More stories

  • in

    MALDI mass spectrometry imaging workflow for the aquatic model organisms Danio rerio and Daphnia magna

    (ECHA), E. C. A. Know more about the effects of the chemicals we use in Europe (ECHA/PR/16/01). https://echa.europa.eu/de/-/know-more-about-the-effects-of-the-chemicals-we-use-in-europe (2016).Liu, W. J., Nie, H. X., Liang, D. P., Bai, Y. & Liu, H. W. Phospholipid imaging of zebrafish exposed to fipronil using atmospheric pressure matrix-assisted laser desorption ionization mass spectrometry. Talanta https://doi.org/10.1016/j.talanta.2019.120357 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sparvero, L. J. et al. Mapping of phospholipids by MALDI imaging (MALDI-MSI): Realities and expectations. Chem. Phys. Lipid. 165, 545–562. https://doi.org/10.1016/j.chemphyslip.2012.06.001 (2012).CAS 
    Article 

    Google Scholar 
    Koizumi, S. et al. Imaging mass spectrometry revealed the production of lyso-phosphatidylcholine in the injured ischemic rat brain. Neuroscience 168(1), 219–225. https://doi.org/10.1016/j.neuroscience.2010.03.056 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hankin, J. A. et al. MALDI mass spectrometric imaging of lipids in rat brain injury models. J. Am. Soc. Mass Spectrom. 22(6), 1014–1021. https://doi.org/10.1007/s13361-011-0122-z (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhao, C. et al. MALDI-MS imaging reveals asymmetric spatial distribution of lipid metabolites from bisphenol s-induced nephrotoxicity. Anal. Chem. 90(5), 3196–3204. https://doi.org/10.1021/acs.analchem.7b04540 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barbacci, D. C. et al. Mass spectrometric imaging of ceramide biomarkers tracks therapeutic response in traumatic brain injury. ACS Chem. Neurosci. 8(10), 2266–2274. https://doi.org/10.1021/acschemneuro.7b00189 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rompp, A. et al. Histology by mass spectrometry: Label-free tissue characterization obtained from high-accuracy bioanalytical imaging. Angew. Chem. Int. Ed. 49, 3834–3838. https://doi.org/10.1002/anie.200905559 (2010).CAS 
    Article 

    Google Scholar 
    Zemski Berry, K. A. et al. MALDI imaging of lipid biochemistry in tissues by mass spectrometry. Chem. Rev. 111, 6491–6512. https://doi.org/10.1021/cr200280p (2011).CAS 
    Article 

    Google Scholar 
    Cornett, D. S., Reyzer, M. L., Chaurand, P. & Caprioli, R. M. MALDI imaging mass spectrometry: Molecular snapshots of biochemical systems. Nat. Methods 4, 828–833. https://doi.org/10.1038/nmeth1094 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Römpp, A. & Spengler, B. Mass spectrometry imaging with high resolution in mass and space. Histochem. Cell Biol. 139, 759–783. https://doi.org/10.1007/s00418-013-1097-6 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Monroe, E. B. et al. SIMS and MALDI MS imaging of the spinal cord. Proteomics 8(18), 3746-3754. https://doi.org/10.1002/pmic.200800127 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaurand, P., Cornett, D. S., Angel, P. M. & Caprioli, R. M. From whole-body sections down to cellular level, multiscale imaging of phospholipids by MALDI mass spectrometry. Mol. Cell. Proteom. https://doi.org/10.1074/mcp.O110.004259 (2011).Article 

    Google Scholar 
    Lee, H.-B. & Peart, T. E. Determination of bisphenol A in sewage effluent and sludge by solid-phase and supercritical fluid extraction and gas chromatography/mass spectrometry. J. AOAC Int. 83, 290–298. https://doi.org/10.1093/jaoac/83.2.290 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Desbenoit, N., Walch, A., Spengler, B., Brunelle, A. & Römpp, A. Correlative mass spectrometry imaging, applying time-of-flight secondary ion mass spectrometry and atmospheric pressure matrix-assisted laser desorption/ionization to a single tissue section. Rapid Commun. Mass Spectrometry 32, 159–166. https://doi.org/10.1002/rcm.8022 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Meding, S. et al. Tumor classification of six common cancer types based on proteomic profiling by MALDI imaging. J. Proteome Res. 11, 1996–2003. https://doi.org/10.1021/pr200784p (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ritschar, S. et al. Classification of target tissues of Eisenia fetida using sequential multimodal chemical analysis and machine learning. Histochem. Cell Biol. https://doi.org/10.1007/s00418-021-02037-1 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altshuler, I. et al. An integrated multi-disciplinary approach for studying multiple stressors in freshwater ecosystems: Daphnia as a model organism. Integr. Comp. Biol. 51(4), 623–633. https://doi.org/10.1093/icb/icr103 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bambino, K. & Chu, J. in Zebrafish at the Interface of Development and Disease Research Vol. 124 Current Topics in Developmental Biology (ed K. C. Sadler) 331–367 (2017).Seda, J. & Petrusek, A. Daphnia as a model organism in limnology and aquatic biology: Introductory remarks. J. Limnol. 70, 337–344. https://doi.org/10.4081/jlimnol.2011.337 (2011).Article 

    Google Scholar 
    de Souza Anselmo, C., Sardela, V. F., de Sousa, V. P. & Pereira, H. M. G. Zebrafish (Danio rerio): A valuable tool for predicting the metabolism of xenobiotics in humans? Comp. Biochem. Physiol. Part C: Toxicol. Pharmacol. 212, 34–46. https://doi.org/10.1016/j.cbpc.2018.06.005 (2018).CAS 
    Article 

    Google Scholar 
    Panula, P. et al. The comparative neuroanatomy and neurochemistry of zebrafish CNS systems of relevance to human neuropsychiatric diseases. Neurobiol. Dis. 40, 46–57. https://doi.org/10.1016/j.nbd.2010.05.010 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Korn, H. & Faber, D. S. The Mauthner cell half a century later: A neurobiological model for decision-making?. Neuron 47, 13–28. https://doi.org/10.1016/j.neuron.2005.05.019 (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schirmer, E., Schuster, S. & Machnik, P. Bisphenols exert detrimental effects on neuronal signaling in mature vertebrate brains. Commun. Biol. https://doi.org/10.1038/s42003-021-01966-w (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Flößner, D. Book review: Cladocera: The genus Daphnia (including Daphniopsis). Int. Rev. Hydrobiol. 90, 637. https://doi.org/10.1002/iroh.200590003 (2005).Article 

    Google Scholar 
    OECD. Test No. 211: Daphnia magna Reproduction Test. (2012).Muyssen, B. T. A. & Janssen, C. R. Multigeneration zinc acclimation and tolerance in Daphnia magna: Implications for water-quality guidelines and ecological risk assessment. Environ. Toxicol. Chem. 20, 2053–2060. https://doi.org/10.1002/etc.5620200926 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Blewett, T. A. et al. Sublethal and reproductive effects of acute and chronic exposure to flowback and produced water from hydraulic fracturing on the water flea Daphnia magna. Environ. Sci. Technol. 51, 3032–3039. https://doi.org/10.1021/acs.est.6b05179 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Yang, J. H., Kim, H. J., Lee, S. M., Kim, B. M. & Seo, Y. R. Cadmium-induced biomarkers discovery and comparative network analysis in Daphnia magna. Mol. Cell. Toxicol. 13, 327–336. https://doi.org/10.1007/s13273-017-0036-3 (2017).CAS 
    Article 

    Google Scholar 
    Ferain, A. et al. Body lipid composition modulates acute cadmium toxicity in Daphnia magna adults and juveniles. Chemosphere 205, 328–338. https://doi.org/10.1016/j.chemosphere.2018.04.091 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ritschar, S., Narayana, V. K. B., Rabus, M. & Laforsch, C. Uncovering the chemistry behind inducible morphological defences in the crustacean Daphniamagna via micro-Raman spectroscopy. Sci. Rep. 10(1), 22408. https://doi.org/10.1038/s41598-020-79755-4 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Machnik, P., Schirmer, E., Glück, L. & Schuster, S. Recordings in an integrating central neuron provide a quick way for identifying appropriate anaesthetic use in fish. Sci. Rep. 8, 17541. https://doi.org/10.1038/s41598-018-36130-8 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luzio, A. et al. Copper induced upregulation of apoptosis related genes in zebrafish (Danio rerio) gill. Aquat. Toxicol. 128, 183–189. https://doi.org/10.1016/j.aquatox.2012.12.018 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Macirella, R. & Brunelli, E. Morphofunctional alterations in zebrafish (Danio rerio) gills after exposure to mercury chloride. Int. J. Mol. Sci. https://doi.org/10.3390/ijms18040824 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mansouri, B. & Johari, S. A. Effects of short-term exposure to sublethal concentrations of silver nanoparticles on histopathology and electron microscope ultrastructure of zebrafish (Danio rerio) gills. IJT 10, 15–20. https://doi.org/10.32598/IJT.10.1.60.4 (2016).CAS 
    Article 

    Google Scholar 
    Perez, C. J., Tata, A., de Campos, M. L., Peng, C. & Ifa, D. R. Monitoring toxic ionic liquids in zebrafish (Danio rerio) with desorption electrospray ionization mass spectrometry imaging (DESI-MSI). J. Am. Soc. Mass Spectrom. 28, 1136–1148. https://doi.org/10.1007/s13361-016-1515-9 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Stutts, W. L. et al. Methods for cryosectioning and mass spectrometry imaging of whole-body zebrafish. J. Am. Soc. Mass Spectrom. 31, 768–772. https://doi.org/10.1021/jasms.9b00097 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Purves, D. & Williams, S. M. Neuroscience. 2nd edition. Vol. Chapter 11, Vision: The Eye (Sinauer Associates, 2001).
    Google Scholar 
    Strungaru, S. A. et al. Toxicity and chronic effects of deltamethrin exposure on zebrafish (Danio rerio) as a reference model for freshwater fish community. Ecotoxicol. Environ. Saf. 171, 854–862. https://doi.org/10.1016/j.ecoenv.2019.01.057 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mishra, A. & Devi, Y. Histopathological alterations in the brain (optic tectum) of the fresh water teleost Channa punctatus in response to acute and subchronic exposure to the pesticide Chlorpyrifos. Acta Histochem. 116, 176–181. https://doi.org/10.1016/j.acthis.2013.07.001 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jia, W., Mao, L., Zhang, L., Zhang, Y. & Jiang, H. Effects of two strobilurins (azoxystrobin and picoxystrobin) on embryonic development and enzyme activities in juveniles and adult fish livers of zebrafish (Danio rerio). Chemosphere 207, 573–580. https://doi.org/10.1016/j.chemosphere.2018.05.138 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Seyoum, A., Pradhan, A., Jass, J. & Olsson, P. E. Perfluorinated alkyl substances impede growth, reproduction, lipid metabolism and lifespan in Daphnia magna. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2020.139682 (2020).Article 
    PubMed 

    Google Scholar 
    Scanlan, L. D. et al. Gene transcription, metabolite and lipid profiling in eco-indicator Daphnia magna indicate diverse mechanisms of toxicity by legacy and emerging flame-retardants. Environ. Sci. Technol. 49, 7400–7410. https://doi.org/10.1021/acs.est.5b00977 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heinlaan, M. et al. Changes in the Daphnia magna midgut upon ingestion of copper oxide nanoparticles: A transmission electron microscopy study. Water Res. 45, 179–190. https://doi.org/10.1016/j.watres.2010.08.026 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abe, T., Saito, H., Niikura, Y., Shigeoka, T. & Nakano, Y. Embryonic development assay with Daphnia magna: Application to toxicity of aniline derivatives. Chemosphere 45, 487–495. https://doi.org/10.1016/s0045-6535(01)00049-2 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sengupta, N., Gerard, P. D. & Baldwin, W. S. Perturbations in polar lipids, starvation survival and reproduction following exposure to unsaturated fatty acids or environmental toxicants in Daphnia magna. Chemosphere 144, 2302–2311. https://doi.org/10.1016/j.chemosphere.2015.11.015 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Huber, K. et al. Approaching cellular resolution and reliable identification in mass spectrometry imaging of tryptic peptides. Anal. Bioanal. Chem. 410, 5825–5837. https://doi.org/10.1007/s00216-018-1199-z (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    White, R. M. et al. Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2, 183–189. https://doi.org/10.1016/j.stem.2007.11.002 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nagayoshi, S. et al. Insertional mutagenesis by the Tol2 transposon-mediated enhancer trap approach generated mutations in two developmental genes: tcf7 and synembryn-like. Development 135, 159–169. https://doi.org/10.1242/dev.009050 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Perciedu Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. Exp. Physiol. 105, 1459–1466. https://doi.org/10.1113/EP088870 (2020).Article 

    Google Scholar 
    Elendt, B. P. Selenium deficiency in Crustacea. Protoplasma 154, 25–33. https://doi.org/10.1007/BF01349532 (1990).CAS 
    Article 

    Google Scholar 
    Sud, M. et al. LMSD: LIPID MAPS structure database. Nucleic Acids Res. 35, D527–D532. https://doi.org/10.1093/nar/gkl838 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Race, A. M., Styles, I. B. & Bunch, J. Inclusive sharing of mass spectrometry imaging data requires a converter for all. J. Proteom. 75, 5111–5112. https://doi.org/10.1016/j.jprot.2012.05.035 (2012).CAS 
    Article 

    Google Scholar 
    Robichaud, G., Garrard, K. P., Barry, J. A. & Muddiman, D. C. MSiReader: An open-source interface to view and analyze high resolving power MS imaging files on Matlab platform. J. Am. Soc. Mass Spectrom. 24, 718–721. https://doi.org/10.1007/s13361-013-0607-z (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Seasonal dynamics of ammonia-oxidizing bacteria but not archaea influence soil nitrogen cycling in a semi-arid agricultural soil

    Schimel, J. P., Bennett, J. & Fierer, N. Microbial community composition and soil nitrogen cycling: is there really a connection? In Biological Diversity and Function in Soils Ecological Reviews (eds Bardgett, R. et al.) 171–188 (Cambridge University Press, 2005).
    Google Scholar 
    Hatzenpichler, R. Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Appl. Environ. Microbiol. 78, 7501–7510 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kowalchuk, G. A. & Stephen, J. R. Ammonia-oxidizing bacteria: A model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529 (2001).CAS 
    PubMed 

    Google Scholar 
    Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, X. et al. Niche separation of comammox Nitrospira and canonical ammonia oxidizers in an acidic subtropical forest soil under long-term nitrogen deposition. Soil Biol. Biochem. 126, 114–122 (2018).CAS 

    Google Scholar 
    van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X. et al. Comammox bacterial abundance, activity, and contribution in agricultural rhizosphere soils. Sci. Total Environ. 727, 138563 (2020).CAS 
    PubMed 

    Google Scholar 
    Wang, F., Liang, X., Ma, S., Liu, L. & Wang, J. Ammonia-oxidizing archaea are dominant over comammox in soil nitrification under long-term nitrogen fertilization. J. Soils Sediments 21, 1800–1814 (2021).CAS 

    Google Scholar 
    Rotthauwe, J.-H., Witzel, K.-P. & Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63, 4704–4712 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spang, A. et al. Distinct gene set in two different lineages of ammonia-oxidizing archaea supports the phylum Thaumarchaeota. Trends Microbiol. 18, 331–340 (2010).CAS 
    PubMed 

    Google Scholar 
    Schleper, C. & Nicol, G. W. Ammonia-oxidising archaea—Physiology, ecology and evolution. Adv. Microb. Physiol. 57, 1–41 (2010).CAS 
    PubMed 

    Google Scholar 
    Prosser, J. I. & Nicol, G. W. Archaeal and bacterial ammonia-oxidisers in soil: The quest for niche specialisation and differentiation. Trends Microbiol. 20, 523–531 (2012).CAS 
    PubMed 

    Google Scholar 
    Amin, S. A. et al. Copper requirements of the ammonia-oxidizing archaeon Nitrosopumilus maritimus SCM1 and implications for nitrification in the marine environment. Limnol. Oceanogr. 58, 2037–2045 (2013).CAS 

    Google Scholar 
    Jenkins, S. N., Murphy, D. V., Waite, I. S., Rushton, S. P. & O’Donnell, A. G. Ancient landscapes and the relationship with microbial nitrification. Sci. Rep. 6, 30733 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gubry-Rangin, C. et al. Niche specialization of terrestrial archaeal ammonia oxidizers. Proc. Natl. Acad. Sci. U.S.A. 108, 21206–21211 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lehtovirta-Morley, L. E., Stoecker, K., Vilcinskas, A., Prosser, J. I. & Nicol, G. W. Cultivation of an obligate acidophilic ammonia oxidizer from a nitrifying acid soil. Proc. Natl. Acad. Sci. U.S.A. 108, 15892–15897 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Banning, N. C., Maccarone, L. D., Fisk, L. M. & Murphy, D. V. Ammonia-oxidising bacteria not archaea dominate nitrification activity in semi-arid agricultural soil. Sci. Rep. 5, 11146 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Di, H. J. et al. Ammonia-oxidizing bacteria and archaea grow under contrasting soil nitrogen conditions. FEMS Microbiol. Ecol. 72, 386–394 (2010).CAS 
    PubMed 

    Google Scholar 
    Wang, J., Wang, J., Rhodes, G., He, J. Z. & Ge, Y. Adaptive responses of comammox Nitrospira and canonical ammonia oxidizers to long-term fertilizations: Implications for the relative contributions of different ammonia oxidizers to soil nitrogen cycling. Sci. Total Environ. 668, 224–233 (2019).CAS 
    PubMed 

    Google Scholar 
    Ouyang, Y., Evans, S. E., Friesen, M. L. & Tiemann, L. K. Effect of nitrogen fertilization on the abundance of nitrogen cycling genes in agricultural soils: A meta-analysis of field studies. Soil Biol. Biochem. 127, 71–78 (2018).CAS 

    Google Scholar 
    Verhamme, D. T., Prosser, J. I. & Nicol, G. W. Ammonia concentration determines differential growth of ammonia-oxidising archaea and bacteria in soil microcosms. ISME J. 5, 1067–1071 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wardle, D. A. Controls of temporal variability of the soil microbial biomass: A global-scale synthesis. Soil Biol. Biochem. 30, 1627–1637 (1998).CAS 

    Google Scholar 
    Adair, K. L. & Schwartz, E. Evidence that ammonia-oxidizing archaea are more abundant than ammonia-oxidizing bacteria in semiarid soils of northern Arizona, USA. Microb. Ecol. 56, 420–426 (2008).CAS 
    PubMed 

    Google Scholar 
    Taylor, A. E., Zeglin, L. H., Wanzek, T. A., Myrold, D. D. & Bottomley, P. J. Dynamics of ammonia-oxidizing archaea and bacteria populations and contributions to soil nitrification potentials. ISME J. 6, 2024–2032 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hayatsu, M., Katsuyama, C. & Tago, K. Overview of recent researches on nitrifying microorganisms in soil. Soil Sci. Plant Nutr. 67, 1–14 (2021).
    Google Scholar 
    Sher, Y., Zaady, E. & Nejidat, A. Spatial and temporal diversity and abundance of ammonia oxidizers in semi-arid and arid soils: Indications for a differential seasonal effect on archaeal and bacterial ammonia oxidizers. FEMS Microbiol. Ecol 86, 544–556 (2013).CAS 
    PubMed 

    Google Scholar 
    Stopnišek, N. et al. Thaumarchaeal ammonia oxidation in an acidic forest peat soil is not influenced by ammonium amendment. Appl. Environ. Microbiol. 76, 7626–7634 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Habteselassie, M. Y., Xu, L. & Norton, J. M. Ammonia-oxidizer communities in an agricultural soil treated with contrasting nitrogen sources. Front. Microbiol. 4, 326 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, C. et al. Climate change amplifies gross nitrogen turnover in montane grasslands of Central Europe in both summer and winter seasons. Glob. Change Biol. 22, 2963–2978 (2016).
    Google Scholar 
    Wessén, E., Nyberg, K., Jansson, J. K. & Hallin, S. Responses of bacterial and archaeal ammonia oxidizers to soil organic and fertilizer amendments under long-term management. Appl. Soil Ecol. 45, 193–200 (2010).
    Google Scholar 
    Kong, A. Y. Y., Hristova, K., Scow, K. M. & Six, J. Impacts of different N management regimes on nitrifier and denitrifier communities and N cycling in soil microenvironments. Soil Biol. Biochem. 42, 1523–1533 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Harrison, P. & Pearce, F. AAAS Atlas of Population & Environment 204 (University of California Press, 2000).
    Google Scholar 
    Reynolds, J. F., Maestre, F. T., Kemp, P. R., Smith, D. M. S. & Lambin, E. F. Natural and human dimensions of land degradation in drylands: Causes and consequences. In Terrestrial Ecosystems in a Changing World Global Change—The IGBP Series (eds Canadell, J. G. et al.) 247–258 (Springer, 2007).
    Google Scholar 
    McArthur, W. M. Reference Soils of South-Western Australia 2nd edn. (Department of Agriculture, 2004).
    Google Scholar 
    Barton, L., Murphy, D. V. & Butterbach-Bahl, K. Influence of crop rotation and liming on greenhouse gas emissions from a semi-arid soil. Agric. Ecosyst. Environ. 167, 23–32 (2013).CAS 

    Google Scholar 
    Barton, L., Hoyle, F. C., Stefanova, K. T. & Murphy, D. V. Incorporating organic matter alters soil greenhouse gas emissions and increases grain yield in a semi-arid climate. Agric. Ecosyst. Environ. 231, 320–330 (2016).CAS 

    Google Scholar 
    Gubry-Rangin, C., Nicol, G. W. & Prosser, J. I. Archaea rather than bacteria control nitrification in two agricultural acidic soils. FEMS Microbiol. Ecol. 74, 566–574 (2010).CAS 
    PubMed 

    Google Scholar 
    Gleeson, D. B. et al. Response of ammonia oxidizing archaea and bacteria to changing water filled pore space. Soil Biol. Biochem. 42, 1888–1891 (2010).CAS 

    Google Scholar 
    O’Sullivan, C. A., Wakelin, S. A., Fillery, I. R. P. & Roper, M. M. Factors affecting ammonia-oxidising microorganisms and potential nitrification rates in southern Australian agricultural soils. Soil Res. 51, 240–252 (2013).
    Google Scholar 
    Zhang, L.-M., Hu, H.-W., Shen, J.-P. & He, J.-Z. Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils. ISME J. 6, 1032–1045 (2012).CAS 
    PubMed 

    Google Scholar 
    Wang, F. et al. Responses of soil ammonia-oxidizing bacteria and archaea to short-term warming and nitrogen input in a semi-arid grassland on the Loess Plateau. Eur. J. Soil Biol. 102, 103267 (2021).CAS 

    Google Scholar 
    Bolland, M. D. A. & Brennan, R. F. Phosphorus, copper and zinc requirements of no-till wheat crops and methods of collecting soil samples for soil testing. Aust. J. Exp. Agric. 46, 1051–1059 (2006).CAS 

    Google Scholar 
    Gilkes, B., Lee, S. & Singh, B. The imprinting of aridity upon a lateritic landscape: An illustration from southwestern Australia. C. R. Geosci. 335, 1207–1218 (2003).
    Google Scholar 
    Hoyle, F. C. & Murphy, D. V. Influence of organic residues and soil incorporation on temporal measures of microbial biomass and plant available nitrogen. Plant Soil 347, 53–64 (2011).CAS 

    Google Scholar 
    Noy-Meir, I. Desert ecosystems: Environment and producers. Annu. Rev. Ecol. Syst. 4, 25–51 (1973).
    Google Scholar 
    Petersen, D. G. et al. Abundance of microbial genes associated with nitrogen cycling as indices of biogeochemical process rates across a vegetation gradient in Alaska. Environ. Microbiol. 14, 993–1008 (2012).CAS 
    PubMed 

    Google Scholar 
    Fisk, L. M., Barton, L., Jones, D. L., Glanville, H. C. & Murphy, D. V. Root exudate carbon mitigates nitrogen loss in a semi-arid soil. Soil Biol. Biochem. 88, 380–389 (2015).CAS 

    Google Scholar 
    Murphy, D. V., Sparling, G. P., Fillery, I. R. P., McNeill, A. M. & Braunberger, P. Mineralisation of soil organic nitrogen and microbial respiration after simulated summer rainfall events in an agricultural soil. Aust. J. Soil Res. 36, 231–246 (1998).
    Google Scholar 
    Anderson, G. C., Fillery, I. R. P., Dunin, F. X., Dolling, P. J. & Asseng, S. Nitrogen and water flows under pasture–wheat and lupin–wheat rotations in deep sands in Western Australia 2. Drainage and nitrate leaching. Aust. J. Agric. Res. 49, 345–361 (1998).CAS 

    Google Scholar 
    Nicholls, N. Local and remote causes of the southern Australian autumn-winter rainfall decline, 1958–2007. Clim. Dyn. 34, 835–845 (2010).
    Google Scholar 
    Delworth, T. L. & Zeng, F. Regional rainfall decline in Australia attributed to anthropogenic greenhouse gases and ozone levels. Nat. Geosci. 7, 583 (2014).CAS 

    Google Scholar 
    Alexander, L. V. et al. Trends in Australia’s climate means and extremes: A global context. Aust. Meteorol. Mag. 56, 1–18 (2007).
    Google Scholar 
    Austin, A. T. et al. Water pulses and biogeochemical cycles in arid and semiarid ecosystems. Oecologia 141, 221–235 (2004).PubMed 

    Google Scholar 
    Isbell, R. F. The Australian Soil Classification 2nd edn. (CSIRO Publishing, 2002).
    Google Scholar 
    IUSS Working Group WRB. World Reference Base for Soil Resources 2006, First Update 2007 203 (FAO, 2007).
    Google Scholar 
    Brookes, P. C., Landman, A., Pruden, G. & Jenkinson, D. S. Chloroform fumigation and the release of soil nitrogen: A rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842 (1985).CAS 

    Google Scholar 
    Wu, J., Joergensen, R. G., Pommerening, B., Chaussod, R. & Brookes, P. C. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure. Soil Biol. Biochem. 22, 1167–1169 (1990).CAS 

    Google Scholar 
    Krom, M. D. Spectrophotometric determination of ammonia: A study of a modified Berthelot reaction using salicylate and dichloroisocyanurate. Analyst 105, 305–316 (1980).CAS 

    Google Scholar 
    Kamphake, L. J., Hannah, S. A. & Cohen, J. M. Automated analysis for nitrate by hydrazine reduction. Water Res. 1, 205–216 (1967).CAS 

    Google Scholar 
    Keeney, D. R. & Bremner, J. M. Comparison and evaluation of laboratory methods of obtaining an index of soil nitrogen availability. Agron. J. 58, 498–503 (1966).CAS 

    Google Scholar 
    Waring, S. A. & Bremner, J. M. Ammonium production in soil under waterlogged conditions as an index of nitrogen availability. Nature 201, 951–952 (1964).CAS 

    Google Scholar 
    Griffiths, R. I., Whiteley, A. S., O’Donnell, A. G. & Bailey, M. J. Rapid method for coextraction of DNA and RNA from natural environments for analysis of ribosomal DNA- and rRNA-based microbial community composition. Appl. Environ. Microbiol. 66, 5488–5491 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Francis, C. A., Roberts, K. J., Beman, J. M., Santoro, A. E. & Oakley, B. B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. U.S.A. 102, 14683–14688 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barton, L., Gleeson, D. B., Maccarone, L. D., Zúñiga, L. P. & Murphy, D. V. Is liming soil a strategy for mitigating nitrous oxide emissions from semi-arid soils? Soil Biol. Biochem. 62, 28–35 (2013).CAS 

    Google Scholar 
    Akaike, H. Likelihood of a model and information criteria. J. Econom. 16, 3–14 (1981).MATH 

    Google Scholar 
    Cresswell, H. P. & Hamilton, G. J. Bulk density and pore space relations. In Soil Physical Measurement and Interpretation for Land Evaluation (eds McKenzie, N. et al.) 35–58 (CSIRO Publishing, 2002).
    Google Scholar 
    Rayment, G. E. & Lyons, D. J. Soil Chemical Methods—Australasia 495 (CSIRO Publishing, 2011).
    Google Scholar  More

  • in

    Risk factors for antibiotic-resistant bacteria colonisation in children with chronic complex conditions

    Meropol, S. B., Haupt, A. A. & Debanne, S. M. Incidence and outcomes of infections caused by multidrug-resistant Enterobacteriaceae in Children, 2007–2015. J. Pediatr. Infect. Dis. Soc. 7, 36–45 (2018).Article 

    Google Scholar 
    Moxon, C. A. & Paulus, S. Beta-lactamases in Enterobacteriaceae infections in children. J. Infect. 72, S41–S49 (2016).PubMed 
    Article 

    Google Scholar 
    Morrissey, I. et al. A review of ten years of the study for monitoring antimicrobial resistance trends (SMART) from 2002 to 2011. Pharmaceuticals 6, 1335–1346 (2013).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Junnila, J. et al. Changing epidemiology of methicillin-resistant Staphylococcus aureus in a low endemicity area—new challenges for MRSA control. Eur. J. Clin. Microbiol. Infect. Dis. 39, 2299–2307 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Milstone, A. M. et al. Methicillin-resistant Staphylococcus aureus colonization and risk of subsequent infection in critically ill children: Importance of preventing nosocomial methicillin-resistant Staphylococcus aureus transmission. Clin. Infect. Dis. 53, 853–859 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lakhundi, S. & Zhang, K. Methicillin-resistant Staphylococcus aureus: Molecular characterization, evolution, and epidemiology. Clin. Microbiol. Rev. 31, e00020-18 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schlesinger, Y. et al. Methicillin-resistant nasal colonization in children in Jerusalem: Community vs. chronic care institutions. Isr. Med. Assoc. J. 5, 847–851 (2003).PubMed 

    Google Scholar 
    Liang, B. et al. Active surveillance, drug resistance, and genotypic profiling of Staphylococcus aureus among school-age children in China. Front. Med. 8, 701494 (2021).Article 

    Google Scholar 
    Del Rosal, T. et al. Staphylococcus aureus nasal colonization in Spanish children. The COSACO Nationwide Surveillance Study. Infect. Drug Resist. 13, 4643–4651 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Feudtner, C., Feinstein, J. A., Zhong, W., Hall, M. & Dai, D. Pediatric complex chronic conditions classification system version 2: Updated for ICD-10 and complex medical technology dependence and transplantation. BMC Pediatr. 14, 199 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Climent Alcalá, F. J., García Fernández de Villalta, M., Escosa García, L., Rodríguez Alonso, A. & Albajara Velasco, L. A. Unidad de niños con patología crónica compleja. Un modelo necesario en nuestros hospitales. Anales de Pediatría 88, 12–18 (2018).PubMed 
    Article 

    Google Scholar 
    Gesualdo, F. et al. Methicillin-resistant Staphylococcus aureus nasal colonization in a department of pediatrics: A cross-sectional study. Ital. J. Pediatr. 40, 3 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yamamoto, M. et al. Effective surveillance to identify the surgical patients carrying methicillin-resistant Staphylococcus aureus on admission in a pediatric ward. Osaka City Med. J. 62, 1–9 (2016).PubMed 

    Google Scholar 
    Lukac, P. J., Bonomo, R. A. & Logan, L. K. Extended-spectrum-lactamase-producing Enterobacteriaceae in children: Old foe, emerging threat. Clin. Infect. Dis. https://doi.org/10.1093/cid/civ020 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fedler, K. A., Biedenbach, D. J. & Jones, R. N. Assessment of pathogen frequency and resistance patterns among pediatric patient isolates: Report from the 2004 SENTRY Antimicrobial Surveillance Program on 3 continents. Diagn. Microbiol. Infect. Dis. 56, 427–436 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Caselli, D. et al. Incidence of colonization and bloodstream infection with carbapenem-resistant Enterobacteriaceae in children receiving antineoplastic chemotherapy in Italy. Infect. Dis. 48, 152–155 (2016).Article 

    Google Scholar 
    Logan, L. K. et al. Multidrug- and Carbapenem-Resistant Pseudomonas aeruginosa in Children, United States, 1999–2012. JPIDSJ piw064 (2016) https://doi.org/10.1093/jpids/piw064.Flokas, M. E., Alevizakos, M., Shehadeh, F., Andreatos, N. & Mylonakis, E. Extended-spectrum β-lactamase-producing Enterobacteriaceae colonisation in long-term care facilities: A systematic review and meta-analysis. Int. J. Antimicrob. Agents 50, 649–656 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bharadwaj, R. et al. Drug-resistant Enterobacteriaceae colonization is associated with healthcare utilization and antimicrobial use among inpatients in Pune, India. BMC Infect. Dis. 18, 504 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Logan, L. K. Carbapenem-resistant Enterobacteriaceae: An emerging problem in children. Clin. Infect. Dis. 55, 852–859 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Badal, R. E. et al. Etiology, extended-spectrum β-lactamase rates and antimicrobial susceptibility of gram-negative bacilli causing intra-abdominal infections in patients in general pediatric and pediatric intensive care units—global data from the Study for Monitoring Antimicrobial Resistance Trends 2008 to 2010. Pediatr. Infect. Dis. J. 32, 636–640 (2013).PubMed 
    Article 

    Google Scholar 
    Wang, Q. et al. Risk factors and clinical outcomes for carbapenem-resistant Enterobacteriaceae nosocomial infections. Eur. J. Clin. Microbiol. Infect. Dis. 35, 1679–1689 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sahbudak Bal, Z. et al. The prospective evaluation of risk factors and clinical influence of carbapenem resistance in children with gram-negative bacteria infection. Am. J. Infect. Control 46, 147–153 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simon, T. D. et al. Pediatric medical complexity algorithm: A new method to stratify children by medical complexity. Pediatrics 133, e1647–e1654 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Román, F. et al. Characterization of methicillin-resistant Staphylococcus aureus strains colonizing the nostrils of Spanish children. MicrobiologyOpen 10, e1235 (2021).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    EUCAST. European committee on antimicrobial susceptibility testing breakpoint tables for interpretation of MICs and zone diameters. The European Committee on Antimicrobial Susceptibility Testing. (2018).Oteo, J. et al. Prospective multicenter study of carbapenemase-producing Enterobacteriaceae from 83 hospitals in Spain reveals high in vitro susceptibility to colistin and meropenem. Antimicrob. Agents Chemother. 59, 3406–3412 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Maseda, E. et al. Risk factors for colonization by carbapenemase-producing enterobacteria at admission to a Surgical ICU: A retrospective study. Enferm. Infecc. Microbiol. Clin. 35, 333–337 (2017).PubMed 
    Article 

    Google Scholar 
    Bassetti, M., Nicco, E. & Mikulska, M. Why is community-associated MRSA spreading across the world and how will it change clinical practice?. Int. J. Antimicrob. Agents 34, S15–S19 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    El Cheikh, M. R., Barbosa, J. M., Caixêta, J. A. S. & Avelino, M. A. G. Microbiology of tracheal secretions: What to expect with children and adolescents with tracheostomies. Int. Arch. Otorhinolaryngol. 22, 50–54 (2018).PubMed 
    Article 

    Google Scholar 
    González-Del Castillo, J. et al. BAHNG score: Predictive model for detection of subjects with the oropharynx colonized by uncommon microorganisms. Rev. Esp Quimioter. 30, 422–428 (2017).PubMed 

    Google Scholar 
    Hu, X. et al. Risk factors for methicillin-resistant Staphylococcus aureus colonization and infection in patients with human immunodeficiency virus infection: A systematic review and meta-analysis. J. Int. Med. Res. 50, 3000605211063019 (2022).CAS 
    PubMed 

    Google Scholar 
    Gleeson, A., Larkin, P., Walsh, C. & O’Sullivan, N. Methicillin-resistant Staphylococcus aureus: Prevalence, incidence, risk factors, and effects on survival of patients in a specialist palliative care unit: A prospective observational study. Palliat. Med. 30, 374–381 (2016).PubMed 
    Article 

    Google Scholar 
    Hogardt, M. et al. Current prevalence of multidrug-resistant organisms in long-term care facilities in the Rhine-Main district, Germany, 2013. Euro Surveill. 20, 21171 (2015).PubMed 
    Article 

    Google Scholar 
    Warren, D. K. et al. Epidemiology of methicillin-resistant Staphylococcus aureus colonization in a surgical intensive care unit. Infect. Control Hosp. Epidemiol. 27, 1032–1040 (2006).PubMed 
    Article 

    Google Scholar 
    Folgori, L. et al. Healthcare-associated infections in pediatric and neonatal intensive care units: Impact of underlying risk factors and antimicrobial resistance on 30-day case-fatality in Italy and Brazil. Infect. Control Hosp. Epidemiol. 37, 1302–1309 (2016).PubMed 
    Article 

    Google Scholar 
    Béranger, A. et al. Early bacterial infections after pediatric liver transplantation in the era of multidrug-resistant bacteria: Nine-year single-center retrospective experience. Pediatr. Infect. Dis. J. 39, e169–e175 (2020).PubMed 
    Article 

    Google Scholar 
    Bouras, D. et al. Staphylococcus aureus osteoarticular infections in children: An 8-year review of molecular microbiology, antibiotic resistance and clinical characteristics. J. Med. Microbiol. 67, 1753–1760 (2018).MathSciNet 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodriguez, M., Hogan, P. G., Krauss, M., Warren, D. K. & Fritz, S. A. Measurement and impact of Staphylococcus aureus colonization pressure in households. J. Pediatr. Infect. Dis. Soc. 2, 147–154 (2013).Article 

    Google Scholar 
    Messina, N. L., Williamson, D. A., Robins-Browne, R., Bryant, P. A. & Curtis, N. Risk factors for carriage of antibiotic-resistant bacteria in healthy children in the community: A systematic review. Pediatr. Infect. Dis. J. 39, 397–405 (2020).PubMed 
    Article 

    Google Scholar 
    Dualleh, N. et al. Colonization with multiresistant bacteria in acute hospital care: The association of prior antibiotic consumption as a risk factor. J. Antimicrob. Chemother. 75, 3675–3681 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Daskalaki, M. et al. Panton-Valentine leukocidin-positive Staphylococcus aureus skin and soft tissue infections among children in an emergency department in Madrid, Spain. Clin. Microbiol. Infect. 16, 74–77 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aguilera-Alonso, D., Escosa-García, L., Saavedra-Lozano, J., Cercenado, E. & Baquero-Artigao, F. Carbapenem-resistant gram-negative bacterial infections in children. Antimicrob. Agents Chemother. 64, e02183-e2219 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Phichaphop, C. et al. High prevalence of multidrug-resistant gram-negative bacterial infection following pediatric liver transplantation. Medicine 99, e23169 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tacconelli, E. et al. ESCMID guidelines for the management of the infection control measures to reduce transmission of multidrug-resistant Gram-negative bacteria in hospitalized patients. Clin. Microbiol. Infect. 20, 1–55 (2014).PubMed 
    Article 

    Google Scholar 
    McConville, T. H., Sullivan, S. B., Gomez-Simmonds, A., Whittier, S. & Uhlemann, A.-C. Carbapenem-resistant Enterobacteriaceae colonization (CRE) and subsequent risk of infection and 90-day mortality in critically ill patients, an observational study. PLoS ONE 12, e0186195 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tamma, P. D. et al. The likelihood of developing a carbapenem-resistant Enterobacteriaceae Infection during a hospital stay. Antimicrob. Agents Chemother. 63, e00757-e819 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Detsis, M., Karanika, S. & Mylonakis, E. ICU acquisition rate, risk factors, and clinical significance of digestive tract colonization with extended-spectrum beta-lactamase-producing Enterobacteriaceae: A systematic review and meta-analysis. Crit. Care Med. 45, 705–714 (2017).PubMed 
    Article 

    Google Scholar  More

  • in

    Molecular confirmation of the hybrid origin of Sparganium longifolium (Typhaceae)

    The haplotype networks, PCoA analysis and STRUCTURE analysis based on the six nuclear loci confirm that S. longifolium is a hybrid between S. emersum and S. gramineum, providing molecular support for previous morphological analyses5. Furthermore, all individuals with intermediate admixture coefficient (Fig. 2b) and private haplotypes only present in one out of six nuclear loci (Fig. 1) suggest that S. longifolium is most likely a F1 hybrid. We thus hypothesized that S. emersum and S. gramineum could likely maintain their species boundary through the post-zygote reproductive isolation mechanism of F1 generation sterility. This hypothesis is possible based on the observations from hybrids in European Russia. The pollen viability was checked in S. longifolium samples from Vysokovskoe Lake and Sabro Lake, and the vast majority of checked pollens were sterile5. In addition, flowering plants of S. longifolium often do not form seeds, or the seeds are puny and significantly inferior to normal seeds in size5. However, the hypothesis is only based on our limited sampling, which is contrary to the conclusion inferred from morphological characteristics that it is fertile and may backcross with parental species1. Further studies with extensive sampling are necessary to test our hypothesis.The chloroplast DNA fragment trnH-psbA was used to infer the direction of hybridization between S. emersum and S. gramineum because chloroplast DNA is maternal inheritance in Sparganium3,4. The hybrid S. longifolium shared haplotypes with S. emersum and S. gramineum simultaneously (Fig. 1). This finding clearly indicates that bidirectional hybridization exists between S. emersum and S. gramineum. At the same time, the different frequency of these two haplotypes in the hybrid (H1, 19.1% vs. H2, 80.9%) means that the direction of hybridization is asymmetric. A variety of factors can lead to asymmetry in natural hybridization, such as flowering time, preference of pollinators, quality and quantity of pollen, cross incompatibility and the abundance of parent species7,8. Rare species usually act as maternal species relative to abundant species9,10. S. gramineum is confined to oligotrophic lakes and its abundance is obviously lower than that of S. emersum1,11. The relatively scarcity combined with the ecology of S. gramineum make it more often act as maternal species when hybridizing with S. emersum.As described by5, the morphological diversification of S. longifolium was also observed in this study. For example, individuals of S. longifolium with emergent and floating-leaved life forms occur concurrently in Zaozer’ye Lake (Supplementary Fig. S2). However, all individuals had the same haplotype H2 as S. gramineum (Fig. 1), suggesting that the direction of hybridization do not determine life form of S. longifolium. In addition, all individuals of S. longifolium sampled here are likely F1 hybrid. Their variable phenotypes could not be associated with traits segregation due to F2 generation or backcross. Detailed ecological investigation combining with research at the genomic level are essential to find out the potential factors leading to morphological diversification of S. longifolium.Here, using sequences of six nuclear loci and one chloroplast DNA fragment, we confirmed that S. longifolium is the hybrid between S. emersum and S. gramineum. The natural hybridization between S. emersum and S. gramineum is bidirectional but the latter mainly acts as maternal species. We also found that all samples of S. longifolium were F1 generations, indicating that S. emersum and S. gramineum could maintain their species boundary through the post-zygote reproductive isolation mechanism of F1 generation sterility. More

  • in

    Invasions of an obligate asexual daphnid species support the nearly neutral theory

    Miyata, T., Miyazawa, S. & Yasunaga, T. Two types of amino acid substitutions in protein evolution. J. Mol. Evol. 12, 219–236 (1979).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, W.-H., Wu, C.-I. & Luo, C.-C. A new method for estimating synonymous and nonsynonymous rates of nucleotide substitution considering the relative likelihood of nucleotide and codon changes. Mol. Biol. Evol. 2, 150–174 (1985).PubMed 

    Google Scholar 
    Bielawski, J. P. & Yang, Z. Positive and negative selection in the DAZ gene family. Mol. Biol. Evol. 18, 523–529 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ohta, T. Slightly deleterious mutant substitutions in evolution. Nature 246, 96–98 (1973).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ohta, T. The nearly neutral theory of molecular evolution. Annu. Rev. Ecol. Evol. Syst. 23, 263–286 (1992).Article 

    Google Scholar 
    Johnson, K. P. & Seger, J. Elevated rates of nonsynonymous substitution in island birds. Mol. Biol. Evol. 18, 874–881 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Woolfit, M. & Bromham, L. Population size and molecular evolution on islands. Proc. Biol. Sci. 272, 2277–2282 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ross, L., Hardy, N. B., Okusu, A. & Normark, B. B. Large population size predicts the distribution of asexuality in scale insects. Evolution 67, 196–206 (2013).PubMed 
    Article 

    Google Scholar 
    Weber, C. C., Nabholz, B., Romiguier, J. & Ellegren, H. Kr/Kc but not dN/dS correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. Genome Biol. 15, 542 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Brandt, A. et al. Effective purifying selection in ancient asexual oribatid mites. Nat. Commun. 8, 873 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Figuet, E. et al. Life history traits, protein evolution, and the nearly neutral theory in amniotes. Mol. Biol. Evol. 33(6), 1517–1527 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Saclier, N. et al. Life history traits impact the nuclear rate of substitution but not the mitochondrial rate in isopods. Mol. Biol. Evol. 35, 2900–2912 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hebert, P. D. The Daphnia of North America: An Illustrated Fauna (on CD-ROM) (CyberNatural Software, Guelph, 1995).
    Google Scholar 
    Colbourne, J. K. et al. Phylogenetics and evolution of a circumarctic species complex (Cladocera: Daphnia pulex). Biol. J. Linn. Soc. 65, 347–365 (1998).
    Google Scholar 
    Crease, T. J., Omilian, A. R., Costanzo, K. S. & Taylor, D. J. Transcontinental phylogeography of the Daphnia pulex species complex. PLoS ONE 7, e46620 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mergeay, J., Verschuren, D. & De Meester, L. Cryptic invasion and dispersal of an American Daphnia in East Africa. Limnol. Oceanogr. 50, 1278–1283 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Ma, X. et al. Lineage diversity and reproductive modes of the Daphnia pulex group in Chinese lakes and reservoirs. Mol. Phylogenet. Evol. 130, 424–433 (2019).PubMed 
    Article 

    Google Scholar 
    So, M. et al. Invasion and molecular evolution of Daphnia pulex in Japan. Limnol. Oceanogr. 60, 1129–1138 (2015).ADS 
    Article 

    Google Scholar 
    Duggan, I. C. et al. Identifying invertebrate invasions using morphological and molecular analyses: North American Daphnia ‘pulex’ in New Zealand fresh waters. Aquat. Invasions 7, 585–590 (2012).Article 

    Google Scholar 
    Ye, Z. et al. The rapid, mass invasion of New Zealand by North American Daphnia “pulex”. Limnol. Oceanogr. 66, 2673–2683 (2021).ADS 
    Article 

    Google Scholar 
    Paland, S., Colbourne, J. K. & Lynch, M. Evolutionary history of contagious asexuality in Daphnia pulex. Evolution 59, 800–813 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 106, 2–9 (1964).CAS 
    PubMed 
    Article 

    Google Scholar 
    Felsenstein, J. The evolutionary advantage of recombination. Genetics 78, 737–756 (1974).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paland, S. & Lynch, M. Transitions to asexuality result in excess amino acid substitutions. Science 311, 990–992 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Johnson, S. G. & Howard, R. S. Contrasting patterns of synonymous and nonsynonymous sequence evolution in asexual and sexual freshwater snail lineages. Evolution 61, 2728–2735 (2007).PubMed 
    Article 

    Google Scholar 
    Neiman, M. et al. Accelerated mutation accumulation in asexual lineages of a freshwater snail. Mol. Biol. Evol. 27, 954–963 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Henry, L., Schwander, T. & Crespi, B. J. Deleterious mutation accumulation in asexual Timema stick insects. Mol. Biol. Evol. 29, 401–408 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tucker, A. E. et al. Population-genomic insights into the evolutionary origin and fate of obligately asexual Daphnia pulex. Proc. Natl. Acad. Sci. 110, 15740–15745 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Colbourne, J. K. et al. The ecoresponsive genome of Daphnia pulex. Science 331, 555–561 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ye, Z. et al. A new reference genome assembly for the microcrustacean Daphnia pulex. G3 (Bethesda) 7, 1405–1416 (2017).CAS 
    Article 

    Google Scholar 
    Keith, N. et al. High mutational rates of large-scale duplication and deletion in Daphnia pulex. Genome Res. 26, 60–69 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hall, D. J. An experimental approach to the dynamics of a natural population of Daphnia galeata mendotae. Ecology 45, 94–112 (1964).Article 

    Google Scholar 
    McCauley, E., Murdoch, W. W. & Nisbet, R. M. Growth, reproduction, and mortality of Daphnia pulex Leydig: Life at low food. Ecology 4, 505–514 (1990).
    Google Scholar 
    Xu, S. et al. High mutation rates in the mitochondrial genomes of Daphnia pulex. Mol. Biol. Evol. 29, 763–769 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zheng, Y., Peng, R., Kuro-o, M. & Zeng, X. Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: A case study of salamanders (Order Caudata). Mol. Biol. Evol. 28, 2521–2535 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zaret, T. M. Predation and Freshwater Communities (Yale University Press, New Haven, 1980).
    Google Scholar 
    Lynch, M. Predation, competition, and zooplankton community structure: An experimental study. Limnol. Oceanogr. 24, 253–272 (1979).ADS 
    Article 

    Google Scholar 
    Mills, E. L. & Forney, J. L. Impact on Daphnia pulex of predation by young yellow perch in Oneida Lake, New York. Trans. Am. Fish. Soc. 112(2A), 154–161 (1983).Article 

    Google Scholar 
    Craddock, D. R. Effects of increased water temperature on Daphnia pulex. Fish. Bull. 74, 403–408 (1976).
    Google Scholar 
    Maruoka, N. & Urabe, J. Inter and intraspecific competitive abilities and the distribution ranges of two Daphnia species in Eurasian continental islands. Popul. Ecol. 62, 353–363 (2020).Article 

    Google Scholar 
    Dodson, S. I. & Hanazato, T. Commentary on effects of anthropogenic and natural organic chemicals on development, swimming behavior, and reproduction of Daphnia, a key member of aquatic ecosystems. Environ. Health Perspect. 103(Suppl 4), 7–11 (1995).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Claska, M. E. & Gilbert, J. J. The effect of temperature on the response of Daphnia to toxic cyanobacteria. Freshw. Biol. 39, 221–232 (1998).Article 

    Google Scholar 
    Bast, J. et al. Consequences of asexuality in natural populations: Insights from stick insects. Mol. Biol. Evol. 35, 1668–1677 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hartfield, M. Evolutionary genetic consequences of facultative sex and outcrossing. J Evol Biol 29, 5–22 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hörandl, E. et al. Genome evolution of asexual organisms and the paradox of sex in eukaryotes. In Evolutionary Biology—A Transdisciplinary Approach (ed. Pontarotti, P.) (Springer, Cham, 2020). https://doi.org/10.1007/978-3-030-57246-4_7.Chapter 

    Google Scholar 
    Lynch, M., Bürger, R., Butcher, D. & Gabriel, W. The mutational meltdown in asexual populations. J. Hered. 84, 339–344 (1993).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gordo, I. & Charlesworth, B. The degeneration of asexual haploid populations and the speed of Muller’s ratchet. Genetics 154, 1379–1387 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Downing, J. A. et al. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol. Oceanogr. 51, 2388–2397 (2006).ADS 
    Article 

    Google Scholar 
    McDonald, C. P., Rover, J. A., Stets, E. G. & Striegl, R. G. The regional abundance and size distribution of lakes and reservoirs in the United States and implications for estimates of global lake extent. Limnol. Oceanogr. 57, 597–606 (2012).ADS 
    Article 

    Google Scholar 
    De Meester, L., Góme, A., Okamura, B. & Schwenk, K. The monopolization hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecol. 23, 121–135 (2002).ADS 
    Article 

    Google Scholar 
    Fukami, T., Bezemer, T. M., Mortimer, S. R. & Van Der Putten, W. H. Species divergence and trait convergence in experimental plant community assembly. Ecol. Lett. 8, 1283–1290 (2005).Article 

    Google Scholar 
    Makino, T. & Kawata, M. Invasive invertebrates associated with highly duplicated gene content. Mol. Ecol. 28, 1652–1663 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kondrashov, F. A. Gene duplication as a mechanism of genomic adaptation to a changing environment. Proc. R. Soc. Lond. B Biol. Sci. 279, 5048–5057 (2012).
    Google Scholar 
    Barrick, J. E. & Lenski, R. E. Genome dynamics during experimental evolution. Nat. Rev. Genet. 14, 827–839 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rocha, E. P. C. Neutral theory, microbial practice: Challenges in bacterial population genetics. Mol. Biol. Evol. 35, 1338–1347 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tanabe, A. S. Kakusan4 and Aminosan: Two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Mol. Ecol. Resour. 11, 914–921 (2011).PubMed 
    Article 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tian, X., Ohtsuki, H. & Urabe, J. Evolution of asexual Daphnia pulex in Japan: Variations and covariations of the digestive, morphological and life history traits. BMC Evol. Biol. 19, 122 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, Y. et al. SOAPnuke: A MapReduce acceleration-supported software for integrated quality control and preprocessing of high-throughput sequencing data. Gigascience 7, 1–6 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2019).Article 
    CAS 

    Google Scholar 
    Lee, T. H. et al. SNPhylo: A pipeline to construct a phylogenetic tree from huge SNP data. BMC Genomics 15, 162 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Core Team, R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2019). https://www.R-project.org/ More

  • in

    Food deprivation alters reproductive performance of biocontrol agent Hadronotus pennsylvanicus

    Wäckers, F. L. & van Rijn, P. C. J. Food for Protection: An Introduction. In Plant-Provided Food for Carnivorous Insects: A Protective Mutualism and its Applications (eds Wäckers, F. L. et al.) 1–14 (Cambridge University Press, 2005). https://doi.org/10.1017/CBO9780511542220.002.Chapter 

    Google Scholar 
    Benelli, G. et al. The impact of adult diet on parasitoid reproductive performance. J. Pest Sci. 90, 807–823. https://doi.org/10.1007/s10340-017-0835-2 (2017).Article 

    Google Scholar 
    Wäckers, F. Assessing the suitability of flowering herbs as parasitoid food sources: Flower attractiveness and nectar accessibility. Biol. Control. 29, 307–314. https://doi.org/10.1016/j.biocontrol.2003.08.005 (2004).Article 

    Google Scholar 
    Heimpel, G. E. & Jervis, M. A. Does Floral Nectar Improve Biological Control by Parasitoids? In Plant-Provided Food for Carnivorous Insects: A Protective Mutualism and its Applications (eds Wäckers, F. L. et al.) 267–304 (Cambridge University Press, 2009). https://doi.org/10.1017/CBO9780511542220.010.Chapter 

    Google Scholar 
    Wäckers, F. L. Suitability of (extra-)Floral Nectar, Pollen, and Honeydew as Insect Food Sources. In Plant-Provided Food for Carnivorous Insects: A Protective Mutualism and its Applications (eds Wäckers, F. L. et al.) 17–74 (Cambridge University Press, 2005). https://doi.org/10.1017/CBO9780511542220.003.Chapter 

    Google Scholar 
    Wäckers, F. L., van Rijn, P. C. & Heimpel, G. E. Honeydew as a food source for natural enemies: Making the best of a bad meal?. Biol. Control. 45, 176–184. https://doi.org/10.1016/j.biocontrol.2008.01.007 (2008).Article 

    Google Scholar 
    Jervis, M. A., Ellers, J. & Harvey, J. A. Resource acquisition, allocation, and utilization in parasitoid reproductive strategies. Annu. Rev. Entomol. 53, 361–385. https://doi.org/10.1146/annurev.ento.53.103106.093433 (2008).CAS 
    Article 

    Google Scholar 
    Rosenheim, J. A. An evolutionary argument for egg limitation. Evolution 50, 2089–2094 (1996).Article 

    Google Scholar 
    Rosenheim, J. A. The relative contributions of time and eggs to the cost of reproduction. Evolution 53, 376–385 (1999).Article 

    Google Scholar 
    Rosenheim, J. A., Jepsen, S. J., Matthews, C. E., Smith, D. S. & Rosenheim, M. R. Time limitation, egg limitation, the cost of oviposition, and lifetime reproduction by an insect in nature. Am. Nat. 172, 486–496 (2008).Article 

    Google Scholar 
    Rosenheim, J. A., Heimpel, G. E. & Mangel, M. Egg maturation, egg resorption and the costliness of transient egg limitation in insects. Proc. Royal Soc London. Ser. B Biol. Sci. 267, 1565–1573 (2000).CAS 
    Article 

    Google Scholar 
    Takasu, K. & Hirose, Y. Host searching behavior in the parasitoid Ooencyrtus nezarae Ishii (Hymenoptera: Encyrtidae) as influenced by non-host food deprivation. Appl. Entomol. Zool. 26, 415–417. https://doi.org/10.1303/aez.26.415 (1991).Article 

    Google Scholar 
    Sisterson, M. S. & Averill, A. L. Costs and benefits of food foraging for a braconid parasitoid. J. Insect Behav. 15, 571–588. https://doi.org/10.1023/A:1016389402543 (2002).Article 

    Google Scholar 
    Jacob, H. S. & Evans, E. W. Influence of food deprivation on foraging decisions of the parasitoid Bathyplectes curculionis (Hymenoptera: Ichneumonidae). Ann. Entomol. Soc. Am. 94, 605–611. https://doi.org/10.1603/0013-8746(2001)094[0605:iofdof]2.0.co;2 (2001).Article 

    Google Scholar 
    Siekmann, G., Keller, M. A. & Tenhumberg, B. The sweet tooth of adult parasitoid cotesia rubecula: Ignoring hosts for nectar?. J. Insect Behav. 17, 459–476. https://doi.org/10.1023/b:joir.0000042535.76279.c7 (2004).Article 

    Google Scholar 
    Williams, L., Deschodt, P., Pointurier, O. & Wyckhuys, K. A. Sugar concentration and timing of feeding affect feeding characteristics and survival of a parasitic wasp. J. Insect Physiol. 79, 10–18. https://doi.org/10.1016/j.jinsphys.2015.05.004 (2015).CAS 
    Article 

    Google Scholar 
    Talamas, E. J. et al. A maximalist approach to the systematics of a biological control agent: Gryon aetherium Talamas, sp. nov. (Hymenoptera, Scelionidae). J. Hymenopt. Res. 87, 323–480. https://doi.org/10.3897/jhr.87.72842 (2021).Article 

    Google Scholar 
    Straser, R. K., Daane, K. M., Talamas, E. & Wilson, H. Evaluation of egg parasitoid Hadronotus pennsylvanicus as a prospective biocontrol agent of the leaffooted bug Leptoglossus zonatus. Biocontrol https://doi.org/10.1007/s10526-022-10131-z (2022).Article 

    Google Scholar 
    Mitchell, P. L. & Mitchell, F. L. Parasitism and predation of leaffooted bug (Hemiptera: Heteroptera: Coreidae) eggs. Ann. Entomol. Soc. Am. 79, 854–860. https://doi.org/10.1093/aesa/79.6.854 (1986).Article 

    Google Scholar 
    Yasuda, K. Function of the male pheromone of the leaf-footed plant bug, Leptoglossus australis (Fabricius) (Heteroptera: Coreidae) and its kairomonal effect. Jpn. Agric. Res. Q. 32, 161 (1998).CAS 

    Google Scholar 
    Bates, S. L. & Borden, J. H. Parasitoids of Leptoglossus occidentalis Heidemann (Heteroptera: Coreidae) in British Columbia. J. Entomol. Soc. Br. Columbia 101, 143–144 (2004).
    Google Scholar 
    Maltese, M., Caleca, V., Guerrieri, E. & Strong, W. B. Parasitoids of Leptoglossus occidentalis Heidemann (Heteroptera: Coreidae) recovered in western North America and first record of its egg parasitoid Gryon pennsylvanicum (Ashmead) (Hymenoptera: Platygastridae) in California. The Pan-Pacific Entomol. 88, 347–355. https://doi.org/10.3956/2012-23.1 (2012).Article 

    Google Scholar 
    Roversi, P. F. et al. Pre-release risk assessment of the egg-parasitoid Gryon pennsylvanicum for classical biological control of Leptoglossus occidentalis. J. Appl. Entomol. 138, 27–35. https://doi.org/10.1111/jen.12062 (2013).Article 

    Google Scholar 
    Nechols, J. R., Tracy, J. L. & Vogt, E. A. Comparative ecological studies of indigenous egg parasitoids (Hymenoptera: Scelionidae: Encyrtidae) of the squash bug, Anasa tristis (Hemiptera: Coreidae). J. Kansas Entomol. Soc. 62, 177–188 (1989).
    Google Scholar 
    Cornelius, M. L., Buffington, M. L., Talamas, E. J. & Gates, M. W. Impact of the egg parasitoid, Gryon pennsylvanicum (Hymenoptera: Scelionidae), on sentinel and wild egg masses of the squash bug (Hemiptera: Coreidae) in Maryland. Environ. Entomol. 45, 367–375. https://doi.org/10.1093/ee/nvv228 (2016).Article 

    Google Scholar 
    Cornelius, M. L., Hu, J. S. & Vinyard, B. T. Comparative study of egg parasitism by Gryon pennsylvanicum (Hymenoptera: Scelionidae) on two squash bug species Anasa tristis and Anasa armigera (Hemiptera: Coreidae). Environ. Entomol. https://doi.org/10.1093/ee/nvy145 (2018).Article 

    Google Scholar 
    Daane, K. M. et al. Stink bugs and leaffooted bugs. Pistachio Prod. Man. Publ. 3545, 225–238 (2016).
    Google Scholar 
    Joyce, A. L., Higbee, B. S., Haviland, D. R. & Brailovsky, H. Genetic variability of two leaffooted bugs, Leptoglossus clypealis and Leptoglossus zonatus (Hemiptera: Coreidae) in the Central Valley of California. J. Econ. Entomol. 110, 2576–2589. https://doi.org/10.1093/jee/tox222 (2017).CAS 
    Article 

    Google Scholar 
    Zalom, F. G., Haviland, D. R., Symmes, E. T. & Tollerup, K. Almonds: Insects and Mites. University of California, Agriculture and Natural Resources, Oakland, CA, USA, University of California IPM Pest Management Guidelines, Publication 3431 ed. (2018).Michailides, T. J., Rice, R. E. & Ogawa, J. M. Succession and significance of several hemipterans attacking a pistachio orchard. J. Econ. Entomol. 80, 398–406. https://doi.org/10.1093/jee/80.2.398 (1987).Article 

    Google Scholar 
    Michailides, T. The ‘Achilles heel’of pistachio fruit. Calif. Agric. 43, 10–11 (1989).
    Google Scholar 
    Michailides, T. J. & Morgan, D. P. Association of botryosphaeria panicle and shoot blight of pistachio with injuries of fruit caused by hemiptera insects and birds. Plant Dis. 100, 1405–1413. https://doi.org/10.1094/pdis-09-15-1077-re (2016).Article 

    Google Scholar 
    Daane, K. et al. Large bugs damage pistachio nuts most severely during midseason. Calif. Agric. 59, 95–102 (2005).Article 

    Google Scholar 
    Haviland, D., Bentley, W., Beede, R. & Daane, K. Pistachios: Insects and mites. Univ. California IPM Pest Manag. Guidel. Publ. 3461 (2018).Joyce, A. L., Barman, A. K., Doll, D. & Higbee, B. S. Assessing feeding damage from two leaffooted bugs, Leptoglossus clypealis Heidemann and Leptoglossus zonatus (Dallas) (Hemiptera: Coreidae), on four almond varieties. Insects 10, 333. https://doi.org/10.3390/insects10100333 (2019).Article 

    Google Scholar 
    Stahl, J. M., Scaccini, D., Pozzebon, A. & Daane, K. M. Comparing the feeding damage of the invasive brown marmorated stink bug to a native stink bug and leaffooted bug on California pistachios. Insects 11, 688. https://doi.org/10.3390/insects11100688 (2020).Article 

    Google Scholar 
    Olson, D. L. & Nechols, J. R. Effects of squash leaf trichome exudates and honey on adult feeding, survival, and fecundity of the squash bug (Heteroptera: Coreidae) egg parasitoid Gryon pennsylvanicum (Hymenoptera: Scelionidae). Environ. Entomol. 24, 454–458. https://doi.org/10.1093/ee/24.2.454 (1995).Article 

    Google Scholar 
    Sabbatini Peverieri, G., Furlan, P., Simoni, S., Strong, W. & Roversi, P. Laboratory evaluation of Gryon pennsylvanicum (Ashmead) (Hymenoptera: Platygastridae) as a biological control agent of Leptoglossus occidentalis Heidemann (Heteroptera: Coreidae). Biol. Control. 61, 104–111. https://doi.org/10.1016/j.biocontrol.2012.01.005 (2012).Article 

    Google Scholar 
    Cornelius, M. L., Vinyard, B. T., Mowery, J. D. & Hu, J. S. Ovipositional behavior of the egg parasitoid Gryon pennsylvanicum (Hymenoptera: Scelionidae) on two squash bug species Anasa tristis (Hemiptera: Coreidae) and Anasa armigera: Effects of parasitoid density, nutrition, and host egg chorion on parasitism rates. Environ. Entomol. 49, 1307–1315. https://doi.org/10.1093/ee/nvaa118 (2020).CAS 
    Article 

    Google Scholar 
    Vogt, E. & Nechols, J. The influence of host deprivation and host source on the reproductive biology and longevity of the squash bug egg parasitoid Gryon pennsylvanicum (Ashmead) (Hymenoptera: Scelionidae). Biol. Control. 3, 148–154. https://doi.org/10.1006/bcon.1993.1022 (1993).Article 

    Google Scholar 
    Olson, D., Fadamiro, H., Lundgren, J. & Heimpel, G. E. Effects of sugar feeding on carbohydrate and lipid metabolism in a parasitoid wasp. Physiol. Entomol. 25, 17–26 (2000).CAS 
    Article 

    Google Scholar 
    Jervis, M. A., Heimpel, G. E., Ferns, P. N., Harvey, J. A. & Kidd, N. A. C. Life-history strategies in parasitoid wasps: A comparative analysis of “ovigeny”. J. Animal Ecol. 70, 442–458. https://doi.org/10.1046/j.1365-2656.2001.00507.x (2001).Article 

    Google Scholar 
    Jervis, M. A. & Ferns, P. N. The timing of egg maturation in insects: Ovigeny index and initial egg load as measures of fitness and of resource allocation. Oikos 107, 449–461 (2004).Article 

    Google Scholar 
    Lee, J. C. & Heimpel, G. E. Effect of floral nectar, water, and feeding frequency on cotesia glomerata longevity. Biocontrol 53, 289–294 (2008).Article 

    Google Scholar 
    Wu, H., Meng, L. & Li, B. Effects of feeding frequency and sugar concentrations on lifetime reproductive success of Meteorus pulchricornis (Hymenoptera: Braconidae). Biol. Control. 45, 353–359. https://doi.org/10.1016/j.biocontrol.2008.01.017 (2008).CAS 
    Article 

    Google Scholar 
    King, B. H. Offspring sex ratios in parasitoid wasps. Q. Rev. Biol. 62, 367–396. https://doi.org/10.1086/415618 (1987).Article 

    Google Scholar 
    Berndt, L. A. & Wratten, S. D. Effects of alyssum flowers on the longevity, fecundity, and sex ratio of the leafroller parasitoid Dolichogenidea tasmanica. Biol. Control. 32, 65–69. https://doi.org/10.1016/j.biocontrol.2004.07.014 (2005).Article 

    Google Scholar 
    Sabbatini Peverieri, G. et al. Host egg age of Leptoglossus occidentalis (Heteroptera: Coreidae) and parasitism by Gryon pennsylvanicum (Hymenoptera: Platygastridae). J. Econ. Entomol. 106, 633–640. https://doi.org/10.1603/ec12344 (2013).Article 

    Google Scholar 
    Abram, P. K., Brodeur, J., Urbaneja, A. & Tena, A. Nonreproductive effects of insect parasitoids on their hosts. Annu. Rev. Entomol. 64(1), 259–276 (2019).CAS 
    Article 

    Google Scholar 
    Lewis, W. & Takasu, K. Use of learned odours by a parasitic wasp in accordance with host and food needs. Nature 348, 635–636 (1990).ADS 
    Article 

    Google Scholar 
    Takasu, K. & Lewis, W. Importance of adult food sources to host searching of the larval parasitoid Microplitis croceipes. Biol. Control 5, 25–30 (1995).Article 

    Google Scholar 
    Wäckers, F. The effect of food deprivation on the innate visual and olfactory preferences in the parasitoid Cotesia rubecula. J. Insect Physiol. 40, 641–649 (1994).Article 

    Google Scholar 
    Lightle, D., Ambrosino, M. & Lee, J. C. Sugar in moderation: Sugar diets affect short-term parasitoid behaviour. Physiol. Entomol. 35, 179–185 (2010).CAS 
    Article 

    Google Scholar 
    Varennes, Y.-D., Gonzalez Chang, M., Boyer, S. & Wratten, S. Nectar feeding increases exploratory behaviour in the aphid parasitoid Diaeretiella rapae (Mcintosh). J. Appl. Entomol. 140, 479–483 (2016).Article 

    Google Scholar 
    Takano, S. & Takasu, K. Food deprivation increases reproductive effort in a parasitoid wasp. Biol. Control. 133, 75–80. https://doi.org/10.1016/j.biocontrol.2019.03.010 (2019).Article 

    Google Scholar 
    Landis, D. A., Wratten, S. D. & Gurr, G. M. Habitat management to conserve natural enemies of arthropod pests in agriculture. Annu. Rev. Entomol. 45(1), 175–201 (2000).CAS 
    Article 

    Google Scholar 
    Masner, L. A revision of gryon haliday in North America (Hymenoptera: Proctotrupoidea: Scelionidae). Can. Entomol. 115, 123–174. https://doi.org/10.4039/ent115123-2 (1983).Article 

    Google Scholar 
    Vogt, E. A. & Nechols, J. R. Diel activity patterns of the squash bug egg parasitoid Gryon pennsylvanicum (Hymenoptera: Scelionidae). Ann. Entomol. Soc. Am. 84, 303–308. https://doi.org/10.1093/aesa/84.3.303 (1991).Article 

    Google Scholar 
    Wiedemann, L. M., Canto-Silva, C. R., Romanowski, H. P. & Redaelli, L. R. Oviposition behavior of Gryon gallardoi (Hym.: Scelionidae) on eggs of Spartocera dentiventris (Hem.: Coreidae). Braz. J. Biol. 63, 133 (2003).CAS 
    Article 

    Google Scholar 
    Friard, O. & Gamba, M. BORIS: a free, versatile open-source event-logging software for video/audio coding and live observations. Methods Ecol. Evol. 7, 1325–1330. https://doi.org/10.1111/2041-210x.12584 (2016).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.r-project.org/ (2019).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    Article 

    Google Scholar  More

  • in

    Malayan kraits (Bungarus candidus) show affinity to anthropogenic structures in a human dominated landscape

    Study siteThe study area covers the campus of Suranaree University of Technology (SUT) and its surrounding landscape in Muang, Nakhon Ratchasima, Thailand (14.879° N, 102.018° E; Fig. 1). The university campus covers about 11.2 km2, and comprises a matrix of human modified lands interspersed with mixed deciduous forest fragments (at the onset of this study we identified there were 37 mixed deciduous forest fragments on campus, mean = 7.36 ± 1.48 ha, range = 0.45–45.6 ha [note, “±” is used for standard error throughout the text]). More than 15,000 students are enrolled at SUT, and there are numerous multi-story classrooms, laboratory and workshop buildings, residential housing, parking areas, eating and sports facilities, an elementary school, and a large hospital on the university campus. During the first term of the 2019 school year, 7622 students, as well as numerous SUT staff, lived in on-campus residential areas. The landscape surrounding the university is primarily dominated by agriculture, though there are also patches of less-disturbed areas as well as several densely populated villages and suburban housing divisions among the monoculture plots of upland crops (e.g., cassava, maize, and eucalyptus).Figure 1Study site map illustrating the land-use types spanning the area where the Malayan kraits (Bungarus candidus) were tracked in Muang Nakhon Ratchasima, Nakhon Ratchasima province, Thailand. Map created using QGIS v.3.8.2 (https://qgis.org/) in combination with Inkscape v.1.1.0 (https://inkscape.org/).Full size imageThe study site is located within the Korat Plateau region with an altitude range of 205–285 m above sea level. Northeast Thailand has a tropical climate, and the average daily temperature from 1 January 2018 to 31 December 2020 in Muang Nakhon Ratchasima was 28.29 °C, with daily averages ranging from 19.3 to 34.1 °C38. The region receives an average annual rainfall ranging from 1270 to 2000 mm39. There are three distinct seasons in northeast Thailand: cold, wet, and hot, each are classified by annual changes in temperature and rainfall. Cold season is typically between mid-October and mid-February, hot season is generally from mid-February to May, while the highly unpredictable rainfall of the wet season is predominantly concentrated between the months May to October39,40.Due to the representation of agriculture, semi-urban, and suburban areas with patches of more natural areas all within a relatively small area, we determined the university campus provided an ideal setting to examine how land-use features and human activity influence the movements of B. candidus. Additionally, past studies have indicated northeast Thailand hosts the most bites by B. candidus in Thailand29,33, making sites like ours ideal.Study animalsWe opportunistically sampled Malayan kraits captured as a result of notifications from locals and ad-hoc encounters during transit due to low detectability in visual encounter surveys, in addition to those discovered through unstandardized visual encounter surveys. Upon capture, we collected morphometric data, including snout-vent length (SVL), tail length (TL), mass, and sex (Table 1, Supp. Table 1). We measured body lengths with a tape measure, measured body mass with a digital scale, and determined sex via cloacal probing, all while the snakes were anesthetized via inhaling vaporized isoflurane. We then housed individuals with an SVL > 645 mm and mass > 50 g in plastic boxes (with refugia and water) prior to surgical transmitter implantation by a veterinarian from the Nakhon Ratchasima Zoo. We attempted to minimize the time snakes were in captivity awaiting implantation; however, delays arose due to the veterinarian’s availability, the snake being mid-ecdysis, or the snake having a bolus that needed to pass through the digestive tract before implantation (n = 21 implantations, mean = 5.02 ± 0.61 days, range = 0.60–13.02 days). The Nakhon Ratchasima Zoo veterinarian implanted radio transmitters (1.8 g BD-2 or 3.6 g SB-2 Holohil Inc, Carp, Canada) into the coelomic cavity using procedures described by Reinert and Cundall41, while the snake was anesthetized. We assigned each individual an ID according to sex and individual detection number (e.g., M02 = a male was the second B. candidus individual documented during the study). We released the implanted individuals as close as possible to their capture locations (mean = 65.31 m ± 13.7 m, range = 0–226.42 m), though on six occasions we moved individuals ≥ 100 m because the individual came from either residential areas or a busy road (all but one were moved  800 mm; thus, nine of the males were adults and four were juveniles (though two of the males had an SVL > 720 mm, and therefore likely sub-adults). The single telemetered female was an adult.Individual tracking durations varied (mean = 106.46 ± 15.36 days, range = 28.5–222.77 days; Supp. Fig. 1), as many individuals were lost due to unexpected premature transmitter failures (n = 5) or unsuccessful recapture efforts due to individuals sheltering under large buildings as the transmitter reached the end of its battery life (n = 4). We only recorded one confirmed mortality in the study, M01, who was killed by a motorized vehicle when crossing a road (n = 1). Another three individuals were lost due to unknown reasons, which may have been due to premature transmitter failure, mortality, or the animal moving beyond radio signal despite extensive search efforts. Thus, we only successfully recaptured and re-implanted five individuals (M01 once, M02 twice, M07 once, M27 once, and M33 twice). Transmitter batteries generally lasted approximately 90–110 days, so we aimed to replace transmitters after ≥ 90 days of use. At the end of the study, only one individual was successfully recaptured to remove the transmitter.Data collectionWe used very high frequency radio-telemetry to locate each telemetered individual on average every 24.20 h (SE ± 0.41, 0.17–410.0 h; see Supp. Fig. 2 for distribution of tracking time lags). We aimed to locate each individual’s shelter locations once each day during the daylight (06:00–18:00 h); however, we were occasionally (n = 34 days) unable to locate a snake for several consecutive days when we were unable to obtain radio signal due to an individual having moved far away or deep underneath a large structure. There were also a few occasions where we were unable to track snakes due to prolonged and heavy rainfall (n = 4 days), as the moisture damages equipment, or other reasons (n = 4 days). We additionally located snakes nocturnally (18:00–06:00 h) ad hoc and in an attempt to observe nocturnal behaviors and movement pathways when animals were active. We defined fixes as any time a telemetered individual was located, and relocations (i.e., moves) as the occasions where we located an individual > 5 m from its previous known location.Each day we manually honed in on signal via a radio receiver to locate individuals (as described by Amelon et al.42, and recorded locations in Universal Transverse Mercator (UTM; 47 N World Geodetic System 84) coordinate reference system with a handheld global positioning system (GPS) unit (Garmin 64S GPS, Garmin International, Inc., Olathe, Kansas) directly above the sheltered snake. We generally approached within one meter of sheltering snakes during daylight to precisely record shelter locations and identify shelter type. Since we could not visually confirm snake locations, we methodically eliminated all possible locations where the snake could possibly be while at close range with the minimum possible gain on the radio receiver.Telemetered kraits tended to be inactive and sheltering underground during the daylight, thus we were confident that our diurnal location checks would not affect their movements. However, in some cases we resorted to determining an individual’s location via triangulation, where multiple lines cast from different vantage points towards the snake intersect on the snake’s location on the GPS, allowing us to determine the animal’s coordinate location from approximately 10–30 m away. This helped ensure that we recorded locations with greater accuracy when snakes sheltered underneath large buildings, as it allowed us to move away from large structures that hindered the GPS accuracy. This technique was also implemented during some nocturnal location checks when a snake was believed to be active among dense vegetation, in an attempt to prevent disturbance of the animals’ natural behavior. While we did hope to gain visual observations of active individuals during the night, we exercised more caution during nocturnal location checks, typically maintaining a minimum distance of approximately 5 m in attempt to lessen the chances of disturbing an active individual’s behavior. If the animal was active we recorded the animal’s observed behavioral state (i.e., moving, feeding, or foraging). When the radio signal was stable and the individual was not visible, we recorded the animal’s behavior as “sheltering”. We strived for an accuracy of  5 m difference), and land-use type (e.g., mixed deciduous forest, human-settlement, semi-natural area, agriculture, plantation; see Supp. Figs. 3 and 4 for photos of land-use types), behavior (e.g., sheltering, moving, foraging, or feeding), and shelter type (e.g., anthropogenic, burrow, or unknown, note we also recorded if we suspected the shelter to be part of a termite tunnel complex due to a close proximity to a visible termite mound; Supp. Fig. 5).During each location check we recorded the straight-line distance between the current and previous locations (distance moved/step length) with the GPS device. We then used step-lengths to summarize their movements by estimating the mean daily displacement (MDD; the total distance moved divided by the number of days the snake was located) and mean movement distance (MMD; the mean relocation distance, excludes distances ≤ 5). In order to limit biases due to some snakes being located multiple times within a given day/night, we limited our sample for estimating MMD and MDD to only include a single location per day. This was accomplished by manually removing “extra” nocturnal location checks that occurred within the same day, making sure to have all shelter relocations present within the dataset. When calculating MDD, we used the total number of daily location checks rather than the number of days between the individual’s tracking start and stop date since there were some days where individuals were not tracked. We also used the same one location check per day dataset to calculate movement/relocation probabilities and to examine each individual’s MMD, MDD, and relocation probability for the overall tracking duration as well as for each season.When feasible, we positioned a Bushnell (Bushnell Corporation, Overland Park, Kansas) time lapse field camera (Trophy Cam HD Essential E3, Model:119837) with infrared night capability on a tripod spaced 2–5 m from occupied shelter sites. We positioned the cameras so that we may gather photos of the focal snake as it exited the shelter site and/or behaviors exhibited near the shelter. We programmed the cameras using a combined setting, including field scan, which continuously captured one photo every minute, along with a motion sensor setting, which took photos upon movement trigger outside of the regular 1-min intervals.Space use and site fidelityAll analyses and most visualizations were done in R v.4.0.5 using RStudio v.1.4.1106 43,44. We attempted to estimate home ranges for the telemetered B. candidus individuals using autocorrelated kernel density estimates (AKDEs) using R package ctmm v.0.6.045,46 in order to better understand the spatial requirements of B. candidus. However, examination of the variograms revealed that the majority of the variograms had not fully stabilized (i.e., limited evidence of range stability in our sample), and many individuals had extremely low effective sample sizes (21.82 ± 9.75, range = 1.49–135.75; Supp. Table 4). Therefore, we do not report home ranges in this text, as the AKDE estimates would violate the assumption of range residency and either underestimate or misrepresent B. candidus spatial requirements. We also examined the speed estimates resulting from fitted movement models. Resulting variograms and tentative home range estimates are included in a supplementary file for viewing only (Supp. Fig. 6, Supp. Table 4). The original code is from Montaño et al.47.Since our data was not sufficient to estimate home range size for the telemetered B. candidus, we instead used Dynamic Brownian Bridge Movement Models (dBBMMs) with the R package move v.4.0.648 to estimate within study occurrence distributions. We caution readers that these are not home range estimates but instead modeling the potential movement pathways animals could have traversed49. Use of dBBMMs not only allows us to estimate occurrence distributions for each individual, thus helping us better understand the animal’s movement pathways and resource use, but it also allows us to examine movement patterns through dBBMM derived motion variance50,51. We selected a window size of 19 and margin size of 5, to catch short resting periods with the margin, while the window size of 19 is long enough to get a valid estimate of motion variance when the animals exhibit activity/movement. Contours however are somewhat arbitrary; therefore, we used three different contours levels (90%, 95%, 99%) to estimate dBBMM occurrence distributions (using R packages adehabitatHR v.0.4.19, and rgeos v.0.5.5), and show the sensitivity to contour choice52,53.All movement data, either including initial capture locations or beginning with the first location check ~ 24 h post release, was used for production of both the AKDEs and dBBMMs for each individual. We also estimated dBBMM occurrence distributions for each telemetered individual with the exception of M29, which only made three small moves within a burrow complex during the short time he was radio-tracked before transmitter failure.We compared space use estimates to two previously published B. candidus tracking datasets34,36, and one unpublished dataset shared on the Zenodo data repository54, all originating from the Sakaerat Biosphere Reserve (approximately 41 km to the south of our study site): two adult males from within the forested area of the reserve [one tracked every 27.8 ± 0.99 h over a period of 103 days, the other tracked every 38.63 ± 11.2 h over a period of 30.58 days]34,54, and a juvenile male from agriculture on a forest boundary [tracked every 50.19 ± h for 66.91 days]36. The previous studies on B. candidus only tracked the movements of a single individual each, had coarser tracking regimes, and used traditional—fundamentally flawed methods55,56—to estimate space use34,36. Therefore, we ran dBBMMs with these previous datasets using the same window (19) and margin size (5).To quantify site reuse and time spent at sites (residency time) we used recursive analysis with the R package recurse v.1.1.257. We defined each site as a circular area with a radius of 5 m around each unique location (matching the targeted GPS accuracy). Then we calculated each individual’s overall number of relocations, each individual’s total number of relocations to each site, and each individual’s site revisit frequency and residency time at each unique site. Then we plotted revisited locations on a land-use map with space use estimates (95% and 99% dBBMM) in an attempt to help identify and highlight activity centers for telemetered individuals (see Supp. Figs. 7–13). All maps were created using Quantum Geographic Information System (QGIS v.3.8.2).Habitat selectionWe used Integrated Step Selection Function models (ISSF) to examine the influence of land-use features on the movements of B. candidus at both the individual and population levels. We included movement data from all male individuals that used more than one habitat feature in our ISSF analysis. Therefore, we excluded F16 and M29 who both only used settlement habitat. Excluding M29 was justified by the individual having been tracked for the shortest duration (19 days) and had the fewest number of moves (n = 3), thus there were not enough relocations for ISSF models to work effectively. Using modified code from Smith et al.51 that used ISSF with Burmese python radio-telemetry data, we used the package amt v.0.1.458 to run ISSF for each individual, with Euclidean distance to particular land-use features (natural areas, agriculture, settlement, buildings, and roads) to determine association or avoidance of features. Cameron Hodges created all land-use shape files in QGIS by digitizing features from satellite imagery and verified all questionable satellite land-use types via on-ground investigation.The semi-natural areas, plantations, mixed deciduous forest and water bodies (such as irrigation canals and ponds which have densely vegetated edges) were all combined into a single layer of less-disturbed habitats which we refer to as “natural areas”. All feature raster layers were then converted into layers with a gradient of continuous values of Euclidean distances to the land-use features, and were inverted in order to avoid zero-inflation of distance to feature values and to make the resulting model directional effects easier to more intuitive. We were able to generate 200 random steps per each observed step (following Smith et al.51), due to the coarse temporal resolution of manually collected radio-telemetry data (i.e., we were not computational limited when deciding the number of random locations). Higher numbers of random steps are preferable as they can aid in detecting smaller effects and rarer landscape features59.To investigate individual selection, we created nine different models testing for association to habitat features, with one being a null model which solely incorporated step-length and turning angle to predict movement60, five examining land-use features individually (agriculture, buildings, settlement, natural areas, roads), and the other three being multi-factor models. Each model considers distance to a land-use variable, step-length, and turn-angle as an aspect of the model. After running each of the nine models for each individual, we then examined the AIC for each model, point estimates (with lower and upper confidence intervals), and p-values in order to identify the best models for each individual and determine the strongest relationships and trends among the samples. We considered models with ∆ AIC  More

  • in

    Name that animal: my DNA detector

    In this picture, taken in February at Copenhagen Zoo, I’m holding a vacuum device equipped with a tiny fan and filter. The devices — we call them air samplers — are designed to collect DNA samples from the air. We deployed three samplers at the zoo: one in a stable with two okapi (Okapia johnstoni) and two duikers, one in a rainforest house and one outside, near an exhibit of animals that live in the African savannah.At best, we had hoped to detect nearby animals in small enclosures — an okapi in the stable, for instance. But as we reported in Current Biology, the devices outperformed our expectations (C. Lynggaard Curr. Biol. 32, 701–707; 2022). They picked up identifiable DNA from 49 vertebrates, including guppies in the rainforest pool, ostriches and giraffes in the savannah area, and even cats and dogs in the park next door. Interestingly, we didn’t get any signal from turtles in the rainforest house. Maybe turtles mostly keep their DNA to themselves.Our analysis ultimately found that the sampler could detect animals from nearly 200 metres away. The giraffe in the picture is standing much closer than is necessary for collection of a sample.Airborne DNA is all around us. Birds release skin cells when they flap their wings. Saliva from all sorts of animals can become airborne. Animals release DNA when they defecate. In November 2021, I received a grant to start a research group whose goal is to collect airborne DNA in nature. This approach could transform conservation biology and species monitoring. We could detect rare animals and get a better understanding of diversity without disturbing an environment.We have so many lines of inquiry in this work. The location of the samplers, the rates of air flow, the time, the best methods for sorting DNA from the sample — we’re still trying to work all of these out. We hadn’t expected that the zoo experiment would ever work, so we’re scrambling to plan the next steps. It’s an exciting time. More