More stories

  • in

    Bacterial communities associated with silage of different forage crops in Malaysian climate analysed using 16S amplicon metagenomics

    Nazli, M. H., Halim, R. A., Abdullah, A. M., Hussin, G. & Samsudin, A. A. Potential of four corn varieties at different harvest stages for silage production in Malaysia. Asian-Australas. J. Anim. Sci. 32, 224–232 (2019).PubMed 
    Article 

    Google Scholar 
    Department of Veterinary Services Malaysia. Perangkaan Ternakan Livestock Statistics (Department of Veterinary Services Malaysia, 2021).
    Google Scholar 
    Halim, R. A., Shampazurini, S. & Idris, A. B. Yield and nutritive quality of nine Napier grass varieties in Malaysia. Malays. J. Anim. Sci. 16, 37–44 (2013).
    Google Scholar 
    Ortega-Gãmez, R. et al. Nutritive quality of ten grasses during the rainy season in a hot-humid climate and ultisol soil. Trop. Subtrop. Agroecosyst. 13, 481 (2011).
    Google Scholar 
    Kung, L., Shaver, R. D., Grant, R. J. & Schmidt, R. J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101, 4020–4033 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bernardes, T. F. et al. Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy Sci. 101, 4001–4019 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koc, F., Ozduven, M., Coskuntuna, L. & Polant, C. The effects of inoculant lactic acid bacteria on the fermentation and aerobic stability of sunflower silage. Poljoprivreda 15, 47–52 (2009).
    Google Scholar 
    Kim, S. C. & Adesogan, A. T. Influence of ensiling temperature, simulated rainfall, and delayed sealing on fermentation characteristics and aerobic stability of corn silage. J. Dairy Sci. 89, 3122–3132 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Daniel, J. L. P. et al. Effects of homolactic bacterial inoculant on the performance of lactating dairy cows. J. Dairy Sci. 101, 5145–5152 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pahlow, G. et al. Microbiology of ensiling. In Silage Science and Technology (eds Buxton, D. R. et al.) 31–93 (America Society of Agronomy, 2003).
    Google Scholar 
    Li, D., Ni, K., Zhang, Y., Lin, Y. & Yang, F. Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures. Asian-Australas. J. Anim. Sci. 32, 665–674 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xu, D. et al. Modulation of metabolome and bacterial community in whole crop corn silage by inoculating homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri. Front. Microbiol. 9, 3299 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guan, H. et al. Microbial communities and natural fermentation of corn silages prepared with farm bunker-silo in Southwest China. Bioresour. Technol. 265, 282–290 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guan, H. et al. Screening of natural lactic acid bacteria with potential effect on silage fermentation, aerobic stability and aflatoxin B1 in hot and humid area. J. Appl. Microbiol. 128, 1301–1311 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xu, Z., He, H., Zhang, S. & Kong, J. Effects of inoculants Lactobacillus brevis and Lactobacillus parafarraginis on the fermentation characteristics and microbial communities of corn stover silage. Sci. Rep. 7, 1–9 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Muck, R. E. et al. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 101, 3980–4000 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McDonald, P., Henderson, A. R. & Heron, S. J. E. The Biochemistry of Silage (Chalcombe Publications, 1991).
    Google Scholar 
    Nkosi, B. D. et al. The influence of ensiling potato hash waste with enzyme/bacterial inoculant mixtures on the fermentation characteristics, aerobic stability and nutrient digestion of the resultant silages by rams. Small Rumin. Res. 127, 28–35 (2015).Article 

    Google Scholar 
    Muck, R. E. Microbiologia da silagem e seu controle com aditivos. Rev. Bras. Zootec. 39, 183–191 (2010).Article 

    Google Scholar 
    Yan, Y. et al. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria. Bioresour. Technol. 279, 166–173 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, F. G. et al. Treatment of whole-plant corn silage with lactic acid bacteria and organic acid enhances quality by elevating acid content, reducing pH, and inhibiting undesirable microorganisms. Front. Microbiol. 11, 3104 (2020).
    Google Scholar 
    Ni, K., Wang, Y., Li, D., Cai, Y. & Pang, H. Characterization, identification and application of lactic acid bacteria isolated from forage paddy rice silage. PLoS ONE 10, e0121967 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, J. et al. Characterization of Enterococcus faecalis JF85 and Enterococcus faecium Y83 isolated from Tibetan yak (Bos grunniens) for ensiling Pennisetum sinese. Bioresour. Technol. 257, 76–83 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ning, P., Peng, Y. & Fritschi, F. B. Carbohydrate dynamics in maize leaves and developing ears in response to nitrogen application. Agronomy 8, 302 (2018).CAS 
    Article 

    Google Scholar 
    Ni, K. et al. Comparative microbiota assessment of wilted Italian ryegrass, whole crop corn, and wilted alfalfa silage using denaturing gradient gel electrophoresis and next-generation sequencing. Appl. Microbiol. Biotechnol. 101, 1385–1394 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nishino, N. & Touno, E. Ensiling characteristics and aerobic stability of direct-cut and wilted grass silages inoculated with Lactobacillus casei or Lactobacillus buchneri. J. Sci. Food Agric. 85, 1882–1888 (2005).CAS 
    Article 

    Google Scholar 
    Li, L. et al. Effect of microalgae supplementation on the silage quality and anaerobic digestion performance of Manyflower silvergrass. Bioresour. Technol. 189, 334–340 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    McEniry, J., O’Kiely, P., Clipson, N. J. W., Forristal, P. D. & Doyle, E. M. Assessing the impact of various ensilage factors on the fermentation of grass silage using conventional culture and bacterial community analysis techniques. J. Appl. Microbiol. 108, 1584–1593 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cai, Y. Identification and characterization of Enterococcus species isolated from forage crops and their influence on silage fermentation. J. Dairy Sci. 82, 2466–2471 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ben-Dov, E., Shapiro, O. H., Siboni, N. & Kushmaro, A. Advantage of using inosine at the 3′ termini of 16S rRNA gene universal primers for the study of microbial diversity. Appl. Environ. Microbiol. 72, 6902–6906 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ni, K. et al. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 238, 706–715 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, Y. et al. Effects of wilting and Lactobacillus plantarum addition on the fermentation quality and microbial community of moringa oleifera leaf silage. Front. Microbiol. 9, 1817 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eikmeyer, F. G. et al. Metagenome analyses reveal the influence of the inoculant Lactobacillus buchneri CD034 on the microbial community involved in grass ensiling. J. Biotechnol. 167, 334–343 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gagnon, M., Ouamba, A. J. K., LaPointe, G., Chouinard, P. Y. & Roy, D. Prevalence and abundance of lactic acid bacteria in raw milk associated with forage types in dairy cow feeding. J. Dairy Sci. 103, 5931–5946 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, R. et al. Microbial community dynamics during alfalfa silage with or without clostridial fermentation. Sci. Rep. 10, 1–14 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Rooke, J. & Hatfield, R. Biochemistry of ensiling. Publ. from USDA-ARS/UNL Fac. (2003).Muck, R. E. Recent advances in silage microbiology. Agric. Food Sci. 22, 3–15 (2013).CAS 
    Article 

    Google Scholar 
    Gharechahi, J. et al. The dynamics of the bacterial communities developed in maize silage. Microb. Biotechnol. 10, 1663–1676 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Farhana, A. & Lappin, S. L. Biochemistry, Lactate Dehydrogenase (StatPearls, 2021).
    Google Scholar 
    Mandhania, M. H. et al. Diversity and succession of microbiota during fermentation of the traditional Indian food idli. Appl. Environ. Microbiol. 85, e00368 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    De Mandal, S. et al. Metagenomic analysis and the functional profiles of traditional fermented pork fat ‘sa-um’ of Northeast India. AMB Express 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    Varki, A. & Lowe, J. B. Biological roles of glycans. Essentials Glycobiol. https://www.ncbi.nlm.nih.gov/books/NBK1897/ (2009).Ganesan, A. Natural products as a hunting ground for combinatorial chemistry. Curr. Opin. Biotechnol. 15, 584–590 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem., 28(3), 350–356 (1956).CAS 
    Article 

    Google Scholar 
    Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 16, 169 (2015).Article 

    Google Scholar  More

  • in

    Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing

    Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–46. https://doi.org/10.1146/annurev.arplant.54.031902.134938.CAS 
    Article 
    PubMed 

    Google Scholar 
    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344:1246843. https://doi.org/10.1126/science.1246843.CAS 
    Article 
    PubMed 

    Google Scholar 
    Hildén K, Hakala TK, Lundell T. Thermotolerant and thermostable laccases. Biotechnol Lett. 2009;31:1117. https://doi.org/10.1007/s10529-009-9998-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2018;1. https://doi.org/10.1038/s41396-018-0279-6.Bugg TDH, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011;22:394–400. https://doi.org/10.1016/j.copbio.2010.10.009.CAS 
    Article 
    PubMed 

    Google Scholar 
    Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, et al. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism. Environ Microbiol Rep. 2017;9:679–705. https://doi.org/10.1111/1758-2229.12597.CAS 
    Article 
    PubMed 

    Google Scholar 
    Singh R, Hu J, Regner MR, Round JW, Ralph J, Saddler JN, et al. Enhanced delignification of steam-pretreated poplar by a bacterial laccase. Sci Rep. 2017;7:42121. https://doi.org/10.1038/srep42121.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perna V, Meyer AS, Holck J, Eltis LD, Eijsink VGH, Wittrup Agger J. Laccase-catalyzed oxidation of lignin induces production of H2O2. ACS Sustain Chem Eng. 2020;8:831–41. https://doi.org/10.1021/acssuschemeng.9b04912.CAS 
    Article 

    Google Scholar 
    Johnson CW, Salvachúa D, Rorrer NA, Black BA, Vardon DR, St. John PC, et al. Innovative chemicals and materials from bacterial aromatic catabolic pathways. Joule. 2019;3:1523–37. https://doi.org/10.1016/j.joule.2019.05.011.CAS 
    Article 

    Google Scholar 
    Brady AL, Sharp CE, Grasby SE, Dunfield PF. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing. Front Microbiol. 2015;6. https://doi.org/10.3389/fmicb.2015.00897.Grasby SE, Hutcheon I, Krouse HR. The influence of water–rock interaction on the chemistry of thermal springs in western Canada. Appl Geochem. 2000;15:439–54. https://doi.org/10.1016/S0883-2927(99)00066-9.CAS 
    Article 

    Google Scholar 
    Bauchop T, Elsden SR. The growth of micro-organisms in relation to their energy supply. Microbiology. 1960;23:457–69. https://doi.org/10.1099/00221287-23-3-457.CAS 
    Article 

    Google Scholar 
    Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6. https://doi.org/10.1038/nprot.2007.109.CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2019;13:413–29. https://doi.org/10.1038/s41396-018-0279-6.CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilhelm R, Szeitz A, Klassen TL, Mohn WW. Sensitive, efficient quantitation of 13C-enriched nucleic acids via ultrahigh-performance liquid chromatography-tandem mass spectrometry for applications in stable isotope probing. Appl Environ Microbiol. 2014;80:7206–11. https://doi.org/10.1128/AEM.02223-14.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.CAS 
    Article 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. https://doi.org/10.1089/cmb.2012.0021.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin H-H, Liao Y-C. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep. 2016;6:24175. https://doi.org/10.1038/srep24175.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359. https://doi.org/10.7717/peerj.7359.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alneberg J, Bjarnason BS, Bruijn ID, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6. https://doi.org/10.1038/nmeth.3103.CAS 
    Article 
    PubMed 

    Google Scholar 
    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinforma Oxf Engl. 2016;32:605–7. https://doi.org/10.1093/bioinformatics/btv638.CAS 
    Article 

    Google Scholar 
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43. https://doi.org/10.1038/s41564-018-0171-1.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55. https://doi.org/10.1101/gr.186072.114.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119. https://doi.org/10.1186/1471-2105-11-119.CAS 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60. https://doi.org/10.1038/nmeth.3176.CAS 
    Article 
    PubMed 

    Google Scholar 
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5. https://doi.org/10.1093/nar/gkt1178.CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101. https://doi.org/10.1093/nar/gky418.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–32. https://doi.org/10.1093/nar/gky995.CAS 
    Article 
    PubMed 

    Google Scholar 
    Haft DH, Loftus BJ, Richardson DL, Yang F, Eisen JA, Paulsen IT, et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 2001;29:41–3.CAS 
    Article 

    Google Scholar 
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/btz859.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15. https://doi.org/10.1186/s13059-014-0550-8.R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2018. https://www.R-project.org.Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5. https://doi.org/10.1093/nar/gkw290.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36. https://doi.org/10.1111/2041-210X.12628.Article 

    Google Scholar 
    Brenner AJ, Harris ED. A quantitative test for copper using bicinchoninic acid. Anal Biochem. 1995;226:80–4. https://doi.org/10.1006/abio.1995.1194.CAS 
    Article 
    PubMed 

    Google Scholar 
    Brown ME, Barros T, Chang MCY. Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol. 2012;7:2074–81. https://doi.org/10.1021/cb300383y.CAS 
    Article 
    PubMed 

    Google Scholar 
    Levy-Booth DJ, Hashimi A, Roccor R, Liu L-Y, Renneckar S, Eltis LD, et al. Genomics and metatranscriptomics of biogeochemical cycling and degradation of lignin-derived aromatic compounds in thermal swamp sediment. ISME J. 2021;15:879–93. https://doi.org/10.1038/s41396-020-00820-x.CAS 
    Article 
    PubMed 

    Google Scholar 
    Aston JE, Apel WA, Lee BD, Thompson DN, Lacey JA, Newby DT, et al. Degradation of phenolic compounds by the lignocellulose deconstructing thermoacidophilic bacterium Alicyclobacillus Acidocaldarius. J Ind Microbiol Biotechnol. 2016;43:13–23. https://doi.org/10.1007/s10295-015-1700-z.CAS 
    Article 
    PubMed 

    Google Scholar 
    Morgan-Lang C, McLaughlin R, Armstrong Z, Zhang G, Chan K, Hallam SJ. TreeSAPP: the tree-based sensitive and accurate phylogenetic profiler. Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/btaa588.Machczynski MC, Vijgenboom E, Samyn B, Canters GW. Characterization of SLAC: a small laccase from streptomyces coelicolor with unprecedented activity. Protein Sci Publ Protein Soc. 2004;13:2388–97. https://doi.org/10.1110/ps.04759104.CAS 
    Article 

    Google Scholar 
    Berini F, Verce M, Ausec L, Rosini E, Tonin F, Pollegioni L, et al. Isolation and characterization of a heterologously expressed bacterial laccase from the anaerobe Geobacter metallireducens. Appl Microbiol Biotechnol. 2018;102:2425–39. https://doi.org/10.1007/s00253-018-8785-z.CAS 
    Article 
    PubMed 

    Google Scholar 
    Yin Q, Zhou G, Peng C, Zhang Y, Kües U, Liu J, et al. The first fungal laccase with an alkaline pH optimum obtained by directed evolution and its application in indigo dye decolorization. AMB Express. 2019;9:151. https://doi.org/10.1186/s13568-019-0878-2.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar D, Kumar A, Sondhi S, Sharma P, Gupta N. An alkaline bacterial laccase for polymerization of natural precursors for hair dye synthesis. 3 Biotech. 2018;8:182. https://doi.org/10.1007/s13205-018-1181-7.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hilgers R, Vincken J-P, Gruppen H, Kabel MA. Laccase/mediator systems: their reactivity toward phenolic lignin structures. ACS Sustain Chem Eng. 2018;6:2037–46. https://doi.org/10.1021/acssuschemeng.7b03451.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu S, Argyropoulos D. An improved method for isolating lignin in high yield and purity. J Pulp Pap Sci. 2003;29:235–40.CAS 

    Google Scholar 
    Gao R, Li Y, Kim H, Mobley JK, Ralph J. Selective oxidation of lignin model compounds. ChemSusChem. 2018;11:2045–50. https://doi.org/10.1002/cssc.201800598.CAS 
    Article 
    PubMed 

    Google Scholar 
    Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS. Chemoselective metal-free aerobic alcohol oxidation in lignin. J Am Chem Soc. 2013;135:6415–8. https://doi.org/10.1021/ja401793n.CAS 
    Article 
    PubMed 

    Google Scholar 
    Schutyser W, Renders T, Bosch SV, den, Koelewijn S-F, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev. 2018;47:852–908. https://doi.org/10.1039/C7CS00566K.CAS 
    Article 
    PubMed 

    Google Scholar 
    Sun X, Bai R, Zhang Y, Wang Q, Fan X, Yuan J, et al. Laccase-catalyzed oxidative polymerization of phenolic compounds. Appl Biochem Biotechnol. 2013;171:1673–80. https://doi.org/10.1007/s12010-013-0463-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    Hu D, Zang Y, Mao Y, Gao B. Identification of molecular markers that are specific to the class Thermoleophilia. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.01185.Chen M-Y, Wu S-H, Lin G-H, Lu C-P, Lin Y-T, Chang W-C, et al. Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol. 2004;54:1849–55. https://doi.org/10.1099/ijs.0.63109-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    Tomariguchi N, Miyazaki K. Complete genome sequence of Rubrobacter xylanophilus strain AA3-22, isolated from Arima Onsen in Japan. Microbiol Resour Announc. 2019;8. https://doi.org/10.1128/MRA.00818-19.Ceballos SJ, Yu C, Claypool JT, Singer SW, Simmons BA, Thelen MP, et al. Development and characterization of a thermophilic, lignin degrading microbiota. Process Biochem. 2017;63:193–203. https://doi.org/10.1016/j.procbio.2017.08.018.CAS 
    Article 

    Google Scholar 
    Clark Mason J, Richards M, Zimmermann W, Broda P. Identification of extracellular proteins from actinomycetes responsible for the solubilisation of lignocellulose. Appl Microbiol Biotechnol. 1988;28:276–80. https://doi.org/10.1007/BF00250455.Article 

    Google Scholar 
    Yin Y-R, Sang P, Xian W-D, Li X, Jiao J-Y, Liu L, et al. Expression and characteristics of two glucose-tolerant GH1 β-glucosidases from Actinomadura amylolytica YIM 77502T for promoting cellulose degradation. Front Microbiol. 2018;9. https://doi.org/10.3389/fmicb.2018.03149.Zimmermann W, Broda P. Utilization of lignocellulose from barley straw by actinomycetes. Appl Microbiol Biotechnol. 1989;30:103–9. https://doi.org/10.1007/BF00256005.CAS 
    Article 

    Google Scholar 
    Abe T, Masai E, Miyauchi K, Katayama Y, Fukuda M. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6. J Bacteriol. 2005;187:2030–7. https://doi.org/10.1128/JB.187.6.2030-2037.2005.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varman AM, He L, Follenfant R, Wu W, Wemmer S, Wrobel SA, et al. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proc Natl Acad Sci USA. 2016;113:E5802–11. https://doi.org/10.1073/pnas.1606043113.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Studenik S, Vogel M, Diekert G. Characterization of an O-demethylase of Desulfitobacterium hafniense DCB-2. J Bacteriol. 2012;194:3317–26. https://doi.org/10.1128/JB.00146-12.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fahrbach M, Kuever J, Remesch M, Huber BE, Kämpfer P, Dott W, et al. Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. Int J Syst Evol Microbiol. 2008;58:2215–23. https://doi.org/10.1099/ijs.0.65342-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    Nogi Y, Yoshizumi M, Hamana K, Miyazaki M, Horikoshi K. Povalibacter uvarum gen. nov., sp. nov., a polyvinyl-alcohol-degrading bacterium isolated from grapes. Int J Syst Evol Microbiol. 2014;64:2712–7. https://doi.org/10.1099/ijs.0.062620-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    Sharma V, Siedenburg G, Birke J, Mobeen F, Jendrossek D, Prakash T. Metabolic and taxonomic insights into the Gram-negative natural rubber degrading bacterium Steroidobacter cummioxidans sp. nov., strain 35Y. PLoS ONE. 2018;13:e0197448. https://doi.org/10.1371/journal.pone.0197448.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thöny-Meyer L. Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS ONE. 2013;8:e65633. https://doi.org/10.1371/journal.pone.0065633.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christopher LP, Yao B, Ji Y. Lignin biodegradation with laccase-mediator systems. Front Energy Res. 2014;2. https://doi.org/10.3389/fenrg.2014.00012.Mate DM, Alcalde M. Laccase: a multi‐purpose biocatalyst at the forefront of biotechnology. Micro Biotechnol. 2016;10:1457–67. https://doi.org/10.1111/1751-7915.12422.CAS 
    Article 

    Google Scholar 
    Sirim D, Wagner F, Wang L, Schmid RD, Pleiss J. The Laccase Engineering Database: a classification and analysis system for laccases and related multicopper oxidases. Database J Biol Databases Curation. 2011;2011. https://doi.org/10.1093/database/bar006.Fang Z, Li T, Wang Q, Zhang X, Peng H, Fang W, et al. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Appl Microbiol Biotechnol. 2011;89:1103–10. https://doi.org/10.1007/s00253-010-2934-3.CAS 
    Article 
    PubMed 

    Google Scholar 
    Komori H, Miyazaki K, Higuchi Y. X-ray structure of a two-domain type laccase: a missing link in the evolution of multi-copper proteins. FEBS Lett. 2009;583:1189–95. https://doi.org/10.1016/j.febslet.2009.03.008.CAS 
    Article 
    PubMed 

    Google Scholar 
    Sherif M, Waung D, Korbeci B, Mavisakalyan V, Flick R, Brown G, et al. Biochemical studies of the multicopper oxidase (small laccase) from Streptomyces coelicolor using bioactive phytochemicals and site-directed mutagenesis. Microb Biotechnol. 2013;6:588–97. https://doi.org/10.1111/1751-7915.12068CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gunne M, Urlacher VB. Characterization of the alkaline laccase Ssl1 from Streptomyces sviceus with unusual properties discovered by genome mining. PLOS ONE. 2012;7:e52360 https://doi.org/10.1371/journal.pone.0052360CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dubé E, Shareck F, Hurtubise Y, Beauregard M, Daneault C. Decolourization of recalcitrant dyes with a laccase from Streptomyces coelicolor under alkaline conditions. J Ind Microbiol Biotechnol. 2008;35:1123–9. https://doi.org/10.1007/s10295-008-0391-0CAS 
    Article 
    PubMed 

    Google Scholar 
    Koschorreck K, Richter SM, Ene AB, Roduner E, Schmid RD, Urlacher VB. Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biotechnol. 2008;79:217–24. https://doi.org/10.1007/s00253-008-1417-2CAS 
    Article 
    PubMed 

    Google Scholar 
    Mohammadian M, Fathi-Roudsari M, Mollania N, Badoei-Dalfard A, Khajeh K. Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. J Ind Microbiol Biotechnol. 2010;37:863–9. https://doi.org/10.1007/s10295-010-0734-5CAS 
    Article 
    PubMed 

    Google Scholar 
    Ausec L, Berini F, Casciello C, Cretoiu MS, van Elsas JD, Marinelli F, et al. The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance. Appl Microbiol Biotechnol. 2017;101:6261–76. https://doi.org/10.1007/s00253-017-8345-yCAS 
    Article 
    PubMed 

    Google Scholar 
    Ausec L, Črnigoj M, Šnajder M, Ulrih NP, Mandic-Mulec I. Characterization of a novel high-pH-tolerant laccase-like multicopper oxidase and its sequence diversity in Thioalkalivibrio sp. Appl Microbiol Biotechnol. 2015;99:9987–99. https://doi.org/10.1007/s00253-015-6843-3CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Mitogenome-wise codon usage pattern from comparative analysis of the first mitogenome of Blepharipa sp. (Muga uzifly) with other Oestroid flies

    Outcome of DNA sequencing, assembly, and validationIn this study, initially total DNA was isolated from the finely chopped, full-grown pupa of Blepharipa sp. The NanoDrop spectrophotometer (1294 ng/μl) and the Qubit fluorometer (732.8 ng/μl) both found that the concentration of total DNA in the sample at an optimum level for mitochondrial DNA enrichment. The Tape Station profile showed that the size of the fragments of the mitogenomic library were in the range of 250 to 550 bp. The complete insert size distribution ranged from 130 to 430 bp, with the combined adapter size being ~ 120 bp with mitogenome fragments. The appropriate distribution of fragments and their concentrations (~ 27.1 ng/μl) were also found to be suitable for sequencing. Sequencing through Illumina NextSeq500 yielded 4,402,752 raw reads, of which around 3,663,404 high-quality reads were retained after post-quality filtering. The final scaffolding and assembly of contigs generated a 15,080 bp single scaffold MtDNA in Blepharipa sp. (N50 = 15,080).The sequencing outcome was validated by performing PCR amplification of one of the protein-coding genes, in this case, nad6. Where PCR amplification resulted in a single band of expected amplicon size (shown in Supplementary Method Online). Sanger sequencing and subsequent alignment of these amplicons showed almost 92% sequence similarity to our assembled Blepharipa sp. nad6 gene (see Supplementary Method Online). This provided strong evidence that our mitogenome assembly is reliable and can be used for general applications of mitochondrial genes, e.g., as a biomarker. The second mitogenomic region, the control region (CR) was suggested by the reviewer. We have discussed that CRs constitute repetitive A + T regions (“AT richness of Control Region and role of sequencing method” and “Impact of repeats on different sequencing technologies and assembly method” section). One or more repetitive regions within the CR identified in certain species (e.g. fish, human) have shown undesirable effects on PCR amplification and sequencing125,126. Many organisms have segmental duplications in CR induced by the appearance of pseudogenes that PCR can co-amplify127,128,129,130,131. Due to these associated problems, researchers generally rely on protein or ribosomal RNA genes for phylogenetics instead of CRs132,133,134. In this case, we also faced problems validating the CR. The PCR and gel electrophoresis using external PCR primers did not show a desirable single band as seen for nad6. As an alternative strategy, we used two pairs of primers, CR int_fwd and CR int_rev, internal primers, with CR15fwd and CR08rev primers, to perform a two-way sequencing of each amplicon, which generated multiple bands (see Supplementary Method Online, Figs. S1, S2). The most prominent bands were subjected to sequencing and yielded two mixed sequences, the best of which exhibited nearly 54% sequence resemblance with the Blepharipa sp. control region (see Method in Supplementary Note). Further mapping of the Illumina reads with the assembly revealed that the depth of coverage across the CR was not as deep as that of protein-coding genes such as cox2, and it was also not inflated only over a repeated section of the CR. The depth over 1–112 varied from 5 to 20×, and that for the 15,025–15,080 bp was around 30×. We did observe that our reads didn’t cover a 10 bp stretch of CR around 15,030–15,040 bp (see Method in Supplementary Note and Figs. S3–S6). We believe that our sequencing and assembly experiment was able to cover the majority of CR successfully with reasonable coverage barring that 10 bp stretch. Our results corroborate with the difficulties of CR sequencing seen with other species, and while this doesn’t reflect on the quality of our whole mitogenome assembly, researchers using mitogenomic CR regions for any kind of phylogenetic inference should proceed with caution.Size and organization of mitogenome
    Blepharipa sp. mitogenome organization and structureThe newly sequenced mitochondrial genome of Blepharipa sp. is closed circular and has a size of 15,080 bp, which falls within the typical insect mitogenome size (14 to 20 kb)135,136,137. Similar to other sequenced bilaterian mitogenomes, the Blepharipa sp. mitogenome has conventional gene content, a total of 37 genes (viz. 13 PCGs, 22 tRNAs, 2 rRNAs) and an AT-rich control region (CR) (Fig. 2A)138,139,140,141. Among these, 23 genes are present on the major strand (J strand or +ve strand), while the remaining 14 genes are present in the minor strand (N strand or –ve strand). The intron-less 13 PCGs are also separately encoded by these two strands, 9 PCGs (nad2, cox1, cox2, atp8, atp6, cox3, nad3, nad6, cytb) from the J strand and 4 PCGs (nad5, nad4, nad4l, nad1) from N strand covering 6899 bp and 4300 bp respectively constituting around 74.31% of the entire mitogenome (Fig. 2). The largest PCG present in this organism is nad5 (1716 bp), and the smallest one is the atp8 (165 bp). Excluding stop codons, the J strand has 2237 codons, and the N strand has 1430 codons. Apart from cox1 (TCG) and nad1 (TTG), 11 PCGs follow the canonical “ATN” start codon. Ten PCGs of this mitogenome have “TAA or TAG” as their stop codon except for cox1, cox2, and nad4, where they end with an incomplete stop codon, a single T (Fig. 2)142. A total of 22 tRNAs are interspersed all over the entire mitogenome, ranging from 63 bp (trnT) to 72 bp (trnV) in size. The J and N strands have 14 tRNAs and 8 tRNAs, respectively, with 928 bp and 528 bp of nucleotides. Typical clover-leaf shaped secondary structures of tRNAs have been observed with a few exceptions where trnC, trnF, trnP, and trnN lack a stable TΨC loop see Supplementary Fig. S7 online). Two N-strand rRNAs with nucleotides of 1360 bp and 783 bp are transcribed individually for rrnL and rrnS (Fig. 2B).Figure 2Complete mitochondrial genome structure of Blepharipa sp.; (A) Circular Map (B) Annotation and genome organization of mitogenome. tRNAs are represented as trn followed by the IUPAC-IUB single letter amino acid codes e.g., trnI denote tRNA-Ile.Full size imageThis mitogenome has 10 gene boundaries where genes overlap with adjacent genes, varying from 1 to 8 bp in length, for a total of 35 bp. The longest overlapping sequence of 8 bp is present over the trnW and trnC genes. Likewise, the total length of all intergenic spacer sequences (excluding the control region) is 139 bp, present at 15 gene boundaries. The length of each intergenic spacer varies between 1 and 40 bp, and the longest one is located between the trnE and trnF genes. In this organism, eleven pairs of genes are located discreetly but adjacent to each other and any PCG adjacent to tRNA, ending with an incomplete stop codon (cox1-trnL2, cox2-trnK). The control region’s length of this dipteran fly is 168 bp, and the nature of this region is highly biased towards A + T content (Fig. 2).Size comparison of Oestroidea mitogenome and their genesTo better understand the mitogenome of Blepharipa sp., it has been compared with the flies of the Oestroidea superfamily (blowflies, bot flies, flesh flies, uzi flies, and relatives). Various features have been taken into account for this comparison: mitogenome size, gene sizes, gene content, and how genes are placed in each mitogenome.The mitogenome of eukaryotic organisms shows that there are significant size differences across mammals, fungi, and plants. The typical size of an animal mitogenome is near about 16 kb, a fungal mitogenome is 19–176 kb, and a plant mitogenome is far larger, with a size range of 200 to 2500 kb143. We have shown that the Blepharipa sp. whole mitogenome size (15,080 bp) is 416 bp smaller than the average Oestroidea flies mitogenome. As for the Oestroidea superfamily, D. hominis (human bot fly), an Oestridae fly has the longest mitogenome of all (16,360 bp), and A. grahami, a Calliphoridae fly, has the shortest mitogenome of all (14,903 bp). Tachinid flies have a smaller average mitogenome size (~ 15,076 bp) than the other flies in this superfamily, and the Oestridae flies have a relatively larger mitogenome (~ 16,031 bp). We observed that the size of the total PCGs, tRNAs, and rRNAs are well-maintained across this superfamily, with an average length of 11,145 bp, 1482 bp, and 2113 bp, respectively (Fig. 1A, green, yellow, and blue line, Table 1).The difference in mitogenome size in insects can be attributed to variations in the length of non-coding regions, especially the control region that differs in length as well as the pattern of sequences (Fig. 1B)104,144. In addition, based on mtDNA sequence similarity among all the Oestroidea flies, Blepharipa sp. has high similitude with the Tachinid Fly E. flavipalpis (87.83%), followed by the two hairy maggot blowflies, Chrysomya albiceps (85.51%) and C. rufifacies (85.44%). Another well-studied uzi fly, E. sorbilans has an 84.82% sequence similarity with Blepharipa sp., while Gasterophilus horse botfly has the lowest sequence similarity (~ 77%) with Blepharipa sp. (Supplementary Data 3A).Gene content and arrangementWe found that the Oestroidea mitogenome represents the reserved gene arrangement of Ecdysozoan, for which it can be easily distinguishable from other bilaterians (Lophotrochozoa and Deuterostomia)140. The mitogenome of Blepharipa sp. and other Oestroidea have three core tRNA clusters, including (1) trnI-trnQ-trnM, (2) trnW-trnC-trnY and (3) trnA-trnR-trnN-trnS1-trnE-trnF, as depicted in Figs. 1C and 2. A comparative study revealed that the Oestroidea superfamily has 4 different kinds of mitogenome arrangements (Fig. 1C). The majority of the Oestroidea flies (25 out of 36) in this study have ancestral (A) dipteran type mitogenome sequences (Table 1)145. However, there are some minor inconsistencies exist in the Calliphoridae family (blowflies), such as the insertion of extra tRNAs (trnI in the genus Chrysomya and trnV in D. hominis) or the translocation of tRNA (trnS1 in C. chinghaiensis) (Fig. 1C)21,24. Barring this, all organisms, including Blepharipa sp., follow a standard dipteran gene arrangement and have 37 genes in their respective mitogenomes (insertion of tRNA into the genus Chrysomya and D. hominis raises gene count) (Fig. 1C (i)(ii), Table 1). In the case of dipterans other than the Oestroidea superfamily, species like gall midge (Cecidomyiidae), mosquitos (Culicidae), and crane flies (Tipulidae) exhibit various rearrangements in mitochondrial tRNAs, such as the absence, inversion, translocation, and extreme truncation of certain genes (Supplementary Data 1A)146,147.Non-coding regionsControl region (CR) of Blepharipa sp. and comparison with OestroideaThis region in the metazoan mitogenome is a single sizeable non-coding sequence containing essential regulatory elements for transcription and replication initiation; it is therefore named the control region148,149. Similar to other Diptera, the CR of Blepharipa sp. is also flanked by rrnS and the trnI-trnQ-trnM gene cluster (Fig. 2). Sequence similarity with other Oestroidea superfamily species indicates that this segment is variable due to the lack of coding constraints150. The CR sequence of Blepharipa sp. 75.49% similar to another tachinid fly Elodia flavipalpis, followed by Chrysomya bezziana (71.15%) (Supplementary Data 3B). Despite its overall high variation in nucleotides, this region harbors multiple different types of repeats (e.g., tandem repeats, inverted repeats)42,151 and conserved structures namely Poly-T stretch (15 bp), [TA(A)]n-like, G(A)nT-like stretches, and poly A tail (15 bp)152,153,154(Fig. 3A). Another conserved motif, “ATTGTAAATT” we found in the CR of Blepharipa sp. and E. flavipalpis (Fig. 3A). Such conserved structures are thought to play role in the regulatory process of transcription or replication. After binding with RNA polymerase,  they keep the initiating mode of transcription or replication by preventing the transition to elongation mode without affecting its open-complex structure155,156.Figure 3Conserved non-coding regions; (A) AT rich control region Alignment of Blepharipa sp. with other two Tachinidae species. (B) Three alignments of the common overlap region between trnW-trnC, atp8-atp6 and nad4-nad4l. (C) Three alignment of the consensus gap region between trnS2-nad1 (TACTAAAHHHHAWWMH), trnE-trnF (ACTAAHWWWAATTMHHWA), nad5-trnH (WGAYADATWYTTCAY) genes of all 36 Oestroidea mitogenome (where, W = A/T, H = A/T/C, Y = T/C, D = G/T/A, M = A/C).Full size imageThe CR is also known as the AT-rich region for having the maximum proportion of A/T nucleotides (91.4% for Blepharipa sp.) than other regions of the entire mitogenome. We observed that the Tachinidae family has higher A + T content than other groups, with the highest levels in the Mulberry uzi fly, E. sorbillans (98.10%), and AT poor CR regions identified in G. intestinalis (80.80%) and G. pecorum (80.82%) (Oestridae)42 (Supplementary Data 2A). In this study, the CR of thirteen species have above 90% A + T content, and the top 3 are the tachinid flies, led by A. grahami, D. hominis and Blepharipa sp. consecutively. The CR is prone to high mutation, yet the substitution rate is low due to high A + T content and directional mutation pressure144,154. This part of the mitogenome differs significantly in length among insects, ranging from 70 bp to 13 kb, and it accounts for most of the variation in mitogenome size153. We noted that the CR size of 36 Oestroidea flies ranges from 89 to 1750 bp, of which 16, 12, and 8 species can be categorized as large ( > 800 bp), medium (200–800 bp), and small ( 5 to  0.025 to  0.005 to  More

  • in

    Ontogeny and caudal autotomy fracture planes in a large scincid lizard, Egernia kingii

    Emberts, Z., Escalante, I. & Bateman, P. W. The ecology and evolution of autotomy. Biol. Rev. 94, 1881–1896. https://doi.org/10.1111/brv.12539 (2019).Article 
    PubMed 

    Google Scholar 
    Dunoyer, L. A., Seifert, A. W. & Van Cleve, J. Evolutionary bedfellows: Reconstructing the ancestral state of autotomy and regeneration. J. Exp. Zool. Part B Mol. Dev. Evol. 336, 94–115. https://doi.org/10.1002/jez.b.22974 (2021).Article 

    Google Scholar 
    Dial, B. E. & Fitzpatrick, L. C. Lizard tail autotomy: function and energetics of postautotomy tail movement in Scincella lateralis. Science https://doi.org/10.1126/science.219.4583.391 (1983).Article 
    PubMed 

    Google Scholar 
    Arnold, E. Caudal autotomy as a defense. Biol. Reptil. 16, 235–273 (1988).
    Google Scholar 
    Bateman, P. W. & Fleming, P. A. To cut a long tail short: A review of lizard caudal autotomy studies carried out over the last 20 years. J. Zool. (Lond.) 277, 1–14 (2009).Article 

    Google Scholar 
    Woodland, W. Memoirs: Some observations on caudal autotomy and regeneration in the gecko (Hemidactylus flaviviridis, Rüppel), with notes on the tails of Sphenodon and Pygopus. J. Cell Sci. 2, 63–100 (1920).Article 

    Google Scholar 
    Alibardi, L. Morphological and Cellular Aspects of Tail and Limb Regeneration in Lizards: A Model System with Implications for Tissue Regeneration in Mammals (Springer, 2010).Book 

    Google Scholar 
    Maginnis, T. L. The costs of autotomy and regeneration in animals: A review and framework for future research. Behav. Ecol. 17, 857–872. https://doi.org/10.1093/beheco/arl010 (2006).Article 

    Google Scholar 
    Dial, B. E. & Fitzpatrick, L. C. The energetic costs of tail autotomy to reproduction in the lizard Coleonyx brevis (Sauria: Gekkonidae). Oecologia 51, 310–317. https://doi.org/10.1007/bf00540899 (1981).ADS 
    Article 
    PubMed 

    Google Scholar 
    Vitt, L. J., Congdon, J. D. & Dickson, N. A. Adaptive strategies and energetics of tail autotomy in Lizards. Ecology 58, 326–337. https://doi.org/10.2307/1935607 (1977).Article 

    Google Scholar 
    Clause, A. R. & Capaldi, E. A. Caudal autotomy and regeneration in lizards. J. Exp. Zool. 305, 965–973 (2006).Article 

    Google Scholar 
    Barr, J. I., Boisvert, C. A. & Bateman, P. W. At what cost? Trade-offs and influences on energetic investment in tail regeneration in lizards following autotomy. J. Dev. Biol. 9, 53 (2021).Article 

    Google Scholar 
    Etheridge, R. Lizard caudal vertebrae. Copeia, 699–721 (1967).Arnold, E. Evolutionary aspects of tail shedding in lizards and their relatives. J. Nat. Hist. 18, 127–169 (1984).Article 

    Google Scholar 
    Zani, P. A. Patterns of caudal-autotomy evolution in lizards. J. Zool. (Lond.) 240, 201–220 (1996).Article 

    Google Scholar 
    Russell, A. & Bauer, A. The m. caudifemoralis longus and its relationship to caudal autotomy and locomotion in lizards (Reptilia: Sauria). J. Zool. (Lond.) 227, 127–143. https://doi.org/10.1111/j.1469-7998.1992.tb04349.x (1992).Article 

    Google Scholar 
    Arnold, E. Investigating the evolutionary effects of one feature on another: Does muscle spread suppress caudal autotomy in lizards?. J. Zool. (Lond.) 232, 505–523. https://doi.org/10.1111/j.1469-7998.1994.tb01591.x (1994).Article 

    Google Scholar 
    Bellairs, A. & Bryant, S. Autotomy and regeneration in reptiles. Biol. Reptil. 15, 301–410 (1985).
    Google Scholar 
    Hoffstetter, R. & Gasc, J. P. Vertebrae and ribs of modern reptiles. Biol. Reptil. 1, 201–310 (1969).
    Google Scholar 
    Cooper, W. E. Jr. & Frederick, W. G. Predator lethality, optimal escape behavior, and autotomy. Behav. Ecol. 21, 91–96. https://doi.org/10.1093/beheco/arp151 (2009).Article 

    Google Scholar 
    Fleming, P. A., Valentine, L. E. & Bateman, P. W. Telling tails: Selective pressures acting on investment in lizard tails. Physiol. Biochem. Zool. 86, 645–658 (2013).Article 

    Google Scholar 
    Bateman, P. W., Fleming, P. A. & Rolek, B. Bite me: Blue tails as a ‘risky-decoy’defense tactic for lizards. Curr. Zool. 60, 333–337 (2014).Article 

    Google Scholar 
    Hawlena, D., Boochnik, R., Abramsky, Z. & Bouskila, A. Blue tail and striped body: Why do lizards change their infant costume when growing up?. Behav. Ecol. 17, 889–896. https://doi.org/10.1093/beheco/arl023 (2006).Article 

    Google Scholar 
    Barr, J. I., Somaweera, R., Godfrey, S. S. & Bateman, P. W. Increased tail length in the King’s skink, Egernia kingii (Reptilia: Scincidae): An anti-predation tactic for juveniles?. Biol. J. Linn. Soc. 126, 268–275 (2019).Article 

    Google Scholar 
    Pafilis, P. & Valakos, E. D. Loss of caudal autotomy during ontogeny of Balkan Green Lizard, Lacerta trilineata. J. Nat. Hist. 42, 409–419 (2008).Article 

    Google Scholar 
    Masters, C. & Shine, R. Sociality in lizards: family structure in free-living King’s Skinks Egernia kingii from southwestern Australia. Aust. Zool. 32, 377–380 (2003).Article 

    Google Scholar 
    Cury de Barros, F., Eduardo de Carvalho, J., Abe, A. S. & Kohlsdorf, T. Fight versus flight: The interaction of temperature and body size determines antipredator behaviour in tegu lizards. Anim. Behav. 79, 83–88. https://doi.org/10.1016/j.anbehav.2009.10.006 (2010).Article 

    Google Scholar 
    Storr, G. The genus Egernia (Lacertilia, Scincidae) in Western Australia. Rec. West. Aust. Mus. 6, 147–187 (1978).
    Google Scholar 
    Cogger, H. G. Reptiles and Amphibians of Australia. 7th edn, (CSIRO Publishing, 2014).Arena, P. C. & Wooller, R. D. The reproduction and diet of Egernia kingii (Reptilia : Scincidae) on Penguin Island, Western Australia. Aust. J. Zool. 51, 495–504. https://doi.org/10.1071/ZO02040 (2003).Article 

    Google Scholar 
    Dilly, M. L. Factors Affecting the Distribution and Variation in Abundance of the King’s Skink (Egernia kingii) (Gray) in Western Australia, Murdoch University (2000).Pearson, D., Shine, R. & How, R. Sex-specific niche partitioning and sexual size dimorphism in Australian pythons (Morelia spilota imbricata). Biol. J. Linn. Soc. 77, 113–125 (2002).Article 

    Google Scholar 
    Chapple, D. G. Ecology, life-history, and behaviour in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetol. Monogr. 17, 145–180. https://doi.org/10.1655/0733-1347(2003)017[0145:ELABIT]2.0.CO;2 (2003).Article 

    Google Scholar 
    Itescu, Y., Schwarz, R., Meiri, S., Pafilis, P. & Clegg, S. Intraspecific competition, not predation, drives lizard tail loss on islands. J. Anim. Ecol. 86, 66–74. https://doi.org/10.1111/1365-2656.12591 (2017).Article 
    PubMed 

    Google Scholar 
    Siliceo-Cantero, H., Zúñiga-Vega, J., Renton, K. & Garcia, A. Assessing the relative importance of intraspecific and interspecific interactions on the ecology of Anolis nebulosus lizards from an island vs. a mainland population. Herpetol. Conserv. Biol. 12, 673–682 (2017).
    Google Scholar 
    Langkilde, T. & Shine, R. Interspecific conflict in lizards: Social dominance depends upon an individual’s species not its body size. Austral Ecol. 32, 869–877 (2007).Article 

    Google Scholar 
    Pafilis, P., Pérez-Mellado, V. & Valakos, E. Postautotomy tail activity in the Balearic lizard, Podarcis lilfordi. Naturwissenschaften 95, 217–221 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Browne, C. King’s Skinks (Egernia kingii) Abundance and Juvenile Survival Unaffected by Temporal Change or Presence of Invasive BLACK Rats (Rattus rattus) on Penguin Island, Western Australia, The University of Western Australia (2014).Langton, J. Population Biology of the King’s Skink (Egernia kingii) (Gray) on Penguin Island, Western Australia, Murdoch University (2000).Arena, P. Aspects of the Biology of the King’s Skink Egernia kingii (Gray), Murdoch University (1986).Pafilis, P., Meiri, S., Foufopoulos, J. & Valakos, E. Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften 96, 1107–1113. https://doi.org/10.1007/s00114-009-0564-3 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Martín, J. & Salvador, A. Tail loss reduces mating success in the Iberian rock-lizard, Lacerta monticola. Behav. Ecol. Sociobiol. 32, 185–189 (1993).Article 

    Google Scholar 
    Salvador, A., Martin, J. & López, P. Tail loss reduces home range size and access to females in male lizards, Psammodromus algirus. Behav. Ecol. 6, 382–387. https://doi.org/10.1093/beheco/6.4.382 (1995).Article 

    Google Scholar 
    Smyth, M. Changes in the fat scores of the skinks Morethia boulengeri and Hemiergis peronii (Lacertilia). Aust. J. Zool. 22, 135–145. https://doi.org/10.1071/ZO9740135 (1974).Article 

    Google Scholar 
    Wilson, R. S. & Booth, D. Effect of tail loss on reproductive output and its ecological significance in the skink Eulamprus quoyii. J. Herpetol. 32, 128–131 (1998).Article 

    Google Scholar 
    Fox, S. F. & McCoy, J. K. The effects of tail loss on survival, growth, reproduction, and sex ratio of offspring in the lizard Uta stansburiana in the field. Oecologia 122, 327–334. https://doi.org/10.1007/s004420050038 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Dial, B. E. & Fitzpatrick, L. C. Predator escape success in tailed versus tailless Scinella lateralis (Sauria: Scincidae). Anim. Behav. 32, 301–302 (1984).Article 

    Google Scholar 
    Downes, S. & Shine, R. Why does tail loss increase a lizard’s later vulnerability to snake predators?. Ecology 82, 1293–1303 (2001).Article 

    Google Scholar 
    Bernardo, J. & Agosta, S. J. Evolutionary implications of hierarchical impacts of nonlethal injury on reproduction, including maternal effects. Biol. J. Linn. Soc. 86, 309–331 (2005).Article 

    Google Scholar 
    Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. Biol. Sci. Ser. B 272, 2627–2634. https://doi.org/10.1098/rspb.2005.3251 (2005).Article 

    Google Scholar 
    Steindler, L. A., Blumstein, D. T., West, R., Moseby, K. E. & Letnic, M. Exposure to a novel predator induces visual predator recognition by naïve prey. Behav. Ecol. Sociobiol. 74, 102. https://doi.org/10.1007/s00265-020-02884-3 (2020).Article 

    Google Scholar 
    Blumstein, D. T. Moving to suburbia: Ontogenetic and evolutionary consequences of life on predator-free islands. J. Biogeogr. 29, 685–692. https://doi.org/10.1046/j.1365-2699.2002.00717.x (2002).Article 

    Google Scholar 
    Sih, A. et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621 (2010).Article 

    Google Scholar 
    Cooper, J. W. E.; Blumstein, D. T. Escaping From Predators: An Integrative View of Escape Decisions. (Cambridge University Press, 2015).Cox, J. G. & Lima, S. L. Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680 (2006).Article 

    Google Scholar 
    Blumstein, D. T. & Daniel, J. C. The loss of anti-predator behaviour following isolation on islands. Proc. R. Soc. Biol. Sci. Ser. B 272, 1663–1668 (2005).Article 

    Google Scholar 
    Blumstein, D. T., Daniel, J. C. & Springett, B. P. A test of the multi-predator hypothesis: Rapid loss of antipredator behavior after 130 years of isolation. Ethology 110, 919–934 (2004).Article 

    Google Scholar 
    Jolly, C. J., Webb, J. K. & Phillips, B. L. The perils of paradise: An endangered species conserved on an island loses antipredator behaviours within 13 generations. Biol. Lett. 14, 20180222 (2018).Article 

    Google Scholar 
    Cooper, W. E., Pérez-Mellado, V. & Vitt, L. J. Ease and effectiveness of costly autotomy vary with predation intensity among lizard populations. J. Zool. 262, 243–255 (2004).Article 

    Google Scholar 
    Elwood, C., Pelsinski, J. & Bateman, B. Anolis sagrei (Brown Anole). Voluntary autotomy. Herpetol. Rev. 43, 642–642 (2012).
    Google Scholar 
    Slotopolsky, B. Beiträge zur Kenntnis der Verstümmelungs-und Regenerationsvorgänge am Lacertilierschwanze. Zool. Jahrb. Abt. Anat. Ontog. Tiere 43, 39–48 (1922).
    Google Scholar  More

  • in

    Climate change will disproportionally affect the most genetically diverse lineages of a widespread African tree species

    D’Amen, M., Zimmermann, N. E. & Pearman, P. B. Conservation of phylogeographic lineages under climate change. Glob. Ecol. Biogeogr. 22, 93–104. https://doi.org/10.1111/j.1466-8238.2012.00774.x (2013).Article 

    Google Scholar 
    Espíndola, A. et al. Predicting present and future intra-specific genetic structure through niche hindcasting across 24 millennia. Ecol. Lett. 15, 649–657. https://doi.org/10.1111/j.1461-0248.2012.01779.x (2012).Article 
    PubMed 

    Google Scholar 
    Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Tr. Ecol. Evolut. 18, 189–197. https://doi.org/10.1016/S0169-5347(03)00008-9 (2003).Article 

    Google Scholar 
    Fontaine, C., Lovett, P., Sanou, H., Maley, J. & Bouvet, J. M. Genetic diversity of the shea tree (Vitellaria paradoxa CF Gaertn), detected by RAPD and chloroplast microsatellite markers. Heredity 93, 639 (2004).CAS 
    Article 

    Google Scholar 
    Hampe, A., El Masri, L. & Petit, R. J. Origin of spatial genetic structure in an expanding oak population. Mol. Ecol. 19, 459–471. https://doi.org/10.1111/j.1365-294X.2009.04492.x (2010).Article 
    PubMed 

    Google Scholar 
    Omondi, S. F., Odee, D. W., Ongamo, G. O., Kanya, J. I. & Khasa, D. P. Genetic consequences of anthropogenic disturbances and population fragmentation in Acacia senegal. Conserv. Genet. 17, 1235–1244. https://doi.org/10.1007/s10592-016-0854-1 (2016).Article 

    Google Scholar 
    Hewitt, G. Postglacial recolonization of European biota. Biol. J. Lin. Soc. 68, 87–112 (1999).Article 

    Google Scholar 
    Donkpegan, A. S. L. et al. Population genomics of the widespread African savannah trees Afzelia africana and Afzelia quanzensis reveals no significant past fragmentation of their distribution ranges. Am. J. Bot. 107, 498–509. https://doi.org/10.1002/ajb2.1449 (2020).Article 
    PubMed 

    Google Scholar 
    Etterson, J. R. & Shaw, R. G. Constraint to adaptive evolution in response to global warming. Science 294, 151–154. https://doi.org/10.1126/science.1063656 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Holderegger, R. & Wagner, H. Landscape genetics. Bioscience 58, 199–207. https://doi.org/10.1641/B580306 (2008).Article 

    Google Scholar 
    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x (2005).Article 
    PubMed 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946. https://doi.org/10.1111/mec.12152 (2013).Article 
    PubMed 

    Google Scholar 
    Arnell, N. W. & Lloyd-Hughes, B. The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Climatic Ch. 122, 127–140. https://doi.org/10.1007/s10584-013-0948-4 (2014).ADS 
    Article 

    Google Scholar 
    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Ch. 109, 5–31. https://doi.org/10.1007/s10584-011-0148-z (2011).ADS 
    Article 

    Google Scholar 
    Prather, M. et al. Annex II: climate system scenario tables. Climate Ch. 1395–1445 (2013).Pachauri, R. K. et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Synthesis report (Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2014).Müller, C. Climate change impact on Sub-Saharan Africa. An overview and analysis of scenarios and models (Dt. Inst. für Entwicklungspolitik, Bonn, 2009).Serdeczny, O. et al. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Ch. 17, 1585–1600. https://doi.org/10.1007/s10113-015-0910-2 (2016).Article 

    Google Scholar 
    Linder, H. P. et al. The partitioning of Africa: Statistically defined biogeographical regions in sub-Saharan Africa. J. Biogeogr. 39, 1189–1205. https://doi.org/10.1111/j.1365-2699.2012.02728.x (2012).Article 

    Google Scholar 
    Sexton, G. J. et al. Influence of putative forest refugia and biogeographic barriers on the level and distribution of genetic variation in an African savannah tree, Khaya senegalensis (Desr.) A. Juss. Tree Genet. Genomes https://doi.org/10.1007/s11295-015-0933-3 (2015).Article 

    Google Scholar 
    Linder, H. P. et al. Numerical re-evaluation of the sub-Saharan phytopchoria of mainland Africa. Biologiske Skrifter 55, 229–252 (2005).ADS 

    Google Scholar 
    Ruiz Guajardo, J. C. et al. Landscape genetics of the key African acacia species Senegalia mellifera (Vahl)- the importance of the Kenyan Rift Valley. Mol. Ecol. 19, 5126–5139. https://doi.org/10.1111/j.1365-294X.2010.04833.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kebede, M., Enrich, D., Taberlet, P., Nemomissa, S. & Brochmann, C. Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East African mountains. Mol. Ecol. 16, 1233–1243. https://doi.org/10.1111/j.1365-294x.2007.03232.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kadu, C. et al. Phylogeography of the Afromontane Prunus africana reveals a former migration corridor between East and West African highlands. Mol. Ecol. 20, 165–178. https://doi.org/10.1111/j.1365-294X.2010.04931.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lyam, P. T., Duque-Lazo, J., Schnitzler, J., Hauenschild, F. & Müllner-Riehl, A. N. Testing the forest refuge hypothesis in sub-Saharan Africa using species distribution modeling for a key savannah tree species, Senegalia senegal (L.) Britton. Front. Biogeogr. https://doi.org/10.21425/F5FBG48689 (2020).Article 

    Google Scholar 
    Logossa, Z. A. et al. Molecular data reveal isolation by distance and past population expansion for the shea tree (Vitellaria paradoxa C.F. Gaertn) in West Africa. Mol. Ecol. 20, 4009–4027. https://doi.org/10.1111/j.1365-294X.2011.05249.x (2011).Article 
    PubMed 

    Google Scholar 
    Lompo, D., Vinceti, B., Konrad, H., Gaisberger, H. & Geburek, T. Phylogeography of African locust bean (Parkia biglobosa) reveals genetic divergence and spatially structured populations in west and central Africa. J. Heredity 109, 811–824. https://doi.org/10.1093/jhered/esy047 (2018).Article 

    Google Scholar 
    Leong Pock Tsy, J.-M. et al. Chloroplast DNA phylogeography suggests a West African centre of origin for the baobab, Adansonia digitata L. (Bombacoideae, Malvaceae). Mol. Ecol. 18, 1707–1715. https://doi.org/10.1111/j.1365-294X.2009.04144.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Allal, F. et al. Past climate changes explain the phylogeography of Vitellaria paradoxa over Africa. Heredity 107, 174–186. https://doi.org/10.1038/hdy.2011.5 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fagg, C. W. & Allison, G. E. Acacia Senegal and the gum arabic trade: monograph and annotated bibliography (University of Oxford, United Kingdom, 2004).
    Google Scholar 
    Lézine, A. M. Late Quaternary vegetation and climate of the Sahel. Quatern. Res. 32, 317–334 (1989).ADS 
    Article 

    Google Scholar 
    Steele, T. Vertebrate records: Late Pleistocene of Africa. In Encyclopedia of Quaternary Science, edited by S. Elias. (Elsevier, Oxford, 2007), 3139–3150.Raddad, E., Salih, A., Fadl, M., Kaarakka, V. & Luukkanen, O. Symbiotic nitrogen fixation in eight Acacia senegal provenances in dryland clays of the Blue Nile Sudan estimated by the 15N natural abundance method. Plant Soil 275, 261–269. https://doi.org/10.1007/s11104-005-2152-4 (2005).CAS 
    Article 

    Google Scholar 
    Gray, A. et al. Does geographic origin dictate ecological strategies in Acacia senegal (L.) Willd? Evidence from carbon and nitrogen stable isotopes. Plant Soil 369, 479–496. https://doi.org/10.1007/s11104-013-1593-4 (2013).CAS 
    Article 

    Google Scholar 
    Ross, J. H. A conspectus of African acacia species (1979).Odee, D. W., Telford, A., Wilson, J., Gaye, A. & Cavers, S. Plio-Pleistocene history and phylogeography of Acacia senegal in dry woodlands and savannahs of sub-Saharan tropical Africa: evidence of early colonisation and recent range expansion. Heredity 109, 372–382. https://doi.org/10.1038/hdy.2012.52 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lyam, P. et al. Genetic diversity and distribution of Senegalia senegal (L.) Britton under climate change scenarios in West Africa. PLoS ONE 13, e0194726 (2018).Article 

    Google Scholar 
    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15, 684–692; https://doi.org/10.1016/j.tplants.2010.09.008 (2010).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).Article 

    Google Scholar 
    ESRI. ArcGIS Desktop: Release 10.5. Redlands, CA: Environmental Systems Research Institute (2020).Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Res. 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).CAS 
    Article 

    Google Scholar 
    Elhadji, S. D. et al. Exploring genetic diversity and structure of Acacia senegal (L.) Willd to improve its conservation in Niger. African J. Biotechnol. 16, 1650–1659 (2017).Article 

    Google Scholar 
    Muriira, N. G., Muchugi, A., Yu, A., Xu, J. & Liu, A. Genetic Diversity Analysis Reveals Genetic Differentiation and Strong Population Structure in Calotropis Plants. Sci. Rep. 8, 7832 (2018).ADS 
    Article 

    Google Scholar 
    Conord, C., Gurevitch, J. & Fady, B. Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin. Ecol. Evol. 2, 2600–2614. https://doi.org/10.1002/ece3.350 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Omondi, S. F. et al. Genetic diversity and population structure of Acacia senegal (L) Willd Kenya. Trop. Plant Biol. 3, 59–70 (2010).Article 

    Google Scholar 
    Marko, P. B. & Hart, M. W. The complex analytical landscape of gene flow inference. Trends Ecol. Evol. 26, 448–456. https://doi.org/10.1016/j.tree.2011.05.007 (2011).Article 
    PubMed 

    Google Scholar 
    Goncalves, A. L., García, M. V., Heuertz, M. & González-Martínez, S. C. Demographic history and spatial genetic structure in a remnant population of the subtropical tree Anadenanthera colubrina var cebil (Griseb.) Altschul (Fabaceae). Ann. Forest Sci. https://doi.org/10.1007/s13595-019-0797-z (2019).Article 

    Google Scholar 
    Rosenzweig, M. L. Species diversity in space and time (Cambridge university press, 1995).Vellend, M. & Geber, M. A. Connections between species diversity and genetic diversity. Ecol. Lett. 8, 767–781. https://doi.org/10.1111/j.1461-0248.2005.00775.x (2005).Article 

    Google Scholar 
    Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487. https://doi.org/10.1111/j.1472-4642.2010.00654.x (2010).Article 

    Google Scholar 
    Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18. https://doi.org/10.1002/evl3.154 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hutchison, D. W. & Templeton, A. R. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evol.; Int. J. Org. Evol. 53, 1898–1914 (1999).Article 

    Google Scholar 
    Shi, M. M., Michalski, S. G., Welk, E., Chen, X. Y. & Durka, W. Phylogeography of a widespread Asian subtropical tree: genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia. J. Biogeogr. 41, 1710–1720. https://doi.org/10.1111/jbi.12322 (2014).Article 

    Google Scholar 
    Voss, N., Eckstein, R. L. & Durka, W. Range expansion of a selfing polyploid plant despite widespread genetic uniformity. Ann. Botany 110, 585–593. https://doi.org/10.1093/aob/mcs117 (2012).Article 

    Google Scholar 
    Fiorini, C. F. et al. Phylogeography of the specialist plant Mandirola hirsuta (Gesneriaceae) suggests ancient habitat fragmentation due to savanna expansion. Flora 262, 151522 (2020).Article 

    Google Scholar 
    Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or distance: which pattern of gene flow is most common?. Evolution 68, 1–15. https://doi.org/10.1111/evo.12258 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662. https://doi.org/10.1111/mec.12938 (2014).Article 
    PubMed 

    Google Scholar 
    Nosil, P., Vines, T. H. & Funk, D. J. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evol.; Int. J. Org. Evol. 59, 705–719 (2005).
    Google Scholar 
    Wang, I. J. & Summers, K. Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Mol. Ecol. 19, 447–458. https://doi.org/10.1111/j.1365-294X.2009.04465.x (2010).Article 
    PubMed 

    Google Scholar 
    Xu, B. et al. Population genetic structure is shaped by historical, geographic, and environmental factors in the leguminous shrub Caragana microphylla on the Inner Mongolia Plateau of China. BMC Plant Biol. 17, 200 (2017).Article 

    Google Scholar 
    Hendry, A. P. & Day, T. Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol. Ecol. 14, 901–916. https://doi.org/10.1111/j.1365-294X.2005.02480.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Solomon, S., Manning, M., Marquis, M. & Qin, D. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Cambridge university press, 2007).Thuiller, W. Climate change and the ecologist. Nature 448, 550–552 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Osland, M. J. et al. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. Global Ch. Biol. 27, 3009–3034 (2021).Article 

    Google Scholar 
    Higgins, S. I., Lavorel, S. & Revilla, E. Estimating plant migration rates under habitat loss and fragmentation. Oikos 101, 354–366 (2003).Article 

    Google Scholar 
    Jump, A. S. & Penuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020. https://doi.org/10.1111/j.1461-0248.2005.00796.x (2005).Article 
    PubMed 

    Google Scholar 
    Jump, A. S., Marchant, R. & Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51–58. https://doi.org/10.1016/j.tplants.2008.10.002 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kirk, H. & Freeland, J. R. Applications and implications of neutral versus non-neutral markers in molecular ecology. Int. J. Mol. Sci. 12, 3966–3988. https://doi.org/10.3390/ijms12063966 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bucharova, A. et al. Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conserv. Genet. 20, 7–17. https://doi.org/10.1007/s10592-018-1067-6 (2019).Article 

    Google Scholar 
    Tong, Y. et al. Ex situ conservation of Pinus koraiensis can preserve genetic diversity but homogenizes population structure. Forest Ecol. Manag. 465, 117820 (2020).Article 

    Google Scholar 
    Vessella, F., Simeone, M. C. & Schirone, B. Quercus suber range dynamics by ecological niche modelling: from the Last Interglacial to present time. Quat. Sci. Rev. 119, 85–93. https://doi.org/10.1016/j.quascirev.2015.04.018 (2015).ADS 
    Article 

    Google Scholar 
    Lovejoy, T. E. Climate change and biodiversity (TERI Press, India, 2006).
    Google Scholar 
    Poczai, P., Varga, I., Bell N.E. & Hyvonen, J. The molecular basis of plant genetic diversity. In Genomics meets biodiversity: advances in molecular marker development and their applications in plant genetic diversity assessment. The molecular basis of plant genetic diversity, edited by M. Caliskan (InTech Open Access Publisher2012), 3–31.Botermans, M., Sosef, M. S. M., Chatrou, L. W. & Couvreur, T. L. P. Revision of the African Genus Hexalobus (Annonaceae). Syst. Bot. 36, 33–48. https://doi.org/10.1600/036364411X553108 (2011).Article 

    Google Scholar 
    Sosef, M. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).Article 

    Google Scholar 
    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631. https://doi.org/10.1093/molbev/msl191 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Escoffier, L. & Lische, H. ARLEQUIN suite ver. 3.5. A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567 (2010).Article 

    Google Scholar 
    Lewis, P. O. & Zaykin, D. Genetic data analysis: computer program for the analysis of allelic data. Mol. Ecol. 11, 1157–1164 (2002).Article 

    Google Scholar 
    AComputer Program to Calculate F-Statistics. Goudet, J. FSTAT (Version 1.2). J. Hered. 6, 245–246 (1995).
    Google Scholar 
    El Mousadik, A. & Petit, R. J. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839 (1996).Article 

    Google Scholar 
    Raymond, M. & Rousset, F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86, 248–249 (1995).Article 

    Google Scholar 
    Pritchard, J., Stephens, M. & Donelly, P. Inference of Population Structure Using Multilocus Genotype Data, 945–959 (2000).Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).CAS 
    Article 

    Google Scholar 
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Pritchard, J. K., Wen, W. & Falush, D. Documentation for STRUCTURE software: Version 2.3. University of Chicago, Chicago, IL, 1–37 (2010).Eliades, N. G. & Eliades, D. G. HAPLOTYPE ANALYSIS: software for analysis of haplotype data. Forest Goettingen (Germany): Genetics and Forest Tree Breeding, Georg-August University Goettingen (2009).Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Peakall, R. & Smouse, P. E. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).Article 

    Google Scholar 
    Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307. https://doi.org/10.1111/ecog.02880 (2018).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67, 3403–3411. https://doi.org/10.1111/evo.12134 (2013).Article 
    PubMed 

    Google Scholar  More

  • in

    Isotopic composition of the eastern gray whale epidermis indicates contribution of prey outside Arctic feeding grounds

    Clark, C. T. et al. Heavy with child? Pregnancy status and stable isotope ratios as determined from biopsies of humpback whales. Conserv. Physiol. 4, 1–13 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Wasser, S. K. et al. Population growth is limited by nutritional impacts on pregnancy success in endangered Southern Resident killer whales (Orcinus orca). PLoS One 12, e0179824. https://doi.org/10.1371/journal.pone.0179824 (2017).Boeuf, B. J., Perez-Cortes, H., Urbán, J., Mate, B. R. & Ollervides, F. High gray whale mortality and low recruitment in 1999: Potential causes and implications. J. Cetacean Res. Manag. 2, 85–99 (1999).
    Google Scholar 
    Perryman, W. L. & Lynn, M. S. Evaluation of nutritive condition and reproductive status of migrating gray whales (Eschrichtius robustus) based on analysis of photogrammetric data. J. Cetacean Res. Manag. 4, 155–164 (2002).
    Google Scholar 
    Moore, S. E., Grebmeier, J. M. & Davies, J. R. Gray whale distribution relative to forage habitat in the northern Bering Sea: Current conditions and retrospective summary. Can. J. Zool. 81, 734–742 (2003).Article 

    Google Scholar 
    Christiansen, F. et al. Poor body condition associated with an unusual mortality event in gray whales. Mar. Ecol. Prog. Ser. 658, 237–252 (2021).ADS 
    Article 

    Google Scholar 
    Martìnez-Aguilar, S. et al. Gray Whale (Eschrichtius robustus) stranding records in Mexico during the winter breeding season in 2019. In IWC (2019).Villegas-Amtmann, S., Schwarz, L. K., Sumich, J. L. & Costa, D. P. A bioenergetics model to evaluate demographic consequences of disturbance in marine mammals applied to gray whales. Ecosphere 6, art183 (2015).Article 

    Google Scholar 
    Urbán, R. J., Jiménez-López, E., Guzmán, H. M. & Viloria-Gómora, L. Migratory Behavior of an Eastern North Pacific Gray Whale From Baja California Sur to Chirikov Basin, Alaska. Front. Mar. Sci. 8, 1–7 (2021).Article 

    Google Scholar 
    Kim, L. & Oliver, J. S. Swarming benthic crustaceans in the Bering and Chukchi seas and their relation to geographic patterns in gray whale feeding. Can. J. Zool. 67, 1531–1542 (1989).Article 

    Google Scholar 
    Perryman, W. L., Joyce, T., Weller, D. W. & Durban, J. W. Environmental factors influencing eastern North Pacific gray whale calf production 1994–2016. Mar. Mammal Sci. 37, 448–462 (2020).Article 

    Google Scholar 
    Caraveo-Patiño, J. & Soto, L. A. Stable carbon isotope ratios for the gray whale (Eschrichtius robustus) in the breeding grounds of Baja California Sur, Mexico. Hydrobiologia 539, 99–107 (2005).Article 

    Google Scholar 
    Pyenson, N. D. & Lindberg, D. R. What happened to gray whales during the pleistocene? The ecological impact of sea-level change on benthic feeding areas in the north pacific ocean. PLoS One 6, e21295. https://doi.org/10.1371/journal.pone.0021295 (2011).Alter, S. E., Newsome, S. D. & Palumbi, S. R. Pre-whaling genetic diversity and population ecology in eastern pacific gray whales: Insights from ancient DNA and stable isotopes. PLoS One 7, e35039 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dunham, J. S. & Duffus, D. A. Foraging patterns of gray whales in central Clayoquot Sound, British Columbia, Canada. Mar. Ecol. Prog. Ser. 223, 299–310 (2001).ADS 
    Article 

    Google Scholar 
    Nerini, M. A Review of Gray Whale Feeding Ecology (Academic Press, Cambridge, 1984).Book 

    Google Scholar 
    Jones, M. Lou & Swartz, S. L. Gray whale. In Encyclopedia of Marine Mammals, Vol. 36 1352 (Academic Press, 2009).Moore, S. E., Wynne, K. M., Kinney, J. C. & Grebmeier, J. M. Gray whale occurrence and forage southeast of Kodiak, Island, Alaska. Mar. Mammal Sci. 23, 419–428 (2007).Article 

    Google Scholar 
    Lagerquist, B. A. et al. Feeding home ranges of pacific coast feeding group gray whales. J. Wildl. Manag. 83, 925–937 (2019).Article 

    Google Scholar 
    Calambokidis, J., Laake, J. L. & Klimek, A. Updated analysis of abundance and population structure of seasonal gray whales in the Pacific, 2010 (2012).Frasier, T. R., Koroscil, S. M., White, B. N. & Darling, J. D. Assessment of population substructure in relation to summer feeding ground use in the eastern North Pacific gray whale. Endanger. Species Res. 14, 39–48 (2011).Article 

    Google Scholar 
    Lang, A. R. et al. Assessment of genetic structure among eastern North Pacific gray whales on their feeding grounds. Mar. Mammal Sci. 30, 1473–1493 (2014).CAS 
    Article 

    Google Scholar 
    Burnham, R. & Duffus, D. Patterns of predator-prey dynamics between gray whales (Eschrichtius robustus) and mysid species in Clayoquot Sound. J. Cetacean Res. Manag. 19, 95–103 (2018).
    Google Scholar 
    Walker, T. J. Primer: With Special Attention to the California Gray Whale (Cabrillo Historical Association Pub QL737, San Diego, 1975).Walker, T. J. The California gray whale comes back (Eschrichtius robustus). Natl. Geogr. Mag. 139(3), 394–415 (1971).
    Google Scholar 
    Caraveo-Patiño, J. et al. Eco-physiological repercussions of dietary arachidonic acid in cell membranes of active tissues of the Gray whale. Mar. Ecol. 30, 437–447. https://doi.org/10.1111/j.1439-0485.2009.00289.x (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    Pirotta, E. et al. A dynamic state model of migratory behavior and physiology to assess the consequences of environmental variation and anthropogenic disturbance on marine vertebrates. Am. Nat. 191, E40–E56. https://doi.org/10.1086/695135 (2018).Busquets-Vass, G. et al. Estimating blue whale skin isotopic incorporation rates and baleen growth rates: Implications for assessing diet and movement patterns in mysticetes. PLoS ONE 12, 1–25 (2017).Article 
    CAS 

    Google Scholar 
    Busquets-Vass, G. et al. Isotope-based inferences of the seasonal foraging and migratory strategies of blue whales in the eastern Pacific Ocean. Mar. Environ. Res. 163, 105201. https://doi.org/10.1016/j.marenvres.2020.105201 (2021).Wild, L. A., Chenoweth, E. M., Mueter, F. J. & Straley, J. M. Evidence for dietary time series in layers of cetacean skin using stable carbon and nitrogen isotope ratios. Rapid Commun. Mass Spectrom. 32, 1425–1438 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gelippi, M., Popp, B., Gauger, M. F. W. & Caraveo-Patiño, J. Tracing gestation and lactation in free ranging gray whales using the stable isotopic composition of epidermis layers. PLoS ONE 15, 1–23. https://doi.org/10.1371/journal.pone.0240171 (2020).Article 
    CAS 

    Google Scholar 
    Graham, B. S., Koch, P. L., Newsome, S. D., McMahon, K. W. & Aurioles, D. Using Isoscapes to Trace the Movements and Foraging Behavior of Top Predators in Oceanic Ecosystems. Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping. https://doi.org/10.1007/978-90-481-3354-3 (2010).Hobson, K. A. International association for ecology tracing origins and migration of wildlife using stable isotopes: A review. Source Oecol. 120, 314–326 (1999).ADS 

    Google Scholar 
    Ryan, C. et al. Accounting for the effects of lipids in stable isotope (δ13C and δ15N values) analysis of skin and blubber of balaenopterid whales. Rapid Commun. Mass Spectrom. 26, 2745–2754 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mammal Sci. 26, 509–572 (2010).CAS 

    Google Scholar 
    Giménez, J., Ramírez, F., Almunia, J., Forero, G. M. & de Stephanis, R. From the pool to the sea: Applicable isotope turnover rates and diet to skin discrimination factors for bottlenose dolphins (Tursiops truncatus). J. Exp. Mar. Bio. Ecol. 475, 54–61 (2016).Article 
    CAS 

    Google Scholar 
    Browning, N. E., Dold, C., I-Fan, J. & Worthy, A. J. Isotope turnover rates and diet–tissue discrimination in skin of ex situ bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 217, 214–221 (2014).CAS 
    PubMed 

    Google Scholar 
    Borrell, A., Abad-Oliva, N., Gõmez-Campos, E., Giménez, J. & Aguilar, A. Discrimination of stable isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid Commun. Mass Spectrom. 26, 1596–1602 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Reeb, D., Best, P. B. & Kidson, S. H. Structure of the integument of southern right whales, Eubalaena australis. Anat. Rec. 290, 596–613 (2007).Article 

    Google Scholar 
    Morales-Guerrero, B. et al. Melanin granules melanophages and a fully-melanized epidermis are common traits of odontocete and mysticete cetaceans. Vet. Dermatol. 28, 213–e50. https://doi.org/10.1111/vde.12392 (2017).PubMed 
    Article 

    Google Scholar 
    Ayliffe, L. K. et al. Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139, 11–22 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hicks, B. D., St. Aubin, D. J., Geraci, J. R. & Brown, W. R. Epidermal growth in the bottlenose dolphin, Tursiops truncatus. J. Invest. Dermatol. 85, 60–63 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aubin, D. J., St. Smith, T. G. & Geraci, J. R. Seasonal epidermal molt in beluga whales, Delphinapterus leucas. Can. J. Zool. 68, 359–367 (1990).Article 

    Google Scholar 
    Perryman, W. L., Donahue, M. A., Perkins, P. C. & Reilly, S. B. Gray Whale calf production 1994–2000: Are observed fluctuations related to changes in seasonal ice cover?. Mar. Mammal Sci. 18, 121–144 (2002).Article 

    Google Scholar 
    Urbán, R. J. et al. A review of gray whales (Eschrichtius robustus) on their wintering grounds in Mexican waters. J. Cetacean Res. Manag. 5, 281–295 (2003).
    Google Scholar 
    Mann, J. Behavioral sampling methods for cetaceans: A review and critique. Mar. Mammal Sci. 15, 102–122 (1999).Article 

    Google Scholar 
    Tyurneva, O. Y. et al. Photographic identification of the Korean-Okhotsk gray whale (Eschrichtius robustus) offshore northeast Sakhalin island and southeast Kamchatka peninsula (Russia), 2009. In SC/62/BRG9 (2014).Yakovlev, Y. M., Tyurneva, O. M., Vertyankin, V. V. & Van der Wolf, P. Photo-identification of gray whales (Eschrichtius robustus) off the northeast coast of Sakhalin Island in 2018 photo. West. Gray Whale Advis. Panel 20th meeti (2019).Reeb, D. & Best, P. B. A biopsy system for deep core sampling of the blubber of southern right whales, Eubalaena australis. Mar. Mammal Sci. 22, 206–213 (2006).Article 

    Google Scholar 
    Noren, D. P. & Mocklin, J. A. Review of cetacean biopsy techniques: Factors contributing to successful sample collection and physiological and behavioral impacts. Mar. Mammal Sci. 28, 154–199 (2012).Article 

    Google Scholar 
    Caraveo-Patiño, J. Ecología alimenticia de la ballena gris (Eschrichtius robustus, Lilljeborg, 1861): Una ventana a la dinámica interna de los ecosistemas. PhD Thesis. Centro de Investigaciones Biológicas del noroeste S.C. http://dspace.cibnor.mx:8080/handle/123456789/90 (2004).Folch, J., Lees, M. & Stanley, G. H. S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).CAS 
    PubMed 
    Article 

    Google Scholar 
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Iverson, S. J., Arnould, J. P. Y. & Boyd, I. L. Milk fatty acid signatures indicate both major and minor shifts in the diet of lactating Antarctic fur seals. Can. J. Zool. 75, 188–197 (1997).Article 

    Google Scholar 
    Newsome, S. D., Koch, P. L., Etnier, M. A. & Aurioles-Gamboa, D. Using carbon and nitrogen isotope values to investigate maternal strategies in Northeast Pacific otariids. Mar. Mammal Sci. 22, 556–572 (2006).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Moore, J. W. & Semmens, B. X. Incorporating uncertainty and prior information into stable isotope mixing models. Ecol. Lett. 11, 470–480 (2008).PubMed 
    Article 

    Google Scholar 
    Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399 (2013).MathSciNet 

    Google Scholar 
    Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 136, 261–269 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    Phillips, D. L. Converting isotope values to diet composition: The use of mixing models. J. Mammal. 93, 342–352 (2012).Article 

    Google Scholar 
    Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5, 1–5 (2010).
    Google Scholar 
    Baker, H. ASM Handbook: Alloy Phase Diagrams ASM Handbook Alloy Phase Diagrams Vol. 3 (ASM International, Materials Park, 1992).
    Google Scholar 
    Pereira, G. H. A. On quantile residuals in beta regression. Commun. Stat. Simul. Comput. 48, 302–316 (2019).MathSciNet 
    Article 

    Google Scholar 
    Osterblom, H., Olsson, O., Blenckner, T. & Furness, W. Junk-food in marine ecosystems. Oikos 117, 967–977 (2008).Article 

    Google Scholar 
    Martínez del Rio, C. & Carleton, S. A. How fast and how faithful: The dynamics of isotopic incorporation into animal tissues. J. Mammal. 93, 353–359. https://doi.org/10.1644/11-MAMM-S-165.1 (2012).Article 

    Google Scholar 
    Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS One 10, https://doi.org/10.1371/journal.pone.0116182 (2015).CAS 
    Article 

    Google Scholar 
    Dalerum, F. & Angerbjörn, A. Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144, 647–658 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Horstmann-Dehn, L., Follmann, E. H., Rosa, C., Zelensky, G. & George, C. Stable carbon and nitrogen isotope ratios in muscle and epidermis of arctic whales. Mar. Mammal Sci. 28, E173–E190. https://doi.org/10.1111/j.1748-7692.2011.00503.x (2012).Hertz, E., Trudel, M., Cox, M. K. & Mazumder, A. Effects of fasting and nutritional restriction on the isotopic ratios of nitrogen and carbon: a meta-analysis. Ecol. Evol. 5, 4829–4839 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lian, M. et al. Assessing δ13C, δ15N and total mercury measures in epidermal biopsies from gray whales. Front. Mar. Sci. 7, 1–9 (2020).ADS 
    Article 

    Google Scholar 
    Gulland, F. et al. Eastern North Pacific gray whale (Eschrichtius robustus) unusual mortality event, 1999–2000. U.S. Dep. Commer. NOAA Tech. Memo. NMFS-AFSC-150. 33 pp (2005).Popp, B. N. et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta 62, 69–77 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Schell, D. M. Declining carrying capacity in the Bering Sea: Isotopic evidence from whale baleen. Limnol. Oceanogr. 45, 459–462 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Kurle, C. M. & McWhorter, J. K. Spatial and temporal variability within marine isoscapes: Implications for interpreting stable isotope data from marine systems. Mar. Ecol. Prog. Ser. 568, 31–45 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Keeling, C. D. The Suess effect: 13Carbon –14Carbon interrelations. Environ. Int. 2, 229–300 (1979).CAS 
    Article 

    Google Scholar 
    Grecian, W. J. et al. Contrasting migratory responses of two closely related seabirds to long-term climate change. Mar. Ecol. Prog. Ser. 559, 231–242 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Pomerleau, C., Nelson, R. J., Hunt, B. P. V., Sastri, A. R. & Williams, W. J. Spatial patterns in zooplankton communities and stable isotope ratios (δ13C and δ15N) in relation to oceanographic conditions in the sub-Arctic Pacific and western Arctic regions during the summer of 2008. J. Plankton Res. 36, 757–775 (2014).CAS 
    Article 

    Google Scholar 
    Lee, S. H. Use of the Beaufort Sea as feeding habitat by bowhead whales (Balaena mysticetus) as indicated by stable isotope ratios. M.S. Thesis. University of Alaska Fairbanks. http://hdl.handle.net/11122/4931 (2000).Cullen, J. T., Rosenthal, Y. & Falkowski, P. G. The effect of anthropogenic CO2 on the carbon isotope composition of marine phytoplankton. Limnol. Oceanogr. 46, 996–998 (2001).ADS 
    Article 

    Google Scholar 
    Schell, D. M. Carbon isotope ratio variations in Bering Sea biota: The role of anthropogenic carbon dioxide. Limnol. Oceanogr. 46, 999–1000 (2001).ADS 
    Article 

    Google Scholar 
    Eide, M., Olsen, A., Ninnemann, U. S. & Eldevik, T. A global estimate of the full oceanic 13C Suess effect since the preindustrial. Glob. Biogeochem. Cycles 31, 492–514 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Kurle, C. M., Sinclair, E. H., Edwards, A. E. & Gudmundson, C. J. Temporal and spatial variation in the δ15N and δ13C values of fish and squid from Alaskan waters. Mar. Biol. 158, 2389–2404 (2011).Article 

    Google Scholar 
    Ohman, M. D., Rau, G. H. & Hull, P. M. Multi-decadal variations in stable N isotopes of California Current zooplankton. https://doi.org/10.1016/j.dsr.2011.11.003 (2011).Décima, M., Landry, M. R. & Popp, B. N. Environmental perturbation effects on baseline δ15N values and zooplankton trophic flexibility in the southern California current ecosystem. Limnol. Oceanogr. 58, 624–634 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Caraveo-Patiño, J., Hobson, K. A. & Soto, L. A. Feeding ecology of gray whales inferred from stable-carbon and nitrogen isotopic analysis of baleen plates. Hydrobiologia 586, 17–25 (2007).Article 

    Google Scholar 
    Hernández-Aguierre, D. Análisis de la composición de ácidos grasos en los estratos de la capa de grasa (blubber) de la ballena gris Eschrichtius robustus (LILLJEBORG, 1861). M.S. Thesis. Centro de Investigaciones Biológicas del noroeste S.C. http://cibnor.repositorioinstitucional.mx/jspui/handle/1001/182 (2012).Ackman, R. G. Nutritional composition of fats in seafoods. Prog. Food Nutr. Sci. 13, 161–289 (1989).CAS 
    PubMed 

    Google Scholar 
    Lahdes, E., Balogh, G., Fodor, E. & Farkas, T. Adaptation of composition and biophysical properties of phospholipids to temperature by the crustacean, Gammarus spp. Lipids 35, 1093–1098 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarur-Zanatta, J. C., Millán-Nuñez, R., Gutiérrez-Sigala, C. A. & Small Mattox-Sheahen, C. A. Variation and similarity in three zones with-different type of substrate In Laguna Ojo De Liebre, B.C.S., Mexico. Ciencias Mar. 10, 169–179 (1984).Article 

    Google Scholar 
    Pirotta, V., Owen, K., Donnelly, D., Brasier, M. J. & Harcourt, R. First evidence of bubble-net feeding and the formation of ‘super-groups’ by the east Australian population of humpback whales during their southward migration. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3621 (2021).Article 

    Google Scholar 
    Carone, E. et al. Sex steroid hormones and behavior reveal seasonal reproduction in a resident fin whale population. Conserv. Physiol. 7, 1–13 (2019).Article 
    CAS 

    Google Scholar 
    Prieto, R., Tobeña, M. & Silva, M. A. Habitat preferences of baleen whales in a mid-latitude habitat. Deep Res. Part II Top. Stud. Oceanogr. 141, 155–167. https://doi.org/10.1016/j.dsr2.2016.07.015 (2017).ADS 
    Article 

    Google Scholar 
    Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS One 15 (2020).Savage, K. Alaska and British Columbia large whale unusual mortality event summary report. NOAA Fish Report, Juneau August, 1–42 (2017).Stewart, J. D. & Weller, D. W. NOAA Technical Memorandum NMFS abundance of eastern north pacific gray whales 2019/2020 (2021).Cooke, J. G. Population assessment update for Sakhalin gray whales. West. Gray Whale Advis. Panel 13 (2020). More

  • in

    Effects of conservation tillage strategies on soil physicochemical indicators and N2O emission under spring wheat monocropping system conditions

    Fu, C. H. et al. Relationships among fisheries exploitation, environmental conditions, and ecological indicators across a series of marine ecosystems. J. Mar. Syst. 148, 101–111 (2015).Article 

    Google Scholar 
    Too, C. C., Ong, K. S., Yule, C. M. & Keller, A. Putative roles of bacteria in the carbon and nitrogen cycles in a tropical peat swamp fores. Basic Appl. Ecol. 52, 109–123 (2020).Article 

    Google Scholar 
    Hou, R. J. et al. Effects of biochar and straw on greenhouse gas emission and its response mechanism in seasonally frozen farmland ecosystems. Catena 194, 104735 (2020).CAS 
    Article 

    Google Scholar 
    Wang, X., Lu, P., Yang, P. L. & Ren, S. M. Effects of fertilizer and biochar applications on the relationship among soil moisture, temperature, and N2O emissions in farmland. PeerJ 9, e11674–e11674 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tang, Z. M., Liu, X. R., Zhang, Q. W. & Li, G. C. Effects of biochar and straw on soil N2O emission from a wheat maize rotation system. Huan Jing Ke Xue 42(3), 1569–1580 (2021).PubMed 

    Google Scholar 
    Kong, Q., Wang, Z. B., Niu, P. F. & Miao, M. S. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process. Biores. Technol. 210, 94–100 (2016).CAS 
    Article 

    Google Scholar 
    Han, Z. M. et al. Spatial-temporal dynamics of agricultural drought in the Loess Plateau under a changing environment: Characteristics and potential influencing factors. Agric. Water Manag. 244, 106540 (2021).Article 

    Google Scholar 
    Clemens, S. et al. Nitrification inhibitors can increase post-harvest nitrous oxide emissions in an intensive vegetable production system. Sci. Rep. 7(1), 1–9 (2017).Article 
    CAS 

    Google Scholar 
    Zhang, D. J. et al. Effects of tillage and fertility on soil nitrogen balance and greenhouse gas emissions of wheat-maize rotation system in Central Henan Province, China. J. Appl. Ecol. 32(5), 1753–1760 (2021).
    Google Scholar 
    Liu, X. C. et al. Response of soil N2O emissions to precipitation pulses under different nitrogen availabilities in a semiarid temperate steppe of Inner Mongolia, China. J. Arid Land 6(04), 410–422 (2014).Article 

    Google Scholar 
    Hu, Q. Y. et al. Combined effects of straw returning and chemical n fertilization on greenhouse gas emissions and yield from paddy fields in northwest Hubei Province, China. J. Soil Sci. Plant Nutr. 20(2), 392–406 (2019).Article 
    CAS 

    Google Scholar 
    Sun, Z. C. et al. Effects of straw returning and feeding on greenhouse gas emissions from integrated rice-crayfish farming in Jianghan Plain, China. Environ. Sci. Pollut. Res. 26(12), 11710–11718 (2019).CAS 
    Article 

    Google Scholar 
    Mei, K. et al. Stimulation of N2O emission by conservation tillage management in agricultural lands: A meta-analysis. Soil Tillage Res. 182, 86–93 (2018).Article 

    Google Scholar 
    Wang, H. Y., Wu, J. Q., Li, G. & Yan, L. J. Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecol. Evol. 10(21), 12211–12223 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sadiq, M., Li, G., Rahim, N. & Tahir, M. M. Sustainable conservation tillage technique for improving soil health by enhancing soil physicochemical quality indicators under wheat mono-cropping system conditions. Sustainability 13(15), 8177–8177 (2021).CAS 
    Article 

    Google Scholar 
    Nie, Z. G. et al. Evaluating the effects of different sowing dates and tillage methods on dry-land wheat grain dry matter accumulation based on the APSIM model. J. Appl. Ecol. 32(3), 913–920 (2021).
    Google Scholar 
    Alhassan, A. M., Yang, C. J., Ma, W. W. & Li, G. Influence of conservation tillage on Greenhouse gas fluxes and crop productivity in spring-wheat agroecosystems on the Loess Plateau of China. PeerJ 9, e11064–e11064 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mou, L. M. et al. Breeding report of a new dryland spring wheat variety Dingxi 42. Gansu Agric. Sci. Technol. 01, 1–3 (2015).ADS 

    Google Scholar 
    Ma, W. W., Li, G., Wu, J. H., Xu, G. R. & Wu, J. Q. Respiration and CH4 fluxes in Tibetan peatlands are influenced by vegetation degradation. CATENA 195, 104789 (2020).CAS 
    Article 

    Google Scholar 
    Wu, J. Q. et al. Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau. Sci. Rep. 10(1), 21271–21271 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Défossez, P. et al. Impact of soil water content on the overturning resistance of young Pinus Pinaster in sandy soil. For. Ecol. Manag. 480, 118614 (2021).Article 

    Google Scholar 
    Mao, J., Nierop, K. G., Rietkerk, M., Damsté, J. S. S. & Te Dekker, S. C. infuence of vegetation on soil water repellency-markers and soil hydrophobicity. Sci. Total Environ. 566, 608–620 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Lu, Y., Si, B., Li, H. & Biswas, A. Elucidating controls of the variability of deep soil bulk density. Geoderma 348, 146–157 (2019).ADS 
    Article 

    Google Scholar 
    Huang, T. T., Yang, N., Lu, C., Qin, X. L. & Siddique, K. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil Tillage Res. 214, 105171 (2021).Article 

    Google Scholar 
    Yang, J. M., Zhang, Z. Q. & Cao, G. J. Soil nitrate and nitrite content determined by Skalar SAN++. Soil Fertil. Sci. China 02, 101–105 (2014).
    Google Scholar 
    Chen, N. et al. Effect of biodegradable film mulching on crop yield, soil microbial and enzymatic activities, and optimal levels of irrigation and nitrogen fertilizer for the Zea mays crops in arid region. Sci. Total Environ. 776, 145970–145970 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Akhtar, K. et al. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci. Tot. Environ. 741, 140488 (2020).CAS 
    Article 

    Google Scholar 
    Ma, E. et al. Effects of rice straw returning methods on N2O emission during wheat-growing season. Nutr. Cycl. Agroecosyst. 88(3), 463–469 (2009).Article 
    CAS 

    Google Scholar 
    Yeboah, S. et al. Greenhouse gas emissions in a spring wheat–field pea sequence under different tillage practices in semi-arid Northwest China. Nutr. Cycl. Agroecosyst. 106(1), 77–91 (2016).CAS 
    Article 

    Google Scholar 
    Zahid, A., Ali, S., Ahmed, M. & Iqbal, N. Improvement of soil health through residue management and conservation tillage in rice-wheat cropping system of Punjab, Pakistan. Agronomy 10(12), 1844–1844 (2020).CAS 
    Article 

    Google Scholar 
    Dharmendra, S. et al. Effect of reversal of conservation tillage on soil nutrient availability and crop nutrient uptake in soybean in the vertisols of central India. Sustainability. 12(16), 6608 (2020).Article 
    CAS 

    Google Scholar 
    Orzech, K., Wanic, M. & Załuski, D. The effects of soil compaction and different tillage systems on the bulk density and moisture content of soil and the yields of winter oilseed rape and cereals. Agriculture 11(7), 666–666 (2021).CAS 
    Article 

    Google Scholar 
    Fan, B. Q. & Liu, Q. L. Effect of conservation tillage and straw application on the soil microorganism and P-dissolving characteristics. Chin. J. Eco-Agric. 03, 130–132 (2005).
    Google Scholar 
    Liu, X. et al. Dynamic contribution of microbial residues to soil organic matter accumulation influenced by maize straw mulching. Geoderma 333, 35–42 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, W. Y. et al. Conservation tillage enhances crop productivity and decreases soil nitrogen losses in a rainfed agroecosystem of the Loess Plateau, China. J. Clean. Prod. 274, 122854 (2020).CAS 
    Article 

    Google Scholar 
    Zhang, Y., Xie, D. T., Ni, J. P. & Zeng, X. B. Conservation tillage practices reduce nitrogen losses in the sloping upland of the Three Gorges Reservoir area: No-till is better than mulch-till. Agric. Ecosyst. Environ. 300, 107003 (2020).CAS 
    Article 

    Google Scholar 
    Andrea, F. et al. May conservation tillage enhance soil C and N accumulation without decreasing yield in intensive irrigated croplands? Results from an eight-year maize monoculture. Agric. Ecosyst. Environ. 296, 106926 (2020).Article 
    CAS 

    Google Scholar 
    Wu, J. et al. Effects of different tillage and straw retention practices on soil aggregates and carbon and nitrogen sequestration in soils of the northwestern China. J. Arid. Land 11(04), 567–578 (2019).Article 

    Google Scholar 
    Niu, Y. N., Shen, Y. Y., Nan, Z. B., Yang, J. & Yang, Z. W. College of Pastoral Agriculture Science & Technology, Lanzhou University, China. Influence of different cultivation managements on organic carbon and nitrate nitrogen of top soil in the Loess Plateau, northwestern China. Proceedings of the XXI International Grassland Congress and the VIII International Rangeland Congress (volume II) (2008).Wang, Q., Li, F. R., Zhang, E. H., Li, G. & Vance, M. The effects of irrigation and nitrogen application rates on yield of spring wheat (longfu-920), and water use efficiency and nitrate nitrogen accumulation in soil. Aust. J. Crop Sci. 6(4), 662–672 (2012).
    Google Scholar 
    Pisani, O. et al. Soil nitrogen dynamics and leaching under conservation tillage in the Atlantic Coastal Plain, Georgia, United States. J. Soil Water Conserv. 72(5), 519–529 (2017).Article 

    Google Scholar 
    Cao, W. C. et al. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils. J. Nutr. Fertil. 25(10), 1781–1798 (2019).
    Google Scholar 
    Liu, B., Huang, G. B., Gao, Y. Q., Li, Q. P. & Huang, T. Effects of no-tillage on daily dynamics of CO2 and N2O emission from spring wheat field during mature stage. J. Gansu Agric. Univ. 45(01), 82–87 (2010).
    Google Scholar 
    Akhtar, K. et al. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci. Total Environ. 741, 140488 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sina, B., Youngsun, K., Janine, K. & Gerhard, G. Plastic mulching in agriculture: Friend or foe of N2O emissions. Agric. Ecosyst. Environ. 167, 43–51 (2013).Article 
    CAS 

    Google Scholar 
    Seiichi, N., Michio, K., Masako, T., Seiichiro, Y. & Naoto, K. Nitrous oxide evolved from soil covered with plastic mulch film in horticultural field. Biol. Fertil. Soils 48(7), 787–795 (2012).Article 
    CAS 

    Google Scholar 
    Wang, J., Cai, L. Q., Zhang, R. Z., Wang, Y. L. & Dong, W. J. Effects of Tillage Measures on soil greenhouse gas (CO2, CH4, N2O) flux in temperate semi-arid area. Chin. J. Eco-Agric. 19(06), 1295–1300 (2011).CAS 
    Article 

    Google Scholar 
    Chen, G. H. et al. Can conservation tillage reduce N2O emissions on cropland transitioning to organic vegetable production?. Sci. Total Environ. 618, 927–940 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Narendra, K. L. & Rattan, L. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Tillage Res. 126, 78–89 (2013).Article 

    Google Scholar 
    Liang, W., Shi, Y., Zhang, H., Yue, J. & Huang, G. H. Greenhouse gas emissions from Northeast china rice fields in fallow season. Pedosphere 17(5), 630–638 (2007).CAS 
    Article 

    Google Scholar 
    Bremner, J. M., Robbins, S. G. & Blackmer, A. M. Seasonal variability in emission of nitrous oxide from soil. Geophys. Res. Lett. 7(9), 641–644 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    Maag, M. & Vinther, F. P. Nitrous oxide emission by nitrification and denitrification in the different soil types and at different soil moisture contents and temperature. Appl. Soil. Ecol. 4(1), 5–14 (1996).Article 

    Google Scholar 
    Castaldi, S. Responses of nitrous oxide, dinitrogen and carbon dioxide production and oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiment. Biol. Fertil. Soils 32(1), 67–72 (2000).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Braker, G., Schwarz, J. & Conrad, R. Influence of temperature on the composition and activity of denitrifying soil communities. FEMS Microbiol. Ecol. 73(1), 134–148 (2010).CAS 
    PubMed 

    Google Scholar 
    Hu, H. W., Chen, D. & He, J. Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. Narnia 39(5), 729–749 (2015).CAS 

    Google Scholar 
    Pokharel, P. & Chang, S. X. Biochar decreases the efficacy of the nitrification inhibitor nitrapyrin in mitigating nitrous oxide emissions at different soil moisture levels. J. Environ. Manage. 295, 113080–113080 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shu, X. X. et al. Response of soil N2O emission and nitrogen utilization to organic matter in the wheat and maize rotation system. Sci. Rep. 11(1), 4396–4396 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bergaust, L., Mao, Y. J., Bakken, L. R. & Frostegård, A. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrous [corrected] oxide reductase in Paracoccus denitrificans. Appl. Environ. Microbiol. 76(19), 6387–6396 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Empirical evidence for recent global shifts in vegetation resilience

    Verbesselt, J. et al. Remotely sensed resilience of tropical forests. Nat. Clim. Change 6, 1028–1031 (2016).Article 

    Google Scholar 
    Lovejoy, T. E. & Nobre, C. Amazon tipping point. Sci. Adv. 4, eaat2340 (2018).Article 

    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).CAS 
    Article 

    Google Scholar 
    Hirota, M., Holmgren, M., Van Nes, E. H. & Scheffer, M. Global resilience of tropical forest and savanna to critical transitions. Science 334, 232–235 (2011).CAS 
    Article 

    Google Scholar 
    Ciemer, C. et al. Higher resilience to climatic disturbances in tropical vegetation exposed to more variable rainfall. Nat. Geosci. 12, 174–179 (2019).CAS 
    Article 

    Google Scholar 
    Boers, N., Marwan, N. & Barbosa, H. M. J. A deforestation-induced tipping point for the South American monsoon system. Sci. Rep. 49, 41489 (2017).Article 
    CAS 

    Google Scholar 
    Lasslop, G., Brovkin, V., Reick, C. H., Bathiany, S. & Kloster, S. Multiple stable states of tree cover in a global land surface model due to a fire–vegetation feedback. Geophys. Res. Lett. 43, 6324–6331 (2016).Article 

    Google Scholar 
    Abis, B. & Brovkin, V. Environmental conditions for alternative tree-cover states in high latitudes. Biogeosciences 14, 511–527 (2017).CAS 
    Article 

    Google Scholar 
    Bastiaansen, R. et al. Multistability of model and real dryland ecosystems through spatial self-organization. Proc. Natl Acad. Sci. USA 115, 11256–11261 (2018).CAS 
    Article 

    Google Scholar 
    Lewis, S. L., Wheeler, C. E., Mitchard, E. T. & Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 568, 25–28 (2019).CAS 
    Article 

    Google Scholar 
    Peterson, G., Allen, C. R. & Holling, C. S. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).Article 

    Google Scholar 
    Folke, C. et al. Regime shifts, resilience, in ecosystem management. Annu. Rev. Ecol. Evol. Syst. 35, 557–581 (2004).Article 

    Google Scholar 
    Arani, B. M., Carpenter, S. R., Lahti, L., van Nes, E. H. & Scheffer, M. Exit time as a measure of ecological resilience. Science 372, eaay4895 (2021).CAS 
    Article 

    Google Scholar 
    Einstein, A. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann. der Phys. 322, 549–560 (1905).Article 

    Google Scholar 
    Nyquist, H. Thermal agitation of electric charge in conductors. Phys. Rev. 32, 110–113 (1928).CAS 
    Article 

    Google Scholar 
    Kubo, R. The fluctuation–dissipation theorem. Rep. Prog. Phys. 29, 255–284 (1966).CAS 
    Article 

    Google Scholar 
    Marconi, U. M. B., Puglisi, A., Rondoni, L. & Vulpiani, A. Fluctuation–dissipation: response theory in statistical physics. Phys. Rep. 461, 111–195 (2008).Article 

    Google Scholar 
    Groth, A., Ghil, M., Hallegatte, S. & Dumas, P. The role of oscillatory modes in US business cycles. J. Bus. Cycle Meas. Anal. https://doi.org/10.1787/jbcma-2015-5jrs0lv715wl (2015).Groth, A., Dumas, P., Ghil, M. & Hallegatte, S. in Extreme Events: Observations, Modeling, and Economics (eds Chavez, M. et al.) 343–360 (Wiley, 2015).Gritsun, A. & Branstator, G. Climate response using a three-dimensional operator based on the fluctuation-dissipation theorem. J. Atmos. Sci. 64, 2558–2575 (2007).Article 

    Google Scholar 
    Majda, A. J., Abramov, R. & Gershgorin, B. High skill in low-frequency climate response through fluctuation dissipation theorems despite structural instability. Proc. Natl Acad. Sci. USA 107, 581–586 (2010).CAS 
    Article 

    Google Scholar 
    Carpenter, S. R. & Brock, W. A. Rising variance: a leading indicator of ecological transition. Ecol. Lett. 9, 311–318 (2006).CAS 
    Article 

    Google Scholar 
    Seddon, A. W., Macias-Fauria, M., Long, P. R., Benz, D. & Willis, K. J. Sensitivity of global terrestrial ecosystems to climate variability. Nature 531, 229–232 (2016).CAS 
    Article 

    Google Scholar 
    van der Bolt, B., van Nes, E. H., Bathiany, S., Vollebregt, M. E. & Scheffer, M. Climate reddening increases the chance of critical transitions. Nat. Clim. Change 8, 478–484 (2018).Article 

    Google Scholar 
    Liu, Y., Kumar, M., Katul, G. G. & Porporato, A. Reduced resilience as an early warning signal of forest mortality. Nat. Clim. Change 9, 880–885 (2019).Article 

    Google Scholar 
    Van Nes, E. H. & Scheffer, M. Slow recovery from perturbations as a generic indicator of a nearby catastrophic shift. Am. Nat. 169, 738–747 (2007).Article 

    Google Scholar 
    Dakos, V., Van Nes, E. H., d’Odorico, P. & Scheffer, M. Robustness of variance and autocorrelation as indicators of critical slowing down. Ecology 93, 264–271 (2012).Article 

    Google Scholar 
    Scheffer, M. et al. Early-warning signals for critical transitions. Nature 461, 53–59 (2009).CAS 
    Article 

    Google Scholar 
    Carpenter, S. R. et al. Early warnings of regime shifts: a whole-ecosystem experiment. Science 332, 1079–1082 (2011).CAS 
    Article 

    Google Scholar 
    Veraart, A. J. et al. Recovery rates reflect distance to a tipping point in a living system. Nature 481, 357–359 (2012).CAS 
    Article 

    Google Scholar 
    Dakos, V. et al. Slowing down as an early warning signal for abrupt climate change. Proc. Natl Acad. Sci. USA 105, 14308–14312 (2008).CAS 
    Article 

    Google Scholar 
    Rypdal, M. Early-warning signals for the onsets of Greenland interstadials and the Younger Dryas-preboreal transition. J. Clim. 29, 4047–4056 (2016).Article 

    Google Scholar 
    Boers, N. Early-warning signals for Dansgaard–Oeschger events in a high-resolution ice core record. Nat. Commun. 9, 2556 (2018).Lenton, T. M., Livina, V. N., Dakos, V., van Nes, E. H. & Scheffer, M. Early warning of climate tipping points from critical slowing down: comparing methods to improve robustness. Phil. Trans. R. Soc. A 370, 1185–204 (2012).CAS 
    Article 

    Google Scholar 
    Boulton, C. A., Allison, L. C. & Lenton, T. M. Early warning signals of Atlantic Meridional Overturning Circulation collapse in a fully coupled climate model. Nat. Commun. 5, 5752 (2014).CAS 
    Article 

    Google Scholar 
    De Keersmaecker, W. et al. How to measure ecosystem stability? An evaluation of the reliability of stability metrics based on remote sensing time series across the major global ecosystems. Glob. Change Biol. 20, 2149–2161 (2014).Article 

    Google Scholar 
    De Keersmaecker, W. et al. A model quantifying global vegetation resistance and resilience to short-term climate anomalies and their relationship with vegetation cover. Glob. Ecol. Biogeogr. 24, 539–548 (2015).Article 

    Google Scholar 
    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 

    Google Scholar 
    Moesinger, L. et al. The global long-term microwave vegetation optical depth climate archive (vodca). Earth Syst. Sci. Data 12, 177–196 (2020).Article 

    Google Scholar 
    Boulton, C. A., Lenton, T. & Boers, N. Pronounced loss of Amazon rainforest resilience since the early 2000s. Nat. Clim. Change 12, 271–278 (2022).Article 

    Google Scholar 
    Feng, Y. et al. Reduced resilience of terrestrial ecosystems locally is not reflected on a global scale. Commun. Earth Environ. 2, 88 (2021).Article 

    Google Scholar 
    Friedl, M. & Sulla-Menashe, D. MCD12C1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 0.05 Deg Version 006 (NASA, 2015).Wang, W., Chen, Y., Becker, S. & Liu, B. Linear trend detection in serially dependent hydrometeorological data based on a variance correction Spearman rho method. Water 7, 7045–7065 (2015).CAS 
    Article 

    Google Scholar 
    Boulton, C. A., Good, P. & Lenton, T. M. Early warning signals of simulated Amazon rainforest dieback. Theor. Ecol. 6, 373–384 (2013).Article 

    Google Scholar 
    Box, E. O., Holben, B. N. & Kalb, V. Accuracy of the AVHRR vegetation index as a predictor of biomass, primary productivity and net CO2 flux. Vegetatio 80, 71–89 (1989).Article 

    Google Scholar 
    Liu, L., Zhang, Y., Wu, S., Li, S. & Qin, D. Water memory effects and their impacts on global vegetation productivity and resilience. Sci. Rep. 8, 2962 (2018).Article 
    CAS 

    Google Scholar 
    Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).CAS 
    Article 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).CAS 
    Article 

    Google Scholar 
    Chen, J. et al. A simple method for reconstructing a high-quality NDVI time-series data set based on the Savitzky–Golay filter. Remote Sens. Environ. 91, 332–344 (2004).Article 

    Google Scholar 
    Cleveland, R. B., Cleveland, W. S., McRae, J. E. & Terpenning, I. Stl: a seasonal-trend decomposition procedure based on loess. J. Off. Stat. 6, 3–73 (1990).
    Google Scholar 
    Donner, R. et al. Spatial patterns of linear and nonparametric long-term trends in Baltic sea-level variability. Nonlinear Process. Geophys. 19, 95–111 (2012).Article 

    Google Scholar 
    Smith, T. & Bookhagen, B. Changes in seasonal snow water equivalent distribution in high mountain Asia (1987 to 2009). Sci. Adv. 4, e1701550 (2018).Article 

    Google Scholar 
    Smith, T., Boers, N. & Traxl, D. Global vegetation resilience estimation. Zenodo https://doi.org/10.5281/zenodo.5816934 (2022).Rousseau, D.-D. et al. (MIS3 & 2) millennial oscillations in Greenland dust and Eurasian aeolian records—a paleosol perspective. Quat. Sci. Rev. 196, 99–113 (2017).Article 

    Google Scholar 
    Boulton, C. A. & Lenton, T. M. A new method for detecting abrupt shifts in time series. F1000Research 8, 746 (2019).Article 

    Google Scholar 
    Savitzky, A. & Golay, M. J. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem. 36, 1627–1639 (1964).CAS 
    Article 

    Google Scholar 
    Scheffer, M., Carpenter, S. R., Dakos, V. & van Nes, E. H. Generic indicators of ecological resilience: inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145–167 (2015).Article 

    Google Scholar 
    Djikstra, H. Nonlinear Climate Dynamics (Cambridge Univ. Press, 2013).Book 

    Google Scholar 
    Kendall, M. G. Rank Correlation Methods (Griffin, 1948). More