More stories

  • in

    Spatial distribution and identification of potential risk regions to rice blast disease in different rice ecosystems of Karnataka

    RBD severity in different rice ecosystems of KarnatakaBased on the observations made during the exploratory surveys of 2018 and 2019 (Table 1 and Fig. 1), it was found that RBD severity significantly varied across studied areas and districts (Fig. 2). The disease severity was highest in Chikmagalur, followed by Kodagu, Shivamogga, Mysore, and Mandya districts which belong to Hilly and Kaveri ecosystems. At the same time, the lowest severity was documented in Udupi, Gulbarga, Gadag, Dakshin Kannad, Raichur, and Bellary districts of coastal, UKP, and TBP ecosystems (Fig. 3A).Table 1 Details of diverse rice-growing ecosystems selected for the study.Full size tableFigure 1Featured map of South-East Asia (A), India (B), and Karnataka (C). A total of 18 administrative districts of Karnataka were considered to gather data on rice blast disease. The area of different districts under study is shown (D). The maps were created using R software (version R-4.0.3).Full size imageFigure 2Distribution map indicating the sampling sites and the severity of rice blast disease in different rice ecosystems of Karnataka during 2018 and 2019. The maps were created using R software (version R-4.0.3).Full size imageFigure 3(A) Bar graph repressing the severity of rice blast disease (RBD) in different districts of Karnataka during 2018 and 2019. (B) Clustering of districts based on the severity of RBD in different districts of Karnataka by hclust method.Full size imageHierarchical cluster analysis using the average linkage method for RBD severity among the 18 administrative districts of diverse rice ecosystems of Karnataka identified two main clusters, namely, cluster I and cluster II (Fig. 3B). Cluster I consist of two subclusters, cluster IA and IB. Subcluster IA consists of Mandya, Dharwad, Mysore, Hassan, Shivamogga, Haveri, and Belgaum; While, Kodagu, and Chikmagalur districts were clustered in IB. Similarly, Cluster II was divided into cluster IIA and cluster IIB. Subcluster IIA comprises Udupi, Gulbarga, Gadag, Raichur, Dakshin Kannad, Uttar Kannad, Koppal and Bellary, and Davanagere district was grouped under cluster IIB.Spatial point pattern analysis of RBDThe cluster and outlier analysis was done using Local Moran’s I and p-values. The analyses have identified RBD cluster patterns at the district level during 2018 and 2019, representing dispersed and aggregated clusters of severity (Fig. 4). Based on positive I value, most of the districts were clustered together (at I  > 0), except the coastal districts such as Uttar Kannad, Udupi, Dakshin Kannad, and interior districts such as Dharwad, Davanagere, and Chikmagalur, which exhibited negative I value (at I  More

  • in

    A common sunscreen ingredient turns toxic in the sea — anemones suggest why

    Sea anemones turn oxybenzone into a light-activated agent that can bleach and kill corals.Credit: Georgette Douwma/Getty

    A common but controversial sunscreen ingredient that is thought to harm corals might do so because of a chemical reaction that causes it to damage cells in the presence of ultraviolet light. Researchers have discovered that sea anemones, which are similar to corals, make the molecule oxybenzone water-soluble by tacking a sugar onto it. This inadvertently turns oxybenzone into a molecule that — instead of blocking UV light — is activated by sunlight to produce free radicals that can bleach and kill corals. “This metabolic pathway that is meant to detoxify is actually making a toxin,” says Djordje Vuckovic, an environmental engineer at Stanford University in California, who was part of the research team. The animals “convert a sunscreen into something that’s essentially the opposite of a sunscreen”.Oxybenzone is the sun-blocking agent in many suncreams. Its chemical structure causes it to absorb UV rays, preventing damage to skin cells. But it has attracted controversy in recent years after studies reported that it can damage coral DNA, interfere with their endocrine systems and cause deformities in their larvae2. These concerns have led to some beaches in Hawaii, Palau and the US Virgin Islands, banning oxybenzone-containing sunscreens. Last year, the US National Academies of Sciences, Engineering, and Medicine convened a committee to review the science on sunscreen chemicals in aquatic ecosystems; its report is expected in the next few months.The latest study, published on 5 May in Science1, highlights that there has been little research into the potentially toxic effects of the by-products of some substances in sunscreens, says Brett Sallach, an environmental scientist at the University of York, UK. “It’s important to track not just the parent compound, but these transformed compounds that can be toxic,” he says. “From a regulatory standpoint, we have very little understanding of what transformed products are out there and their effects on the environment.”But other factors also threaten the health of coral reefs; these include climate change, ocean acidification, coastal pollution and overfishing that depletes key members of reef ecosystems. The study does not show where oxybenzone ranks in the list.Simulated seaTo understand oxybenzone’s effects, Vuckovic, environmental engineer William Mitch at Stanford and their colleagues turned to sea anemones, which are closely related to corals, and similarly harbour symbiotic algae that give them colour.The researchers exposed anemones with and without the algae to oxybenzone in artificial seawater, and illuminated them with light — including the UV spectrum — that mimicked the 24-hour sunlight cycle. All the animals exposed to both the chemical and sunlight died within 17 days. But those exposed to sunlight without oxybenzone or to oxybenzone without UV light lived.Oxybenzone alone did not produce dangerous reactive molecules when exposed to sunlight, as had been expected, so the researchers thought that the molecule might be metabolized in some way. When they analysed anemone tissues, they found that the chemical bound to sugars accumulated in them, where it triggered the formation of oxygen-based free radicals that are lethal to corals. “Understanding this mechanism could help identify sunscreen molecules without this effect,” Mitch says.The sugar-bound form of oxybenzone amassed at higher levels in the symbiotic algae than in the anemones’ own cells. Sea anemones lacking algae died around a week after exposure to oxybenzone and sunlight, compared with 17 days for those with algae. That suggests the algae protected the animals from oxybenzone’s harmful effects.Corals that have been subject to environmental stressors such as changing temperatures often become bleached, losing their symbiotic algae. “If they’re weaker in this state, rising sea water temperature or ocean acidification might make them more susceptible to these local, anthropogenic contaminants,” Mitch says.Greater dangerIt’s not clear how closely these laboratory-based studies mimic the reality of reef ecosystems. The concentration of oxybenzone at a coral reef can vary widely, depending on factors such as tourist activity and water conditions. Sallach points out that the concentrations used in the study are more like “worst-case exposure” than normal environmental conditions.The study lacks “ecological realism”, agrees Terry Hughes, a marine biologist at James Cook University in Townsville, Australia. Coral-bleaching events on Australia’s Great Barrier Reef, for example, have been linked more closely to trends in water temperature than to shifts in tourist activity. “Mass bleaching happens regardless of where the tourists are,” Hughes says. “Even the most remote, most pristine reefs are bleaching because water temperatures are killing them.”Hughes emphasizes that the greatest threats to reefs remain rising temperatures, coastal pollution and overfishing. Changing sunscreens might not do much to protect coral reefs, Hughes says. “It’s ironic that people will change their sunscreens and fly from New York to Miami to go to the beach,” he says. “Most tourists are happy to use a different brand of sunscreen, but not to fly less and reduce carbon emissions.” More

  • in

    7000-year-old evidence of fruit tree cultivation in the Jordan Valley, Israel

    Garfinkel, Y., Ben-Shlomo, D. & Kuperman, T. Large-scale storage of grain surplus in the sixth millennium BC: The silos of Tel Tsaf. Antiquity 83, 309–325 (2009).Article 

    Google Scholar 
    Rosenberg, D., Garfinkel, Y. & Klimscha, F. Large-scale storage and storage symbolism in the Ancient Near East—a unique clay model of a silo from Tel Tsaf, Israel. Antiquity 91, 885–900 (2017).Article 

    Google Scholar 
    Ben-Shlomo, D., Hill, A. C. & Garfinkel, Y. Feasting between the revolutions: Evidence from chalcolithic Tel Tsaf, Israel. J. Mediterr. Archaeol. 22, 129–150 (2009).
    Google Scholar 
    Garfinkel, Y., Ben-Shlomo, D., Freikman, M. & Vered, A. Tel Tsaf: The 2004–2006 excavation seasons. Isr. Explor. J. 57, 1–33 (2007).
    Google Scholar 
    Freikman, M. & Garfinkel, Y. Sealings before cities: New evidence on the beginnings of administration in the Ancient Near East. Levant 49, 1–22 (2017).Article 

    Google Scholar 
    Freikman, M., Ben-Shlomo, D. & Garfinkel, Y. A. Stamped sealing from Middle Chalcolithic Tel Tsaf: Implications for the rise of administrative practices in the Levant. Levant 53, 1–12 (2021).Article 

    Google Scholar 
    Garfinkel, Y., Klimscha, F., Shalev, S. & Rosenberg, D. The beginning of metallurgy in the Southern Levant: A late 6th millennium calBC copper awl from Tel Tsaf, Israel. PLoS One 9, 1–6 (2014).
    Google Scholar 
    Graham, P. Archaeobotanical remains from late 6th/early 5th millennium BC Tel Tsaf, Israel. J. Archaeol. Sci. 43, 105–110 (2014).Article 

    Google Scholar 
    Kuijt, I. & Finlayson, B. Evidence for food storage and predomestication granaries 11,000 years ago in the Jordan Valley. PNAS 106, 10966–10970 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colledge, S., Conolly, J., Finlayson, B. & Kuijt, I. New insights on plant domestication, production intensification, and food storage: The archaeobotanical evidence from PPNA Dhra. Levant 50, 14–31 (2018).Article 

    Google Scholar 
    Willcox, G., Fornite, S. & Herveux, L. Early Holocene cultivation before domestication in northern Syria. Veg. Hist. Archaeobot. 17, 313–325 (2008).Article 

    Google Scholar 
    Palmisano, A. et al. Holocene landscape dynamics and long-term population trends in the Levant. Holocene 29, 708–727 (2019).ADS 
    Article 

    Google Scholar 
    Gophna, R. & Kislev, M. Finds at Tel-Saf (1977–1978). Rev. Bib. 86, 112–114 (1979).
    Google Scholar 
    Rosenberg, D. et al. Back to Tel Tsaf: A preliminary report on the 2013 season of the renewed project. J. Isr. Prehist. Soc. 44, 148–179 (2014).
    Google Scholar 
    Lipshchitz, N. Analysis of the botanical remains from Tel Tsaf. Tel Aviv 15, 52–54 (1988).Article 

    Google Scholar 
    Vita-Finzi, C. et al. Prehistoric economy in the Mount Carmel area of Palestine: Site catchment analysis. In Proceedings of the Prehistoric Society, Vol. 36 (Cambridge University Press, 1970) pp. 1–37.Prior, J. & Price-Williams, D. An investigation of climate change in the Holocene Epoch using archaeological charcoal from Swaziland, South Africa. J. Archaeol. Sci. 12, 457–475 (1985).Article 

    Google Scholar 
    Shackleton, C. M. & Prins, F. Charcoal analysis and the “Principle of Least Effort”—a conceptual model. J. Archaeol. Sci. 19, 631–637 (1992).Article 

    Google Scholar 
    Asouti, E. & Austin, P. Reconstructing woodland vegetation and its exploitation by past societies, based on the analysis and interpretation of archaeological wood charcoal macro-remains. Environ. Archaeol. 10, 11–18 (2005).Article 

    Google Scholar 
    Deckers, K. et al. Characteristics and changes in archaeology-related environmental data during the Third Millennium BC in Upper Mesopotamia. Collective comments to the data discussed during the Symposium. Publ. Inst. Français Études Anatoliennes 19, 573–580 (2007).
    Google Scholar 
    Marston, J. M. Modeling wood acquisition strategies from archaeological charcoal remains. J. Archaeol. Sci. 36, 2192–2200 (2009).Article 

    Google Scholar 
    Lev-Yadun, S. Wood remains from archaeological excavations: A review with a Near Eastern perspective. Isr. J. Earth Sci. 56, 139–162 (2007).CAS 
    Article 

    Google Scholar 
    Liphschitz, N. Timber in Ancient Israel Dendroarchaeology and Dendrochronology. Monograph Series of the Institute of Archaeology of Tel Aviv University 26 (Tel Aviv, 2007).Sitry, I. & Langgut, D. Wooden objects from the colt collection—Shivta. Michmanim 28, 31–46 (2019).
    Google Scholar 
    Srebro, H. & Soffer, T. The New Atlas of Israel: The National Atlas (Survey of Israel; The Hebrew University of Jerusalem, 2011).
    Google Scholar 
    Gophna, R. & Sadeh, S. Excavations at Tel Tsaf: An early Chalcolithic site in the Jordan Valley. Tel Aviv. 15–16, 3–36 (1988–89).Garfinkel, Y., Ben-Shlomo, D. & Freikman, M. Excavations at Tel Tsaf 2004–2007: Final Report, Volume 1 (Ariel University Press, 2020).
    Google Scholar 
    Rosenberg, D., Pinsky, S. & Klimscha, F. “The renewed research project at Tel Tsaf, Jordan Valley—2013–2019” in Hadashot Arkeologiyot—Excavations and Surveys in Israel, p. 133 (2021).Gopher, A. The Pottery Neolithic in the southern Levant—a second Neolithic revolution. In Village Communities of the Pottery Neolithic Period in the Menashe Hills, Israel (ed. Gopher, A.) 1525–1611 (Tel Aviv University, 2012).
    Google Scholar 
    Streit, K. & Garfinkel, Y. Tel Tsaf and the impact of the Ubaid Culture on the Southern Levant: Interpreting the radiocarbon evidence. Radiocarbon 57, 865–880 (2015).Article 

    Google Scholar 
    Streit, K. & Garfinkel, Y. A specialized ceramic assemblage for water pulling: The Middle Chalcolithic well of Tel Tsaf, Israel. BASOR 374, 61–73 (2015).
    Google Scholar 
    Garfinkel, Y. Proto-historic courtyard buildings in the southern Levant. In Neolithic and Chalcolithic Archaeology in Eurasia: Building Techniques and Spatial Organization (ed. Gheorghiu, D.) 35–41 (BAR International Series, 2010).
    Google Scholar 
    Zohary, M. Geobotanical Foundations of the Middle East (Gustav Gischer Verlag, 1973).
    Google Scholar 
    Bar-Matthews, M. & Ayalon, A. Mid-Holocene climate variations revealed by high-resolution speleothem records from Soreq Cave, Israel and their correlation with cultural changes. Holocene 21, 163–171 (2011).ADS 
    Article 

    Google Scholar 
    Fahn, A., Werker, E. & Baas, P. Wood Anatomy and Identification of Trees and Shrubs from Israel and Adjacent Regions (The Israel Academy of Sciences and Humanities, 1986).
    Google Scholar 
    Schweingruber, F. H. Anatomy of European Woods (Verlag Paul Haupt, 1990).
    Google Scholar 
    Bronk Ramsey, C. Bayesian analysis of radiocarbon dates. Radiocarbon 51, 337–360 (2009).Article 

    Google Scholar 
    Reimer, P. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Zohary, M. Plant Life of Palestine: Israel and Jordan (Ronald Press Co, 1962).
    Google Scholar 
    Asouti, E. & Hather, J. Charcoal analysis and the reconstruction of ancient woodland vegetation in the Konya Basin, south-central Anatolia, Turkey: Results from the Neolithic site of Çatalhöyük East. Veg. Hist. Archaeobot. 10, 23–32 (2001).Article 

    Google Scholar 
    Thery-Parisot, I., Chabal, L. & Chrzavzez, J. Anthracology and taphonomy, from wood gathering to charcoal analysis: A review of the taphonomic processes modifying charcoal assemblages, in archaeological contexts. Palaeogeogr. Palaeoclim. Palaeoecol. 291, 142–153 (2010).ADS 
    Article 

    Google Scholar 
    Langgut, D. et al. The earliest near-eastern wooden spinning implements. Antiquity 90, 973–990 (2016).Article 

    Google Scholar 
    Langgut, D., Tepper, Y., Benzaquen, M., Erickson-Gini, T. & Bar-Oz, G. Environment and horticulture in the Byzantine Negev Desert, Israel: Sustainability, prosperity and enigmatic decline. Quat. Int. 593, 160–177 (2021).Article 

    Google Scholar 
    Zohary, D. & Spiegel-Roy, P. Beginnings of fruit growing in the Old World. Science 187, 319–327 (1975).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zohary, D., Hopf, M. & Weiss, E. Domestication of Plants in the Old World 4th edn. (Oxford University Press, 2012).Book 

    Google Scholar 
    Weiss, E. Beginnings of fruit growing in the Old World two generations later. Isr. J. Plant Sci. 62, 75–85 (2015).Article 

    Google Scholar 
    Benzaquen, M., Finkelstein, I. & Langgut, D. Vegetation history and human Impact on the environs of Tel Megiddo in the Bronze and Iron Ages (ca 3,500–500 BCE): A dendroarchaeological analysis. Tel Aviv. 49, 1–23 (2019).
    Google Scholar 
    Carrión, Y., Ntinou, M. & Bada, E. Olea europaea L. in the north Mediterranean Basin during the Pleniglacial and the Early-Middle Holocene. Quat. Sci. Rev. 29, 952–968 (2010).ADS 
    Article 

    Google Scholar 
    Lavee, S. & Zohary, D. The potential of genetic diversity and the effect of geographically isolated resources in olive breeding. Isr. J. Plant Sci. 59, 3–13 (2011).Article 

    Google Scholar 
    Langgut, D. et al. The origin and spread of olive cultivation in the Mediterranean Basin: The fossil pollen evidence. Holocene 29, 602–922 (2019).Article 

    Google Scholar 
    Neef, R. Introduction, development and environmental implications of olive culture: The evidence from Jordan. In Man’s Role in the Shaping of the Eastern Mediterranean Landscape (eds Bottema, S. et al.) 295–306 (Rotterdam, 1990).
    Google Scholar 
    Meadows, J. Olive domestication at Teleilat Ghassul. In Archaeology of the Near East: An Australian Perspective (eds Hopkins, L. & Parker, A.) 13–18 (University of Sydney, 2001).
    Google Scholar 
    Dighton, A., Fairbairn, A., Bourke, S., Faith, J. T. & Habgood, P. Bronze Age olive domestication in the north Jordan valley: New morphological evidence for regional complexity in early arboricultural practice from Pella in Jordan. Veg. Hist. Archaeobot. 26, 403–413 (2017).Article 

    Google Scholar 
    Galili, E., Stanley, D. J., Sharvit, J. & Weinstein-Evron, M. Evidence for earliest olive-oil production in submerged settlements off the Carmel Coast, Israel. J. Archaeol. Sci. 24, 1141–1150 (1997).Article 

    Google Scholar 
    Galili, E. et al. Coastal paleoenvironments and prehistory of the Submerged Pottery Neolithic Settlement of Kfar Samir (Israel). Paléorient 44, 113–132 (2018).
    Google Scholar 
    Namdar, D., Amrani, A., Getzov, N. & Milevski, I. Olive oil storage during the fifth and sixth millennia BC at Ein Zippori, northern Israel. Isr. J. Plant Sci. 62, 65–74 (2015).Article 

    Google Scholar 
    Galili, E. et al. Early production of Table Olives at a mid-7th millennium BP submerged site off the Carmel Coast (Israel). Sci. Rep. 11, 1–15 (2021).Article 
    CAS 

    Google Scholar 
    Epstein, C. Oil production in the Golan Heights during the Chalcolithic period. Tel Aviv. 20, 133–146 (1993).Article 

    Google Scholar 
    Eitam, D. Between the [olive] rows, oil will be produced, presses will be trod…. (Job 24, 11). In La Production du Vin et l’Huile en Mediterranée:[Actes du Symposium International, (Aix-en-Provence et Toulon, 20-22 Novembre 1991 (Bulletin de correspondence hellénique, Supplementary 26) (eds Amouretti, M. C. & Brun, J. P.) 65–90 (Ecole Francaise d’Athènes, 1993).
    Google Scholar 
    Schiebel, V. Vegetation and Climate History of the Southern Levant During the Last 30000 Years Based on Palynological Investigation (University of Bonn, 2013) PhD Dissertation.Litt, T., Ohlwein, C., Neumann, F. H., Hense, A. & Stein, M. Holocene climate variability in the Levant from the Dead Sea pollen record. Quat. Sci. Rev. 49, 95–105 (2012).ADS 
    Article 

    Google Scholar 
    Van Zeist, W., Baruch, U. & Bottema, S. Holocene palaeoecology of the Hula area, Northeastern Israel. In A Timeless Vale, Archaeological and Related Essays on the Jordan Valley (eds Kaptijn, K. & Petit, L. P.) 29–64 (Leiden University Press, 2009).
    Google Scholar 
    Neumann, F., Schölzel, C., Litt, T., Hense, A. & Stein, M. Holocene vegetation and climate history of the northern Golan heights (Near East). Veg. Hist. Archaeobot. 16, 329–346 (2007).Article 

    Google Scholar 
    Kaniewski, D. et al. Primary domestication and early uses of the emblematic olive tree: Palaeobotanical, historical and molecular evidence from the Middle East. Biol. Rev. 87, 885–899 (2012).PubMed 
    Article 

    Google Scholar 
    Moriondo, M. et al. Olive trees as bio-indicators of climate evolution in the Mediterranean Basin. Glob. Ecol. Biogeogr. 22, 818–833 (2013).Article 

    Google Scholar 
    Langgut, D., Cheddadi, R. & Sharon, G. Climate and environmental reconstruction of the Epipaleolithic Mediterranean Levant (22.0-11.9 ka cal. BP). Quat. Sci. Rev. 270, 107170 (2021).Article 

    Google Scholar 
    Zinger, A. Olive Cultivation 145th edn. (Israel Ministry of Agriculture, 1995) (in Hebrew).
    Google Scholar 
    Miller, N. F. Sweeter than wine? The use of the grape in early western Asia. Antiquity 82, 937–946 (2008).Article 

    Google Scholar 
    Fuller, D. Q. & Stevens, C. J. Between domestication and civilization: The role of agriculture and arboriculture in the emergence of the first urban societies. Veg. Hist. Archaeobot. 28, 263–282 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lev-Yadun, S. The common fig (Ficus carica) remains in the archaeological record and its domestication processes. In The Fig: Advances in Research and Sustainable Production (eds Flaishman, M. A. & Aksoy, U.) 11–25 (CABI, 2022).
    Google Scholar 
    Flaishman, M., Rodov, V. & Stover, E. The fig: Botany, horticulture and breeding. Hortic. Rev. 34, 113–196 (2008).CAS 
    Article 

    Google Scholar 
    Langgut, D., Lev-Yadun, S. & Finkelstein, I. The Impact of olive orchard abandonment and rehabilitation on pollen signature: An experimental approach to evaluating fossil pollen data. Ethnoarchaeology 6, 121–135 (2014).Article 

    Google Scholar 
    Hobbs, J. J. Bedouin Life in the Egyptian Wilderness (University of Texas Press, 1989).
    Google Scholar 
    Andersen, G. L. et al. Traditional nomadic tending of trees in the Red Sea Hills. J. Arid Environ. 106, 36–44 (2014).ADS 
    Article 

    Google Scholar 
    Mor, E. Reconstructing Tel Bet Yerah’s Natural and Anthropogenic Environment During the Early Bronze Age Through Wood Remains (Tel Aviv University, 2022) MA Thesis, in Hebrew with English abstract.Kislev, M. E., Hartman, A. & Bar-Yosef, O. Early domesticated fig in the Jordan Velley. Science 312, 1372–1374 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lev-Yadun, S., Neeman, G., Abbo, S. & Flaishman, M. A. Comment on “Early Domesticated Fig in the Jordan Valley”.. Science 314, 1683a (2006).ADS 
    Article 
    CAS 

    Google Scholar 
    Denham, T. Early fig domestication, or gathering of wild parthenocarpic figs?. Antiquity 81, 457–461 (2007).Article 

    Google Scholar 
    Abbo, S., Gopher, A. & Lev-Yadun, S. Fruit domestication in the near east. Plant Breed. Rev. 39, 325–377 (2015).
    Google Scholar 
    Gopher, A., Lev-Yadun, S. & Abbo, S. Breaking Ground. Plant Domestication in the Neolithic Levant: The “Core-Area—One-Event” Model Emery and Claire Yass Publications in Archaeology (Tel Aviv University, Tel Aviv, The Institute of Archaeology, 2021).
    Google Scholar 
    Shennan, S. Property and wealth inequality as cultural niche construction. Philos. Trans. R. Soc. B. Biol. Sci. 366, 918–926 (2011).Article 

    Google Scholar 
    Twiss, K. The archaeology of food and social diversity. J. Archaeol. Res. 20, 357–395 (2012).Article 

    Google Scholar 
    Bowles, S. & Choi, J. K. Coevolution of farming and private property during the early Holocene. Proc. Natl. Acad. Sci. 110, 8830–8835 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zeder, M. A. Domestication as a model system for niche construction theory. Evol. Ecol. 30, 325–348 (2016).Article 

    Google Scholar 
    Khalil, E. L. Symbolic products: Prestige, pride and identity goods. Theory Decis. 49, 53–77 (2000).MATH 
    Article 

    Google Scholar 
    Nelissen, R. M. & Meijers, M. H. Social benefits of luxury brands as costly signals of wealth and status. Evol. Hum. Behav. 32, 343–355 (2011).Article 

    Google Scholar 
    Plourde, A. M. The origins of prestige goods as honest signals of skill and knowledge. Hum. Nat. 19, 374–388 (2008).PubMed 
    Article 

    Google Scholar 
    Hayden, B. The proof is in the pudding: Feasting and the origins of domestication. Curr. Anthropolac. 50, 597–601 (2009).Article 

    Google Scholar 
    Yahalom-Mack, N. et al. The earliest lead object in the levant. PLoS One 10, e0142948 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Mayshar, J., Moav, M., Neeman, Z. & Pascali, L. The origin of the state: Land productivity or appropriability. J. Polit. Econ. 130, 1091–1144 (2022).Article 

    Google Scholar 
    Langgut, D. & Sasi, A. The emergence of fruit tree horticulture in Chalcolithic southern Levant. In (Ben-Yosef, E., Jones, I. Eds) And in Length of Days Understanding” (Job 12:12)—Essays on Archaeology in the 21st Century in Honor of Thomas E. Levy (In Press). More

  • in

    Individual and joint estimation of humpback whale migratory patterns and their environmental drivers in the Southwest Atlantic Ocean

    Mackintosh NA. The southern stocks of whalebone whales 1942.Perrin, W. F. & Wursig, B. Thewissen JGM “Hans” (Academic Press, 2009).
    Google Scholar 
    Rizzo, L. Y. & Schulte, D. A review of humpback whales’ migration patterns worldwide and their consequences to gene flow. J. Mar. Biol. Assoc. U.K. 89, 995–1002. https://doi.org/10.1017/S0025315409000332 (2009).Article 

    Google Scholar 
    Baker, C. S. et al. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar. Ecol. Prog. Ser. 494, 291–306. https://doi.org/10.3354/meps10508 (2013).ADS 
    Article 

    Google Scholar 
    Clapham, P. J. et al. Seasonal occurrence and annual return of humpback whales, Megaptera novaeangliae, in the southern Gulf of Maine. Can J Zool 71, 440–443. https://doi.org/10.1139/z93-063 (1993).Article 

    Google Scholar 
    Dawbin, W. H. The seasonal migratory cycle of humpback whales. Whales Dolphins Porpoises 4, 145–70 (1966).Article 

    Google Scholar 
    Horton, T. W., Zerbini, A. N., Andriolo, A., Danilewicz, D. & Sucunza, F. Multi-decadal humpback whale migratory route fidelity despite oceanographic and geomagnetic change. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00414 (2020).Article 

    Google Scholar 
    Larsen, A. H., Sigurjónsson, J., Oien, N., Vikingsson, G. & Palsbøll, P. Populations genetic analysis of nuclear and mitochondrial loci in skin biopsies collected from central and northeastern North Atlantic humpback whales (Megaptera novaeangliae): Population identity and migratory destinations. Proc. Biol. Sci. 263, 1611–1618. https://doi.org/10.1098/rspb.1996.0236 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Palsbøll, P. J. et al. Genetic tagging of humpback whales. Nature 388, 767–9. https://doi.org/10.1038/42005 (1997).ADS 
    Article 
    PubMed 

    Google Scholar 
    Barendse, J. et al. Migration redefined? Seasonality, movements and group composition of humpback whales Megaptera novaeangliae off the west coast of South Africa. Afr. J. Mar. Sci. 32, 1–22. https://doi.org/10.2989/18142321003714203 (2010).Article 

    Google Scholar 
    Best, B. P., Sekiguchi, K. & Findlay, P. K. A suspended migration of humpback whales Megaptera novaeangliae on the west coast of South Africa. Mar. Ecol. Prog. Ser. 118, 1–12. https://doi.org/10.3354/meps118001 (1995).ADS 
    Article 

    Google Scholar 
    Brown, M. R., Corkeron, P. J., Hale, P. T., Schultz, K. W. & Bryden, M. M. Evidence for a sex-segregated migration in the humpback whale (Megaptera novaeangliae). Proc. R. Soc. Lond. B 259, 229–234. https://doi.org/10.1098/rspb.1995.0034 (1995).ADS 
    CAS 
    Article 

    Google Scholar 
    Christensen, I., Haug, T. & Øien, N. Seasonal distribution, exploitation and present abundance of stocks of large baleen whales (Mysticeti) and sperm whales (Physeter macrocephalus) in Norwegian and adjacent waters. ICES J. Mar. Sci. 49, 341–355. https://doi.org/10.1093/icesjms/49.3.341 (1992).Article 

    Google Scholar 
    Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate?1. Mar. Mamm. Sci. 15, 1228–1245. https://doi.org/10.1111/j.1748-7692.1999.tb00887.x (1999).Article 

    Google Scholar 
    Pomilla, C. & Rosenbaum, H. C. Against the current: An inter-oceanic whale migration event. Biol. Lett. 1, 476–479. https://doi.org/10.1098/rsbl.2005.0351 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Druskat, A., Ghosh, R., Castrillon, J. & Bengtson Nash, S. M. Sex ratios of migrating southern hemisphere humpback whales: A new sentinel parameter of ecosystem health. Mar. Environ. Res. 151, 104749. https://doi.org/10.1016/j.marenvres.2019.104749 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Atkinson, A. et al. Krill (Euphausia superba) distribution contracts southward during rapid regional warming. Nat. Clim. Chang. 9, 142–147. https://doi.org/10.1038/s41558-018-0370-z (2019).ADS 
    Article 

    Google Scholar 
    Atkinson, A., Siegel, V., Pakhomov, E. & Rothery, P. Long-term decline in krill stock and increase in salps within the Southern Ocean. Nature 432, 100–103. https://doi.org/10.1038/nature02996 (2004).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Flores, H. et al. Impact of climate change on Antarctic krill. Mar. Ecol. Prog. Ser. 458, 1–19. https://doi.org/10.3354/meps09831 (2012).ADS 
    Article 

    Google Scholar 
    Andrews-Goff, V. et al. Humpback whale migrations to Antarctic summer foraging grounds through the southwest Pacific Ocean. Sci. Rep. 8, 12333. https://doi.org/10.1038/s41598-018-30748-4 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garrigue, C., Clapham, P. J., Geyer, Y., Kennedy, A. S. & Zerbini, A. N. Satellite tracking reveals novel migratory patterns and the importance of seamounts for endangered South Pacific humpback whales. R. Soc. Open Sci. 2, 150489. https://doi.org/10.1098/rsos.150489 (2015).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Riekkola, L., Andrews-Goff, V., Friedlaender, A., Constantine, R. & Zerbini, A. N. Environmental drivers of humpback whale foraging behavior in the remote Southern Ocean. J. Exp. Mar. Biol. Ecol. 517, 1–12. https://doi.org/10.1016/j.jembe.2019.05.008 (2019).Article 

    Google Scholar 
    Fleming, A. H., Clark, C. T., Calambokidis, J. & Barlow, J. Humpback whale diets respond to variance in ocean climate and ecosystem conditions in the California Current. Glob. Change Biol. 22, 1214–1224. https://doi.org/10.1111/gcb.13171 (2016).ADS 
    Article 

    Google Scholar 
    Nash, S. M. B. et al. Signals from the south; humpback whales carry messages of Antarctic sea-ice ecosystem variability. Glob. Change Biol. 24, 1500–1510. https://doi.org/10.1111/gcb.14035 (2018).ADS 
    Article 

    Google Scholar 
    Cartwright, R. et al. Fluctuating reproductive rates in Hawaii’s humpback whales, Megaptera novaeangliae, reflect recent climate anomalies in the North Pacific. R. Soc. Open Sci. 6, 181463. https://doi.org/10.1098/rsos.181463 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tulloch, V. J. D., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish Fish. 19, 117–137. https://doi.org/10.1111/faf.12241 (2018).Article 

    Google Scholar 
    Jonsen, I. D., Flemming, J. M. & Myers, R. A. Robust state–space modeling of animal movement data. Ecology 86, 2874–2880. https://doi.org/10.1890/04-1852 (2005).Article 

    Google Scholar 
    Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E. & Fryxell, J. M. Extracting more out of relocation data: Building movement models as mixtures of random walks. Ecology 85, 2436–2445. https://doi.org/10.1890/03-0269 (2004).Article 

    Google Scholar 
    Patterson, T. A., Thomas, L., Wilcox, C., Ovaskainen, O. & Matthiopoulos, J. State–space models of individual animal movement. Trends Ecol. Evol. 23, 87–94. https://doi.org/10.1016/j.tree.2007.10.009 (2008).Article 
    PubMed 

    Google Scholar 
    Jonsen, I. Joint estimation over multiple individuals improves behavioural state inference from animal movement data. Sci. Rep. https://doi.org/10.1038/srep20625 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mills Flemming, J., Jonsen, I. D., Myers, R. A. & Field, C. A. Hierarchical state-space estimation of leatherback turtle navigation ability. PLoS ONE 5, e14245. https://doi.org/10.1371/journal.pone.0014245 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andriolo, A., Kinas, P. G., Engel, M. H., Martins, C. C. A. & Rufino, A. M. Humpback whales within the Brazilian breeding ground: Distribution and population size estimate. Endanger. Species Res. 11, 233–243. https://doi.org/10.3354/esr00282 (2010).Article 

    Google Scholar 
    Ward, E., Zerbini, A. N., Kinas, P. G., Engel, M. H. & Andriolo, A. Estimates of population growth rates of humpback whales (Megaptera novaeangliae) in the wintering grounds off the coast of Brazil (Breeding Stock A). J Cetacean Res. Manag. 3, 145–149 (2011).
    Google Scholar 
    Zerbini, A. N. et al. Assessing the recovery of an Antarctic predator from historical exploitation. R. Soc. Open Sci. 6, 190368. https://doi.org/10.1098/rsos.190368 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bortolotto, G. A., Danilewicz, D., Hammond, P. S., Thomas, L. & Zerbini, A. N. Whale distribution in a breeding area: Spatial models of habitat use and abundance of western South Atlantic humpback whales. Mar. Ecol. Prog. Ser. 585, 213–227. https://doi.org/10.3354/meps12393 (2017).ADS 
    Article 

    Google Scholar 
    Martins, C. C. A., Andriolo, A., Engel, M. H., Kinas, P. G. & Saito, C. H. Identifying priority areas for humpback whale conservation at Eastern Brazilian Coast. Ocean Coast. Manag. 75, 63–71. https://doi.org/10.1016/j.ocecoaman.2013.02.006 (2013).Article 

    Google Scholar 
    Albertson, G. R. et al. Temporal stability and mixed-stock analyses of humpback whales (Megaptera novaeangliae) in the nearshore waters of the Western Antarctic Peninsula. Polar Biol. 41, 323–340. https://doi.org/10.1007/s00300-017-2193-1 (2018).Article 

    Google Scholar 
    Engel, M. & Martin, A. Feeding grounds of the western South Atlantic humpback whale population. Mar. Mamm. Sci. 25, 964–969 (2009).Article 

    Google Scholar 
    Engel, M. H. et al. Mitochondrial DNA diversity of the Southwestern Atlantic humpback whale (Megaptera novaeangliae) breeding area off Brazil, and the potential connections to Antarctic feeding areas. Conserv. Genet. 5, 1253–1262. https://doi.org/10.1007/s10592-007-9453-5 (2008).CAS 
    Article 

    Google Scholar 
    Stevick, P., De Godoy, L. P., McOsker, M., Engel, M. & Allen, J. A note on the movement of a humpback whale from Abrolhos Bank, Brazil to South Georgia. J. Cetac. Res. Manag. 8, 297 (2006).
    Google Scholar 
    Zerbini, A. N. et al. Migration and summer destinations of humpback whales (Megaptera novaeangliae) in the western South Atlantic Ocean. J. Cetacean Res. Manag. 3, 113–8 (2011).
    Google Scholar 
    Zerbini, A. N. et al. Satellite-monitored movements of humpback whales Megaptera novaeangliae in the Southwest Atlantic Ocean. Mar. Ecol. Prog. Ser. 313, 295–304. https://doi.org/10.3354/meps313295 (2006).ADS 
    Article 

    Google Scholar 
    de Castro, F. R. et al. Are marine protected areas and priority areas for conservation representative of humpback whale breeding habitats in the western South Atlantic?. Biol. Conserv. 179, 106–114. https://doi.org/10.1016/j.biocon.2014.09.013 (2014).Article 

    Google Scholar 
    Heide-Jørgensen, M. P., Kleivane, L., OIen, N., Laidre, K. L. & Jensen, M. V. A new technique for deploying Sa℡lite transmitters on baleen whales: Tracking a blue whale (balaenoptera Musculus) in the North Atlantic. Mar. Mamm. Sci. 17, 949–54. https://doi.org/10.1111/j.1748-7692.2001.tb01309.x (2011).Article 

    Google Scholar 
    Heide-Jørgensen, M. P. et al. From greenland to Canada in ten days: Tracks of bowhead whales, Balaena mysticetus, across Baffin Bay. Arctic 56, 21–31 (2003).Article 

    Google Scholar 
    Heide-Jørgensen, M. P., Laidre, K. L., Jensen, M. V., Dueck, L. & Postma, L. D. Dissolving stock discreteness with Sa℡lite tracking: Bowhead whales in Baffin Bay. Mar. Mamm. Sci. 22, 34–45. https://doi.org/10.1111/j.1748-7692.2006.00004.x (2006).Article 

    Google Scholar 
    Zerbini, A. N., Fernandez, A. A., Andriolo, A., Clapham, P. J., Crespo, E., Gonzalez, R., et al. Satellite tracking of southern right whales (Eubalaena australis) from Golfo San Matias, Rio Negro Province, Argentina. Scientific Committee of the International Whaling Commission SC67b, Bled, Slovenia (2018).Chittleborough, R. G. Dynamics of two populations of the humpback whale, Megaptera novaeangliae (Borowski). Mar. Freshwater Res. 16, 33–128. https://doi.org/10.1071/mf9650033 (1965).Article 

    Google Scholar 
    Freitas, C., Lydersen, C., Fedak, M. A. & Kovacs, K. M. A simple new algorithm to filter marine mammal Argos locations. Mar. Mamm. Sci. 24, 315–325. https://doi.org/10.1111/j.1748-7692.2007.00180.x (2008).Article 

    Google Scholar 
    Lambertsen, R. H. A biopsy system for large whales and its use for cytogenetics. J. Mamm. 68, 443–445. https://doi.org/10.2307/1381495 (1987).Article 

    Google Scholar 
    Mendelssohn, R. rerddapXtracto: Extracts Environmental Data from “ERDDAP” Web Services. (2020).Chin, T. M., Milliff, R. F. & Large, W. G. Basin-scale, high-wavenumber sea surface wind fields from a multiresolution analysis of scatterometer data. J. Atmos. Oceanic Technol. 15, 741–763. https://doi.org/10.1175/1520-0426(1998)015%3c0741:BSHWSS%3e2.0.CO;2 (1998).ADS 
    Article 

    Google Scholar 
    Orsi, A. H., Whitworth, T. & Nowlin, W. D. On the meridional extent and fronts of the antarctic circumpolar current. Deep Sea Res. Part I 42, 641–673. https://doi.org/10.1016/0967-0637(95)00021-W (1995).Article 

    Google Scholar 
    Johnson, D. S., London, J. M., Lea, M.-A. & Durban, J. W. Continuous-time correlated random walk model for animal telemetry data. Ecology 89, 1208–1215. https://doi.org/10.1890/07-1032.1 (2008).Article 
    PubMed 

    Google Scholar 
    Bedriñana-Romano, L. et al. Defining priority areas for blue whale conservation and investigating overlap with vessel traffic in Chilean Patagonia, using a fast-fitting movement model. Sci. Rep. 11, 2709. https://doi.org/10.1038/s41598-021-82220-5 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McClintock, B. T., London, J. M., Cameron, M. F. & Boveng, P. L. Modelling animal movement using the Argos satellite telemetry location error ellipse. Methods Ecol. Evol. 6, 266–277. https://doi.org/10.1111/2041-210X.12311 (2015).Article 

    Google Scholar 
    Akaike, H. Theory and an Extension of the Maximum Likelihood Principal. International Symposium on Information Theory (Akademiai Kaiado, 1973).MATH 

    Google Scholar 
    Auger-Méthé, M. et al. Spatiotemporal modelling of marine movement data using Template Model Builder (TMB). Mar. Ecol. Prog. Ser. 565, 237–249. https://doi.org/10.3354/meps12019 (2017).ADS 
    Article 

    Google Scholar 
    Jonsen, I. D. et al. Movement responses to environment: Fast inference of variation among southern elephant seals with a mixed effects model. Ecology 100, e02566. https://doi.org/10.1002/ecy.2566 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kristensen, K., Nielsen, A., Berg, C. W., Skaug, H. & Bell, B. TMB: Automatic differentiation and laplace approximation. J. Stat. Softw. https://doi.org/10.18637/jss.v070.i05 (2016).Article 

    Google Scholar 
    Marcondes, M. C. C. et al. The Southern Ocean Exchange: Porous boundaries between humpback whale breeding populations in southern polar waters. Sci. Rep. 11, 23618. https://doi.org/10.1038/s41598-021-02612-5 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Derville, S., Torres, L. G., Zerbini, A. N., Oremus, M. & Garrigue, C. Horizontal and vertical movements of humpback whales inform the use of critical pelagic habitats in the western South Pacific. Sci. Rep. 10, 4871. https://doi.org/10.1038/s41598-020-61771-z (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noad, M. J. & Cato, D. H. Swimming speeds of singing and non-singing humpback whales during migration. Mar. Mamm. Sci. 23, 481–495. https://doi.org/10.1111/j.1748-7692.2007.02414.x (2007).Article 

    Google Scholar 
    Gabriele, C. M. et al. Estimating the mortality rate of humpback whale calves in the central North Pacific Ocean. Can. J. Zool. 79, 589–600. https://doi.org/10.1139/z01-014 (2001).Article 

    Google Scholar 
    Korb, R. E., Whitehouse, M. J., Atkinson, A. & Thorpe, S. E. Magnitude and maintenance of the phytoplankton bloom at South Georgia: A naturally iron-replete environment. Mar. Ecol. Progress Ser. 368, 75–91 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Korb, R. E., Whitehouse, M. J. & Ward, P. SeaWiFS in the southern ocean: Spatial and temporal variability in phytoplankton biomass around South Georgia. Deep Sea Res. Part II 51, 99–116. https://doi.org/10.1016/j.dsr2.2003.04.002 (2004).ADS 
    CAS 
    Article 

    Google Scholar 
    Atkinson, A. et al. Oceanic circumpolar habitats of Antarctic krill. Mar. Ecol. Prog. Ser. 362, 1–23. https://doi.org/10.3354/meps07498 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Murphy, E. J. et al. Southern antarctic circumpolar current front to the northeast of South Georgia: Horizontal advection of krill and its role in the ecosystem. J. Geophys. Res. Oceans https://doi.org/10.1029/2002JC001522 (2004).Article 

    Google Scholar 
    Schmidt, K., Atkinson, A., Pond, D. W. & Ireland, L. C. Feeding and overwintering of Antarctic krill across its major habitats: The role of sea ice cover, water depth, and phytoplankton abundance. Limnol. Oceanogr. 59, 17–36. https://doi.org/10.4319/lo.2014.59.1.0017 (2014).ADS 
    Article 

    Google Scholar 
    Trathan, P. N. et al. Oceanographic variability and changes in Antarctic krill (Euphausia superba) abundance at South Georgia. Fish. Oceanogr. 12, 569–583. https://doi.org/10.1046/j.1365-2419.2003.00268.x (2003).Article 

    Google Scholar 
    Venables, H. J. & Meredith, M. P. Theory and observations of Ekman flux in the chlorophyll distribution downstream of South Georgia. Geophys. Res. Lett. https://doi.org/10.1029/2009GL041371 (2009).Article 

    Google Scholar 
    Krafft, B. A. et al. Distribution and demography of Antarctic krill in the Southeast Atlantic sector of the Southern Ocean during the austral summer 2008. Polar Biol. 33, 957–968. https://doi.org/10.1007/s00300-010-0774-3 (2010).Article 

    Google Scholar 
    Murphy, E. J. et al. Spatial and temporal operation of the Scotia Sea ecosystem: A review of large-scale links in a krill centred food web. Philos. Trans. R. Soc. B Biol. Sci. 362, 113–48. https://doi.org/10.1098/rstb.2006.1957 (2007).CAS 
    Article 

    Google Scholar 
    Thorpe, S. E., Murphy, E. J. & Watkins, J. L. Circumpolar connections between Antarctic krill (Euphausia superba Dana) populations: Investigating the roles of ocean and sea ice transport. Deep Sea Res. Part I 54, 792–810. https://doi.org/10.1016/j.dsr.2007.01.008 (2007).Article 

    Google Scholar 
    Mori, M. et al. Modelling dispersal of juvenile krill released from the Antarctic ice edge: Ecosystem implications of ocean movement. J. Mar. Syst. 189, 50–61. https://doi.org/10.1016/j.jmarsys.2018.09.005 (2019).Article 

    Google Scholar 
    Kohlbach, D. et al. Ice algae-produced carbon is critical for overwintering of antarctic krill Euphausia superba. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00310 (2017).Article 

    Google Scholar 
    Meyer, B. et al. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nat. Ecol. Evol. 1, 1853–1861. https://doi.org/10.1038/s41559-017-0368-3 (2017).Article 
    PubMed 

    Google Scholar 
    Meyer, B. et al. Physiology, growth, and development of larval krill Euphausia superba in autumn and winter in the Lazarev Sea, Antarctica. Limnol. Oceanogr. 54, 1595–1614. https://doi.org/10.4319/lo.2009.54.5.1595 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Lancelot, C. et al. Spatial distribution of the iron supply to phytoplankton in the Southern Ocean: A model study. Biogeosciences 6, 2861–2878. https://doi.org/10.5194/bg-6-2861-2009 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Brierley, A. S. et al. Antarctic krill under Sea Ice: Elevated abundance in a narrow band just south of Ice Edge. Science 295, 1890–1892. https://doi.org/10.1126/science.1068574 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Schmidt, K., Atkinson, A., Venables, H. J. & Pond, D. W. Early spawning of Antarctic krill in the Scotia Sea is fuelled by “superfluous” feeding on non-ice associated phytoplankton blooms. Deep Sea Res. Part II 59–60, 159–172. https://doi.org/10.1016/j.dsr2.2011.05.002 (2012).ADS 
    Article 

    Google Scholar 
    Walsh, J., Reiss, C. S. & Watters, G. M. Flexibility in Antarctic krill Euphausia superba decouples diet and recruitment from overwinter sea-ice conditions in the northern Antarctic Peninsula. Mar. Ecol. Prog. Ser. 642, 1–19. https://doi.org/10.3354/meps13325 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Saba, G. K. et al. Winter and spring controls on the summer food web of the coastal West Antarctic Peninsula. Nat. Commun. 5, 4318. https://doi.org/10.1038/ncomms5318 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Friedlaender, A. S. et al. Whale distribution in relation to prey abundance and oceanographic processes in shelf waters of the Western Antarctic Peninsula. Mar. Ecol. Prog. Ser. 317, 297–310. https://doi.org/10.3354/meps317297 (2006).ADS 
    Article 

    Google Scholar 
    Murase, H., Matsuoka, K., Ichii, T. & Nishiwaki, S. Relationship between the distribution of euphausiids and baleen whales in the Antarctic (35° E–145° W). Polar Biol 25, 135–145. https://doi.org/10.1007/s003000100321 (2002).Article 

    Google Scholar 
    Reisinger, R. R. et al. Combining regional habitat selection models for large-scale prediction: Circumpolar habitat selection of Southern Ocean humpback whales. Remote Sens. 13, 2074. https://doi.org/10.3390/rs13112074 (2021).ADS 
    Article 

    Google Scholar 
    Thiele, D. et al. Seasonal variability in whale encounters in the Western Antarctic Peninsula. Deep Sea Res. Part II 51, 2311–2325. https://doi.org/10.1016/j.dsr2.2004.07.007 (2004).ADS 
    Article 

    Google Scholar 
    Whitehouse, M. J. et al. Rapid warming of the ocean around South Georgia, Southern Ocean, during the 20th century: Forcings, characteristics and implications for lower trophic levels. Deep Sea Res. Part I 55, 1218–1228. https://doi.org/10.1016/j.dsr.2008.06.002 (2008).Article 

    Google Scholar 
    Dawson, H. R. S., Strutton, P. G. & Gaube, P. The unusual surface chlorophyll signatures of southern Ocean Eddies. J. Geophys. Res. Oceans 123, 6053–6069. https://doi.org/10.1029/2017JC013628 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Kahru, M., Mitchell, B. G., Gille, S. T., Hewes, C. D. & Holm-Hansen, O. Eddies enhance biological production in the weddell-scotia confluence of the Southern Ocean. Geophys. Res. Lett. https://doi.org/10.1029/2007GL030430 (2007).Article 

    Google Scholar 
    Fach, B. A., Hofmann, E. E. & Murphy, E. J. Modeling studies of antarctic krill Euphausia superba survival during transport across the Scotia Sea. Mar. Ecol. Prog. Ser. 231, 187–203. https://doi.org/10.3354/meps231187 (2002).ADS 
    Article 

    Google Scholar 
    Ichii, T., Katayama, K., Obitsu, N., Ishii, H. & Naganobu, M. Occurrence of Antarctic krill (Euphausia superba) concentrations in the vicinity of the South Shetland Islands: Relationship to environmental parameters. Deep Sea Res. Part I 45, 1235–1262. https://doi.org/10.1016/S0967-0637(98)00011-9 (1998).Article 

    Google Scholar 
    Witek, Z., Kalinowski, J. & Grelowski, A. Formation of Antarctic Krill Concentrations in Relation to Hydrodynamic Processes and Social Behaviour. In Antarctic Ocean and Resources Variability (ed. Sahrhage, D.) 237–44 (Springer, 1988). https://doi.org/10.1007/978-3-642-73724-4_21.Chapter 

    Google Scholar 
    Bost, C. A. et al. The importance of oceanographic fronts to marine birds and mammals of the southern oceans. J. Mar. Syst. 78, 363–376. https://doi.org/10.1016/j.jmarsys.2008.11.022 (2009).Article 

    Google Scholar 
    Carranza, M. M. & Gille, S. T. Southern Ocean wind-driven entrainment enhances satellite chlorophyll-a through the summer. J. Geophys. Res. Oceans 120, 304–323. https://doi.org/10.1002/2014JC010203 (2015).ADS 
    Article 

    Google Scholar 
    Luis, A. J. & Pandey, P. C. Seasonal variability of QSCAT-derived wind stress over the Southern Ocean. Geophys. Res. Lett. https://doi.org/10.1029/2003GL019355 (2004).Article 

    Google Scholar 
    Fiechter, J. & Moore, A. M. Interannual spring bloom variability and Ekman pumping in the coastal Gulf of Alaska. J. Geophys. Res. Oceans https://doi.org/10.1029/2008JC005140 (2009).Article 

    Google Scholar 
    Cimino, M. A. et al. Essential krill species habitat resolved by seasonal upwelling and ocean circulation models within the large marine ecosystem of the California Current System. Ecography 43, 1536–1549. https://doi.org/10.1111/ecog.05204 (2020).Article 

    Google Scholar 
    Meehl, G. A. et al. Sustained ocean changes contributed to sudden Antarctic sea ice retreat in late 2016. Nat. Commun. 10, 14. https://doi.org/10.1038/s41467-018-07865-9 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parkinson, C. L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. PNAS 116, 14414–14423. https://doi.org/10.1073/pnas.1906556116 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siegel, V. Krill stocks in high latitudes of the Antarctic Lazarev Sea: seasonal and interannual variation in distribution, abundance and demography. Polar Biol. 35, 1151–1177. https://doi.org/10.1007/s00300-012-1162-y (2012).Article 

    Google Scholar 
    Francis, D., Eayrs, C., Cuesta, J. & Holland, D. Polar cyclones at the origin of the reoccurrence of the maud rise polynya in austral winter 2017. J. Geophys. Res. Atmos. 124, 5251–5267. https://doi.org/10.1029/2019JD030618 (2019).ADS 
    Article 

    Google Scholar 
    Jena, B., Ravichandran, M. & Turner, J. Recent reoccurrence of large open-ocean polynya on the maud rise seamount. Geophys. Res. Lett. 46, 4320–4329. https://doi.org/10.1029/2018GL081482 (2019).ADS 
    Article 

    Google Scholar 
    Brandt, A. et al. Maud rise–a snapshot through the water column. Deep Sea Res. Part II 58, 1962–1982. https://doi.org/10.1016/j.dsr2.2011.01.008 (2011).ADS 
    Article 

    Google Scholar 
    Plötz, J., Weidel, H. & Bersch, M. Winter aggregations of marine mammals and birds in the north-eastern Weddell Sea pack ice. Polar Biol 11, 305–309. https://doi.org/10.1007/BF00239022 (1991).Article 

    Google Scholar 
    Hazen, E. L. et al. Predicted habitat shifts of Pacific top predators in a changing climate. Nat. Clim. Change 3, 234–238. https://doi.org/10.1038/nclimate1686 (2013).ADS 
    Article 

    Google Scholar 
    Moore, S. E. & Huntington, H. P. Arctic marine mammals and climate change: Impacts and resilience. Ecol. Appl. 18, S157–S165. https://doi.org/10.1890/06-0571.1 (2008).Article 
    PubMed 

    Google Scholar  More

  • in

    Elevated fires during COVID-19 lockdown and the vulnerability of protected areas

    Update of the Zero Draft of the Post-2020 Global Biodiversity Framework (Convention on Biological Diversity, 2020); https://www.cbd.int/doc/c/3064/749a/0f65ac7f9def86707f4eaefa/post2020-prep-02-01-en.pdfCorlett, R. T. et al. Impacts of the coronavirus pandemic on biodiversity conservation. Biol. Conserv. 246, 108571 (2020).Article 

    Google Scholar 
    Singh, R. et al. Impact of the COVID-19 pandemic on rangers and the role of rangers as a planetary health service. Parks 27, 119–134 (2021).Article 

    Google Scholar 
    Hockings, M. et al. COVID‐19 and protected and conserved areas. Parks 26, 7–24 (2020).Article 

    Google Scholar 
    Waithaka, J. The Impact of COVID-19 Pandemic on Africa’s Protected Areas Operations and Programmes (IUCN, 2020); https://www.iucn.org/sites/dev/files/content/documents/2020/report_on_the_impact_of_covid_19_doc_july_10.pdfLindsey, P. et al. Conserving Africa’s wildlife and wildlands through the COVID-19 crisis and beyond. Nat. Ecol. Evol. 4, 1300–1310 (2020).Article 

    Google Scholar 
    Amador-Jiménez, M., Millner, N., Palmer, C., Pennington, R. T. & Sileci, L. The unintended impact of Colombia’s COVID-19 lockdown on forest fires. Environ. Resour. Econ. 76, 1081–1105 (2020).Article 

    Google Scholar 
    Poulter, B., Freeborn, P. H., Matt Jolly, W. & Morgan Varner, J. COVID-19 lockdowns drive decline in active fires in southeastern United States. Proc. Natl Acad. Sci. USA 118, e2015666118 (2021).Article 
    CAS 

    Google Scholar 
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    Article 

    Google Scholar 
    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).Article 
    CAS 

    Google Scholar 
    Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. A global-level assessment of the effectiveness of protected areas at resisting anthropogenic pressures. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).CAS 
    Article 

    Google Scholar 
    Tabor, K. et al. Evaluating the effectiveness of conservation and development investments in reducing deforestation and fires in Ankeniheny–Zahemena Corridor, Madagascar. PLoS ONE 12, e0190119 (2017).Article 
    CAS 

    Google Scholar 
    Cochrane, M. A. Fire science for rainforests. Nature 421, 913–919 (2003).CAS 
    Article 

    Google Scholar 
    Driscoll, D. A. et al. How fire interacts with habitat loss and fragmentation. Biol. Rev. 96, 976–998 (2021).Article 

    Google Scholar 
    Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).CAS 
    Article 

    Google Scholar 
    Carlson, K. M. et al. Effect of oil palm sustainability certification on deforestation and fire in Indonesia. Proc. Natl Acad. Sci. USA 115, 121–126 (2018).CAS 
    Article 

    Google Scholar 
    Turco, M. et al. Skilful forecasting of global fire activity using seasonal climate predictions. Nat. Commun. 9, 2718 (2018).Article 
    CAS 

    Google Scholar 
    Abatzoglou, J. T. & Williams, A. P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl Acad. Sci. USA 113, 11770–11775 (2016).CAS 
    Article 

    Google Scholar 
    Andela, N. et al. A human-driven decline in global burned area. Science 356, 1356–1362 (2017).CAS 
    Article 

    Google Scholar 
    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).CAS 
    Article 

    Google Scholar 
    Jones, J. P. G. et al. Last chance for Madagascar’s biodiversity. Nat. Sustain. 2, 350–352 (2019).Article 

    Google Scholar 
    Gardner, C. J. et al. The rapid expansion of Madagascar’s protected area system. Biol. Conserv. 220, 29–36 (2018).Article 

    Google Scholar 
    Hockley, N., Mandimbiniaina, R. & Rakotonarivo, O. S. Fair and equitable conservation: do we really want it, and if so, do we know how to achieve it? Madag. Conserv. Dev. 13, 3–5 (2018).Article 

    Google Scholar 
    Corson, C. in Conservation and Environmental Management in Madagascar (ed. Scales, I. R.) 193–215 (Routledge, 2014).Davies, B. et al. Community factors and excess mortality in first wave of the COVID-19 pandemic in England. Nat. Commun. 12, 3755 (2021).CAS 
    Article 

    Google Scholar 
    Kull, C. A. & Lehmann, C. E. R. in The New Natural History of Madagascar (ed. Goodman, S. M.) 197–203 (Princeton Univ. Press, in the press).Razafindrakoto, M., Roubaud, F. & Wachsberger, J.-M. Puzzle and Paradox: A Political Economy of Madagascar (Cambridge Univ. Press, 2020).Ruggiero, P. G. C., Pfaff, A., Nichols, E., Rosa, M. & Metzger, J. P. Election cycles affect deforestation within Brazil’s Atlantic Forest. Conserv. Lett. 14, e12818 (2021).Article 

    Google Scholar 
    Morpurgo, J., Kissling, W. D., Tyrrell, P., Negret, P. J. & Allan, J. R. The role of elections as drivers of tropical deforestation. Preprint at bioRxiv https://doi.org/10.1101/2021.05.04.442551 (2021).Tourism in Madagascar (WorldData, 2021); https://www.worlddata.info/africa/madagascar/tourism.phpRapport annuel d’activites 2018 (Madagascar National Parks, 2018).Vyawahare, M. As minister and activists trade barbs, Madagascar’s forests burn. Mongabay (17 December 2020).Cochrane, M. A. in Tropical Fire Ecology: Climate Change, Land Use, and Ecosystem Dynamics (ed. Cochrane, M. A.) 389–426 (Springer-Verlag, 2009); https://doi.org/10.1007/978-3-540-77381-8_14Cochrane, M. A. in Tropical Rainforest Responses to Climatic Change (eds Bush, M. et al.) 213–240 (Springer, 2011); https://doi.org/10.1007/978-3-642-05383-2_7Mondal, N. & Sukumar, R. Fires in seasonally dry tropical forest: testing the varying constraints hypothesis across a regional rainfall gradient. PLoS ONE 11, e0159691 (2016).Article 
    CAS 

    Google Scholar 
    Madagascar Economic Update: COVID-19 Increases Poverty, a New Reform Momentum is Needed to Build Back Stronger (World Bank, 2020); https://www.worldbank.org/en/country/madagascar/publication/madagascar-economic-update-covid-19-increases-poverty-a-new-reform-momentum-is-needed-to-build-back-strongerBaker, A. Climate, not conflict. Madagascar’s famine is the first in modern history to be solely caused by global warming. Time (20 July 2021).Graham, V. et al. Management resourcing and government transparency are key drivers of biodiversity outcomes in Southeast Asian protected areas. Biol. Conserv. 253, 108875 (2021).Article 

    Google Scholar 
    Geldmann, J. et al. A global analysis of management capacity and ecological outcomes in terrestrial protected areas. Conserv. Lett. 11, e12434 (2018).Article 

    Google Scholar 
    Gill, D. A. et al. Capacity shortfalls hinder the performance of marine protected areas globally. Nature 543, 665–669 (2017).CAS 
    Article 

    Google Scholar 
    Eklund, J., Coad, L., Geldmann, J. & Cabeza, M. What constitutes a useful measure of protected area effectiveness? A case study of management inputs and protected area impacts in Madagascar. Conserv. Sci. Pract. 1, e107 (2019).
    Google Scholar 
    Nolte, C. & Agrawal, A. Linking management effectiveness indicators to observed effects of protected areas on fire occurrence in the Amazon rainforest. Conserv. Biol. 27, 155–165 (2013).Article 

    Google Scholar 
    Schleicher, J., Peres, C. A. & Leader-Williams, N. Conservation performance of tropical protected areas: how important is management? Conserv. Lett. 12, e12650 (2019).Article 

    Google Scholar 
    Schroeder, W., Oliva, P., Giglio, L. & Csiszar, I. A. The new VIIRS 375m active fire detection data product: algorithm description and initial assessment. Remote Sens. Environ. 143, 85–96 (2014).Article 

    Google Scholar 
    Forest Monitoring Designed for Action (Global Forest Watch, 2021); https://www.globalforestwatch.org/Musinsky, J. et al. Conservation impacts of a near real-time forest monitoring and alert system for the tropics. Remote Sens. Ecol. Conserv 4, 189–196 (2018).Article 

    Google Scholar 
    Ramo, R. et al. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl Acad. Sci. USA 118, e2011160118 (2021).CAS 
    Article 

    Google Scholar 
    Global Economic Prospects, June 2021 (World Bank, 2021).Razanatsoa, E. et al. Fostering local involvement for biodiversity conservation in tropical regions: lessons from Madagascar during the COVID‐19 pandemic. Biotropica 53, 994–1003 (2021).Article 

    Google Scholar 
    Nolte, C., Agrawal, A., Silvius, K. M. & Soares-Filho, B. S. Governance regime and location influence avoided deforestation success of protected areas in the Brazilian Amazon. Proc. Natl Acad. Sci. USA 110, 4956–4961 (2013).CAS 
    Article 

    Google Scholar 
    ArcGIS 10.8 for Desktop (ESRI, 2021).Python Language Reference v.3.8.5 (Python Software Foundation, 2021); http://www.python.orgR Core Team R: A Language and Environment for Statistical Computing. R version 4.0.2 (R Foundation for Statistical Computing, 2020); https://www.R-project.org/Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).The World Database on Protected Areas (WDPA) (UNEP-WCMC and IUCN, 2020); www.protectedplanet.netGoodman, S. M., Raherilalao, J. M. & Wohlhauser, S. The Terrestrial Protected Areas of Madagascar: Their History, Description, and Biota (Association Vahatra, 2018).Dinerstein, E. et al. An ecoregion-based approach to protecting half the terrestrial realm. Bioscience 67, 534–545 (2017).Article 

    Google Scholar 
    NRT VIIRS 375 m Active Fire Product VNP14IMGT (NASA, 2020); https://doi.org/10.5067/FIRMS/VIIRS/VNP14IMGT_NRT.002Chen, D., Shevade, V., Baer, A. E. & Loboda, T. V. Missing burns in the high northern latitudes: the case for regionally focused burned area products. Remote Sens. 13, 4145 (2021).Article 

    Google Scholar 
    Schroeder, W. & Giglio, L. NASA VIIRS Land Science Investigator Processing System (SIPS) Visible Infrared Imaging Radiometer Suite (VIIRS) 375 m & 750 m Active Fire Products: Product User’s Guide Version 1.4 (NASA, 2018).Global Precipitation Measurement: Precipitation Data Directory (NASA, 2020); https://gpm.nasa.gov/data/directoryGlobal Precipitation Measurement: The Tropical Rainfall Measuring Mission (TRMM) (NASA, 2020) https://gpm.nasa.gov/missions/trmmHantson, S. et al. Rare, intense, big fires dominate the global tropics under drier conditions. Sci. Rep. 7, 14374 (2017).Article 
    CAS 

    Google Scholar 
    Zeileis, A., Kleiber, C. & Jackman, S. Regression models for count data in R. J. Stat. Softw. https://doi.org/10.18637/jss.v027.i08 (2008).Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R 261–293 (Springer, 2009).Joseph, M. B. et al. Spatiotemporal prediction of wildfire extremes with Bayesian finite sample maxima. Ecol. Appl. 29, e01898 (2019).Article 

    Google Scholar 
    Guo, F. et al. Comparison of six generalized linear models for occurrence of lightning-induced fires in northern Daxing’an Mountains, China. J. For. Res. 27, 379–388 (2016).Article 

    Google Scholar 
    Garay, A. M., Hashimoto, E. M., Ortega, E. M. M. & Lachos, V. H. On estimation and influence diagnostics for zero-inflated negative binomial regression models. Comput. Stat. Data Anal. 55, 1304–1318 (2011).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Shcherbakov, M. V. et al. A survey of forecast error measures. World Appl. Sci. J. 24, 171–176 (2013).
    Google Scholar 
    Efron, B. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979).Article 

    Google Scholar 
    Canty, A. & Ripley, B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3-28 (2021). More

  • in

    A whole-ecosystem experiment reveals flow-induced shifts in a stream community

    Study areaThe study was conducted in the headwaters of the Chalpi Grande River watershed, 95 km2, located inside the Cayambe-Coca National Park in the northern Andes of Ecuador at an elevation range of 3789 to 3835 m (S 0°16′ 45″, W 78° 4′49″). This watershed harbors the primary water supply system for Quito. The system includes two reservoirs and 10 water intakes placed on first and second-order streams that, altogether, provide 39% of Quito’s water supply28. We monitored the Chalpi Norte stream for ~1.5 years prior to conducting our experiment for ~0.5 years (176 days), and ~0.4 years after the manipulation. Further, in the nearby area, we monitored 21 stream sites distributed upstream and downstream water intakes from the supply system (Fig. S4).Experiment for flow manipulation and monitoring flow reduction and recoveryWe conducted our experimental flow manipulation between October 2018 and April 2019 in a mainly rain-fed stream45. The experiment manipulated natural flows encompassing stable low flows and sporadic spates characterizing the high temporal variability of headwaters45,28 (Figs. 2a, b and S1). We set up a full Before-After/Control- Impact (BACI) experiment29 to evaluate ecosystem variables under natural and manipulated flow conditions. We identified a free-flowing stream reach on the Chalpi Norte that was above any water intakes that allowed us to divert flow with an ecohydraulic structure31. The structure was located above a meander, which we used to divert flow and return it to the stream below the meander (Fig. S4). The experimental site was comprised of an upstream/free-flowing reach (L = 25 m) (reference conditions), located ~32 m above the ecohydraulic structure and a downstream/regulated reach (L = 97 m) located immediately below the flow manipulation structure (Fig. 1b–d)31. The control site was located in a free-flowing stream, a tributary of the Chalpi Norte stream, with an upstream reach separated from a downstream reach by a distance of 16 m. We manipulated the instantaneous flow of the Chalpi Norte stream through a series of fixed percentages using different v-notch weir pairs31. We started diversions to maintain in the meander 100, 80, 60, 50, 40, 30, and 20% of the incoming flow for 7-day periods (based on local observations of benthic algal colonization); then we maintained 10% of the upstream flow for 36 days. We started to return flow gradually to recover 20, 30, 40, 50, 60, 80, and 100% of the upstream flow. In response to a natural spate while we maintained the 10% of upstream flow, the manipulated flow briefly (during ~9 h) increased above the targeted reduction (i.e., 54% instead of 10%) (Fig. 2a). We registered the spate of flow on the upstream reach of the experimental site (Figs. 2b and S1).Stream monitoring in adjacent streamsWe monitored 21 stream sites between July 2017 and July 2019. We selected seven streams with water intakes placed on the main channel (Chalpi Norte, Gonzalito, Quillugsha 1, 2, 3, Venado, and Guaytaloma). We sampled one site upstream of the water intake and two sites (i.e., 10 m and 500 m) downstream to obtain a wide range of flow reduction levels (Fig. S4) (see, 30 for further details on stream sites).Global literature surveyWe performed a systematic literature review to explore benthic algae responses to flow alterations (increase or decrease), focusing on cyanobacteria in streams. We used ISI Web of Science, Google Scholar, and Google Search for the entries: “benthic cyanobacteria” + “stream”, and “river”, “benthic algal bloom” + “flow” and all available combinations (Table S1). We selected papers containing information on benthic cyanobacteria and algae biomass and flow or water level measurements; specifically, we explored detailed information regarding experiments, spatial studies with upstream and downstream sites, and temporal replicates, as well seasonal associated benthic cyanobacteria blooms. We used published and/or publicly available data to calculate the percent of flow alteration in streams and calculated a factor on cyanobacteria biomass increase or decrease (quantitative studies) according to reported baseline conditions (either temporal or spatial). Only three out of 53 study sites reported a qualitative decrease in benthic cyanobacteria biomass attributable to flow reduction (Fig. 1d). Most studies (94%, n = 50) reported biomass increases with flow reductions. Among these studies sites, 44% reported qualitative observations where low flows were proposed as one of the environmental drivers responsible for benthic cyanobacteria blooms. While 66% of study sites (n = 33) related cyanobacterium biomass increase in time or space due to flow reductions caused by droughts, extreme low flow events, water abstractions, and experimental flumes manipulations.Abiotic and biotic variables sampling and analysesWater level sensors recording every 30 min (HOBO U40L, Onset USA) were installed at both upstream and downstream sites of water intakes, and on the experimental and control stream reaches (BACI desing), where we conducted multiple wading-rod flow measurements to convert water level into discharge via stage-discharge relationships (ADC current meter, OTT Hydromet, Germany). Streamwater’s physical and chemical in situ parameters (i.e., pH, temperature, conductivity, dissolved oxygen) were measured three times during biotic sampling on both stream sites and adjacent streams using a portable sonde (YSI, Xylem, USA). We collected water samples (500 ml) during in situ samplings to analyze nutrients (i.e., nitrate and phosphate) at the water supply company’s (EPMAPS) laboratory. We also measured precipitation from a rain gauge (HOBO Onset USA) installed in the Chalpi Norte stream.Our biotic variables included three benthic algae: cyanobacteria, diatoms, and green algae), and aquatic invertebrates biomass (Table 1). To measure Chl-a from cyanobacteria and benthic algae on artificial substrates, we used a BenthoTorch® (bbe Moldaenke GmbH, Germany) on unglazed ceramic plates (200 mm × 400 mm) with a grid of 25 squares of 2500 mm2 to allow algal accrual on a standardized surface. We allowed 21 days for colonization (based on previous observations) and then we placed all substrates5 at the beginning of the experiment. We performed five readings on five squares randomly selected within each plate. To consider the effect of benthic invertebrates to flow variations, we sampled stream sites using a Surber net (mesh size = 250 µm, area = 0.0625 m2). On the experimental and control sites we measured biotic, physical, and chemical in situ parameters every two days (n = 1760), and nutrients and invertebrates every seven days (n = 500) for the duration of the flow manipulation (~0.5 years). On the monitored sites, we measured biotic, physical, and chemical in situ parameters every seven days (n = 1456) and nutrients and invertebrates every 30 days (n = 336). To evaluate differences we calculated mean abiotic and biotic variables during the different phases (BL: baseline, FR: flow reduction, FI: gradual reset to initial flow) in the four-stream reaches to apply the BACI design29: upstream and downstream reaches on the experimental and control sites. We applied a paired one-tail t-test at α = 0.05 to compare FR and FI phases to baseline conditions, based on the expected direction of the response 1,14.Statistics and reproducibilityTo quantify the relationships between environmental variables and cyanobacteria biomass under manipulated and natural flow conditions, including interaction among algae and with invertebrates, we used multivariate autoregressive state-space modeling (MARSS)14,30. We fitted models with Gaussian errors for flow, conductivity, pH, water temperature, nitrate, phosphate, cyanobacteria, benthic algae, and invertebrate biomass time series via maximum likelihood (MARSS R-package)48. The state processes Xt includes state measurements for all four benthic components (cyanobacteria, diatoms, green algae, and invertebrates’ biomasses) considering the interactions between benthic components and environmental covariates (flow, conductivity, pH, water temperature, nitrate, phosphate) evolving through time, as follows:$${X}_{t}={{BX}}_{t-1}+U+{C}_{{Ct}}+{W}_{t}; {W}_{t} sim {MVN}(0,Q)$$
    (1)
    $${Y}_{t}={{ZX}}_{t}+{V}_{t} ; {V}_{t} sim {MVN}(0,R)$$
    (2)
    with Xt a matrix of states at time t, Yt a matrix of observations at time t, Wt a matrix of process errors (multivariate normally distributed with mean 0 and variance Q), Vt is a matrix of observation errors (normally distributed with mean 0 and variance R). Z is a matrix linking the observations Yt and the correspondent state Xt. B is an interaction matrix with inter-specific interaction (diatom and green algae) and with invertebrate strengths, Ct is a matrix of environmental variables (flow, conductivity, pH, water temperature, nitrate, phosphate) at time t. C is a matrix of coefficients indicating the effect of Ct to states Xt. U describes the mean trend. We computed a total of 12 models from the most complete to the simplest, the best-fitting model was identified as having the lowest Akaike Information Criterion adjusted for small sample sizes (AICc)14,30. To detect structural breaks in cyanobacteria biomass time series we calculated the differences between the smoothed state estimates at time t and t-1 based on the multivariate models. Sudden changes in the level were detected when the standardized smoothed state residuals exceed the 95% confidence interval for a t-distribution. We estimated the strength of environmental variables on cyanobacteria biomass and fitted models independently for each stream reach.To analyze cyanobacteria biomass across a gradient of flow alterations we compared weekly paired data (n = 1456) from upstream and downstream sites (i.e., at 10 m and 500 m). We thus calculated how much downstream site(s) biomass changed in comparison to upstream site biomass and assigned a factor for the increase or decrease. We determined the relative fraction of the instantaneous upstream flow in the downstream site measured within a 30-min time-step. We applied the same analysis to data from experiments obtained on the web search. We applied the Ramer–Douglas–Peucker (RDP) algorithm to find a breakpoint (ε lower distance to breakpoint) and the best line of fit for the local and global survey data distribution, we used the kmlShape-R package 48.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Carbon benefits of enlisting nature for crop protection

    Tonitto, C., Woodbury, P. B. & McLellan, E. L. Environ. Sci. Policy 87, 64–73 (2018).Article 

    Google Scholar 
    Carlson, K. M. et al. Nat. Clim. Change 7, 63–68 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Carson, R., Darling, L. & Darling, L. Silent Spring (Houghton Mifflin, 1962).Audsley, E., Stacey, K. F., Parsons, D. J. & Williams, A. G. Estimation of the Greenhouse Gas Emissions from Agricultural Pesticide Manufacture and Use (Cranfield Univ., 2009).Heimpel, G. E., Yang, Y., Hill, J. D. & Ragsdale, D. W. PLoS ONE 8, e72293 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Lal, R. Environ. Int. 30, 981–990 (2004).CAS 
    Article 

    Google Scholar 
    Crippa, M. et al. Nat. Food 2, 198–209 (2021).CAS 
    Article 

    Google Scholar 
    Labrie, G. et al. PLoS ONE 15, e0229136 (2020).CAS 
    Article 

    Google Scholar 
    Tang, F. H., Lenzen, M., McBratney, A. & Maggi, F. Nat. Geosci. 14, 206–210 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Mason, P. G. Biological Control: Global Impacts, Challenges and Future Directions of Pest Management (CSIRO, 2021).Deguine, J. P. et al. Agron. Sustain. Dev. 41, 1–35 (2021).Article 

    Google Scholar 
    Wyckhuys, K. A. G. et al. J. Environ. Manage. 307, 114529 (2022).Article 

    Google Scholar 
    Van den Berg, H. & Jiggins, J. World Dev. 35, 663–686 (2007).Article 

    Google Scholar 
    Godfray, H. C. J. et al. Science 327, 812–818 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Huang, J. et al. Environ. Res. Lett. 13, 064027 (2018).ADS 
    Article 

    Google Scholar 
    Pecenka, J. R. et al. Proc. Natl Acad. Sci. USA 118, e2108429118 (2021).CAS 
    Article 

    Google Scholar 
    Naranjo, S. E., Ellsworth, P. C. & Frisvold, G. B. Annu. Rev. Entomol. 60, 621–645 (2015).CAS 
    Article 

    Google Scholar 
    Tamburini, G. et al. Sci. Adv. 6, eaba1715 (2020).ADS 
    Article 

    Google Scholar 
    Wolf, S. A. & Ghosh, R. Land Use Policy 96, 103552 (2020).Article 

    Google Scholar 
    Wyckhuys, K. A. G. et al. Environ. Res. Lett. 13, 094005 (2018).ADS 
    Article 

    Google Scholar 
    Bridge, G. et al. Prog. Hum. Geogr. 44, 724–742 (2020).Article 

    Google Scholar 
    Gautam, M. et al. Repurposing Agricultural Policies and Support: Options to Transform Agriculture and Food Systems to Better Serve the Health of People, Economies, and the Planet (The World Bank and IFPRI, 2022).Tooker, J. F., O’Neal, M. E. & Rodriguez-Saona, C. Annu. Rev. Entomol. 65, 81–100 (2020).CAS 
    Article 

    Google Scholar 
    van Lenteren, J. C. et al. BioControl 63, 39–59 (2018).Article 

    Google Scholar 
    Parnell, J. J. et al. Front. Plant Sci. 7, 1110 (2016).Article 

    Google Scholar 
    Herrero, M. et al. Nat. Food 1, 266–272 (2020).Article 

    Google Scholar 
    Rosenzweig, C. et al. Nat. Food 1, 94–97 (2020).Article 

    Google Scholar 
    Rana, J. & Paul, J. J. Retail. Consum. Serv. 38, 157–165 (2017).Article 

    Google Scholar  More

  • in

    Survival strategies of an anoxic microbial ecosystem in Lake Untersee, a potential analog for Enceladus

    Water samples were filtered twice (see Methods), first through a large filter (0.45 µm, LF or “Large Filter”) and then the filtrate was passed through a small filter (0.05 µm, UF or “Ultrafine Fraction”). Using whole genome shotgun metagenomics from four water samples (LF92 and UF92 from the 92 m depth, LF99 and UF99 from the 99 m depth) as well as one sediment sample, we provide the first comprehensive whole genome shotgun metagenomics investigation of this section of the lake and highlight both the taxonomic composition and potential metabolic strategies for survival, as well as identify areas for deeper investigation.Cell counts and dissolved nutrientsIn order to determine the habitability of the anoxic basin, the cell counts were measured in the oxycline (75 m depth) and the anoxic region (92 and 99 m depth), where oxygen content is  More