More stories

  • in

    Malayan kraits (Bungarus candidus) show affinity to anthropogenic structures in a human dominated landscape

    Study siteThe study area covers the campus of Suranaree University of Technology (SUT) and its surrounding landscape in Muang, Nakhon Ratchasima, Thailand (14.879° N, 102.018° E; Fig. 1). The university campus covers about 11.2 km2, and comprises a matrix of human modified lands interspersed with mixed deciduous forest fragments (at the onset of this study we identified there were 37 mixed deciduous forest fragments on campus, mean = 7.36 ± 1.48 ha, range = 0.45–45.6 ha [note, “±” is used for standard error throughout the text]). More than 15,000 students are enrolled at SUT, and there are numerous multi-story classrooms, laboratory and workshop buildings, residential housing, parking areas, eating and sports facilities, an elementary school, and a large hospital on the university campus. During the first term of the 2019 school year, 7622 students, as well as numerous SUT staff, lived in on-campus residential areas. The landscape surrounding the university is primarily dominated by agriculture, though there are also patches of less-disturbed areas as well as several densely populated villages and suburban housing divisions among the monoculture plots of upland crops (e.g., cassava, maize, and eucalyptus).Figure 1Study site map illustrating the land-use types spanning the area where the Malayan kraits (Bungarus candidus) were tracked in Muang Nakhon Ratchasima, Nakhon Ratchasima province, Thailand. Map created using QGIS v.3.8.2 (https://qgis.org/) in combination with Inkscape v.1.1.0 (https://inkscape.org/).Full size imageThe study site is located within the Korat Plateau region with an altitude range of 205–285 m above sea level. Northeast Thailand has a tropical climate, and the average daily temperature from 1 January 2018 to 31 December 2020 in Muang Nakhon Ratchasima was 28.29 °C, with daily averages ranging from 19.3 to 34.1 °C38. The region receives an average annual rainfall ranging from 1270 to 2000 mm39. There are three distinct seasons in northeast Thailand: cold, wet, and hot, each are classified by annual changes in temperature and rainfall. Cold season is typically between mid-October and mid-February, hot season is generally from mid-February to May, while the highly unpredictable rainfall of the wet season is predominantly concentrated between the months May to October39,40.Due to the representation of agriculture, semi-urban, and suburban areas with patches of more natural areas all within a relatively small area, we determined the university campus provided an ideal setting to examine how land-use features and human activity influence the movements of B. candidus. Additionally, past studies have indicated northeast Thailand hosts the most bites by B. candidus in Thailand29,33, making sites like ours ideal.Study animalsWe opportunistically sampled Malayan kraits captured as a result of notifications from locals and ad-hoc encounters during transit due to low detectability in visual encounter surveys, in addition to those discovered through unstandardized visual encounter surveys. Upon capture, we collected morphometric data, including snout-vent length (SVL), tail length (TL), mass, and sex (Table 1, Supp. Table 1). We measured body lengths with a tape measure, measured body mass with a digital scale, and determined sex via cloacal probing, all while the snakes were anesthetized via inhaling vaporized isoflurane. We then housed individuals with an SVL > 645 mm and mass > 50 g in plastic boxes (with refugia and water) prior to surgical transmitter implantation by a veterinarian from the Nakhon Ratchasima Zoo. We attempted to minimize the time snakes were in captivity awaiting implantation; however, delays arose due to the veterinarian’s availability, the snake being mid-ecdysis, or the snake having a bolus that needed to pass through the digestive tract before implantation (n = 21 implantations, mean = 5.02 ± 0.61 days, range = 0.60–13.02 days). The Nakhon Ratchasima Zoo veterinarian implanted radio transmitters (1.8 g BD-2 or 3.6 g SB-2 Holohil Inc, Carp, Canada) into the coelomic cavity using procedures described by Reinert and Cundall41, while the snake was anesthetized. We assigned each individual an ID according to sex and individual detection number (e.g., M02 = a male was the second B. candidus individual documented during the study). We released the implanted individuals as close as possible to their capture locations (mean = 65.31 m ± 13.7 m, range = 0–226.42 m), though on six occasions we moved individuals ≥ 100 m because the individual came from either residential areas or a busy road (all but one were moved  800 mm; thus, nine of the males were adults and four were juveniles (though two of the males had an SVL > 720 mm, and therefore likely sub-adults). The single telemetered female was an adult.Individual tracking durations varied (mean = 106.46 ± 15.36 days, range = 28.5–222.77 days; Supp. Fig. 1), as many individuals were lost due to unexpected premature transmitter failures (n = 5) or unsuccessful recapture efforts due to individuals sheltering under large buildings as the transmitter reached the end of its battery life (n = 4). We only recorded one confirmed mortality in the study, M01, who was killed by a motorized vehicle when crossing a road (n = 1). Another three individuals were lost due to unknown reasons, which may have been due to premature transmitter failure, mortality, or the animal moving beyond radio signal despite extensive search efforts. Thus, we only successfully recaptured and re-implanted five individuals (M01 once, M02 twice, M07 once, M27 once, and M33 twice). Transmitter batteries generally lasted approximately 90–110 days, so we aimed to replace transmitters after ≥ 90 days of use. At the end of the study, only one individual was successfully recaptured to remove the transmitter.Data collectionWe used very high frequency radio-telemetry to locate each telemetered individual on average every 24.20 h (SE ± 0.41, 0.17–410.0 h; see Supp. Fig. 2 for distribution of tracking time lags). We aimed to locate each individual’s shelter locations once each day during the daylight (06:00–18:00 h); however, we were occasionally (n = 34 days) unable to locate a snake for several consecutive days when we were unable to obtain radio signal due to an individual having moved far away or deep underneath a large structure. There were also a few occasions where we were unable to track snakes due to prolonged and heavy rainfall (n = 4 days), as the moisture damages equipment, or other reasons (n = 4 days). We additionally located snakes nocturnally (18:00–06:00 h) ad hoc and in an attempt to observe nocturnal behaviors and movement pathways when animals were active. We defined fixes as any time a telemetered individual was located, and relocations (i.e., moves) as the occasions where we located an individual > 5 m from its previous known location.Each day we manually honed in on signal via a radio receiver to locate individuals (as described by Amelon et al.42, and recorded locations in Universal Transverse Mercator (UTM; 47 N World Geodetic System 84) coordinate reference system with a handheld global positioning system (GPS) unit (Garmin 64S GPS, Garmin International, Inc., Olathe, Kansas) directly above the sheltered snake. We generally approached within one meter of sheltering snakes during daylight to precisely record shelter locations and identify shelter type. Since we could not visually confirm snake locations, we methodically eliminated all possible locations where the snake could possibly be while at close range with the minimum possible gain on the radio receiver.Telemetered kraits tended to be inactive and sheltering underground during the daylight, thus we were confident that our diurnal location checks would not affect their movements. However, in some cases we resorted to determining an individual’s location via triangulation, where multiple lines cast from different vantage points towards the snake intersect on the snake’s location on the GPS, allowing us to determine the animal’s coordinate location from approximately 10–30 m away. This helped ensure that we recorded locations with greater accuracy when snakes sheltered underneath large buildings, as it allowed us to move away from large structures that hindered the GPS accuracy. This technique was also implemented during some nocturnal location checks when a snake was believed to be active among dense vegetation, in an attempt to prevent disturbance of the animals’ natural behavior. While we did hope to gain visual observations of active individuals during the night, we exercised more caution during nocturnal location checks, typically maintaining a minimum distance of approximately 5 m in attempt to lessen the chances of disturbing an active individual’s behavior. If the animal was active we recorded the animal’s observed behavioral state (i.e., moving, feeding, or foraging). When the radio signal was stable and the individual was not visible, we recorded the animal’s behavior as “sheltering”. We strived for an accuracy of  5 m difference), and land-use type (e.g., mixed deciduous forest, human-settlement, semi-natural area, agriculture, plantation; see Supp. Figs. 3 and 4 for photos of land-use types), behavior (e.g., sheltering, moving, foraging, or feeding), and shelter type (e.g., anthropogenic, burrow, or unknown, note we also recorded if we suspected the shelter to be part of a termite tunnel complex due to a close proximity to a visible termite mound; Supp. Fig. 5).During each location check we recorded the straight-line distance between the current and previous locations (distance moved/step length) with the GPS device. We then used step-lengths to summarize their movements by estimating the mean daily displacement (MDD; the total distance moved divided by the number of days the snake was located) and mean movement distance (MMD; the mean relocation distance, excludes distances ≤ 5). In order to limit biases due to some snakes being located multiple times within a given day/night, we limited our sample for estimating MMD and MDD to only include a single location per day. This was accomplished by manually removing “extra” nocturnal location checks that occurred within the same day, making sure to have all shelter relocations present within the dataset. When calculating MDD, we used the total number of daily location checks rather than the number of days between the individual’s tracking start and stop date since there were some days where individuals were not tracked. We also used the same one location check per day dataset to calculate movement/relocation probabilities and to examine each individual’s MMD, MDD, and relocation probability for the overall tracking duration as well as for each season.When feasible, we positioned a Bushnell (Bushnell Corporation, Overland Park, Kansas) time lapse field camera (Trophy Cam HD Essential E3, Model:119837) with infrared night capability on a tripod spaced 2–5 m from occupied shelter sites. We positioned the cameras so that we may gather photos of the focal snake as it exited the shelter site and/or behaviors exhibited near the shelter. We programmed the cameras using a combined setting, including field scan, which continuously captured one photo every minute, along with a motion sensor setting, which took photos upon movement trigger outside of the regular 1-min intervals.Space use and site fidelityAll analyses and most visualizations were done in R v.4.0.5 using RStudio v.1.4.1106 43,44. We attempted to estimate home ranges for the telemetered B. candidus individuals using autocorrelated kernel density estimates (AKDEs) using R package ctmm v.0.6.045,46 in order to better understand the spatial requirements of B. candidus. However, examination of the variograms revealed that the majority of the variograms had not fully stabilized (i.e., limited evidence of range stability in our sample), and many individuals had extremely low effective sample sizes (21.82 ± 9.75, range = 1.49–135.75; Supp. Table 4). Therefore, we do not report home ranges in this text, as the AKDE estimates would violate the assumption of range residency and either underestimate or misrepresent B. candidus spatial requirements. We also examined the speed estimates resulting from fitted movement models. Resulting variograms and tentative home range estimates are included in a supplementary file for viewing only (Supp. Fig. 6, Supp. Table 4). The original code is from Montaño et al.47.Since our data was not sufficient to estimate home range size for the telemetered B. candidus, we instead used Dynamic Brownian Bridge Movement Models (dBBMMs) with the R package move v.4.0.648 to estimate within study occurrence distributions. We caution readers that these are not home range estimates but instead modeling the potential movement pathways animals could have traversed49. Use of dBBMMs not only allows us to estimate occurrence distributions for each individual, thus helping us better understand the animal’s movement pathways and resource use, but it also allows us to examine movement patterns through dBBMM derived motion variance50,51. We selected a window size of 19 and margin size of 5, to catch short resting periods with the margin, while the window size of 19 is long enough to get a valid estimate of motion variance when the animals exhibit activity/movement. Contours however are somewhat arbitrary; therefore, we used three different contours levels (90%, 95%, 99%) to estimate dBBMM occurrence distributions (using R packages adehabitatHR v.0.4.19, and rgeos v.0.5.5), and show the sensitivity to contour choice52,53.All movement data, either including initial capture locations or beginning with the first location check ~ 24 h post release, was used for production of both the AKDEs and dBBMMs for each individual. We also estimated dBBMM occurrence distributions for each telemetered individual with the exception of M29, which only made three small moves within a burrow complex during the short time he was radio-tracked before transmitter failure.We compared space use estimates to two previously published B. candidus tracking datasets34,36, and one unpublished dataset shared on the Zenodo data repository54, all originating from the Sakaerat Biosphere Reserve (approximately 41 km to the south of our study site): two adult males from within the forested area of the reserve [one tracked every 27.8 ± 0.99 h over a period of 103 days, the other tracked every 38.63 ± 11.2 h over a period of 30.58 days]34,54, and a juvenile male from agriculture on a forest boundary [tracked every 50.19 ± h for 66.91 days]36. The previous studies on B. candidus only tracked the movements of a single individual each, had coarser tracking regimes, and used traditional—fundamentally flawed methods55,56—to estimate space use34,36. Therefore, we ran dBBMMs with these previous datasets using the same window (19) and margin size (5).To quantify site reuse and time spent at sites (residency time) we used recursive analysis with the R package recurse v.1.1.257. We defined each site as a circular area with a radius of 5 m around each unique location (matching the targeted GPS accuracy). Then we calculated each individual’s overall number of relocations, each individual’s total number of relocations to each site, and each individual’s site revisit frequency and residency time at each unique site. Then we plotted revisited locations on a land-use map with space use estimates (95% and 99% dBBMM) in an attempt to help identify and highlight activity centers for telemetered individuals (see Supp. Figs. 7–13). All maps were created using Quantum Geographic Information System (QGIS v.3.8.2).Habitat selectionWe used Integrated Step Selection Function models (ISSF) to examine the influence of land-use features on the movements of B. candidus at both the individual and population levels. We included movement data from all male individuals that used more than one habitat feature in our ISSF analysis. Therefore, we excluded F16 and M29 who both only used settlement habitat. Excluding M29 was justified by the individual having been tracked for the shortest duration (19 days) and had the fewest number of moves (n = 3), thus there were not enough relocations for ISSF models to work effectively. Using modified code from Smith et al.51 that used ISSF with Burmese python radio-telemetry data, we used the package amt v.0.1.458 to run ISSF for each individual, with Euclidean distance to particular land-use features (natural areas, agriculture, settlement, buildings, and roads) to determine association or avoidance of features. Cameron Hodges created all land-use shape files in QGIS by digitizing features from satellite imagery and verified all questionable satellite land-use types via on-ground investigation.The semi-natural areas, plantations, mixed deciduous forest and water bodies (such as irrigation canals and ponds which have densely vegetated edges) were all combined into a single layer of less-disturbed habitats which we refer to as “natural areas”. All feature raster layers were then converted into layers with a gradient of continuous values of Euclidean distances to the land-use features, and were inverted in order to avoid zero-inflation of distance to feature values and to make the resulting model directional effects easier to more intuitive. We were able to generate 200 random steps per each observed step (following Smith et al.51), due to the coarse temporal resolution of manually collected radio-telemetry data (i.e., we were not computational limited when deciding the number of random locations). Higher numbers of random steps are preferable as they can aid in detecting smaller effects and rarer landscape features59.To investigate individual selection, we created nine different models testing for association to habitat features, with one being a null model which solely incorporated step-length and turning angle to predict movement60, five examining land-use features individually (agriculture, buildings, settlement, natural areas, roads), and the other three being multi-factor models. Each model considers distance to a land-use variable, step-length, and turn-angle as an aspect of the model. After running each of the nine models for each individual, we then examined the AIC for each model, point estimates (with lower and upper confidence intervals), and p-values in order to identify the best models for each individual and determine the strongest relationships and trends among the samples. We considered models with ∆ AIC  More

  • in

    Name that animal: my DNA detector

    In this picture, taken in February at Copenhagen Zoo, I’m holding a vacuum device equipped with a tiny fan and filter. The devices — we call them air samplers — are designed to collect DNA samples from the air. We deployed three samplers at the zoo: one in a stable with two okapi (Okapia johnstoni) and two duikers, one in a rainforest house and one outside, near an exhibit of animals that live in the African savannah.At best, we had hoped to detect nearby animals in small enclosures — an okapi in the stable, for instance. But as we reported in Current Biology, the devices outperformed our expectations (C. Lynggaard Curr. Biol. 32, 701–707; 2022). They picked up identifiable DNA from 49 vertebrates, including guppies in the rainforest pool, ostriches and giraffes in the savannah area, and even cats and dogs in the park next door. Interestingly, we didn’t get any signal from turtles in the rainforest house. Maybe turtles mostly keep their DNA to themselves.Our analysis ultimately found that the sampler could detect animals from nearly 200 metres away. The giraffe in the picture is standing much closer than is necessary for collection of a sample.Airborne DNA is all around us. Birds release skin cells when they flap their wings. Saliva from all sorts of animals can become airborne. Animals release DNA when they defecate. In November 2021, I received a grant to start a research group whose goal is to collect airborne DNA in nature. This approach could transform conservation biology and species monitoring. We could detect rare animals and get a better understanding of diversity without disturbing an environment.We have so many lines of inquiry in this work. The location of the samplers, the rates of air flow, the time, the best methods for sorting DNA from the sample — we’re still trying to work all of these out. We hadn’t expected that the zoo experiment would ever work, so we’re scrambling to plan the next steps. It’s an exciting time. More

  • in

    Pesticide risk to managed bees during blueberry pollination is primarily driven by off-farm exposures

    Ollerton, J. Pollinators & Pollination: Nature and Society (Pelagic Publishing, 2021).
    Google Scholar 
    Delaplane, K. S. Crop pollination By Bees: Evolution, Ecology, Conservation, and Management (CABI, 2021).
    Google Scholar 
    Aizen, M. A., Garibaldi, L. A., Cunningham, S. A. & Klein, A. M. Long-term global trends in crop yield and production reveal no current pollination shortage but increasing pollinator dependency. Curr. Biol. 18, 1572–1575 (2008).CAS 
    PubMed 

    Google Scholar 
    Koh, I. et al. Modeling the status, trends, and impacts of wild bee abundance in the United States. Proc. Natl. Acad. Sci. 113, 140–145 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jordan, A., Patch, H. M., Grozinger, C. M. & Khanna, V. Economic dependence and vulnerability of United States agricultural sector on insect-mediated pollination service. Environ. Sci. Technol. 55, 2243–2253 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Biddinger, D. J. & Rajotte, E. G. Integrated pest and pollinator management: Adding a new dimension to an accepted paradigm. Curr. Opin. Insect Sci. 10, 204–209 (2015).PubMed 

    Google Scholar 
    Egan, P. A., Dicks, L. V., Hokkanen, H. M. T. & Stenberg, J. A. Delivering integrated pest and pollinator management (IPPM). Trends Plant Sci. 25, 577–589 (2020).CAS 
    PubMed 

    Google Scholar 
    Flöhr, A., Stenberg, J. A. & Egan, P. A. The Joint Economic Impact Level (jEIL): A Decision Metric for Integrated Pest and Pollinator Management. In Integrative Biological Control 17–38 (Springer, 2020).
    Google Scholar 
    Krupke, C. H., Hunt, G. J., Eitzer, B. D., Andino, G. & Given, K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 7, e29268 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Traynor, K. S. et al. In-hive pesticide exposome: Assessing risks to migratory honey bees from in-hive pesticide contamination in the Eastern United States. Sci. Rep. 6, 1–16 (2016).
    Google Scholar 
    Mullin, C. A. et al. High levels of miticides and agrochemicals in North American apiaries: Implications for honey bee health. PLoS ONE 5, e9754 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ravoet, J., Reybroeck, W. & de Graaf, D. C. Pesticides for apicultural and/or agricultural application found in belgian honey bee wax combs. Bull. Environ. Contam. Toxicol. 94, 543–548 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liang, H. C., Bilon, N. & Hay, M. T. Analytical methods for pesticide residues. Water Environ. Res. 86, 2132–2155 (2014).CAS 

    Google Scholar 
    Calatayud-Vernich, P., Calatayud, F., Simó, E. & Picó, Y. Efficiency of QuEChERS approach for determining 52 pesticide residues in honey and honey bees. MethodsX 3, 452–458 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Fernandez, M., Pico, Y. & Manes, J. Analytical methods for pesticide residue determination in bee products. J. Food Prot. 65, 1502–1511 (2002).CAS 
    PubMed 

    Google Scholar 
    Vázquez, P. P., Lozano, A., Uclés, S., Ramos, M. M. G. & Fernández-Alba, A. R. A sensitive and efficient method for routine pesticide multiresidue analysis in bee pollen samples using gas and liquid chromatography coupled to tandem mass spectrometry. J. Chromatogr. A 1426, 161–173 (2015).PubMed 

    Google Scholar 
    Stoner, K. A., Cowles, R. S., Nurse, A. & Eitzer, B. D. Tracking pesticide residues to a plant genus using palynology in pollen trapped from honey bees (Hymenoptera: Apidae) at ornamental plant nurseries. Environ. Entomol. 48, 351–362 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Colwell, M. J., Williams, G. R., Evans, R. C. & Shutler, D. Honey bee-collected pollen in agro-ecosystems reveals diet diversity, diet quality, and pesticide exposure. Ecol. Evol. 7, 7243–7253 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Favaro, R. et al. Botanical origin of pesticide residues in pollen loads collected by honeybees during and after apple bloom. Front. Physiol. 10, 1069 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Tosi, S., Costa, C., Vesco, U., Quaglia, G. & Guido, G. A 3-year survey of Italian honey bee-collected pollen reveals widespread contamination by agricultural pesticides. Sci. Total Environ. 615, 208–218 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chaimanee, V., Chantawannakul, P., Khongphinitbunjong, K., Kamyo, T. & Pettis, J. S. Comparative pesticide exposure to Apis mellifera via honey bee-collected pollen in agricultural and non-agricultural areas of Northern Thailand. J. Apic. Res. 58, 720–729 (2019).
    Google Scholar 
    Friedle, C., Wallner, K., Rosenkranz, P., Martens, D. & Vetter, W. Pesticide residues in daily bee pollen samples (April–July) from an intensive agricultural region in Southern Germany. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-020-12318-2 (2021).Article 

    Google Scholar 
    Urbanowicz, C. et al. Low maize pollen collection and low pesticide risk to honey bees in heterogeneous agricultural landscapes. Apidologie 50, 379–390 (2019).
    Google Scholar 
    Stoner, K. A. & Eitzer, B. D. Using a hazard quotient to evaluate pesticide residues detected in pollen trapped from honey bees (Apis mellifera) in Connecticut. PLoS ONE 8, e77550 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McArt, S. H., Fersch, A. A., Milano, N. J., Truitt, L. L. & Böröczky, K. High pesticide risk to honey bees despite low focal crop pollen collection during pollination of a mass blooming crop. Sci. Rep. 7, 1–10 (2017).
    Google Scholar 
    Calatayud-Vernich, P., Calatayud, F., Simó, E., Pascual Aguilar, J. A. & Picó, Y. A two-year monitoring of pesticide hazard in-hive: High honey bee mortality rates during insecticide poisoning episodes in apiaries located near agricultural settings. Chemosphere 232, 471–480 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    García-Valcárcel, A. I., Martínez-Ferrer, M. T., Campos-Rivela, J. M. & Hernando Guil, M. D. Analysis of pesticide residues in honeybee (Apis mellifera L.) and in corbicular pollen: Exposure in citrus orchard with an integrated pest management system. Talanta 204, 153–162 (2019).PubMed 

    Google Scholar 
    Fulton, C. A. et al. An assessment of pesticide exposures and land use of honey bees in Virginia. Chemosphere 222, 489–493 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Calatayud-Vernich, P., Calatayud, F., Simó, E. & Picó, Y. Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure. Environ. Pollut. 241, 106–114 (2018).CAS 
    PubMed 

    Google Scholar 
    Ostiguy, N. et al. Honey bee exposure to pesticides: A four-year nationwide study. Insects 10, 13 (2019).PubMed Central 

    Google Scholar 
    Seeley, T. D. The honey bee colony as a superorganism. Am. Sci. 77, 546–553 (1989).ADS 

    Google Scholar 
    Thompson, H. M. & Maus, C. The relevance of sublethal effects in honey bee testing for pesticide risk assessment. Pest Manag. Sci. 63, 1058–1061 (2007).CAS 
    PubMed 

    Google Scholar 
    Sponsler, D. B. & Johnson, R. M. Mechanistic modeling of pesticide exposure: The missing keystone of honey bee toxicology. Environ. Toxicol. Chem. 36, 871–881 (2017).CAS 
    PubMed 

    Google Scholar 
    Gradish, A. E. et al. Comparison of pesticide exposure in honey bees (Hymenoptera: Apidae) and Bumble Bees (Hymenoptera: Apidae): implications for risk assessments. Environ. Entomol. 48, 12–21 (2019).PubMed 

    Google Scholar 
    Tosi, S. & Nieh, J. C. Lethal and sublethal synergistic effects of a new systemic pesticide, flupyradifurone (Sivanto®), on honeybees. Proc. R. Soc. B 286, 20190433 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iverson, A., Hale, C., Richardson, L., Miller, O. & McArt, S. Synergistic effects of three sterol biosynthesis inhibiting fungicides on the toxicity of a pyrethroid and neonicotinoid insecticide to bumble bees. Apidologie 50, 733 (2019).CAS 

    Google Scholar 
    Siviter, H. et al. Agrochemicals interact synergistically to increase bee mortality. Nature 596, 389–392 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Graham, K. K. et al. Identities, concentrations, and sources of pesticide exposure in pollen collected by managed bees during blueberry pollination. Sci. Rep. 11, 1–13 (2021).
    Google Scholar 
    EFSA. Guidance on the risk assessment of plant protection products on bees (Apis mellifera, Bombus spp. and solitary bees). EFSA J. https://doi.org/10.2903/j.efsa.2013.3295 (2013).Article 

    Google Scholar 
    EPA. Guidance for assessing pesticide risks to bees. (2014).USDA APHIS. Wax Sampling Protocol for the National Honey Bee Disease Survey. (2018).European Committee for Standardization. Foods of plant origin – Multimethod for the determination of pesticide residues using GC- and LC-based analysis following acetonitrile extraction/partitioning and clean-up by dispersive SPE – Modular QuEChERS-method. (2018).Couvillon, M. J. et al. Honey bee foraging distance depends on month and forage type. Apidologie 46, 61–70 (2015).
    Google Scholar 
    Knight, M. E. et al. An interspecific comparison of foraging range and nest density of four bumblebee (Bombus) species. Mol. Ecol. 14, 1811–1820 (2005).CAS 
    PubMed 

    Google Scholar 
    McArt, S. H., Urbanowicz, C., Mccoshum, S., Irwin, R. E. & Adler, L. S. Landscape predictors of pathogen prevalence and range contractions in US bumblebees. Proc. R. Soc. B 284, 20172181 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    USDA NASS. USDA National Agricultural Statistics Service Cropland Data Layer. (2018).R Core Team. R: A Language and Environment for Statistical Computing. (2019).GraphPad Software. GraphPad Prism. (2017).Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models. (2019).Barton, K. MuMIn: Multi-Model Inference. (2019).Fox, J. & Weisburg, S. An {R} Companion to Applied Regression. (2011).Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2015).
    Google Scholar 
    Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).MathSciNet 
    PubMed 
    MATH 

    Google Scholar 
    Fox, J. RcmdrMisc: R Commander Miscellaneous Functions. (2020).Bhattacharya, M., Primack, R. B. & Gerwein, J. Are roads and railroads barriers to bumblebee movement in a temperate suburban conservation area?. Biol. Conserv. 109, 37–45 (2003).
    Google Scholar 
    Fragoso, F. P. & Brunet, J. Patch fidelity of honey bees and bumble bees differs and is affected by spatial configuration. In Entomological Society of America Annual Meeting, Plant-Insect Ecosystems (2021).Javorek, S. K., Mackenzie, K. E. & Vander Kloet, S. P. Comparative (Hymenoptera: Apoidea) on Lowbush Blueberry (Ericaceae: Vaccinium angustifolium). Ann. Entomol. Soc. Am. 95, 345–351 (2002).
    Google Scholar 
    Sandrock, C. et al. Impact of chronic neonicotinoid exposure on honeybee colony performance and queen supersedure. PLoS ONE 9, e103592 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, S. C., Kozii, I. V., Koziy, R. V., Epp, T. & Simko, E. Comparative chronic toxicity of three neonicotinoids on New Zealand packaged honey bees. PLoS ONE 13, e0190517 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Degrandi-Hoffman, G., Graham, H., Ahumada, F., Smart, M. & Ziolkowski, N. The economics of honey bee (Hymenoptera: Apidae) management and overwintering strategies for colonies used to pollinate almonds. J. Econ. Entomol. https://doi.org/10.1093/jee/toz213 (2019).Article 
    PubMed 

    Google Scholar 
    Biddinger, D. J. et al. Comparative toxicities and synergism of apple orchard pesticides to Apis mellifera (L.) and Osmia cornifrons (Radoszkowski). PLoS ONE 8, e72587 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, R. M., Dahlgren, L., Siegfried, B. D. & Ellis, M. D. Acaricide, fungicide and drug Interactions in Honey Bees (Apis mellifera). PLoS ONE 8, e54092 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jaffe, B. D., Lois, A. N. & Guédot, C. Effect of fungicide on pollen foraging by honeybees (Hymenoptera: Apidae) in cranberry differs by fungicide type. J. Econ. Entomol. 112, 499–503 (2019).CAS 
    PubMed 

    Google Scholar 
    Sanchez-Bayo, F. & Goka, K. Pesticide residues and bees: A risk assessment. PLoS ONE 9, e94482 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Y., Zhu, Y. C. & Li, W. Interaction patterns and combined toxic effects of acetamiprid in combination with seven pesticides on honey bee (Apis mellifera L.). Ecotoxicol. Environ. Saf. 190, 110100 (2020).CAS 
    PubMed 

    Google Scholar 
    Wang, Y., Zhu, Y. C. & Li, W. Comparative examination on synergistic toxicities of chlorpyrifos, acephate, or tetraconazole mixed with pyrethroid insecticides to honey bees (Apis mellifera L.). Environ. Sci. Pollut. Res. 27, 6971–6980 (2019).
    Google Scholar 
    Sgolastra, F. et al. Synergistic mortality between a neonicotinoid insecticide and an ergosterol-biosynthesis-inhibiting fungicide in three bee species. Pest Manag. Sci. 73, 1236–1243 (2017).CAS 
    PubMed 

    Google Scholar 
    Azpiazu, C. et al. Chronic oral exposure to field-realistic pesticide combinations via pollen and nectar: effects on feeding and thermal performance in a solitary bee. Sci. Reports 9, 1–11 (2019).CAS 

    Google Scholar 
    Becher, M. A., Hildenbrandt, H., Hemelrijk, C. K. & Moritz, R. F. A. Brood temperature, task division and colony survival in honeybees: A model. Ecol. Modell. 221, 769–776 (2010).
    Google Scholar 
    Zhu, W., Schmehl, D. R., Mullin, C. A. & Frazier, J. L. Four common pesticides, their mixtures and a formulation solvent in the hive environment have high oral toxicity to honey bee larvae. PLoS ONE 9, e77547 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dai, P. et al. Chronic toxicity of clothianidin, imidacloprid, chlorpyrifos, and dimethoate to Apis mellifera L. larvae reared in vitro. Pest Manag. Sci. 75, 29–36 (2019).CAS 
    PubMed 

    Google Scholar 
    Campbell, J. B. et al. The fungicide Pristine® inhibits mitochondrial function in vitro but not flight metabolic rates in honey bees. J. Insect Physiol. 86, 11–16 (2016).CAS 
    PubMed 

    Google Scholar 
    DesJardins, N. S. et al. A common fungicide, Pristine®, impairs olfactory associative learning performance in honey bees (Apis mellifera). Environ. Pollut. 288, 117720 (2021).CAS 
    PubMed 

    Google Scholar 
    Fisher, A. et al. Colony field test reveals dramatically higher toxicity of a widely-used mito-toxic fungicide on honey bees (Apis mellifera). Environ. Pollut. 269, 115964 (2021).CAS 
    PubMed 

    Google Scholar 
    Mahefarisoa, K. L., Simon Delso, N., Zaninotto, V., Colin, M. E. & Bonmatin, J. M. The threat of veterinary medicinal products and biocides on pollinators: A one health perspective. One Heal. 12, 100237 (2021).CAS 

    Google Scholar 
    Christen, V., Schirrmann, M., Frey, J. E. & Fent, K. Global transcriptomic effects of environmentally relevant concentrations of the neonicotinoids clothianidin, imidacloprid, and thiamethoxam in the brain of honey bees (Apis mellifera). Environ. Sci. Technol. 52, 7534–7544 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tison, L., Duer, A., Púčiková, V., Greggers, U. & Menzel, R. Detrimental effects of clothianidin on foraging and dance communication in honey bees. PLoS ONE 15, e0241134 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tison, L., Rößner, A., Gerschewski, S. & Menzel, R. The neonicotinoid clothianidin impairs memory processing in honey bees. Ecotoxicol. Environ. Saf. 180, 139–145 (2019).CAS 
    PubMed 

    Google Scholar 
    Morfin, N., Goodwin, P. H., Correa-Benitez, A. & Guzman-Novoa, E. Sublethal exposure to clothianidin during the larval stage causes long-term impairment of hygienic and foraging behaviours of honey bees. Apidologie 50, 595–605 (2019).CAS 

    Google Scholar 
    Yao, J., Zhu, Y. C. & Adamczyk, J. Responses of honey bees to lethal and sublethal doses of formulated clothianidin alone and mixtures. J. Econ. Entomol. 111, 1517–1525 (2018).CAS 
    PubMed 

    Google Scholar 
    Bortolotti, L. et al. Effects of sub-lethal imidacloprid doses on the homing rate and foraging activity of honey bees. Bull. Insectology 56, 63–67 (2003).
    Google Scholar 
    Yang, E. C., Chuang, Y. C., Chen, Y. L. & Chang, L. H. Abnormal foraging behavior induced by sublethal dosage of imidacloprid in the honey bee (Hymenoptera: Apidae). J. Econ. Entomol. 101, 1743–1748 (2008).CAS 
    PubMed 

    Google Scholar 
    Karahan, A., Cakmak, I., Hranitz, J. M., Karaca, I. & Wells, H. Sublethal imidacloprid effects on honey bee flower choices when foraging. Ecotoxicology 24, 2017–2025 (2015).CAS 
    PubMed 

    Google Scholar 
    Dively, G. P., Embrey, M. S., Kamel, A., Hawthorne, D. J. & Pettis, J. S. Assessment of chronic sublethal effects of imidacloprid on honey bee colony health. PLoS ONE 10, 1–25 (2015).
    Google Scholar 
    Meikle, W. G. et al. Sublethal effects of imidacloprid on honey bee colony growth and activity at three sites in the U.S.. PLoS ONE https://doi.org/10.1371/journal.pone.0168603 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, Y.-Y. et al. Sublethal effects of imidacloprid on targeting muscle and ribosomal protein related genes in the honey bee Apis mellifera L.. Sci. Rep. https://doi.org/10.1038/s41598-017-16245-0 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, M.-C., Chang, Y.-W., Lu, K.-H. & Yang, E.-C. Gene expression changes in honey bees induced by sublethal imidacloprid exposure during the larval stage. Insect Biochem. Mol. Biol. 88, 12–20 (2017).CAS 
    PubMed 

    Google Scholar 
    Peng, Y.-C. & Yang, E.-C. Sublethal dosage of imidacloprid reduces the microglomerular density of honey bee mushroom bodies. Sci. Rep. https://doi.org/10.1038/srep19298 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Almeida-Rossi, C., Roat, T. C., Tavares, D. A., Cintra-Socolowski, P. & Malaspina, O. Brain morphophysiology of africanized bee Apis mellifera exposed to sublethal doses of imidacloprid. Arch. Environ. Contam. Toxicol. 65, 234–243 (2013).PubMed 

    Google Scholar 
    Tosi, S., Burgio, G. & Nieh, J. C. A common neonicotinoid pesticide, thiamethoxam, impairs honey bee flight ability. Sci. Reports 7, 1–8 (2017).
    Google Scholar 
    Coulon, M. et al. Interactions between thiamethoxam and deformed wing virus can drastically impair flight behavior of honey bees. Front. Microbiol. 0, 766 (2020).
    Google Scholar 
    Shi, T.-F., Wang, Y.-F., Liu, F., Qi, L. & Yu, L.-S. Sublethal effects of the neonicotinoid insecticide thiamethoxam on the transcriptome of the honey bees (Hymenoptera: Apidae). J. Econ. Entomol. 110, 2283–2289 (2017).CAS 
    PubMed 

    Google Scholar 
    Tesovnik, T. et al. Exposure of honey bee larvae to thiamethoxam and its interaction with Nosema ceranae infection in adult honey bees. Environ. Pollut. 256, 113443 (2020).CAS 
    PubMed 

    Google Scholar 
    Friol, P. S., Catae, A. F., Tavares, D. A., Malaspina, O. & Roat, T. C. Can the exposure of Apis mellifera (Hymenoptera, Apiadae) larvae to a field concentration of thiamethoxam affect newly emerged bees?. Chemosphere 185, 56–66 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Coulon, M. et al. Influence of chronic exposure to thiamethoxam and chronic bee paralysis virus on winter honey bees. PLoS ONE 14, e0220703 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stoner, K. A. & Eitzer, B. D. Movement of soil-applied imidacloprid and thiamethoxam into nectar and pollen of squash (Cucurbita pepo). PLoS ONE 7, e39114 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rolke, D., Persigehl, M., Peters, B., Sterk, G. & Blenau, W. Large-scale monitoring of effects of clothianidin-dressed oilseed rape seeds on pollinating insects in northern Germany: residues of clothianidin in pollen, nectar and honey. Ecotoxicology 25, 1691–1701 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, T. J., Kaplan, I., Zhang, Y. & Szendrei, Z. Honeybee dietary neonicotinoid exposure is associated with pollen collection from agricultural weeds. Proc. R. Soc. B 286, 1905 (2019).
    Google Scholar 
    Urlacher, E. et al. Measurements of chlorpyrifos levels in forager bees and comparison with levels that disrupt honey bee odor-mediated learning under laboratory conditions. J. Chem. Ecol. 42, 127–138 (2016).CAS 
    PubMed 

    Google Scholar 
    Villalba, A., Maggi, M., Ondarza, P. M., Szawarski, N. & Miglioranza, K. S. B. Influence of land use on chlorpyrifos and persistent organic pollutant levels in honey bees, bee bread and honey: Beehive exposure assessment. Sci. Total Environ. 713, 136554 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Traynor, K. S. et al. Pesticides in honey bee colonies: Establishing a baseline for real world exposure over seven years in the USA. Environ. Pollut. https://doi.org/10.1016/j.envpol.2021.116566 (2021).Article 
    PubMed 

    Google Scholar 
    EPA Press Office. EPA Takes Action to Address Risk from Chlorpyrifos and Protect Children’s Health. (2021).Arena, M. & Sgolastra, F. A meta-analysis comparing the sensitivity of bees to pesticides. Ecotoxicology 233(23), 324–334 (2014).
    Google Scholar 
    Wright, G. A., Nicolson, S. W. & Shafir, S. Nutritional physiology and ecology of honey bees. Annu. Rev. Entomol 63, 327–344. https://doi.org/10.1146/annurev-ento-020117-043423 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Michener, C. D. The Social Behavior of the Bees: A Comparative Study (Belknap Press of Harvard University Press, 1974).
    Google Scholar 
    Stabler, D., Paoli, P. P., Nicolson, S. W. & Wright, G. A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. https://doi.org/10.1242/jeb.114249 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Böhme, F., Bischoff, G., Zebitz, C. P. W., Rosenkranz, P. & Wallner, K. Pesticide residue survey of pollen loads collected by honeybees (Apis mellifera) in daily intervals at three agricultural sites in South Germany. PLoS ONE 13, e0199995 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Schilder, A. M. C., Hanson, E. J. & Hancock, J. F. An integrated approach to disease control in blueberries in Michigan. Acta Hortic. 715, 481–488 (2006).CAS 

    Google Scholar 
    Wise, J. C., Jenkins, P. E., Poppen, R. V. & Isaacs, R. Activity of broad-spectrum and reduced-risk insecticides on various life stages of cranberry fruitworm (Lepidoptera: Pyralidae) in Highbush Blueberry. J. Econ. Entomol. 103, 1720–1728 (2010).PubMed 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 

    Google Scholar  More

  • in

    Fast-growing species shape the evolution of reef corals

    Fossil dataWe downloaded all fossil occurrences recorded for the order Scleractinia at the species level from the Paleobiology Database (PBDB – paleobiodb.org; accessed on 3 August 2021). This is the most comprehensive repository for palaeontological data in reef corals to date. Due to the nature of the data, no ethics approval was required. To minimize identification issues, we excluded taxa with uncertain generic and species assignments (i.e., classified as aff. and cf.) and only selected species that had accepted names. We also selected the variables classification and palaeoenvironment from the output options to facilitate taxonomic and environmental filters applied in downstream analyses. The full dataset consisted of 24,011 occurrences across 4235 species, spanning over 250 Myr of coral evolution from the Triassic to the present. Although our focus here lies on the Cenozoic, we used the complete fossil dataset (i.e., including all of the occurrences) to have estimates of the diversification dynamics in scleractinian corals throughout the whole timespan of their evolution.Evolutionary ratesWith the full palaeontological dataset, we estimated evolutionary rates through time in scleractinian corals using the Bayesian framework of the program PyRate (v3.0)12,36,37. This program uses fossil occurrence data to calculate the temporal variation in rates of preservation, speciation and extinction, while incorporating multiple sources of uncertainty12. At its core implementation, PyRate jointly estimates the times of origination (Ts) and extinction (Te) for each fossil lineage; the fossilization and sampling parameters that determine preservation rates (q); and the overall rates of speciation (λ) and extinction (μ) through time36. Recently, the program has been upgraded to include a reversible jump Markov Chain Monte Carlo (rjMCMC) algorithm to estimate diversification rate heterogeneity, which provides more accurate and precise estimates than other commonly used methods12. Therefore, despite the inherent bias of the fossil record (i.e., estimates are conditioned on sampled lineages), PyRate is a robust method to quantify speciation and extinction rates, and their respective temporal shifts, from fossil occurrence data.Extant taxa can also be included in the PyRate framework as long as they are also represented in the fossil record. This is done to extend the fossil geologic ranges to the recent times. Hence, the first step in our analysis was to identify which species in our dataset is still alive at the present. To do this, we matched the accepted species names in the PBDB dataset with those from the extant species dataset of Huang et al.38. Subsequently, we split our dataset into eleven independent subsets, with the goal of keeping each subset with an equal number of species. Each data subset included a random selection of species with their respective occurrences, which was enough to calculate Ts and Te (see below). This was done to avoid convergence issues, given the large size of our dataset and the consequent complexity of the model37. For each of our subsets, we generated fifty replicates by resampling the fossil ages from their temporal ranges to account for the uncertainty associated with the age of occurrences. We then used the maximum-likelihood test in PyRate to compare between three models of fossil preservation12: the homogeneous Poisson process (HPP; q is constant through time); the nonhomogeneous Poisson process (NHPP; q varies throughout the lifespan of a species); and the time-variable Poisson process (TPP; q varies across geological epochs). The latter model (TPP) was selected across all of our data subsets (Supplementary Table 2).After selecting the preservation model, we first focused on assessing the estimates of times of origination and extinction in each data subset, rather than using the full dataset to jointly estimate all parameters at once as in the original implementation of PyRate. This further reduced the complexity of the model and allowed for more precise parameter estimates. For each replicate in all of our data subsets, we approximated the posterior distribution of Ts and Te through a 50 million generation run of the rjMCMC algorithm under the TPP, sampling parameters every 40 thousand iterations. At the end of each run, we discarded 20% of the samples as burn-in and assessed chain convergence through the effective sample sizes of posterior parameter estimates, using the software Tracer39 (v1.7.1).From the results of this first set of models, we extracted the median estimates of Ts and Te across replicates, and we merged the estimates from the eleven independent data subsets. This merged data frame contained estimated times of origination and extinction for all coral lineages within our fossil dataset. We then used this merged Ts and Te data frame as input for another rjMCMC chain to finally estimate overall λ and μ through time, by applying the option -d in PyRate. In this option, Ts and Te for all fossil lineages are given as fixed values and, therefore, are not estimated by the model. The chain for this model was run for 100 million generations, sampling parameters at every 40 thousand iterations. Once again, we excluded 20% of the initial samples as burn-in and checked model convergence using Tracer. Finally, we calculated net diversification rates through time by subtracting the post burn-in samples of μ from λ.To explore the taxonomic idiosyncrasies in the evolutionary rates of reef corals, we selected the most abundant families on present-day coral reefs in terms of the number of colonies per area18 (Acroporidae, Agariciidae, Merulinidae, Mussidae, Pocilloporidae, and Poritidae). Altogether, species within these families account for ~40% of the total extant diversity in Scleractinia. These families also account for most of the occurrences in the PBDB fossil dataset (excluding extinct families, which are generally older and had little temporal overlap with extant ones): Acroporidae (1457 occ. in 165 spp.); Agariciidae (722 occ. in 89 spp.); Merulinidae (2464 occ. in 229 spp.); Mussidae (1146 occ. in 100 spp.); Pocilloporidae (615 occ. in 64 spp.); and Poritidae (1149 occ. in 91 spp.). Therefore, from our full dataset, we selected six independent ones encompassing all species in each of the selected families. We also selected only species that are classified as reef-associated within these families, since we were specifically interested in these environments. This selection had a negligible effect on the size of the individual datasets, given that the vast majority of fossil species within these families are reef-associated. In each family, we followed the same modelling steps described above to estimate μ and λ, and diversity trajectories. However, this time it was not necessary to split the datasets into subsets, given that each family has far less occurrences than the full dataset. We started by comparing models of preservation, which showed the TPP as the best supported for all families (Supplementary Table 3). Then we created fifty replicates by resampling fossil ages to accommodate the uncertainty associated with the time of occurrences. For each replicate, we ran the rjMCMC algorithm for 50 million generations under the TPP model, with a sampling frequency of 40 thousand iterations. We discarded initial 20% of the samples as burn-in, and assessed convergence through Tracer. We then combined all replicates, resampling 100 random samples from each replicate to assess the estimates of μ and λ through time for each family. Finally, we extracted diversity trajectories in each family for all of the replicates by applying the -ltt option in PyRate, which generates a table with estimated range-through diversity at every 0.1 Myr. From these trajectories, we calculated the mean difference in diversity (slope in species per 0.1 Myr) between subsequent time samples backwards from the present (i.e., diversity in time t was subtracted from diversity in time t-1) using the diff function in R (v4.0.3).As an alternative to PyRate, we also calculated the diversity dynamics of reef coral fossils using the R package divDyn40, which combines a range of published methods for quantifying fossil diversification rates. Differently from PyRate, the metrics applied in divDyn require that the fossil occurrences are split into discrete time bins. Therefore, these metrics treat the origination and extinction rates as independent parameters in each bin, while PyRate is designed to detect rate heterogeneity through a continuous time setting12. Our goal here, however, was not to compare models but to assess the robustness of our rate patterns and diversity trajectories using alternative methods. We divided our dataset into one-million-year time bins to have enough temporal resolution for rate calculations. To account for the uncertainty in the assignment of fossil ages, we created 50 binned replicates by sampling the age of each occurrence from a random uniform distribution, with bounds defined by the age ranges provided in the PBDB dataset. We then used the divDyn function to calculate the per capita rates of origination and extinction through time (based on the rate equations by Foote41) for all scleractinians (Supplementary Fig. 5a) and for reef-associated acroporids alone (Supplementary Fig. 5b). We also used the same procedure to generate range-through diversity curves for each of the six families selected previously, to compare with the curves generated by PyRate (Fig. 2a). Although the rate results differed between the PyRate (Fig. 1) and the divDyn (Supplementary Fig. 5) approaches, the general patterns remained unchanged. Rates are more volatile through time in divDyn estimates, with larger confidence intervals, which is expected from the metrics applied in the package12,42. Yet, we found the same peaks in extinction for Scleractinia: at the Cretaceous-Paleogene and Eocene-Oligocene boundaries, and at the Pliocene-Pleistocene (Supplementary Fig. 5a). The recent peak in speciation in Acroporidae was also detected, although less strong (Supplementary Fig. 5b). Despite these slight differences in rate estimates, the diversity curves reconstructed through divDyn (Supplementary Fig. 6) mirrored almost exactly the ones found with PyRate (Fig. 2), demonstrating that the overall macroevolutionary trends described herein (Figs. 1 and 2) are robust to methodological choices.Diversity-dependent modelsTo assess the effects of diversity dependency on the evolution of reef coral lineages, we implemented the Multivariate Birth-Death model (MBD)11 within the PyRate framework. This method was first described as the Multiple Clade Diversity Dependence model (MCDD)19, in which rates of speciation and extinction are modelled as having linear correlations with the diversity trajectories of other clades. At its original implementation, the MCDD was developed to assess the effects of negative interactions, where increasing species diversity in one group can suppress speciation rates and/or promote extinction in itself or in other ecologically similar clades19. However, the model also incorporates the possibility of positive interactions, where increasing diversity in one clade can correlate with enhanced rates of speciation or buffered extinction. Through further model developments43, the MCDD was updated to also include a horseshoe prior44 on the diversity-dependence parameters, which helped controlling for overparameterization and enhanced the power of the model to recover true effects43. More recently, this model took its current form as the MBD11, with the additional possibilities of including environmental correlates and setting exponential, rather than just linear, correlations.We first applied the MBD to estimate the diversity-dependent effects of individual extant coral families (i.e., the ones selected in the previous analysis; see Evolutionary rates) in their combined diversity trajectories. From the rjMCMC model results for individual families, we extracted estimates of Ts and Te in each of the fifty replicates and merged them across families. This merged dataset with fifty replicates of Ts and Te was then used as input for the MBD model, where we set the relative diversity trajectories of each individual family as predictors. We also included three key environmental predictors—paleotemperature, sea level and rate of sea-level change—to assess their influence in overall evolutionary rates. The paleotemperature data was obtained from Westerhold et al.45, and consists of global mean temperature estimates for the last 66 million years, averaged across 0.1 Myr time bins. Eustatic sea-level data was downloaded from Miller et al.46, and contains estimates of sea level for the last 100 million years in comparison to present-day levels, also split in ~0.1 Myr time bins. With this dataset, we calculated the average rate of sea-level change per million years, as measured from the absolute difference between subsequent sea-level values backwards in time (i.e., sea level in time t was subtracted from sea level in time t-1). These environmental factors were rescaled between 0 and 1 to maintain all predictors on the same relative scale.Under our MBD model, the speciation and extinction rates of all families combined could change through time and through correlations with the relative diversity of individual families or environmental factors. The strength and directionality (positive or negative) of the correlations are also jointly estimated for each predictor within the model11. We ran both linear and exponential correlation models (see formulas in Lehtonen et al.11) in each of our fifty replicates for 25 million generations, sampling parameters at every 25 thousand iterations. We then compared the linear and exponential models through the posterior harmonic means of their log likelihoods, which supported the exponential one as having a better fit. From the posterior estimates, we summarized the speciation (Fig. 3c) and extinction (Fig. 3d) correlation parameters (i.e., the strength of the effect) by calculating their median and 95% Highest Posterior Density (HPD) interval across replicates. Finally, we also summarized the effect of families on lineage turnover (Fig. 3e), which we conceptualize as the sum of the effects on speciation and extinction.The MBD model also provides posterior samples of the weight of the correlation parameters, which is estimated through the horseshoe prior11. In essence, this prior is able to reliably distinguish correlation parameters that should be considered noise from those that represent a true signal in the data11. The parameterization of the horseshoe prior contains local and global Bayesian shrinkage parameters44 from which shrinkage weights (w) can be calculated (see formulas in Lehtonen et al.11). These shrinkage weights associated with each correlation parameter in the MBD model vary between 0 and 1, with values closer to 0 representing noise and values closer to 1 representing a true signal. Through simulations, it has been shown that values of w  > 0.5 indicate that the correlation parameter in question significantly differs from the background noise, being the correlation positive or negative43. However, as a conservative way to infer the weight of correlation parameters, here we use a value of w  > 0.7 to detect significance. This value was calculated for each diversity-dependence parameter (speciation, extinction and turnover) from the median values drawn from the model posteriors.The spatial distribution of reef-associated taxa varied considerably throughout the Cenozoic, with biodiversity hotspots moving halfway across the globe47. Therefore, the best way to capture this dynamic biogeographic history in reef corals is by analysing global diversity patterns like we did in our main MBD model. However, to assess the robustness of our diversity-dependent results against the influence of geographic scale and site co-occurrences, we repeated all the modelling steps described above with two data subsets. First, we selected only fossil species that have occurrences in the Indo-Pacific Ocean (i.e., 30°W–180°W) within the six families. Second, we excluded sites in which the Acroporidae did not co-occur with the other families. In each of these data subsets, we calculated diversity trajectories and used them as predictors in a separate MBD model. These models had a merged dataset of Ts and Te of all species included in each case (Indo-Pacific and co-occurrences) as a response variable.Finally, we followed the same modelling procedures described above to investigate the diversity-dependent effects in family pairwise analyses. We applied the MBD model to assess the effects of all other families in each individual family at a time, while also estimating correlations with the key environmental predictors. From the rjMCMC model results for individual families, we extracted the fifty replicates of estimated Ts and Te. Each replicate was then used as input for an MBD run using the relative diversity trajectories of each other individual family as predictors, along with the environmental variables. Once again, we ran 25 million generations of the MBD, with a sampling frequency of 25 thousand, using both linear and exponential correlation models in each age replicate. For all families, we found that the exponential model had a better fit. We then summarized the correlation parameters and the shrinkage weights (Supplementary Fig. 7) derived from the exponential models per family by calculating the median and 95% confidence intervals across replicates.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Sabertooth carcass consumption behavior and the dynamics of Pleistocene large carnivoran guilds

    Turner, A. & Antón, M. The Big Cats and Their Fossil Relatives (Columbia University Press, 1997).
    Google Scholar 
    Werdelin, L., Yamaguchi, N., Johnson, W. E. & O’Brien, S. J. Phylogeny and evolution of cats (Felidae). In Biology and Conservation of Wild Felids (eds MacDonald, D. W. & Loveridge, A. J.) 59–82 (Oxford University Press, 2011).
    Google Scholar 
    Antón, M. Sabertooth (Indiana University Press, 2013).
    Google Scholar 
    Ewer, R. F. The Carnivores (Cornell University Press, 1973).
    Google Scholar 
    Terborgh, J. W. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926. https://doi.org/10.1126/science.1064397 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sinclair, A. R. E., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290. https://doi.org/10.1038/nature01934 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ripple, W. J. & Van Valkenburgh, B. Linking top-down forces to the Pleistocene megafaunal extinctions. Bioscience 60, 516–526. https://doi.org/10.1525/bio.2010.60.7.7 (2010).Article 

    Google Scholar 
    Van Valkenburgh, B., Hayward, M. W., Ripple, W. J., Meloro, C. & Roth, V. L. The impact of large terrestrial carnivores on Pleistocene ecosystems. Proc Natl Acad Sci USA 113, 862–867. https://doi.org/10.1073/pnas.1502554112 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lewis, M. E. Carnivoran paleoguilds of Africa: implications for hominid food procurement strategies. J. Hum. Evol. 32, 257–288. https://doi.org/10.1006/jhev.1996.0103 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lewis, M. E. The postcranial morphology of Smilodon. In Smilodon: The Iconic Sabertooth (eds Werdelin, L. et al.) 171–195 (Johns Hopkins University Press, 2018).
    Google Scholar 
    Antón, M., Galobart, A. & Turner, A. Co-existence of scimitar-toothed cats, lions and hominins in the European Pleistocene. Implications of the post-cranial anatomy of Homotherium latidens (Owen) for comparative palaeoecology. Q. Sci. Rev. 24, 1287–1301. https://doi.org/10.1016/j.quascirev.2004.09.008 (2005).ADS 
    Article 

    Google Scholar 
    Hartstone-Rose, A. & Wahl, S. Using radii-of-curvature for the reconstruction of extinct South African carnivoran masticatory behavior. C.R. Palevol 7, 629–643. https://doi.org/10.1016/j.crpv.2008.09.015 (2008).Article 

    Google Scholar 
    Andersson, K., Norman, D. & Werdelin, L. Sabretoothed carnivores and the killing of large prey. PLoS ONE 6, e24971. https://doi.org/10.1371/journal.pone.0024971 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Valkenburgh, B. & Hertel, F. Tough times at La Brea: tooth breakage in large carnivores of the Late Pleistocene. Science 261, 456–459 (1993).ADS 
    Article 

    Google Scholar 
    DeSantis, L. R. G., Schubert, B. W., Scott, J. R. & Ungar, P. S. Implications of diet for the extinction of saber-toothed cats and American lions. PLoS ONE 7, e52453. https://doi.org/10.1371/journal.pone.0052453 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bocherens, H. et al. Paleobiology of sabretooth cat Smilodon populator in the Pampean Region (Buenos Aires Province, Argentina) around the Last Glacial Maximum: insights from carbon and nitrogen stable isotopes in bone collagen. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449, 463–474. https://doi.org/10.1016/j.palaeo.2016.02.017 (2016).Article 

    Google Scholar 
    DeSantis, L. R. G. et al. Causes and consequences of Pleistocene megafaunal extinctions as revealed from Rancho La Brea mammals. Curr. Biol. 29, 2488-2495.e2. https://doi.org/10.1016/j.cub.2019.06.059 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    DeSantis, L. R. G., Feranec, R. S., Antón, M. & Lundelius, E. L. Dietary ecology of the scimitar-toothed cat Homotherium serum. Curr. Biol. 31, 1–8. https://doi.org/10.1016/j.cub.2021.03.061 (2021).CAS 
    Article 

    Google Scholar 
    Christiansen, P. & Adolfssen, J. S. Osteology and ecology of Megantereon cultridens SE311 (Mammalia; Felidae; Machairodontinae), a sabrecat from the Late Pliocene—Early Pleistocene of Senéze, France. Zool. J. Linn. Soc. 151, 833–884 (2007).Article 

    Google Scholar 
    Van Valkenburgh, B. Predation in sabre-tooth cats. In Palaeobiology II (eds Briggs, D. E. G. & Crowther, P. R.) 420–423 (Wiley, 2001). https://doi.org/10.1002/9780470999295.ch101.Chapter 

    Google Scholar 
    DeSantis, L. R. G. Dietary ecology of Smilodon. In Smilodon: The Iconic Sabertooth (eds Werdelin, L. et al.) 153–170 (Johns Hopkins University Press, 2018).
    Google Scholar 
    Palmqvist, P., Torregrosa, V., Pérez-Claros, J. A., Martínez-Navarro, B. & Turner, A. A re-evaluation of the diversity of Megantereon (Mammalia, Carnivora, Machairodontinae) and the problem of species identification in extinct carnivores. J. Vertebr. Paleontol. 27, 160–175. https://doi.org/10.1671/0272-4634(2007)27[160:AROTDO]2.0.CO;2 (2007).Article 

    Google Scholar 
    Van Valkenburgh, B. & Ruff, C. B. Canine tooth strength and killing behaviour in large carnivores. J. Zool. 212, 379–397 (1987).Article 

    Google Scholar 
    Gittleman, J. L. Carnivore body size: ecological and taxonomic correlates. Oecologia 67, 540–554. https://doi.org/10.1007/BF00790026 (1985).ADS 
    Article 
    PubMed 

    Google Scholar 
    Hemmer, H. Saber-tooth cats and cave lions—from fossils to felid performance and former living communities. In Late Neogene and Quaternary Biodiversity and Evolution: Regional Developments and Interregional Correlations, Courier Forschungsinstitut Senckenberg (eds Kahlke, R.-D. et al.) 1–12 (E. Schweizerbart’sche Verlagsbuchhandlung, 2007).
    Google Scholar 
    Domingo, L., Domingo, M. S., Koch, P. L., Morales, J. & Alberdi, M. T. Carnivoran resource and habitat use in the context of a Late Miocene faunal turnover episode. Palaeontology 60, 461–483. https://doi.org/10.1111/pala.12296 (2017).Article 

    Google Scholar 
    Marean, C. W. & Ehrhardt, C. L. Paleoanthropological and paleoecological implications of the taphonomy of a sabertooth’s den. J. Hum. Evol. 29, 515–547 (1995).Article 

    Google Scholar 
    Spencer, L. M., Van Valkenburgh, B. & Harris, J. M. Taphonomic analysis of large mammals recovered from the Pleistocene Rancho La Brea tar seeps. Paleobiology 29, 561–575. https://doi.org/10.1666/0094-8373(2003)029%3c0561:TAOLMR%3e2.0.CO;2 (2003).Article 

    Google Scholar 
    Chahud, A. Occurrence of the sabretooth cat Smilodon populator (Felidae, Machairodontinae) in the Cuvieri cave, eastern Brazil. Palaeontol. Electron. 23, a24. https://doi.org/10.26879/1056 (2020).Article 

    Google Scholar 
    Prevosti, F. J. & Martín, F. M. Paleoecology of the mammalian predator guild of southern Patagonia during the latest Pleistocene: ecomorphology, stable isotopes, and taphonomy. Quat. Int. 305, 74–84. https://doi.org/10.1016/j.quaint.2012.12.039 (2013).Article 

    Google Scholar 
    Lindsey, E. L. & Seymour, K. L. “Tar Pits” of the western neotropics: paleoecology, taphonomy, and mammalian biogeography. In La Brea and Beyond: The Palaeontology of Asphalt-Preserved Biotas (ed. Harris, J. M.) 111–123 (Natural History Museum of Los Angeles County, 2015).
    Google Scholar 
    Hulbert, R. C. The Fossil Vertebrates of Florida (University of Florida Press, 2001).
    Google Scholar 
    Domingo, M. S., Alberdi, M. T., Azanza, B., Silva, P. G. & Morales, J. Origin of an assemblage massively dominated by carnivorans from the Miocene of Spain. PLoS ONE 8, e63046. https://doi.org/10.1371/journal.pone.0063046 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brain, C. K. The Hunters or the Hunted: An Introduction to African Cave Taphonomy (University of Chicago Press, 1981).
    Google Scholar 
    Palmqvist, P., Martínez-Navarro, B. & Arribas, A. Prey selection by terrestrial carnivores in a lower Pleistocene paleocommunity. Paleobiology 22, 514–534. https://doi.org/10.1017/S009483730001650X (1996).Article 

    Google Scholar 
    Morgan, G. S. & Hulbert, R. C. Overview of the geology and vertebrate biochronology of the Leisey Shell Pit Local Fauna, Hillsborough County, Florida. Bull. Am. Mus. Nat. Hist. 37, 1–92 (1995).
    Google Scholar 
    Martin, L. D., Babiarz, J. P., Naples, V. L. & Hearst, J. Three ways to be a saber-toothed cat. Naturwissenschaften 87, 41–44 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    M. Domínguez-Rodrigo, C.P. Egeland, T.R. Pickering, Equifinality in carnivore tooth marks and the extended concept of archaeological palimpsests: implications for models of passive scavenging by early hominid. In: Breathing Life into Fossils: Taphonomic Studies in Honor of C.K. (Bob) Brain, Stone Age Institute Press, Gosport, Indiana, 2007, pp. 255–267.Gidna, A. O., Kisui, B., Mabulla, A. Z. P., Musiba, C. & Domínguez-Rodrigo, M. An ecological neo-taphonomic study of carcass consumption by lions in Tarangire National Park (Tanzania) and its relevance for human evolutionary biology. Quat. Int. 322–323, 167–180. https://doi.org/10.1016/j.quaint.2013.08.059 (2014).Article 

    Google Scholar 
    Gidna, A. O., Domínguez-Rodrigo, M. & Pickering, T. R. Patterns of bovid long limb bone modification created by wild and captive leopards and their relevance to the elaboration of referential frameworks for paleoanthropology. J. Archaeol. Sci. Rep. 2, 302–309. https://doi.org/10.1016/j.jasrep.2015.03.003 (2015).Article 

    Google Scholar 
    Yravedra, J., Lagos, L. & Bárcena, F. A taphonomic study of wild wolf (Canis lupus) modification of horse bones in northwestern Spain. J. Taphon. 9, 37–65 (2011).
    Google Scholar 
    Fosse, P. et al. Bone modification by modern wolf (Canis lupus): a taphonomic study from their natural feeding places. J. Taphon. 10, 197–217 (2012).
    Google Scholar 
    Domínguez-Rodrigo, M. & Pickering, T. R. A multivariate approach for discriminating bone accumulations created by spotted hyenas and leopards: harnessing actualistic data from East and southern Africa. J. Taphon. 8, 155–179 (2010).
    Google Scholar 
    Domínguez-Rodrigo, M., Gidna, A. O., Yravedra, J. & Musiba, C. A comparative neo-taphonomic study of felids, hyaenids and canids: an analogical framework based on long bone modification patterns. J. Taphon. 10, 151–170 (2012).
    Google Scholar 
    Gidna, A., Yravedra, J. & Domínguez-Rodrigo, M. A cautionary note on the use of captive carnivores to model wild predator behavior: a comparison of bone modification patterns on long bones by captive and wild lions. J. Archaeol. Sci. 40, 1903–1910. https://doi.org/10.1016/j.jas.2012.11.023 (2013).Article 

    Google Scholar 
    Parkinson, J. A., Plummer, T. & Hartstone-Rose, A. Characterizing felid tooth marking and gross bone damage patterns using GIS image analysis: an experimental feeding study with large felids. J. Hum. Evol. 80, 114–134. https://doi.org/10.1016/j.jhevol.2014.10.011 (2015).Article 
    PubMed 

    Google Scholar 
    Domínguez-Rodrigo, M. et al. A 3D taphonomic model of long bone modification by lions in medium-sized ungulate carcasses. Sci. Rep. 11, 4944. https://doi.org/10.1038/s41598-021-84246-1 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arriaza, M. C. et al. Striped hyenas as bone modifiers in dual human-to-carnivore experimental models. Archaeol. Anthropol. Sci. 11, 3187–3199. https://doi.org/10.1007/s12520-018-0747-y (2019).Article 

    Google Scholar 
    Marean, C. W., Spencer, L. M., Blumenschine, R. J. & Capaldo, S. D. Captive hyaena bone choice and destruction, the Schlepp effect and Olduvai archaeofaunas. J. Archaeol. Sci. 19, 101–121. https://doi.org/10.1016/0305-4403(92)90009-R (1992).Article 

    Google Scholar 
    Woodruff, A. L. & Schubert, B. W. Seasonal denning behavior and population dynamics of the late Pleistocene peccary Platygonus compressus (Artiodactyla: Tayassuidae) from Bat Cave, Missouri. PeerJ 7, 1–18. https://doi.org/10.7717/peerj.7161 (2019).Article 

    Google Scholar 
    de Ruiter, D. J. & Berger, L. R. Leopards as taphonomic agents in dolomitic caves—implications for bone accumulations in the hominid-bearing deposits of South Africa. J. Archaeol. Sci. 27, 665–684. https://doi.org/10.1006/jasc.1999.0470 (2000).Article 

    Google Scholar 
    Domínguez-Rodrigo, M. Dinámica trófica, estrategias de consumo y alteraciones óseas en la sabana africana: resumen de un proyecto de investigación etoarqueológico (1991–1993). Trab. Prehist. 51, 15–37 (1994).Article 

    Google Scholar 
    Arriaza, M. C., Domínguez-Rodrigo, M., Yravedra, J. & Baquedano, E. Lions as bone accumulators? Paleontological and ecological implications of a modern bone assemblage from Olduvai Gorge. PLoS ONE 11, e0153797. https://doi.org/10.1371/journal.pone.0153797 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schaller, G. B. The Serengeti Lion: A Study of Predator-Prey Relations (University of Chicago Press, 1972).
    Google Scholar 
    Brain, C. K. Some suggested procedures in the analysis of bone accumulations from southern African Quaternary sites. Ann. Transvaal Mus. 29, 1–8 (1974).
    Google Scholar 
    Christiansen, P. Phylogeny of the sabertoothed felids (Carnivora: Felidae: Machairodontinae). Cladistics 29, 543–559. https://doi.org/10.1111/cla.12008 (2013).Article 
    PubMed 

    Google Scholar 
    Rawn-Schatzinger, V. Development and eruption sequence of deciduous and permanent teeth in the saber-tooth cat Homotherium serum Cope. J. Vertebr. Paleontol. 3, 49–57. https://doi.org/10.1080/02724634.1983.10011958 (1983).Article 

    Google Scholar 
    Rawn-Schatzinger,V. The Scimitar Cat Homotherium serum Cope: Osteology, Functional Morphology, and Predatory Behavior, Illinois State Museum, Springfield, IL, 1992.White, P. A. & Diedrich, C. G. Taphonomy story of a modern African elephant Loxodonta africana carcass on a lakeshore in Zambia (Africa). Quat. Int. 276–277, 287–296 (2012).Article 

    Google Scholar 
    Haynes, G. & Klimowicz, J. Recent elephant-carcass utilization as a basis for interpreting mammoth exploitation. Quat. Int. 359–360, 19–37. https://doi.org/10.1016/j.quaint.2013.12.040 (2015).Article 

    Google Scholar 
    Biknevicius, A. R., Van Valkenburgh, B. & Walker, J. Incisor size and shape: implications for feeding behaviors in saber-toothed “cats”. J. Vertebr. Paleontol. 16, 510–521 (1996).Article 

    Google Scholar 
    Van Valkenburgh, B. Incidence of tooth breakage among large, predatory mammals. Am. Nat. 131, 291–302. https://doi.org/10.1086/284790 (1988).Article 

    Google Scholar 
    DeSantis, L. R. G. et al. Dental microwear textures of carnivorans from the La Brea Tar Pits, California, and potential extinction implications. In La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas (ed. Harris, J. M.) 37–52 (Natural History Museum of Los Angeles County, 2015).
    Google Scholar 
    Paijmans, J. L. A. et al. Evolutionary history of saber-toothed cats based on ancient mitogenomics. Curr. Biol. 27, 3330-3336.e5. https://doi.org/10.1016/j.cub.2017.09.033 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Antón, M., Salesa, M. J., Galobart, A. & Tseng, Z. J. The Plio-Pleistocene scimitar-toothed felid genus Homotherium Fabrini, 1890 (Machairodontinae, Homotherini): diversity, palaeogeography and taxonomic implications. Quat. Sci. Rev. 96, 259–268. https://doi.org/10.1016/j.quascirev.2013.11.022 (2014).ADS 
    Article 

    Google Scholar 
    Thompson, J. C., Carvalho, S., Marean, C. W. & Alemseged, Z. Origins of the human predatory pattern: The transition to large-animal exploitation by early hominins. Curr. Anthropol. 60, 1–23. https://doi.org/10.1086/701477 (2019).Article 

    Google Scholar 
    Plummer, T. Flaked stones and old bones: biological and cultural evolution at the dawn of technology. Yearb. Phys. Anthropol. 47, 118–164. https://doi.org/10.1002/ajpa.20157 (2004).Article 

    Google Scholar 
    Turner, A. Relative scavenging opportunities for East and South African Plio-Pleistocene hominids. J. Archaeol. Sci. 15, 327–341 (1988).Article 

    Google Scholar 
    Turner, A. The evolution of the guild of larger terrestrial carnivores during the Plio-Pleistocene in Africa. Geobios 23, 349–368 (1990).Article 

    Google Scholar 
    Turner, A. Large carnivores and earliest European hominids: changing determinants of resource availability during the Lower and Middle Pleistocene. J. Hum. Evol. 22, 109–126 (1992).Article 

    Google Scholar 
    Van Valkenburgh, B. The dog-eat-dog world of carnivores: a review of past and present carnivore community dynamics. In Meat-Eating and Human Evolution (eds Stanford, C. B. & Bunn, H. T.) 101–121 (Oxford University Press, 2001).
    Google Scholar 
    Werdelin, L. & Lewis, M. E. Plio-Pleistocene Carnivora of eastern Africa: species richness and turnover patterns. Zool. J. Linn. Soc. 144, 121–144. https://doi.org/10.1111/j.1096-3642.2005.00165.x (2005).Article 

    Google Scholar 
    Werdelin, L. & Lewis, M. E. Temporal change in functional richness and evenness in the eastern African Plio-Pleistocene carnivoran guild. PLoS ONE 8, e57944. https://doi.org/10.1371/journal.pone.0057944 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lewis, M. E. Carnivore guilds and the impact of hominin dispersals. In Human Dispersal and Species Movement: From Prehistory to the Present (eds Boivin, N. et al.) 29–61 (Cambridge University Press, 2017). https://doi.org/10.1017/9781316686942.003.Chapter 

    Google Scholar 
    Stiner, M. C. Competition theory and the case for Pleistocene hominin-carnivore co-evolution. J. Taphon. 10, 129–145 (2012).
    Google Scholar 
    Marean, C. W. Sabertooth cats and their relevance for early hominid diet and evolution. J. Hum. Evol. 18, 559–582 (1989).Article 

    Google Scholar 
    Martínez-Navarro, B. & Palmqvist, P. Presence of the African saber-toothed felid Megantereon whitei (Broom, 1937) (Mammalia, Carnivora, Machairodontinae) in Apollonia-1 (Mygdonia Basin, Macedonia, Greece). J. Archaeol. Sci. 23, 869–872. https://doi.org/10.1006/jasc.1996.0081 (1996).Article 

    Google Scholar 
    Arribas, A. & Palmqvist, P. On the ecological connection between sabre-tooths and hominids: Faunal dispersal events in the Lower Pleistocene and a review of the evidence for the first human arrival in Europe. J. Archaeol. Sci. 26, 571–585. https://doi.org/10.1006/jasc.1998.0346 (1999).Article 

    Google Scholar 
    Blumenschine, R. J. Characteristics of an early hominid scavenging niche. Curr. Anthropol. 28, 383–407. https://doi.org/10.1086/203544 (1987).Article 

    Google Scholar 
    Ewer, R. F. Sabre-toothed tigers. N. Biol. 17, 27–40 (1954).
    Google Scholar 
    Dominguez-Rodrigo, M. Flesh availability and bone modifications in carcasses consumed by lions: palaeoecological relevance in hominid foraging patterns. Palaeogeogr. Palaeoclimatol. Palaeoecol. 149, 373–388. https://doi.org/10.1016/S0031-0182(98)00213-2 (1999).Article 

    Google Scholar 
    Pobiner, B. L. & Blumenschine, R. J. A taphonomic perspective on Oldowan hominid encroachment on the carnivores paleoguild. J. Taphon. 1, 115–141 (2003).
    Google Scholar 
    Pobiner, B. L., Dumouchel, L. & Parkinson, J. A new semi-quantitative method for coding carnivore chewing damage with an application to modern African lion-damaged bones. Palaios 35, 302–315 (2020).ADS 
    Article 

    Google Scholar 
    Arribas, A. & Palmqvist, P. Taphonomy and palaeoecology of an assemblage of large mammals: hyaenid activity in the Lower Pleistocene site at Venta Micena (Orce, Guadix-Baza Basin, Granada, Spain). Geobios 31, 3–47. https://doi.org/10.1016/S0016-6995(98)80056-9 (1998).Article 

    Google Scholar 
    Palmqvist, P. et al. The giant hyena Pachycrocuta brevirostris: modelling the bone-cracking behavior of an extinct carnivore. Quat. Int. 243, 61–79. https://doi.org/10.1016/j.quaint.2010.12.035 (2011).Article 

    Google Scholar 
    Coca-Ortega, C. & Pérez-Claros, J. A. Characterizing ecomorphological patterns in hyenids: a multivariate approach using postcanine dentition. PeerJ 6, e6238. https://doi.org/10.7717/peerj.6238 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pobiner, B. L. The zooarchaeology and paleoecology of early hominin scavenging. Evol. Anthropol. 29, 68–82. https://doi.org/10.1002/evan.21824 (2020).Article 
    PubMed 

    Google Scholar 
    Domínguez-Rodrigo, M., Pickering, T. R., Semaw, S. & Rogers, M. J. Cutmarked bones from Pliocene archaeological sites at Gona, Afar, Ethiopia: implications for the function of the world’s oldest stone tools. J. Hum. Evol. 48, 109–121. https://doi.org/10.1016/j.jhevol.2004.09.004 (2005).Article 
    PubMed 

    Google Scholar 
    Domínguez-Rodrigo, M. & Barba, R. The behavioral meaning of cut marks at the FLK Zinj level: the carnivore-hominid-carnivore hypothesis falsified (II). In Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites (eds Domínguez-Rodrigo, M. et al.) 75–100 (Springer, 2007).Chapter 

    Google Scholar 
    Ferraro, J. V. et al. Earliest archaeological evidence of persistent hominin carnivory. PLoS ONE 8, e62174. https://doi.org/10.1371/journal.pone.0062174 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, J. S., Plummer, T. W., Hertel, F. & Bishop, L. C. Bovid mortality patterns from Kanjera South, Homa Peninsula, Kenya and FLK-Zinj, Olduvai Gorge, Tanzania: evidence for habitat mediated variability in Oldowan hominin hunting and scavenging behavior. J. Hum. Evol. 131, 61–75. https://doi.org/10.1016/j.jhevol.2019.03.009 (2019).Article 
    PubMed 

    Google Scholar 
    Bunn, H. T. Hunting, power scavenging, and butchering by Hadza foragers and by Plio-Pleistocene Homo. In Meat-Eating and Human Evolution (eds Stanford, C. B. & Bunn, H. T.) 199–218 (Oxford University Press, 2001).
    Google Scholar 
    Landeck, G. & García Garriga, J. New taphonomic data of the 1 Myr hominin butchery at Untermassfeld (Thuringia, Germany). Quat. Int. 436, 138–161. https://doi.org/10.1016/j.quaint.2016.11.016 (2017).Article 

    Google Scholar 
    Domínguez-Rodrigo, M. et al. On meat eating and human evolution: a taphonomic analysis of BK4b (Upper Bed II, Olduvai Gorge, Tanzania), and its bearing on hominin megafaunal consumption. Quat. Int. 322–323, 129–152. https://doi.org/10.1016/j.quaint.2013.08.015 (2014).Article 

    Google Scholar 
    Organista, E. et al. Taphonomic analysis of the level 3b fauna at BK, Olduvai Gorge. Quat. Int. 526, 116–128 (2019).Article 

    Google Scholar 
    Haynes, G. Prey bones and predators: potential ecologic information from analysis of bone sites. OSSA 7, 75–97 (1980).
    Google Scholar 
    Haynes, G. Evidence of carnivore gnawing on Pleistocene and recent mammalian bones. Paleobiology 6, 341–351. https://doi.org/10.1017/S0094837300006849 (1980).Article 

    Google Scholar 
    Haynes, G. A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology 9, 164–172 (1983).Article 

    Google Scholar 
    Sala, N., Arsuaga, J. L. & Haynes, G. Taphonomic comparison of bone modifications caused by wild and captive wolves (Canis lupus). Quat. Int. 330, 126–135. https://doi.org/10.1016/j.quaint.2013.08.017 (2014).Article 

    Google Scholar 
    Berta, A. The Plio-Pleistocene hyaena Chasmaporthetes ossifragus from Florida. J. Vertebr. Paleontol. 1, 341–356. https://doi.org/10.1080/02724634.1981.10011905 (1981).Article 

    Google Scholar 
    Anyonge, W. N. & Baker, A. Craniofacial morphology and feeding behavior in Canis dirus, the extinct Pleistocene dire wolf. J. Zool. 269, 309–316. https://doi.org/10.1111/j.1469-7998.2006.00043.x (2006).Article 

    Google Scholar 
    Figueirido, B., Pérez-Claros, J. A., Torregrosa, V., Martín-Serra, A. & Palmqvist, P. Demythologizing Arctodus simus, the ‘short-faced’ long-legged and predaceous bear that never was. J. Vertebr. Paleontol. 30, 262–275. https://doi.org/10.1080/02724630903416027 (2010).Article 

    Google Scholar 
    Pobiner, B. L. New actualistic data on the ecology and energetics of hominin scavenging opportunities. J. Hum. Evol. 80, 1–16 (2015).PubMed 
    Article 

    Google Scholar 
    Lautenschlager, S., Figueirido, B., Cashmore, D. D., Bendel, E.-M. & Stubbs, T. L. Morphological convergence obscures functional diversity in sabre-toothed carnivores. Proc. R. Soc. B. 287, 20201818. https://doi.org/10.1098/rspb.2020.1818 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Figueirido, B., Lautenschlager, S., Pérez-Ramos, A. & Van Valkenburgh, B. Distinct predatory behaviors in scimitar- and dirk-toothed sabertooth cats. Curr. Biol. 28, 3260-3266.e3. https://doi.org/10.1016/j.cub.2018.08.012 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hartstone-Rose, A. Reconstructing the diets of extinct South African carnivorans from premolar ‘intercuspid notch’ morphology. J. Zool. 285, 119–127. https://doi.org/10.1111/j.1469-7998.2011.00821.x (2011).Article 

    Google Scholar 
    Van Valkenburgh, B. Costs of carnivory: tooth fracture in Pleistocene and recent carnivorans. Biol. J. Lin. Soc. 96, 68–81. https://doi.org/10.1111/j.1095-8312.2008.01108.x (2009).Article 

    Google Scholar 
    Thieme, H. Lower Palaeolithic hunting spears from Germany. Nature 385, 807–810. https://doi.org/10.1038/385807a0 (1997).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Conard, N. J., Serangeli, J., Gerlinde, B. & Veerle, R. A 300,000-year-old throwing stick from Schöningen, northern Germany, documents the evolution of human hunting. Nat. Ecol. Evol. 4, 690–693 (2020).PubMed 
    Article 

    Google Scholar 
    Austin, L. A., Bergman, C. A., Roberts, M. B. & Wilhelmsen, K. H. Archaeology of the excavated areas. In Boxgrove: A Middle Pleistocene Hominid Site at Eartham Quarry (eds Roberts, M. B. & Parfitt, S. A.) 312–378 (Boxgrove, 1999).
    Google Scholar 
    Domínguez-Rodrigo, M., Baquedano, E., Organista, E. et al. Early Pleistocene faunivorous hominins were not kleptoparasitic, and this impacted the evolution of human anatomy and socio-ecology. Sci Rep 11, 16135 (2021). https://doi.org/10.1038/s41598-021-94783-4ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gohn, G. S. Late Mesozoic and early Cenozoic geology of the Atlantic Coastal Plain: North Carolina to Florida. In The Geology of North America, Volume I-2, The Atlantic Continental Margin (eds Sheridan, R. E. & Grow, J. A.) 107–130 (Geological Society of America, Boulder, CO, 1988).
    Google Scholar 
    Pirkle, E. C. Notes on physiographic features of Alachua County, Florida. Q. J. Fla. Acad. Sci. 19, 168–182 (1956).
    Google Scholar 
    Beck, B. F. A generalized genetic framework for the development of sinkholes and karst in Florida, U.S.A. Environ. Geol. Water Sci. 8, 5–18. https://doi.org/10.1007/BF02525554 (1986).ADS 
    Article 

    Google Scholar 
    Beck, B. F. & Sinclair, W. C. Sinkholes in Florida: An Introduction (The Florida Sinkhole Research Institute, 1986).
    Google Scholar 
    Brinkman, R. Florida Sinkholes: Science and Policy (University of Florida Press, 2013).Book 

    Google Scholar 
    Hines, A. C. Geologic History of Florida: Major Events that Formed the Sunshine State (University of Florida Press, 2013).
    Google Scholar 
    Bader, R. S. Two Pleistocene mammalian faunas from Alachua County, Florida. Bull. Fla State Mus. 2, 53–75 (1957).
    Google Scholar 
    Patton, T. H. An Oligocene land vertebrate fauna from Florida. J. Paleontol. 43, 543–546 (1969).
    Google Scholar 
    Pratt, A. E. Taphonomy of the large vertebrate fauna from the Thomas Farm Locality (Miocene, Hemingfordian), Gilchrist County, Florida, Bulletin of the Florida Museum of. Nat. Hist. 35, 35–130 (1990).
    Google Scholar 
    Ruez, D. R. Jr. Mammalian taphonomy of the Early Irvingtonian (Late Pliocene) Inglis 1C fauna (Citrus County, Florida). Southeast. Geol. 41, 159–168 (2002).
    Google Scholar 
    Hansen, B. C. S., Grimm, E. C. & Watts, W. A. Palynology of the Peace Creek site, Polk County, Florida. Geol. Soc. Am. Bull. 113, 682–692 (2001).ADS 
    Article 

    Google Scholar 
    Morgan, G. S. & Emslie, S. D. Tropical and western influences in vertebrate faunas from the Pliocene and Pleistocene of Florida. Quat. Int. 217, 143–158. https://doi.org/10.1016/j.quaint.2009.11.030 (2010).Article 

    Google Scholar 
    Yann, L. T. & DeSantis, L. R. G. Effects of Pleistocene climates on local environments and dietary behavior of mammals in Florida. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 370–381. https://doi.org/10.1016/j.palaeo.2014.09.020 (2014).Article 

    Google Scholar 
    Perrotti, A. G., Winsborough, B., Halligan, J. J. & Waters, M. R. Reconstructing terminal Pleistocene-early Holocene environmental change at Page-Ladson, Florida using diatom evidence. PaleoAmerica 6, 181–193. https://doi.org/10.1080/20555563.2019.1689010 (2020).Article 

    Google Scholar 
    Tanner, B. R., Work, K. A. & Evans, J. M. The potential of organic sediments in Florida spring runs as records of environmental change. Southeast. Geogr. 60, 200–214. https://doi.org/10.1353/sgo.2020.0017 (2020).Article 

    Google Scholar 
    Simpson, G. G. The Extinct Land Mammals of Florida (Florida Geological Survey, 1928).
    Google Scholar 
    Simpson, G. G. Tertiary land mammals of Florida. Bull. Am. Mus. Nat. Hist. 59, 149–211 (1930).
    Google Scholar 
    Olsen, S. J. Fossil Mammals of Florida (Florida Geological Survey, 1959).
    Google Scholar 
    Webb, S. D. Pleistocene Mammals of Florida (University of Florida Press, 1974).
    Google Scholar 
    Tihen, J. A. Rana grylio from the Pleistocene of Florida. Herpetologica 8, 107 (1952).
    Google Scholar 
    Brodkorb, P. Pleistocene birds from Haile, Florida. Wilson Bull. 65, 49–50 (1953).
    Google Scholar 
    Brodkorb, P. Another new rail from the Pleistocene of Florida. The Condor. 56, 103–104 (1954).
    Google Scholar 
    Brodkorb, P. Fossil birds from the Alachua clay of Florida, Florida Geological Survey, Contributions to Florida Vertebrate Paleontology. Spec. Publ. 2, 1–17 (1963).
    Google Scholar 
    Auffenburg, W. Additional specimens of Gavialosuchus americanus (Sellards) from a new locality in Florida. Q. J. Fla. Acad. Sci. 17, 185–209 (1954).
    Google Scholar 
    Auffenburg, W. Glass lizards (Ophisaurus) in the Pleistocene and Pliocene of Florida. Herpetologica 11, 133–136 (1955).
    Google Scholar 
    Auffenburg, W. Additional records of Pleistocene lizards from Florida. Q. J. Fla. Acad. Sci. 19, 157–167 (1956).
    Google Scholar 
    Auffenburg, W. A new species of Bufo from the Pliocene of Florida. Q. J. Fla. Acad. Sci. 20, 14–20 (1957).
    Google Scholar 
    Goin, C. J. & Auffenburg, W. The fossil salamanders of the Family Sirenidae, Bulletin of the Museum of Comparative. Zoology 113, 497–514 (1955).
    Google Scholar 
    Ligon, J. D. A Pleistocene avifauna from Haile, Florida. Bull. Fla. State Mus. 10, 127–158 (1965).
    Google Scholar 
    Kinsey, P. E. A new species of Mylohyus peccary from the Florida early Pleistocene. In Pleistocene Mammals of Florida (ed. Webb, S. D.) 158–169 (University of Florida Press, 1974).
    Google Scholar 
    Martin, R. A. Fossil vertebrates from the Haile XIVA fauna, Alachua County. In Pleistocene Mammals of Florida (ed. Webb, S. D.) 100–113 (University of Florida Press, 1974).
    Google Scholar 
    Robertson, J. S. Fossil Bison of Florida. In Pleistocene Mammals of Florida (ed. Webb, S. D.) 214–246 (University of Florida Press, 1974).
    Google Scholar 
    Robertson, J. S. Late Pliocene mammals from Haile XV A, Alachua County, Florida. Bull. Fla. State Mus. 20, 111–186 (1976).ADS 

    Google Scholar 
    Webb, S. D. Pleistocene llamas of Florida, with a brief review of the Lamini. In Pleistocene Mammals of Florida (ed. Webb, S. D.) 170–213 (University of Florida Press, 1974).
    Google Scholar 
    Campbell, K. E. An early Pleistocene avifauna from Haile XVA, Florida. Wilson Bull. 88, 345–347 (1976).
    Google Scholar 
    Morgan, G. S., Linares, O. J. & Ray, C. E. New species of fossil vampire bats (Mammalia, Chiroptera, Desmodontidae) from Florida and Venezuela. Proc. Biol. Soc. Wash. 101, 912–928 (1988).
    Google Scholar 
    Hulbert, R. C. A new late Pliocene porcupine (Rodentia: Erethizontidae) from Florida. J. Vertebr. Paleontol. 17, 623–626. https://doi.org/10.1080/02724634.1997.10011010 (1997).Article 

    Google Scholar 
    de Iuliis, G. & Cartelle, C. A new giant megatheriine ground sloth (Mammalia: Xenarthra: Megatheriidae) from the late Blancan to early Irvingtonian of Florida. Zool. J. Linn. Soc. 127, 495–515 (1999).Article 

    Google Scholar 
    Portell, R. W. & Hulbert, R. C. Haile Quarries Fieldguide Newberry (Southeastern Geological Society, 2011).
    Google Scholar 
    Morgan, G. S. Neotropical Chiroptera from the Pliocene and Pleistocene of Florida. Bull. Am. Mus. Nat. Hist. 206, 176–213 (1991).
    Google Scholar 
    Hulbert, R. C., Morgan, G. S. & Webb, S. D. Paleontology and geology of the Leisey shell pits, early Pleistocene of Florida. Bull. Fla. Mus. Nat. Hist. 37, 1–660 (1995).
    Google Scholar 
    Berta, A. Fossil carnivores from the Leisey Shell Pits, Hillsborough County, Florida. Bull. Am. Mus. Nat. Hist. 37, 463–499 (1995).
    Google Scholar 
    Hulbert, R. C. The giant tapir, Tapirus haysii, from Leisey Shell Pit 1A and other Florida Invingtonian localities. Bull. Am. Mus. Nat. Hist. 37, 515–551 (1995).
    Google Scholar 
    Wright, D. B. Tayassuidae of the Irvingtonian Leisey Shell Pit local fauna, Hillsborough County, Florida. Bull. Am. Mus. Nat. Hist. 37, 603–619 (1995).
    Google Scholar 
    Martin, L. D., Babiarz, J. P. & Naples, V. L. The osteology of a cookie-cutter cat, Xenosmilus hodsonae. In The Other Saber-Tooths: Scimitar-Tooth Cats of the Western Hemisphere (eds Naples, V. L. et al.) 43–97 (Johns Hopkins University Press, 2011).
    Google Scholar 
    Gifford-Gonzalez, D. Bones are not enough: analogues, knowledge, and interpretive strategies in zooarchaeology. J. Anthropol. Archaeol. 10, 215–254. https://doi.org/10.1016/0278-4165(91)90014-O (1991).Article 

    Google Scholar 
    Capaldo, S. D. Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania. J. Hum. Evol. 33, 555–597. https://doi.org/10.1006/jhev.1997.0150 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Johnson, E. Current developments in bone technology. Adv. Archeol. Method Theory 8, 157–235. https://doi.org/10.1016/B978-0-12-003108-5.50010-5 (1985).Article 

    Google Scholar 
    Binford, L. R. Bones: Ancient Men and Modern Myths (Academic Press, 1981).
    Google Scholar 
    Dominguez-Rodrigo, M. & Barba, R. New estimates of tooth-mark and percussion-mark frequencies at the FLK Zinjanthropus level: the carnivore–hominid–carnivore hypothesis falsified (I). In Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites (eds Dominguez-Rodrigo, M. et al.) 39–74 (Springer, 2007).Chapter 

    Google Scholar 
    Domínguez-Rodrigo, M. et al. A new methodological approach to the taphonomic study of paleontological and archaeological faunal assemblages: a preliminary case study from Olduvai Gorge (Tanzania). J. Archaeol. Sci. 59, 35–53. https://doi.org/10.1016/j.jas.2015.04.007 (2015).Article 

    Google Scholar 
    Andrés, M., Gidna, A. O., Yravedra, J. & Domínguez-Rodrigo, M. A study of dimensional differences of tooth marks (pits and scores) on bones modified by small and large carnivores. Archaeol. Anthropol. Sci. 4, 209–219. https://doi.org/10.1007/s12520-012-0093-4 (2012).Article 

    Google Scholar 
    Behrensmeyer, A. K. Taphonomic and ecologic information from bone weathering. Paleobiology 4, 150–162. https://doi.org/10.1017/S0094837300005820 (1978).Article 

    Google Scholar 
    Behrensmeyer, A. K., Gordon, K. D. & Yanagi, G. T. Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature 319, 768–771 (1986).ADS 
    Article 

    Google Scholar 
    Egeland, C. P. et al. The taphonomy of fallow deer (Dama dama) skeletons from Denmark and its bearing on the pre-Weichselian occupation of northern Europe by humans. Archaeol. Anthropol. Sci. 6, 31–61 (2014).Article 

    Google Scholar 
    H.T. Bunn, Meat-Eating and Human Evolution: Studies on the Diet and Subsistence Patterns of Plio-Pleistocene Hominids in East Africa, Ph.D. Dissertation, University of California, 1982. More

  • in

    Urban-adapted mammal species have more known pathogens

    Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carlson, C. J. et al. Climate change will drive novel cross-species viral transmission. Preprint at bioRxiv https://doi.org/10.1101/2020.01.24.918755 (2020).Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature https://doi.org/10.1038/s41586-020-2562-8 (2020).Loh, E. H. et al. Targeting transmission pathways for emerging zoonotic disease surveillance and control. Vector Borne Zoonotic Dis. 15, 432–437 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 32, 55–67 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cohen, J. M., Sauer, E. L., Santiago, O., Spencer, S. & Rohr, J. R. Divergent impacts of warming weather on wildlife disease risk across climates. Science 370, eabb1702 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murray, M. H. et al. City sicker? A meta-analysis of wildlife health and urbanization. Front. Ecol. Environ. 17, 575–583 (2019).Article 

    Google Scholar 
    Becker, D. J., Hall, R. J., Forbes, K. M., Plowright, R. K. & Altizer, S. Anthropogenic resource subsidies and host–parasite dynamics in wildlife. Phil. Trans. R. Soc. B 373, 20170086 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Werner, C. S. & Nunn, C. L. Effect of urban habitat use on parasitism in mammals: a meta-analysis. Proc. Biol. Sci. 287, 20200397 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Becker, D. J., Streicker, D. G. & Altizer, S. Linking anthropogenic resources to wildlife–pathogen dynamics: a review and meta-analysis. Ecol. Lett. 18, 483–495 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becker, D. J. et al. Macroimmunology: the drivers and consequences of spatial patterns in wildlife immune defense. J. Anim. Ecol. 89, 972–995 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albery, G. F. & Becker, D. J. Fast-lived hosts and zoonotic risk. Trends Parasitol. https://doi.org/10.1016/j.pt.2020.10.012 (2021).Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, G. et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 11, 537 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, J. & O’Neill, B. C. Mapping global urban land for the twenty-first century with data-driven simulations and shared socioeconomic pathways. Nat. Commun. 11, 2302 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Santini, L. et al. One strategy does not fit all: determinants of urban adaptation in mammals. Ecol. Lett. 22, 365–376 (2019).PubMed 
    Article 

    Google Scholar 
    Ostfeld, R. S. et al. Life history and demographic drivers of reservoir competence for three tick-borne zoonotic pathogens. PLoS ONE 9, e107387 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gutiérrez, J. S., Piersma, T. & Thieltges, D. W. Micro- and macroparasite species richness in birds: the role of host life history and ecology. J. Anim. Ecol. 88, 1226–1239 (2019).PubMed 
    Article 

    Google Scholar 
    Teitelbaum, C. S. et al. A comparison of diversity estimators applied to a database of host–parasite associations. Ecography 43, 1316–1328 (2019).Article 

    Google Scholar 
    Jorge, F. & Poulin, R. Poor geographical match between the distributions of host diversity and parasite discovery effort. Proc. R. Soc. B 285, 20180072 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gibb, R. et al. Mammal virus diversity estimates are unstable due to accelerating discovery effort. Biol. Lett. https://doi.org/10.1098/rsbl.2021.0427 (2022).Hughes, A. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).Article 

    Google Scholar 
    Estes, L. et al. The spatial and temporal domains of modern ecology. Nat. Ecol. Evol. 2, 819–826 (2018).PubMed 
    Article 

    Google Scholar 
    Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS ONE 12, e0189577 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lloyd-Smith, J. O. et al. Should we expect population thresholds for wildlife disease? Trends Ecol. Evol. 20, 511–519 (2005).PubMed 
    Article 

    Google Scholar 
    Cummings, C. R. et al. Foraging in urban environments increases bactericidal capacity in plasma and decreases corticosterone concentrations in white ibises. Front. Ecol. Evol. 8, 575980 (2020).Article 

    Google Scholar 
    Hwang, J. et al. Anthropogenic food provisioning and immune phenotype: association among supplemental food, body condition, and immunological parameters in urban environments. Ecol. Evol. 8, 3037–3046 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strandin, T., Babayan, S. A. & Forbes, K. M. Reviewing the effects of food provisioning on wildlife immunity. Phil. Trans. R. Soc. B 373, 20170088 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Downs, C. J., Dochtermann, N. A., Ball, R., Klasing, K. C. & Martin, L. B. The effects of body mass on immune cell concentrations of mammals. Am. Nat. 195, 107–114 (2020).PubMed 
    Article 

    Google Scholar 
    Downs, C. J. et al. Extreme hyperallometry of mammalian antibacterial defenses. Preprint at bioRxiv https://doi.org/10.1101/2020.09.04.242107 (2020).Becker, D. J., Seifert, S. N. & Carlson, C. J. Beyond infection: integrating competence into reservoir host prediction. Trends Ecol. Evol. 35, 1062–1065 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hanson, D. A., Britten, H. B., Restani, M. & Washburn, L. R. High prevalence of Yersinia pestis in black-tailed prairie dog colonies during an apparent enzootic phase of sylvatic plague. Conserv. Genet. 8, 789–795 (2007).CAS 
    Article 

    Google Scholar 
    Gecchele, L. V., Pedersen, A. B. & Bell, M. Fine-scale variation within urban landscapes affects marking patterns and gastrointestinal parasite diversity in red foxes. Ecol. Evol. 10, 13796–13809 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albery, G. F., Sweeny, A. R., Becker, D. J. & Bansal, S. Fine-scale spatial patterns of wildlife disease are common and understudied. Funct. Ecol. https://doi.org/10.1111/1365-2435.13942 (2021).Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).Article 

    Google Scholar 
    Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).PubMed 
    Article 

    Google Scholar 
    Albery, G. F., Eskew, E. A., Ross, N. & Olival, K. J. Predicting the global mammalian viral sharing network using phylogeography. Nat. Commun. https://doi.org/10.1038/s41467-020-16153-4 (2020).IUCN Red List of Threatened Species Version 2019-2 (IUCN, 2019); https://www.iucnredlist.orgBecker, D. J. et al. Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. Lancet Microbe https://doi.org/10.1016/S2666-5247(21)00245-7 (2022).Mason, P. Parasites of deer in New Zealand. N. Zeal. J. Zool. 21, 39–47 (1994).Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    Plourde, B. T. et al. Are disease reservoirs special? Taxonomic and life history characteristics. PLoS ONE 12, e0180716 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gibb, R. et al. Data proliferation, reconciliation, and synthesis in viral ecology. Bioscience https://doi.org/10.1101/2021.01.14.426572 (2021).Stephens, P. R. et al. Global mammal parasite database version 2.0. Ecology 98, 1476 (2017).PubMed 
    Article 

    Google Scholar 
    Wardeh, M., Risley, C., Mcintyre, M. K., Setzkorn, C. & Baylis, M. Database of host–pathogen and related species interactions, and their global distribution. Sci. Data 2, 150049 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shaw, L. P. et al. The phylogenetic range of bacterial and viral pathogens of vertebrates. Mol. Ecol. 29, 3361–3379 (2020).PubMed 
    Article 

    Google Scholar 
    Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Res https://doi.org/10.12688/f1000research.2-191.v2 (2013).Carlson, C. J. et al. The Global Virome in One Network (VIRION): an atlas of vertebrate–virus associations. mBio 13, e0298521 (2022).Article 

    Google Scholar 
    Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 1–25 (2015).Article 

    Google Scholar 
    Lindgren, F., Rue, H. & Lindstrom, J. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc. B 73, 423–498 (2011).Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Winter, D. J. rentrez: an R package for the NCBI eUtils API. R J. 9, 520–526 (2017).Article 

    Google Scholar 
    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).PubMed 
    Article 

    Google Scholar 
    Carlson, C. J., Dallas, T. A., Alexander, L. W., Phelan, A. L. & Phillips, A. J. What would it take to describe the global diversity of parasites? Proc. R. Soc. B 287, 20201841 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Portfolio effects and functional redundancy contribute to the maintenance of octocoral forests on Caribbean reefs

    Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131. https://doi.org/10.1046/j.1461-0248.2001.00203.x (2001).Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).PubMed 
    Article 

    Google Scholar 
    Toth, L. T. et al. The unprecedented loss of Florida’s reef-building corals and the emergence of a novel coral-reef assemblage. Ecology 100, e02781. https://doi.org/10.1002/ecy.2781 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Green, D. H., Edmunds, P. J. & Carpenter, R. C. Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar. Ecol. Prog. Ser. 359, 1–10 (2008).ADS 
    Article 

    Google Scholar 
    Alvarez-Filip, L., Carricart-Ganivet, J. P., Horta-Puga, G. & Iglesias-Prieto, R. Shifts in coral-assemblage composition do not ensure persistence of reef functionality. Sci. Rep. 3, 3486. https://doi.org/10.1038/srep03486 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change 9, 40–43 (2019).ADS 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00158 (2017).Article 

    Google Scholar 
    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jackson, J., Donovan, M., Cramer, K. & Lam, V. Status and trends of Caribbean coral reefs. Global Coral Reef Monitoring Network, IUCN, Gland, Switzerland, 1970–2012 (2014).Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. Ecosystem-based management. Ecology 90, 1478–1484 (2009).PubMed 
    Article 

    Google Scholar 
    Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).PubMed 
    Article 

    Google Scholar 
    Bak, R. P. M., Lambrechts, D. Y. M., Joenje, M., Nieuwland, G. & Van Veghel, M. L. J. Long-term changes on coral reefs in booming populations of a competitive colonial ascidian. Mar. Ecol. Prog. Ser. 133, 303–306 (1996).ADS 
    Article 

    Google Scholar 
    Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: beyond coral–macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 295–306 (2009).ADS 
    Article 

    Google Scholar 
    Lenz, E. A., Bramanti, L., Lasker, H. R. & Edmunds, P. J. Long-term variation of octocoral populations in St. John, US Virgin Islands. Coral Reefs 34, 1099–1109 (2015).ADS 
    Article 

    Google Scholar 
    Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Ann. Rev. Mar Sci. 12, 315–337 (2020).PubMed 
    Article 

    Google Scholar 
    Lasker, H. R., Bramanti, L., Tsounis, G. & Edmunds, P. J. in Advances in Marine Biology Vol. 87 (ed. Riegl, B. M.) 361–410 (Academic Press, 2020).
    Google Scholar 
    Pearson, R. Recovery and recolonization of coral reefs. Mar. Ecol. Prog. Ser. 4, 105–122 (1981).ADS 
    Article 

    Google Scholar 
    Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).Article 

    Google Scholar 
    França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Philos. Trans. R. Soc. B 375, 20190116 (2020).Article 

    Google Scholar 
    Ruzicka, R. et al. Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar. Ecol. Prog. Ser. 489, 125–141 (2013).ADS 
    Article 

    Google Scholar 
    Sánchez, J. A. et al. in Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 729–747 (Springer International Publishing, 2019).Chapter 

    Google Scholar 
    Tsounis, G., Edmunds, P. J., Bramanti, L., Gambrel, B. & Lasker, H. R. Variability of size structure and species composition in Caribbean octocoral communities under contrasting environmental conditions. Mar. Biol. 165, 29. https://doi.org/10.1007/s00227-018-3286-2 (2018).Article 

    Google Scholar 
    Kinzie, R. A. III. The zonation of West Indian gorgonians. Bull. Mar. Sci. 23, 93–155 (1973).
    Google Scholar 
    Yoshioka, P. M. & Yoshioka, B. B. A comparison of the survivorship and growth of shallow-water gorgonian species of Puerto Rico. Mar. Ecol. Prog. Ser. 69, 253–260 (1991).ADS 
    Article 

    Google Scholar 
    De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 109, 17995–17999 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Newman, M. J., Paredes, G. A., Sala, E. & Jackson, J. B. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol. Lett. 9, 1216–1227 (2006).PubMed 
    Article 

    Google Scholar 
    Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 
    Lawton, J. H. & Brown, V. K. in Biodiversity and Ecosystem Function (eds Schulze, E. D. & Mooney, H. A.) 255–270 (Springer, 1994).Chapter 

    Google Scholar 
    Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96(5), 2333–2354 (2021).PubMed 
    Article 

    Google Scholar 
    Bellwood, D. R., Stret, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term ‘function’ in ecology: a coral reef perspective. Funct. Ecol. 33, 948–961 (2018).Article 

    Google Scholar 
    Caswell, H. Construction, analysis, and interpretation. Sunderland: Sinauer 585, 258–277 (2001).
    Google Scholar 
    Bayer, F. M. The shallow-water Octocorallia of the West Indian region. Stud. Fauna Curacao Caribb. Isl. 12, 1–373 (1961).
    Google Scholar 
    Rossi, S., Bramanti, L., Gori, A. & Orejas, C. An overview of the animal forests of the world. In Marine Animal Forest (ed. Rossi, S.) 1–25 (Springer, 2017).Chapter 

    Google Scholar 
    Sánchez, J. A. Diversity and evolution of octocoral animal forests at both sides of tropical america. in Marine Animal Forests (eds Rossi, S. et al.) (Springer, 2016).
    Google Scholar 
    Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013).PubMed 
    Article 

    Google Scholar 
    Schindler, D. E., Armstrong, J. B. & Reed, T. E. The portfolio concept in ecology and evolution. Front. Ecol. Environ. 13, 257–263 (2015).Article 

    Google Scholar 
    Biggs, C. R. et al. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere 11, e03184 (2020).Article 

    Google Scholar 
    Anderson, S. C., Moore, J. W., McClure, M. M., Dulvy, N. K. & Cooper, A. B. Portfolio conservation of metapopulations under climate change. Ecol. Appl. 25, 559–572 (2015).PubMed 
    Article 

    Google Scholar 
    Mellin, C., MacNeil, A. M., Cheal, A. J., Emslie, M. J. & Caley, J. M. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016).PubMed 
    Article 

    Google Scholar 
    Webster, N. et al. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci. rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    Tsounis, G. & Edmunds, P. J. Three decades of coral reef community dynamics in St. John, USVI: a contrast of scleractinians and octocorals. Ecosphere 8, e01646 (2017).Article 

    Google Scholar 
    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).Article 

    Google Scholar 
    Tsounis, G., Edmunds, P. J., Bramanti, L., Gambrel, B. & Lasker, H. R. Variability of size structure and species composition in Caribbean octocoral communities under contrasting environmental conditions. Mar. Biol. 165, 1–14 (2018).Article 

    Google Scholar 
    Browning, T. N. et al. Widespread deposition in a coastal bay following three major 2017 hurricanes (Irma, Jose, and Maria). Sci. Rep. 9, 1–13 (2019).CAS 
    Article 

    Google Scholar 
    Edmunds, P. J. Three decades of degradation lead to diminished impacts of severe hurricanes on Caribbean reefs. Ecology 100, e02587 (2019).PubMed 
    Article 

    Google Scholar 
    Clarke, K. & Warwick, R. Quantifying structural redundancy in ecological communities. Oecologia 113, 278–289 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Menge, B. A., Berlow, E. L., Blanchette, C. A., Navarrete, S. A. & Yamada, S. B. The keystone species concept: variation in interaction strength in a rocky intertidal habitat. Ecol. Monogr. 64, 249–286 (1994).Article 

    Google Scholar 
    Frost, T. M., Carpenter, S. R., Ives, A. R. & Kratz, T. K. in Linking Species & Ecosystems (eds Jones, C. G. & Lawton, J. H.) 224–239 (Springer, 1995).Chapter 

    Google Scholar 
    Lasker, H., Martínez-Quintana, Á., Bramanti, L. & Edmunds, P. J. Resilience of octocoral forests to catastrophic storms. Sci. Rep. 10, 1–8 (2020).Article 
    CAS 

    Google Scholar 
    Goffredo, S. & Lasker, H. R. Modular growth of a gorgonian coral can generate predictable patterns of colony growth. J. Exp. Mar. Biol. Ecol. 336, 221–229 (2006).Article 

    Google Scholar 
    Grigg, R. W. Growth rings: annual periodicity in two gorgonian corals. Ecology 55, 876–881 (1974).Article 

    Google Scholar 
    Grigg, R. W. Resource management of precious corals a review and application ton shallow water reef building corals. Mar. Ecol. 5, 57–74 (1984).ADS 
    Article 

    Google Scholar 
    Clarke, K. R. & Gorley, R. N. Primer v6: User Manual/Tutorial (PRIMER-E Ltd., 2006).
    Google Scholar 
    Schutte, V. G., Selig, E. R. & Bruno, J. F. Regional spatio-temporal trends in Caribbean coral reef benthic communities. Mar. Ecol. Prog. Ser. 402, 115–122 (2010).ADS 
    Article 

    Google Scholar 
    Edmunds, P. J. Decadal-scale changes in the community structure of coral reefs of St. John, US Virgin Islands. Mar. Ecol. Prog. Ser. 489, 107–123 (2013).ADS 
    Article 

    Google Scholar 
    Chollett, I., Mumby, P. J., Müller-Karger, F. E. & Hu, C. Physical environments of the Caribbean Sea. Limnol. Oceanogr. 57, 1233–1244 (2012).ADS 
    Article 

    Google Scholar 
    Fowell, S. E. et al. Historical trends in pH and carbonate biogeochemistry on the Belize Mesoamerican Barrier Reef System. Geophys. Res. Lett. 45, 3228–3237. https://doi.org/10.1002/2017GL076496 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Edmunds, P. J. & Lasker, H. R. Regulation of population size of arborescent octocorals on shallow Caribbean reefs. Mar. Ecol. Prog. Ser. 615, 1–14 (2019).ADS 
    Article 

    Google Scholar 
    Borgstein, N., Beltrán, D. M. & Prada, C. Variable growth across species and life stages in Caribbean reef octocorals. Front. Mar. Sci. 7, 483 (2020).Article 

    Google Scholar 
    Guizien, K. & Ghisalberti, M. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S. et al.) 1–22 (Springer International Publishing, 2015).
    Google Scholar 
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).PubMed 
    Article 

    Google Scholar 
    Simonson, W. D., Allen, H. D., Coomes, D. A. & Tatem, A. Applications of airborne lidar for the assessment of animal species diversity. Methods Ecol. Evol. 5, 719–729 (2014).Article 

    Google Scholar 
    Roscher, C. et al. Identifying population- and community-level mechanisms of diversity-stability relationships in experimental grasslands. J. Ecol. 99, 1460–1469 (2011).Article 

    Google Scholar 
    Yang, Z., Ruijven, V. J. & Du, G. The effects of long-term fertilization on the temporal stability of alpine meadow communities. Plant Soil 345, 315–324 (2011).CAS 
    Article 

    Google Scholar 
    Wilcox, K. R. et al. Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecol. Lett. 20, 1534–1545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosenfeld, J. S. Logical fallacies in the assessment of functional redundancy. Conserv. Biol. 16, 837–839 (2002).Article 

    Google Scholar 
    Loreau, M. Does functional redundancy exist?. Oikos 104, 606–611 (2004).Article 

    Google Scholar 
    Gambrel, B. & Lasker, H. R. Interactions in the canopy among Caribbean reef octocorals. Mar. Ecol. Prog. Ser. 546, 85–95 (2016).ADS 
    Article 

    Google Scholar 
    Zambrano, J. et al. Tree crown overlap improves predictions of the functional neighbourhood effects on tree survival and growth. J. Ecol. 107, 887–900 (2019).Article 

    Google Scholar 
    Pescador, et al. 2018 The shape is more important than we ever thought: Plant to plant interactions in a high mountain community. Methods Ecol. Evol. 10, 1584–1593 (2019).Article 

    Google Scholar 
    Cerpovicz, A. F. & Lasker, H. R. Canopy effects of octocoral communities on sedimentation: modern baffles on the shallow-water reefs of St. John, USVI. Coral Reefs 40, 295 (2021).Article 

    Google Scholar 
    Martinez-Quintana, Á. & Lasker, H. R. Early life-history dynamics of Caribbean octocorals: the critical role of larval supply and partial mortality. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.705563 (2021).Article 

    Google Scholar 
    Tsounis, G., Steele, M. A. & Edmunds, P. J. Elevated feeding rates of fishes within octocoral canopies on Caribbean reefs. Coral Reefs 39, 1299–1311 (2020).Article 

    Google Scholar 
    Girard, J. & Edmunds, P.J. Effects of arborescent octocoral assemblages on the understory benthic communities of shallow Caribbean reefs. J. Exp. Mar. Biol. Ecol. (in review).Privitera-Johnson, K., Lenz, E. A. & Edmunds, P. J. Density-associated recruitment in octocoral communities in St. John, US Virgin Islands. J. Exp. Mar. Biol. Ecol. 473, 103–109. https://doi.org/10.1016/j.jembe.2015.08.006 (2015).Article 

    Google Scholar 
    Slattery, M. & Lesser, M. P. Gorgonians are foundation species on sponge-dominated Mesophotic Coral Reefs in the Caribbean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.654268 (2021).Article 

    Google Scholar 
    Lasker, H. R. & Porto-Hannes, I. Population structure among octocoral adults and recruits identifies scale dependent patterns of population isolation in The Bahamas. PeerJ 3, e1019. https://doi.org/10.7717/peerj.1019 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark, D. A. & Clark, D. B. Getting to the canopy: tree height growth in a neotropical rain forest. Ecology 82, 1460–1472 (2001).Article 

    Google Scholar 
    Birkeland, C. Coral Reefs in the Anthropocene 1–15 (Springer, 2015).Book 

    Google Scholar 
    Petraitis, P. S. & Dudgeon, S. R. Cusps and butterflies: multiple stable states in marine systems as catastrophes. Mar. Freshw. Res. 67, 37–46 (2015).Article 

    Google Scholar  More

  • in

    Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China

    Torsvik, V., Øvreås, L. & Thingstad, T. F. Prokaryotic diversity-magnitude, dynamics, and controlling factors. Science 296, 1064–1066 (2002).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kuang, J. et al. Predicting taxonomic and functional structure of microbial communities in acid mine drainage. ISME J. 10, 1527–1539 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mod, H. K. et al. Predicting spatial patterns of soil bacteria under current and future environmental conditions. ISME J. (2021).Pace, N. R. A molecular view of microbial diversity and the biosphere. Science 276, 734–740 (1997).CAS 
    PubMed 
    Article 

    Google Scholar 
    Violle, C., Reich, P. B., Pacala, S. W., Enquist, B. J. & Kattge, J. The emergence and promise of functional biogeography. Proc. Natl Acad. Sci. USA 111, 13690–13696 (2004).ADS 
    Article 
    CAS 

    Google Scholar 
    Green, J. L., Bohannan, B. J. & Whitaker, R. J. Microbial biogeography: from taxonomy to traits. Science 320, 1039–1043 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chevallereau, A., Pons, B. J., van Houte, S. & Westra, E. R. Interactions between bacterial and phage communities in natural environments. Nat. Rev. Microbiol. 20, 49–62 (2022).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sullivan, M. B., Weitz, J. S. & Wilhelm, S. Viral ecology comes of age. Environ. Microbiol. Rep. 9, 33–35 (2017).PubMed 
    Article 

    Google Scholar 
    Brum, J. R. & Sullivan, M. B. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13, 147–159 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).PubMed 
    Article 
    CAS 

    Google Scholar 
    Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shu, W. S. & Huang, L. N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. (2021).Huang, L. N., Kuang, J. L. & Shu, W. S. Microbial ecology and evolution in the acid mine drainage model system. Trends Microbiol 24, 581–593 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hwang, Y., Rahlff, J., Schulze-Makuch, D., Schloter, M. & Probst, A. J. Diverse viruses carrying genes for microbial extremotolerance in the Atacama desert hyperarid soil. mSystems 6, e00385–21 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adriaenssens, E. M. et al. Environmental drivers of viral community composition in Antarctic soils identified by viromics. Microbiome 5, 83 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Andersson, A. F. & Banfield, J. F. Virus population dynamics and acquired virus resistance in natural microbial communities. Science 320, 1047–1050 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gao, S. M. et al. Depth-related variability in viral communities in highly stratified sulfidic mine tailings. Microbiome 8, 89 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Holmfeldt, K. et al. The Fennoscandian Shield deep terrestrial virosphere suggests slow motion ‘boom and burst’ cycles. Commun. Biol. 4, 307 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rahlff, J. et al. Lytic archaeal viruses infect abundant primary producers in Earth’s crust. Nat. Commun. 12, 4642 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hao, Y. Q. et al. Microbial biogeography of acid mine drainage sediments at a regional scale across Southern China. FEMS Microbiol. Ecol. 98, fiac002 (2022).PubMed 
    Article 

    Google Scholar 
    Paez-Espino, D., Pavlopoulos, G. A., Ivanova, N. N. & Kyrpides, N. C. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat. Protoc. 12, 1673–1682 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Roux, S., Enault, F., Hurwitz, B. L. & Sullivan, M. B. VirSorter: mining viral signal from microbial genomic data. PeerJ 3, e985 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Nayfach, S. et al. CheckV: assessing the quality of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).Article 
    CAS 

    Google Scholar 
    Li, Z. et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 15, (2021).Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res 47, D309–D314 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wu, S. et al. DeePhage: distinguishing virulent and temperate phage-derived sequences in metavirome data with a deep learning approach. Gigascience 10, giab056 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, L. X. et al. Comparative metagenomic and metatranscriptomic analyses of microbial communities in acid mine drainage. ISME J. 9, 1579–1592 (2015).PubMed 
    Article 

    Google Scholar 
    Liang, J. L. et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 14, 1600–1613 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hsieh, Y. J. & Wanner, B. L. Global regulation by the seven-component Pi signaling system. Curr. Opin. Microbiol. 13, 198–203 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stasi, R., Neves, H. I. & Spira, B. Phosphate uptake by the phosphonate transport system PhnCDE. BMC Microbiol 19, 79 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Narr, A., Nawaz, A., Wick, L. Y., Harms, H. & Chatzinotas, A. Soil viral communities vary temporally and along a land use transect as revealed by virus-like particle counting and a modified community fingerprinting approach (fRAPD). Front. Microbiol. 8, 1975 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Santos-Medellin, C. et al. Viromes outperform total metagenomes in revealing the spatiotemporal patterns of agricultural soil viral communities. ISME J. 15, 1956–1970 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tyson, G. W. & Banfield, J. F. Rapidly evolving CRISPRs implicated in acquired resistance of microorganisms to viruses. Environ. Microbiol. 10, 200–207 (2008).CAS 
    PubMed 

    Google Scholar 
    Sun, C. L. et al. Phage mutations in response to CRISPR diversification in a bacterial population. Environ. Microbiol. 15, 463–470 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hurwitz, B. L., Westveld, A. H., Brum, J. R. & Sullivan, M. B. Modeling ecological drivers in marine viral communities using comparative metagenomics and network analyses. Proc. Natl Acad. Sci. USA 111, 10714–10719 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jin, M. et al. Diversities and potential biogeochemical impacts of mangrove soil viruses. Microbiome 7, 58 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Dinsdale, E. A. et al. Functional metagenomic profiling of nine biomes. Nature 452, 629–632 (2008).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tedersoo, L. et al. Fungal biogeography. Global diversity and geography of soil fungi. Science 346, 1256688 (2014).PubMed 
    Article 
    CAS 

    Google Scholar 
    Miraldo, A. et al. An Anthropocene map of genetic diversity. Science 353, 1532–1535 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonnain, C., Breitbart, M. & Buck, K. N. The Ferrojan horse hypothesis: iron-virus interactions in the ocean. Front. Mar. Sci. 3, 82 (2016).Article 

    Google Scholar 
    Muratore, D. & Weitz, J. S. Infect while the iron is scarce: nutrient-explicit phage-bacteria games. Theor. Ecol. 14, 467–487 (2021).Article 

    Google Scholar 
    Kyle, J. E., Pedersen, K. & Ferris, F. G. Virus mineralization at low pH in the Rio Tinto. Spain Geomicrobiol. J. 25, 338–345 (2008).CAS 
    Article 

    Google Scholar 
    Kyle, J. E. & Ferris, F. G. Geochemistry of virus–prokaryote interactions in freshwater and acid mine drainage environments, Ontario, Canada. Geomicrobiol. J. 30, 769–778 (2013).CAS 
    Article 

    Google Scholar 
    Hewson, I., O’Neil, J. M., Fuhrman, J. A. & Dennison, W. C. Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries. Limnol. Oceanogr. 46, 1734–1746 (2001).ADS 
    Article 

    Google Scholar 
    Wu, L. et al. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 4, 1183–1195 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bates, S. T. et al. Global biogeography of highly diverse protistan communities in soil. ISME J. 7, 652–659 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kuang, J. L. et al. Contemporary environmental variation determines microbial diversity patterns in acid mine drainage. ISME J. 7, 1038–1050 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sant, D. G., Woods, L. C., Barr, J. J. & McDonald, M. J. Host diversity slows bacteriophage adaptation by selecting generalists over specialists. Nat. Ecol. Evol. 5, 350–359 (2021).PubMed 
    Article 

    Google Scholar 
    Betts, A., Gray, C., Zelek, M., MacLean, R. C. & King, K. C. High parasite diversity accelerates host adaptation and diversification. Science 360, 907–911 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Goldsmith, D. B., Parsons, R. J., Beyene, D., Salamon, P. & Breitbart, M. Deep sequencing of the viral phoH gene reveals temporal variation, depth-specific composition, and persistent dominance of the same viral phoH genes in the Sargasso Sea. Peer. J. 3, e997 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Goldsmith, D. B. et al. Development of phoH as a novel signature gene for assessing marine phage diversity. Appl. Environ. Microbiol. 77, 7730–7739 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martiny, A. C., Coleman, M. L. & Chisholm, S. W. Phosphate acquisition genes in Prochlorococcus ecotypes: evidence for genome-wide adaptation. Proc. Natl Acad. Sci. USA 103, 12552–12557 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tetu, S. G. et al. Microarray analysis of phosphate regulation in the marine cyanobacterium Synechococcus sp. WH8102. ISME J. 3, 835–849 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zeng, Q. & Chisholm, S. W. Marine viruses exploit their host’s two-component regulatory system in response to resource limitation. Curr. Biol. 22, 124–128 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kazakov, A. E., Vassieva, O., Gelfand, M. S., Osterman, A. & Overbeek, R. Bioinformatics classification and functional analysis of PhoH homologs. Silico Biol. 3, 3–15 (2003).CAS 

    Google Scholar 
    Bray, R. H. & Kurtz, L. T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 59, 39–46 (1945).ADS 
    CAS 
    Article 

    Google Scholar 
    Hill, A. G. et al. Standardized general method for the determination of iron with 1,10-phenanthroline. Analyst 103, 391–396 (1978).Article 

    Google Scholar 
    Chesmin, L. & Yien, C. H. Turbidimetric determination of available sulphate. Soil Sci. Soc. Am. Proc. 15, 149–151 (1951).ADS 
    Article 

    Google Scholar 
    Fang, Y. et al. Modified pretreatment method for total microbial DNA extraction from contaminated river sediment. Front. Environ. Sci. Eng. 9, 444–452 (2015).CAS 
    Article 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).Article 
    CAS 

    Google Scholar 
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res 47, D427–D432 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44, D457–D462 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLOS Comput. Biol. 7, e1002195 (2011).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus-host interactions resolved from publicly available microbial genomes. Elife 4, e08490 (2015).PubMed Central 
    Article 

    Google Scholar 
    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next- generation sequencing data. Bioinformatics 28, 3150–3152 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kang, D. D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain Bacteria. Nature 523, 208–201 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sieber, C. M. K. et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat. Microbiol. 3, 836–843 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).PubMed Central 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Edwards, R. A., McNair, K., Faust, K., Raes, J. & Dutilh, B. E. Computational approaches to predict bacteriophage-host relationships. FEMS Microbiol. Rev. 40, 258–272 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rho, M., Wu, Y. W., Tang, H., Doak, T. G. & Ye, Y. Diverse CRISPRs evolving in human microbiomes. PLoS Genet. 8, e1002441 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinforma. 5, 113 (2004).Article 
    CAS 

    Google Scholar 
    Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Minh, B. Q. et al. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37, 1530–1534 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    R Development Core Team. R: A Language and environment for statistical computing. (2013).Oksanen, J. et al. vegan: Community ecology package. R package version 2.5-5. (2019).Harrell, F. E. Jr. & Dupont, M. C. The hmisc package. R. package version 4, 2–0 (2019).
    Google Scholar 
    R Development Core Team. The R Stats Package. R package version 4.0.3 (2013).Rosseel, Y. Lavaan: An R package for structural equation modeling and more. Version 0.5-12 (BETA). J. Stat. Soft 48, 1–36 (2012).Article 

    Google Scholar 
    Flores, C. O., Meyer, J. R., Valverde, S., Farr, L. & Weitz, J. S. Statistical structure of host-phage interactions. Proc. Natl Acad. Sci. USA 108, E288–E297 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More