More stories

  • in

    Urban-adapted mammal species have more known pathogens

    Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carlson, C. J. et al. Climate change will drive novel cross-species viral transmission. Preprint at bioRxiv https://doi.org/10.1101/2020.01.24.918755 (2020).Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature https://doi.org/10.1038/s41586-020-2562-8 (2020).Loh, E. H. et al. Targeting transmission pathways for emerging zoonotic disease surveillance and control. Vector Borne Zoonotic Dis. 15, 432–437 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 32, 55–67 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cohen, J. M., Sauer, E. L., Santiago, O., Spencer, S. & Rohr, J. R. Divergent impacts of warming weather on wildlife disease risk across climates. Science 370, eabb1702 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murray, M. H. et al. City sicker? A meta-analysis of wildlife health and urbanization. Front. Ecol. Environ. 17, 575–583 (2019).Article 

    Google Scholar 
    Becker, D. J., Hall, R. J., Forbes, K. M., Plowright, R. K. & Altizer, S. Anthropogenic resource subsidies and host–parasite dynamics in wildlife. Phil. Trans. R. Soc. B 373, 20170086 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Werner, C. S. & Nunn, C. L. Effect of urban habitat use on parasitism in mammals: a meta-analysis. Proc. Biol. Sci. 287, 20200397 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Becker, D. J., Streicker, D. G. & Altizer, S. Linking anthropogenic resources to wildlife–pathogen dynamics: a review and meta-analysis. Ecol. Lett. 18, 483–495 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becker, D. J. et al. Macroimmunology: the drivers and consequences of spatial patterns in wildlife immune defense. J. Anim. Ecol. 89, 972–995 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albery, G. F. & Becker, D. J. Fast-lived hosts and zoonotic risk. Trends Parasitol. https://doi.org/10.1016/j.pt.2020.10.012 (2021).Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, G. et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 11, 537 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, J. & O’Neill, B. C. Mapping global urban land for the twenty-first century with data-driven simulations and shared socioeconomic pathways. Nat. Commun. 11, 2302 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Santini, L. et al. One strategy does not fit all: determinants of urban adaptation in mammals. Ecol. Lett. 22, 365–376 (2019).PubMed 
    Article 

    Google Scholar 
    Ostfeld, R. S. et al. Life history and demographic drivers of reservoir competence for three tick-borne zoonotic pathogens. PLoS ONE 9, e107387 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gutiérrez, J. S., Piersma, T. & Thieltges, D. W. Micro- and macroparasite species richness in birds: the role of host life history and ecology. J. Anim. Ecol. 88, 1226–1239 (2019).PubMed 
    Article 

    Google Scholar 
    Teitelbaum, C. S. et al. A comparison of diversity estimators applied to a database of host–parasite associations. Ecography 43, 1316–1328 (2019).Article 

    Google Scholar 
    Jorge, F. & Poulin, R. Poor geographical match between the distributions of host diversity and parasite discovery effort. Proc. R. Soc. B 285, 20180072 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gibb, R. et al. Mammal virus diversity estimates are unstable due to accelerating discovery effort. Biol. Lett. https://doi.org/10.1098/rsbl.2021.0427 (2022).Hughes, A. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).Article 

    Google Scholar 
    Estes, L. et al. The spatial and temporal domains of modern ecology. Nat. Ecol. Evol. 2, 819–826 (2018).PubMed 
    Article 

    Google Scholar 
    Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS ONE 12, e0189577 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lloyd-Smith, J. O. et al. Should we expect population thresholds for wildlife disease? Trends Ecol. Evol. 20, 511–519 (2005).PubMed 
    Article 

    Google Scholar 
    Cummings, C. R. et al. Foraging in urban environments increases bactericidal capacity in plasma and decreases corticosterone concentrations in white ibises. Front. Ecol. Evol. 8, 575980 (2020).Article 

    Google Scholar 
    Hwang, J. et al. Anthropogenic food provisioning and immune phenotype: association among supplemental food, body condition, and immunological parameters in urban environments. Ecol. Evol. 8, 3037–3046 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strandin, T., Babayan, S. A. & Forbes, K. M. Reviewing the effects of food provisioning on wildlife immunity. Phil. Trans. R. Soc. B 373, 20170088 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Downs, C. J., Dochtermann, N. A., Ball, R., Klasing, K. C. & Martin, L. B. The effects of body mass on immune cell concentrations of mammals. Am. Nat. 195, 107–114 (2020).PubMed 
    Article 

    Google Scholar 
    Downs, C. J. et al. Extreme hyperallometry of mammalian antibacterial defenses. Preprint at bioRxiv https://doi.org/10.1101/2020.09.04.242107 (2020).Becker, D. J., Seifert, S. N. & Carlson, C. J. Beyond infection: integrating competence into reservoir host prediction. Trends Ecol. Evol. 35, 1062–1065 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hanson, D. A., Britten, H. B., Restani, M. & Washburn, L. R. High prevalence of Yersinia pestis in black-tailed prairie dog colonies during an apparent enzootic phase of sylvatic plague. Conserv. Genet. 8, 789–795 (2007).CAS 
    Article 

    Google Scholar 
    Gecchele, L. V., Pedersen, A. B. & Bell, M. Fine-scale variation within urban landscapes affects marking patterns and gastrointestinal parasite diversity in red foxes. Ecol. Evol. 10, 13796–13809 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albery, G. F., Sweeny, A. R., Becker, D. J. & Bansal, S. Fine-scale spatial patterns of wildlife disease are common and understudied. Funct. Ecol. https://doi.org/10.1111/1365-2435.13942 (2021).Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).Article 

    Google Scholar 
    Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).PubMed 
    Article 

    Google Scholar 
    Albery, G. F., Eskew, E. A., Ross, N. & Olival, K. J. Predicting the global mammalian viral sharing network using phylogeography. Nat. Commun. https://doi.org/10.1038/s41467-020-16153-4 (2020).IUCN Red List of Threatened Species Version 2019-2 (IUCN, 2019); https://www.iucnredlist.orgBecker, D. J. et al. Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. Lancet Microbe https://doi.org/10.1016/S2666-5247(21)00245-7 (2022).Mason, P. Parasites of deer in New Zealand. N. Zeal. J. Zool. 21, 39–47 (1994).Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    Plourde, B. T. et al. Are disease reservoirs special? Taxonomic and life history characteristics. PLoS ONE 12, e0180716 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gibb, R. et al. Data proliferation, reconciliation, and synthesis in viral ecology. Bioscience https://doi.org/10.1101/2021.01.14.426572 (2021).Stephens, P. R. et al. Global mammal parasite database version 2.0. Ecology 98, 1476 (2017).PubMed 
    Article 

    Google Scholar 
    Wardeh, M., Risley, C., Mcintyre, M. K., Setzkorn, C. & Baylis, M. Database of host–pathogen and related species interactions, and their global distribution. Sci. Data 2, 150049 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shaw, L. P. et al. The phylogenetic range of bacterial and viral pathogens of vertebrates. Mol. Ecol. 29, 3361–3379 (2020).PubMed 
    Article 

    Google Scholar 
    Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Res https://doi.org/10.12688/f1000research.2-191.v2 (2013).Carlson, C. J. et al. The Global Virome in One Network (VIRION): an atlas of vertebrate–virus associations. mBio 13, e0298521 (2022).Article 

    Google Scholar 
    Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 1–25 (2015).Article 

    Google Scholar 
    Lindgren, F., Rue, H. & Lindstrom, J. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc. B 73, 423–498 (2011).Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Winter, D. J. rentrez: an R package for the NCBI eUtils API. R J. 9, 520–526 (2017).Article 

    Google Scholar 
    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).PubMed 
    Article 

    Google Scholar 
    Carlson, C. J., Dallas, T. A., Alexander, L. W., Phelan, A. L. & Phillips, A. J. What would it take to describe the global diversity of parasites? Proc. R. Soc. B 287, 20201841 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Portfolio effects and functional redundancy contribute to the maintenance of octocoral forests on Caribbean reefs

    Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131. https://doi.org/10.1046/j.1461-0248.2001.00203.x (2001).Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).PubMed 
    Article 

    Google Scholar 
    Toth, L. T. et al. The unprecedented loss of Florida’s reef-building corals and the emergence of a novel coral-reef assemblage. Ecology 100, e02781. https://doi.org/10.1002/ecy.2781 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Green, D. H., Edmunds, P. J. & Carpenter, R. C. Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar. Ecol. Prog. Ser. 359, 1–10 (2008).ADS 
    Article 

    Google Scholar 
    Alvarez-Filip, L., Carricart-Ganivet, J. P., Horta-Puga, G. & Iglesias-Prieto, R. Shifts in coral-assemblage composition do not ensure persistence of reef functionality. Sci. Rep. 3, 3486. https://doi.org/10.1038/srep03486 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change 9, 40–43 (2019).ADS 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00158 (2017).Article 

    Google Scholar 
    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jackson, J., Donovan, M., Cramer, K. & Lam, V. Status and trends of Caribbean coral reefs. Global Coral Reef Monitoring Network, IUCN, Gland, Switzerland, 1970–2012 (2014).Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. Ecosystem-based management. Ecology 90, 1478–1484 (2009).PubMed 
    Article 

    Google Scholar 
    Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).PubMed 
    Article 

    Google Scholar 
    Bak, R. P. M., Lambrechts, D. Y. M., Joenje, M., Nieuwland, G. & Van Veghel, M. L. J. Long-term changes on coral reefs in booming populations of a competitive colonial ascidian. Mar. Ecol. Prog. Ser. 133, 303–306 (1996).ADS 
    Article 

    Google Scholar 
    Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: beyond coral–macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 295–306 (2009).ADS 
    Article 

    Google Scholar 
    Lenz, E. A., Bramanti, L., Lasker, H. R. & Edmunds, P. J. Long-term variation of octocoral populations in St. John, US Virgin Islands. Coral Reefs 34, 1099–1109 (2015).ADS 
    Article 

    Google Scholar 
    Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Ann. Rev. Mar Sci. 12, 315–337 (2020).PubMed 
    Article 

    Google Scholar 
    Lasker, H. R., Bramanti, L., Tsounis, G. & Edmunds, P. J. in Advances in Marine Biology Vol. 87 (ed. Riegl, B. M.) 361–410 (Academic Press, 2020).
    Google Scholar 
    Pearson, R. Recovery and recolonization of coral reefs. Mar. Ecol. Prog. Ser. 4, 105–122 (1981).ADS 
    Article 

    Google Scholar 
    Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).Article 

    Google Scholar 
    França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Philos. Trans. R. Soc. B 375, 20190116 (2020).Article 

    Google Scholar 
    Ruzicka, R. et al. Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar. Ecol. Prog. Ser. 489, 125–141 (2013).ADS 
    Article 

    Google Scholar 
    Sánchez, J. A. et al. in Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 729–747 (Springer International Publishing, 2019).Chapter 

    Google Scholar 
    Tsounis, G., Edmunds, P. J., Bramanti, L., Gambrel, B. & Lasker, H. R. Variability of size structure and species composition in Caribbean octocoral communities under contrasting environmental conditions. Mar. Biol. 165, 29. https://doi.org/10.1007/s00227-018-3286-2 (2018).Article 

    Google Scholar 
    Kinzie, R. A. III. The zonation of West Indian gorgonians. Bull. Mar. Sci. 23, 93–155 (1973).
    Google Scholar 
    Yoshioka, P. M. & Yoshioka, B. B. A comparison of the survivorship and growth of shallow-water gorgonian species of Puerto Rico. Mar. Ecol. Prog. Ser. 69, 253–260 (1991).ADS 
    Article 

    Google Scholar 
    De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 109, 17995–17999 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Newman, M. J., Paredes, G. A., Sala, E. & Jackson, J. B. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol. Lett. 9, 1216–1227 (2006).PubMed 
    Article 

    Google Scholar 
    Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 
    Lawton, J. H. & Brown, V. K. in Biodiversity and Ecosystem Function (eds Schulze, E. D. & Mooney, H. A.) 255–270 (Springer, 1994).Chapter 

    Google Scholar 
    Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96(5), 2333–2354 (2021).PubMed 
    Article 

    Google Scholar 
    Bellwood, D. R., Stret, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term ‘function’ in ecology: a coral reef perspective. Funct. Ecol. 33, 948–961 (2018).Article 

    Google Scholar 
    Caswell, H. Construction, analysis, and interpretation. Sunderland: Sinauer 585, 258–277 (2001).
    Google Scholar 
    Bayer, F. M. The shallow-water Octocorallia of the West Indian region. Stud. Fauna Curacao Caribb. Isl. 12, 1–373 (1961).
    Google Scholar 
    Rossi, S., Bramanti, L., Gori, A. & Orejas, C. An overview of the animal forests of the world. In Marine Animal Forest (ed. Rossi, S.) 1–25 (Springer, 2017).Chapter 

    Google Scholar 
    Sánchez, J. A. Diversity and evolution of octocoral animal forests at both sides of tropical america. in Marine Animal Forests (eds Rossi, S. et al.) (Springer, 2016).
    Google Scholar 
    Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013).PubMed 
    Article 

    Google Scholar 
    Schindler, D. E., Armstrong, J. B. & Reed, T. E. The portfolio concept in ecology and evolution. Front. Ecol. Environ. 13, 257–263 (2015).Article 

    Google Scholar 
    Biggs, C. R. et al. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere 11, e03184 (2020).Article 

    Google Scholar 
    Anderson, S. C., Moore, J. W., McClure, M. M., Dulvy, N. K. & Cooper, A. B. Portfolio conservation of metapopulations under climate change. Ecol. Appl. 25, 559–572 (2015).PubMed 
    Article 

    Google Scholar 
    Mellin, C., MacNeil, A. M., Cheal, A. J., Emslie, M. J. & Caley, J. M. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016).PubMed 
    Article 

    Google Scholar 
    Webster, N. et al. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci. rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    Tsounis, G. & Edmunds, P. J. Three decades of coral reef community dynamics in St. John, USVI: a contrast of scleractinians and octocorals. Ecosphere 8, e01646 (2017).Article 

    Google Scholar 
    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).Article 

    Google Scholar 
    Tsounis, G., Edmunds, P. J., Bramanti, L., Gambrel, B. & Lasker, H. R. Variability of size structure and species composition in Caribbean octocoral communities under contrasting environmental conditions. Mar. Biol. 165, 1–14 (2018).Article 

    Google Scholar 
    Browning, T. N. et al. Widespread deposition in a coastal bay following three major 2017 hurricanes (Irma, Jose, and Maria). Sci. Rep. 9, 1–13 (2019).CAS 
    Article 

    Google Scholar 
    Edmunds, P. J. Three decades of degradation lead to diminished impacts of severe hurricanes on Caribbean reefs. Ecology 100, e02587 (2019).PubMed 
    Article 

    Google Scholar 
    Clarke, K. & Warwick, R. Quantifying structural redundancy in ecological communities. Oecologia 113, 278–289 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Menge, B. A., Berlow, E. L., Blanchette, C. A., Navarrete, S. A. & Yamada, S. B. The keystone species concept: variation in interaction strength in a rocky intertidal habitat. Ecol. Monogr. 64, 249–286 (1994).Article 

    Google Scholar 
    Frost, T. M., Carpenter, S. R., Ives, A. R. & Kratz, T. K. in Linking Species & Ecosystems (eds Jones, C. G. & Lawton, J. H.) 224–239 (Springer, 1995).Chapter 

    Google Scholar 
    Lasker, H., Martínez-Quintana, Á., Bramanti, L. & Edmunds, P. J. Resilience of octocoral forests to catastrophic storms. Sci. Rep. 10, 1–8 (2020).Article 
    CAS 

    Google Scholar 
    Goffredo, S. & Lasker, H. R. Modular growth of a gorgonian coral can generate predictable patterns of colony growth. J. Exp. Mar. Biol. Ecol. 336, 221–229 (2006).Article 

    Google Scholar 
    Grigg, R. W. Growth rings: annual periodicity in two gorgonian corals. Ecology 55, 876–881 (1974).Article 

    Google Scholar 
    Grigg, R. W. Resource management of precious corals a review and application ton shallow water reef building corals. Mar. Ecol. 5, 57–74 (1984).ADS 
    Article 

    Google Scholar 
    Clarke, K. R. & Gorley, R. N. Primer v6: User Manual/Tutorial (PRIMER-E Ltd., 2006).
    Google Scholar 
    Schutte, V. G., Selig, E. R. & Bruno, J. F. Regional spatio-temporal trends in Caribbean coral reef benthic communities. Mar. Ecol. Prog. Ser. 402, 115–122 (2010).ADS 
    Article 

    Google Scholar 
    Edmunds, P. J. Decadal-scale changes in the community structure of coral reefs of St. John, US Virgin Islands. Mar. Ecol. Prog. Ser. 489, 107–123 (2013).ADS 
    Article 

    Google Scholar 
    Chollett, I., Mumby, P. J., Müller-Karger, F. E. & Hu, C. Physical environments of the Caribbean Sea. Limnol. Oceanogr. 57, 1233–1244 (2012).ADS 
    Article 

    Google Scholar 
    Fowell, S. E. et al. Historical trends in pH and carbonate biogeochemistry on the Belize Mesoamerican Barrier Reef System. Geophys. Res. Lett. 45, 3228–3237. https://doi.org/10.1002/2017GL076496 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Edmunds, P. J. & Lasker, H. R. Regulation of population size of arborescent octocorals on shallow Caribbean reefs. Mar. Ecol. Prog. Ser. 615, 1–14 (2019).ADS 
    Article 

    Google Scholar 
    Borgstein, N., Beltrán, D. M. & Prada, C. Variable growth across species and life stages in Caribbean reef octocorals. Front. Mar. Sci. 7, 483 (2020).Article 

    Google Scholar 
    Guizien, K. & Ghisalberti, M. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S. et al.) 1–22 (Springer International Publishing, 2015).
    Google Scholar 
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).PubMed 
    Article 

    Google Scholar 
    Simonson, W. D., Allen, H. D., Coomes, D. A. & Tatem, A. Applications of airborne lidar for the assessment of animal species diversity. Methods Ecol. Evol. 5, 719–729 (2014).Article 

    Google Scholar 
    Roscher, C. et al. Identifying population- and community-level mechanisms of diversity-stability relationships in experimental grasslands. J. Ecol. 99, 1460–1469 (2011).Article 

    Google Scholar 
    Yang, Z., Ruijven, V. J. & Du, G. The effects of long-term fertilization on the temporal stability of alpine meadow communities. Plant Soil 345, 315–324 (2011).CAS 
    Article 

    Google Scholar 
    Wilcox, K. R. et al. Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecol. Lett. 20, 1534–1545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosenfeld, J. S. Logical fallacies in the assessment of functional redundancy. Conserv. Biol. 16, 837–839 (2002).Article 

    Google Scholar 
    Loreau, M. Does functional redundancy exist?. Oikos 104, 606–611 (2004).Article 

    Google Scholar 
    Gambrel, B. & Lasker, H. R. Interactions in the canopy among Caribbean reef octocorals. Mar. Ecol. Prog. Ser. 546, 85–95 (2016).ADS 
    Article 

    Google Scholar 
    Zambrano, J. et al. Tree crown overlap improves predictions of the functional neighbourhood effects on tree survival and growth. J. Ecol. 107, 887–900 (2019).Article 

    Google Scholar 
    Pescador, et al. 2018 The shape is more important than we ever thought: Plant to plant interactions in a high mountain community. Methods Ecol. Evol. 10, 1584–1593 (2019).Article 

    Google Scholar 
    Cerpovicz, A. F. & Lasker, H. R. Canopy effects of octocoral communities on sedimentation: modern baffles on the shallow-water reefs of St. John, USVI. Coral Reefs 40, 295 (2021).Article 

    Google Scholar 
    Martinez-Quintana, Á. & Lasker, H. R. Early life-history dynamics of Caribbean octocorals: the critical role of larval supply and partial mortality. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.705563 (2021).Article 

    Google Scholar 
    Tsounis, G., Steele, M. A. & Edmunds, P. J. Elevated feeding rates of fishes within octocoral canopies on Caribbean reefs. Coral Reefs 39, 1299–1311 (2020).Article 

    Google Scholar 
    Girard, J. & Edmunds, P.J. Effects of arborescent octocoral assemblages on the understory benthic communities of shallow Caribbean reefs. J. Exp. Mar. Biol. Ecol. (in review).Privitera-Johnson, K., Lenz, E. A. & Edmunds, P. J. Density-associated recruitment in octocoral communities in St. John, US Virgin Islands. J. Exp. Mar. Biol. Ecol. 473, 103–109. https://doi.org/10.1016/j.jembe.2015.08.006 (2015).Article 

    Google Scholar 
    Slattery, M. & Lesser, M. P. Gorgonians are foundation species on sponge-dominated Mesophotic Coral Reefs in the Caribbean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.654268 (2021).Article 

    Google Scholar 
    Lasker, H. R. & Porto-Hannes, I. Population structure among octocoral adults and recruits identifies scale dependent patterns of population isolation in The Bahamas. PeerJ 3, e1019. https://doi.org/10.7717/peerj.1019 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark, D. A. & Clark, D. B. Getting to the canopy: tree height growth in a neotropical rain forest. Ecology 82, 1460–1472 (2001).Article 

    Google Scholar 
    Birkeland, C. Coral Reefs in the Anthropocene 1–15 (Springer, 2015).Book 

    Google Scholar 
    Petraitis, P. S. & Dudgeon, S. R. Cusps and butterflies: multiple stable states in marine systems as catastrophes. Mar. Freshw. Res. 67, 37–46 (2015).Article 

    Google Scholar  More

  • in

    Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China

    Torsvik, V., Øvreås, L. & Thingstad, T. F. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science 296, 1064–1066 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kuang, J. et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 10, 1527–1539 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mod, H. K. et al. Predicting spatial patterns of soil bacteria under current and future environmental conditions. ISME J. (2021).Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    Green, J. L., Bohannan, B. J. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. Science 320, 1039–1043 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chevallereau, A., Pons, B. J., van Houte, S. & Westra, E. R. Interactions between bacterial and phage communities in natural environments. Nat. Rev. Microbiol. 20, 49–62 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sullivan, M. B., Weitz, J. S. & Wilhelm, S. Viral ecology comes of age. Environ. Microbiol. Rep. 9, 33–35 (2017).PubMed 
    Article 

    Google Scholar 
    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shu, W. S. & Huang, L. N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. (2021).Huang, L. N., Kuang, J. L. & Shu, W. S. Microbial ecology and evolution in the acid mine drainage model system. Trends Microbiol 24, 581–593 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hwang, Y., Rahlff, J., Schulze-Makuch, D., Schloter, M. & Probst, A. J. Diverse viruses carrying genes for microbial extremotolerance in the Atacama desert hyperarid soil. mSystems 6, e00385–21 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adriaenssens, E. M. et al. Environmental drivers of viral community composition in Antarctic soils identified by viromics. Microbiome 5, 83 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, S. M. et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome 8, 89 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Holmfeldt, K. et al. The Fennoscandian Shield deep terrestrial virosphere suggests slow motion ‘boom and burst’ cycles. Commun. Biol. 4, 307 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rahlff, J. et al. Lytic archaeal viruses infect abundant primary producers in Earth’s crust. Nat. Commun. 12, 4642 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hao, Y. Q. et al. Microbial biogeography of acid mine drainage sediments at a regional scale across Southern China. FEMS Microbiol. Ecol. 98, fiac002 (2022).PubMed 
    Article 

    Google Scholar 
    Paez-Espino, D., Pavlopoulos, G. A., Ivanova, N. N. & Kyrpides, N. C. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat. Protoc. 12, 1673–1682 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nayfach, S. et al. CheckV: assessing the quality of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).Article 
    CAS 

    Google Scholar 
    Li, Z. et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 15, (2021).Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47, D309–D314 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, S. et al. DeePhage: distinguishing virulent and temperate phage-derived sequences in metavirome data with a deep learning approach. Gigascience 10, giab056 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, L. X. et al. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J. 9, 1579–1592 (2015).PubMed 
    Article 

    Google Scholar 
    Liang, J. L. et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 14, 1600–1613 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hsieh, Y. J. & Wanner, B. L. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13, 198–203 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stasi, R., Neves, H. I. & Spira, B. Phosphate uptake by the phosphonate transport system PhnCDE. BMC Microbiol 19, 79 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Narr, A., Nawaz, A., Wick, L. Y., Harms, H. & Chatzinotas, A. Soil viral communities vary temporally and along a land use transect as revealed by virus-like particle counting and a modified community fingerprinting approach (fRAPD). Front. Microbiol. 8, 1975 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Santos-Medellin, C. et al. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. ISME J. 15, 1956–1970 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tyson, G. W. & Banfield, J. F. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ. Microbiol. 10, 200–207 (2008).CAS 
    PubMed 

    Google Scholar 
    Sun, C. L. et al. Phage mutations in response to CRISPR diversification in a bacterial population. Environ. Microbiol. 15, 463–470 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hurwitz, B. L., Westveld, A. H., Brum, J. R. & Sullivan, M. B. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc. Natl Acad. Sci. USA 111, 10714–10719 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jin, M. et al. Diversities and potential biogeochemical impacts of mangrove soil viruses. Microbiome 7, 58 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tedersoo, L. et al. Fungal biogeography. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonnain, C., Breitbart, M. & Buck, K. N. The Ferrojan horse hypothesis: iron-virus interactions in the ocean. Front. Mar. Sci. 3, 82 (2016).Article 

    Google Scholar 
    Muratore, D. & Weitz, J. S. Infect while the iron is scarce: nutrient-explicit phage-bacteria games. Theor. Ecol. 14, 467–487 (2021).Article 

    Google Scholar 
    Kyle, J. E., Pedersen, K. & Ferris, F. G. Virus mineralization at low pH in the Rio Tinto. Spain Geomicrobiol. J. 25, 338–345 (2008).CAS 
    Article 

    Google Scholar 
    Kyle, J. E. & Ferris, F. G. Geochemistry of virus–prokaryote interactions in freshwater and acid mine drainage environments, Ontario, Canada. Geomicrobiol. J. 30, 769–778 (2013).CAS 
    Article 

    Google Scholar 
    Hewson, I., O’Neil, J. M., Fuhrman, J. A. & Dennison, W. C. Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol. Oceanogr. 46, 1734–1746 (2001).ADS 
    Article 

    Google Scholar 
    Wu, L. et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 4, 1183–1195 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates, S. T. et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 7, 652–659 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kuang, J. L. et al. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 7, 1038–1050 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sant, D. G., Woods, L. C., Barr, J. J. & McDonald, M. J. Host diversity slows bacteriophage adaptation by selecting generalists over specialists. Nat. Ecol. Evol. 5, 350–359 (2021).PubMed 
    Article 

    Google Scholar 
    Betts, A., Gray, C., Zelek, M., MacLean, R. C. & King, K. C. High parasite diversity accelerates host adaptation and diversification. Science 360, 907–911 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Goldsmith, D. B., Parsons, R. J., Beyene, D., Salamon, P. & Breitbart, M. Deep sequencing of the viral phoH gene reveals temporal variation, depth-specific composition, and persistent dominance of the same viral phoH genes in the Sargasso Sea. Peer. J. 3, e997 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goldsmith, D. B. et al. Development of phoH as a novel signature gene for assessing marine phage diversity. Appl. Environ. Microbiol. 77, 7730–7739 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martiny, A. C., Coleman, M. L. & Chisholm, S. W. Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc. Natl Acad. Sci. USA 103, 12552–12557 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tetu, S. G. et al. Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102. ISME J. 3, 835–849 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zeng, Q. & Chisholm, S. W. Marine viruses exploit their host’s two-component regulatory system in response to resource limitation. Curr. Biol. 22, 124–128 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kazakov, A. E., Vassieva, O., Gelfand, M. S., Osterman, A. & Overbeek, R. Bioinformatics classification and functional analysis of PhoH homologs. Silico Biol. 3, 3–15 (2003).CAS 

    Google Scholar 
    Bray, R. H. & Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59, 39–46 (1945).ADS 
    CAS 
    Article 

    Google Scholar 
    Hill, A. G. et al. Standardized general method for the determination of iron with 1,10-phenanthroline. Analyst 103, 391–396 (1978).Article 

    Google Scholar 
    Chesmin, L. & Yien, C. H. Turbidimetric determination of available sulphate. Soil Sci. Soc. Am. Proc. 15, 149–151 (1951).ADS 
    Article 

    Google Scholar 
    Fang, Y. et al. Modified pretreatment method for total microbial DNA extraction from contaminated river sediment. Front. Environ. Sci. Eng. 9, 444–452 (2015).CAS 
    Article 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).Article 
    CAS 

    Google Scholar 
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res 47, D427–D432 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44, D457–D462 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLOS Comput. Biol. 7, e1002195 (2011).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus-host interactions resolved from publicly available microbial genomes. Elife 4, e08490 (2015).PubMed Central 
    Article 

    Google Scholar 
    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next- generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–201 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).PubMed Central 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev. 40, 258–272 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rho, M., Wu, Y. W., Tang, H., Doak, T. G. & Ye, Y. Diverse CRISPRs evolving in human microbiomes. PLoS Genet. 8, e1002441 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 5, 113 (2004).Article 
    CAS 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Development Core Team. R: A Language and environment for statistical computing. (2013).Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-5. (2019).Harrell, F. E. Jr. & Dupont, M. C. The hmisc package. R. package version 4, 2–0 (2019).
    Google Scholar 
    R Development Core Team. The R Stats Package. R package version 4.0.3 (2013).Rosseel, Y. Lavaan: An R package for structural equation modeling and more. Version 0.5-12 (BETA). J. Stat. Soft 48, 1–36 (2012).Article 

    Google Scholar 
    Flores, C. O., Meyer, J. R., Valverde, S., Farr, L. & Weitz, J. S. Statistical structure of host-phage interactions. Proc. Natl Acad. Sci. USA 108, E288–E297 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Limits to reproduction and seed size-number trade-offs that shape forest dominance and future recovery

    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Duane, A., Castellnou, M. & Brotons, L. Towards a comprehensive look at global drivers of novel extreme wildfire events. Clim. Change 165, 43 (2021).ADS 
    Article 

    Google Scholar 
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010). Adaptation of Forests and Forest Management to Changing Climate.Article 

    Google Scholar 
    Franklin, J. F., Mitchell, R. J. & Palik, B. J. Natural disturbance and stand development principles for ecological forestry. General Technical Report. NRS-19. Newtown Square, PA: US Department of Agriculture, Forest Service, Northern Research Station. 44. p. 19 (2007).Westoby, M., Jurado, E. & Leishman, M. Comparative evolutionary ecology of seed size. Trends Ecol. Evol. 7, 368–372 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Smith, C. C. & Fretwell, S. D. The optimal balance between size and number of offspring. Am. Nat. 108, 499–506 (1974).Article 

    Google Scholar 
    Lord, J., Westoby, M. & Leishman, M. Seed size and phylogeny in six temperate floras: Constraints, niche conservatism, and adaptation. Am. Nat. 146, 349–364 (1995).Article 

    Google Scholar 
    Moles, A. T. et al. Global patterns in seed size. Glob. Ecol. Biogeogr. 16, 109–116 (2007).Article 

    Google Scholar 
    Tautenhahn, S. et al. On the biogeography of seed mass in germany – distribution patterns and environmental correlates. Ecography 31, 457–468 (2008).Article 

    Google Scholar 
    Lidgard, S. & Crane, P. R. Quantitative analyses of the early angiosperm radiation. Nature 331, 344–346 (1988).ADS 
    Article 

    Google Scholar 
    Crisp, M. D. & Cook, L. G. Cenozoic extinctions account for the low diversity of extant gymnosperms compared with angiosperms. New Phytol. 192, 997–1009 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stearns, S. C. Life-history tactics: a review of the ideas. Quart. Rev. Biol. 51, 3–47 (1976).CAS 
    PubMed 
    Article 

    Google Scholar 
    Grubb, P. J. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biol. Rev. 52, 107–145 (1977).Article 

    Google Scholar 
    Clark, J. S., LaDeau, S. & Ibanez, I. Fecundity of trees and the colonization-competition hypothesis. Ecol. Monogr. 74, 415–442 (2004).Article 

    Google Scholar 
    Salguero-Gómez, R. et al. Fast-slow continuum and reproductive strategies structure plant life-history variation worldwide. Proc. Natl Acad. Sci. USA 113, 230–235 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Thomas, S. C. Age-Related Changes in Tree Growth and Functional Biology: The Role of Reproduction, p. 33-64 (Springer Netherlands, 2011).Wenk, E. H. & Falster, D. S. Quantifying and understanding reproductive allocation schedules in plants. Ecol. Evol. 5, 5521–5538 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bar-On, Y. M., Phillips, R. & Milo, R. The biomass distribution on earth. Proc. Natl Acad. Sci. USA 115, 6506–6511 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Turnbull, L. A., Rees, M. & Crawley, M. J. Seed mass and the competition/colonization trade-off: a sowing experiment. J. Ecol. 87, 899–912 (1999).Article 

    Google Scholar 
    Moles, A., Falster, D., Leishman, M. & Westoby, M. Small-seeded species produce more seeds per square metre of canopy per year, but not per individual per lifetime. J. Ecol. 92, 384–396 (2004).Article 

    Google Scholar 
    Qiu, T. et al. Is there tree senescence? the fecundity evidence. Proc. Natl Acad. Sci. USA 118, e2106130118 (2021).Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A. & Wright, I. J. Plant ecological strategies: Some leading dimensions of variation between species. Annu. Rev. Ecol. Syst. 33, 125–159 (2002).Article 

    Google Scholar 
    Henery, M. L. & Westoby, M. Seed mass and seed nutrient content as predictors of seed output variation between species. Oikos 92, 479–490 (2001).Article 

    Google Scholar 
    Turnbull, L. A., Coomes, D., Hector, A. & Rees, M. Seed mass and the competition/colonization trade-off: competitive interactions and spatial patterns in a guild of annual plants. J. Ecol. 92, 97–109 (2004).Article 

    Google Scholar 
    Chave, J. et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 12, 351–366 (2009).PubMed 
    Article 

    Google Scholar 
    Poorter, L. et al. The importance of wood traits and hydraulic conductance for the performance and life history strategies of 42 rainforest tree species. New Phytol. 185, 481–492 (2010).PubMed 
    Article 

    Google Scholar 
    Hanley, M. E., Cook, B. I. & Fenner, M. Climate variation, reproductive frequency and acorn yield in english oaks. J. Plant Ecol. 12, 542–549 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kattge, J. et al. Try plant trait database – enhanced coverage and open access. Glob. Change Biol. 26, 119–188 (2020).ADS 
    Article 

    Google Scholar 
    Ran, E., Arnon, D., Alon, B.-G., Amnon, S. & Uri, Y. Flowering and fruit set of olive trees in response to nitrogen, phosphorus, and potassium. J. Am. Soc. Hortic. Sci. Am. Soc. Hortic. Sci. 133, 639–647 (2008).Article 

    Google Scholar 
    Fernández-Martínez, M., Vicca, S., Janssens, I. A., Espelta, J. M. & Peñuelas, J. The role of nutrients, productivity and climate in determining tree fruit production in european forests. New Phytol. 213, 669–679 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Fortier, R. & Wright, S. J. Nutrient limitation of plant reproduction in a tropical moist forest. Ecology 102, e03469 (2021).Canham, C. D., Ruscoe, W. A., Wright, E. F. & Wilson, D. J. Spatial and temporal variation in tree seed production and dispersal in a new zealand temperate rainforest. Ecosphere 5, art49 (2014).Article 

    Google Scholar 
    Pérez-Ramos, I. M., Aponte, C., García, L. V., Padilla-Díaz, C. M. & Marañón, T. Why is seed production so variable among individuals? a ten-year study with oaks reveals the importance of soil environment. PLoS ONE 9, e115371 (2014).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Sitch, S. et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 9, 161–185 (2003).ADS 
    Article 

    Google Scholar 
    Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, 1–33 (2005).Article 
    CAS 

    Google Scholar 
    Fisher, R. A. et al. Vegetation demographics in earth system models: a review of progress and priorities. Glob. Change Biol. 24, 35–54 (2018).ADS 
    Article 

    Google Scholar 
    Hanbury-Brown, A., Ward, R. & Kueppers, L. M. Future forests within earth system models: regeneration processes critical to prediction. New Phytol. in press https://doi.org/10.1111/nph.18131 (2022).Stiles, W. C. & Reid, W. S. Orchard nutrition management. Inf. Bull. (1991). https://ecommons.cornell.edu/bitstream/handle/1813/3305/Orchard%20Nutrition%20Management.pdf?sequence=2&isAllowed=y.Schlesinger, W. H. Some thoughts on the biogeochemical cycling of potassium in terrestrial ecosystems. Biogeochemistry 154, 427–432 (2021).Article 

    Google Scholar 
    Neilsen, D. & Neilsen, G. Efficient use of nitrogen and water in high-density apple orchards. HortTechnology 12, 19 (2002).Article 

    Google Scholar 
    Rubio Ames, Z., Brecht, J. K. & Olmstead, M. A. Nitrogen fertilization rates in a subtropical peach orchard: effects on tree vigor and fruit quality. J. Sci. Food Agric. 100, 527–539 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Elser, J. J. et al. Growth rate-stoichiometry couplings in diverse biota. Ecol. Lett. 6, 936–943 (2003).Article 

    Google Scholar 
    Seyednasrollah, B. & Clark, J. S. Where resource-acquisitive species are located: the role of habitat heterogeneity. Geophys. Res. Lett. 47, e2020GL087626 (2020).Rosecrance, R. C., Weinbaum, S. A. & Brown, P. H. Alternate bearing affects nitrogen, phosphorus, potassium and starch storage pools in mature pistachio trees. Ann. Bot. 82, 463–470 (1998).Article 

    Google Scholar 
    Sala, A., Hopping, K., McIntire, E. J. B., Delzon, S. & Crone, E. E. Masting in whitebark pine (pinus albicaulis) depletes stored nutrients. New Phytol. 196, 189–199 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    LaDeau, S. L. & Clark, J. S. Rising co2 levels and the fecundity of forest trees. Science 292, 95–8 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Callahan, H. S., Del Fierro, K., Patterson, A. E. & Zafar, H. Impacts of elevated nitrogen inputs on oak reproductive and seed ecology. Glob. Change Biol. 14, 285–293 (2008).ADS 
    Article 

    Google Scholar 
    Lambers, H. & Poorter, H. Inherent Variation in Growth Rate Between Higher Plants: A Search for Physiological Causes and Ecological Consequences, vol. 23, 187-261 (Academic Press, 1992).Hengl, T. et al. Soilgrids250m: global gridded soil information based on machine learning. PLoS ONE 12, 1–40 (2017).Article 
    CAS 

    Google Scholar 
    Sharma, A., Weindorf, D. C., Wang, D. D. & Chakraborty, S. Characterizing soils via portable x-ray fluorescence spectrometer: 4. cation exchange capacity (cec). Geoderma 239, 130–134 (2015).ADS 
    Article 
    CAS 

    Google Scholar 
    Hazelton, P. & Murphy, B. Interpreting Soil Test Results: What Do All The Numbers Mean? (CSIRO publishing, 2016).Chowdhury, S. et al. Chapter Two – Role Of Cultural And Nutrient Management Practices In Carbon Sequestration In Agricultural Soil, vol. 166, 131-196 (Academic Press, 2021).Clark, J. S., Nuñez, C. L. & Tomasek, B. Foodwebs based on unreliable foundations: spatiotemporal masting merged with consumer movement, storage, and diet. Ecol. Monogr. 89, e01381 (2019).Article 

    Google Scholar 
    Burns, R. M. Silvics Of North America (US Department of Agriculture, Forest Service, 1990).Koenig, W. D. & Knops, J. M. H. Seed-crop size and eruptions of north american boreal seed-eating birds. J. Anim. Ecol. 70, 609–620 (2001).Article 

    Google Scholar 
    Greene, D. F. & Johnson, E. A. Estimating the mean annual seed production of trees. Ecology 75, 642–647 (1994).Article 

    Google Scholar 
    Lord, J. M. & Westoby, M. Accessory costs of seed production and the evolution of angiosperms. Evol. Int. J. Org. Evol. 66, 200–210 (2012).Article 

    Google Scholar 
    Hulme, P. & Benkman, C. Granivory. vol. 23, 132-154 (Oxford: Blackwell, 2002).Bond, W. J. The tortoise and the hare: ecology of angiosperm dominance and gymnosperm persistence. Biol. J. Linn. Soc. 36, 227–249 (1989).Article 

    Google Scholar 
    Brodribb, T. J. & Feild, T. S. Leaf hydraulic evolution led a surge in leaf photosynthetic capacity during early angiosperm diversification. Ecol. Lett. 13, 175–183 (2010).PubMed 
    Article 

    Google Scholar 
    Davies, T. J. et al. Darwin’s abominable mystery: Insights from a supertree of the angiosperms. Proc. Natl Acad. Sci. USA 101, 1904–1909 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berendse, F. & Scheffer, M. The angiosperm radiation revisited, an ecological explanation for darwin’s ‘abominable mystery’. Ecol. Lett. 12, 865–872 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barrett, S. C. H. Influences of clonality on plant sexual reproduction. Proc. Natl Acad. Sci. USA 112, 8859–8866 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Condamine, F. L., Silvestro, D., Koppelhus, E. B. & Antonelli, A. The rise of angiosperms pushed conifers to decline during global cooling. Proc. Natl Acad. Sci. USA 117, 28867–28875 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oren, R. et al. Soil fertility limits carbon sequestration by forest ecosystems in a co2-enriched atmosphere. Nature 411, 469–472 (2001).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Reich, P. B. et al. Nitrogen limitation constrains sustainability of ecosystem response to co2. Nature 440, 922–925 (2006).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Firn, J. et al. Leaf nutrients, not specific leaf area, are consistent indicators of elevated nutrient inputs. Nat. Ecol. Evol. 3, 400–406 (2019).PubMed 
    Article 

    Google Scholar 
    Elser, J. et al. Biological stoichiometry from genes to ecosystems. Ecol. Lett. 3, 540–550 (2000).Article 

    Google Scholar 
    Niklas, K. J., Owens, T., Reich, P. B. & Cobb, E. D. Nitrogen/phosphorus leaf stoichiometry and the scaling of plant growth. Ecol. Lett. 8, 636–642 (2005).Article 

    Google Scholar 
    Kerkhoff, A. J., Fagan, W. F., Elser, J. J. & Enquist, B. J. Phylogenetic and growth form variation in the scaling of nitrogen and phosphorus in the seed plants. Am. Nat. 168, E103–E122 (2006).PubMed 
    Article 

    Google Scholar 
    Weinbaum, S. A., Johnson, R. S. & DeJong, T. M. Causes and consequences of overfertilization in orchards. HortTechnology 2, 112b (1992).Article 

    Google Scholar 
    Fernandez-Escobar, R. et al. Olive oil quality decreases with nitrogen over-fertilization. HortScience 41, 215 (2006).CAS 
    Article 

    Google Scholar 
    Han, Q., Kabeya, D., Iio, A. & Kakubari, Y. Masting in fagus crenata and its influence on the nitrogen content and dry mass of winter buds. Tree Physiol. 28, 1269–1276 (2008).PubMed 
    Article 

    Google Scholar 
    Pettigrew, W. T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 133, 670–681 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leeper, A. C., Lawrence, B. A. & LaMontagne, J. M. Plant-available soil nutrients have a limited influence on cone production patterns of individual white spruce trees. Oecologia 194, 101–111 (2020).ADS 
    PubMed 
    Article 

    Google Scholar 
    Chapin, F. S., Autumn, K. & Pugnaire, F. Evolution of suites of traits in response to environmental stress. Am. Nat. 142, S78–S92 (1993).Article 

    Google Scholar 
    Westoby, M. & Wright, I. J. Land-plant ecology on the basis of functional traits. Trends Ecol. Evol. 21, 261–268 (2006).PubMed 
    Article 

    Google Scholar 
    Brodribb, T. J., Pittermann, J. & Coomes, D. A. Elegance versus speed: Examining the competition between conifer and angiosperm trees. Int. J. Plant Sci. 173, 673–694 (2012).Article 

    Google Scholar 
    Clark, J. S., Macklin, E. & Wood, L. Stages and spatial scales of recruitment limitation in southern appalachian forests. Ecol. Monogr. 68, 213–235 (1998).Article 

    Google Scholar 
    McEuen, A. B. & Curran, L. M. Seed dispersal and recruitment limitation across spatial scales in temperate forest fragments. Ecology 85, 507–518 (2004).Article 

    Google Scholar 
    Emsweller, L. N., Gorchov, D. L., Zhang, Q., Driscoll, A. G. & Hughes, M. R. Seed rain and disturbance impact recruitment of invasive plants in upland forest. Invasive Plant Sci. Manag. 11, 69–81 (2018).Article 

    Google Scholar 
    Lindgren, s, Eriksson, O. & Moen, J. The impact of disturbance and seed availability on germination of alpine vegetation in the scandinavian mountains. Arct. Antarct. Alp. Res. 39, 449–454 (2007).Article 

    Google Scholar 
    Cai, W. H., Liu, Z., Yang, Y. Z. & Yang, J. Does environment filtering or seed limitation determine post-fire forest recovery patterns in boreal larch forests? Front. Plant Sci. 9, 1318 (2018).Darwin, C. On the Origin of Species (John Murray, 1859).Black, M. Darwin and seeds. Seed Sci. Res. 19, 193–199 (2009).Article 

    Google Scholar 
    FAO. Global forest resources assessment 2020-key findings. un food and agriculture organization. Report (2020).Payn, T. et al. Changes in planted forests and future global implications. For. Ecol. Manag. 352, 57–67 (2015).Article 

    Google Scholar 
    Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the united states. Glob. Change Biol. 22, 2329–2352 (2016).ADS 
    Article 

    Google Scholar 
    Gazol, A., Camarero, J. J., Anderegg, W. R. L. & Vicente-Serrano, S. M. Impacts of droughts on the growth resilience of northern hemisphere forests. Glob. Ecol. Biogeogr. 26, 166–176 (2017).Article 

    Google Scholar 
    Stephens, S. L. et al. Managing forests and fire in changing climates. Science 342, 41–42 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    North, M. P. et al. Tamm review: reforestation for resilience in dry western u.s. forests. For. Ecol. Manag. 432, 209–224 (2019).Article 

    Google Scholar 
    Seidl, R., Rammer, W. & Spies, T. A. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol. Appl. 24, 2063–2077 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Serra-Diaz, J. M. et al. Averaged 30 year climate change projections mask opportunities for species establishment. Ecography 39, 844–845 (2016).Article 

    Google Scholar 
    Davis, F. W. et al. Shrinking windows of opportunity for oak seedling establishment in southern california mountains. Ecosphere 7, e01573 (2016).
    Google Scholar 
    LeBauer, D. S. & Treseder, K. K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89, 371–379 (2008).PubMed 
    Article 

    Google Scholar 
    Clark, J. S. et al. Continent-wide tree fecundity driven by indirect climate effects. Nat. Commun. 12, 1242 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brady, N. C., Weil, R. R. & Weil, R. R. The Nature And Properties Of Soils, vol. 13 (Prentice Hall Upper Saddle River, 2008).Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007). https://doi.org/10.1029/2005RG000183.Clark, J. S. Landscape interactions among nitrogen mineralization, species composition, and long-term fire frequency. Biogeochemistry 11, 1–22 (1990).Article 

    Google Scholar 
    Clark, J. S., Bell, D. M., Kwit, M. C. & Zhu, K. Competition-interaction landscapes for the joint response of forests to climate change. Glob. Change Biol. 20, 1979–1991 (2014).ADS 
    Article 

    Google Scholar 
    Begueria, S., Vicente-Serrano, S. M., Reig, F. & Latorre, B. Standardized precipitation evapotranspiration index (spei) revisited: parameter fitting, evapotranspiration models, tools, datasets and drought monitoring. Int. J. Climatol. 34, 3001–3023 (2014).Article 

    Google Scholar 
    Abatzoglou, J. T., Dobrowski, S. Z., Parks, S. A. & Hegewisch, K. C. Terraclimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958-2015. Sci. Data 5, 170191 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schneider, R., Calama, R. & Martin-Ducup, O. Understanding tree-to-tree variations in stone pine (pinus pinea l.) cone production using terrestrial laser scanner. Remote Sens. 12, 173 (2020).Article 

    Google Scholar 
    Gavranović, A., Bogdan, S., Lanšćak, M., Čehulić, I. & Ivanković, M. Seed yield and morphological variations of beechnuts in four european beech (fagus sylvatica l.) populations in croatia. South-East Eur. For. 9, 17–27 (2018).Article 

    Google Scholar 
    Maitner, B. S. et al. The bien r package: a tool to access the botanical information and ecology network (bien) database. Methods Ecol. Evol. 9, 373–379 (2018).Article 

    Google Scholar 
    Clark, J. S., Silman, M., Kern, R., Macklin, E. & HilleRisLambers, J. Seed dispersal near and far: patterns across temperate and tropical forests. Ecology 80, 1475–1494 (1999).Article 

    Google Scholar 
    LePage, P. T., Canham, C. D., Coates, K. D. & Bartemucci, P. Seed abundance versus substrate limitation of seedling recruitment in northern temperate forests of british columbia. Can. J. For. Res. 30, 415–427 (2000).Article 

    Google Scholar 
    Clark, J. S., LaDeau, S. & Ibanez, I. Fecundity of trees and the colonization-competition hypothesis. Ecol. Monogr. 74, 415–442 (2004).Article 

    Google Scholar 
    Muller-Landau, H. C., Wright, S. J., Calderon, O., Condit, R. & Hubbell, S. P. Interspecific variation in primary seed dispersal in a tropical forest. J. Ecol. 96, 653–667 (2008).Article 

    Google Scholar 
    Jones, F. A. & Muller-Landau, H. C. Measuring long-distance seed dispersal in complex natural environments: an evaluation and integration of classical and genetic methods. J. Ecol. 96, 642–652 (2008).Article 

    Google Scholar 
    Clark, J. S. Individuals and the variation needed for high species diversity in forest trees. Science 327, 1129–1132 (2010).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Clark, J. S. et al. High-dimensional coexistence based on individual variation: a synthesis of evidence. Ecol. Monogr. 80, 569–608 (2010).Article 

    Google Scholar 
    Clark, J. S., Bell, D. M., Kwit, M. C. & Zhu, K. Competition-interaction landscapes for the joint response of forests to climate change. Glob. Change Biol. 20, 1979–91 (2014).ADS 
    Article 

    Google Scholar 
    Minor, D. M. & Kobe, R. K. Fruit production is influenced by tree size and size-asymmetric crowding in a wet tropical forest. Ecol. Evol. 9, 1458–1472 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zanne, A. E. et al. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Revell, L. J. phytools: an r package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Felsenstein, J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985).Article 

    Google Scholar 
    Martins, E. P. & Hansen, T. F. Phylogenies and the comparative method: A general approach to incorporating phylogenetic information into the analysis of interspecific data. Am. Nat. 149, 646–667 (1997).Article 

    Google Scholar 
    Tung Ho, L. S. & Ané, C. A linear-time algorithm for gaussian and non-gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).Article 

    Google Scholar 
    Clark, J. S. Data from: continent-wide tree fecundity driven by indirect climate effects https://doi.org/10.7924/r4348ph5t (2020). More

  • in

    Bacterial communities associated with silage of different forage crops in Malaysian climate analysed using 16S amplicon metagenomics

    Nazli, M. H., Halim, R. A., Abdullah, A. M., Hussin, G. & Samsudin, A. A. Potential of four corn varieties at different harvest stages for silage production in Malaysia. Asian-Australas. J. Anim. Sci. 32, 224–232 (2019).PubMed 
    Article 

    Google Scholar 
    Department of Veterinary Services Malaysia. Perangkaan Ternakan Livestock Statistics (Department of Veterinary Services Malaysia, 2021).
    Google Scholar 
    Halim, R. A., Shampazurini, S. & Idris, A. B. Yield and nutritive quality of nine Napier grass varieties in Malaysia. Malays. J. Anim. Sci. 16, 37–44 (2013).
    Google Scholar 
    Ortega-Gãmez, R. et al. Nutritive quality of ten grasses during the rainy season in a hot-humid climate and ultisol soil. Trop. Subtrop. Agroecosyst. 13, 481 (2011).
    Google Scholar 
    Kung, L., Shaver, R. D., Grant, R. J. & Schmidt, R. J. Silage review: Interpretation of chemical, microbial, and organoleptic components of silages. J. Dairy Sci. 101, 4020–4033 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bernardes, T. F. et al. Silage review: Unique challenges of silages made in hot and cold regions. J. Dairy Sci. 101, 4001–4019 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Koc, F., Ozduven, M., Coskuntuna, L. & Polant, C. The effects of inoculant lactic acid bacteria on the fermentation and aerobic stability of sunflower silage. Poljoprivreda 15, 47–52 (2009).
    Google Scholar 
    Kim, S. C. & Adesogan, A. T. Influence of ensiling temperature, simulated rainfall, and delayed sealing on fermentation characteristics and aerobic stability of corn silage. J. Dairy Sci. 89, 3122–3132 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Daniel, J. L. P. et al. Effects of homolactic bacterial inoculant on the performance of lactating dairy cows. J. Dairy Sci. 101, 5145–5152 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pahlow, G. et al. Microbiology of ensiling. In Silage Science and Technology (eds Buxton, D. R. et al.) 31–93 (America Society of Agronomy, 2003).
    Google Scholar 
    Li, D., Ni, K., Zhang, Y., Lin, Y. & Yang, F. Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures. Asian-Australas. J. Anim. Sci. 32, 665–674 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xu, D. et al. Modulation of metabolome and bacterial community in whole crop corn silage by inoculating homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri. Front. Microbiol. 9, 3299 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guan, H. et al. Microbial communities and natural fermentation of corn silages prepared with farm bunker-silo in Southwest China. Bioresour. Technol. 265, 282–290 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Guan, H. et al. Screening of natural lactic acid bacteria with potential effect on silage fermentation, aerobic stability and aflatoxin B1 in hot and humid area. J. Appl. Microbiol. 128, 1301–1311 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xu, Z., He, H., Zhang, S. & Kong, J. Effects of inoculants Lactobacillus brevis and Lactobacillus parafarraginis on the fermentation characteristics and microbial communities of corn stover silage. Sci. Rep. 7, 1–9 (2017).ADS 
    Article 
    CAS 

    Google Scholar 
    Muck, R. E. et al. Silage review: Recent advances and future uses of silage additives. J. Dairy Sci. 101, 3980–4000 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kanehisa, M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 28, 1947–1951 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kanehisa, M., Furumichi, M., Sato, Y., Ishiguro-Watanabe, M. & Tanabe, M. KEGG: Integrating viruses and cellular organisms. Nucleic Acids Res. 49, D545–D551 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McDonald, P., Henderson, A. R. & Heron, S. J. E. The Biochemistry of Silage (Chalcombe Publications, 1991).
    Google Scholar 
    Nkosi, B. D. et al. The influence of ensiling potato hash waste with enzyme/bacterial inoculant mixtures on the fermentation characteristics, aerobic stability and nutrient digestion of the resultant silages by rams. Small Rumin. Res. 127, 28–35 (2015).Article 

    Google Scholar 
    Muck, R. E. Microbiologia da silagem e seu controle com aditivos. Rev. Bras. Zootec. 39, 183–191 (2010).Article 

    Google Scholar 
    Yan, Y. et al. Microbial community and fermentation characteristic of Italian ryegrass silage prepared with corn stover and lactic acid bacteria. Bioresour. Technol. 279, 166–173 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, F. G. et al. Treatment of whole-plant corn silage with lactic acid bacteria and organic acid enhances quality by elevating acid content, reducing pH, and inhibiting undesirable microorganisms. Front. Microbiol. 11, 3104 (2020).
    Google Scholar 
    Ni, K., Wang, Y., Li, D., Cai, Y. & Pang, H. Characterization, identification and application of lactic acid bacteria isolated from forage paddy rice silage. PLoS ONE 10, e0121967 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Li, J. et al. Characterization of Enterococcus faecalis JF85 and Enterococcus faecium Y83 isolated from Tibetan yak (Bos grunniens) for ensiling Pennisetum sinese. Bioresour. Technol. 257, 76–83 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ning, P., Peng, Y. & Fritschi, F. B. Carbohydrate dynamics in maize leaves and developing ears in response to nitrogen application. Agronomy 8, 302 (2018).CAS 
    Article 

    Google Scholar 
    Ni, K. et al. Comparative microbiota assessment of wilted Italian ryegrass, whole crop corn, and wilted alfalfa silage using denaturing gradient gel electrophoresis and next-generation sequencing. Appl. Microbiol. Biotechnol. 101, 1385–1394 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nishino, N. & Touno, E. Ensiling characteristics and aerobic stability of direct-cut and wilted grass silages inoculated with Lactobacillus casei or Lactobacillus buchneri. J. Sci. Food Agric. 85, 1882–1888 (2005).CAS 
    Article 

    Google Scholar 
    Li, L. et al. Effect of microalgae supplementation on the silage quality and anaerobic digestion performance of Manyflower silvergrass. Bioresour. Technol. 189, 334–340 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    McEniry, J., O’Kiely, P., Clipson, N. J. W., Forristal, P. D. & Doyle, E. M. Assessing the impact of various ensilage factors on the fermentation of grass silage using conventional culture and bacterial community analysis techniques. J. Appl. Microbiol. 108, 1584–1593 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cai, Y. Identification and characterization of Enterococcus species isolated from forage crops and their influence on silage fermentation. J. Dairy Sci. 82, 2466–2471 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ben-Dov, E., Shapiro, O. H., Siboni, N. & Kushmaro, A. Advantage of using inosine at the 3′ termini of 16S rRNA gene universal primers for the study of microbial diversity. Appl. Environ. Microbiol. 72, 6902–6906 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ni, K. et al. Effects of lactic acid bacteria and molasses additives on the microbial community and fermentation quality of soybean silage. Bioresour. Technol. 238, 706–715 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, Y. et al. Effects of wilting and Lactobacillus plantarum addition on the fermentation quality and microbial community of moringa oleifera leaf silage. Front. Microbiol. 9, 1817 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eikmeyer, F. G. et al. Metagenome analyses reveal the influence of the inoculant Lactobacillus buchneri CD034 on the microbial community involved in grass ensiling. J. Biotechnol. 167, 334–343 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gagnon, M., Ouamba, A. J. K., LaPointe, G., Chouinard, P. Y. & Roy, D. Prevalence and abundance of lactic acid bacteria in raw milk associated with forage types in dairy cow feeding. J. Dairy Sci. 103, 5931–5946 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, R. et al. Microbial community dynamics during alfalfa silage with or without clostridial fermentation. Sci. Rep. 10, 1–14 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Rooke, J. & Hatfield, R. Biochemistry of ensiling. Publ. from USDA-ARS/UNL Fac. (2003).Muck, R. E. Recent advances in silage microbiology. Agric. Food Sci. 22, 3–15 (2013).CAS 
    Article 

    Google Scholar 
    Gharechahi, J. et al. The dynamics of the bacterial communities developed in maize silage. Microb. Biotechnol. 10, 1663–1676 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Farhana, A. & Lappin, S. L. Biochemistry, Lactate Dehydrogenase (StatPearls, 2021).
    Google Scholar 
    Mandhania, M. H. et al. Diversity and succession of microbiota during fermentation of the traditional Indian food idli. Appl. Environ. Microbiol. 85, e00368 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    De Mandal, S. et al. Metagenomic analysis and the functional profiles of traditional fermented pork fat ‘sa-um’ of Northeast India. AMB Express 8, 1–11 (2018).Article 
    CAS 

    Google Scholar 
    Varki, A. & Lowe, J. B. Biological roles of glycans. Essentials Glycobiol. https://www.ncbi.nlm.nih.gov/books/NBK1897/ (2009).Ganesan, A. Natural products as a hunting ground for combinatorial chemistry. Curr. Opin. Biotechnol. 15, 584–590 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem., 28(3), 350–356 (1956).CAS 
    Article 

    Google Scholar 
    Heberle, H., Meirelles, V. G., da Silva, F. R., Telles, G. P. & Minghim, R. InteractiVenn: A web-based tool for the analysis of sets through Venn diagrams. BMC Bioinform. 16, 169 (2015).Article 

    Google Scholar  More

  • in

    Discovery of lignin-transforming bacteria and enzymes in thermophilic environments using stable isotope probing

    Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54:519–46. https://doi.org/10.1146/annurev.arplant.54.031902.134938.CAS 
    Article 
    PubMed 

    Google Scholar 
    Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344:1246843. https://doi.org/10.1126/science.1246843.CAS 
    Article 
    PubMed 

    Google Scholar 
    Hildén K, Hakala TK, Lundell T. Thermotolerant and thermostable laccases. Biotechnol Lett. 2009;31:1117. https://doi.org/10.1007/s10529-009-9998-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2018;1. https://doi.org/10.1038/s41396-018-0279-6.Bugg TDH, Ahmad M, Hardiman EM, Singh R. The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol. 2011;22:394–400. https://doi.org/10.1016/j.copbio.2010.10.009.CAS 
    Article 
    PubMed 

    Google Scholar 
    Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, et al. Bacterial catabolism of lignin-derived aromatics: new findings in a recent decade: update on bacterial lignin catabolism. Environ Microbiol Rep. 2017;9:679–705. https://doi.org/10.1111/1758-2229.12597.CAS 
    Article 
    PubMed 

    Google Scholar 
    Singh R, Hu J, Regner MR, Round JW, Ralph J, Saddler JN, et al. Enhanced delignification of steam-pretreated poplar by a bacterial laccase. Sci Rep. 2017;7:42121. https://doi.org/10.1038/srep42121.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perna V, Meyer AS, Holck J, Eltis LD, Eijsink VGH, Wittrup Agger J. Laccase-catalyzed oxidation of lignin induces production of H2O2. ACS Sustain Chem Eng. 2020;8:831–41. https://doi.org/10.1021/acssuschemeng.9b04912.CAS 
    Article 

    Google Scholar 
    Johnson CW, Salvachúa D, Rorrer NA, Black BA, Vardon DR, St. John PC, et al. Innovative chemicals and materials from bacterial aromatic catabolic pathways. Joule. 2019;3:1523–37. https://doi.org/10.1016/j.joule.2019.05.011.CAS 
    Article 

    Google Scholar 
    Brady AL, Sharp CE, Grasby SE, Dunfield PF. Anaerobic carboxydotrophic bacteria in geothermal springs identified using stable isotope probing. Front Microbiol. 2015;6. https://doi.org/10.3389/fmicb.2015.00897.Grasby SE, Hutcheon I, Krouse HR. The influence of water–rock interaction on the chemistry of thermal springs in western Canada. Appl Geochem. 2000;15:439–54. https://doi.org/10.1016/S0883-2927(99)00066-9.CAS 
    Article 

    Google Scholar 
    Bauchop T, Elsden SR. The growth of micro-organisms in relation to their energy supply. Microbiology. 1960;23:457–69. https://doi.org/10.1099/00221287-23-3-457.CAS 
    Article 

    Google Scholar 
    Neufeld JD, Vohra J, Dumont MG, Lueders T, Manefield M, Friedrich MW, et al. DNA stable-isotope probing. Nat Protoc. 2007;2:860–6. https://doi.org/10.1038/nprot.2007.109.CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilhelm RC, Singh R, Eltis LD, Mohn WW. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 2019;13:413–29. https://doi.org/10.1038/s41396-018-0279-6.CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilhelm R, Szeitz A, Klassen TL, Mohn WW. Sensitive, efficient quantitation of 13C-enriched nucleic acids via ultrahigh-performance liquid chromatography-tandem mass spectrometry for applications in stable isotope probing. Appl Environ Microbiol. 2014;80:7206–11. https://doi.org/10.1128/AEM.02223-14.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinforma Oxf Engl. 2014;30:2114–20. https://doi.org/10.1093/bioinformatics/btu170.CAS 
    Article 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77. https://doi.org/10.1089/cmb.2012.0021.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin H-H, Liao Y-C. Accurate binning of metagenomic contigs via automated clustering sequences using information of genomic signatures and marker genes. Sci Rep. 2016;6:24175. https://doi.org/10.1038/srep24175.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359. https://doi.org/10.7717/peerj.7359.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alneberg J, Bjarnason BS, Bruijn ID, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6. https://doi.org/10.1038/nmeth.3103.CAS 
    Article 
    PubMed 

    Google Scholar 
    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinforma Oxf Engl. 2016;32:605–7. https://doi.org/10.1093/bioinformatics/btv638.CAS 
    Article 

    Google Scholar 
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43. https://doi.org/10.1038/s41564-018-0171-1.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55. https://doi.org/10.1101/gr.186072.114.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt D, Chen G-L, LoCascio PF, Land ML, Larimer FW, Hauser LJ. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 2010;11:119. https://doi.org/10.1186/1471-2105-11-119.CAS 
    Article 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60. https://doi.org/10.1038/nmeth.3176.CAS 
    Article 
    PubMed 

    Google Scholar 
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–5. https://doi.org/10.1093/nar/gkt1178.CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–101. https://doi.org/10.1093/nar/gky418.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res. 2019;47:D427–32. https://doi.org/10.1093/nar/gky995.CAS 
    Article 
    PubMed 

    Google Scholar 
    Haft DH, Loftus BJ, Richardson DL, Yang F, Eisen JA, Paulsen IT, et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 2001;29:41–3.CAS 
    Article 

    Google Scholar 
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/btz859.Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15. https://doi.org/10.1186/s13059-014-0550-8.R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing; 2018. https://www.R-project.org.Letunic I, Bork P. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 2016;44:W242–5. https://doi.org/10.1093/nar/gkw290.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36. https://doi.org/10.1111/2041-210X.12628.Article 

    Google Scholar 
    Brenner AJ, Harris ED. A quantitative test for copper using bicinchoninic acid. Anal Biochem. 1995;226:80–4. https://doi.org/10.1006/abio.1995.1194.CAS 
    Article 
    PubMed 

    Google Scholar 
    Brown ME, Barros T, Chang MCY. Identification and characterization of a multifunctional dye peroxidase from a lignin-reactive bacterium. ACS Chem Biol. 2012;7:2074–81. https://doi.org/10.1021/cb300383y.CAS 
    Article 
    PubMed 

    Google Scholar 
    Levy-Booth DJ, Hashimi A, Roccor R, Liu L-Y, Renneckar S, Eltis LD, et al. Genomics and metatranscriptomics of biogeochemical cycling and degradation of lignin-derived aromatic compounds in thermal swamp sediment. ISME J. 2021;15:879–93. https://doi.org/10.1038/s41396-020-00820-x.CAS 
    Article 
    PubMed 

    Google Scholar 
    Aston JE, Apel WA, Lee BD, Thompson DN, Lacey JA, Newby DT, et al. Degradation of phenolic compounds by the lignocellulose deconstructing thermoacidophilic bacterium Alicyclobacillus Acidocaldarius. J Ind Microbiol Biotechnol. 2016;43:13–23. https://doi.org/10.1007/s10295-015-1700-z.CAS 
    Article 
    PubMed 

    Google Scholar 
    Morgan-Lang C, McLaughlin R, Armstrong Z, Zhang G, Chan K, Hallam SJ. TreeSAPP: the tree-based sensitive and accurate phylogenetic profiler. Bioinformatics. 2020. https://doi.org/10.1093/bioinformatics/btaa588.Machczynski MC, Vijgenboom E, Samyn B, Canters GW. Characterization of SLAC: a small laccase from streptomyces coelicolor with unprecedented activity. Protein Sci Publ Protein Soc. 2004;13:2388–97. https://doi.org/10.1110/ps.04759104.CAS 
    Article 

    Google Scholar 
    Berini F, Verce M, Ausec L, Rosini E, Tonin F, Pollegioni L, et al. Isolation and characterization of a heterologously expressed bacterial laccase from the anaerobe Geobacter metallireducens. Appl Microbiol Biotechnol. 2018;102:2425–39. https://doi.org/10.1007/s00253-018-8785-z.CAS 
    Article 
    PubMed 

    Google Scholar 
    Yin Q, Zhou G, Peng C, Zhang Y, Kües U, Liu J, et al. The first fungal laccase with an alkaline pH optimum obtained by directed evolution and its application in indigo dye decolorization. AMB Express. 2019;9:151. https://doi.org/10.1186/s13568-019-0878-2.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar D, Kumar A, Sondhi S, Sharma P, Gupta N. An alkaline bacterial laccase for polymerization of natural precursors for hair dye synthesis. 3 Biotech. 2018;8:182. https://doi.org/10.1007/s13205-018-1181-7.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hilgers R, Vincken J-P, Gruppen H, Kabel MA. Laccase/mediator systems: their reactivity toward phenolic lignin structures. ACS Sustain Chem Eng. 2018;6:2037–46. https://doi.org/10.1021/acssuschemeng.7b03451.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu S, Argyropoulos D. An improved method for isolating lignin in high yield and purity. J Pulp Pap Sci. 2003;29:235–40.CAS 

    Google Scholar 
    Gao R, Li Y, Kim H, Mobley JK, Ralph J. Selective oxidation of lignin model compounds. ChemSusChem. 2018;11:2045–50. https://doi.org/10.1002/cssc.201800598.CAS 
    Article 
    PubMed 

    Google Scholar 
    Rahimi A, Azarpira A, Kim H, Ralph J, Stahl SS. Chemoselective metal-free aerobic alcohol oxidation in lignin. J Am Chem Soc. 2013;135:6415–8. https://doi.org/10.1021/ja401793n.CAS 
    Article 
    PubMed 

    Google Scholar 
    Schutyser W, Renders T, Bosch SV, den, Koelewijn S-F, Beckham GT, Sels BF. Chemicals from lignin: an interplay of lignocellulose fractionation, depolymerisation, and upgrading. Chem Soc Rev. 2018;47:852–908. https://doi.org/10.1039/C7CS00566K.CAS 
    Article 
    PubMed 

    Google Scholar 
    Sun X, Bai R, Zhang Y, Wang Q, Fan X, Yuan J, et al. Laccase-catalyzed oxidative polymerization of phenolic compounds. Appl Biochem Biotechnol. 2013;171:1673–80. https://doi.org/10.1007/s12010-013-0463-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    Hu D, Zang Y, Mao Y, Gao B. Identification of molecular markers that are specific to the class Thermoleophilia. Front Microbiol. 2019;10. https://doi.org/10.3389/fmicb.2019.01185.Chen M-Y, Wu S-H, Lin G-H, Lu C-P, Lin Y-T, Chang W-C, et al. Rubrobacter taiwanensis sp. nov., a novel thermophilic, radiation-resistant species isolated from hot springs. Int J Syst Evol Microbiol. 2004;54:1849–55. https://doi.org/10.1099/ijs.0.63109-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    Tomariguchi N, Miyazaki K. Complete genome sequence of Rubrobacter xylanophilus strain AA3-22, isolated from Arima Onsen in Japan. Microbiol Resour Announc. 2019;8. https://doi.org/10.1128/MRA.00818-19.Ceballos SJ, Yu C, Claypool JT, Singer SW, Simmons BA, Thelen MP, et al. Development and characterization of a thermophilic, lignin degrading microbiota. Process Biochem. 2017;63:193–203. https://doi.org/10.1016/j.procbio.2017.08.018.CAS 
    Article 

    Google Scholar 
    Clark Mason J, Richards M, Zimmermann W, Broda P. Identification of extracellular proteins from actinomycetes responsible for the solubilisation of lignocellulose. Appl Microbiol Biotechnol. 1988;28:276–80. https://doi.org/10.1007/BF00250455.Article 

    Google Scholar 
    Yin Y-R, Sang P, Xian W-D, Li X, Jiao J-Y, Liu L, et al. Expression and characteristics of two glucose-tolerant GH1 β-glucosidases from Actinomadura amylolytica YIM 77502T for promoting cellulose degradation. Front Microbiol. 2018;9. https://doi.org/10.3389/fmicb.2018.03149.Zimmermann W, Broda P. Utilization of lignocellulose from barley straw by actinomycetes. Appl Microbiol Biotechnol. 1989;30:103–9. https://doi.org/10.1007/BF00256005.CAS 
    Article 

    Google Scholar 
    Abe T, Masai E, Miyauchi K, Katayama Y, Fukuda M. A tetrahydrofolate-dependent O-demethylase, LigM, is crucial for catabolism of vanillate and syringate in Sphingomonas paucimobilis SYK-6. J Bacteriol. 2005;187:2030–7. https://doi.org/10.1128/JB.187.6.2030-2037.2005.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varman AM, He L, Follenfant R, Wu W, Wemmer S, Wrobel SA, et al. Decoding how a soil bacterium extracts building blocks and metabolic energy from ligninolysis provides road map for lignin valorization. Proc Natl Acad Sci USA. 2016;113:E5802–11. https://doi.org/10.1073/pnas.1606043113.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Studenik S, Vogel M, Diekert G. Characterization of an O-demethylase of Desulfitobacterium hafniense DCB-2. J Bacteriol. 2012;194:3317–26. https://doi.org/10.1128/JB.00146-12.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fahrbach M, Kuever J, Remesch M, Huber BE, Kämpfer P, Dott W, et al. Steroidobacter denitrificans gen. nov., sp. nov., a steroidal hormone-degrading gammaproteobacterium. Int J Syst Evol Microbiol. 2008;58:2215–23. https://doi.org/10.1099/ijs.0.65342-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    Nogi Y, Yoshizumi M, Hamana K, Miyazaki M, Horikoshi K. Povalibacter uvarum gen. nov., sp. nov., a polyvinyl-alcohol-degrading bacterium isolated from grapes. Int J Syst Evol Microbiol. 2014;64:2712–7. https://doi.org/10.1099/ijs.0.062620-0.CAS 
    Article 
    PubMed 

    Google Scholar 
    Sharma V, Siedenburg G, Birke J, Mobeen F, Jendrossek D, Prakash T. Metabolic and taxonomic insights into the Gram-negative natural rubber degrading bacterium Steroidobacter cummioxidans sp. nov., strain 35Y. PLoS ONE. 2018;13:e0197448. https://doi.org/10.1371/journal.pone.0197448.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reiss R, Ihssen J, Richter M, Eichhorn E, Schilling B, Thöny-Meyer L. Laccase versus laccase-like multi-copper oxidase: a comparative study of similar enzymes with diverse substrate spectra. PLoS ONE. 2013;8:e65633. https://doi.org/10.1371/journal.pone.0065633.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christopher LP, Yao B, Ji Y. Lignin biodegradation with laccase-mediator systems. Front Energy Res. 2014;2. https://doi.org/10.3389/fenrg.2014.00012.Mate DM, Alcalde M. Laccase: a multi‐purpose biocatalyst at the forefront of biotechnology. Micro Biotechnol. 2016;10:1457–67. https://doi.org/10.1111/1751-7915.12422.CAS 
    Article 

    Google Scholar 
    Sirim D, Wagner F, Wang L, Schmid RD, Pleiss J. The Laccase Engineering Database: a classification and analysis system for laccases and related multicopper oxidases. Database J Biol Databases Curation. 2011;2011. https://doi.org/10.1093/database/bar006.Fang Z, Li T, Wang Q, Zhang X, Peng H, Fang W, et al. A bacterial laccase from marine microbial metagenome exhibiting chloride tolerance and dye decolorization ability. Appl Microbiol Biotechnol. 2011;89:1103–10. https://doi.org/10.1007/s00253-010-2934-3.CAS 
    Article 
    PubMed 

    Google Scholar 
    Komori H, Miyazaki K, Higuchi Y. X-ray structure of a two-domain type laccase: a missing link in the evolution of multi-copper proteins. FEBS Lett. 2009;583:1189–95. https://doi.org/10.1016/j.febslet.2009.03.008.CAS 
    Article 
    PubMed 

    Google Scholar 
    Sherif M, Waung D, Korbeci B, Mavisakalyan V, Flick R, Brown G, et al. Biochemical studies of the multicopper oxidase (small laccase) from Streptomyces coelicolor using bioactive phytochemicals and site-directed mutagenesis. Microb Biotechnol. 2013;6:588–97. https://doi.org/10.1111/1751-7915.12068CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gunne M, Urlacher VB. Characterization of the alkaline laccase Ssl1 from Streptomyces sviceus with unusual properties discovered by genome mining. PLOS ONE. 2012;7:e52360 https://doi.org/10.1371/journal.pone.0052360CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dubé E, Shareck F, Hurtubise Y, Beauregard M, Daneault C. Decolourization of recalcitrant dyes with a laccase from Streptomyces coelicolor under alkaline conditions. J Ind Microbiol Biotechnol. 2008;35:1123–9. https://doi.org/10.1007/s10295-008-0391-0CAS 
    Article 
    PubMed 

    Google Scholar 
    Koschorreck K, Richter SM, Ene AB, Roduner E, Schmid RD, Urlacher VB. Cloning and characterization of a new laccase from Bacillus licheniformis catalyzing dimerization of phenolic acids. Appl Microbiol Biotechnol. 2008;79:217–24. https://doi.org/10.1007/s00253-008-1417-2CAS 
    Article 
    PubMed 

    Google Scholar 
    Mohammadian M, Fathi-Roudsari M, Mollania N, Badoei-Dalfard A, Khajeh K. Enhanced expression of a recombinant bacterial laccase at low temperature and microaerobic conditions: purification and biochemical characterization. J Ind Microbiol Biotechnol. 2010;37:863–9. https://doi.org/10.1007/s10295-010-0734-5CAS 
    Article 
    PubMed 

    Google Scholar 
    Ausec L, Berini F, Casciello C, Cretoiu MS, van Elsas JD, Marinelli F, et al. The first acidobacterial laccase-like multicopper oxidase revealed by metagenomics shows high salt and thermo-tolerance. Appl Microbiol Biotechnol. 2017;101:6261–76. https://doi.org/10.1007/s00253-017-8345-yCAS 
    Article 
    PubMed 

    Google Scholar 
    Ausec L, Črnigoj M, Šnajder M, Ulrih NP, Mandic-Mulec I. Characterization of a novel high-pH-tolerant laccase-like multicopper oxidase and its sequence diversity in Thioalkalivibrio sp. Appl Microbiol Biotechnol. 2015;99:9987–99. https://doi.org/10.1007/s00253-015-6843-3CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Mitogenome-wise codon usage pattern from comparative analysis of the first mitogenome of Blepharipa sp. (Muga uzifly) with other Oestroid flies

    Outcome of DNA sequencing, assembly, and validationIn this study, initially total DNA was isolated from the finely chopped, full-grown pupa of Blepharipa sp. The NanoDrop spectrophotometer (1294 ng/μl) and the Qubit fluorometer (732.8 ng/μl) both found that the concentration of total DNA in the sample at an optimum level for mitochondrial DNA enrichment. The Tape Station profile showed that the size of the fragments of the mitogenomic library were in the range of 250 to 550 bp. The complete insert size distribution ranged from 130 to 430 bp, with the combined adapter size being ~ 120 bp with mitogenome fragments. The appropriate distribution of fragments and their concentrations (~ 27.1 ng/μl) were also found to be suitable for sequencing. Sequencing through Illumina NextSeq500 yielded 4,402,752 raw reads, of which around 3,663,404 high-quality reads were retained after post-quality filtering. The final scaffolding and assembly of contigs generated a 15,080 bp single scaffold MtDNA in Blepharipa sp. (N50 = 15,080).The sequencing outcome was validated by performing PCR amplification of one of the protein-coding genes, in this case, nad6. Where PCR amplification resulted in a single band of expected amplicon size (shown in Supplementary Method Online). Sanger sequencing and subsequent alignment of these amplicons showed almost 92% sequence similarity to our assembled Blepharipa sp. nad6 gene (see Supplementary Method Online). This provided strong evidence that our mitogenome assembly is reliable and can be used for general applications of mitochondrial genes, e.g., as a biomarker. The second mitogenomic region, the control region (CR) was suggested by the reviewer. We have discussed that CRs constitute repetitive A + T regions (“AT richness of Control Region and role of sequencing method” and “Impact of repeats on different sequencing technologies and assembly method” section). One or more repetitive regions within the CR identified in certain species (e.g. fish, human) have shown undesirable effects on PCR amplification and sequencing125,126. Many organisms have segmental duplications in CR induced by the appearance of pseudogenes that PCR can co-amplify127,128,129,130,131. Due to these associated problems, researchers generally rely on protein or ribosomal RNA genes for phylogenetics instead of CRs132,133,134. In this case, we also faced problems validating the CR. The PCR and gel electrophoresis using external PCR primers did not show a desirable single band as seen for nad6. As an alternative strategy, we used two pairs of primers, CR int_fwd and CR int_rev, internal primers, with CR15fwd and CR08rev primers, to perform a two-way sequencing of each amplicon, which generated multiple bands (see Supplementary Method Online, Figs. S1, S2). The most prominent bands were subjected to sequencing and yielded two mixed sequences, the best of which exhibited nearly 54% sequence resemblance with the Blepharipa sp. control region (see Method in Supplementary Note). Further mapping of the Illumina reads with the assembly revealed that the depth of coverage across the CR was not as deep as that of protein-coding genes such as cox2, and it was also not inflated only over a repeated section of the CR. The depth over 1–112 varied from 5 to 20×, and that for the 15,025–15,080 bp was around 30×. We did observe that our reads didn’t cover a 10 bp stretch of CR around 15,030–15,040 bp (see Method in Supplementary Note and Figs. S3–S6). We believe that our sequencing and assembly experiment was able to cover the majority of CR successfully with reasonable coverage barring that 10 bp stretch. Our results corroborate with the difficulties of CR sequencing seen with other species, and while this doesn’t reflect on the quality of our whole mitogenome assembly, researchers using mitogenomic CR regions for any kind of phylogenetic inference should proceed with caution.Size and organization of mitogenome
    Blepharipa sp. mitogenome organization and structureThe newly sequenced mitochondrial genome of Blepharipa sp. is closed circular and has a size of 15,080 bp, which falls within the typical insect mitogenome size (14 to 20 kb)135,136,137. Similar to other sequenced bilaterian mitogenomes, the Blepharipa sp. mitogenome has conventional gene content, a total of 37 genes (viz. 13 PCGs, 22 tRNAs, 2 rRNAs) and an AT-rich control region (CR) (Fig. 2A)138,139,140,141. Among these, 23 genes are present on the major strand (J strand or +ve strand), while the remaining 14 genes are present in the minor strand (N strand or –ve strand). The intron-less 13 PCGs are also separately encoded by these two strands, 9 PCGs (nad2, cox1, cox2, atp8, atp6, cox3, nad3, nad6, cytb) from the J strand and 4 PCGs (nad5, nad4, nad4l, nad1) from N strand covering 6899 bp and 4300 bp respectively constituting around 74.31% of the entire mitogenome (Fig. 2). The largest PCG present in this organism is nad5 (1716 bp), and the smallest one is the atp8 (165 bp). Excluding stop codons, the J strand has 2237 codons, and the N strand has 1430 codons. Apart from cox1 (TCG) and nad1 (TTG), 11 PCGs follow the canonical “ATN” start codon. Ten PCGs of this mitogenome have “TAA or TAG” as their stop codon except for cox1, cox2, and nad4, where they end with an incomplete stop codon, a single T (Fig. 2)142. A total of 22 tRNAs are interspersed all over the entire mitogenome, ranging from 63 bp (trnT) to 72 bp (trnV) in size. The J and N strands have 14 tRNAs and 8 tRNAs, respectively, with 928 bp and 528 bp of nucleotides. Typical clover-leaf shaped secondary structures of tRNAs have been observed with a few exceptions where trnC, trnF, trnP, and trnN lack a stable TΨC loop see Supplementary Fig. S7 online). Two N-strand rRNAs with nucleotides of 1360 bp and 783 bp are transcribed individually for rrnL and rrnS (Fig. 2B).Figure 2Complete mitochondrial genome structure of Blepharipa sp.; (A) Circular Map (B) Annotation and genome organization of mitogenome. tRNAs are represented as trn followed by the IUPAC-IUB single letter amino acid codes e.g., trnI denote tRNA-Ile.Full size imageThis mitogenome has 10 gene boundaries where genes overlap with adjacent genes, varying from 1 to 8 bp in length, for a total of 35 bp. The longest overlapping sequence of 8 bp is present over the trnW and trnC genes. Likewise, the total length of all intergenic spacer sequences (excluding the control region) is 139 bp, present at 15 gene boundaries. The length of each intergenic spacer varies between 1 and 40 bp, and the longest one is located between the trnE and trnF genes. In this organism, eleven pairs of genes are located discreetly but adjacent to each other and any PCG adjacent to tRNA, ending with an incomplete stop codon (cox1-trnL2, cox2-trnK). The control region’s length of this dipteran fly is 168 bp, and the nature of this region is highly biased towards A + T content (Fig. 2).Size comparison of Oestroidea mitogenome and their genesTo better understand the mitogenome of Blepharipa sp., it has been compared with the flies of the Oestroidea superfamily (blowflies, bot flies, flesh flies, uzi flies, and relatives). Various features have been taken into account for this comparison: mitogenome size, gene sizes, gene content, and how genes are placed in each mitogenome.The mitogenome of eukaryotic organisms shows that there are significant size differences across mammals, fungi, and plants. The typical size of an animal mitogenome is near about 16 kb, a fungal mitogenome is 19–176 kb, and a plant mitogenome is far larger, with a size range of 200 to 2500 kb143. We have shown that the Blepharipa sp. whole mitogenome size (15,080 bp) is 416 bp smaller than the average Oestroidea flies mitogenome. As for the Oestroidea superfamily, D. hominis (human bot fly), an Oestridae fly has the longest mitogenome of all (16,360 bp), and A. grahami, a Calliphoridae fly, has the shortest mitogenome of all (14,903 bp). Tachinid flies have a smaller average mitogenome size (~ 15,076 bp) than the other flies in this superfamily, and the Oestridae flies have a relatively larger mitogenome (~ 16,031 bp). We observed that the size of the total PCGs, tRNAs, and rRNAs are well-maintained across this superfamily, with an average length of 11,145 bp, 1482 bp, and 2113 bp, respectively (Fig. 1A, green, yellow, and blue line, Table 1).The difference in mitogenome size in insects can be attributed to variations in the length of non-coding regions, especially the control region that differs in length as well as the pattern of sequences (Fig. 1B)104,144. In addition, based on mtDNA sequence similarity among all the Oestroidea flies, Blepharipa sp. has high similitude with the Tachinid Fly E. flavipalpis (87.83%), followed by the two hairy maggot blowflies, Chrysomya albiceps (85.51%) and C. rufifacies (85.44%). Another well-studied uzi fly, E. sorbilans has an 84.82% sequence similarity with Blepharipa sp., while Gasterophilus horse botfly has the lowest sequence similarity (~ 77%) with Blepharipa sp. (Supplementary Data 3A).Gene content and arrangementWe found that the Oestroidea mitogenome represents the reserved gene arrangement of Ecdysozoan, for which it can be easily distinguishable from other bilaterians (Lophotrochozoa and Deuterostomia)140. The mitogenome of Blepharipa sp. and other Oestroidea have three core tRNA clusters, including (1) trnI-trnQ-trnM, (2) trnW-trnC-trnY and (3) trnA-trnR-trnN-trnS1-trnE-trnF, as depicted in Figs. 1C and 2. A comparative study revealed that the Oestroidea superfamily has 4 different kinds of mitogenome arrangements (Fig. 1C). The majority of the Oestroidea flies (25 out of 36) in this study have ancestral (A) dipteran type mitogenome sequences (Table 1)145. However, there are some minor inconsistencies exist in the Calliphoridae family (blowflies), such as the insertion of extra tRNAs (trnI in the genus Chrysomya and trnV in D. hominis) or the translocation of tRNA (trnS1 in C. chinghaiensis) (Fig. 1C)21,24. Barring this, all organisms, including Blepharipa sp., follow a standard dipteran gene arrangement and have 37 genes in their respective mitogenomes (insertion of tRNA into the genus Chrysomya and D. hominis raises gene count) (Fig. 1C (i)(ii), Table 1). In the case of dipterans other than the Oestroidea superfamily, species like gall midge (Cecidomyiidae), mosquitos (Culicidae), and crane flies (Tipulidae) exhibit various rearrangements in mitochondrial tRNAs, such as the absence, inversion, translocation, and extreme truncation of certain genes (Supplementary Data 1A)146,147.Non-coding regionsControl region (CR) of Blepharipa sp. and comparison with OestroideaThis region in the metazoan mitogenome is a single sizeable non-coding sequence containing essential regulatory elements for transcription and replication initiation; it is therefore named the control region148,149. Similar to other Diptera, the CR of Blepharipa sp. is also flanked by rrnS and the trnI-trnQ-trnM gene cluster (Fig. 2). Sequence similarity with other Oestroidea superfamily species indicates that this segment is variable due to the lack of coding constraints150. The CR sequence of Blepharipa sp. 75.49% similar to another tachinid fly Elodia flavipalpis, followed by Chrysomya bezziana (71.15%) (Supplementary Data 3B). Despite its overall high variation in nucleotides, this region harbors multiple different types of repeats (e.g., tandem repeats, inverted repeats)42,151 and conserved structures namely Poly-T stretch (15 bp), [TA(A)]n-like, G(A)nT-like stretches, and poly A tail (15 bp)152,153,154(Fig. 3A). Another conserved motif, “ATTGTAAATT” we found in the CR of Blepharipa sp. and E. flavipalpis (Fig. 3A). Such conserved structures are thought to play role in the regulatory process of transcription or replication. After binding with RNA polymerase,  they keep the initiating mode of transcription or replication by preventing the transition to elongation mode without affecting its open-complex structure155,156.Figure 3Conserved non-coding regions; (A) AT rich control region Alignment of Blepharipa sp. with other two Tachinidae species. (B) Three alignments of the common overlap region between trnW-trnC, atp8-atp6 and nad4-nad4l. (C) Three alignment of the consensus gap region between trnS2-nad1 (TACTAAAHHHHAWWMH), trnE-trnF (ACTAAHWWWAATTMHHWA), nad5-trnH (WGAYADATWYTTCAY) genes of all 36 Oestroidea mitogenome (where, W = A/T, H = A/T/C, Y = T/C, D = G/T/A, M = A/C).Full size imageThe CR is also known as the AT-rich region for having the maximum proportion of A/T nucleotides (91.4% for Blepharipa sp.) than other regions of the entire mitogenome. We observed that the Tachinidae family has higher A + T content than other groups, with the highest levels in the Mulberry uzi fly, E. sorbillans (98.10%), and AT poor CR regions identified in G. intestinalis (80.80%) and G. pecorum (80.82%) (Oestridae)42 (Supplementary Data 2A). In this study, the CR of thirteen species have above 90% A + T content, and the top 3 are the tachinid flies, led by A. grahami, D. hominis and Blepharipa sp. consecutively. The CR is prone to high mutation, yet the substitution rate is low due to high A + T content and directional mutation pressure144,154. This part of the mitogenome differs significantly in length among insects, ranging from 70 bp to 13 kb, and it accounts for most of the variation in mitogenome size153. We noted that the CR size of 36 Oestroidea flies ranges from 89 to 1750 bp, of which 16, 12, and 8 species can be categorized as large ( > 800 bp), medium (200–800 bp), and small ( 5 to  0.025 to  0.005 to  More

  • in

    Ontogeny and caudal autotomy fracture planes in a large scincid lizard, Egernia kingii

    Emberts, Z., Escalante, I. & Bateman, P. W. The ecology and evolution of autotomy. Biol. Rev. 94, 1881–1896. https://doi.org/10.1111/brv.12539 (2019).Article 
    PubMed 

    Google Scholar 
    Dunoyer, L. A., Seifert, A. W. & Van Cleve, J. Evolutionary bedfellows: Reconstructing the ancestral state of autotomy and regeneration. J. Exp. Zool. Part B Mol. Dev. Evol. 336, 94–115. https://doi.org/10.1002/jez.b.22974 (2021).Article 

    Google Scholar 
    Dial, B. E. & Fitzpatrick, L. C. Lizard tail autotomy: function and energetics of postautotomy tail movement in Scincella lateralis. Science https://doi.org/10.1126/science.219.4583.391 (1983).Article 
    PubMed 

    Google Scholar 
    Arnold, E. Caudal autotomy as a defense. Biol. Reptil. 16, 235–273 (1988).
    Google Scholar 
    Bateman, P. W. & Fleming, P. A. To cut a long tail short: A review of lizard caudal autotomy studies carried out over the last 20 years. J. Zool. (Lond.) 277, 1–14 (2009).Article 

    Google Scholar 
    Woodland, W. Memoirs: Some observations on caudal autotomy and regeneration in the gecko (Hemidactylus flaviviridis, Rüppel), with notes on the tails of Sphenodon and Pygopus. J. Cell Sci. 2, 63–100 (1920).Article 

    Google Scholar 
    Alibardi, L. Morphological and Cellular Aspects of Tail and Limb Regeneration in Lizards: A Model System with Implications for Tissue Regeneration in Mammals (Springer, 2010).Book 

    Google Scholar 
    Maginnis, T. L. The costs of autotomy and regeneration in animals: A review and framework for future research. Behav. Ecol. 17, 857–872. https://doi.org/10.1093/beheco/arl010 (2006).Article 

    Google Scholar 
    Dial, B. E. & Fitzpatrick, L. C. The energetic costs of tail autotomy to reproduction in the lizard Coleonyx brevis (Sauria: Gekkonidae). Oecologia 51, 310–317. https://doi.org/10.1007/bf00540899 (1981).ADS 
    Article 
    PubMed 

    Google Scholar 
    Vitt, L. J., Congdon, J. D. & Dickson, N. A. Adaptive strategies and energetics of tail autotomy in Lizards. Ecology 58, 326–337. https://doi.org/10.2307/1935607 (1977).Article 

    Google Scholar 
    Clause, A. R. & Capaldi, E. A. Caudal autotomy and regeneration in lizards. J. Exp. Zool. 305, 965–973 (2006).Article 

    Google Scholar 
    Barr, J. I., Boisvert, C. A. & Bateman, P. W. At what cost? Trade-offs and influences on energetic investment in tail regeneration in lizards following autotomy. J. Dev. Biol. 9, 53 (2021).Article 

    Google Scholar 
    Etheridge, R. Lizard caudal vertebrae. Copeia, 699–721 (1967).Arnold, E. Evolutionary aspects of tail shedding in lizards and their relatives. J. Nat. Hist. 18, 127–169 (1984).Article 

    Google Scholar 
    Zani, P. A. Patterns of caudal-autotomy evolution in lizards. J. Zool. (Lond.) 240, 201–220 (1996).Article 

    Google Scholar 
    Russell, A. & Bauer, A. The m. caudifemoralis longus and its relationship to caudal autotomy and locomotion in lizards (Reptilia: Sauria). J. Zool. (Lond.) 227, 127–143. https://doi.org/10.1111/j.1469-7998.1992.tb04349.x (1992).Article 

    Google Scholar 
    Arnold, E. Investigating the evolutionary effects of one feature on another: Does muscle spread suppress caudal autotomy in lizards?. J. Zool. (Lond.) 232, 505–523. https://doi.org/10.1111/j.1469-7998.1994.tb01591.x (1994).Article 

    Google Scholar 
    Bellairs, A. & Bryant, S. Autotomy and regeneration in reptiles. Biol. Reptil. 15, 301–410 (1985).
    Google Scholar 
    Hoffstetter, R. & Gasc, J. P. Vertebrae and ribs of modern reptiles. Biol. Reptil. 1, 201–310 (1969).
    Google Scholar 
    Cooper, W. E. Jr. & Frederick, W. G. Predator lethality, optimal escape behavior, and autotomy. Behav. Ecol. 21, 91–96. https://doi.org/10.1093/beheco/arp151 (2009).Article 

    Google Scholar 
    Fleming, P. A., Valentine, L. E. & Bateman, P. W. Telling tails: Selective pressures acting on investment in lizard tails. Physiol. Biochem. Zool. 86, 645–658 (2013).Article 

    Google Scholar 
    Bateman, P. W., Fleming, P. A. & Rolek, B. Bite me: Blue tails as a ‘risky-decoy’defense tactic for lizards. Curr. Zool. 60, 333–337 (2014).Article 

    Google Scholar 
    Hawlena, D., Boochnik, R., Abramsky, Z. & Bouskila, A. Blue tail and striped body: Why do lizards change their infant costume when growing up?. Behav. Ecol. 17, 889–896. https://doi.org/10.1093/beheco/arl023 (2006).Article 

    Google Scholar 
    Barr, J. I., Somaweera, R., Godfrey, S. S. & Bateman, P. W. Increased tail length in the King’s skink, Egernia kingii (Reptilia: Scincidae): An anti-predation tactic for juveniles?. Biol. J. Linn. Soc. 126, 268–275 (2019).Article 

    Google Scholar 
    Pafilis, P. & Valakos, E. D. Loss of caudal autotomy during ontogeny of Balkan Green Lizard, Lacerta trilineata. J. Nat. Hist. 42, 409–419 (2008).Article 

    Google Scholar 
    Masters, C. & Shine, R. Sociality in lizards: family structure in free-living King’s Skinks Egernia kingii from southwestern Australia. Aust. Zool. 32, 377–380 (2003).Article 

    Google Scholar 
    Cury de Barros, F., Eduardo de Carvalho, J., Abe, A. S. & Kohlsdorf, T. Fight versus flight: The interaction of temperature and body size determines antipredator behaviour in tegu lizards. Anim. Behav. 79, 83–88. https://doi.org/10.1016/j.anbehav.2009.10.006 (2010).Article 

    Google Scholar 
    Storr, G. The genus Egernia (Lacertilia, Scincidae) in Western Australia. Rec. West. Aust. Mus. 6, 147–187 (1978).
    Google Scholar 
    Cogger, H. G. Reptiles and Amphibians of Australia. 7th edn, (CSIRO Publishing, 2014).Arena, P. C. & Wooller, R. D. The reproduction and diet of Egernia kingii (Reptilia : Scincidae) on Penguin Island, Western Australia. Aust. J. Zool. 51, 495–504. https://doi.org/10.1071/ZO02040 (2003).Article 

    Google Scholar 
    Dilly, M. L. Factors Affecting the Distribution and Variation in Abundance of the King’s Skink (Egernia kingii) (Gray) in Western Australia, Murdoch University (2000).Pearson, D., Shine, R. & How, R. Sex-specific niche partitioning and sexual size dimorphism in Australian pythons (Morelia spilota imbricata). Biol. J. Linn. Soc. 77, 113–125 (2002).Article 

    Google Scholar 
    Chapple, D. G. Ecology, life-history, and behaviour in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetol. Monogr. 17, 145–180. https://doi.org/10.1655/0733-1347(2003)017[0145:ELABIT]2.0.CO;2 (2003).Article 

    Google Scholar 
    Itescu, Y., Schwarz, R., Meiri, S., Pafilis, P. & Clegg, S. Intraspecific competition, not predation, drives lizard tail loss on islands. J. Anim. Ecol. 86, 66–74. https://doi.org/10.1111/1365-2656.12591 (2017).Article 
    PubMed 

    Google Scholar 
    Siliceo-Cantero, H., Zúñiga-Vega, J., Renton, K. & Garcia, A. Assessing the relative importance of intraspecific and interspecific interactions on the ecology of Anolis nebulosus lizards from an island vs. a mainland population. Herpetol. Conserv. Biol. 12, 673–682 (2017).
    Google Scholar 
    Langkilde, T. & Shine, R. Interspecific conflict in lizards: Social dominance depends upon an individual’s species not its body size. Austral Ecol. 32, 869–877 (2007).Article 

    Google Scholar 
    Pafilis, P., Pérez-Mellado, V. & Valakos, E. Postautotomy tail activity in the Balearic lizard, Podarcis lilfordi. Naturwissenschaften 95, 217–221 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Browne, C. King’s Skinks (Egernia kingii) Abundance and Juvenile Survival Unaffected by Temporal Change or Presence of Invasive BLACK Rats (Rattus rattus) on Penguin Island, Western Australia, The University of Western Australia (2014).Langton, J. Population Biology of the King’s Skink (Egernia kingii) (Gray) on Penguin Island, Western Australia, Murdoch University (2000).Arena, P. Aspects of the Biology of the King’s Skink Egernia kingii (Gray), Murdoch University (1986).Pafilis, P., Meiri, S., Foufopoulos, J. & Valakos, E. Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften 96, 1107–1113. https://doi.org/10.1007/s00114-009-0564-3 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Martín, J. & Salvador, A. Tail loss reduces mating success in the Iberian rock-lizard, Lacerta monticola. Behav. Ecol. Sociobiol. 32, 185–189 (1993).Article 

    Google Scholar 
    Salvador, A., Martin, J. & López, P. Tail loss reduces home range size and access to females in male lizards, Psammodromus algirus. Behav. Ecol. 6, 382–387. https://doi.org/10.1093/beheco/6.4.382 (1995).Article 

    Google Scholar 
    Smyth, M. Changes in the fat scores of the skinks Morethia boulengeri and Hemiergis peronii (Lacertilia). Aust. J. Zool. 22, 135–145. https://doi.org/10.1071/ZO9740135 (1974).Article 

    Google Scholar 
    Wilson, R. S. & Booth, D. Effect of tail loss on reproductive output and its ecological significance in the skink Eulamprus quoyii. J. Herpetol. 32, 128–131 (1998).Article 

    Google Scholar 
    Fox, S. F. & McCoy, J. K. The effects of tail loss on survival, growth, reproduction, and sex ratio of offspring in the lizard Uta stansburiana in the field. Oecologia 122, 327–334. https://doi.org/10.1007/s004420050038 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Dial, B. E. & Fitzpatrick, L. C. Predator escape success in tailed versus tailless Scinella lateralis (Sauria: Scincidae). Anim. Behav. 32, 301–302 (1984).Article 

    Google Scholar 
    Downes, S. & Shine, R. Why does tail loss increase a lizard’s later vulnerability to snake predators?. Ecology 82, 1293–1303 (2001).Article 

    Google Scholar 
    Bernardo, J. & Agosta, S. J. Evolutionary implications of hierarchical impacts of nonlethal injury on reproduction, including maternal effects. Biol. J. Linn. Soc. 86, 309–331 (2005).Article 

    Google Scholar 
    Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. Biol. Sci. Ser. B 272, 2627–2634. https://doi.org/10.1098/rspb.2005.3251 (2005).Article 

    Google Scholar 
    Steindler, L. A., Blumstein, D. T., West, R., Moseby, K. E. & Letnic, M. Exposure to a novel predator induces visual predator recognition by naïve prey. Behav. Ecol. Sociobiol. 74, 102. https://doi.org/10.1007/s00265-020-02884-3 (2020).Article 

    Google Scholar 
    Blumstein, D. T. Moving to suburbia: Ontogenetic and evolutionary consequences of life on predator-free islands. J. Biogeogr. 29, 685–692. https://doi.org/10.1046/j.1365-2699.2002.00717.x (2002).Article 

    Google Scholar 
    Sih, A. et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621 (2010).Article 

    Google Scholar 
    Cooper, J. W. E.; Blumstein, D. T. Escaping From Predators: An Integrative View of Escape Decisions. (Cambridge University Press, 2015).Cox, J. G. & Lima, S. L. Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680 (2006).Article 

    Google Scholar 
    Blumstein, D. T. & Daniel, J. C. The loss of anti-predator behaviour following isolation on islands. Proc. R. Soc. Biol. Sci. Ser. B 272, 1663–1668 (2005).Article 

    Google Scholar 
    Blumstein, D. T., Daniel, J. C. & Springett, B. P. A test of the multi-predator hypothesis: Rapid loss of antipredator behavior after 130 years of isolation. Ethology 110, 919–934 (2004).Article 

    Google Scholar 
    Jolly, C. J., Webb, J. K. & Phillips, B. L. The perils of paradise: An endangered species conserved on an island loses antipredator behaviours within 13 generations. Biol. Lett. 14, 20180222 (2018).Article 

    Google Scholar 
    Cooper, W. E., Pérez-Mellado, V. & Vitt, L. J. Ease and effectiveness of costly autotomy vary with predation intensity among lizard populations. J. Zool. 262, 243–255 (2004).Article 

    Google Scholar 
    Elwood, C., Pelsinski, J. & Bateman, B. Anolis sagrei (Brown Anole). Voluntary autotomy. Herpetol. Rev. 43, 642–642 (2012).
    Google Scholar 
    Slotopolsky, B. Beiträge zur Kenntnis der Verstümmelungs-und Regenerationsvorgänge am Lacertilierschwanze. Zool. Jahrb. Abt. Anat. Ontog. Tiere 43, 39–48 (1922).
    Google Scholar  More