The relationship between ecosystem services and human modification displays decoupling across global delta systems
Cumming, G. S. et al. Implications of agricultural transitions and urbanization for ecosystem services. Nature 515, 50–57 (2014).CAS
Article
Google Scholar
Cumming, G. S. & Von Cramon-Taubadel, S. Linking economic growth pathways and environmental sustainability by understanding development as alternate social-ecological regimes. Proc. Natl. Acad. Sci.115, 9533–9538 (2018).CAS
Article
Google Scholar
Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).CAS
Article
Google Scholar
de Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010).Article
Google Scholar
Clapp, J. Financialization, distance and global food politics. J. Peasant Stud. 41, 797–814 (2014).Article
Google Scholar
Crona, B. I. et al. Masked, diluted and drowned out: how global seafood trade weakens signals from marine ecosystems. Fish Fish. 17, 1175–1182 (2016).Article
Google Scholar
United Nations Environment Programme International Resource Panel. Decoupling Natural Resource Use and Environmental Impacts from Economic Growth (2011).Srinivasana, U. T. et al. The debt of nations and the distribution of ecological impacts from human activities. Proc. Natl. Acad. Sci. 105, 1768–1773 (2008).Article
Google Scholar
Rist, L. et al. Applying resilience thinking to production ecosystems. Ecosphere 5, 1–11 (2014).Article
Google Scholar
Dermody, B. J. et al. A virtual water network of the Roman world. Hydrol. Earth Syst. Sci. 18, 5025–5040 (2014).Article
Google Scholar
Maskell, L. C. et al. Exploring the ecological constraints to multiple ecosystem service delivery and biodiversity. J. Appl. Ecol. 50, 561–571 (2013).Article
Google Scholar
Potschin, M. B. & Haines-Young, R. H. Ecosystem services: Exploring a geographical perspective. Prog. Phys. Geogr. 35, 575–594 (2011).Article
Google Scholar
Peng, J. et al. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 607–608, 706–714 (2017).Article
CAS
Google Scholar
Millennium Ecosystem Assessment. Ecosystems and human well-being: Biodiversity synthesis (2005). https://doi.org/10.1057/9780230625600Díaz, S. et al. Assessing nature’s contributions to people: Recognizing culture, and diverse sources of knowledge, can improve assessments. Science 359, 270–272 (2018).Article
Google Scholar
Wallace, K. J. Classification of ecosystem services: Problems and solutions. Biol. Conserv. 139, 235–246 (2007).Article
Google Scholar
Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).Article
Google Scholar
Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).Article
Google Scholar
Saidi, N. & Spray, C. Ecosystem services bundles: Challenges and opportunities for implementation and further research. Environ. Res. Lett. 13, 113001 (2018).Cord, A. F. et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 28, 264–272 (2017).Article
Google Scholar
Mitsch, W. J. & Gosselink, J. G. The value of wetlands: importance of scale and landscape setting. Ecol. Econ. 35, 25–33 (2000).Article
Google Scholar
Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. 107, 5242–5247 (2010).CAS
Article
Google Scholar
Hamann, M., Biggs, R. & Reyers, B. Mapping social-ecological systems: Identifying ‘green-loop’ and ‘red-loop’ dynamics based on characteristic bundles of ecosystem service use. Glob. Environ. Change 34, 218–226 (2015).Article
Google Scholar
Macklin, M. G. & Lewin, J. The rivers of civilization. Quat. Sci. Rev. 114, 228–244 (2015).Article
Google Scholar
Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article
Google Scholar
Stanley, D. J. & Warne, A. G. Sea level and initiation of Predynastic culture in the Nile delta. Nature 363, 435–438 (1993).Article
Google Scholar
Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article
Google Scholar
Edmonds, D. A., Caldwell, R. L., Brondizio, E. S. & Siani, S. M. O. Coastal flooding will disproportionately impact people on river deltas. Nat. Commun. 11, 1–8 (2020).Article
CAS
Google Scholar
Renaud, F. G. et al. Tipping from the Holocene to the Anthropocene: How threatened are major world deltas? Curr. Opin. Environ. Sustain. 5, 644–654 (2013).Article
Google Scholar
Santos, M. J. & Dekker, S. C. Locked‑in and living delta pathways in the Anthropocene. Sci. Rep. 10, 19598 (2020).Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).CAS
Article
Google Scholar
Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).Article
Google Scholar
Seto, K. C. Exploring the dynamics of migration to mega-delta cities in Asia and Africa: Contemporary drivers and future scenarios. Glob. Environ. Change 21, S94–S107 (2011).Article
Google Scholar
Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. State of the World’s Freshwater Ecosystems: Physical, Chemical, and Biological Changes. Annu. Rev. Environ. Resour. 36, 75–99 (2011).Article
Google Scholar
Dugan, P. J. et al. Fish migration, dams, and loss of ecosystem services in the mekong basin. Ambio 39, 344–348 (2010).Article
Google Scholar
Notebaert, B., Broothaerts, N. & Verstraeten, G. Evidence of anthropogenic tipping points in fluvial dynamics in Europe. Glob. Planet. Change 164, 27–38 (2018).Article
Google Scholar
Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).Article
CAS
Google Scholar
Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. 104, 12942–12947 (2007).CAS
Article
Google Scholar
Minderhoud, P. S. J. et al. The relation between land use and subsidence in the Vietnamese Mekong delta. Sci. Total Environ. 634, 715–726 (2018).CAS
Article
Google Scholar
Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article
Google Scholar
FAO. AQUASTAT Database. (2022). Available at: https://www.fao.org/aquastat/statistics/query/index.html. (Accessed: 14th February 2022)Chau, N. D. G., Sebesvari, Z., Amelung, W. & Renaud, F. G. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environ. Sci. Pollut. Res. 22, 9042–9058 (2015).CAS
Article
Google Scholar
Phien-wej, N., Giao, P. H. & Nutalaya, P. Land subsidence in Bangkok, Thailand. Eng. Geol. 82, 187–201 (2006).Article
Google Scholar
Käkönen, M. Mekong Delta at the crossroads: more control or adaptation? Ambio 37, 205–212 (2008).Article
Google Scholar
Smajgl, A. et al. Responding to rising sea levels in the Mekong Delta. Nat. Clim. Change 5, 167–174 (2015).Article
Google Scholar
Schneider, P. & Asch, F. Rice production and food security in Asian Mega deltas—A review on characteristics, vulnerabilities and agricultural adaptation options to cope with climate change. J. Agron. Crop Sci. 206, 491–503 (2020).Article
Google Scholar
Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).CAS
Article
Google Scholar
Davis, M., Faurby, S. & Svenning, J. C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl. Acad. Sci. 115, 11262–11267 (2018).CAS
Article
Google Scholar
Arowolo, A. O., Deng, X., Olatunji, O. A. & Obayelu, A. E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 636, 597–609 (2018).CAS
Article
Google Scholar
Lang, Y. & Song, W. Quantifying and mapping the responses of selected ecosystem services to projected land use changes. Ecol. Indic. 102, 186–198 (2019).Article
Google Scholar
Tilman, D., Reich, P. B. & Isbell, F. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc. Natl. Acad. Sci. 109, 10394–10397 (2012).CAS
Article
Google Scholar
Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).CAS
Article
Google Scholar
Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Evolution of the global virtual water trade network. Proc. Natl. Acad. Sci. 109, 5989–5994 (2012).CAS
Article
Google Scholar
Van Asselen, S., Verburg, P. H., Vermaat, J. E. & Janse, J. H. Drivers of wetland conversion: A global meta-analysis. PLoS One 8, e81292 (2013).Davidson, N. C., Fluet-Chouinard, E. & Finlayson, C. M. Global extent and distribution of wetlands: trends and issues. Mar. Freshw. Res. 69, 620–627 (2018).Article
Google Scholar
Gordon, L. J., Finlayson, C. M. & Falkenmark, M. Managing water in agriculture for food production and other ecosystem services. Agric. Water Manag. 97, 512–519 (2010).Article
Google Scholar
Syvitski, J. P. M. & Kettner, A. J. Sediment flux and the anthropocene. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 957–975 (2011).Article
Google Scholar
Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land area gain. Nature 577, 514–518 (2020).CAS
Article
Google Scholar
Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).CAS
Article
Google Scholar
Stott, I., Soga, M., Inger, R. & Gaston, K. J. Land sparing is crucial for urban ecosystem services. Front. Ecol. Environ. 13, 387–393 (2015).Article
Google Scholar
Caldwell, R. L. et al. A global delta dataset and the environmental variables that predict delta formation. Earth Surf. Dyn. Discuss. 7, 773–787 (2019).Article
Google Scholar
Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos (Washington DC) 89, 93–94 (2008).USGS. HYDRO1k Elevation Derivative Database. https://doi.org/10.5066/F77P8WN0 (2000).CIESIN – Center for International Earth Science Information Network Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC) https://doi.org/10.7927/H4JW8BX5 (2018).Venter, O. et al. Last of the Wild Project, Version 3 (LWP-3): 2009 Human Footprint, 2018 Release. NASA Socioeconomic Data and Applications Center https://doi.org/10.7927/H46T0JQ4 (2018).Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 1–11 (2016).Article
CAS
Google Scholar
Zeileis, A., Leisch, F., Hornik, K. & Kleiber, C. strucchange: An R package for testing for structural change in linear regression models. J. Stat. Softw. 7, 1–38 (2002).Article
Google Scholar
Monti, S., Tamayo, P., Mesirov, J. & Golub, T. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52, 91–118 (2003).Article
Google Scholar
Reader, M. O. et al. Zenodo. https://doi.org/10.5281/zenodo.6346472 (2022).QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2019).R Core Team. R: A language and environment for statistical computing. (2020). More