More stories

  • in

    Climate change will disproportionally affect the most genetically diverse lineages of a widespread African tree species

    D’Amen, M., Zimmermann, N. E. & Pearman, P. B. Conservation of phylogeographic lineages under climate change. Glob. Ecol. Biogeogr. 22, 93–104. https://doi.org/10.1111/j.1466-8238.2012.00774.x (2013).Article 

    Google Scholar 
    Espíndola, A. et al. Predicting present and future intra-specific genetic structure through niche hindcasting across 24 millennia. Ecol. Lett. 15, 649–657. https://doi.org/10.1111/j.1461-0248.2012.01779.x (2012).Article 
    PubMed 

    Google Scholar 
    Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Tr. Ecol. Evolut. 18, 189–197. https://doi.org/10.1016/S0169-5347(03)00008-9 (2003).Article 

    Google Scholar 
    Fontaine, C., Lovett, P., Sanou, H., Maley, J. & Bouvet, J. M. Genetic diversity of the shea tree (Vitellaria paradoxa CF Gaertn), detected by RAPD and chloroplast microsatellite markers. Heredity 93, 639 (2004).CAS 
    Article 

    Google Scholar 
    Hampe, A., El Masri, L. & Petit, R. J. Origin of spatial genetic structure in an expanding oak population. Mol. Ecol. 19, 459–471. https://doi.org/10.1111/j.1365-294X.2009.04492.x (2010).Article 
    PubMed 

    Google Scholar 
    Omondi, S. F., Odee, D. W., Ongamo, G. O., Kanya, J. I. & Khasa, D. P. Genetic consequences of anthropogenic disturbances and population fragmentation in Acacia senegal. Conserv. Genet. 17, 1235–1244. https://doi.org/10.1007/s10592-016-0854-1 (2016).Article 

    Google Scholar 
    Hewitt, G. Postglacial recolonization of European biota. Biol. J. Lin. Soc. 68, 87–112 (1999).Article 

    Google Scholar 
    Donkpegan, A. S. L. et al. Population genomics of the widespread African savannah trees Afzelia africana and Afzelia quanzensis reveals no significant past fragmentation of their distribution ranges. Am. J. Bot. 107, 498–509. https://doi.org/10.1002/ajb2.1449 (2020).Article 
    PubMed 

    Google Scholar 
    Etterson, J. R. & Shaw, R. G. Constraint to adaptive evolution in response to global warming. Science 294, 151–154. https://doi.org/10.1126/science.1063656 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Holderegger, R. & Wagner, H. Landscape genetics. Bioscience 58, 199–207. https://doi.org/10.1641/B580306 (2008).Article 

    Google Scholar 
    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x (2005).Article 
    PubMed 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946. https://doi.org/10.1111/mec.12152 (2013).Article 
    PubMed 

    Google Scholar 
    Arnell, N. W. & Lloyd-Hughes, B. The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Climatic Ch. 122, 127–140. https://doi.org/10.1007/s10584-013-0948-4 (2014).ADS 
    Article 

    Google Scholar 
    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Ch. 109, 5–31. https://doi.org/10.1007/s10584-011-0148-z (2011).ADS 
    Article 

    Google Scholar 
    Prather, M. et al. Annex II: climate system scenario tables. Climate Ch. 1395–1445 (2013).Pachauri, R. K. et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Synthesis report (Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2014).Müller, C. Climate change impact on Sub-Saharan Africa. An overview and analysis of scenarios and models (Dt. Inst. für Entwicklungspolitik, Bonn, 2009).Serdeczny, O. et al. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Ch. 17, 1585–1600. https://doi.org/10.1007/s10113-015-0910-2 (2016).Article 

    Google Scholar 
    Linder, H. P. et al. The partitioning of Africa: Statistically defined biogeographical regions in sub-Saharan Africa. J. Biogeogr. 39, 1189–1205. https://doi.org/10.1111/j.1365-2699.2012.02728.x (2012).Article 

    Google Scholar 
    Sexton, G. J. et al. Influence of putative forest refugia and biogeographic barriers on the level and distribution of genetic variation in an African savannah tree, Khaya senegalensis (Desr.) A. Juss. Tree Genet. Genomes https://doi.org/10.1007/s11295-015-0933-3 (2015).Article 

    Google Scholar 
    Linder, H. P. et al. Numerical re-evaluation of the sub-Saharan phytopchoria of mainland Africa. Biologiske Skrifter 55, 229–252 (2005).ADS 

    Google Scholar 
    Ruiz Guajardo, J. C. et al. Landscape genetics of the key African acacia species Senegalia mellifera (Vahl)- the importance of the Kenyan Rift Valley. Mol. Ecol. 19, 5126–5139. https://doi.org/10.1111/j.1365-294X.2010.04833.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kebede, M., Enrich, D., Taberlet, P., Nemomissa, S. & Brochmann, C. Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East African mountains. Mol. Ecol. 16, 1233–1243. https://doi.org/10.1111/j.1365-294x.2007.03232.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kadu, C. et al. Phylogeography of the Afromontane Prunus africana reveals a former migration corridor between East and West African highlands. Mol. Ecol. 20, 165–178. https://doi.org/10.1111/j.1365-294X.2010.04931.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lyam, P. T., Duque-Lazo, J., Schnitzler, J., Hauenschild, F. & Müllner-Riehl, A. N. Testing the forest refuge hypothesis in sub-Saharan Africa using species distribution modeling for a key savannah tree species, Senegalia senegal (L.) Britton. Front. Biogeogr. https://doi.org/10.21425/F5FBG48689 (2020).Article 

    Google Scholar 
    Logossa, Z. A. et al. Molecular data reveal isolation by distance and past population expansion for the shea tree (Vitellaria paradoxa C.F. Gaertn) in West Africa. Mol. Ecol. 20, 4009–4027. https://doi.org/10.1111/j.1365-294X.2011.05249.x (2011).Article 
    PubMed 

    Google Scholar 
    Lompo, D., Vinceti, B., Konrad, H., Gaisberger, H. & Geburek, T. Phylogeography of African locust bean (Parkia biglobosa) reveals genetic divergence and spatially structured populations in west and central Africa. J. Heredity 109, 811–824. https://doi.org/10.1093/jhered/esy047 (2018).Article 

    Google Scholar 
    Leong Pock Tsy, J.-M. et al. Chloroplast DNA phylogeography suggests a West African centre of origin for the baobab, Adansonia digitata L. (Bombacoideae, Malvaceae). Mol. Ecol. 18, 1707–1715. https://doi.org/10.1111/j.1365-294X.2009.04144.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Allal, F. et al. Past climate changes explain the phylogeography of Vitellaria paradoxa over Africa. Heredity 107, 174–186. https://doi.org/10.1038/hdy.2011.5 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fagg, C. W. & Allison, G. E. Acacia Senegal and the gum arabic trade: monograph and annotated bibliography (University of Oxford, United Kingdom, 2004).
    Google Scholar 
    Lézine, A. M. Late Quaternary vegetation and climate of the Sahel. Quatern. Res. 32, 317–334 (1989).ADS 
    Article 

    Google Scholar 
    Steele, T. Vertebrate records: Late Pleistocene of Africa. In Encyclopedia of Quaternary Science, edited by S. Elias. (Elsevier, Oxford, 2007), 3139–3150.Raddad, E., Salih, A., Fadl, M., Kaarakka, V. & Luukkanen, O. Symbiotic nitrogen fixation in eight Acacia senegal provenances in dryland clays of the Blue Nile Sudan estimated by the 15N natural abundance method. Plant Soil 275, 261–269. https://doi.org/10.1007/s11104-005-2152-4 (2005).CAS 
    Article 

    Google Scholar 
    Gray, A. et al. Does geographic origin dictate ecological strategies in Acacia senegal (L.) Willd? Evidence from carbon and nitrogen stable isotopes. Plant Soil 369, 479–496. https://doi.org/10.1007/s11104-013-1593-4 (2013).CAS 
    Article 

    Google Scholar 
    Ross, J. H. A conspectus of African acacia species (1979).Odee, D. W., Telford, A., Wilson, J., Gaye, A. & Cavers, S. Plio-Pleistocene history and phylogeography of Acacia senegal in dry woodlands and savannahs of sub-Saharan tropical Africa: evidence of early colonisation and recent range expansion. Heredity 109, 372–382. https://doi.org/10.1038/hdy.2012.52 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lyam, P. et al. Genetic diversity and distribution of Senegalia senegal (L.) Britton under climate change scenarios in West Africa. PLoS ONE 13, e0194726 (2018).Article 

    Google Scholar 
    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15, 684–692; https://doi.org/10.1016/j.tplants.2010.09.008 (2010).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).Article 

    Google Scholar 
    ESRI. ArcGIS Desktop: Release 10.5. Redlands, CA: Environmental Systems Research Institute (2020).Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Res. 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).CAS 
    Article 

    Google Scholar 
    Elhadji, S. D. et al. Exploring genetic diversity and structure of Acacia senegal (L.) Willd to improve its conservation in Niger. African J. Biotechnol. 16, 1650–1659 (2017).Article 

    Google Scholar 
    Muriira, N. G., Muchugi, A., Yu, A., Xu, J. & Liu, A. Genetic Diversity Analysis Reveals Genetic Differentiation and Strong Population Structure in Calotropis Plants. Sci. Rep. 8, 7832 (2018).ADS 
    Article 

    Google Scholar 
    Conord, C., Gurevitch, J. & Fady, B. Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin. Ecol. Evol. 2, 2600–2614. https://doi.org/10.1002/ece3.350 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Omondi, S. F. et al. Genetic diversity and population structure of Acacia senegal (L) Willd Kenya. Trop. Plant Biol. 3, 59–70 (2010).Article 

    Google Scholar 
    Marko, P. B. & Hart, M. W. The complex analytical landscape of gene flow inference. Trends Ecol. Evol. 26, 448–456. https://doi.org/10.1016/j.tree.2011.05.007 (2011).Article 
    PubMed 

    Google Scholar 
    Goncalves, A. L., García, M. V., Heuertz, M. & González-Martínez, S. C. Demographic history and spatial genetic structure in a remnant population of the subtropical tree Anadenanthera colubrina var cebil (Griseb.) Altschul (Fabaceae). Ann. Forest Sci. https://doi.org/10.1007/s13595-019-0797-z (2019).Article 

    Google Scholar 
    Rosenzweig, M. L. Species diversity in space and time (Cambridge university press, 1995).Vellend, M. & Geber, M. A. Connections between species diversity and genetic diversity. Ecol. Lett. 8, 767–781. https://doi.org/10.1111/j.1461-0248.2005.00775.x (2005).Article 

    Google Scholar 
    Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487. https://doi.org/10.1111/j.1472-4642.2010.00654.x (2010).Article 

    Google Scholar 
    Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18. https://doi.org/10.1002/evl3.154 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hutchison, D. W. & Templeton, A. R. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evol.; Int. J. Org. Evol. 53, 1898–1914 (1999).Article 

    Google Scholar 
    Shi, M. M., Michalski, S. G., Welk, E., Chen, X. Y. & Durka, W. Phylogeography of a widespread Asian subtropical tree: genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia. J. Biogeogr. 41, 1710–1720. https://doi.org/10.1111/jbi.12322 (2014).Article 

    Google Scholar 
    Voss, N., Eckstein, R. L. & Durka, W. Range expansion of a selfing polyploid plant despite widespread genetic uniformity. Ann. Botany 110, 585–593. https://doi.org/10.1093/aob/mcs117 (2012).Article 

    Google Scholar 
    Fiorini, C. F. et al. Phylogeography of the specialist plant Mandirola hirsuta (Gesneriaceae) suggests ancient habitat fragmentation due to savanna expansion. Flora 262, 151522 (2020).Article 

    Google Scholar 
    Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or distance: which pattern of gene flow is most common?. Evolution 68, 1–15. https://doi.org/10.1111/evo.12258 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662. https://doi.org/10.1111/mec.12938 (2014).Article 
    PubMed 

    Google Scholar 
    Nosil, P., Vines, T. H. & Funk, D. J. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evol.; Int. J. Org. Evol. 59, 705–719 (2005).
    Google Scholar 
    Wang, I. J. & Summers, K. Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Mol. Ecol. 19, 447–458. https://doi.org/10.1111/j.1365-294X.2009.04465.x (2010).Article 
    PubMed 

    Google Scholar 
    Xu, B. et al. Population genetic structure is shaped by historical, geographic, and environmental factors in the leguminous shrub Caragana microphylla on the Inner Mongolia Plateau of China. BMC Plant Biol. 17, 200 (2017).Article 

    Google Scholar 
    Hendry, A. P. & Day, T. Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol. Ecol. 14, 901–916. https://doi.org/10.1111/j.1365-294X.2005.02480.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Solomon, S., Manning, M., Marquis, M. & Qin, D. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Cambridge university press, 2007).Thuiller, W. Climate change and the ecologist. Nature 448, 550–552 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Osland, M. J. et al. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. Global Ch. Biol. 27, 3009–3034 (2021).Article 

    Google Scholar 
    Higgins, S. I., Lavorel, S. & Revilla, E. Estimating plant migration rates under habitat loss and fragmentation. Oikos 101, 354–366 (2003).Article 

    Google Scholar 
    Jump, A. S. & Penuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020. https://doi.org/10.1111/j.1461-0248.2005.00796.x (2005).Article 
    PubMed 

    Google Scholar 
    Jump, A. S., Marchant, R. & Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51–58. https://doi.org/10.1016/j.tplants.2008.10.002 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kirk, H. & Freeland, J. R. Applications and implications of neutral versus non-neutral markers in molecular ecology. Int. J. Mol. Sci. 12, 3966–3988. https://doi.org/10.3390/ijms12063966 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bucharova, A. et al. Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conserv. Genet. 20, 7–17. https://doi.org/10.1007/s10592-018-1067-6 (2019).Article 

    Google Scholar 
    Tong, Y. et al. Ex situ conservation of Pinus koraiensis can preserve genetic diversity but homogenizes population structure. Forest Ecol. Manag. 465, 117820 (2020).Article 

    Google Scholar 
    Vessella, F., Simeone, M. C. & Schirone, B. Quercus suber range dynamics by ecological niche modelling: from the Last Interglacial to present time. Quat. Sci. Rev. 119, 85–93. https://doi.org/10.1016/j.quascirev.2015.04.018 (2015).ADS 
    Article 

    Google Scholar 
    Lovejoy, T. E. Climate change and biodiversity (TERI Press, India, 2006).
    Google Scholar 
    Poczai, P., Varga, I., Bell N.E. & Hyvonen, J. The molecular basis of plant genetic diversity. In Genomics meets biodiversity: advances in molecular marker development and their applications in plant genetic diversity assessment. The molecular basis of plant genetic diversity, edited by M. Caliskan (InTech Open Access Publisher2012), 3–31.Botermans, M., Sosef, M. S. M., Chatrou, L. W. & Couvreur, T. L. P. Revision of the African Genus Hexalobus (Annonaceae). Syst. Bot. 36, 33–48. https://doi.org/10.1600/036364411X553108 (2011).Article 

    Google Scholar 
    Sosef, M. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).Article 

    Google Scholar 
    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631. https://doi.org/10.1093/molbev/msl191 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Escoffier, L. & Lische, H. ARLEQUIN suite ver. 3.5. A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567 (2010).Article 

    Google Scholar 
    Lewis, P. O. & Zaykin, D. Genetic data analysis: computer program for the analysis of allelic data. Mol. Ecol. 11, 1157–1164 (2002).Article 

    Google Scholar 
    AComputer Program to Calculate F-Statistics. Goudet, J. FSTAT (Version 1.2). J. Hered. 6, 245–246 (1995).
    Google Scholar 
    El Mousadik, A. & Petit, R. J. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839 (1996).Article 

    Google Scholar 
    Raymond, M. & Rousset, F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86, 248–249 (1995).Article 

    Google Scholar 
    Pritchard, J., Stephens, M. & Donelly, P. Inference of Population Structure Using Multilocus Genotype Data, 945–959 (2000).Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).CAS 
    Article 

    Google Scholar 
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Pritchard, J. K., Wen, W. & Falush, D. Documentation for STRUCTURE software: Version 2.3. University of Chicago, Chicago, IL, 1–37 (2010).Eliades, N. G. & Eliades, D. G. HAPLOTYPE ANALYSIS: software for analysis of haplotype data. Forest Goettingen (Germany): Genetics and Forest Tree Breeding, Georg-August University Goettingen (2009).Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Peakall, R. & Smouse, P. E. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).Article 

    Google Scholar 
    Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307. https://doi.org/10.1111/ecog.02880 (2018).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67, 3403–3411. https://doi.org/10.1111/evo.12134 (2013).Article 
    PubMed 

    Google Scholar  More

  • in

    Isotopic composition of the eastern gray whale epidermis indicates contribution of prey outside Arctic feeding grounds

    Clark, C. T. et al. Heavy with child? Pregnancy status and stable isotope ratios as determined from biopsies of humpback whales. Conserv. Physiol. 4, 1–13 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Wasser, S. K. et al. Population growth is limited by nutritional impacts on pregnancy success in endangered Southern Resident killer whales (Orcinus orca). PLoS One 12, e0179824. https://doi.org/10.1371/journal.pone.0179824 (2017).Boeuf, B. J., Perez-Cortes, H., Urbán, J., Mate, B. R. & Ollervides, F. High gray whale mortality and low recruitment in 1999: Potential causes and implications. J. Cetacean Res. Manag. 2, 85–99 (1999).
    Google Scholar 
    Perryman, W. L. & Lynn, M. S. Evaluation of nutritive condition and reproductive status of migrating gray whales (Eschrichtius robustus) based on analysis of photogrammetric data. J. Cetacean Res. Manag. 4, 155–164 (2002).
    Google Scholar 
    Moore, S. E., Grebmeier, J. M. & Davies, J. R. Gray whale distribution relative to forage habitat in the northern Bering Sea: Current conditions and retrospective summary. Can. J. Zool. 81, 734–742 (2003).Article 

    Google Scholar 
    Christiansen, F. et al. Poor body condition associated with an unusual mortality event in gray whales. Mar. Ecol. Prog. Ser. 658, 237–252 (2021).ADS 
    Article 

    Google Scholar 
    Martìnez-Aguilar, S. et al. Gray Whale (Eschrichtius robustus) stranding records in Mexico during the winter breeding season in 2019. In IWC (2019).Villegas-Amtmann, S., Schwarz, L. K., Sumich, J. L. & Costa, D. P. A bioenergetics model to evaluate demographic consequences of disturbance in marine mammals applied to gray whales. Ecosphere 6, art183 (2015).Article 

    Google Scholar 
    Urbán, R. J., Jiménez-López, E., Guzmán, H. M. & Viloria-Gómora, L. Migratory Behavior of an Eastern North Pacific Gray Whale From Baja California Sur to Chirikov Basin, Alaska. Front. Mar. Sci. 8, 1–7 (2021).Article 

    Google Scholar 
    Kim, L. & Oliver, J. S. Swarming benthic crustaceans in the Bering and Chukchi seas and their relation to geographic patterns in gray whale feeding. Can. J. Zool. 67, 1531–1542 (1989).Article 

    Google Scholar 
    Perryman, W. L., Joyce, T., Weller, D. W. & Durban, J. W. Environmental factors influencing eastern North Pacific gray whale calf production 1994–2016. Mar. Mammal Sci. 37, 448–462 (2020).Article 

    Google Scholar 
    Caraveo-Patiño, J. & Soto, L. A. Stable carbon isotope ratios for the gray whale (Eschrichtius robustus) in the breeding grounds of Baja California Sur, Mexico. Hydrobiologia 539, 99–107 (2005).Article 

    Google Scholar 
    Pyenson, N. D. & Lindberg, D. R. What happened to gray whales during the pleistocene? The ecological impact of sea-level change on benthic feeding areas in the north pacific ocean. PLoS One 6, e21295. https://doi.org/10.1371/journal.pone.0021295 (2011).Alter, S. E., Newsome, S. D. & Palumbi, S. R. Pre-whaling genetic diversity and population ecology in eastern pacific gray whales: Insights from ancient DNA and stable isotopes. PLoS One 7, e35039 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dunham, J. S. & Duffus, D. A. Foraging patterns of gray whales in central Clayoquot Sound, British Columbia, Canada. Mar. Ecol. Prog. Ser. 223, 299–310 (2001).ADS 
    Article 

    Google Scholar 
    Nerini, M. A Review of Gray Whale Feeding Ecology (Academic Press, Cambridge, 1984).Book 

    Google Scholar 
    Jones, M. Lou & Swartz, S. L. Gray whale. In Encyclopedia of Marine Mammals, Vol. 36 1352 (Academic Press, 2009).Moore, S. E., Wynne, K. M., Kinney, J. C. & Grebmeier, J. M. Gray whale occurrence and forage southeast of Kodiak, Island, Alaska. Mar. Mammal Sci. 23, 419–428 (2007).Article 

    Google Scholar 
    Lagerquist, B. A. et al. Feeding home ranges of pacific coast feeding group gray whales. J. Wildl. Manag. 83, 925–937 (2019).Article 

    Google Scholar 
    Calambokidis, J., Laake, J. L. & Klimek, A. Updated analysis of abundance and population structure of seasonal gray whales in the Pacific, 2010 (2012).Frasier, T. R., Koroscil, S. M., White, B. N. & Darling, J. D. Assessment of population substructure in relation to summer feeding ground use in the eastern North Pacific gray whale. Endanger. Species Res. 14, 39–48 (2011).Article 

    Google Scholar 
    Lang, A. R. et al. Assessment of genetic structure among eastern North Pacific gray whales on their feeding grounds. Mar. Mammal Sci. 30, 1473–1493 (2014).CAS 
    Article 

    Google Scholar 
    Burnham, R. & Duffus, D. Patterns of predator-prey dynamics between gray whales (Eschrichtius robustus) and mysid species in Clayoquot Sound. J. Cetacean Res. Manag. 19, 95–103 (2018).
    Google Scholar 
    Walker, T. J. Primer: With Special Attention to the California Gray Whale (Cabrillo Historical Association Pub QL737, San Diego, 1975).Walker, T. J. The California gray whale comes back (Eschrichtius robustus). Natl. Geogr. Mag. 139(3), 394–415 (1971).
    Google Scholar 
    Caraveo-Patiño, J. et al. Eco-physiological repercussions of dietary arachidonic acid in cell membranes of active tissues of the Gray whale. Mar. Ecol. 30, 437–447. https://doi.org/10.1111/j.1439-0485.2009.00289.x (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    Pirotta, E. et al. A dynamic state model of migratory behavior and physiology to assess the consequences of environmental variation and anthropogenic disturbance on marine vertebrates. Am. Nat. 191, E40–E56. https://doi.org/10.1086/695135 (2018).Busquets-Vass, G. et al. Estimating blue whale skin isotopic incorporation rates and baleen growth rates: Implications for assessing diet and movement patterns in mysticetes. PLoS ONE 12, 1–25 (2017).Article 
    CAS 

    Google Scholar 
    Busquets-Vass, G. et al. Isotope-based inferences of the seasonal foraging and migratory strategies of blue whales in the eastern Pacific Ocean. Mar. Environ. Res. 163, 105201. https://doi.org/10.1016/j.marenvres.2020.105201 (2021).Wild, L. A., Chenoweth, E. M., Mueter, F. J. & Straley, J. M. Evidence for dietary time series in layers of cetacean skin using stable carbon and nitrogen isotope ratios. Rapid Commun. Mass Spectrom. 32, 1425–1438 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gelippi, M., Popp, B., Gauger, M. F. W. & Caraveo-Patiño, J. Tracing gestation and lactation in free ranging gray whales using the stable isotopic composition of epidermis layers. PLoS ONE 15, 1–23. https://doi.org/10.1371/journal.pone.0240171 (2020).Article 
    CAS 

    Google Scholar 
    Graham, B. S., Koch, P. L., Newsome, S. D., McMahon, K. W. & Aurioles, D. Using Isoscapes to Trace the Movements and Foraging Behavior of Top Predators in Oceanic Ecosystems. Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping. https://doi.org/10.1007/978-90-481-3354-3 (2010).Hobson, K. A. International association for ecology tracing origins and migration of wildlife using stable isotopes: A review. Source Oecol. 120, 314–326 (1999).ADS 

    Google Scholar 
    Ryan, C. et al. Accounting for the effects of lipids in stable isotope (δ13C and δ15N values) analysis of skin and blubber of balaenopterid whales. Rapid Commun. Mass Spectrom. 26, 2745–2754 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mammal Sci. 26, 509–572 (2010).CAS 

    Google Scholar 
    Giménez, J., Ramírez, F., Almunia, J., Forero, G. M. & de Stephanis, R. From the pool to the sea: Applicable isotope turnover rates and diet to skin discrimination factors for bottlenose dolphins (Tursiops truncatus). J. Exp. Mar. Bio. Ecol. 475, 54–61 (2016).Article 
    CAS 

    Google Scholar 
    Browning, N. E., Dold, C., I-Fan, J. & Worthy, A. J. Isotope turnover rates and diet–tissue discrimination in skin of ex situ bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 217, 214–221 (2014).CAS 
    PubMed 

    Google Scholar 
    Borrell, A., Abad-Oliva, N., Gõmez-Campos, E., Giménez, J. & Aguilar, A. Discrimination of stable isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid Commun. Mass Spectrom. 26, 1596–1602 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Reeb, D., Best, P. B. & Kidson, S. H. Structure of the integument of southern right whales, Eubalaena australis. Anat. Rec. 290, 596–613 (2007).Article 

    Google Scholar 
    Morales-Guerrero, B. et al. Melanin granules melanophages and a fully-melanized epidermis are common traits of odontocete and mysticete cetaceans. Vet. Dermatol. 28, 213–e50. https://doi.org/10.1111/vde.12392 (2017).PubMed 
    Article 

    Google Scholar 
    Ayliffe, L. K. et al. Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139, 11–22 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hicks, B. D., St. Aubin, D. J., Geraci, J. R. & Brown, W. R. Epidermal growth in the bottlenose dolphin, Tursiops truncatus. J. Invest. Dermatol. 85, 60–63 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aubin, D. J., St. Smith, T. G. & Geraci, J. R. Seasonal epidermal molt in beluga whales, Delphinapterus leucas. Can. J. Zool. 68, 359–367 (1990).Article 

    Google Scholar 
    Perryman, W. L., Donahue, M. A., Perkins, P. C. & Reilly, S. B. Gray Whale calf production 1994–2000: Are observed fluctuations related to changes in seasonal ice cover?. Mar. Mammal Sci. 18, 121–144 (2002).Article 

    Google Scholar 
    Urbán, R. J. et al. A review of gray whales (Eschrichtius robustus) on their wintering grounds in Mexican waters. J. Cetacean Res. Manag. 5, 281–295 (2003).
    Google Scholar 
    Mann, J. Behavioral sampling methods for cetaceans: A review and critique. Mar. Mammal Sci. 15, 102–122 (1999).Article 

    Google Scholar 
    Tyurneva, O. Y. et al. Photographic identification of the Korean-Okhotsk gray whale (Eschrichtius robustus) offshore northeast Sakhalin island and southeast Kamchatka peninsula (Russia), 2009. In SC/62/BRG9 (2014).Yakovlev, Y. M., Tyurneva, O. M., Vertyankin, V. V. & Van der Wolf, P. Photo-identification of gray whales (Eschrichtius robustus) off the northeast coast of Sakhalin Island in 2018 photo. West. Gray Whale Advis. Panel 20th meeti (2019).Reeb, D. & Best, P. B. A biopsy system for deep core sampling of the blubber of southern right whales, Eubalaena australis. Mar. Mammal Sci. 22, 206–213 (2006).Article 

    Google Scholar 
    Noren, D. P. & Mocklin, J. A. Review of cetacean biopsy techniques: Factors contributing to successful sample collection and physiological and behavioral impacts. Mar. Mammal Sci. 28, 154–199 (2012).Article 

    Google Scholar 
    Caraveo-Patiño, J. Ecología alimenticia de la ballena gris (Eschrichtius robustus, Lilljeborg, 1861): Una ventana a la dinámica interna de los ecosistemas. PhD Thesis. Centro de Investigaciones Biológicas del noroeste S.C. http://dspace.cibnor.mx:8080/handle/123456789/90 (2004).Folch, J., Lees, M. & Stanley, G. H. S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).CAS 
    PubMed 
    Article 

    Google Scholar 
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Iverson, S. J., Arnould, J. P. Y. & Boyd, I. L. Milk fatty acid signatures indicate both major and minor shifts in the diet of lactating Antarctic fur seals. Can. J. Zool. 75, 188–197 (1997).Article 

    Google Scholar 
    Newsome, S. D., Koch, P. L., Etnier, M. A. & Aurioles-Gamboa, D. Using carbon and nitrogen isotope values to investigate maternal strategies in Northeast Pacific otariids. Mar. Mammal Sci. 22, 556–572 (2006).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Moore, J. W. & Semmens, B. X. Incorporating uncertainty and prior information into stable isotope mixing models. Ecol. Lett. 11, 470–480 (2008).PubMed 
    Article 

    Google Scholar 
    Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399 (2013).MathSciNet 

    Google Scholar 
    Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 136, 261–269 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    Phillips, D. L. Converting isotope values to diet composition: The use of mixing models. J. Mammal. 93, 342–352 (2012).Article 

    Google Scholar 
    Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5, 1–5 (2010).
    Google Scholar 
    Baker, H. ASM Handbook: Alloy Phase Diagrams ASM Handbook Alloy Phase Diagrams Vol. 3 (ASM International, Materials Park, 1992).
    Google Scholar 
    Pereira, G. H. A. On quantile residuals in beta regression. Commun. Stat. Simul. Comput. 48, 302–316 (2019).MathSciNet 
    Article 

    Google Scholar 
    Osterblom, H., Olsson, O., Blenckner, T. & Furness, W. Junk-food in marine ecosystems. Oikos 117, 967–977 (2008).Article 

    Google Scholar 
    Martínez del Rio, C. & Carleton, S. A. How fast and how faithful: The dynamics of isotopic incorporation into animal tissues. J. Mammal. 93, 353–359. https://doi.org/10.1644/11-MAMM-S-165.1 (2012).Article 

    Google Scholar 
    Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS One 10, https://doi.org/10.1371/journal.pone.0116182 (2015).CAS 
    Article 

    Google Scholar 
    Dalerum, F. & Angerbjörn, A. Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144, 647–658 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Horstmann-Dehn, L., Follmann, E. H., Rosa, C., Zelensky, G. & George, C. Stable carbon and nitrogen isotope ratios in muscle and epidermis of arctic whales. Mar. Mammal Sci. 28, E173–E190. https://doi.org/10.1111/j.1748-7692.2011.00503.x (2012).Hertz, E., Trudel, M., Cox, M. K. & Mazumder, A. Effects of fasting and nutritional restriction on the isotopic ratios of nitrogen and carbon: a meta-analysis. Ecol. Evol. 5, 4829–4839 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lian, M. et al. Assessing δ13C, δ15N and total mercury measures in epidermal biopsies from gray whales. Front. Mar. Sci. 7, 1–9 (2020).ADS 
    Article 

    Google Scholar 
    Gulland, F. et al. Eastern North Pacific gray whale (Eschrichtius robustus) unusual mortality event, 1999–2000. U.S. Dep. Commer. NOAA Tech. Memo. NMFS-AFSC-150. 33 pp (2005).Popp, B. N. et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta 62, 69–77 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Schell, D. M. Declining carrying capacity in the Bering Sea: Isotopic evidence from whale baleen. Limnol. Oceanogr. 45, 459–462 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Kurle, C. M. & McWhorter, J. K. Spatial and temporal variability within marine isoscapes: Implications for interpreting stable isotope data from marine systems. Mar. Ecol. Prog. Ser. 568, 31–45 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Keeling, C. D. The Suess effect: 13Carbon –14Carbon interrelations. Environ. Int. 2, 229–300 (1979).CAS 
    Article 

    Google Scholar 
    Grecian, W. J. et al. Contrasting migratory responses of two closely related seabirds to long-term climate change. Mar. Ecol. Prog. Ser. 559, 231–242 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Pomerleau, C., Nelson, R. J., Hunt, B. P. V., Sastri, A. R. & Williams, W. J. Spatial patterns in zooplankton communities and stable isotope ratios (δ13C and δ15N) in relation to oceanographic conditions in the sub-Arctic Pacific and western Arctic regions during the summer of 2008. J. Plankton Res. 36, 757–775 (2014).CAS 
    Article 

    Google Scholar 
    Lee, S. H. Use of the Beaufort Sea as feeding habitat by bowhead whales (Balaena mysticetus) as indicated by stable isotope ratios. M.S. Thesis. University of Alaska Fairbanks. http://hdl.handle.net/11122/4931 (2000).Cullen, J. T., Rosenthal, Y. & Falkowski, P. G. The effect of anthropogenic CO2 on the carbon isotope composition of marine phytoplankton. Limnol. Oceanogr. 46, 996–998 (2001).ADS 
    Article 

    Google Scholar 
    Schell, D. M. Carbon isotope ratio variations in Bering Sea biota: The role of anthropogenic carbon dioxide. Limnol. Oceanogr. 46, 999–1000 (2001).ADS 
    Article 

    Google Scholar 
    Eide, M., Olsen, A., Ninnemann, U. S. & Eldevik, T. A global estimate of the full oceanic 13C Suess effect since the preindustrial. Glob. Biogeochem. Cycles 31, 492–514 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Kurle, C. M., Sinclair, E. H., Edwards, A. E. & Gudmundson, C. J. Temporal and spatial variation in the δ15N and δ13C values of fish and squid from Alaskan waters. Mar. Biol. 158, 2389–2404 (2011).Article 

    Google Scholar 
    Ohman, M. D., Rau, G. H. & Hull, P. M. Multi-decadal variations in stable N isotopes of California Current zooplankton. https://doi.org/10.1016/j.dsr.2011.11.003 (2011).Décima, M., Landry, M. R. & Popp, B. N. Environmental perturbation effects on baseline δ15N values and zooplankton trophic flexibility in the southern California current ecosystem. Limnol. Oceanogr. 58, 624–634 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Caraveo-Patiño, J., Hobson, K. A. & Soto, L. A. Feeding ecology of gray whales inferred from stable-carbon and nitrogen isotopic analysis of baleen plates. Hydrobiologia 586, 17–25 (2007).Article 

    Google Scholar 
    Hernández-Aguierre, D. Análisis de la composición de ácidos grasos en los estratos de la capa de grasa (blubber) de la ballena gris Eschrichtius robustus (LILLJEBORG, 1861). M.S. Thesis. Centro de Investigaciones Biológicas del noroeste S.C. http://cibnor.repositorioinstitucional.mx/jspui/handle/1001/182 (2012).Ackman, R. G. Nutritional composition of fats in seafoods. Prog. Food Nutr. Sci. 13, 161–289 (1989).CAS 
    PubMed 

    Google Scholar 
    Lahdes, E., Balogh, G., Fodor, E. & Farkas, T. Adaptation of composition and biophysical properties of phospholipids to temperature by the crustacean, Gammarus spp. Lipids 35, 1093–1098 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarur-Zanatta, J. C., Millán-Nuñez, R., Gutiérrez-Sigala, C. A. & Small Mattox-Sheahen, C. A. Variation and similarity in three zones with-different type of substrate In Laguna Ojo De Liebre, B.C.S., Mexico. Ciencias Mar. 10, 169–179 (1984).Article 

    Google Scholar 
    Pirotta, V., Owen, K., Donnelly, D., Brasier, M. J. & Harcourt, R. First evidence of bubble-net feeding and the formation of ‘super-groups’ by the east Australian population of humpback whales during their southward migration. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3621 (2021).Article 

    Google Scholar 
    Carone, E. et al. Sex steroid hormones and behavior reveal seasonal reproduction in a resident fin whale population. Conserv. Physiol. 7, 1–13 (2019).Article 
    CAS 

    Google Scholar 
    Prieto, R., Tobeña, M. & Silva, M. A. Habitat preferences of baleen whales in a mid-latitude habitat. Deep Res. Part II Top. Stud. Oceanogr. 141, 155–167. https://doi.org/10.1016/j.dsr2.2016.07.015 (2017).ADS 
    Article 

    Google Scholar 
    Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS One 15 (2020).Savage, K. Alaska and British Columbia large whale unusual mortality event summary report. NOAA Fish Report, Juneau August, 1–42 (2017).Stewart, J. D. & Weller, D. W. NOAA Technical Memorandum NMFS abundance of eastern north pacific gray whales 2019/2020 (2021).Cooke, J. G. Population assessment update for Sakhalin gray whales. West. Gray Whale Advis. Panel 13 (2020). More

  • in

    Effects of conservation tillage strategies on soil physicochemical indicators and N2O emission under spring wheat monocropping system conditions

    Fu, C. H. et al. Relationships among fisheries exploitation, environmental conditions, and ecological indicators across a series of marine ecosystems. J. Mar. Syst. 148, 101–111 (2015).Article 

    Google Scholar 
    Too, C. C., Ong, K. S., Yule, C. M. & Keller, A. Putative roles of bacteria in the carbon and nitrogen cycles in a tropical peat swamp fores. Basic Appl. Ecol. 52, 109–123 (2020).Article 

    Google Scholar 
    Hou, R. J. et al. Effects of biochar and straw on greenhouse gas emission and its response mechanism in seasonally frozen farmland ecosystems. Catena 194, 104735 (2020).CAS 
    Article 

    Google Scholar 
    Wang, X., Lu, P., Yang, P. L. & Ren, S. M. Effects of fertilizer and biochar applications on the relationship among soil moisture, temperature, and N2O emissions in farmland. PeerJ 9, e11674–e11674 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tang, Z. M., Liu, X. R., Zhang, Q. W. & Li, G. C. Effects of biochar and straw on soil N2O emission from a wheat maize rotation system. Huan Jing Ke Xue 42(3), 1569–1580 (2021).PubMed 

    Google Scholar 
    Kong, Q., Wang, Z. B., Niu, P. F. & Miao, M. S. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process. Biores. Technol. 210, 94–100 (2016).CAS 
    Article 

    Google Scholar 
    Han, Z. M. et al. Spatial-temporal dynamics of agricultural drought in the Loess Plateau under a changing environment: Characteristics and potential influencing factors. Agric. Water Manag. 244, 106540 (2021).Article 

    Google Scholar 
    Clemens, S. et al. Nitrification inhibitors can increase post-harvest nitrous oxide emissions in an intensive vegetable production system. Sci. Rep. 7(1), 1–9 (2017).Article 
    CAS 

    Google Scholar 
    Zhang, D. J. et al. Effects of tillage and fertility on soil nitrogen balance and greenhouse gas emissions of wheat-maize rotation system in Central Henan Province, China. J. Appl. Ecol. 32(5), 1753–1760 (2021).
    Google Scholar 
    Liu, X. C. et al. Response of soil N2O emissions to precipitation pulses under different nitrogen availabilities in a semiarid temperate steppe of Inner Mongolia, China. J. Arid Land 6(04), 410–422 (2014).Article 

    Google Scholar 
    Hu, Q. Y. et al. Combined effects of straw returning and chemical n fertilization on greenhouse gas emissions and yield from paddy fields in northwest Hubei Province, China. J. Soil Sci. Plant Nutr. 20(2), 392–406 (2019).Article 
    CAS 

    Google Scholar 
    Sun, Z. C. et al. Effects of straw returning and feeding on greenhouse gas emissions from integrated rice-crayfish farming in Jianghan Plain, China. Environ. Sci. Pollut. Res. 26(12), 11710–11718 (2019).CAS 
    Article 

    Google Scholar 
    Mei, K. et al. Stimulation of N2O emission by conservation tillage management in agricultural lands: A meta-analysis. Soil Tillage Res. 182, 86–93 (2018).Article 

    Google Scholar 
    Wang, H. Y., Wu, J. Q., Li, G. & Yan, L. J. Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecol. Evol. 10(21), 12211–12223 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sadiq, M., Li, G., Rahim, N. & Tahir, M. M. Sustainable conservation tillage technique for improving soil health by enhancing soil physicochemical quality indicators under wheat mono-cropping system conditions. Sustainability 13(15), 8177–8177 (2021).CAS 
    Article 

    Google Scholar 
    Nie, Z. G. et al. Evaluating the effects of different sowing dates and tillage methods on dry-land wheat grain dry matter accumulation based on the APSIM model. J. Appl. Ecol. 32(3), 913–920 (2021).
    Google Scholar 
    Alhassan, A. M., Yang, C. J., Ma, W. W. & Li, G. Influence of conservation tillage on Greenhouse gas fluxes and crop productivity in spring-wheat agroecosystems on the Loess Plateau of China. PeerJ 9, e11064–e11064 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mou, L. M. et al. Breeding report of a new dryland spring wheat variety Dingxi 42. Gansu Agric. Sci. Technol. 01, 1–3 (2015).ADS 

    Google Scholar 
    Ma, W. W., Li, G., Wu, J. H., Xu, G. R. & Wu, J. Q. Respiration and CH4 fluxes in Tibetan peatlands are influenced by vegetation degradation. CATENA 195, 104789 (2020).CAS 
    Article 

    Google Scholar 
    Wu, J. Q. et al. Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau. Sci. Rep. 10(1), 21271–21271 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Défossez, P. et al. Impact of soil water content on the overturning resistance of young Pinus Pinaster in sandy soil. For. Ecol. Manag. 480, 118614 (2021).Article 

    Google Scholar 
    Mao, J., Nierop, K. G., Rietkerk, M., Damsté, J. S. S. & Te Dekker, S. C. infuence of vegetation on soil water repellency-markers and soil hydrophobicity. Sci. Total Environ. 566, 608–620 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Lu, Y., Si, B., Li, H. & Biswas, A. Elucidating controls of the variability of deep soil bulk density. Geoderma 348, 146–157 (2019).ADS 
    Article 

    Google Scholar 
    Huang, T. T., Yang, N., Lu, C., Qin, X. L. & Siddique, K. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil Tillage Res. 214, 105171 (2021).Article 

    Google Scholar 
    Yang, J. M., Zhang, Z. Q. & Cao, G. J. Soil nitrate and nitrite content determined by Skalar SAN++. Soil Fertil. Sci. China 02, 101–105 (2014).
    Google Scholar 
    Chen, N. et al. Effect of biodegradable film mulching on crop yield, soil microbial and enzymatic activities, and optimal levels of irrigation and nitrogen fertilizer for the Zea mays crops in arid region. Sci. Total Environ. 776, 145970–145970 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Akhtar, K. et al. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci. Tot. Environ. 741, 140488 (2020).CAS 
    Article 

    Google Scholar 
    Ma, E. et al. Effects of rice straw returning methods on N2O emission during wheat-growing season. Nutr. Cycl. Agroecosyst. 88(3), 463–469 (2009).Article 
    CAS 

    Google Scholar 
    Yeboah, S. et al. Greenhouse gas emissions in a spring wheat–field pea sequence under different tillage practices in semi-arid Northwest China. Nutr. Cycl. Agroecosyst. 106(1), 77–91 (2016).CAS 
    Article 

    Google Scholar 
    Zahid, A., Ali, S., Ahmed, M. & Iqbal, N. Improvement of soil health through residue management and conservation tillage in rice-wheat cropping system of Punjab, Pakistan. Agronomy 10(12), 1844–1844 (2020).CAS 
    Article 

    Google Scholar 
    Dharmendra, S. et al. Effect of reversal of conservation tillage on soil nutrient availability and crop nutrient uptake in soybean in the vertisols of central India. Sustainability. 12(16), 6608 (2020).Article 
    CAS 

    Google Scholar 
    Orzech, K., Wanic, M. & Załuski, D. The effects of soil compaction and different tillage systems on the bulk density and moisture content of soil and the yields of winter oilseed rape and cereals. Agriculture 11(7), 666–666 (2021).CAS 
    Article 

    Google Scholar 
    Fan, B. Q. & Liu, Q. L. Effect of conservation tillage and straw application on the soil microorganism and P-dissolving characteristics. Chin. J. Eco-Agric. 03, 130–132 (2005).
    Google Scholar 
    Liu, X. et al. Dynamic contribution of microbial residues to soil organic matter accumulation influenced by maize straw mulching. Geoderma 333, 35–42 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, W. Y. et al. Conservation tillage enhances crop productivity and decreases soil nitrogen losses in a rainfed agroecosystem of the Loess Plateau, China. J. Clean. Prod. 274, 122854 (2020).CAS 
    Article 

    Google Scholar 
    Zhang, Y., Xie, D. T., Ni, J. P. & Zeng, X. B. Conservation tillage practices reduce nitrogen losses in the sloping upland of the Three Gorges Reservoir area: No-till is better than mulch-till. Agric. Ecosyst. Environ. 300, 107003 (2020).CAS 
    Article 

    Google Scholar 
    Andrea, F. et al. May conservation tillage enhance soil C and N accumulation without decreasing yield in intensive irrigated croplands? Results from an eight-year maize monoculture. Agric. Ecosyst. Environ. 296, 106926 (2020).Article 
    CAS 

    Google Scholar 
    Wu, J. et al. Effects of different tillage and straw retention practices on soil aggregates and carbon and nitrogen sequestration in soils of the northwestern China. J. Arid. Land 11(04), 567–578 (2019).Article 

    Google Scholar 
    Niu, Y. N., Shen, Y. Y., Nan, Z. B., Yang, J. & Yang, Z. W. College of Pastoral Agriculture Science & Technology, Lanzhou University, China. Influence of different cultivation managements on organic carbon and nitrate nitrogen of top soil in the Loess Plateau, northwestern China. Proceedings of the XXI International Grassland Congress and the VIII International Rangeland Congress (volume II) (2008).Wang, Q., Li, F. R., Zhang, E. H., Li, G. & Vance, M. The effects of irrigation and nitrogen application rates on yield of spring wheat (longfu-920), and water use efficiency and nitrate nitrogen accumulation in soil. Aust. J. Crop Sci. 6(4), 662–672 (2012).
    Google Scholar 
    Pisani, O. et al. Soil nitrogen dynamics and leaching under conservation tillage in the Atlantic Coastal Plain, Georgia, United States. J. Soil Water Conserv. 72(5), 519–529 (2017).Article 

    Google Scholar 
    Cao, W. C. et al. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils. J. Nutr. Fertil. 25(10), 1781–1798 (2019).
    Google Scholar 
    Liu, B., Huang, G. B., Gao, Y. Q., Li, Q. P. & Huang, T. Effects of no-tillage on daily dynamics of CO2 and N2O emission from spring wheat field during mature stage. J. Gansu Agric. Univ. 45(01), 82–87 (2010).
    Google Scholar 
    Akhtar, K. et al. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci. Total Environ. 741, 140488 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sina, B., Youngsun, K., Janine, K. & Gerhard, G. Plastic mulching in agriculture: Friend or foe of N2O emissions. Agric. Ecosyst. Environ. 167, 43–51 (2013).Article 
    CAS 

    Google Scholar 
    Seiichi, N., Michio, K., Masako, T., Seiichiro, Y. & Naoto, K. Nitrous oxide evolved from soil covered with plastic mulch film in horticultural field. Biol. Fertil. Soils 48(7), 787–795 (2012).Article 
    CAS 

    Google Scholar 
    Wang, J., Cai, L. Q., Zhang, R. Z., Wang, Y. L. & Dong, W. J. Effects of Tillage Measures on soil greenhouse gas (CO2, CH4, N2O) flux in temperate semi-arid area. Chin. J. Eco-Agric. 19(06), 1295–1300 (2011).CAS 
    Article 

    Google Scholar 
    Chen, G. H. et al. Can conservation tillage reduce N2O emissions on cropland transitioning to organic vegetable production?. Sci. Total Environ. 618, 927–940 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Narendra, K. L. & Rattan, L. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Tillage Res. 126, 78–89 (2013).Article 

    Google Scholar 
    Liang, W., Shi, Y., Zhang, H., Yue, J. & Huang, G. H. Greenhouse gas emissions from Northeast china rice fields in fallow season. Pedosphere 17(5), 630–638 (2007).CAS 
    Article 

    Google Scholar 
    Bremner, J. M., Robbins, S. G. & Blackmer, A. M. Seasonal variability in emission of nitrous oxide from soil. Geophys. Res. Lett. 7(9), 641–644 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    Maag, M. & Vinther, F. P. Nitrous oxide emission by nitrification and denitrification in the different soil types and at different soil moisture contents and temperature. Appl. Soil. Ecol. 4(1), 5–14 (1996).Article 

    Google Scholar 
    Castaldi, S. Responses of nitrous oxide, dinitrogen and carbon dioxide production and oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiment. Biol. Fertil. Soils 32(1), 67–72 (2000).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Braker, G., Schwarz, J. & Conrad, R. Influence of temperature on the composition and activity of denitrifying soil communities. FEMS Microbiol. Ecol. 73(1), 134–148 (2010).CAS 
    PubMed 

    Google Scholar 
    Hu, H. W., Chen, D. & He, J. Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. Narnia 39(5), 729–749 (2015).CAS 

    Google Scholar 
    Pokharel, P. & Chang, S. X. Biochar decreases the efficacy of the nitrification inhibitor nitrapyrin in mitigating nitrous oxide emissions at different soil moisture levels. J. Environ. Manage. 295, 113080–113080 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shu, X. X. et al. Response of soil N2O emission and nitrogen utilization to organic matter in the wheat and maize rotation system. Sci. Rep. 11(1), 4396–4396 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bergaust, L., Mao, Y. J., Bakken, L. R. & Frostegård, A. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrous [corrected] oxide reductase in Paracoccus denitrificans. Appl. Environ. Microbiol. 76(19), 6387–6396 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Large size in aquatic tetrapods compensates for high drag caused by extreme body proportions

    Drag coefficients of plesiosaurs, ichthyosaurs and modern cetaceansAt equal Reynolds numbers (same body length and same flow velocity), the total drag coefficients of plesiosaurs (Cd) are higher than the estimated values for ichthyosaurs and modern cetaceans (Fig. 1a). The limbless bodies, however, display similar Cd in all three groups and are even lower-than-average in the long-necked plesiosaurs, indicating that the limbs are responsible for the observed high Cd. The limbs of plesiosaurs contribute to more than 20% of their total drag coefficient: up to 32.2% in the basal Meyerasaurus and averaging 25% in derived plesiosaurs, with no major differences between plesiosaur morphotypes. In parvipelvian ichthyosaurs the contribution of the limbs to Cd is 11.2–15.6%, compared to 8.7–14.3% in modern cetaceans. Some of the living taxa we include provide a functional reference for this analysis. Our computed drag coefficient for the bottlenose dolphin model (Cd = 0.00413 at Re = 107) for example, is consistent with the estimates from a gliding living dolphin33 (Cd = 0.0034 at Re = 9.1 × 106) and other static CFD simulations34 (Cd = 0.00413 at Re = 107). It is worth noting that these values are, as expected, lower than estimates obtained from kinematic models, as motion is not accounted for35. In a former study, drag coefficients for a plesiosaur (Cryptoclidus), two ichthyosaurs and various cetaceans were obtained from rigid models in water tanks36. However, the pressure drag component (Cp) was likely overestimated due to the proximity of the models to the air–water interface, and thus are not directly comparable to ours.Fig. 1: Comparison of the drag coefficient of derived plesiosaurs, ichthyosaurs and cetaceans.a Total drag coefficient computed for the full models including the limbs (‘body + limbs’, circles) and the limbless models (‘body’, squares). Average (point) and range (bar) shown for calculations at Re = 5 × 106–107. The derived short-necked plesiosaurs are highlighted in orange; the parvipelvian ichthyosaurs in blue and the extant cetaceans in red. A basal plesiosaur included as a reference is highlighted in purple. b Representative two-dimensional plots of the flow velocity magnitude at Re = 5 × 106 (inlet velocity of 5 ms−1) in lateral view. For dorsal view see Supplementary Fig. 1. Images of Tursiops and the three ichthyosaurs modified from Gutarra et al.29.Full size imageIn all models across the various clades, velocity plots display a stagnation point at the anterior tip of the model, a thin velocity gradient along the body corresponding to the boundary layer, an area of higher velocity around the greatest diameter and a low velocity wake behind the body, characteristic features of a fully developed external flow (Fig. 1b, Supplementary Fig. 1). The acceleration of flow results in areas of low pressure (Supplementary Fig. 2), while high pressure areas are observed where stagnation occurs. Our CFD methodology has been previously validated against experimental data from slender torpedo-like shapes26 and has been shown to provide a reliable distribution of internal drag components29 essential when dealing with streamlined bodies35. In all our simulations, the proportion of frictional and pressure drag was consistent with the expected values for slender geometries31: most of the drag originated from skin friction with a minor pressure drag component (Supplementary Fig. 2). The relatively larger limbs of plesiosaurs (Supplementary Table 1) produce a small increase in skin friction (Supplementary Fig. 2a), but a large increase in the pressure drag coefficient (Supplementary Fig. 2b), indicating that the latter largely explains differences in total drag coefficient between the groups. These effects might be explained by the low local Reynolds number of the flippers (resulting from a small chord length) producing high local Cd relative to the rest of the body31, alongside interference drag (i.e. drag caused by the interaction of flow fields where limbs and body meet), which might be higher for larger flippers.Effect of body shape and body size on drag-related costs of steady swimmingWhen comparing morphologies at the same volume (proxy for body mass) and the same velocity, to focus on the effect of shape alone, derived plesiosaurs produce on average 30% more drag than parvipelvian ichthyosaurs and modern cetaceans (Fig. 2a, Supplementary Table 3; two-sample t-tests p  0.05). In these conditions, the drag-related costs of steady swimming of plesiosaurs fall within the range observed in both modern cetaceans and ichthyosaurs. Normalised against a 2.85 m-long Tursiops, the COTdrag for derived plesiosaurs ranges from 0.42, estimated for the large elasmosaur Thalassomedon, to 1.41 in the medium-sized Dolichorhynchops. In the parvipelvians, COTdrag spans from 0.33 estimated for the large Temnodontosaurus, to 1.76 in a 2.5 m-long Stenopterygius. Cetaceans show a smaller lower limit, because they include the largest animal in our sample, a 16 m-long humpback whale, with a COTdrag of 0.13 compared to Tursiops. The estimated cetacean upper COTdrag limit is 1.54 for a 1.9 m Tursiops. On the other hand, comparisons of the total drag power (Pdrag, i.e., the non-mass normalised version of COTdrag) for the same speed of 1 ms−1 (Fig. 3), show a different trend. Pdrag is highest for Megaptera, higher than in any fossil taxa included in this study, and is lowest in Tursiops. Thalassomedon is comparable both in total drag power and COTdrag to the killer whale. Similarly, the thalassophonean pliosaurid Liopleurodon matches the elasmosaurian Hydrotherosaurus in having a similarly low mass-normalised COTdrag but requiring about 4× more total drag power than Tursiops. Smaller forms like the polycotylid Dolichorhynchops and the thunnosaurian Ophthalmosaurus resemble the extant bottlenose dolphin in having a relatively high COTdrag and low total power.Fig. 3: Comparative plot of mass-normalised drag power and total drag power.Values of mass-normalised drag power (i.e., drag per unit of volume or COTdrag calculated as in Fig. 2b) in grey, and non-mass-normalised total drag power, in black, for an array of derived plesiosaurs, parvipelvian ichthyosaurs and modern cetaceans compared at the same inlet velocity of 1 ms−1. Error bars represent minimum and maximum values accounting for taxon body size variation (see Supplementary Data). Values are normalised to the results for Tursiops.Full size imageThus, in contrast to the volume-normalised simulations, differences between animals at their life-size scale are mainly influenced by size. For example, medium-sized plesiosaurs and ichthyosaurs, such as Dolichorhynchops and Ophthalmosaurus, have values of COTdrag close to that of a dolphin, while large plesiosaurs like Thalassomedon are more like the parvipelvian ichthyosaur Temnodontosaurus and a modern Orcinus. It is worth noting that the inflow velocity of 1 ms−1, is a reference velocity used for comparative purposes, and is not equivalent to the optimal cruising speed (i.e. speed at which COT is minimum16). This parameter is known to vary little in nature, with most vertebrates displaying values of preferred speed between 1–2 ms−1 regardless of body size40,41,42, which means it is reasonable to assume all tested taxa, regardless of their size, were able to swim at this velocity. Using a different reference velocity (2 ms−1) has no effect on the relative values of drag per unit of volume and the mass-normalised drag power (Supplementary Fig. 3; Supplementary Data). A reduction of mass-normalised drag-related costs of cruising as body size increases is selectively advantageous, as energy savings can be used to extend foraging and mating range, increase swimming speed and fuel other activities42,43.Our analysis shows that for highly aquatic tetrapods, size dominates over shape in affecting the drag-related costs of steady locomotion. This is because COTdrag (i.e., the balance of drag to volume) is highly sensitive to surface/volume proportion (Fig. 2f), and so is much influenced by isometry in streamlined animals.Interplay between neck anatomy and body size in plesiosaur dragSimulations at constant Reynolds number (i.e., comparing models at same total length and same flow velocity), show that necks up to 5× the length of the trunk do not increase substantially the total drag coefficient. Longer neck ratios up to 7× were found to impact the drag coefficient by as little as 3% (Fig. 4a). We estimated a 4–10% increase in skin friction drag coefficient for neck ratios of 3–7×, but also a comparable reduction in pressure drag resulting in almost no change in the total drag coefficient. A previous CFD-based study also found no differences in drag coefficient between plesiosaur models with variable neck proportions20, but further comparison is not possible because of great differences in the order of magnitude of Cd, the use of a different scaling reference area and the lack of information on skin and pressure drag20. Here, we have shown that long necks produce only a small increase in skin friction, although not as great as previously speculated25,30, and this is nullified by reduced pressure drag.Fig. 4: Influence of neck length and its interaction with body size on the drag-related costs of swimming in plesiosaurs.a Total drag coefficient and skin friction drag coefficient for an array of hypothetical plesiosaurs with varying neck ratios computed at Re = 5 × 106 (same total length and inflow velocity). b Drag per unit of trunk volume computed for the same array of models scaled at the same trunk length and tested at the same speed of 1 ms−1. The hypothetical models were created by modifying the length in the model of the basal plesiosaur Meyerasaurus victor which has a neck ratio of 0.87×. The limits of the trunk (which extends along the torso and includes the edges of the pectoral and pelvic girdles) are shown in red in the rendered models. c Three-dimensional models of a wide array of plesiosaurs, in dorsal view, at their life-size dimensions, showing the differences in body proportions and sizes. The limits of the trunk in the models (defined as in b) are coloured by group. Basal plesiosaurs are highlighted in purple. Among the derived groups, thalassophonean plesiosaurs (derived pliosaurid plesiosaurs) are highlighted in light orange, polycotylid plesiosaurs in dark orange and elasmosaurid plesiosaurs in green. d Scatterplot of trunk length (cm) and neck ratio showing the relative drag per unit of trunk volume as a gradient of colour for each taxon analysed and for the plot area in between (contour lines represent the interpolated values of drag per unit of volume). e Plot of the relative drag per unit of trunk volume versus the trunk length showing results highlighted by group. Line plots at the right-hand side show the range for each group. The D/Vtr and the trunk length show a significant negative correlation (Pearson’s correlation coefficient calculated with log-transformed variables, p = 2.28 × 10−7, R2 = −0.92). A small version of the fitted power curve (regression equation (y=69.76{x}^{-0.94})) is shown on the right upper corner. The grey area around the curve represents a confidence interval of 95%. All values in b, d and e are normalized to the results for the Meyerasaurus model.Full size imageNext, we explored the impact of neck proportions on drag-related costs of swimming in simulations where the size factor is removed. We found that if trunk dimensions are kept constant while the neck is enlarged, the drag per unit of trunk volume does not change appreciably for neck ratios up to 2×. However, longer neck proportions did impact resistive forces. This was moderate for a 3× ratio, with 12% more drag per unit of trunk volume, but became more substantial for longer necks, with 22%, 35% and 59% excess drag for necks of 4×, 5× and 7× respectively (Fig. 4b). This means that elasmosaurine elasmosaurs, with necks commonly 3–4× the length of the trunk23 might have experienced higher drag than other plesiosaurs of similar trunk dimensions.To test if the ‘long neck effect’ remains when body size is accounted for, we compared the relative amount of drag-per-unit-trunk-volume (D/Vtr) in a wide sample of plesiosaurs (Fig. 4c) at life-size scale for a constant velocity of 1 ms−1, including three species with neck ratios above 2×: Styxosaurus (2.76×), Hydrotherosaurus (3.18×) and Albertonectes (3.72×), the last being the elasmosaur with the longest reported neck44. Our results show great variability in D/Vtr. Small-bodied plesiosaurs such as Plesiosaurus, Meyerasaurus and Dolichorhynchops generated up to six times more D/Vtr than the largest plesiosaurs, Kronosaurus and Aristonectes (Fig. 4d, e). Comparisons per group show that both basal plesiosaurs and derived polycotylids, the groups with the smallest specimens, produced generally higher D/Vtr. Moreover, we did not find substantial differences between elasmosaurs and thalassophonean pliosauroids (Fig. 4e, Supplementary Table 4; all two-sample t-tests p  > 0.05). Both groups had similarly low ranges of D/Vtr regardless of neck length, lower on average than in polycotylids. These results stand even if we exclude Aristonectes, which belongs to the aristonectines, an elasmosaur subfamily with reduced neck length23,45. Further comparisons by morphotype show no significant differences between short-necked pliosauromorphs (here arbitrarily including plesiosaurs with neck ratios below 2×) and long-necked plesiosauromorphs (Supplementary Table 4, all two-sample t-tests p  > 0.05). The highest values of D/Vtr occur in animals with trunk lengths of 100 cm or less, followed by a steep decrease between 100–150 cm and a steadier decrease in longer trunks. This indicates a strong negative correlation between trunk dimensions and D/Vtr (Pearson’s product-moment correlation between the log-transformed variables, adjusted r2 = −0.92, p = 2.28 × 10−7). The curve that best describes this relationship is the power equation, D/Vtr = 69.76 × Trunk length−0.944 (Fig. 4e), an almost inversely proportional relationship, consistent with the streamlined nature of these animals for which skin friction drag is dominant.Polycotylids and thalassophonean pliosaurs, both derived pliosauromorph plesiosaurs9,21, share the same general body proportions9,21,46, but the latter had larger bodies and therefore needed less power in relation to their muscles to move at the same speed. Elasmosaurs on the other hand, despite their disparate morphologies, were no different from thalassophonean pliosaurs in their drag-related costs of forward swimming (Fig. 4c–e) and therefore they were likely to have been equally efficient cruisers.Earlier research suggested that, even if long necks did not add extra drag during forward swimming, speed in elasmosaurs would have been limited to avoid added drag when their necks bent20. However, when the neck is bent in living forms, the course of swimming changes, as does the flow direction, but the body remains streamlined in the direction of incoming flow. For example, sea lions perform non-powered turns initiated by the head in which the body glides smoothly in a curved position, limiting deceleration47. Further biomechanical research is needed to understand the role of plesiosaur necks in manoeuvrability and other aspects of swimming performance, as well as how these were influenced by shape and flexibility. The well-established idea that long-necked plesiosaurs were sluggish, slow swimmers7,30 is thus not supported here, not because long necks did not increase drag20, but because body size overrode this drag excess.Long necks evolved in large-bodied plesiosaurs: implications for dragWe analysed trends of body size and neck proportion in a wider sample of sauropterygians, including plesiosaurian and non-plesiosaurian Triassic sauropterygians. Long necks (neck ratio > 3×) occur in taxa with trunk lengths > 150 cm, whereas most sauropterygians had neck ratios of ≤ 2× (Fig. 5a). The great plasticity of body proportions of sauropterygians before and after their transition to a pelagic lifestyle after the Triassic has been well documented21,23,46, but this is the first time that neck and body size have been explored in the context of swimming performance for such a wide sample. We show that overall, sauropterygians and particularly plesiosaurs, mainly explored neck morphologies with little or no effect on drag costs and did not enter morphospaces that were suboptimal for aquatic locomotion (i.e., corresponding to small trunks with long necks; Fig. 5a). In fact, ancestral state reconstruction for trunk length shows that the ancestor of elasmosaurs was likely around 180 cm long and had a relatively short neck with a ratio smaller than 2× (Fig. 5b, c). This indicates that large trunks preceded neck elongation in elasmosaurs and suggests that extreme proportions might have been favoured by a release of hydrodynamic constraints.Fig. 5: Evolutionary trends of neck proportions and body size in Sauropterygia and their implications for the drag-related costs of swimming.a Bivariate plot of the length of trunk and the neck ratio of 79 sauropterygian taxa. Polygons in different colours show area occupied by the main sauropterygian groups. The functional trends describing the effect of each axis are based on results from flow simulations. On the top of this graph, a univariate plot shows the distribution and mean values of trunk length for each group. b, c Phenograms showing the disparity of trunk length (b) and neck ratio (c) in sauropterygians through time. The branches corresponding to basal Plesiosauria (including Rhomaleosauridae and Plesiosauridae), thalassophonean pliosaurs, polycotylids and elasmosaurs are highlighted (colour coding as in a). d, e Sauropterygian trees showing the evolutionary rates for trunk length (d) and neck ratio (e) represented by colour gradient (see Supplementary Fig. 5 for an alternative analysis to 5d using the log10-transformed trunk length). Consensus trees show average results from analyses of 20 cal3-dated trees (see Supplementary Figs. 4 and 6 for analysis on Hedman-dated trees). Rates are based on the mean scalar evolutionary rate parameter.Full size imageWe next explored evolutionary rates of relative neck length and trunk length in sauropterygians. The pattern of trunk length evolution is consistent with a heterogeneous rates model, not a homogeneous Brownian motion model (log Bayes Factor48 (BF)  > 5 in 100% of the sampled trees and > 10 in 92.5%, Supplementary Table 5). Analysis of non-transformed trunk data shows that through the evolution of Sauropterygia, there was a general increase in trunk length with some higher rates, in Triassic nothosauroids, Jurassic rhomaleosaurids and Cretaceous aristonectine elasmosaurs (Fig. 5d; Supplementary Fig. 4a). Additionally, analysis of the log10-transformed trunk data highlights variation in the small-to-medium size ranges and reveals high rates in Triassic eosauropterygians (Supplementary Figs. 5 and 6). The largest trunks evolved independently in two groups, thalassophonean pliosaurids and elasmosaurid plesiosauroids, with no evidence of high rates in the former. In the plesiosauroids, rates are not particularly high in the basal branches, but they are very high in derived aristonectines, and rates for the whole clade were significantly higher than the background rate in 40% of randomisation tests (Supplementary Fig. 7 and Table 6). A progressive increase in body mass over evolutionary time has been described for various clades of aquatic mammals49 and seems to be a common hallmark of the aquatic adaptation to marine pelagic lifestyles in secondarily aquatic tetrapods44. Whether body size reaches a plateau as is the case in cetaceans49 and what constraints influence the evolutionary patterns of size in plesiosaurs remains unexplored. Against this general trend, some derived plesiosaurs, such as polycotylids, saw a reduction in body size, which might have been related to pressures on niche selection, such as adaptation to specific prey, the need for higher manoeuvrability or other ecological factors. As shown earlier, small sizes require lower amounts of total power for a given speed, and therefore would be favoured if for example food resources were limited. This suggests that, in spite of the energy advantages of large size in terms of reduced mass-specific drag29 and metabolic rates49,50, which make it a common adaptation to the pelagic mode of life, other constraints limiting very large sizes were also at work50,51.A heterogeneous evolutionary rates model for neck proportion is also strongly supported (log BF  > 5 in 100% of the sampled trees and > 10 in 45%, Supplementary Table 5). Fast rates are consistently seen at the base of Pistosauroidea (including some Triassic forms and plesiosaurs) and, interestingly, also within elasmosaurs (Fig. 5e; Supplementary Fig. 4b). The neck proportions of elasmosaurs were found to evolve at a faster pace than the background rate in 90% of analyses (randomisation test p-value < 0.001 in 80% and < 0.01 in 10% of the sampled trees; Supplementary Fig. 7 and Table 6). Very fast rates in elasmosaurs are concentrated in the most derived branches (i.e., Euelasmosauridia from the late Upper Cretaceous52) and represent both rapid neck elongation in elasmosaurines and rapid neck shortening in weddellonectians (i.e., aristonectines and closely related taxa52). Additionally, various other independent instances of relative shortening of the neck occurred during the evolution of Sauropterygia, most notably in placodonts, pliosaurs and polycotylids, but these are not associated with high rates.Our findings contrast with a previous study23 which did not identify any significant evolutionary rate shifts in the neck ratio across Sauropterygia. Here we use a larger number of taxa and a different model fitting approach, which might account for these discrepancies. The association between very long necks and large trunks, along with our flow simulations results and the evidence of high rates in the elongation of necks in elasmosaurines (Fig. 5e), suggests that neck elongation was facilitated by large body sizes. The question remains why neck ratios did not evolve longer than 4×. According to our data, hydrodynamic constraints might have operated against the selection of such long necks. However, it is possible that the primary function for which they were selected, which is still debated30,53, did not require necks with those characteristics. Neck anatomy is likely to be the result of a compromise between different functions/constraints, one of them being hydrodynamic, as shown by the results presented herein. More

  • in

    How diverse ecosystems remain stable

    May, R. M. Nature 238, 413–414 (1972).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yonatan, Y., Amit, G., Friedman, J. & Bashan, A. Nat. Eco. Evo., https://doi.org/10.1038/s41559-022-01745-8 (2022).Yodzis, P. Nature 289, 674–676 (1981).Article 

    Google Scholar 
    Winemiller, K. O. Am. Nat. 134, 960–968 (1989).Article 

    Google Scholar 
    James, A. et al. Am. Nat. 185, 680–692 (2015).Article 
    PubMed 

    Google Scholar 
    Schmid-Araya, J. M. et al. J. Anim. Ecol. 71, 1056–1062 (2002).Article 

    Google Scholar 
    Bashan, A. et al. Nature 534, 259–262 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Human Microbiome Project Consortium. Nature 486, 207–214 (2012).Article 

    Google Scholar 
    Moitinho-Silva, L. et al. Gigascience 6, 1–7 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dunne, J. A., Williams, R. J. & Martinez, N. D. Proc. Natl Acad. Sci. USA 99, 12917–12922 (2002).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Nature 548, 210–213 (2017).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Evolution of coastal forests based on a full set of mangrove genomes

    He, Z. et al. Speciation with gene flow via cycles of isolation and migration: insights from multiple mangrove taxa. Natl Sci. Rev. 6, 275–288 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhou, R. et al. Population genetics of speciation in nonmodel organisms: I. Ancestral polymorphism in mangroves. Mol. Biol. Evol. 24, 2746–2754 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Xu, S. et al. Genome-wide convergence during evolution of mangroves from woody plants. Mol. Biol. Evol. 34, 1008–1015 (2017).CAS 
    PubMed 

    Google Scholar 
    He, Z. et al. Convergent adaptation of the genomes of woody plants at the land–sea interface. Natl Sci. Rev. 7, 978–993 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lyu, H., He, Z., Wu, C.-I. & Shi, S. Convergent adaptive evolution in marginal environments: unloading transposable elements as a common strategy among mangrove genomes. New Phytol. 217, 428–438 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Xu, S. et al. The origin, diversification and adaptation of a major mangrove clade (Rhizophoreae) revealed by whole-genome sequencing. Natl Sci. Rev. 4, 721–734 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Feng, X. et al. Molecular adaptation to salinity fluctuation in tropical intertidal environments of a mangrove tree Sonneratia alba. BMC Plant Biol. 20, 178 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Feng, X. et al. Genomic insights into molecular adaptation to intertidal environments in the mangrove Aegiceras corniculatum. New Phytol. 231, 2346–2358 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Angelini, C. et al. A keystone mutualism underpins resilience of a coastal ecosystem to drought. Nat. Commun. 7, 12473 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Atwood, T. B. et al. Global patterns in mangrove soil carbon stocks and losses. Nat. Clim. Change 7, 523–528 (2017).CAS 
    Article 

    Google Scholar 
    Barbier, E. B. et al. Coastal ecosystem-based management with nonlinear ecological functions and values. Science 319, 321–323 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    Hensel, M. J. S. & Silliman, B. R. Consumer diversity across kingdoms supports multiple functions in a coastal ecosystem. Proc. Natl Acad. Sci. USA 110, 20621–20626 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tomlinson, P. B. The Botany of Mangroves 2nd edn (Cambridge Univ. Press, 2016).Rovai, A. S. et al. Global controls on carbon storage in mangrove soils. Nat. Clim. Change 8, 534–538 (2018).CAS 
    Article 

    Google Scholar 
    Alongi, D. M. Carbon sequestration in mangrove forests. Carbon Manag. 3, 313–322 (2012).CAS 
    Article 

    Google Scholar 
    Grant, K. M. et al. Sea-level variability over five glacial cycles. Nat. Commun. 5, 5076 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Guo, Z. et al. Extremely low genetic diversity across mangrove taxa reflects past sea level changes and hints at poor future responses. Glob. Change Biol. 24, 1741–1748 (2018).Article 

    Google Scholar 
    Li, H. & Durbin, R. Inference of human population history from individual whole-genome sequences. Nature 475, 493–496 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sollars, E. S. A. et al. Genome sequence and genetic diversity of European ash trees. Nature 541, 212–216 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhao, S. et al. Whole-genome sequencing of giant pandas provides insights into demographic history and local adaptation. Nat. Genet. 45, 67–71 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Duke, N. C. in Mangrove Ecosystems: A Global Biogeographic Perspective (eds Rivera-Monroy, V. H. et al.) 17–53 (Springer, 2017).Ellison, A. M., Farnsworth, E. J. & Merkt, R. E. Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Glob. Ecol. Biogeogr. 8, 95–115 (1999).
    Google Scholar 
    Gee, C. T. The mangrove palm Nypa in the geologic past of the new world. Wetl. Ecol. Manag. 9, 181–203 (2001).Article 

    Google Scholar 
    Germeraad, J. H., Hopping, C. A. & Muller, J. Palynology of tertiary sediments from tropical areas. Rev. Palaeobot. Palynol. 6, 189–348 (1968).Article 

    Google Scholar 
    Graham, A. Paleobotanical evidence and molecular data in reconstructing the historical phytogeography of Rhizophoraceae. Ann. Missouri Bot. Gard. 93, 325–334 (2006).Article 

    Google Scholar 
    Mazer, S. J. & Tiffney, B. H. Fruits of Wetherellia and Palaeowetherellia (?Euphorbiaceae) from Eocene sediments in Virginia and Maryland. Brittonia 34, 300–333 (1982).Muller, J. Fossil pollen records of extant angiosperms. Bot. Rev. 47, 1–142 (1981).Article 

    Google Scholar 
    Srivastava, J. & Prasad, V. Evolution and paleobiogeography of mangroves. Mar. Ecol. 40, e12571 (2019).Hu, M.-J. et al. Chromosome-scale assembly of the Kandelia obovata genome. Hortic. Res. 7, 75 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jin, Y. & Qian, H. V.PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42, 1353–1359 (2019).Article 

    Google Scholar 
    Zachos, J. C., Dickens, G. R. & Zeebe, R. E. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451, 279–283 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Handley, L., Crouch, E. M. & Pancost, R. D. A New Zealand record of sea level rise and environmental change during the Paleocene–Eocene Thermal Maximum. Palaeogeogr. Palaeoclimatol. Palaeoecol. 305, 185–200 (2011).Article 

    Google Scholar 
    Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Saintilan, N. et al. Thresholds of mangrove survival under rapid sea level rise. Science 368, 1118–1121 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lu, J. & Wu, C.-I. Weak selection revealed by the whole-genome comparison of the X chromosome and autosomes of human and chimpanzee. Proc. Natl Acad. Sci. USA 102, 4063–4067 (2005).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lynch, M. et al. Perspective: spontaneous deleterious mutation. Evolution 53, 645–663 (1999).Article 
    PubMed 

    Google Scholar 
    Ohta, T. Slightly deleterious mutant substitutions in evolution. Nature 246, 96–98 (1973).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ohta, T. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Syst. 23, 263–286 (1992).Article 

    Google Scholar 
    Liu, X. & Fu, Y. X. Exploring population size changes using SNP frequency spectra. Nat. Genet. 47, 555–559 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, X. & Fu, Y.-X. Stairway Plot 2: demographic history inference with folded SNP frequency spectra. Genome Biol. 21, 280 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krauss, K. W. et al. How mangrove forests adjust to rising sea level. New Phytol. 202, 19–34 (2014).Article 
    PubMed 

    Google Scholar 
    Lovelock, C. E. et al. The vulnerability of Indo-Pacific mangrove forests to sea-level rise. Nature 526, 559–563 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Frederiksen, N. O. Review of Early Tertiary Sporomorph Paleoecology (American Association of Stratigraphic Palynologists Foundation, 1985).Smith, D. E., Harrison, S., Firth, C. R. & Jordan, J. T. The early Holocene sea level rise. Quat. Sci. Rev. 30, 1846–1860 (2011).Article 

    Google Scholar 
    Bouillon, S. et al. Mangrove production and carbon sinks: a revision of global budget estimates. Glob. Biogeochem. Cycles 22, GB2013 (2008).Article 
    CAS 

    Google Scholar 
    Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nat. Geosci. 4, 293–297 (2011).CAS 
    Article 

    Google Scholar 
    Hamilton, S. E. & Friess, D. A. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012. Nat. Clim. Change 8, 240–244 (2018).CAS 
    Article 

    Google Scholar 
    Hutchison, J., Manica, A., Swetnam, R., Balmford, A. & Spalding, M. Predicting global patterns in mangrove forest biomass. Conserv. Lett. 7, 233–240 (2014).Article 

    Google Scholar 
    Ouyang, X. & Lee, S. Y. Improved estimates on global carbon stock and carbon pools in tidal wetlands. Nat. Commun. 11, 317 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bauer, J. E. et al. The changing carbon cycle of the coastal ocean. Nature 504, 61–70 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Richards, D. R., Thompson, B. S. & Wijedasa, L. Quantifying net loss of global mangrove carbon stocks from 20 years of land cover change. Nat. Commun. 11, 4260 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanders, C. J. et al. Are global mangrove carbon stocks driven by rainfall? J. Geophys. Res. Biogeosci. 121, 2600–2609 (2016).Article 

    Google Scholar 
    Alongi, D. M. Carbon cycling and storage in mangrove forests. Ann. Rev. Mar. Sci. 6, 195–219 (2014).Article 
    PubMed 

    Google Scholar 
    Valiela, I., Bowen, J. L. & York, J. K. Mangrove forests: one of the world’s threatened major tropical environments. Bioscience 51, 807–815 (2001).Article 

    Google Scholar 
    Doyle, J. J. & Doyle, J. L. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11–15 (1987).
    Google Scholar 
    Yang, G., Zhou, R., Tang, T. & Shi, S. Simple and efficient isolation of high-quality total RNA from Hibiscus tiliaceus, a mangrove associate and its relatives. Prep. Biochem. Biotechnol. 38, 257–264 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, O. et al. Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly. Genome Res. 29, 798–808 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marçais, G. & Kingsford, C. A fast, lock-free approach for efficient parallel counting of occurrences of k-mers. Bioinformatics 27, 764–770 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, B. et al. Estimation of genomic characteristics by analyzing k-mer frequency in de novo genome projects. Preprint at https://arxiv.org/abs/1308.2012v2 (2013).Vurture, G. W. et al. GenomeScope: fast reference-free genome profiling from short reads. Bioinformatics 33, 2202–2204 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chin, C.-S. et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods 13, 1050–1054 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ruan, J. & Li, H. Fast and accurate long-read assembly with wtdbg2. Nat. Methods 17, 155–158 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cheng, H., Concepcion, G. T., Feng, X., Zhang, H. & Li, H. Haplotype-resolved de novo assembly using phased assembly graphs with hifiasm. Nat. Methods 18, 170–175 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiao, C.-L. et al. MECAT: fast mapping, error correction, and de novo assembly for single-molecule sequencing reads. Nat. Methods 14, 1072–1074 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chin, C.-S. et al. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weisenfeld, N. I., Kumar, V., Shah, P., Church, D. M. & Jaffe, D. B. Direct determination of diploid genome sequences. Genome Res. 27, 757–767 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luo, R. et al. SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 4, 30 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 16, 259 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durand, N. C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Durand, N. C. et al. Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom. Cell Syst. 3, 99–101 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dudchenko, O. et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bao, W., Kojima, K. K. & Kohany, O. Repbase Update, a database of repetitive elements in eukaryotic genomes. Mob. DNA 6, 11 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tarailo‐Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 25, 4.10.1–4.10.14 (2009).Article 

    Google Scholar 
    Flynn, J. M. et al. RepeatModeler2 for automated genomic discovery of transposable element families. Proc. Natl Acad. Sci. USA 117, 9451–9457 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xu, Z. & Wang, H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35, W265–W268 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benson, G. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580 (1999).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stanke, M. et al. AUGUSTUS: ab initio prediction of alternative transcripts. Nucleic Acids Res. 34, W435–W439 (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burge, C. & Karlin, S. Prediction of complete gene structures in human genomic DNA. J. Mol. Biol. 268, 78–94 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Majoros, W. H., Pertea, M. & Salzberg, S. L. TigrScan and GlimmerHMM: two open source ab initio eukaryotic gene-finders. Bioinformatics 20, 2878–2879 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Birney, E. Genewise and genomewise. Genome Res. 14, 988–995 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kent, W. J. BLAT—The BLAST-Like Alignment Tool. Genome Res. 12, 656–664 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat. Protoc. 7, 562–578 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Haas, B. J. et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the program to assemble spliced alignments. Genome Biol. 9, R7 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seppey, M., Manni, M. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness. Methods Mol. Biol. 1962, 227–245 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Katoh, K. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suyama, M., Torrents, D. & Bork, P. PAL2NAL: robust conversion of protein sequence alignments into the corresponding codon alignments. Nucleic Acids Res. 34, W609–W612 (2006).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Reis, M. Dos & Yang, Z. Approximate likelihood calculation on a phylogeny for Bayesian estimation of divergence times. Mol. Biol. Evol. 28, 2161–2172 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. GGTREE: an package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).Article 

    Google Scholar 
    Sanderson, M. J. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19, 301–302 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Smith, S. A. & Brown, J. W. Constructing a broadly inclusive seed plant phylogeny. Am. J. Bot. 105, 302–314 (2018).Article 
    PubMed 

    Google Scholar 
    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Louca, S. & Doebeli, M. Efficient comparative phylogenetics on large trees. Bioinformatics 34, 1053–1055 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Liang, Y. et al. Chromosome level genome assembly of Andrographis paniculata. Front. Genet. 11, 701 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, L. et al. The water lily genome and the early evolution of flowering plants. Nature 577, 79–84 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Huang, X. et al. Genome-wide association studies of 14 agronomic traits in rice landraces. Nat. Genet. 42, 961–967 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat. Genet. 43, 491–498 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, K. G. et al. The Phanerozoic record of global sea-level change. Science 310, 1293–1298 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Marçais, G. et al. MUMmer4: a fast and versatile genome alignment system. PLoS Comput. Biol. 14, e1005944 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Narasimhan, V. et al. BCFtools/RoH: a hidden Markov model approach for detecting autozygosity from next-generation sequencing data. Bioinformatics 32, 1749–1751 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hudson, R. R. Generating samples under a Wright–Fisher neutral model of genetic variation. Bioinformatics 18, 337–338 (2002).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Complexity–stability trade-off in empirical microbial ecosystems

    May, R. M. Will a large complex system be stable? Nature 238, 413–414 (1972).CAS 
    Article 
    PubMed 

    Google Scholar 
    May, R. M. & Mac Arthur, R. H. Niche overlap as a function of environmental variability. Proc. Natl Acad. Sci. USA 69, 1109–1113 (1972).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    May, R. M. Stability and Complexity in Model Ecosystems (Princeton Univ. Press, 2019).Sinha, S. Complexity vs. stability in small-world networks. Phys. A 346, 147–153 (2005).Article 

    Google Scholar 
    Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mougi, A. & Kondoh, M. Diversity of interaction types and ecological community stability. Science 337, 349–351 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Allesina, S. & Tang, S. Stability criteria for complex ecosystems. Nature 483, 205–208 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Allesina, S. & Tang, S. The stability–complexity relationship at age 40: a random matrix perspective. Popul. Ecol. 57, 63–75 (2015).Article 

    Google Scholar 
    Qian, J. J. & Akçay, E. The balance of interaction types determines the assembly and stability of ecological communities. Nat. Ecol. Evol. 4, 356–365 (2020).Article 
    PubMed 

    Google Scholar 
    Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C. & Dieckmann, U. in Systems Analysis Approach for Complex Global Challenges (eds Mensah, P. et al.) 209–248 (Springer, 2018).Townsend, S. E., Haydon, D. T. & Matthews, L. On the generality of stability–complexity relationships in Lotka–Volterra ecosystems. J. Theor. Biol. 267, 243–251 (2010).Article 
    PubMed 

    Google Scholar 
    Pimm, S. L., Lawton, J. H. & Cohen, J. E. Food web patterns and their consequences. Nature 350, 669–674 (1991).Article 

    Google Scholar 
    Yodzis, P. The stability of real ecosystems. Nature 289, 674–676 (1981).Article 

    Google Scholar 
    Winemiller, K. O. Must connectance decrease with species richness? Am. Naturalist 134, 960–968 (1989).Article 

    Google Scholar 
    Warren, P. H. Variation in food-web structure: the determinants of connectance. Am. Nat. 136, 689–700 (1990).Article 

    Google Scholar 
    de Ruiter, P. C., Neutel, A.-M. & Moore, J. C. Energetics, patterns of interaction strengths, and stability in real ecosystems. Science 269, 1257–1260 (1995).Article 
    PubMed 

    Google Scholar 
    Schmid-Araya, J. M. et al. Connectance in stream food webs. J. Anim. Ecol. 71, 1056–1062 (2002).Article 

    Google Scholar 
    Neutel, A.-M. et al. Reconciling complexity with stability in naturally assembling food webs. Nature 449, 599–602 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    James, A. et al. Constructing random matrices to represent real ecosystems. Am. Nat. 185, 680–692 (2015).Article 
    PubMed 

    Google Scholar 
    Jacquet, C. et al. No complexity–stability relationship in empirical ecosystems. Nat. Commun. 7, 12573 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207 (2012).CAS 
    Article 

    Google Scholar 
    Fricker, A. M., Podlesny, D. & Fricke, W. F. What is new and relevant for sequencing-based microbiome research? A mini-review. J. Adv. Res. 19, 105–112 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sander, E. L., Wootton, J. T. & Allesina, S. Ecological network inference from long-term presence-absence data. Sci. Rep. 7, 7154 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinway, S. N., Biggs, M. B., Loughran Jr, T. P., Papin, J. A. & Albert, R. Inference of network dynamics and metabolic interactions in the gut microbiome. PLoS Comput. Biol. 11, e1004338 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bucci, V. et al. Mdsine: microbial dynamical systems inference engine for microbiome time-series analyses. Genome Biol. 17, 121 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stein, R. R. et al. Ecological modeling from time-series inference: insight into dynamics and stability of intestinal microbiota. PLoS Comput. Biol. 9, e1003388 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fisher, C. K. & Mehta, P. Identifying keystone species in the human gut microbiome from metagenomic timeseries using sparse linear regression. PloS ONE 9, e102451 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gerber, G. K., Onderdonk, A. B. & Bry, L. Inferring dynamic signatures of microbes in complex host ecosystems. PLoS Comput. Biol. 8, e1002624 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cao, H.-T., Gibson, T. E., Bashan, A. & Liu, Y.-Y. Inferring human microbial dynamics from temporal metagenomics data: pitfalls and lessons. BioEssays 39, 1600188 (2017).Article 

    Google Scholar 
    David, L. A. et al. Host lifestyle affects human microbiota on daily timescales. Genome Biol. 15, R89 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, R50 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buffie, C. G. et al. Profound alterations of intestinal microbiota following a single dose of clindamycin results in sustained susceptibility to clostridium difficile-induced colitis. Infect. Immun. 80, 62–73 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dohlman, A. B. & Shen, X. Mapping the microbial interactome: statistical and experimental approaches for microbiome network inference. Exp. Biol. Med. 244, 445–458 (2019).CAS 
    Article 

    Google Scholar 
    Faust, K. & Raes, J. Microbial interactions: from networks to models. Nat. Rev. Microbiol. 10, 538–550 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Friedman, J. & Alm, E. J. Inferring correlation networks from genomic survey data. PLoS Comput. Biol. 8, e1002687 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiang, D. et al. Microbiome multi-omics network analysis: statistical considerations, limitations, and opportunities. Front. Genet. 10, 995 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faust, K. Open challenges for microbial network construction and analysis. ISME J. 15, 3111–3118 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bashan, A. et al. Universality of human microbial dynamics. Nature 534, 259–262 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vila, J. C., Liu, Y.-Y. & Sanchez, A. Dissimilarity–overlap analysis of replicate enrichment communities. ISME J. 14, 2505–2513 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moitinho-Silva, L. et al. The sponge microbiome project. Gigascience 6, gix077 (2017).Article 
    PubMed Central 

    Google Scholar 
    Swierts, T., Cleary, D. & de Voogd, N. Prokaryotic communities of Indo-Pacific giant barrel sponges are more strongly influenced by geography than host phylogeny. FEMS Microbiol. Ecol. 94, fiy194 (2018).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Jost, L. Entropy and diversity. Oikos 113, 363–375 (2006).Article 

    Google Scholar 
    Suweis, S., Grilli, J., Banavar, J. R., Allesina, S. & Maritan, A. Effect of localization on the stability of mutualistic ecological networks. Nat. Commun. 6, 10179 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Grilli, J., Barabás, G., Michalska-Smith, M. J. & Allesina, S. Higher-order interactions stabilize dynamics in competitive network models. Nature 548, 210–213 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Butler, S. & O’Dwyer, J. P. Stability criteria for complex microbial communities. Nat. Commun. 9, 2970 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allesina, S. & Grilli, J. in Theoretical Ecology: Concepts and Applications (eds McCann, K. & Gellner, G.) Ch. 6 (Oxford Univ. Press, 2020).Jayant, P. & Shnerb, N. M. How temporal environmental stochasticity affects species richness: destabilization neutralization and the storage effect. J. Theor. Biol. 539, 111053 (2022).Article 

    Google Scholar 
    Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 341, 1237439 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gajer, P. et al. Temporal dynamics of the human vaginal microbiota. Sci. Transl. Med. 4, 132ra52–132ra52 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van der Maaten, L. & Hinton, G. Visualizing data using t-sne. J. Mach. Learn. Res. 9, 2579–2605 (2008).
    Google Scholar 
    Bunin, G. Ecological communities with Lotka-Volterra dynamics. Phys. Rev. E 95, 042414 (2017).Article 
    PubMed 

    Google Scholar  More

  • in

    Assessment of acute toxicity and developmental transformation impacts of polyethylene microbead exposure on larval daggerblade grass shrimp (Palaemon pugio)

    Sharma, S. & Chatterjee, S. Microplastic pollution, a threat to marine ecosystem and human health: A short review. Environ. Sci. Pollut. Res. 24(27), 21530–21547 (2017).Article 

    Google Scholar 
    Gray, A. D., Wertz, H., Leads, R. R. & Weinstein, J. E. Microplastic in two South Carolina Estuaries: Occurrence, distribution, and composition. Mar. Pollut. Bull. 128, 223–233 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weinstein, J. E., Dekle, J. L., Leads, R. R. & Hunter, R. A. Degradation of bio-based and biodegradable plastics in a salt marsh habitat: Another potential source of microplastics in coastal waters. Mar. Pollut. Bull. 160, 111518 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Robin, R. S. et al. Holistic assessment of microplastics in various coastal environmental matrices, southwest coast of India. Sci. Total Environ. 703, 134947 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kwon, O. Y., Kang, J. H., Hong, S. H. & Shim, W. J. Spatial distribution of microplastic in the surface waters along the coast of Korea. Mar. Pollut. Bull. 155, 110729 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fendall, L. S. & Sewell, M. A. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Mar. Pollut. Bull. 58(8), 1225–1228 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hantoro, I., Löhr, A. J., Van Belleghem, F. G., Widianarko, B. & Ragas, A. M. Microplastics in coastal areas and seafood: Implications for food safety. Food Addit. Contam. Part A 36(5), 674–711 (2019).CAS 
    Article 

    Google Scholar 
    Retama, I. et al. Microplastics in tourist beaches of Huatulco Bay, Pacific coast of southern Mexico. Mar. Pollut. Bull. 113(1–2), 530–535 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Frias, J. P. G. L., Otero, V. & Sobral, P. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. Mar. Environ. Res. 95, 89–95 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hosseini, R., Sayadi, M. H., Aazami, J. & Savabieasfehani, M. Accumulation and distribution of microplastics in the sediment and coastal water samples of Chabahar Bay in the Oman Sea, Iran. Mar. Pollut. Bull. 160, 111682 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Andrady, A. L. Persistence of Plastic Litter in the Oceans. Marine Anthropogenic Litter 57–72 (Springer, 2015).Leads, R. R. & Weinstein, J. E. Occurrence of tire wear particles and other microplastics within the tributaries of the Charleston Harbor Estuary, South Carolina, USA. Mar. Pollut. Bull. 145, 569–582 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nor, N. H. M. & Obbard, J. P. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bull. 79(1–2), 278–283 (2014).PubMed 

    Google Scholar 
    Plastics Europe. Plastics—The Facts 2017. (Plastics Europe, 2017).Lusher, A. L., Welden, N. A., Sobral, P., & Cole, M. Sampling, isolating and identifying microplastics ingested by fish and invertebrates. In Analysis of Nanoplastics and Microplastics in Food 119–148. (CRC Press, 2020).Murray, F. & Cowie, P. R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull. 62(6), 1207–1217 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gray, A. D. & Weinstein, J. E. Size-and shape-dependent effects of microplastic particles on adult daggerblade grass shrimp (Palaemonetes pugio). Environ. Toxicol. Chem. 36(11), 3074–3080 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Au, S. Y., Bruce, T. F., Bridges, W. C. & Klaine, S. J. Responses of Hyalella azteca to acute and chronic microplastic exposures. Environ. Toxicol. Chem. 34(11), 2564–2572 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cole, M. et al. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47(12), 6646–6655 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Woods, M. N., Stack, M. E., Fields, D. M., Shaw, S. D. & Matrai, P. A. Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis). Mar. Pollut. Bull. 137, 638–645 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Scott, N. et al. Particle characteristics of microplastics contaminating the mussel Mytilus edulis and their surrounding environments. Mar. Pollut. Bull. 146, 125–133 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Cauwenberghe, L., Claessens, M., Vandegehuchte, M. B. & Janssen, C. R. Microplastics are taken up by mussels (Mytilus edulis) and lugworms (Arenicola marina) living in natural habitats. Environ. Pollut. 199, 10e17 (2015).
    Google Scholar 
    Waite, H. R., Donnelly, M. J. & Walters, L. J. Quantity and types of microplastics in the organic tissues of the eastern oyster Crassostrea virginica and Atlantic mud crab Panopeus herbstii from a Florida estuary. Mar. Pollut. Bull. 129(1), 179–185 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Quanbin, L. et al. Uptake and elimination of microplastics by Tigriopus japonicus and its impact on feeding behavior. Asian J. Ecotoxicol. 4, 184–191. https://doi.org/10.7524/AJE.1673-5897.20191216002 (2020).Article 

    Google Scholar 
    Galloway, T. S. & Lewis, C. N. Marine microplastics spell big problems for future generations. Proc. Natl. Acad. Sci. U.S.A. 113(9), 2331e2333 (2016).Article 
    CAS 

    Google Scholar 
    Galloway, T. S., Cole, M. & Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 1, 0116. https://doi.org/10.1038/s41559-017-0116 (2017).Article 

    Google Scholar 
    Carlos de Sá, L., Luís, L. G. & Guilhermino, L. Effects of microplastics on juveniles of the common goby (Pomatoschistus microps): Confusion with prey, reduction of the predatory performance and efficiency, and possible influence of developmental conditions. Environ. Pollut. 196, 359–362 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cole, M., Lindeque, P., Halsband, C. & Galloway, T. S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 62(12), 2588–2597 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Key, P. B., Chung, K. W., West, J. B., Pennington, P. L. & DeLorenzo, M. E. Developmental and reproductive effects in grass shrimp (Palaemon pugio) following acute larval exposure to a thin oil sheen and ultraviolet light. Aquat. Toxicol. 228, 105651 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allen, D. M., Harding, J. M., Stroud, K. B. & Yozzo, K. L. Movements and site fidelity of grass shrimp (Palaemonetes pugio and P. vulgaris) in salt marsh intertidal creeks. Mar. Biol. 162(6), 1275–1285 (2015).Article 

    Google Scholar 
    Kunz, A. K., Ford, M. & Pung, O. J. Behavior of the grass shrimp Palaemonetes pugio and its response to the presence of the predatory fish Fundulus heteroclitus. Am. Midl. Nat. 155, 286–294. https://doi.org/10.1674/0003-0031 (2006).Article 

    Google Scholar 
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    Cozar, A. et al. Plastic debris in the open ocean. PNAS 111, 10239e10244. https://doi.org/10.1073/pnas.1314705111 (2014).CAS 
    Article 

    Google Scholar 
    Leads, R. R., Burnett, K. G. & Weinstein, J. E. The effect of microplastic ingestion on survival of the grass shrimp Palaemonetes pugio (Holthuis, 1949) challenged with Vibrio campbellii. Environ. Toxicol. Chem. 38(10), 2233–2242 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beiras, R., Duran, I., Bellas, J. & Sanchez-Marín, P. Biological effects of contaminants: Paracentrotus lividus sea urchin embryo test with marine sediment elutriates. Int. Counc. Explor. Sea. Technol. Environ. Mar. Sci. 51, 113 (2012).
    Google Scholar 
    Kögel, T., Bjorøy, Ø., Toto, B., Bienfait, A. M. & Sanden, M. Micro-and nanoplastic toxicity on aquatic life: Determining factors. Sci. Total Environ. 709, 136050 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Lindeque, P. K. et al. Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size. Environ Pollut. 265(Pt A), 114721. https://doi.org/10.1016/j.envpol.2020.114721 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62(8), 1596e1605 (2011).Article 
    CAS 

    Google Scholar 
    Leight, A. K., Scott, G. I., Fulton, M. H. & Daugomah, J. W. Long term monitoring of grass shrimp Palaemonetes spp. Population metrics at sites with agricultural runoff influences 1, 2. Integr. Comp. Biol. 45(1), 143–150 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Weinstein, J. E. & Garner, T. R. Piperonyl butoxide enhances the bioconcentration and photoinduced toxicity of fluoranthene and benzo [a] pyrene to larvae of the grass shrimp (Palaemonetes pugio). Aquat. Toxicol. 87(1), 28–36 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Key, P. B., Chung, K. W., Hoguet, J., Sapozhnikova, Y. & DeLorenzo, M. E. Toxicity of the mosquito control insecticide phenothrin to three life stages of the grass shrimp (Palaemonetes pugio). J. Environ. Sci. Health B 46(5), 426–431 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Broad, A. C. Larval development of Palaemonetes pugio Holthuis. Biol. Bull. 112, 144–161 (1957).Article 

    Google Scholar 
    Broad, A. C. The relationship between diet and larval development of Palaemonetes. Biol. Bull. 112, 162–170 (1957).Article 

    Google Scholar 
    Sandifer, P. A. Effects of temperature and salinity on larval development of grass shrimp, Palaemonetes vulgaris (Decapoda, Caridea). Fish. Bull. 71(1), 115 (1973).
    Google Scholar 
    Boston, M. A. & Provenzano, A. J. Attempted hybridization of the grass shrimp Palaemonetes (Caridea, palaemonidae) with an evaluation of taxonomic characters of juveniles. Estuaries 5(3), 165–174 (1982).Article 

    Google Scholar 
    Anderson, G. S. Species profiles: Life histories and environmental requirements of coastal fishes and invertebrates (Gulf of Mexico): Grass shrimp (No. 4). The Service. (1985).Vikas, P. A. et al. Unraveling the effects of live microalgal enrichment on Artemia nauplii. Indian J. Fish. 59(4), 111–121 (2012).
    Google Scholar 
    Provenzano, A. J., Schmitz, K. B. & Boston, M. A. Survival, duration of larval stages, and size of postlarvae of grass shrimp, Palaemonetes pugio, reared from Kepone® contaminated and uncontaminated populations in Chesapeake Bay. Estuaries 1(4), 239–244 (1978).Article 

    Google Scholar 
    Johnson, W. S., & Allen, D. M. Zooplankton of the Atlantic and Gulf Coasts: A Guide to Their Identification and Ecology. (JHU Press, 2012).Hubschman, J. H. The development and function of neurosecretory sites in the eyestalks of larval Palaemonetes (Decapoda: Natantia) (Doctoral dissertation, The Ohio State University, 1962).Wheeler, M. W., Park, R. M. & Bailer, A. J. Comparing median lethal concentration values using confidence interval overlap or ratio tests. Environ. Toxicol. Chem. Int. J. 25(5), 1441–1444 (2006).CAS 
    Article 

    Google Scholar 
    Isobe, A., Kubo, K., Tamura, Y., Nakashima, E. & Fujii, N. Selective transport of microplastics and mesoplastics by drifting in coastal waters. Mar. Pollut. Bull. 89(1–2), 324–330 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Syakti, A. D. et al. Beach macro-litter monitoring and floating microplastic in a coastal area of Indonesia. Mar. Pollut. Bull. 122(1–2), 217–225. https://doi.org/10.1016/j.marpolbul.2017.06.046 (2017) (Epub 2017 Jun 20 PMID: 28645761).CAS 
    Article 
    PubMed 

    Google Scholar 
    Reisser, J. et al. Marine plastic pollution in waters around Australia: Characteristics, concentrations, and pathways. PLoS One 8(11), e80466 (2013).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Järlskog, I. et al. Occurrence of tire and bitumen wear microplastics on urban streets and in sweepsand and washwater. Sci. Total Environ. 729, 138950. https://doi.org/10.1016/j.scitotenv.2020.138950 (2020) (Epub 2020 Apr 26. PMID: 32371211).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Key, P. B., Fulton, M. H., Scott, G. I., Layman, S. L. & Wirth, E. F. Lethal and sublethal effects of malathion on three life stages of the grass shrimp, Palaemonetes pugio. Aquat. Toxicol. 40(4), 311–322 (1998).CAS 
    Article 

    Google Scholar 
    DeLorenzo, M. E., Serrano, L., Chung, K. W., Hoguet, J. & Key, P. B. Effects of the insecticide permethrin on three life stages of the grass shrimp, Palaemonetes pugio. Ecotoxicol. Environ. Saf. 64(2), 122–127 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Key, P. B., Meyer, S. L. & Chung, K. W. Lethal and sub-lethal effects of the fungicide chlorothalonil on three life stages of the grass shrimp, Palaemonetes pugio. J. Environ. Sci. Health B 38(5), 539–549 (2003).PubMed 
    Article 
    CAS 

    Google Scholar 
    Key, P. B., Chung, K. W., Hoguet, J., Shaddrix, B. & Fulton, M. H. Toxicity and physiological effects of brominated flame retardant PBDE-47 on two life stages of grass shrimp, Palaemonetes pugio. Sci. Total Environ. 399(1–3), 28–32 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ziajahromi, S., Kumar, A., Neale, P. A. & Leusch, F. D. Environmentally relevant concentrations of polyethylene microplastics negatively impact the survival, growth and emergence of sediment-dwelling invertebrates. Environ. Pollut. 236, 425–431 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Redondo-Hasselerharm, P. E., Falahudin, D., Peeters, E. T. & Koelmans, A. A. Microplastic effect thresholds for freshwater benthic macroinvertebrates. Environ. Sci. Technol. 52(4), 2278–2286 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lehtiniemi, M. et al. Exposure to leachates from post-consumer plastic and recycled rubber causes stress responses and mortality in a copepod Limnocalanus macrurus. Mar. Pollut. Bull. 173, 113103 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martínez-Gómez, C., León, V. M., Calles, S., Gomáriz-Olcina, M. & Vethaak, A. D. The adverse effects of virgin microplastics on the fertilization and larval development of sea urchins. Mar. Environ. Res. 130, 69–76 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Khosrovyan, A., Gabrielyan, B. & Kahru, A. Ingestion and effects of virgin polyamide microplastics on Chironomus riparius adult larvae and adult zebrafish Danio rerio. Chemosphere 259, 127456 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Le Bihanic, F. et al. Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development. Mar Pollut Bull. 154, 111059. https://doi.org/10.1016/j.marpolbul.2020.111059 (2020) (Epub 2020 Mar 31 PMID: 32319895).CAS 
    Article 
    PubMed 

    Google Scholar 
    LeMoine, C. M. et al. Transcriptional effects of polyethylene microplastics ingestion in developing zebrafish (Danio rerio). Environ. Pollut. 243, 591–600 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Freeman, J. A. Regulation of tissue growth in crustacean larvae by feeding regime. Biol. Bull. 178(3), 217–221 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ma, H. et al. Microplastics in aquatic environments: Toxicity to trigger ecological consequences. Environ. Pollut. 261, 114089 (2020).CAS 
    PubMed 
    Article 

    Google Scholar  More