Google Scholar 
    Kämmerle, J.-L. et al. Temporal patterns in road crossing behaviour in roe deer (Capreolus capreolus) at sites with wildlife warning reflectors. PLoS One 12, e0184761 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Romanowski, J. Vistula river valley as the ecological corridor for mammals. Pol. J. Ecol. 55, 805–819 (2007).
    Google Scholar 
    Abraham, J. O. & Mumma, M. A. Elevated wildlife-vehicle collision rates during the COVID-19 pandemic. Sci Rep 11, 20391 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gunson, K. E., Mountrakis, G. & Quackenbush, L. J. Spatial wildlife-vehicle collision models: A review of current work and its application to transportation mitigation projects. J. Environ. Manage. 92, 1074–1082 (2011).PubMed 
    Article 

    Google Scholar 
    Leblond, M., Dussault, C. & Ouellet, J.-P. Avoidance of roads by large herbivores and its relation to disturbance intensity. J. Zool. 289, 32–40 (2013).Article 

    Google Scholar 
    Bissonette, J. A. & Kassar, C. A. Locations of deer–vehicle collisions are unrelated to traffic volume or posted speed limit. Human-Wildlife Conflicts 2, 122–130 (2008).
    Google Scholar 
    Steiner, W., Leisch, F. & Hackländer, K. A review on the temporal pattern of deer–vehicle accidents: Impact of seasonal, diurnal and lunar effects in cervids. Accid. Anal. Prev. 66, 168–181 (2014).PubMed 
    Article 

    Google Scholar 
    Kušta, T., Keken, Z., Ježek, M., Holá, M. & Šmíd, P. The effect of traffic intensity and animal activity on probability of ungulate-vehicle collisions in the Czech Republic. Saf. Sci. 91, 105–113 (2017).Article 

    Google Scholar 
    Shilling, F. et al. A Reprieve from US wildlife mortality on roads during the COVID-19 pandemic. Biol. Cons. 256, 109013 (2021).Article 

    Google Scholar 
    Yasin, Y. J., Grivna, M. & Abu-Zidan, F. M. Global impact of COVID-19 pandemic on road traffic collisions. World J Emerg Surg 16, 51 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Seiler, A. & Helldin, J. O. Mortality in wildlife due to transportation. In The Ecology of Transportation: Managing Mobility for the Environment (eds Davenport, J. & Davenport, J. L.) (Springer, 2006).
    Google Scholar 
    Smits, R., Bohatkiewicz, J., Bohatkiewicz, J. & Hałucha, M. A Geospatial Multi-scale Level Analysis of the Distribution of Animal-Vehicle Collisions on Polish Highways and National Roads. In Vision Zero for Sustainable Road Safety in Baltic Sea Region (eds Varhelyi, A. et al.) (Springer International Publishing, 2020).
    Google Scholar 
    Sozański, B. et al. Psychological responses and associated factors during the initial stage of the coronavirus disease (COVID-19) epidemic among the adult population in Poland – a cross-sectional study. BMC Public Health 21, 1929 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sidor, A. & Rzymski, P. Dietary choices and habits during COVID-19 lockdown: Experience from Poland. Nutrients 12, E1657 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Vingilis, E. et al. Coronavirus disease 2019: What could be the effects on Road safety?. Accid. Anal. Prev. 144, 105687 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kioko, J. et al. Driver knowledge and attitudes on animal vehicle collisions in Northern Tanzania. Trop. Conserv. Sci. 8, 352–366 (2015).Article 

    Google Scholar 
    Stokstad, E. Pandemic lockdown stirs up ecological research. Science 369, 893–893 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dandy, N. Behaviour, lockdown and the natural world. Environ. Values 29, 253–259 (2020).Article 

    Google Scholar 
    Baścik, M. & Degórska, B. Środowisko przyrodnicze Krakowa. Zasoby – Ochrona – Kształtowanie. vol. 2 (2015).Borcard, D., Gillet, F. & Legendre, P. Numerical Ecology with R (Springer, 2011).MATH 
    Book 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. https://www.r-project.org/ (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).MATH 
    Book 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package (2019).Hervé, M. RVAideMemoire: Testing and Plotting Procedures for Biostatistics (2020).Hancock, J. M. Jaccard Distance (Jaccard Index, Jaccard Similarity Coefficient). in Dictionary of Bioinformatics and Computational Biology (American Cancer Society, 2014). https://doi.org/10.1002/9780471650126.dob0956 More

  • in

    The evolution of trait variance creates a tension between species diversity and functional diversity

    Calow, P. Towards a definition of functional ecology. Funct. Ecol. 1, 57–61 (1987).Article 

    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).Article 

    Google Scholar 
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).Article 
    PubMed 

    Google Scholar 
    Cadotte, M. W. Functional traits explain ecosystem function through opposing mechanisms. Ecol. Lett. 20, 989–996 (2017).Article 
    PubMed 

    Google Scholar 
    Dehling, D. M. & Stouffer, D. B. Bringing the Eltonian niche into functional diversity. Oikos 127, 1711–1723 (2018).Article 

    Google Scholar 
    Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. A user’s guide to functional diversity indices. Ecol. Monogr. 80, 469–484 (2010).Article 

    Google Scholar 
    Leinster, T. & Cobbold, C. A. Measuring diversity: the importance of species similarity. Ecology 93, 477–489 (2012).Article 
    PubMed 

    Google Scholar 
    Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).Article 
    PubMed 

    Google Scholar 
    Chao, A. et al. An attribute-diversity approach to functional diversity, functional beta diversity, and related (dis)similarity measures. Ecol. Monogr. 89, e01343 (2019).ADS 
    Article 

    Google Scholar 
    Morris, E. K. et al. Choosing and using diversity indices: insights for ecological applications from the German biodiversity exploratories. Ecol. Evol. 4, 3514–3524 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kattge, J., Bönisch, G. & D’iaz, S. et al. TRY plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS 
    Article 

    Google Scholar 
    Fajardo, A. & Siefert, A. Intraspecific trait variation and the leaf economics spectrum across resource gradients and levels of organization. Ecology 99, 1024–1030 (2018).Article 
    PubMed 

    Google Scholar 
    Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
    Google Scholar 
    Wieczynski, D. J. et al. Climate shapes and shifts functional biodiversity in forests worldwide. Proc. Natl. Acad. Sci. 116, 587–592 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tilman, D., Isbell, F. & Cowles, J. M. Biodiversity and ecosystem functioning. Annu. Rev. Ecol. Evol. Syst. 45, 471–493 (2014).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).Article 
    PubMed 

    Google Scholar 
    Bolnick, D. I. et al. Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26, 183–192 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Violle, C. et al. The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27, 244–252 (2012).Article 
    PubMed 

    Google Scholar 
    Díaz, S. & Cabido, M. Vive la différence: plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Stuart-Smith, R. D. et al. Integrating abundance and functional traits reveals new global hotspots of fish diversity. Nature 501, 539–542 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hillebrand, H., Bennett, D. M. & Cadotte, M. W. Consequences of dominance: a review of evenness effects on local and regional ecosystem processes. Ecology 89, 1510–1520 (2008).Article 
    PubMed 

    Google Scholar 
    Loreau, M. The Challenges of Biodiversity Science. Excellence in Ecology Series (International Ecology Institute, 21385 Oldendorf/Luhe, Germany, 2010).Hulshof, C. M. et al. Intra-specific and inter-specific variation in specific leaf area reveal the importance of abiotic and biotic drivers of species diversity across elevation and latitude. J. Veg. Sci. 24, 921–931 (2013).Article 

    Google Scholar 
    Siefert, A. et al. A global meta-analysis of the relative extent of intraspecific trait variation in plant communities. Ecol. Lett. 18, 1406–1419 (2015).Article 
    PubMed 

    Google Scholar 
    Dall, S. R. X., Bell, A. M., Bolnick, D. I. & Ratnieks, F. L. W. An evolutionary ecology of individual differences. Ecol. Lett. 15, 1189–1198 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolnick, D. I. & Ballare, K. M. Resource diversity promotes among individual diet variation, but not genomic diversity, in lake stickleback. Ecol. Lett. 23, 495–505 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lande, R. & Arnold, S. J. The measurement of selection on correlated characters. Evolution 37, 1210–1226 (1983).Article 
    PubMed 

    Google Scholar 
    Mullon, C. & Lehmann, L. An evolutionary quantitative genetics model for phenotypic (co)variance under limited dispersal, with an application to socially synergistic traits. Evolution 73, 1695–1728 (2019).Article 
    PubMed 

    Google Scholar 
    Taper, M. L. & Case, T. J. Quantitative genetic models for the coevolution of character displacement. Ecology 66, 355–371 (1985).Article 

    Google Scholar 
    Engen, S., Grotan, V., Saether, B.-E. & Coste, C. F. D. An evolutionary and ecological community model for distribution of phenotypes and abundances among competing species. Am. Natur. 198, 1 (2021). https://doi.org/10.1086/714529.Kohyama, T. & Takada, T. The stratification theory for plant coexistence promoted by one-sided competition. J. Ecol. 97, 463–471 (2009).Article 

    Google Scholar 
    Kinzig, A. P., Levin, S. A., Dushoff, J. & Pacala, S. W. Limiting similarity, species packing, and system stability for hierarchical competition-colonization models. Am. Nat. 153, 371–383 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Adler, F. R. & Mosquera, J. Is space necessary? Interference competition and limits to biodiversity. Ecology 81, 3226–3232 (2000).Article 

    Google Scholar 
    Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125–1140 (2008).ADS 
    Article 

    Google Scholar 
    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Parent, C. E. & Crespi, B. J. Ecological opportunity in adaptive radiation of Galápagos endemic land snails. Am. Nat. 174, 898–905 (2009).Article 
    PubMed 

    Google Scholar 
    Geist, D. J., Snell, H., Snell, H., Goddard, C. & Kurz, M. D. A. Paleogeographic Model of the Galápagos Islands and Biogeographical and Evolutionary Implications. In Geophysical Monograph Series, (eds Harpp, K. S., Mittelstaedt, E., d’Ozouville, N. & Graham, D. W.), chap. 8, 145–166 (2014).Parent, C. E. & Crespi, B. J. Sequential colonization and diversification of Galápagos endemic land snail genus Bulimulus (Gastropoda, Stylommatophora). Evolution 60, 2311–2328 (2006).CAS 
    PubMed 

    Google Scholar 
    Parent, C. E. Diversification on islands: bulimulid land snails of Galápagos. Ph.D. thesis, Simon Fraser University, Burnaby, Canada (2008).Kraemer, A. C., Roell, Y. E., Shoobs, N. F. & Parent, C. E. Does island ontogeny dictate both the accumulation of species richness and functional diversity? Glob. Ecol. Biogeogr. 31, 123–137 (2021).Kraemer, A. C., Philip, C. W., Rankin, A. M. & Parent, C. E. Trade-offs direct the evolution of coloration in Galápagos land snails. Proc. R. Soc. B 286, 20182278 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barabás, G. & D’Andrea, R. The effect of intraspecific variation and heritability on community pattern and robustness. Ecol. Lett. 19, 977–986 (2016).Article 
    PubMed 

    Google Scholar 
    Barton, N. H., Etheridge, A. M. & Véber, A. The infinitesimal model: definition, derivation, and implications. Theor. Popul. Biol. 118, 50–73 (2017).CAS 
    MATH 
    Article 
    PubMed 

    Google Scholar 
    Govaert, L. et al. Eco-evolutionary feedbacks—theoretical models and perspectives. Funct. Ecol. 33, 13–30 (2019).Article 

    Google Scholar 
    Keddy, P. A. & Shipley, B. Competitive hierarchies in herbaceous plant communities. Oikos 54, 234–241 (1989).Article 

    Google Scholar 
    Allesina, S. et al. Predicting the stability of large structured food webs. Nat. Commun. 6, 7842 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kandlikar, G. S., Johnson, C. S., Yan, X., Kraft, N. J. B. & Levine, J. M. Winning and losing with microbes: how microbially mediated fitness differences influence plant diversity. Ecol. Lett. 22, 1178–1191 (2019).PubMed 

    Google Scholar 
    Reich, P. B. et al. Impacts of biodiversity loss escalate through time as redundancy fades. Science 336, 589–592 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Spaak, J. W. & De Laender, F. Effects of pigment richness and size variation on coexistence, richness and function in light limited phytoplankton. J. Ecol. 109, 2385–2394 (2021).Article 

    Google Scholar 
    Parain, E. C., Rohr, R. P., Gray, S. M. & Bersier, L.-F. Increased temperature disrupts the biodiversity–ecosystem functioning relationship. Am. Nat. 193, 227–239 (2019).Article 
    PubMed 

    Google Scholar 
    Gonzalez, A. et al. Scaling-up biodiversity-ecosystem functioning research. Ecol. Lett. 23, 757–776 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leibold, M. A., Urban, M. C., De Meester, L., Klausmeier, C. A. & Vanoverbeke, J. Regional neutrality evolves through local adaptive niche evolution. Proc. Natl Acad. Sci. USA 116, 2612–2617 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dieckmann, U. & Doebeli, M. On the origin of species by sympatric speciation. Nature 400, 354–357 (1999).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Edwards, K. F. et al. Evolutionarily stable communities: a framework for understanding the role of trait evolution in the maintenance of diversity. Ecol. Lett. 21, 1853–1868 (2018).Article 
    PubMed 

    Google Scholar 
    Bolnick, D. I., Svanbäck, R., Araujo, M. S. & Persson, L. Comparative support for the niche variation hypothesis that more generalized populations also are more heterogeneous. Proc. Natl Acad. Sci. USA 104, 10075–10079 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Valen, L. Morphological variation and width of ecological niche. Am. Nat. 99, 377–390 (1965).Article 

    Google Scholar 
    Goodfriend, G. A. Variation in land-snail shell form and size and its causes: a review. Syst. Biol. 35, 204–223 (1986).Article 

    Google Scholar 
    Machin, J. Structural adaptation for reducing water-loss in three species of terrestrial snail. J. Zool. 152, 55–65 (1967).Article 

    Google Scholar 
    McMahon, R. F. Thermal tolerance, evaporative water loss, air-water oxygen consumption and zonation of intertidal prosobranchs: a new synthesis. In Progress in Littorinid and Muricid Biology, 241–260 (Springer, Dordrecht, The Netherlands, 1990).Rees, B. B. & Hand, S. C. Heat dissipation, gas exchange and acid-base status in the land snail oreohelix during short-term estivation. J. Exp. Biol. 152, 77–92 (1990).Article 

    Google Scholar 
    Newkirk, G. F. & Doyle, R. W. Genetic analysis of shell-shape variation in Littorina saxatilis on an environmental cline. Mar. Biol. 30, 227–237 (1975).Article 

    Google Scholar 
    Seeley, R. H. Intense natural selection caused a rapid morphological transition in a living marine snail. Proc. Natl Acad. Sci. USA 83, 6897–6901 (1986).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt-Nielsen, K., Taylor, C. R. & Shkolnik, A. Desert snails: problems of heat, water and food. J. Exp. Biol. 55, 385–398 (1971).CAS 
    Article 
    PubMed 

    Google Scholar 
    Xavier Jordani, M. et al. Intraspecific and interspecific trait variability in tadpole metacommunitiees from the Brazilian Atlantic rainforest. Ecol. Evol. 9, 4025–4037 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    An allometric model-based approach for estimating biomass in seven Indian bamboo species in western Himalayan foothills, India

    Vorontsova, M. S., Clark, L. G., Dransfield, J., Govaerts, R. H. A. & Baker, W. J. World Checklist of Bamboos and Rattans 102 (Science Press, 2017).
    Google Scholar 
    Lobovikov, M., Paudel, S., Ball, L., Piazza, M., Guardia, M., Ren, H., Russo, L. & Wu, J. World bamboo resources: a thematic study prepared in the framework of the global forest resources assessment 2005. Food & Agriculture Org., (2007).FAO. Global Forest Resources Assessment 2020: Main report, Rome. Accessed 18 Nov 2021. https://www.fao.org/3/ca9825en/ca9825en.pdf. https://doi.org/10.4060/ca9825en (2020).ISFR http://www.indiaenvironmentportal.org.in/files/file/isfr-fsi-vol1.pdf (Accessed November 18 2021) (2019).Salam, K. Connecting the poor: bamboo, problems and prospect. South Asia Bamboo Foundation (SABF) (2013) retrieved 17 December 2013 from jeevika.org/bamboo/2g-article-fornbda.docx.INBAR. Accessed 18 Nov 2021. https://www.inbar.int/global-programmes/.Osman, A. I., Abdelkader, A., Johnston, C. R., Morgan, K. & Rooney, D. W. Thermal investigation and kinetic modeling of lignocellulosic biomass combustion for energy production and other applications. Ind. Eng. Chem. Res. 56, 12119–12130 (2017).CAS 
    Article 

    Google Scholar 
    Fawzy, S., Osman, A., Doran, J. & Rooney, D. W. Strategies for mitigation of climate change: a review. Environ. Chem. Lett. 18, 2069–2094 (2020).CAS 
    Article 

    Google Scholar 
    IPCC. Global warming of 1.5 °C. In: Masson-Delmotte, V., Zhai, P., Pörtner, H.-O., Roberts, D., Skea, J., Shukla, P. R., Pirani, A., Moufouma-Okia, W., Péan, C., Pidcock, R., Connors, S., Matthews, J. B. R., Chen, Y., Zhou, X., Gomis, M. I., Lonnoy, E., Maycock, T., Tignor, M., & Waterfeld, T. (eds) An IPCC special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and eforts to eradicate poverty (2018). https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (Accessed 22 Dec 2019).Osman, A. et al. Conversion of biomass to biofuels and life cycle assessment: a review. Environ. Chem. Lett. 19, 4075–4118 (2021).CAS 
    Article 

    Google Scholar 
    Balajii, M. & Niju, S. Biochar-derived heterogeneous catalysts for biodiesel production. Environ. Chem. Lett. 17, 1447–1469. https://doi.org/10.1007/s10311-019-00885-x (2019).CAS 
    Article 

    Google Scholar 
    Gunarathne, V., Ashiq, A., Ramanayaka, S., Wijekoon, P. & Vithanage, M. Biochar from municipal solid waste for resource recovery and pollution remediation. Environ. Chem. Lett. 17, 1225–1235. https://doi.org/10.1007/s10311-019-00866-0 (2019).CAS 
    Article 

    Google Scholar 
    Lobovikov, M., Schoene, D. & Yping, L. Bamboo in climate change and rural livelihood. Mitig. Adapt. Strateg. Glob. Change 17, 261–276 (2012).Article 

    Google Scholar 
    Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystems worldwide: estimates and uncertainties. For. Ecol. Manag. 393, 113–138 (2017).Article 

    Google Scholar 
    Devi, A. S. & Singh, K. S. Carbon storage and sequestration potential in aboveground biomass of bamboos in North East India. Sci. Rep. 11, 837 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nath, A. J., Lal, R. & Das, A. K. Managing woody bamboos for carbon farming and carbon trading. Glob. Ecol. Conserv. 3, 654–663 (2015).Article 

    Google Scholar 
    UNFCCC. Thirty-ninth Meeting of the Clean Development Mechanism Executive Board. UN Campus, Langer Eugen, Hermann-Ehlers-Str. 10, 53113 Bonn, Germany (2008).FTFA. Food and Trees for Africa. World’s First Bamboo Carbon Offset Credits Issued under the VCS in the Voluntary Carbon Market. In: trees.co.za (2012).Sharma, R., Wahono, J. & Baral, H. Bamboo as an alternative bioenergy crop and powerful ally for land restoration in Indonesia. Sustainability 10, 4367 (2018).Article 

    Google Scholar 
    Chin, K. L. et al. Bioenergy production from bamboo: potential source from Malaysia’s perspective. Bioresources 12, 6844–6867 (2017).CAS 
    Article 

    Google Scholar 
    Littlewood, J., Wang, L., Tumbull, C. & Murphy, R. J. Techno-economic potential of bioethanol from bamboo in China. Biotechnol. Biofuels 6, 173–173 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Buckingham, K. et al. The potential of bamboo is constrained by outmoded policy frames. Ambio 40, 544–548 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    IPCC shorturl.at/bguxF (Accessed November 18 2021) (2003).Kempes, C. P., West, G. B., Crowell, K. & Girvan, M. Predicting maximum tree heights and other traits from allometric scaling and resource limitations. PLoS ONE 6(6), e20551 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sileshi, G. W. A critical review of forest biomass estimation models, common mistakes and corrective measures. For. Ecol. Manag. 329, 237–254 (2014).Article 

    Google Scholar 
    Verma, A. et al. Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor. Syst. 88(5), 895–905 (2014).Article 

    Google Scholar 
    Gao, X. et al. Modeling of the height–diameter relationship using an allometric equation model: a case study of stands of Phyllostachys edulis. J. For. Res. 27, 339–347 (2016).CAS 
    Article 

    Google Scholar 
    Huy, B. & Long, T. T. A manual for bamboo forest biomass and carbon assessment, INBAR technical report (2019).https://www.inbar.int/resources/inbar_publications/a-manual-for-bamboo-forest-biomass-and-carbon-assessment/ (Accessed November 18 2021).Brahma, B. et al. A critical review of forest biomass estimation equations in India. Trees For. People 5, 100098. https://doi.org/10.1016/j.tfp.2021.100098 (2021).Article 

    Google Scholar 
    Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344. https://doi.org/10.1016/j.foreco.2010.04.021 (2010).Article 

    Google Scholar 
    FAO. Guidelines on Destructive Measurement for Forest Biomass Estimation (FAO, Rome, 2012).Yen, T. M. Comparing aboveground structure and aboveground carbon storage of an age series of moso bamboo forests subjected to different management strategies. J. For. Res. 20, 1–8 (2015).CAS 
    Article 

    Google Scholar 
    Yuen, J. Q., Fung, T. & Ziegler, A. D. Carbon stocks in bamboo ecosystem worldwide: estimates and uncertainties. For. Ecol. Manag. 393, 113–138 (2017).Article 

    Google Scholar 
    Nath, A. J., Das, G. & Das, A. K. Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass Bioenergy 33, 1188–1196 (2009).Article 

    Google Scholar 
    Rawat, R. S., Arora, G., Rawat, V. R. S., Borah, H. R., Singson, M. Z., Chandra, G., Nautiyal, R. & Rawat, J. Estimation of biomass and carbon stock of bamboo species through development of allometric equations. Indian Council of Forestry Research and Education, Dehradun, INDIA (2018).Tripathi, S. K. & Singh, K. P. Productivity and nutrient cycling in recently harvested and mature bamboo savannas in the dry tropics. J. Appl. Ecol. 31, 109–124 (1994).Article 

    Google Scholar 
    Kaushal, R. et al. Predictive models for biomass and carbon stock estimation in male bamboo (Dendrocalamus strictus L.) in Doon valley, India. Acta Ecol. Sin. 36, 469–476 (2016).Article 

    Google Scholar 
    Das, D. & Chaturvedi, O. P. Bambusa bambos (L.) Voss plantation in eastern India: I. Culm recruitment, dry matter dynamics and carbon flux. J. Bamboo Rattan 5(1&2), 47–59 (2006).
    Google Scholar 
    Shanmughavel, P. & Francis, K. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass Bioenergy 10(5/6), 383–91 (1996).CAS 
    Article 

    Google Scholar 
    Seethalakshmi, K. K. & Kumar, M. Bamboos of India: A Compendium. Kerala Forest Research Institute, Peechi and International Network for Bamboo and Rattan, Beijing (1998).Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344. https://doi.org/10.1016/j.foreco.2010.04.021 (2010).Article 

    Google Scholar 
    FAO. Guidelines on Destructive Measurement for Forest Biomass Estimation (FAO, Rome, 2012).Huy, B. et al. Allometric equations for estimating tree aboveground biomass in evergreen broadleaf forests of Vietnam. For. Ecol. Manag. 382, 193–205 (2016).Article 

    Google Scholar 
    Huy, B. et al. Allometric equations for estimating tree aboveground biomass in tropical dipterocarp forests of Vietnam’. Forests 7(180), 1–19 (2016).
    Google Scholar 
    Huy, B., Poudel, K. P. & Temesgen, H. Aboveground biomass equations for evergreen broadleaf forests in South Central coastal ecoregion of Vietnam: selection of eco-regional or pantropical models’. For. Ecol. Manag. 376, 276–283 (2016).Article 

    Google Scholar 
    Akaike, H. Information theory as an extension of the maximum likelihood principle’. In Petrov, B. N. & Csaki, F. E. (eds) Proceedings of the 2nd international symposium on information theory. Budapest: Akademiai Kiado, 267–281 (1973).Schwarz, G. E. Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Huy, B. Methodology for developing and cross-validating allometric equations for estimating forest tree biomass. HCM City: Science & Technology, 238 (2017a).Huy, B. Statistical informatics in forestry. HCM City: Science & Technology, 282 (2017b).Huy, B., Tinh, N. T., Poudel, K. P., Frank, B. M. & Temesgen, H. Taxon-specific modeling systems for improving reliability of tree aboveground biomass and its components estimates in tropical dry dipterocarp forests. For. Ecol. Manag. 437, 156–174 (2019).Article 

    Google Scholar 
    Huy, B., Thanh, G. T., Poudel, K. P. & Temesgen, H. Individual plant allometric equations for estimating aboveground biomass and its components for a common bamboo species (Bambusa procera A. Chev. and A Camus) in tropical forests. Forests 10, 1–17 (2019).Article 

    Google Scholar 
    Mayer, D. G. & Butler, D. G. Statistical validation. Ecol. Model. 68, 21–32 (1993).Article 

    Google Scholar 
    Chave, J. et al. Tree allometry and improved estimation of carbon stocks and balance in tropical forests. Oecologia 145, 87–99 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Basuki, T. M., Van Laake, P. E., Skidmore, A. K. & Hussin, Y. A. Allometric equations for estimating the aboveground biomass in the tropical lowland Dipterocarp forests’. For. Ecol. Manag. 257, 1684–1694 (2009).Article 

    Google Scholar 
    Kaushal, R. et al. Rooting behavior and soil properties in different bamboo species of Western Himalayan Foothils, India. Sci. Rep. 10, 4966 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kramer, P. J. & Kozlowski, T. T. Physiology of Wood Plants 628–702 (McGraw Hill, 1979).
    Google Scholar 
    IPCC Available at http://www.ipcc.ch. AccessedOctober2008 (2008).Yen, T. M., Ji, Y. J. & Lee, J. S. Estimating biomass production and carbon storage for a fast-growing makino bamboo (Phyllostachys makinoi) plant based on the diameter distribution model. For. Ecol. Manag. 260, 339–344 (2010).Article 

    Google Scholar 
    Inoue, A., Sakamoto, S., Suga, H., Kitazato, H. & Sakuta, K. Construction of one-way volume table for the three major useful bamboos in Japan. J. For. Res. 18, 323–334 (2013).Article 

    Google Scholar 
    Kralicek, K., Huy, B., Poudel, K. P., Temesgen, H. & Salas, C. Simultaneous estimation of above- and below-ground biomass in tropical forests of Vietnam. For. Ecol. Manag. 390, 147–156 (2017).Article 

    Google Scholar 
    Montes, N., Gauquelin, W., Badri, V., Bertaudiere, E. H. & Zaoui, A. A non-destructive method for estimating aboveground forest biomass in threatended woodlands. For. Ecol. Manag. 130, 37–46 (2000).Article 

    Google Scholar 
    Verma, A. et al. Predictive models for biomass and carbon stocks estimation in Grewia optiva on degraded lands in western Himalaya. Agrofor. Syst. 88, 895–905. https://doi.org/10.1007/s10457-014-9734-1 (2014).Article 

    Google Scholar 
    Singnar, P. et al. Allometric scaling, biomass accumulation and carbon stocks in different aged stands of thin-walled bamboos Schizostachyum dullooa Pseudostachyum polymorphum and Melocanna baccifera. For. Ecol. Manag. 395, 81–91. https://doi.org/10.1016/j.foreco.2017.04.001 (2017).Article 

    Google Scholar 
    Huang, S., Price, D. & Titus, S. J. Development of ecoregion-based height diameter models for white spruce in boreal forests. For. Ecol. Manag. 129, 125–141 (2000).Article 

    Google Scholar 
    Yen, T. M. Culm height development, biomass accumulation and carbon storage in an initial growth stage for a fast-growing moso bamboo (Phyllostachy pubescens). Bot. Stud. 57, 10 (2016).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tripathi, S. K. & Singh, K. P. Culm recruitment, dry matter dynamics and carbon flux in recently harvested and mature bamboo savannas in the Indian dry tropics. Ecol. Res. 11, 149–164 (1996).Article 

    Google Scholar 
    Singh, A. N. & Singh, J. S. Biomass, net primary production and impact of bamboo plantation on soil redevelopment in a dry tropical region. For. Ecol. Manag. 119, 195–207 (1999).Article 

    Google Scholar 
    Das, D. K. & Chaturvedi, O. P. Bambusa bambos (L.) Voss plantation in eastern India: I. Culm recruitment, dry matter dynamics and carbon flux. J. Bamboo Rattan 5, 47–59 (2006).
    Google Scholar 
    Shanmughavel, P. & Francis, K. Above ground biomass production and nutrient distribution in growing bamboo (Bambusa bambos (L.) Voss). Biomass Bioenergy 10, 383–391 (1996).CAS 
    Article 

    Google Scholar 
    Arnoult, S. & Brancourt-Hulmel, M. A review on miscanthus biomass production and composition for bioenergy use: genotypic and environmental variability and implications for breeding. Bioenergy Res. 8, 502–526 (2015).CAS 
    Article 

    Google Scholar 
    Nath, A. J., Das, G. & Das, A. K. Above ground standing biomass and carbon storage in village bamboos in North East India. Biomass Bioenergy 33, 1188–1196 (2009).Article 

    Google Scholar 
    Bargali, S. S., Singh, S. P. & Singh, R. Structure and function of an age series of eucalyptus plantations in central Himalaya I. Dry matter dynamics. Ann. Bot. 69, 405–411 (1992).Article 

    Google Scholar 
    Rizvi, R. H., Dhyani, S. K., Yadav, R. S. & Ramesh, S. Biomass production and carbon stock of poplar agroforestry systems in Yamunanagar and Saharanpur districts of North western India. Curr. Sci. 100, 736–742 (2011).CAS 

    Google Scholar 
    Kanime, N. et al. Biomass production and carbon sequestration in different tree-based systems of Central Himalayan Tarai region. For Trees Livelihoods 22(1), 38–50 (2013).Article 

    Google Scholar 
    Arora, G. et al. Growth, biomass, carbon stocks and sequestration in age series Populus deltoides plantations in Tarai region of central Himalaya. Turk. J. Agric. For. https://doi.org/10.3906/tar-1307-94 (2013).Article 

    Google Scholar 
    Song, X. et al. Carbon sequestration by Chinese bamboo forests and their ecological benefits: assessment of potential, problems, and future challenges. Environ. Rev. 19, 418–428 (2011).CAS 
    Article 

    Google Scholar 
    Winjum, J. K., Dixon, R. C. & Schroeder, P. E. Carbon storage in forest plantations and their wood products. J. World Resour. Manag. 8, 1–19 (1997).
    Google Scholar 
    Yadava, A. K. Biomass production and carbon sequestration in different agroforestry systems of Tarai region. Indian For. 136(2), 234–244 (2010).
    Google Scholar 
    Lou, Y., Li, Y., Buckingham, K., Henley, G. & Zhou, G. Bamboo and Climate change mitigation: a comparative analysis of carbon sequestration. In International Network for Bamboo and Rattan (INBAR), Beijing (2010).Nair, P. K. R., Kumar, B. M. & Nair, V. D. Agroforestry as a strategy for carbon sequestration. J. Plant Nutr. Soil Sci. 172, 10–23 (2009).CAS 
    Article 

    Google Scholar  More

  • in

    Gentle-giant sharks are on a collision course with mighty ships

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Moroccan entomopathogenic nematodes as potential biocontrol agents against Dactylopius opuntiae (Hemiptera: Dactylopiidae)

    Spodek, M., Ben-Dov, Y., Protasov, A., Carvalho, C. J. & Mendel, Z. First record of Dactylopius opuntiae (Cockerell) (Hemiptera: Coccoidea: Dactylopiidae) from Israel. Phytoparasitica 42(3), 377–379. https://doi.org/10.1007/s12600-013-0373-2 (2014).Article 

    Google Scholar 
    García Morales, M., Denno, B. D., Miller, D. R., Miller, G. L., Ben-Dov, Y. & Hardy, N. B. ScaleNet: a literature-based model of scale insect biology and systematic (2016).Bouharroud, R., Amarraque, A. & Qessaoui, R. First report of the Opuntia cochineal scale Dactylopius opuntiae (Hemiptera: Dactylopiidae) in Morocco. EPPO Bull. 46(2), 308–310. https://doi.org/10.1111/epp.12298 (2016).Article 

    Google Scholar 
    Vanegas-Rico, J. M. et al. Biology and life history of Hyperaspis trifurcata feeding on Dactylopius opuntiae. Biocontrol 61(6), 691–701. https://doi.org/10.1007/s10526-016-9753-0 (2016).Article 

    Google Scholar 
    Mann, J. Cactus-feeding insects and mites. Bull. US. Nat. Mus. 256, 1–15 (1969).
    Google Scholar 
    Vanegas-Rico, J. M. et al. Hyperaspis trifurcata (Coleoptera: Coccinellidae) and its parasitoids in Central Mexico. Rev. Colomb. Entomol. 41(2), 194–199 (2015).
    Google Scholar 
    Lopes, E. B., Albuquerque, I. C., Brito, C. H. & Batista, J. D. L. Velocidade de dispersão de dactylopius opuntiae em palma gigante (opuntia fícus-indica). Rev. Bras. Eng. Agric. Ambient. 6(2), 644–649 (2009).
    Google Scholar 
    Badii, M. H. & Flores, A. E. Prickly pear cacti pests and their control in Mexico. Fla. Entomol. 84, 503–505. https://doi.org/10.2307/3496379 (2001).Article 

    Google Scholar 
    Sbaghi, M., Bouharroud, R., Boujghagh, M. & El Bouhssini, M. Sources de résistance d’Opuntia spp. contre la cochenille à carmin, Dactylopius opuntiae, au Maroc. EPPO Bull. 49(3), 585–592. https://doi.org/10.1111/epp.12606 (2019).Article 

    Google Scholar 
    Khan, H. A. A., Sayyed, A. H., Akram, W., Razald, S. & Ali, M. Predatory potential of Chrysoperla carnea and Cryptolaemus montrouzieri larvae on different stages of the mealybug, Phenacoccus solenopsis: A threat to cotton in South Asia. J. Insect. Sci. 12(1), 147. https://doi.org/10.1673/031.012.14701 (2012).Article 
    PubMed Central 

    Google Scholar 
    El Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. Seasonal biology of Dactylopius opuntiae (Hemiptera: Dactylopiidae) on Opuntia ficus-indica (Caryophyllales: Cactaceae) under field and semi-field conditions in Morocco. Ponte. 1, 259–327. https://doi.org/10.21506/j.ponte.2020.1.17 (2020).Article 

    Google Scholar 
    Flores, A., Olvera, H., Rodríguez, S. & Barranco, J. Predation potential of Chilocorus cacti (Coleoptera: Coccinellidae) to the prickly pear cacti pest Dactylopius opuntiae (Hemiptera: Dactylopiidae). Neotrop. Entomol. 42(4), 407–411. https://doi.org/10.1007/s13744-013-0139-z (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Galloway, T. & Handy, R. Immunotoxicity of organophosphorous pesticides. Ecotoxicology 12(1), 345–363. https://doi.org/10.1023/A:1022579416322 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Arias-Estévez, M. et al. The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric. Ecosyst. Environ. 123(4), 247–260. https://doi.org/10.1016/j.agee.2007.07.011 (2008).CAS 
    Article 

    Google Scholar 
    Palacios-Mendoza, C., Nieto-Hernández, R., Llanderal-Cázares, C. & González-Hernández, H. Efectividad biológica de productos biodegradables para el control de la cochinilla silvestre Dactylopius opuntiae (Cockerell) (Homoptera: Dactylopiidae). Acta. Zool. Mex. 20(3), 99–106 (2004).
    Google Scholar 
    Borges, L. R. et al. Use of biodegradable products for the control of Dactylopius opuntiae (Hemiptera: Dactylopiidae) in cactus pear. Acta. Hortic. 995, 379–386. https://doi.org/10.17660/ActaHortic.2013.995.49 (2013).Article 

    Google Scholar 
    Carneiro-Leão, M. P., Tiago, P. V., Medeiros, L. V., da Costa, A. F. & de Oliveira, N. T. Dactylopius opuntiae: Control by the Fusarium incarnatum–equiseti species complex and confirmation of mortality by DNA fingerprinting. J. Pest. Sci. 90(3), 925–933. https://doi.org/10.1007/s10340-017-0841-4 (2017).Article 

    Google Scholar 
    da Silva Santos, A. C., Oliveira, R. L. S., da Costa, A. F., Tiago, P. V. & de Oliveira, N. T. Controlling Dactylopius opuntiae with Fusarium incarnatum–equiseti species complex and extracts of Ricinus communis and Poincianella pyramidalis. J. Pest. Sci. 89(2), 539–547. https://doi.org/10.1007/s10340-015-0689-4 (2016).Article 

    Google Scholar 
    Tiago, P. V. et al. Polymorphisms in entomopathogenic fusaria based on inter simple sequence repeats. Biocontrol Sci. Technol. 26(10), 1401–1410. https://doi.org/10.1080/09583157.2016.1210084 (2016).Article 

    Google Scholar 
    Ramdani, C., Bouharroud, R., Sbaghi, M., Mesfioui, A. & El Bouhssini, M. Field and laboratory evaluations of different botanical insecticides for the control of Dactylopius opuntiae (Cockerell) on cactus pear in Morocco. Int. J. Trop. Insect. Sci. 41(2), 1623–1632. https://doi.org/10.1007/s42690-020-00363-w (2021).Article 

    Google Scholar 
    El-Aalaoui, M. et al. Comparative toxicity of different chemical and biological insecticides against the scale insect Dactylopius opuntiae and their side effects on the predator Cryptolaemus montrouzieri. Arch. Phytopathol. Plant. Prot. 52(1–2), 155–169. https://doi.org/10.1080/03235408.2019.1589909 (2019).CAS 
    Article 

    Google Scholar 
    El-Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. Predatory potential of eleven native Moroccan adult ladybird species on different stages of Dactylopius opuntiae (Cockerell)(Hemiptera: Dactylopiidae). EPPO Bull. 49(2), 374–379. https://doi.org/10.1111/epp.12565 (2019).Article 

    Google Scholar 
    El-Aalaoui, M., Bouharroud, R., Sbaghi, M., El Bouhssini, M. & Hilali, L. First study of the biology of Cryptolaemus montrouzieri and its potential to feed on the mealybug Dactylopius opuntiae (Hemiptera: Dactylopiidae) under laboratory conditions in Morocco. Arch. Phytopathol. Plant. Prot. 52(13–14), 1112–1124. https://doi.org/10.1080/03235408.2019.1691904 (2019).CAS 
    Article 

    Google Scholar 
    Lester, P. J., Thistlewood, H. M. A. & Harmsen, R. Some effects of pre-release host-plant on the biological control of Panonychus ulmi by the predatory mite Amblyseius fallacis. Exp. Appl. Acarol. 24(1), 19–33. https://doi.org/10.1023/A:1006345119387 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Poinar, G. O. Description and biology of a new insect parasitic rhabditoid, Heterorhabditis bacteriophora n. Gen., n. Sp. (Rhabditida: Heterorhabditidae n. Fam.). Nematol. 21(4), 463–470. https://doi.org/10.1163/187529275X00239 (1976).Article 

    Google Scholar 
    Boemare, N., Akhurst, R. & Mourant, R. DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen-nov.. Int. J. Syst. Bacteriol. 43(2), 249–255. https://doi.org/10.1099/00207713-43-2-249 (1993).CAS 
    Article 

    Google Scholar 
    Gulzar, S., Wakil, W. & Shapiro-Ilan, D. I. Potential use of entomopathogenic nematodes against the soil dwelling stages of onion thrips, Thrips tabaci Lindeman: Laboratory, greenhouse and field trials. Biol. Control. 161, 104677. https://doi.org/10.1016/j.biocontrol.2021.104677 (2021).Article 

    Google Scholar 
    Adams, B. J. & Nguyen, K. B. Taxonomy and systematics. In Entomopathogenic Nematology (ed. Gaugler, R.) 1–34 (CABI Publishing, 2002).
    Google Scholar 
    Dowds, B. C. A. & Peters, A. Virulence mechanisms. In Entomopathogenic Nematology (ed. Gaugler, R.) 79–90 (CABI Publishing, 2003).
    Google Scholar 
    Bal, H. K. & Grewal, P. S. Lateral dispersal and foraging behavior of entomopathogenic nematodes in the absence and presence of mobile and non-mobile hosts. PLoS ONE 10(6), e0129887. https://doi.org/10.1371/journal.pone.0129887 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lewis, E. E., Gaugler, R. & Harrison, R. Entomopathogenic nematode host finding—response to host contact cues by cruise and ambush foragers. Parasitology 105, 309–315. https://doi.org/10.1017/S0031182000074230 (1992).Article 

    Google Scholar 
    Campbell, J. F. & Gaugler, R. Nictation behavior and its ecological implications in the host search strategies of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae). Behaviour 126, 155–169 (1993).Article 

    Google Scholar 
    Lewis, E. E., Gaugler, R. & Harrison, R. Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Can. J. Zool. 71, 765–769 (1993).Article 

    Google Scholar 
    Grewal, P. S., Lewis, E. E., Gaugler, R. & Campbell, J. F. Host finding behavior as a predictor of foraging strategy in entomopathogenic nematodes. Parasitology 108, 207–215 (1994).Article 

    Google Scholar 
    Poinar, G. O. Biology and taxonomy of Steinernematidae and Heterorhabditidae. In Entomopathogenic Nematodes in Biological cOntrol (eds Gaugler, R. & Kaya, H. K.) 23–62 (CRC Press, 1990).
    Google Scholar 
    De Waal, J. Y., Wolhlfarter, M. & Malan, A. P. Laboratory bioassays for the differential susceptibility of Planococcus ficus and Pseudococcus viburni (Hemiptera: Pseudococcidae) to entomopathogenic nematodes (Rhabditida: Heterorhabditidae and Steinernematidae). S. Afr. J. Plant. Soil. 24, 243–244 (2007).
    Google Scholar 
    Lacey, L. A. & Shapiro-Ilan, D. I. Microbial control of insect pests in temperate orchard systems: Potential for incorporation into IPM. Annu. Rev. Entomol. 53(1), 121–144. https://doi.org/10.1146/annurev.ento.53.103106.093419 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Niekerk, S. & Malan, A. P. Potential of South African entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) for control of the citrus mealybug, Planococcus citri (Pseudococcidae). J. Invertebr. Pathol. 111(2), 166–174. https://doi.org/10.1016/j.jip.2012.07.023 (2012).Article 
    PubMed 

    Google Scholar 
    Půža, V. Control of insect pests by entomopathogenic nematodes. In Principles of Plant Microbe Interactions (ed. Lugtenberg, B.) 175–183 (Springer, 2015).
    Google Scholar 
    Gulzar, S. et al. Environmental tolerance of entomopathogenic nematodes differs among nematodes arising from host cadavers versus aqueous suspension. J. Invertebr. Pathol. 175, 107452. https://doi.org/10.1016/j.jip.2020.107452 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gulzar, S. et al. Virulence of entomopathogenic nematodes to pupae of Frankliniella fusca (Thysanoptera: Thripidae). J. Econ. Entomol. 114(5), 2018–2023. https://doi.org/10.1093/jee/toab132 (2021).Article 
    PubMed 

    Google Scholar 
    Gulzar, S., Wakil, W. & Shapiro-Ilan, D. I. Combined effect of entomopathogens against Thrips tabaci Lindeman (Thysanoptera: Thripidae): laboratory, greenhouse and field trials. Insects 12(5), 456. https://doi.org/10.3390/insects12050456 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Usman, M. et al. Virulence of entomopathogenic fungi to Rhagoletis pomonella (Diptera: Tephritidae) and interactions with entomopathogenic nematodes. J. Econ. Entomol. 113(6), 2627–2633. https://doi.org/10.1093/jee/toaa209 (2020).Article 
    PubMed 

    Google Scholar 
    Usman, M. et al. Potential of entomopathogenic nematodes against the pupal stage of the apple maggot Rhagoletis pomonella (Walsh) (Diptera: Tephritidae). J. Nematol. 52, e2020–e2079. https://doi.org/10.21307/jofnem-2020-079 (2020).Article 
    PubMed Central 

    Google Scholar 
    Usman, M., Wakil, W. & Shapiro-Ilan, D. I. Entomopathogenic nematodes as biological control agent against Bactrocera zonata and Bactrocera dorsalis (Diptera: Tephritidae). Biol. Control. 163, 104706. https://doi.org/10.1016/j.biocontrol.2021.104706 (2021).Article 

    Google Scholar 
    Grewal, P. S., Wang, X. & Taylor, R. A. J. Dauer juvenile longevity and stress tolerance in natural populations of entomopathogenic nematodes: Is there a relationship?. Int. J. Parasitol. 32(6), 717–725. https://doi.org/10.1016/S0020-7519(02)00029-2 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Benseddik, Y. et al. Occurrence and distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in Morocco. Biocontrol. Sci. Technol. 30(10), 1060–1072. https://doi.org/10.1080/09583157.2020.1787344 (2020).Article 

    Google Scholar 
    Mokrini, F. et al. Potential of Moroccan entomopathogenic nematodes for the control of the Mediterranean fruit fly Ceratitis capitata Wiedemann (Diptera: Tephritidae). Sci. Rep. 10(1), 1–11. https://doi.org/10.1038/s41598-020-76170-7 (2020).CAS 
    Article 

    Google Scholar 
    Gorgadze, O., Bakhtadze, G., Kereselidze, M. & Lortkipanidze, M. The efficacy of entomopathogenic agents against Halyomorpha halys. Int. J. Curr. Res. 9, 62177–62180 (2017).
    Google Scholar 
    Tarasco, E. & Triggiani, O. Use of Italian EPNs in controlling Rhytidoderes plicatus Oliv, (Coleoptera, Curculionidae) in potted savoy cabbages. IOBC. WPRS. Bull. OILBN. 28, 9–12 (2005).
    Google Scholar 
    Moreno Salguero, C. A., Bustillo Pardey, A. E., Lopez Nunez, J. C., Castro Valderrama, U. & Ramirez Sanchez, G. D. Virulence of entomopathogenic nematodes to control Aeneolamia varia (Hemiptera: Cercopidae) in sugarcane. Rev. Colomb. Entomol. 38(2), 260–265 (2012).
    Google Scholar 
    Julià, I., Morton, A., Roca, M. & Garcia-del-Pino, F. Evaluation of three entomopathogenic nematode species against nymphs and adults of the sycamore lace bug, Corythucha ciliata. Biocontrol 65(5), 623–633. https://doi.org/10.1007/s10526-020-10045-8 (2020).CAS 
    Article 

    Google Scholar 
    Sirjani, F. O., Lewis, E. E. & Kaya, H. K. Evaluation of entomopathogenic nematodes against the olive fruit fly, Bactrocera oleae (Diptera: Tephritidae). Biol. Control. 48, 274–7280. https://doi.org/10.1016/j.biocontrol.2008.11.002 (2009).Article 

    Google Scholar 
    Guide, B. A., Soares, E. A., Itimura, C. R. & Alves, V. S. Entomopathogenic nematodes in the control of cassava root mealybug Dysmicoccus sp. (Hemiptera: Pseudococcidae). Rev. Colomb. Entomol. 42(1), 16–21. https://doi.org/10.25100/socolen.v42i1.6664 (2016).CAS 
    Article 

    Google Scholar 
    Le Vieux, P. D. & Malan, A. P. The potential use of entomopathogenic nematodes to control Planococcus ficus (Signoret) (Hemiptera: Pseudococcidae). S. J. Enol. Vitic. 34(2), 296–306. https://doi.org/10.21548/34-2-1108 (2013).Article 

    Google Scholar 
    Lewis, E. D., Campbell, J., Griffin, C., Kaya, H. & Peters, A. Behavioral ecology of entomopathogenic nematodes. Biol. Control. 38(1), 66–79. https://doi.org/10.1016/j.biocontrol.2005.11.007 (2006).Article 

    Google Scholar 
    Rahoo, A. M., Tariq Mukhta, T., Gowen, S. R., Rahoo, R. K. & Abro, S. A. Reproductive potential and host searching ability of entomopathogenic nematode Steinernema feltiae. Pak. J. Zool. 49(1), 229–234. https://doi.org/10.17582/journal.pjz/2017.49.1.229.234 (2017).Article 

    Google Scholar 
    Selvan, S., Campbell, J. F. & Gaugler, R. Density-dependent effects on entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) within an insect host. J. Invertebr. Pathol. 62(3), 278–284. https://doi.org/10.1006/jipa.1993.1113 (1993).Article 

    Google Scholar 
    Gaugler, R., Wang, Y. & Campbell, J. F. Aggressive and evasive behaviors in Popillia japonica (Coleoptera: Scarabaeidae) larvae: Defences against entomopathogenic nematode attack. J. Invertebr. Pathol. 64(3), 193–199. https://doi.org/10.1016/S00222011(94)90150-3 (1994).Article 

    Google Scholar 
    Burjanadze, M., Kharabadze, N. & Chkhidze, N. Testing local isolates of entomopathogenic microorganisms against brown marmorated stink Bug Halyomorpha halys in Georgia. BIO Web Conf. 18, 00006. https://doi.org/10.1051/bioconf/20201800006 (2020).Article 

    Google Scholar 
    Del Valle, E. E., Dolinski, C. & Souza, R. M. Dispersal of Heterorhabditis baujardi LPP7 (Nematoda: Rhabditida) applied to the soil as infected host cadavers. Int. J. Pest. Manag. 54(2), 115–122. https://doi.org/10.1080/09670870701660579 (2008).Article 

    Google Scholar 
    Griffin, C. T., Boemare, N. E. & Lewis, E. E. Biology and behavior. In Nematodes as Biocontrol Agents 1st edn (eds Grewal, P. S. et al.) 47–59 (CABI Publishing, 2005).Chapter 

    Google Scholar 
    Bastidas, B., Portillo, E. & San-Blas, E. Size does matter: The life cycle of Steinernema spp. in micro-insect hosts. J. Invertebr. Pathol. 121, 46–55. https://doi.org/10.1016/j.jip.2014.06.010 (2014).Article 
    PubMed 

    Google Scholar 
    Stokwe, N. F. & Malan, A. P. Susceptibility of the obscure mealybug, Pseudococcus viburni (Signoret) (Pseudococcidae), to South African isolates of entomopathogenic nematodes. Int. J. Pest. Manag. 62(2), 119–128. https://doi.org/10.1080/09670874.2015.1122250 (2016).Article 

    Google Scholar 
    Stokwe, N. F. & Malan, A. P. Laboratory bioassays to determine susceptibility of woolly apple aphid, Eriosoma lanigerum (Hausmann) (Hemiptera: Aphididae), to entomopathogenic nematodes. Afr. Entomol. 25(1), 123–136. https://doi.org/10.4001/003.025.0123 (2017).Article 

    Google Scholar 
    Cuthbertson, A. G. et al. Bemisia tabaci: The current situation in the UK and the prospect of developing strategies for eradication using entomopathogens. Insect Sci. 18(1), 1–10. https://doi.org/10.1111/j.1744-7917.2010.01383.x (2011).Article 

    Google Scholar 
    Van Niekerk, S. & Malan, A. P. Compatibility of Heterorhabditis zealandica and Steinernema yirgalemense with agrochemicals and biological control agents. Afr. Entomol. 22, 49–56 (2014).Article 

    Google Scholar 
    Van Niekerk, S. & Malan, A. P. Adjuvants to improve aerial control of the citrus mealybug Planococcus citri (Hemiptera: Pseudococcidae) using entomopathogenic nematodes. J. Helminthol. 89(2), 189–195. https://doi.org/10.1017/S0022149X13000771 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aldama-Aguilera, C. & Llanderal-Cázares, C. Grana cochinilla: comparación de métodos de producción en penca cortada. Agrociencia 37(1), 11–19 (2003).
    Google Scholar 
    Kaya, H. K. & Stock, S. P. Techniques in insect nematology. In Manual of Techniques in Insect Pathology, Biological Techniques Series (ed. Lacey, L. A.) 281–324 (Academic Press, 1997).Chapter 

    Google Scholar 
    White, C. F. A method for obtaining infective larvae from culture. Science 66, 302–303. https://doi.org/10.1126/science.66.1709.302-a (1927).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro-Ilan, D. I., Morales-Ramos, J. A. & Rojas, M. G. In vivo production of entomopathogenic nematodes. In Microbial-Based Biopesticides 137–158 (Humana Press, 2016).Chapter 

    Google Scholar 
    Henderson, C. F. & Tilton, E. W. Tests with acaricides against the brown wheat mite. J. Econ. Entomol. 48(2), 157–161 (1955).CAS 
    Article 

    Google Scholar 
    Abbot, W. S. Method of computing the effectiveness of an insecticide. J. Econ. Entomol. 18(2), 265–267. https://doi.org/10.1093/jee/18.2.265a (1925).Article 

    Google Scholar 
    Finney, D. J. Probit analysis 3rd edn, 20–63 (Cambridge University Press, 1971).MATH 

    Google Scholar 
    Haye, T., Wyniger, D. & Gariepy, T. D. Recent range expansion of brown marmorated stink bug in Europe. In Proceedings of the Eighth International Conference on Urban Pests (eds Müller, G. et al.) 309–314 (OOK Press, 2014).
    Google Scholar 
    Carver, R. H. & Nash, J. G. Doing data analysis with SPSS: version 18.0. (Cengage Learning, 2011). More

  • in

    Pulses in silicic arc magmatism initiate end-Permian climate instability and extinction

    Courtillot, V. E. & Renne, P. R. On the ages of flood basalt events. C. R. Geosci. 335, 113–140 (2003).Article 

    Google Scholar 
    Campbell, I., Czamanske, G., Fedorenko, V., Hill, R. & Stepanov, V. Synchronism of the Siberian Traps and the Permian–Triassic boundary. Science 258, 1760–1763 (1992).Article 

    Google Scholar 
    Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).Article 

    Google Scholar 
    Payne, J. L. & Clapham, M. E. End-Permian mass extinction in the oceans: an ancient analog for the twenty-first century? Annu. Rev. Earth Planet. Sci. 40, 89–111 (2012).Article 

    Google Scholar 
    Schneebeli-Hermann, E. et al. Evidence for atmospheric carbon injection during the end-Permian extinction. Geology 41, 579–582 (2013).Article 

    Google Scholar 
    Lee, C. & Lackey, J. Global continental arc flare-ups and their relation to long-term greenhouse conditions. Elements 11, 125–130 (2015).Article 

    Google Scholar 
    McKenzie, N. R. et al. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352, 444–447 (2016).Article 

    Google Scholar 
    Ratschbacher, B. C., Paterson, S. R. & Fischer, T. P. Spatial and depth‐dependent variations in magma volume addition and addition rates to continental arcs: application to global CO2 fluxes since 750 Ma. Geochem. Geophys. Geosyst. 20, 2997–3018 (2019).Article 

    Google Scholar 
    Soreghan, G. S., Soreghan, M. J. & Heavens, N. G. Explosive volcanism as a key driver of the late Paleozoic ice age. Geology 47, 600–604 (2019).Article 

    Google Scholar 
    Jones, M. T., Sparks, R. S. J. & Valdes, P. J. The climatic impact of supervolcanic ash blankets. Clim. Dyn. 29, 553–564 (2007).Article 

    Google Scholar 
    DeCelles, P. G., Ducea, M. N., Kapp, P. & Zandt, G. Cyclicity in cordilleran orogenic systems. Nat. Geosci. 2, 251–257 (2009).Article 

    Google Scholar 
    Ducea, M. N., Paterson, S. R. & DeCelles, P. G. High-volume magmatic events in subduction systems. Elements 11, 99–104 (2015).Article 

    Google Scholar 
    Milan, L. A., Daczko, N. R. & Clarke, G. L. Cordillera Zealandia: a Mesozoic arc flare-up on the palaeo-Pacific Gondwana Margin. Sci. Rep. 7, 261 (2017).Article 

    Google Scholar 
    Gravley, D. M., Deering, C. D., Leonard, G. S. & Rowland, J. V. Ignimbrite flare-ups and their drivers: a New Zealand perspective. Earth Sci. Rev. 162, 65–82 (2016).Article 

    Google Scholar 
    de Silva, S. L., Riggs, N. R. & Barth, A. P. Quickening the pulse: fractal tempos in continental arc magmatism. Elements 11, 113–118 (2015).Article 

    Google Scholar 
    Attia, S., Cottle, J. M. & Paterson, S. R. Erupted zircon record of continental crust formation during mantle driven arc flare-ups. Geology 48, 446–451 (2020).Article 

    Google Scholar 
    Chisholm, E.-K. I., Simpson, C. & Blevin, P. New SHRIMP U–Pb Zircon Ages from the New England Orogen, New South Wales: July 2010–June 2012 (Geoscience Australia, 2014).McPhie, J. Evolution of a non-resurgent cauldron: the Late Permian Coombadjha volcanic complex, northeastern New South Wales, Australia. Geol. Mag. 123, 257–277 (1986).Article 

    Google Scholar 
    Lackie, M. The magnetic fabric of the Late Permian Dundee Ignimbrite, Dundee, NSW. Explor. Geophys. 19, 481–488 (1988).Article 

    Google Scholar 
    Stewart, A. Facies in an Upper Permian volcanic succession, Emmaville Volcanics, Deepwater, northeastern New South Wales. Aust. J. Earth Sci. 48, 929–942 (2001).Article 

    Google Scholar 
    Milan, L. A. et al. A new reconstruction for Permian East Gondwana based on zircon data from ophiolite of the East Australian Great Serpentinite Belt. Geophys. Res. Lett. 48, e2020GL090293 (2021).Article 

    Google Scholar 
    Rosenbaum, G. The Tasmanides: Phanerozoic tectonic evolution of eastern Australia. Annu. Rev. Earth Planet. Sci. 46, 291–325 (2018).Article 

    Google Scholar 
    Shaw, S., Flood, R. & Pearson, N. The New England Batholith of eastern Australia: evidence of silicic magma mixing from zircon 176Hf/177Hf ratios. Lithos 126, 115–126 (2011).Article 

    Google Scholar 
    Kohn, B. et al. Shaping the Australian crust over the last 300 million years: insights from fission track thermotectonic imaging and denudation studies of key terranes. Aust. J. Earth Sci. 49, 697–717 (2002).Article 

    Google Scholar 
    Metcalfe, I., Crowley, J., Nicoll, R. & Schmitz, M. High-precision U–Pb CA-TIMS calibration of Middle Permian to Lower Triassic sequences, mass extinction and extreme climate-change in eastern Australian Gondwana. Gondwana Res. 28, 61–81 (2015).Article 

    Google Scholar 
    Laurie, J. et al. Calibrating the Middle and Late Permian palynostratigraphy of Australia to the geologic time-scale via U–Pb zircon CA-IDTIMS dating. Aust. J. Earth Sci. 63, 701–730 (2016).Article 

    Google Scholar 
    Creech, M. Tuffaceous deposition in the Newcastle Coal Measures: challenging existing concepts of peat formation in the Sydney Basin, New South Wales, Australia. Int. J. Coal Geol. 51, 185–214 (2002).Article 

    Google Scholar 
    Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).Article 

    Google Scholar 
    Frank, T. D. et al. Pace, magnitude, and nature of terrestrial climate change through the end-Permian extinction in southeastern Gondwana. Geology, 49, 1089–1095 (2021).Grevenitz, P., Carr, P. & Hutton, A. Origin, alteration and geochemical correlation of Late Permian airfall tuffs in coal measures, Sydney Basin, Australia. Int. J. Coal Geol. 55, 27–46 (2003).Article 

    Google Scholar 
    Phillips, L. et al. U–Pb geochronology and palynology from Lopingian (Upper Permian) coal measure strata of the Galilee Basin, Queensland, Australia. Aust. J. Earth Sci. 65, 153–173 (2018).Article 

    Google Scholar 
    Siégel, C., Bryan, S., Allen, C., Gust, D. & Purdy, D. Crustal evolution in the New England Orogen, Australia: repeated igneous activity and scale of magmatism govern the composition and isotopic character of the continental crust. J. Petrol., 61, 1–28 (2020).Wang, X. et al. Convergent continental margin volcanic source for ash beds at the Permian–Triassic boundary, South China: constraints from trace elements and Hf-isotopes. Palaeogeogr. Palaeoclimatol. Palaeoecol. 519, 154–165 (2019).Article 

    Google Scholar 
    Nelson, D. & Cottle, J. Tracking voluminous Permian volcanism of the Choiyoi Province into central Antarctica. Lithosphere 11, 386–398 (2019).Article 

    Google Scholar 
    He, B., Zhong, Y.-T., Xu, Y.-G. & Li, X.-H. Triggers of Permo-Triassic boundary mass extinction in South China: the Siberian Traps or Paleo-Tethys ignimbrite flare-up? Lithos 204, 258–267 (2014).Article 

    Google Scholar 
    Cope, T. Phanerozoic magmatic tempos of North China. Earth Planet. Sci. Lett. 468, 1–10 (2017).Article 

    Google Scholar 
    Sun, Y. et al. Lethally hot temperatures during the Early Triassic greenhouse. Science 338, 366–370 (2012).Article 

    Google Scholar 
    Jin, Y. et al. Pattern of marine mass extinction near the Permian–Triassic boundary in South China. Science 289, 432–436 (2000).Article 

    Google Scholar 
    Song, H., Wignall, P. B., Tong, J. & Yin, H. Two pulses of extinction during the Permian–Triassic crisis. Nat. Geosci. 6, 52–56 (2013).Article 

    Google Scholar 
    Ramezani, J. & Bowring, S. A. Advances in numerical calibration of the Permian timescale based on radioisotopic geochronology. Geol. Soc. Spec. Publ. 450, 51–60 (2018).Article 

    Google Scholar 
    Joachimski, M. M. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).Article 

    Google Scholar 
    Alroy, J. et al. Phanerozoic trends in the global diversity of marine invertebrates. Science 321, 97–100 (2008).Article 

    Google Scholar 
    Mundil, R., Ludwig, K. R., Metcalfe, I. & Renne, P. R. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science 305, 1760–1763 (2004).Article 

    Google Scholar 
    Chen, B. et al. Permian ice volume and palaeoclimate history: oxygen isotope proxies revisited. Gondwana Res. 24, 77–89 (2013).Article 

    Google Scholar 
    Shen, S. Z. et al. High‐resolution Lopingian (Late Permian) timescale of South China. Geol. J. 45, 122–134 (2010).Article 

    Google Scholar 
    Shellnutt, J. G., Denyszyn, S. W. & Mundil, R. Precise age determination of mafic and felsic intrusive rocks from the Permian Emeishan large igneous province (SW China). Gondwana Res. 22, 118–126 (2012).Article 

    Google Scholar 
    Fielding, C. R. et al. Sedimentology of the continental end-Permian extinction event in the Sydney Basin, eastern Australia. Sedimentology 68, 30–62 (2021).Article 

    Google Scholar 
    Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 1–12 (2019).Article 

    Google Scholar 
    Liu, Z. et al. Osmium-isotope evidence for volcanism across the Wuchiapingian–Changhsingian boundary interval. Chem. Geol. 529, 119313 (2019).Article 

    Google Scholar 
    Cheng, C. et al. Permian carbon isotope and clay mineral records from the Xikou section, Zhen’an, Shaanxi Province, central China: climatological implications for the easternmost Paleo-Tethys. Palaeogeogr. Palaeoclimatol. Palaeoecol. 514, 407–422 (2019).Article 

    Google Scholar 
    Gastaldo, R. A. et al. The base of the Lystrosaurus Assemblage Zone, Karoo Basin, predates the end-Permian marine extinction. Nat. Commun. 11, 1–8 (2020).Article 

    Google Scholar 
    Retallack, G. J. et al. Multiple Early Triassic greenhouse crises impeded recovery from Late Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 233–251 (2011).Article 

    Google Scholar 
    Mays, C. et al. Refined Permian–Triassic floristic timeline reveals early collapse and delayed recovery of south polar terrestrial ecosystems. GSA Bull. 132, 1489–1513 (2020).Article 

    Google Scholar 
    Yugan, J., Jing, Z. & Qinghua, S. Two Phases of the End-Permian Mass Extinction. In Pangea: Global Environments and Resources — Memoir, 17, 813-822 (1994).Williams, M. L., Jones, B. G. & Carr, P. F. The interplay between massive volcanism and the local environment: geochemistry of the Late Permian mass extinction across the Sydney Basin, Australia. Gondwana Res. 51, 149–169 (2017).Article 

    Google Scholar 
    van der Boon, A. et al. Exploring a link between the Middle Eocene Climatic Optimum and Neotethys continental arc flare-up. Clim. Past 17, 229–239 (2021).Article 

    Google Scholar 
    Metcalfe, I. Tectonic evolution of Sundaland. Bull. Geol. Soc. Malays. 63, 27–60 (2017).Article 

    Google Scholar 
    Maravelis, A. G. et al. Re-assessing the Upper Permian stratigraphic succession of the Northern Sydney Basin, Australia, by CA-IDTIMS. Geosciences 10, 474 (2020).Article 

    Google Scholar 
    Voice, P. J., Kowalewski, M. & Eriksson, K. A. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. J. Geol. 119, 109–126 (2011).Article 

    Google Scholar 
    Watson, E. B., Wark, D. A. & Thomas, J. B. Crystallization thermometers for zircon and rutile. Contrib. Mineral. Petrol. 151, 413–433 (2006).Article 

    Google Scholar 
    Sláma, J. et al. Plešovice zircon—a new natural reference material for U–Pb and Hf isotopic microanalysis. Chem. Geol. 249, 1–35 (2008).Article 

    Google Scholar 
    Wiedenbeck, M. et al. Three natural zircon standards for U–Th–Pb, Lu–Hf, trace element and REE analyses. Geostand. Newsl. 19, 1–23 (1995).Article 

    Google Scholar 
    Mattinson, J. M. Zircon U–Pb chemical abrasion (“CA-TIMS”) method: combined annealing and multi-step partial dissolution analysis for improved precision and accuracy of zircon ages. Chem. Geol. 220, 47–66 (2005).Article 

    Google Scholar 
    Krogh, T. E. A low contamination method for hydrothermal decomposition of zircon and extraction of U and Pb for isotopic age determination, Geochim. Cosmochim. Acta 37, 485–494 (1973).Article 

    Google Scholar 
    Gerstenberger, H. & Haase, G. A highly effective emitter substance for mass spectrometric Pb isotope ratio determinations. Chem. Geol. 136, 309–312 (1997).Article 

    Google Scholar 
    Schmitz, M. D. & Schoene, B. Derivation of isotope ratios, errors, and error correlations for U–Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochem. Geophys. Geosyst. 8, https://doi.org/10.1029/2006gc001492 (2007).Condon, D. J., Schoene, B., McLean, N. M., Bowring, S. A. & Parrish, R. R. Metrology and traceability of U–Pb isotope dilution geochronology (EARTHTIME tracer calibration part I). Geochim. Cosmochim. Acta 164, 464–480 (2015).Article 

    Google Scholar 
    Jaffey, A. H., Flynn, K. F., Glendenin, L. E., Bentley, W. C. & Essling, A. M. Precision measurement of half-lives and specific activities of 235U and 238U. Phys. Rev. C 4, 1889–1906 (1971).Article 

    Google Scholar 
    Hiess, J., Condon, D. J., McLean, N. & Noble, S. R. 238U/235U systematics in terrestrial uranium-bearing minerals. Science 335, 1610–1614 (2012).Article 

    Google Scholar 
    Crowley, J. L., Schoene, B. & Bowring, S. A. U–Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology 35, 1123–1126 (2007).Article 

    Google Scholar 
    Ludwig, K. R. User’s manual for Isoplot 3.00 (Berkley Geochronology Center, 2003).Offenburg, A. C. & Pogson, D. J. Geological Map of New England 1:500,000 (Geological Survey of New South Wales, 1973).Cranfield, L. C., Hutton, L. J. & Green, P. M. Geological Map of Ipswich 1:100,000 (Geological Survey of Queensland, 1978).Shaw, S. E. & Flood, R. H. The New England Batholith, eastern Australia: geochemical variations in time and space. J. Geophys. Res. Solid Earth 86, 10530–10544 (1981).Article 

    Google Scholar 
    Barnes, R. G., Brown, R. E., Brownlow, J. W. & Stroud, W. J. Late Permian volcanics in New England. Q. Notes Geol. Surv. N. South Wales 84, 1–36 (1991).
    Google Scholar 
    Finlayson, D. M. & Collins, C. D. N. Lithospheric velocity structures under the southern New England Orogen: evidence for underplating at the Tasman Sea margin. Aust. J. Earth Sci. 40, 141–153 (1993).Article 

    Google Scholar 
    Timothy, C., Geoffrey, L. C., Nathan, R. D., Sandra, P. & Adrianna, R. Orthopyroxene–omphacite- and garnet–omphacite-bearing magmatic assemblages, Breaksea Orthogneiss, New Zealand: oxidation state controlled by high-P oxide fractionation. Lithos 216–217, 1–16 (2015).
    Google Scholar 
    Chapman, T., Clarke, G. L. & Daczko, N. R. Crustal differentiation in a thickened arc—evaluating depth dependences. J. Petrol. 57, 595–620 (2016).Article 

    Google Scholar 
    Jagoutz, O. & Behn, M. D. Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature 504, 131–134 (2013).Article 

    Google Scholar 
    Chapman, J. B., Ducea, M. N., DeCelles, P. G. & Profeta, L. Tracking changes in crustal thickness during orogenic evolution with Sr/Y: an example from the North American Cordillera. Geology 43, 919–922 (2015).Article 

    Google Scholar 
    Bryant, C. J. A Compendium of Granites of the Southern New England Orogen, Eastern Australia (Geological Survey of New South Wales, 2017).Phillips, G., Landenberger, B. & Belousova, E. A. Building the New England Batholith, eastern Australia—linking granite petrogenesis with geodynamic setting using Hf isotopes in zircon. Lithos 122, 1–12 (2011).Article 

    Google Scholar 
    Kemp, A., Hawkesworth, C., Collins, W., Gray, C. & Blevin, P. Isotopic evidence for rapid continental growth in an extensional accretionary orogen: the Tasmanides, eastern Australia. Earth Planet. Sci. Lett. 284, 455–466 (2009).Article 

    Google Scholar 
    Anderson, J. R., Fraser, G. L., McLennan, S. M. & Lewis, C. J. A U–Pb Geochronology Compilation for Northern Australia Report No. 2017/22 (Geoscience Australia, 2017).Belousova, E. A., Griffin, W. L. & O’Reilly, S. Y. Zircon crystal morphology, trace element signatures and Hf isotope composition as a tool for petrogenetic modelling: examples from eastern Australian granitoids. J. Petrol. 47, 329–353 (2005).Article 

    Google Scholar 
    Bodorkos, S. et al. U–Pb Ages from the Central Lachlan Orogen and New England Orogen, New South Wales Report No. 2016/21 (Geoscience Australia, 2016).Cawood, P. A., Pisarevsky, S. A. & Leitch, E. C. Unraveling the New England orocline, east Gondwana accretionary margin. Tectonics 30, 1–15 (2011).Chisholm, E. I., Blevin, P. L. & Simpson, C. J. New SHRIMP U–Pb Zircon Ages from the New England Orogen, New South Wales: July 2012–June 2014 Report No. 2014/13 (Geoscience Australia, 2014).Chisholm, E. I., Blevin, P. L. & Simpson, C. J. New SHRIMP U–Pb Zircon Ages from the New England Orogen, New South Wales: July 2010–June 2012 Report No. 2014/13 (Geoscience Australia, 2014).Cross, A. & Blevin, P. L. Summary of Results for the Joint GSNSW–GA Geochronology Project Report No. GS2013/0426 (Geoscience Australia, 2013).Craven, S. J., Daczko, N. R. & Halpin, J. A. Thermal gradient and timing of high-T–low-P metamorphism in the Wongwibinda Metamorphic Complex, southern New England Orogen, Australia. J. Metamorph. Geol. 30, 3–20 (2012).Article 

    Google Scholar 
    Black, L. P. U–Pb Zircon Ages Obtained During 2006/07 for NSW Geological Survey Projects (Geoscience Australia, 2007).Rosenbaum, G., Li, P. & Rubatto, D. The contorted New England Orogen (eastern Australia): new evidence from U–Pb geochronology of early Permian granitoids. Tectonics 31, https://doi.org/10.1029/2011tc002960 (2012).Walthenberg, K., Blevin, P. L., Bull, K. F., Cronin, D. E. & Armistead, S. E. New SHRIMP U–Pb Zircon Ages from the Lachland Orogen and the New England Orogen, New South Wales: Mineral Systems Projects, July 2015–June 2016 Report No. 2016/28 (Geoscience Australia, 2016).Walthenberg, K., Blevin, P. L., Bodorkos, S. & Cronin, D. E. New SHRIMP U–Pb Ages from the New England Orogen, New South Wales: July 2014–June 2015 Report No. 2015/28 (Geoscience Australia, 2015).Jeon, H., Williams, I. S. & Chappell, B. W. Magma to mud to magma: rapid crustal recycling by Permian granite magmatism near the eastern Gondwana margin. Earth Planet. Sci. Lett. 319, 104–117 (2012).Article 

    Google Scholar  More

  • in

    Crabs retreat from heat

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More