More stories

  • in

    Succession comprises a sequence of threshold-induced community assembly processes towards multidiversity

    Chang, C. & HilleRisLambers, J. Integrating succession and community assembly perspectives. F1000Research 5, 1–10 (2016).Article 

    Google Scholar 
    Suding, K. N. & Hobbs, R. J. Threshold models in restoration and conservation: a developing framework. Trends Ecol. Evol. 24, 271–279 (2009).PubMed 
    Article 

    Google Scholar 
    Kadowaki, K., Nishijima, S., Kéfi, S., Kameda, K. O. & Sasaki, T. Merging community assembly into the regime-shift approach for informing ecological restoration. Ecol. Indic. 85, 991–998 (2018).Article 

    Google Scholar 
    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 3, 239–250 (2019).PubMed 
    Article 

    Google Scholar 
    Berdugo, M. et al. Global ecosystem thresholds driven by aridity. Science 367, 787–790 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Allan, E. et al. Interannual variation in land-use intensity enhances grassland multidiversity. Proc. Natl Acad. Sci. USA 111, 308–313 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).PubMed 
    Article 

    Google Scholar 
    Felipe-Lucia, M. R. et al. Land-use intensity alters networks between biodiversity, ecosystem functions, and services. Proc. Natl Acad. Sci. USA 117, 28140–28149 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Manning, P. et al. Grassland management intensification weakens the associations among the diversities of multiple plant and animal taxa. Ecology 96, 1492–1501 (2015).Article 

    Google Scholar 
    Kaufmann, R. Invertebrate succession on an alpine glacier foreland. Ecology 82, 2261–2278 (2001).Article 

    Google Scholar 
    Blaalid, R. et al. Changes in the root-associated fungal communities along a primary succession gradient analysed by 454 pyrosequencing. Mol. Ecol. 21, 1897–1908 (2012).PubMed 
    Article 

    Google Scholar 
    Fenton, N. J. & Bergeron, Y. Stochastic processes dominate during boreal bryophyte community assembly. Ecology 94, 1993–2006 (2013).PubMed 
    Article 

    Google Scholar 
    Dini-Andreote, F., Stegen, J. C., Van Elsas, J. D. & Salles, J. F. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl Acad. Sci. USA 112, E1326–E1332 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Måren, I. E., Kapfer, J., Aarrestad, P. A., Grytnes, J. A. & Vandvik, V. Changing contributions of stochastic and deterministic processes in community assembly over a successional gradient. Ecology 99, 148–157 (2018).PubMed 
    Article 

    Google Scholar 
    Pulsford, S. A., Lindenmayer, D. B. & Driscoll, D. A. A succession of theories: purging redundancy from disturbance theory. Biol. Rev. 91, 148–167 (2016).PubMed 
    Article 

    Google Scholar 
    Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ohlmann, M. et al. Mapping the imprint of biotic interactions on β-diversity. Ecol. Lett. 21, 1660–1669 (2018).PubMed 
    Article 

    Google Scholar 
    Chen, C., Chen, H. Y. H., Chen, X. & Huang, Z. Meta-analysis shows positive effects of plant diversity on microbial biomass and respiration. Nat. Commun. 10, 1–10 (2019).Article 
    CAS 

    Google Scholar 
    Howard, M. M., Kao-Kniffin, J. & Kessler, A. Shifts in plant–microbe interactions over community succession and their effects on plant resistance to herbivores. N. Phytol. 226, 1144–1157 (2020).Article 

    Google Scholar 
    Lepš, J., Rejmánek, M., Leps, J. & Rejmanek, M. Convergence or divergence: what should we expect from vegetation succession? Oikos 62, 261–264 (1991).Article 

    Google Scholar 
    Fukami, T., Bezemer, T. M., Mortimer, S. R. & Van Der Putten, W. H. Species divergence and trait convergence in experimental plant community assembly. Ecol. Lett. 8, 1283–1290 (2005).Article 

    Google Scholar 
    Brown, S. P. & Jumpponen, A. Contrasting primary successional trajectories of fungi and bacteria in retreating glacier soils. Mol. Ecol. 23, 481–497 (2014).PubMed 
    Article 

    Google Scholar 
    Castle, S. C. et al. Biogeochemical drivers of microbial community convergence across actively retreating glaciers. Soil Biol. Biochem. 101, 74–84 (2016).CAS 
    Article 

    Google Scholar 
    Chang, C. C. et al. Testing conceptual models of early plant succession across a disturbance gradient. J. Ecol. 107, 517–530 (2019).Article 

    Google Scholar 
    Junker, R. R. et al. Ödenwinkel: an Alpine platform for observational and experimental research on the emergence of multidiversity and ecosystem complexity. Web Ecol. 20, 95–106 (2020).Article 

    Google Scholar 
    Groffman, P. M. et al. Ecological thresholds: the key to successful environmental management or an important concept with no practical application? Ecosystems 9, 1–13 (2006).Article 

    Google Scholar 
    Lindeløv, J. K. mcp: an R package for regression With multiple change points. J. Stat. Softw. https://doi.org/10.31219/osf.io/fzqxv (2020).Article 

    Google Scholar 
    Ohler, L. M., Lechleitner, M. & Junker, R. R. Microclimatic effects on alpine plant communities and flower-visitor interactions. Sci. Rep. 10, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Cavieres, L. A. et al. Facilitative plant interactions and climate simultaneously drive alpine plant diversity. Ecol. Lett. 17, 193–202 (2014).PubMed 
    Article 

    Google Scholar 
    Lowe, W. H. & McPeek, M. A. Is dispersal neutral? Trends Ecol. Evol. 29, 444–450 (2014).PubMed 
    Article 

    Google Scholar 
    Legendre, P., Borcard, D. & Peres-Neto, P. R. Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecol. Monogr. 75, 435–450 (2005).Article 

    Google Scholar 
    Ranta, E. et al. Detecting compensatory dynamics in competitive communities under environmental forcing. Oikos 117, 1907–1911 (2008).Article 

    Google Scholar 
    Houlahan, J. E. et al. The utility of covariances: a response to Ranta et al. Oikos 117, 1912–1913 (2008).Article 

    Google Scholar 
    Tscherko, D., Rustemeier, J., Richter, A., Wanek, W. & Kandeler, E. Functional diversity of the soil microflora in primary succession across two glacier forelands in the Central Alps. Eur. J. Soil Sci. 54, 685–696 (2003).Article 

    Google Scholar 
    Raffl, C., Mallaun, M., Mayer, R. & Erschbamer, B. Vegetation succession pattern and diversity changes in a Glacier Valley, Central Alps, Austria. Arct. Antarct. Alp. Res. 38, 421–428 (2006).Article 

    Google Scholar 
    Schütte, U. M. E. et al. Bacterial diversity in a glacier foreland of the high Arctic. Mol. Ecol. 19, 54–66 (2010).PubMed 
    Article 

    Google Scholar 
    Dong, K. et al. Soil fungal community development in a high Arctic glacier foreland follows a directional replacement model, with a mid-successional diversity maximum. Sci. Rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    Houlahan, J. E. et al. Compensatory dynamics are rare in natural ecological communities. Proc. Natl Acad. Sci. USA 104, 3273–3277 (2007).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Vellend, M. Effects of diversity on diversity: consequences of competition and facilitation. Oikos 117, 1075–1085 (2008).Article 

    Google Scholar 
    Rottstock, T., Joshi, J., Kummer, V. & Fischer, M. Higher plant diversity promotes higher diversity of fungal pathogens, while it decreases pathogen infection per plant. Ecology 95, 1907–1917 (2014).PubMed 
    Article 

    Google Scholar 
    Baudy, P. et al. Fungal–fungal and fungal–bacterial interactions in aquatic decomposer communities: bacteria promote fungal diversity. Ecology 102, 1–16 (2021).Article 

    Google Scholar 
    Bardgett, R. D. et al. Heterotrophic microbial communities use ancient carbon following glacial retreat. Biol. Lett. 3, 487–490 (2007).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bokhorst, S. & Wardle, D. A. Snow fungi as a food source for micro-arthropods. Eur. J. Soil Biol. 60, 77–80 (2014).Article 

    Google Scholar 
    Hågvar, S. et al. Ecosystem birth near melting glaciers: a review on the pioneer role of ground-dwelling arthropods. Insects 11, 1–35 (2020).Article 

    Google Scholar 
    Wardle, D. A. The influence of biotic interactions on soil biodiversity. Ecol. Lett. 9, 870–886 (2006).PubMed 
    Article 

    Google Scholar 
    Sabatini, M. A. & Innocenti, G. Functional relationships between Collembola and plant pathogenic fungi of agricultural soils. Pedobiologia (Jena.) 44, 467–475 (2000).Article 

    Google Scholar 
    Klironomos, J. N. & Kendrick, W. B. Palatability of microfungi to soil arthropods in relation to the functioning of arbuscular mycorrhizae. Biol. Fertil. Soils 21, 43–52 (1996).Article 

    Google Scholar 
    Klironomos, J. N., Widden, P. & Deslandes, I. Feeding preferences of the collembolan Folsomia candida in relation to microfungal successions on decaying litter. Soil Biol. Biochem. 24, 685–692 (1992).Article 

    Google Scholar 
    Connell, J. H. & Slatyer, R. O. Mechanisms of succession in natural communities and their role in community stability and organization. Am. Nat. 111, 1119–1144 (1977).Article 

    Google Scholar 
    Arróniz-Crespo, M. et al. Bryophyte-cyanobacteria associations during primary succession in recently deglaciated areas of Tierra del Fuego (Chile). PLoS One 9, 15–17 (2014).Article 
    CAS 

    Google Scholar 
    Jean, M. et al. Experimental assessment of tree canopy and leaf litter controls on the microbiome and nitrogen fixation rates of two boreal mosses. N. Phytol. 227, 1335–1349 (2020).CAS 
    Article 

    Google Scholar 
    Jean, M., Alexander, H. D., Mack, M. C. & Johnstone, J. F. Patterns of bryophyte succession in a 160-year chronosequence in deciduous and coniferous forests of boreal Alaska. Can. J. Res. 47, 1021–1032 (2017).Article 

    Google Scholar 
    Blanchet, F. G., Cazelles, K. & Gravel, D. Co‐occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).PubMed 
    Article 

    Google Scholar 
    Fukami, T. & Nakajima, M. Complex plant-soil interactions enhance plant species diversity by delaying community convergence. J. Ecol. 101, 316–324 (2013).Article 

    Google Scholar 
    Martínez-García, L. B., Richardson, S. J., Tylianakis, J. M., Peltzer, D. A. & Dickie, I. A. Host identity is a dominant driver of mycorrhizal fungal community composition during ecosystem development. N. Phytol. 205, 1565–1576 (2015).Article 
    CAS 

    Google Scholar 
    Paulson, J. metagenomeSeq: statistical analysis for sparse high-throughput sequencing. Bioconductor.Jp https://github.com/nosson/metagenomeSeq/ (2014).Francesco Ficetola, G. & Denoël, M. Ecological thresholds: an assessment of methods to identify abrupt changes in species-habitat relationships. Ecography 32, 1075–1084 (2009).Article 

    Google Scholar 
    Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: the worldviews of AIC and BIC. Ecology 95, 631–636 (2014).PubMed 
    Article 

    Google Scholar 
    Conn, P. B., Johnson, D. S., Williams, P. J., Melin, S. R. & Hooten, M. B. A guide to Bayesian model checking for ecologists. Ecol. Monogr. 88, 526–542 (2018).Article 

    Google Scholar 
    Hanusch, M., Ortiz, E. M., Patiño, J. & Schaefer, H. Biogeography and integrative taxonomy of epipterygium (Mniaceae, Bryophyta). Taxon 69, 1150–1171 (2020).Article 

    Google Scholar 
    Oksanen, J. et al. vegan: community ecology package. Github https://github.com/vegandevs/vegan (2019).Baker, S. C. & Barmuta, L. A. Evaluating spatial autocorrelation and depletion in pitfall-trap studies of environmental gradients. J. Insect Conserv. 10, 269–276 (2006).Article 

    Google Scholar 
    Pickett, S. T. A. in Long-Term Studies in Ecology (ed. Likens, G. E.) 110–135 (Springer, 1989).Bivand, R. S. & Wong, D. W. S. Comparing implementations of global and local indicators of spatial association. Test 27, 716–748 (2018).Article 

    Google Scholar 
    Hanusch, M., He, X., Ruiz-Hernández, V. & Junker, R. R. Successional generation of functional multidiversity and ecosystem complexity—a dataset from the Ödenwinkel research platform. Mendeley Data. https://doi.org/10.17632/xkv89tbftc.1 (2022).Hanusch, M., He, X., Ruiz-Hernández, V. & Junker, R. R. Supporting dataset and code: succession comprises a sequence of threshold-induced community assembly processes towards multidiversity. Mendeley Data. https://doi.org/10.17632/dr6d3728xb.1 (2022). More

  • in

    Microbial community functioning during plant litter decomposition

    Kalbitz, K. & Kaiser, K. Contribution of dissolved organic matter to carbon storage in forest mineral soils. J. Plant Nutr. Soil Sci. 171, 52–60 (2008).CAS 

    Google Scholar 
    Michalzik, B. et al. Modelling the production and transport of dissolved organic carbon in forest soils. Biogeochemistry 66, 241–264 (2003).CAS 

    Google Scholar 
    Sokol, N. W., Sanderman, J. & Bradford, M. A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Change Biol. 25, 12–24 (2019).ADS 

    Google Scholar 
    Roth, V.-N. et al. Persistence of dissolved organic matter explained by molecular changes during its passage through soil. Nat. Geosci. https://doi.org/10.1038/s41561-019-0417-4 (2019).Article 

    Google Scholar 
    Jones, O. A. H. et al. Metabolomics and its use in ecology: Metabolomics in ecology. Austral Ecol. 38, 713–720 (2013).
    Google Scholar 
    Gołębiewski, M. et al. Rapid microbial community changes during initial stages of pine litter decomposition. Microb. Ecol. 77, 56–75 (2019).PubMed 

    Google Scholar 
    Chomel, M. et al. Plant secondary metabolites: A key driver of litter decomposition and soil nutrient cycling. J. Ecol. 104, 1527–1541 (2016).
    Google Scholar 
    Purahong, W., Wubet, T., Krüger, D. & Buscot, F. Molecular evidence strongly supports deadwood-inhabiting fungi exhibiting unexpected tree species preferences in temperate forests. ISME J. 12, 289–295 (2018).
    Google Scholar 
    Djukic, I. et al. Early stage litter decomposition across biomes. Sci. Total Environ. 628–629, 1369–1394 (2018).ADS 
    PubMed 

    Google Scholar 
    Rousk, J. et al. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME J. 4, 1340–1351 (2010).PubMed 

    Google Scholar 
    Wu, Y., Zeng, J., Zhu, Q., Zhang, Z. & Lin, X. pH is the primary determinant of the bacterial community structure in agricultural soils impacted by polycyclic aromatic hydrocarbon pollution. Sci. Rep. 7, 40093 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Griffiths, R. I. et al. The bacterial biogeography of British soils: Mapping soil bacteria. Environ. Microbiol. 13, 1642–1654 (2011).PubMed 

    Google Scholar 
    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Büttner, H. et al. Bacterial endosymbionts protect beneficial soil fungus from nematode attack. Proc. Natl. Acad. Sci. USA 118, e2110669118 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Lucas, J. M., Gora, E., Salzberg, A. & Kaspari, M. Antibiotics as chemical warfare across multiple taxonomic domains and trophic levels in brown food webs. Proc. R. Soc. B 286, 20191536 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goldbeck, O. et al. Establishing recombinant production of pediocin PA-1 in Corynebacterium glutamicum. Metab. Eng. 68, 34–45 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, X. et al. Microbial interactions with dissolved organic matter drive carbon dynamics and community succession. Front. Microbiol. 9, 1234 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    D’Andrilli, J., Junker, J. R., Smith, H. J., Scholl, E. A. & Foreman, C. M. DOM composition alters ecosystem function during microbial processing of isolated sources. Biogeochemistry 142, 281–298 (2019).
    Google Scholar 
    Benk, S. A. et al. Fueling diversity in the subsurface: Composition and age of dissolved organic matter in the critical zone. Front. Earth Sci. 7, 296 (2019).ADS 

    Google Scholar 
    Marschner, P., Umar, S. & Baumann, K. The microbial community composition changes rapidly in the early stages of decomposition of wheat residue. Soil Biol. Biochem. 43, 445–451 (2011).CAS 

    Google Scholar 
    Badri, D. V., Zolla, G., Bakker, M. G., Manter, D. K. & Vivanco, J. M. Potential impact of soil microbiomes on the leaf metabolome and on herbivore feeding behavior. New Phytol. 198, 264–273 (2013).CAS 
    PubMed 

    Google Scholar 
    Kohlhepp, B. et al. Pedological and hydrogeological setting and subsurface flow structure of the carbonate-rock CZE Hainich in western Thuringia, Germany. Hydrol. Earth Syst. Sci. https://doi.org/10.5194/hess-2016-374 (2016).Dittmar, T., Koch, B. P., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. 6, 230–235 (2008).CAS 

    Google Scholar 
    Simon, C., Roth, V.-N., Dittmar, T. & Gleixner, G. Molecular signals of heterogeneous terrestrial environments identified in dissolved organic matter: A comparative analysis of orbitrap and ion cyclotron resonance mass spectrometers. Front. Earth Sci. 6, 138 (2018).ADS 

    Google Scholar 
    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Herlemann, D. P. et al. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 5, 1571–1579 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S. et al. Thiosulfate- and hydrogen-driven autotrophic denitrification by a microbial consortium enriched from groundwater of an oligotrophic limestone aquifer. FEMS Microbiol. Ecol. 94, 10 (2018).
    Google Scholar 
    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Taubert, M. et al. Tracking active groundwater microbes with D 2 O labelling to understand their ecosystem function: Tracking active groundwater microbes. Environ. Microbiol. 20, 369–384 (2018).CAS 
    PubMed 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590-596 (2013).CAS 
    PubMed 

    Google Scholar 
    Lohmann, P. et al. Function is what counts: How microbial community complexity affects species, proteome and pathway coverage in metaproteomics. Expert Rev. Proteomics 17, 163–173 (2020).CAS 
    PubMed 

    Google Scholar 
    Starke, R. et al. Candidate brocadiales dominates C, N and S cycling in anoxic groundwater of a pristine limestone-fracture aquifer. J. Proteomics 152, 153–160 (2017).CAS 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).Oksanen, J. et al. vegan: Community Ecology Package (Springer, 2018).
    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar 
    Zoppi, J., Guillaume, J.-F., Neunlist, M. & Chaffron, S. MiBiOmics: an interactive web application for multi-omics data exploration and integration. BMC Bioinform. 22, 6 (2021).
    Google Scholar 
    Adler, D. & Murdoch, D. rgl: 3D Visualization Using OpenGL (Springer, 2019).
    Google Scholar 
    Aßhauer, K. P., Wemheuer, B., Daniel, R. & Meinicke, P. Tax4Fun: Predicting functional profiles from metagenomic 16S rRNA data: Fig. 1. Bioinformatics 31, 2882–2884 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Fath, M. J. & Kolter, R. ABC transporters: Bacterial exporters. Microbiol. Rev. 57, 995 (1993).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waters, C. M. & Bassler, B. L. Quorum sensing: Cell-to-cell communication in bacteria. Annu. Rev. Cell Dev. Biol. 21, 319–346 (2005).CAS 
    PubMed 

    Google Scholar 
    Deutscher, J., Francke, C. & Postma, P. W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939–1031 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vogt, T. Phenylpropanoid biosynthesis. Mol. Plant 3, 2–20 (2010).CAS 
    PubMed 

    Google Scholar 
    Polturak, G. et al. Engineered gray mold resistance, antioxidant capacity, and pigmentation in betalain-producing crops and ornamentals. PNAS 114, 9062–9067 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mille-Lindblom, C. & Tranvik, L. J. Antagonism between bacteria and fungi on decomposing aquatic plant litter. Microb. Ecol. 45, 173–182 (2003).CAS 
    PubMed 

    Google Scholar 
    Chopra, I. & Roberts, M. Tetracycline antibiotics: Mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65, 232–260 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schiessl, K. T. et al. Phenazine production promotes antibiotic tolerance and metabolic heterogeneity in Pseudomonas aeruginosa biofilms. Nat. Commun. 10, 762 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reading, C. & Cole, M. Clavulanic acid: A beta-lactamase-inhiting beta-lactam from Streptomyces clavuligerus. Antimicrob. Agents Chemother. 11, 852–857 (1977).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Šnajdr, J. et al. Transformation of Quercus petraea litter: Successive changes in litter chemistry are reflected in differential enzyme activity and changes in the microbial community composition: Transformation of Quercus petraea litter. FEMS Microbiol. Ecol. 75, 291–303 (2011).PubMed 

    Google Scholar 
    Voříšková, J. & Baldrian, P. Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J. 7, 477–486 (2013).PubMed 

    Google Scholar 
    Buresova, A. et al. Succession of microbial decomposers is determined by litter type, but site conditions drive decomposition rates. Appl. Environ. Microbiol. 85, e01760-19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Hopwood, D. A. Streptomyces in Nature and Medicine: The Antibiotic Makers (Oxford University Press, 2007).
    Google Scholar 
    Anaya-López, J. L., López-Meza, J. E. & Ochoa-Zarzosa, A. Bacterial resistance to cationic antimicrobial peptides. Crit. Rev. Microbiol. 39, 180–195 (2013).PubMed 

    Google Scholar 
    Lindner, K. R., Bonner, D. P. & Koster, W. H. Monobactams. Kirk-Othmer Encyclopedia of Chemical Technology (Wiley, 2000). https://doi.org/10.1002/0471238961.1315141512091404.a01.Book 

    Google Scholar 
    Eustáquio, A. S. et al. Novobiocin biosynthesis: Inactivation of the putative regulatory gene novE and heterologous expression of genes involved in aminocoumarin ring formation. Arch. Microbiol. 180, 25–32 (2003).PubMed 

    Google Scholar 
    Banerjee, S. et al. Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol. Biochem. 97, 188–198 (2016).CAS 

    Google Scholar 
    Taubert, M., Stähly, J., Kolb, S. & Küsel, K. Divergent microbial communities in groundwater and overlying soils exhibit functional redundancy for plant-polysaccharide degradation. PLoS ONE 14, e0212937 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wallenstein, M. D., Hess, A. M., Lewis, M. R., Steltzer, H. & Ayres, E. Decomposition of aspen leaf litter results in unique metabolomes when decomposed under different tree species. Soil Biol. Biochem. 42, 484–490 (2010).CAS 

    Google Scholar 
    Backlund, I. et al. Extractive profiles of different lodgepole pine (Pinus contorta) fractions grown under a direct seeding-based silvicultural regime. Ind. Crops Prod. 58, 220–229 (2014).CAS 

    Google Scholar  More

  • in

    Competition contributes to both warm and cool range edges

    Study area and speciesWe selected three sites across an elevation gradient in the western Swiss Alps (Bex, Canton de Vaud), situated at 890, 1400 and 1900 m above sea level (hereafter, the low, middle, and high sites; Supplementary Fig. 1). The three sites span a temperature gradient ranging from 2.5 to 9.6 °C (mean annual temperature from 1981 to 201544; Supplementary Table 1). With increasing elevation, soil moisture increased, and the growing season length was shortened by a longer snow-covered period, as measured from July 2019 to June 2020 (Supplementary Fig. 2). All sites were established on south-facing and shallow slopes in pasture and fenced to exclude livestock.We included 14 herbaceous focal species that frequently occur in this region, half of which originated from low elevation (hereafter lowland species) and half from high elevation (highland species, Supplementary Table 2). Lowland species had upper range limits (defined as the 90th percentile of their elevation distribution) below 1500 m (with the exception of Plantago lanceolata, with a 90th percentile of 1657 m), while highland species had lower range limits (defined as the 10th percentile of their elevation distribution) above 1500 m, based on a dataset of 550 vegetation plots from the study area45. These species consisted of 12 perennial and two biennial species, which are the dominant life histories in this region. Species were selected to include a range of functional types (7 forbs, 4 grasses, 3 legumes) and functional traits (based on plant height, specific leaf area and seed mass). Seeds were obtained from regional suppliers given the large quantities that were needed to establish the experiment (Supplementary Table 2).Field competition experimentWe designed a field experiment to study the effects of elevation on population growth rates and competitive outcomes by growing focal plants either without competition or competing with a background monoculture of the same or another species (Supplementary Fig. 1). In spring 2017, we established 18 plots (1.6 × 1 m, 0.2 m deep) at each of the three field sites, lined with wire mesh to exclude rodents (except at the high site) and with weed-suppressing fabric on the sides to prevent roots growing in from outside. To control for soil effects, the beds were then filled with a silt loam soil that originated from a nutrient-poor meadow at 1000 m a.s.l. within the study area. Four plots were maintained as bare soil plots (non-competition plots). The other 14 plots received 9 g m−2 of viable seeds of each species, which allowed the establishment of a monoculture of relatively high density (competition plots). We then periodically weeded the plots to maintain monocultures over the course of the experiment. All species except for two (Arnica montana and Daucus carota) successfully established monocultures, of which 11 species (including six lowland species and five highland species) were fully established by autumn 2017. We then resowed the other plots that failed to establish, which subsequently established either in spring 2018 (Poa trivialis and Poa alpina in the low site and Bromus erectus in the middle site) or autumn 2018 (Aster alpinus, P. trivialis and P. alpina in the middle site and Sesleria caerulea in the low and high sites). Species that failed to establish were included only as focal species for the calculation of invasion population growth rates (i.e. the density was low for A. montana and D. carota in all sites, Trifolium badium in the low site and S. caerulea in the middle site, probably due to high mortality rates caused by drought).We first raised focal seedlings of each species in a greenhouse for six weeks on standard compost and then transplanted them into the field (Supplementary Fig. 1). To test for responses to elevation in the absence of competition, focal plants were transplanted into non-competition plots at 25 cm apart in autumn 2017 (n = 9 per species and site). To test for effects of competition, we transplanted focal individuals into established plots with 14 cm spacing (n = 9 per focal species, competitor and site). Focal plants that died within two weeks of transplanting were replaced (ca. 5%), assuming mortality was caused by transplant shock. Note that we transplanted focal plants into plots only when the background monocultures were fully established. In 2018 and 2019, we replaced dead focal individuals in spring and autumn (ca. 10% each time). The full design included 56 unique interspecific pairs in each site accounting for 61% of all 14 × 13 = 91 possible pairwise combinations. These pairs were selected to evenly sample differences in functional trait space based on a pilot analysis using plant height, specific leaf area and seed mass obtained from the LEDA dataset46. Each focal species competed against four lowland and four highland species, yielding 14 lowland–lowland and highland–highland pairs and 28 lowland–highland pairs. Across all three sites, this design resulted in N = 3780 individuals in total ([56 interspecific pairs × 2 + 14 intraspecific pairs + 14 non-competition] × 9 individuals × 3 sites).Demographic dataWe followed each focal individual between 2017 and 2020 to monitor individual-based demographic performance (i.e. vital rates; Supplementary Fig. 4). Survival was monitored twice a year at the beginning and the end of the growing season. Towards the end of the growing season each year (August–September), we measured all individuals to record plant size, whether they flowered, and to estimate seed production on flowering individuals. To estimate focal plant size, we measured size-related morphological traits on all focal individuals at each census (i.e. the number and/or length of flowering stalks, leaves or ramets, depending on the species) and estimated dry aboveground biomass using regression models fitted using collected plant samples (mean R2 = 0.871; Supplementary Data 1; Supplementary Methods). To estimate seed production, we counted the number and measured the size of fruits on reproductive individuals; we then estimated the number of seeds produced by each individual using regression models fitted using intact fruits of each species collected at the early fruiting stage on background plants (mean R2 = 0.806; Supplementary Data 2; Supplementary Methods). We conducted a separate experiment to estimate the germination and recruitment of each species in each site (Supplementary Methods).Population modellingTo estimate population growth rates (λ), we built integral projection models to incorporate multiple vital rates across the life cycle47 (see Supplementary Table 3 for model structure and parameters). Separate IPMs were built to estimate intrinsic growth rates using plants growing in the absence of competition (in non-competition plots) and invasion growth rates using plants growing within the background monocultures (in competition plots), under the assumption that monocultures were at equilibrium (see Supplementary Fig. 5 for a test of this assumption) and that focal individuals did not interact with each other but only with the background species. We used plant size (i.e. estimated dry aboveground biomass, log scale) as a continuous state variable and fitted linear models to estimate vital rate parameters by combining multiple-year demographic data over three censuses (i.e. 2017–2018, 2018–2019, and 2019–2020; see Supplementary Methods for consideration of more complex models). We modelled the probability of survival, flowering, and seedling establishment using generalized linear models with a binomial error distribution, modelled growth and seed production using general linear models and described the offspring size distribution using Gaussian probability density functions. We modelled seed germination, seedling establishment and the seedling size distribution as size-independent functions, assuming they are unaffected by maternal size (Supplementary Fig. 4; Supplementary Table 3). For each vital rate of each species, we selected the best-fitted vital rate model by comparing all nested models of the full models using the Akaike information criterion corrected for small samples (AICc), which allowed us to avoid overfitting models and to borrow strength across competitor species and sites in cases where full models were outperformed by reduced models (Supplementary Methods; Supplementary Data 3 and 4).We calculated population growth rates (λ) as the dominant eigenvalue of the IPMs, which represents the discrete per-capita growth rate (i.e. ({N}_{t+1}=lambda {N}_{t}))47. To evaluate the uncertainty around λ, we performed parametric bootstraps for size-dependent vital rates (i.e. survival, growth, flowering, and fecundity). Specifically, we resampled the parameters of each vital rate model using multivariate normal distributions based on their means and covariance matrices48. We then fitted all IPMs and estimated λ for each of the 500 bootstrap replicates (Supplementary Data 5).Estimation of niche differences, relative fitness differences, and coexistence outcomesWe quantified niche and relative fitness differences and predicted coexistence outcomes following the method of Carroll et al.49. This method is based on species’ sensitivity to competition defined as the proportional reduction of the population growth rate of a focal species i when invading a population of a competitor species j that is at its single-species equilibrium, and is mathematically equivalent to one minus the response ratio:$${S}_{ij}=1-frac{{{{{{{rm{ln}}}}}}}(lambda_{{ij}})}{{{{{{rm{ln}}}}}}({lambda}_{i})}$$
    (1)
    where λij denotes the invasion growth rate of focal species i and λi is its intrinsic growth rate. The natural logarithm of discrete population growth rates λ estimated from IPMs are equivalent to per-capita growth rate in continuous population growth models50, and this transformation makes sensitivities compatible with the coexistence analysis described below. Sensitivity is greater than 0 for antagonistic interactions, with higher values equating to stronger competition, while facilitative interactions lead to negative sensitivities.For a pair of species, modern coexistence theory predicts that niche differences (ND) promote coexistence by reducing the intensity of interspecific competition experienced by both species. Therefore, a pair of species with a large niche difference should display small mean sensitivities to competition from each other. Consequently, niche differences can be calculated as one minus the geometric mean of the two sensitivities (i.e. niche overlap). In contrast, relative fitness differences (RFD) quantify the degree of asymmetry in species’ competitive abilities. Therefore, a pair of species with a large fitness difference should display large differences in their sensitivities to competition from each other, as quantified as the geometric standard deviation of sensitivities49:$${{{{{rm{ND}}}}}}=1-sqrt{{S}_{{ij}}{S}_{{ji}}}$$
    (2)
    $${{{{{rm{RFD}}}}}}=sqrt{{S}_{{ji}}/{S}_{{ij}}}$$
    (3)
    There are three possible outcomes of competition between a given pair of species: stable coexistence, a priority effect, and competitive exclusion. These can be quantified based on either invasion criteria or the relative magnitude of niche differences versus relative fitness differences15,51. Stable coexistence is only possible when both species are able to invade each other’s equilibrium populations; this condition is met when ND  > 0 and ({{{{{rm{RFD}}}}}} , < , frac{1}{1-{{{{{rm{ND}}}}}}})49, which is equivalent to (frac{1}{{{{{{rm{RFD}}}}}}(1-{{{{{rm{ND}}}}}})} > 1), with greater values indicating more stable coexistence and providing a metric for the strength of coexistence (i.e., coexistence metric26). When neither species can invade when rare, then priority effects occur, meaning that whichever species is initially established within a community has an advantage and excludes the other. This could happen when a species pair has a small niche difference and a small relative fitness difference, that is ND  , frac{1}{1-{{{{{rm{ND}}}}}}}). We quantified competitive outcomes and coexistence metrics for each of the 500 bootstrap replicates of the dataset (Supplementary Data 6).Note that we excluded facilitative interactions that were present in 13% of all pairs because the equations for niche differences and relative fitness differences are not compatible with negative values of sensitivity (Eq. 2 and 3); we did not exclude facilitative interactions for other analyses. We quantified the coexistence determinants of species pairs in cases where either one or both of the species were predicted to be unable to persist in the absence of neighbours (i.e. ln(λintrinsic)  More

  • in

    Effects of the application of different improved materials on reclaimed soil structure and maize yield of Hollow Village in Loess Area

    Effects of the application of different improved materials on properties of reclaimed soilSoil organic matter (SOM) and total nitrogen (TN)After the application of different improved materials, the SOM and TN contents in both 0–0.15 m and 0.15–0.30 m layers of the hollow village reclaimed soil showed an overall increasing trend (Fig. 1). In the 0–0.15 m layer, the organic matter content increased by 9.6%, 79.0%, 90.0%, 61.4%, 120.1%, and 131.7% respectively under TM, TF, TO, TMF, TMO and TFO treatments compared with CK treatment, indicating that different improved materials all played important roles in improving the organic matter content of reclaimed soil (Fig. 1a). The improvement of organic matter content in the 0–0.15 m layer of reclaimed soil by the treatments of different improved materials showed as follows: TFO  > TMO  > TO  > TF  > TMF  > TM  > CK, and TO, TMO and TFO treatments with organic fertilizer addition could significantly improve the organic matter content of the reclaimed soil (P  2 mm water-stable aggregates was increased by 88.1%, 194.5%, 203.7%, 376.2%, and 781.7% respectively under TF, TO, TMF, TMO and TFO compared with CK. The proportion of water-stable macroaggregates under different treatments showed as follows: TFO (35.8%)  > TMO (20.7%)  > TO (16.9%)  > TMF (16.3%)  > TF (12.3%)  > TM (10.1%)  > CK (9.0%), and the water-stable macroaggregates were increased by 328.2%, 130.0%, 87.8%, 81.1%, 36.7%, and 12.2% respectively compared with CK, with the maximum increase of 328.2%. In general, all six different amendment material treatments increased the proportion of water-stable macroaggregates in reclaimed soil and promoted the aggregation and cementation of water-stable microaggregates ( 0.25 mm). And the TFO showed the best effect on the increase of water-stable macroaggregates, followed by TMO, TO, and TMF, while TF and TM treatments showed little effect.Figure 2Percentage (%) of soil water-stable aggregates under the application of different improved materials at 0.15–0.30 m Depth. CK: no improved material; TM: maturing agent (ferrous sulfate); TF: fly ash; TO: organic fertilize; TMF: maturing agent + fly ash, TMO: maturing agent + organic fertilizer; TFO: fly ash + organic fertilizer. Different lowercase letters represent significant differences among different improved material treatments in the same particle-size aggregates.Full size imageFigure 3Percentage (%) of soil water-stable aggregates under the application of different improved materials at 0.15–0.30 m Layer. CK: no improved material; TM: maturing agent (ferrous sulfate); TF: fly ash; TO: organic fertilize; TMF: maturing agent + fly ash, TMO: maturing agent + organic fertilizer; TFO: fly ash + organic fertilizer. Different lowercase letters represent significant differences among different improved material treatments in the same particle-size aggregates.Full size imageIn the 0.15–0.30 m layer, the change of water-stable aggregates showed a similar trend to that in the 0–0.15 m layer compared with CK treatment. TF, TO, TMF, TMO and TFO treatments all significantly increased the proportion of  > 2 mm and 1–2 mm water-stable aggregates, and decreased the proportion of water-stable microaggregates (P  2 mm water-stable aggregates by 130.3%, 94.5%, 133.9%, 151.4%, and 309.2% respectively compared with CK, of which TFO treatment showed the most significant effect on the increase of the proportion of water-stable macroaggregates. Compared with the 0–0.15 m layer, the proportion of water-stable macroaggregates in the 0.15–0.30 m layer showed a gradual decrease with the increase of soil depth.Water-stable aggregates structure stabilityThe mean weight diameter (MWD), geometric mean diameter (GMD), unstable aggregate index (ELT), and fractal dimension (D) are important indicators reflecting the structural geometry and stability of soil aggregates, and it has been indicated in this research that the higher the MWD and GMD and the smaller the ELT and D, the better the structural stability of the aggregates and the soil structure27,28. Compared with CK treatment, the MWD and GMD showed a trend of significant increase while the D and ELT showed a trend of significant decrease (P  TF  > TMF  > TM  > CK. The combination of organic–inorganic improved materials can effectively reduce the BD of reclaimed soil, and the BD under TFO treatment was the smallest, 1.19 g cm−3. In the 0.15–0.30 m layer, through variance analysis, the effect of different improved materials on the BD showed a similar decreasing trend to that in the 0–0.15 m layer.Figure 4Effects of the application of different improved materials on BD and SMC. CK: no improved material; TM: maturing agent (ferrous sulfate); TF: fly ash; TO: organic fertilize; TMF: maturing agent + fly ash, TMO: maturing agent + organic fertilizer; TFO: fly ash + organic fertilizer; BD, soil bulk density; SMC, soil moisture content. Different lowercase letters represent significant differences among different improved material treatments in the same soil layer.Full size imageThe soil moisture content (SMC) of the reclaimed soil in the 0–0.15 m and 0.15–0.30 m layers increased significantly after the application of different improved materials (P  TMO  > TMF  > TO  > TF≈TM  > CK (Fig. 4b). In the 0–0.15 m soil layer, the SMC under TM, TF, TO, TMF, TMO and TFO treatments was increased by13.5%, 13.8%, 21.4%, 21.9%, 32.4% and 38.3% respectively compared with CK. The TMO and TFO showed the most significant positive effect on the SMC of reclaimed soil, and the mass water content was 17.4% and 18.2% respectively. In conclusion, compared with CK, these improved materials increased the SOM content and porosity, promoted the formation and stability of aggregates, and increased the retention and transmission of water, which was helpful to maintain more water. Among them, the coupling treatment of organic and inorganic improved materials can hold more soil moisture, and the most significant increase was observed under TFO and TMO.Correlation analysis between soil organic matter and water-stable aggregates parametersTo further explore the correlation between the parameters of the reclaimed soil after the application of six different improved materials, a regression analysis was conducted in this paper on the correlation between the parameters of organic matter and water-stable aggregates with different particle sizes. From Table 2, it could be seen that the organic matter content had a highly significant positive correlation with MWD, GMD and  > 2 mm water-stable aggregates content and a highly significant negative correlation with ELT, D and water-stable microaggregates content ( 2 mm, 1–2 mm, and 0.5–1 mm) content had a significant positive correlation with MWD and GMD values and a highly significant negative correlation with ELT and D values; water-stable microaggregates ( TMO  > TO  > TMF  > TF  > TM  > CK, and different improved materials all significantly increased maize yield compared with CK (P  More

  • in

    The effects of dietary proline, β-alanine, and γ-aminobutyric acid (GABA) on the nest construction behavior in the Oriental hornet (Vespa orientalis)

    Simpson, S. J. & Raubenheimer, D. The Nature of Nutrition: A Unifying Framework from Animal Adaptation to Human Obesity (Princeton University Press, 2012).
    Google Scholar 
    Le Couteur, D. G. et al. The impact of low-protein high-carbohydrate diets on aging and lifespan. Cell. Mol. Life Sci. 73, 1237–1252 (2016).PubMed 

    Google Scholar 
    Levin, E., Mitra, C. & Davidowitz, G. Fed males increase oviposition in female hawkmoths via non-nutritive direct benefits. Anim. Behav. 112, 111–118 (2016).
    Google Scholar 
    Baker, H. G. & Baker, I. Amino-acids in nectar and their evolutionary significance. Nature 241, 543–545 (1973).CAS 

    Google Scholar 
    Nepi, M. et al. Amino acids and protein profile in floral nectar: Much more than a simple reward. Flora Morphol. Distrib. Funct. Ecol. Plants 207, 475–481 (2012).
    Google Scholar 
    Nepi, M. Beyond nectar sweetness: The hidden ecological role of non-protein amino acids in nectar. J. Ecol. 102, 108–115 (2014).CAS 

    Google Scholar 
    Gardener, M. C. & Gillman, M. P. Analyzing variability in nectar amino acids: Composition is less variable than concentration. J. Chem. Ecol. 27, 2545–2558 (2001).CAS 
    PubMed 

    Google Scholar 
    Baker, H. G. Non-sugar chemical constituents of nectar. Apidologie 8, 349–356 (1977).
    Google Scholar 
    Stevenson, P. C., Nicolson, S. W. & Wright, G. A. Plant secondary metabolites in nectar: Impacts on pollinators and ecological functions. Funct. Ecol. 31, 65–75 (2017).
    Google Scholar 
    Alm, J., Ohnmeiss, T. E., Lanza, J. & Vriesenga, L. Preference of cabbage white butterflies and honey bees for nectar that contains amino acids. Oecologia 84, 53–57 (1990).PubMed 

    Google Scholar 
    Petanidou, T., Laere, A. V., Ellis, W. N. & Smets, E. What shapes amino acid and sugar composition in Mediterranean floral nectars?. Oikos 115, 155–169 (2006).CAS 

    Google Scholar 
    Stabler, D., Paoli, P. P., Nicolson, S. W. & Wright, G. A. Nutrient balancing of the adult worker bumblebee (Bombus terrestris) depends on the dietary source of essential amino acids. J. Exp. Biol. 218, 793–802 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Arganda, S. et al. Parsing the life-shortening effects of dietary protein: Effects of individual amino acids. Proc. R. Soc. B 284, 20162052 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Vrzal, E. M., Allan, S. A. & Hahn, D. A. Amino acids in nectar enhance longevity of female Culex quinquefasciatus mosquitoes. J. Insect Physiol. 56, 1659–1664 (2010).CAS 
    PubMed 

    Google Scholar 
    Mustard, J. A. Neuroactive nectar: Compounds in nectar that interact with neurons. Arthropod-Plant Interact. 14, 151–159 (2020).
    Google Scholar 
    Smith-Pardo, A. H., Carpenter, J. M. & Kimsey, L. The diversity of hornets in the genus Vespa (Hymenoptera: Vespidae; Vespinae), their importance and interceptions in the United States. Insect Syst. Divers. 4, 2 (2020).
    Google Scholar 
    Cott, H. B. The edibility of birds. Nature 156, 736–737 (1945).CAS 
    PubMed 

    Google Scholar 
    Ishay, J. & Ikan, R. Food exchange between adults and larvae in Vespa orientalis F. Anim. Behav. 16, 298–303 (1968).CAS 
    PubMed 

    Google Scholar 
    Takashi, A., Yoshiya, T., Hiromitsu, M. & Yasuko, Y. K. Comparative study of the composition of hornet larval saliva, its effect on behaviour and role of trophallaxis. Comp. Biochem. Physiol. Part C Comp. Pharmacol. 99, 79–84 (1991).
    Google Scholar 
    Hunt, J. H. Nourishment and the evolution of the social Vespidae. Soc. Biol. Wasps 426, 450 (1991).
    Google Scholar 
    Ishay, J. Comb bulding by the oriental hornet (Vespa orientalis). Anim. Behav. 24, 72–83 (1976).
    Google Scholar 
    Ganor, E. & Ishay, J. The cement in hornet combs. J. Ethol. 10, 31–39 (1992).
    Google Scholar 
    Brull, L. Project ISIAH—Experiment on the effects of micro-gravity on hornets’ nest building and activity. Isr. Space Res. Technol. Inf. Bull. 9, 2–21 (1992).
    Google Scholar 
    Ishay, J. et al. Exposure to an additional alternating magnetic field affects comb building by worker hornets. Physiol. Chem. Phys. Med. NMR 39, 83–88 (2007).PubMed 

    Google Scholar 
    Kisliuk, M. & Ishay, J. Influence of the earth’s magnetic field on the comb building orientation of hornets. Experientia 35, 1041–1042 (1979).
    Google Scholar 
    Nepi, M. et al. Nectar and pollination drops: How different are they?. Ann. Bot. 104, 205–219 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wyatt, G. R. The biochemistry of insect hemolymph. Annu. Rev. Entomol. 6, 75–102 (1961).CAS 

    Google Scholar 
    Jeong, H. et al. Nutritional value of the larvae of the alien invasive wasp Vespa velutina nigrithorax and amino acid composition of the larval saliva. Foods 9, 885 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Hermosín, I., Chicón, R. M. & DoloresCabezudo, M. Free amino acid composition and botanical origin of honey. Food Chem. 83, 263–268 (2003).
    Google Scholar 
    Baquet, A., Lavoinne, A. & Hue, L. Comparison of the effects of various amino acids on glycogen synthesis, lipogenesis and ketogenesis in isolated rat hepatocytes. Biochem. J. 273, 57–62 (1991).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teulier, L., Weber, J.-M., Crevier, J. & Darveau, C.-A. Proline as a fuel for insect flight: Enhancing carbohydrate oxidation in hymenopterans. Proc. R. Soc. B Biol. Sci. 283, 20160333 (2016).
    Google Scholar 
    Li, Y. et al. Shifts in metabolomic profiles of the parasitoid Nasonia vitripennis associated with elevated cold tolerance induced by the parasitoid’s diapause, host diapause and host diet augmented with proline. Insect Biochem. Mol. Biol. 63, 34–46 (2015).CAS 
    PubMed 

    Google Scholar 
    Koštál, V., Korbelová, J., Poupardin, R., Moos, M. & Šimek, P. Arginine and proline applied as food additives stimulate high freeze tolerance in larvae of Drosophila melanogaster. J. Exp. Biol. 219, 2358–2367 (2016).PubMed 

    Google Scholar 
    Hrassnigg, N., Leonhard, B. & Crailsheim, K. Free amino acids in the haemolymph of honey bee queens (Apis mellifera L.). Amino Acids 24, 205–212 (2003).CAS 
    PubMed 

    Google Scholar 
    Carter, C., Shafir, S., Yehonatan, L., Palmer, R. G. & Thornburg, R. A novel role for proline in plant floral nectars. Naturwissenschaften 93, 72–79 (2006).CAS 
    PubMed 

    Google Scholar 
    Inouye, D. W. & Waller, G. D. Responses of honey bees (Apis mellifera) to amino acid solutions mimicking floral nectars. Ecology 65, 618–625 (1984).CAS 

    Google Scholar 
    Bogo, G. et al. Effects of non-protein amino acids in nectar on bee survival and behavior. J. Chem. Ecol. 45, 278–285 (2019).CAS 
    PubMed 

    Google Scholar 
    Felicioli, A. et al. Effects of nonprotein amino acids on survival and locomotion of Osmia bicornis. Insect Mol. Biol. 27, 556–563 (2018).CAS 
    PubMed 

    Google Scholar 
    Mevi-Schütz, J. & Erhardt, A. Amino acids in nectar enhance butterfly fecundity: A long-awaited link. Am. Nat. 165, 411–419 (2005).PubMed 

    Google Scholar 
    Ramputh, A. I. & Bown, A. W. Rapid [gamma]-aminobutyric acid synthesis and the inhibition of the growth and development of oblique-banded leaf-roller larvae. Plant Physiol. 111, 1349–1352 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    ffrench-Constant, R. H., Williamson, M. S., Davies, T. G. E. & Bass, C. Ion channels as insecticide targets. J. Neurogenet. 30, 163–177 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scholz, S. S., Reichelt, M., Mekonnen, D. W., Ludewig, F. & Mithöfer, A. Insect herbivory-elicited GABA accumulation in plants is a wound-induced, direct, systemic, and jasmonate-independent defense response. Front. Plant Sci. 6, 1128 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Csata, E. & Dussutour, A. Nutrient regulation in ants (Hymenoptera: Formicidae): A review. Myrmecol. News 29, 111–124 (2019).
    Google Scholar 
    Altaye, S. Z., Pirk, C. W. W., Crewe, R. M. & Nicolson, S. W. Convergence of carbohydrate-biased intake targets in caged worker honeybees fed different protein sources. J. Exp. Biol. 213, 3311–3318 (2010).CAS 
    PubMed 

    Google Scholar 
    Pirk, C. W. W., Boodhoo, C., Human, H. & Nicolson, S. W. The importance of protein type and protein to carbohydrate ratio for survival and ovarian activation of caged honeybees (Apis mellifera scutellata). Apidologie 41, 62–72 (2010).CAS 

    Google Scholar 
    Archer, C. R., Pirk, C. W. W., Wright, G. A. & Nicolson, S. W. Nutrition affects survival in African honeybees exposed to interacting stressors. Funct. Ecol. 28, 913–923 (2014).
    Google Scholar 
    Mustard, J. A., Jones, L. & Wright, G. A. GABA signaling affects motor function in the honey bee. J. Insect Physiol. 120, 103989 (2020).CAS 
    PubMed 

    Google Scholar 
    Gottesmann, C. GABA mechanisms and sleep. Neuroscience 111, 231–239 (2002).CAS 
    PubMed 

    Google Scholar 
    Biswas, B. & Carlsson, A. Effect of intraperitoneally administered GABA on the locomotor activity of mice. Psychopharmacology 59, 91–94 (1978).CAS 
    PubMed 

    Google Scholar 
    Śmiałowski, A., Śmiałowska, M., Reichenberg, K., Byrska, B. & Vetulani, J. Motor depression and head twitches induced by IP injection of GABA. Psychopharmacology 69, 295–298 (1980).PubMed 

    Google Scholar 
    Tomonaga, S. et al. Effect of central administration of carnosine and its constituents on behaviors in chicks. Brain Res. Bull. 63, 75–82 (2004).CAS 
    PubMed 

    Google Scholar 
    Mena Gomez, M. A., Carlsson, A. & Garcia de Yebenes, J. The effect of β-alanine on motor behaviour, body temperature and cerebral monoamine metabolism in rat. J. Neural Transm. 43, 1–9 (1978).CAS 
    PubMed 

    Google Scholar 
    Hamasu, K. et al. l-Proline is a sedative regulator of acute stress in the brain of neonatal chicks. Amino Acids 37, 377–382 (2009).CAS 
    PubMed 

    Google Scholar 
    Barton-Browne, L. B. Water regulation in insects. Annu. Rev. Entomol. 9, 63–82 (1964).
    Google Scholar 
    Borycz, J., Borycz, J. A., Edwards, T. N., Boulianne, G. L. & Meinertzhagen, I. A. The metabolism of histamine in the Drosophila optic lobe involves an ommatidial pathway: β-alanine recycles through the retina. J. Exp. Biol. 215, 1399–1411 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Culbertson, J. Y., Kreider, R. B., Greenwood, M. & Cooke, M. Effects of beta-alanine on muscle carnosine and exercise performance: A review of the current literature. Nutrients 2, 75–98 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arrese, E. L. & Soulages, J. L. Insect Fat Body: Energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207–225 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adams, E. & Frank, L. Metabolism of proline and the hydroxyprolines. Annu. Rev. Biochem. 49, 1005–1061 (1980).CAS 
    PubMed 

    Google Scholar 
    Wu, G. et al. Proline and hydroxyproline metabolism: Implications for animal and human nutrition. Amino Acids 40, 1053–1063 (2011).CAS 
    PubMed 

    Google Scholar 
    Boonstra, E. et al. Neurotransmitters as food supplements: The effects of GABA on brain and behavior. Front. Psychol. 6, 1520 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Harris, R. C. et al. The absorption of orally supplied β-alanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 30, 279–289 (2006).CAS 
    PubMed 

    Google Scholar 
    Hoffman, J. R. et al. β-Alanine ingestion increases muscle carnosine content and combat specific performance in soldiers. Amino Acids 47, 627–636 (2015).CAS 
    PubMed 

    Google Scholar 
    Levin, E., McCue, M. D. & Davidowitz, G. More than just sugar: allocation of nectar amino acids and fatty acids in a Lepidopteran. Proc. R. Soc. B Biol. Sci. 284, 20162126 (2017).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/ (2017). More

  • in

    Evolutionary causes and consequences of ungulate migration

    Dobson, A. P. et al. Road will ruin Serengeti. Nature 467, 272–273 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Larsen, F. et al. Wildebeest migration drives tourism demand in the Serengeti. Biol. Conserv. 248, 108688 (2020).Article 

    Google Scholar 
    Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 20, 741–750 (2017).PubMed 
    Article 

    Google Scholar 
    Bischof, R. et al. A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave? Am. Nat. 180, 407–424 (2012).PubMed 
    Article 

    Google Scholar 
    Merkle, J. A. et al. Large herbivores surf waves of green-up during spring. Proc. Biol. Sci. 283, 20160456 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Fryxell, J. M., Greever, J. & Sinclair, A. R. E. Why are migratory ungulates so abundant? Am. Nat.131, 781–798 (1988).Article 

    Google Scholar 
    Staver, A. C. & Hempson, G. P. Seasonal dietary changes increase the abundances of savanna herbivore species. Sci. Adv. 6, eabd2848 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kauffman, M. J. et al. Causes, consequences, and conservation of ungulate migration. Annu. Rev. Ecol. Evol. Syst. 52, 453–478 (2021).Article 

    Google Scholar 
    Lundberg, J. & Moberg, F. Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6, 0087–0098 (2003).Article 

    Google Scholar 
    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bolger, D. T., Newmark, W. D., Morrison, T. A., & Doak, D. F. The need for integrative approaches to understand and conserve migratory ungulates. Ecol. Lett. 11, 63–77 (2007).PubMed 

    Google Scholar 
    Fryxell, J. M. & Holt, R. D. Environmental change and the evolution of migration. Ecology 94, 1274–1279 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shaw, A. K. Drivers of animal migration and implications in changing environments. Evol. Ecol. 30, 991–1007 (2016).Article 

    Google Scholar 
    Hebblewhite, M. & Merrill, E. H. Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90, 3445–3454 (2009).PubMed 
    Article 

    Google Scholar 
    Nelson, M. E. Development of migratory behavior in northern white-tailed deer. Can. J. Zool. 76, 426–432 (1998).Article 

    Google Scholar 
    Berg, J. E., Hebblewhite, M., St. Clair, C. C. & Merrill, E. H. Prevalence and mechanisms of partial migration in ungulates. Front. Ecol. Evol. 7, 325 (2019).Article 

    Google Scholar 
    Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).PubMed 
    Article 

    Google Scholar 
    Found, R. & St. Clair, C. C. Behavioural syndromes predict loss of migration in wild elk. Anim. Behav. 115, 35–46 (2016).Article 

    Google Scholar 
    Abraham, J. O., Hempson, G. P., Faith, J. T. & Staver, A. C.Seasonal strategies differ between tropical and extratropical herbivores. J. Anim. Ecol. 91, 681–692 (2022).PubMed 
    Article 

    Google Scholar 
    Whitehead, H., Laland, K. N., Rendell, L., Thorogood, R. & Whiten, A. The reach of gene–culture coevolution in animals. Nat. Commun. 10, 2405 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Scanlon, T. M., Caylor, K. K., Manfreda, S., Levin, S. A. & Rodriguez-Iturbe, I. Dynamic response of grass cover to rainfall variability: implications for the function and persistence of savanna ecosystems. Adv. Water Res. 28, 291–302 (2005).Article 

    Google Scholar 
    Staver, A. C., Wigley-Coetsee, C. & Botha, J. Grazer movements exacerbate grass declines during drought in an African savanna. J. Ecol. 107, 1482–1491 (2019).Article 

    Google Scholar 
    Fryxell, J. M. & Sinclair, A. R. Causes and consequences of migration by large herbivores. Trends Ecol. Evol. 3, 237–241 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).Article 

    Google Scholar 
    Langvatn, R., Albon, S. D., Burkey, T. & Clutton-Brock, T. H. Climate, plant phenology and variation in age of first reproduction in a temperate herbivore. J. Anim. Ecol. 65, 653–670 (1996).Article 

    Google Scholar 
    Webber, Q. M. R. & McGuire, L. P. Heterothermy, body size, and locomotion as ecological predictors of migration in mammals. Mamm. Rev. 52, 82–95 (2022).Article 

    Google Scholar 
    Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis. Biol. Rev. Camb. Philos. Soc. 94, 328–352 (2018).PubMed Central 
    Article 

    Google Scholar 
    Jarman, P. J. The social organisation of antelope in relation to their ecology. Behaviour 48, 215–267 (1974).Article 

    Google Scholar 
    Hein, A. M., Hou, C. & Gillooly, J. F. Energetic and biomechanical constraints on animal migration distance. Ecol. Lett. 15, 104–110 (2012).PubMed 
    Article 

    Google Scholar 
    Abraham, J. O., Hempson, G. P. & Staver, A. C. Drought-response strategies of savanna herbivores. Ecol. Evol. 9, 7047–7056 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Owen-Smith, R. N. Megaherbivores: the Influence of Very Large Body Size on Ecology (Cambridge Univ. Press, 1988).Book 

    Google Scholar 
    Gonzalez-Voyer, A. & von Hardenberg, A. in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice (ed. Garamszegi, L. Z.) 201–229 (Springer, 2014).Pérez-Barbería, F. J., Gordon, I. J. & Nores, C. Evolutionary transitions among feeding styles and habitats in ungulates. Evol. Ecol. Res. 3, 221–230 (2001).
    Google Scholar 
    Staver, A. C., Abraham, J. O., Hempson, G. P., Karp, A. T. & Faith, J. T. The past, present, and future of herbivore impacts on savanna vegetation. J. Ecol. 109, 2804–2822 (2021).Article 

    Google Scholar 
    Janis, C. M. in The Ecology of Browsing and Grazing (eds Gordon, I. J. & Prins, H. H. T.) 21–45 (Springer, 2008).Janis, C. M. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu. Rev. Ecol. Syst. 24, 467–500 (1993).Article 

    Google Scholar 
    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Edwards, E. J. et al. The origins of C4 grasslands: integrating evolutionary and ecosystem. Science 328, 587–591 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bhat, U., Kempes, C. P. & Yeakel, J. D. Scaling the risk landscape drives optimal life-history strategies and the evolution of grazing. Proc. Natl Acad. Sci. USA 117, 1580–1586 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Fagan, W. F. et al. Spatial memory and animal movement. Ecol. Lett. 16, 1316–1329 (2013).PubMed 
    Article 

    Google Scholar 
    Merkle, J. A. et al. Spatial memory shapes migration and its benefits: evidence from a large herbivore. Ecol. Lett. 22, 1797–1805 (2019).PubMed 
    Article 

    Google Scholar 
    Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wcislo, W. T. Behavioral environments and evolutionary change. Annu. Rev. Ecol. Syst. 20, 137–169 (1989).Article 

    Google Scholar 
    Wyles, J. S., Kunkel, J. G. & Wilson, A. C. Birds, behavior, and anatomical evolution. Proc. Natl Acad. Sci. USA 80, 4394–4397 (1983).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yeakel, J. D., Kempes, C. P. & Redner, S. Dynamics of starvation and recovery predict extinction risk and both Damuth’s law and Cope’s rule. Nat. Commun. 9, 657 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Purdon, A., Mole, M. A., Chase, M. J. & van Aarde, R. J. Partial migration in savanna elephant populations distributed across southern Africa. Sci. Rep. 8, 11331 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl Acad. Sci. USA 116, 5582–5587 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Faith, J. T., Rowan, J. & Du, A. Early hominins evolved within non-analog ecosystems. Proc. Natl Acad. Sci. USA 116, 21478–21483 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Holdo, R. M. et al. A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biol. 7, e1000210 (2009).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Janzen, D. H. & Martin, P. S. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215, 19–27 (1982).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dantas, V. L. & Pausas, J. G. The legacy of the extinct Neotropical megafauna on plants and biomes. Nat. Commun. 13, 129 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Harris, G., Thirgood, S., Hopcraft, J. G. C., Cromsigt, J. P. G. M. & Berger, J. Global decline in aggregated migrations of large terrestrial mammals. Endanger. Species Res. 7, 55–76 (2009).Article 

    Google Scholar 
    Seersholm, F. V. et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nat. Commun. 11, 2770 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Alroy, J. A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292, 1893–1896 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Berger, J. The last mile: how to sustain long-distance migration in mammals. Conserv. Biol. 18, 320–331 (2004).Article 

    Google Scholar 
    Faurby, S. & Svenning, J.-C. Resurrection of the island rule: human-driven extinctions have obscured a basic evolutionary pattern. Am. Nat. 187, 812–820 (2016).PubMed 
    Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    Smith, F. A. et al. Body mass of late Quaternary mammals. Ecology 84, 3403 (2003).Article 

    Google Scholar 
    IUCN. IUCN Red List of Threatened Species 2019 (IUCN, 2019).Toljagić, O., Voje, K. L., Matschiner, M., Liow, L. H. & Hansen, T. F. Millions of years behind: slow adaptation of ruminants to grasslands. Syst. Biol. 67, 145–157 (2018).PubMed 
    Article 

    Google Scholar 
    Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 

    Google Scholar 
    R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).PubMed 
    Article 

    Google Scholar 
    Orme, D. The caper package: Comparative analysis of phylogenetics and evolution in R. R package version 1.0.1 https://cran.r-project.org/web/packages/caper/vignettes/caper.pdf (2018).Beaulieu, J. M. & O’Meara, B. OUwie: Analysis of evolutionary rates in an OU framework. R package version 2.6 https://rdrr.io/cran/OUwie/ (2014).Cressler, C. E., Butler, M. A. & King, A. A. Detecting adaptive evolution in phylogenetic comparative analysis using the Ornstein–Uhlenbeck model. Syst. Biol. 64, 953–968 (2015).PubMed 
    Article 

    Google Scholar 
    Ho, L. S. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).PubMed 
    Article 

    Google Scholar 
    van der Bijl, W. phylopath: easy phylogenetic path analysis in R. PeerJ 6, e4718 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, L. et al. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364, eaav6202 (2019).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Ungulates on the move

    Joly, K. et al. Sci. Rep. 9, 15333 (2019).Article 

    Google Scholar 
    Shaw, A. K. Evol. Ecol 30, 991–1007 (2016).Article 

    Google Scholar 
    Bauer, S. & Hoye, B. J. Science 344, 1242552 (2014).CAS 
    Article 

    Google Scholar 
    Abraham, J. O., Upham, N. S., Damian-Serrano, A. & Jesmer, B. R. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01749-4 (2022).Article 

    Google Scholar 
    Middleton, A. D. et al. Oikos 127, 1060–1068 (2018).Article 

    Google Scholar 
    Hein, A. M., Hou, C. & Gillooly, J. F. Ecol. Lett. 15, 104–110 (2012).Article 

    Google Scholar 
    Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Science 292, 686–693 (2001).CAS 
    Article 

    Google Scholar 
    Edwards, E. J. et al. Science 328, 587–591 (2010).CAS 
    Article 

    Google Scholar 
    Aikens, E. O. et al. Curr. Biol. 30, 3444–3449 (2020).CAS 
    Article 

    Google Scholar 
    Merkle, J. A. et al. Ecol. Lett. 22, 1797–1805 (2019).Article 

    Google Scholar 
    Jesmer, B. R. et al. Science 361, 1023–1025 (2018).CAS 
    Article 

    Google Scholar 
    Harris, G., Thirgood, S., Hopcraft, J. G. C., Cromsigt, J. & Berger, J. Endanger. Species Res. 7, 55–76 (2009).Article 

    Google Scholar 
    Aikens, E. O. et al. Glob. Change Biol. 26, 4215–4225 (2020).Article 

    Google Scholar 
    Doughty, C. E. et al. Ecography 43, 1107–1117 (2020).Article 

    Google Scholar 
    Kauffman, M. J. et al. Science 372, 566–569 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Impact of environmental variables on yield related traits and bioactive compounds of the Persian fenugreek (Trigonella foenum-graecum L.) populations

    Petropoulos, G. A. Fenugreek © 2002. (2002).Megias, C. et al. Free amino acids, Including Canavanine, in the Seeds from 24 Wild Mediterranean Legumes. J. Food Chem. Nanotechnol. 2, 178–183 (2016).Article 

    Google Scholar 
    Legume Phylogeny Working Group. Legume phylogeny and classification in the 21st century: Progress , prospects and lessons for other species-rich clades. Taxon. 62, 217–248 (2013).Grela, E. R., Kiczorowska, B., Samolińska, W. & Matras, J. Chemical composition of leguminous seeds : part I — content of basic nutrients, amino acids, phytochemical compounds, and antioxidant activity. Eur. Food Res. Technol. 243, 1385–1395 (2017).CAS 
    Article 

    Google Scholar 
    Bradshaw, A. D. Producing patterns in plants. New Phytol. 170, 639–641 (2006).Article 

    Google Scholar 
    Brunetti, C., George, R. M., Tattini, M., Field, K. & Davey, M. P. Metabolomics in plant environmental physiology. J. Exp. Bot. 64, 4011–4020 (2013).CAS 
    Article 

    Google Scholar 
    Allevato, D. M., Kiyota, E., Mazzafera, P. & Nixon, K. C. Ecometabolomic analysis of wild populations of Pilocarpus pennatifolius (Rutaceae ) Using Unimodal Analyses. Front. Plant Sci. 10 (2019).Chen, W., Hou, L., Zhang, Z., Pang, X. & Li, Y. Genetic diversity, population structure, and linkage disequilibrium of a core collection of Ziziphus jujuba assessed with genome-wide SNPs developed by genotyping-by-sequencing and SSR. Markers. 8, 1–14 (2017).
    Google Scholar 
    Aljuhaimi, F., Şimşek, Ş., Özcan, M. M., Ghafoor, K. & Babiker, E. E. Effect of location on chemical properties, amino acid and fatty acid compositions of fenugreek (Trigonella foenum-graecum L.) seed and oils. J. Food Process. Preserv. 42, e13569 (2018).Kapoor, N. & Pande, V. Antioxidative defense to salt stress in Trigonella foenum-graecum L. Curr. discov. 2, 123–127 (2015).
    Google Scholar 
    Kyani, A. & Niknam, V. Comparative responses of two Trigonella species to salinity and drought stresses in vitro. Prog. Biol. Sci. 5, 233–248 (2015).
    Google Scholar 
    Saberali, S. F. & Moradi, M. Effect of salinity on germination and seedling growth of Trigonella foenum-graecum, Dracocephalum moldavica, Satureja hortensis and Anethum graveolens. J. Saudi Soc. Agric. Sci. 18, 316–323 (2019).
    Google Scholar 
    Ahari, D. S., Kashi, A. K., Hassandokht, M. R., Amri, A. & Alizadeh, K. Assessment of drought tolerance in Iranian fenugreek landraces. J. Food Agric. Environ. 7, 414–419 (2009).Meena, S. et al. Water stress induced biochemical changes in fenugreek (Trigonella foenum graecum L .) genotypes. International J. Seed Spices. 6, 61–70 (2016).
    Google Scholar 
    Nour, A. A. M. & Magboul, B. I. Chemical and amino acid composition of fenugreek seeds grown in Sudan. Food Chem. 22, 1–5 (1986).CAS 
    Article 

    Google Scholar 
    Hassanzadeh, E., Chaichi, M. R., Mazaheri, D., Rezazadeh, S. & Badi, H. A. N. Physical and chemical variabilities among domestic Iranian Fenugreek (Trigonella foenum-graceum) seeds. Asian J. Plant Sci. 10, 323–330 (2011).Article 

    Google Scholar 
    Nagulapalli Venkata, K. C., Swaroop, A., Bagchi, D. & Bishayee, A. A small plant with big benefits: Fenugreek (Trigonella foenum-graecum Linn.) for disease prevention and health promotion. Mol. Nutr. Food Res. 61 (2017).Robinson, A. R., Ukrainetz, N. K., Kang, K., Mansfield, S. D. & Mansfield, S. D. Metabolite profiling of Douglas-fir (Pseudotsuga menziesii ) field trials reveals strong environmental and weak genetic variation. New Phytol . 174, 762–773 (2003).Article 

    Google Scholar 
    Wang, C. et al. Extraction of sensitive bands for monitoring the winter wheat (Triticum aestivum) growth status and yields based on the spectral reflectance. PLoS ONE. 12, 1–16 (2017).
    Google Scholar 
    Mehrafarin, A. et al. Bioengineering of important secondary metabolites and metabolic pathways in fenugreek (Trigonella foenum-graecum L.). J. Med. Plants 9, 1–18 (2010).CAS 

    Google Scholar 
    Bhutia, P. H. & Sharangi, A. B. Influence of dates of sowing and irrigation scheduling on phenology, growth and yield dynamics of fenugreek (Trigonella foenum greacum L .). Legume Res. 41, 275–280 (2018).
    Google Scholar 
    Guillermo A. A. Dosio, Luis A. N. Aguirreza´bal,* Fernando H. Andrade & ABSTRACT, V. R. P. Solar Radiation Intercepted during Seed Filling and Oil Production in Two Sunflower Hybrids. Crop Sci. 40, 1637–1644 (2000).Ishimaru, T. et al. High temperature and low solar radiation during ripening differentially affect the composition of milky-white grains in rice (Oryza sativa L.). Plant Prod. Sci. 21, 370–379 (2018).Larsson, S., Wirén, A., Lundgren, L. & Ericsson, T. Effects of light and nutrient stress on leaf phenolic chemistry in salix dasyclados and susceptibility to galerucella lineola (Coleoptera). Oikos. 47, 205–210 (1986).CAS 
    Article 

    Google Scholar 
    Chua, I. Y. P., King, P. J. H., Ong, K. H., Sarbini, S. R. & Yiu, P. H. Influence of light intensity and temperature on antioxidant activity in Premna serratifolia L. J. Soil Sci. Plant Nutr. 15, 605–614 (2015).
    Google Scholar 
    Sharma, A., Shahzad, B., Rehman, A., Bhardwaj, R., Landi, M. Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules. 4, 2452. https://www.mdpi.com/1420-3049/24/13/2452Vaast, P. et al. Shade: A key factor for coffee sustainability and quality. 20th Int. Conf. Coffee Sci. 4, 887–896 (2005).Borges, C. V., Minatel, I. O., Gomez-Gomez, H. A. & Lima, G. P. P. Medicinal plants: Influence of environmental factors on the content of secondary metabolites. Med. Plants Environ. Challenges 259–277 (2017). https://doi.org/10.1007/978-3-319-68717-9_15Hanifah, A., Maharijaya, A., Putri, S. P., Laviña, W. A. & Sobir. Untargeted metabolomics analysis of eggplant (Solanum melongena L.) fruit and its correlation to fruit morphologies. Metabolites 8, (2018).Szakiel, A. & Henry, M. Influence of environmental biotic factors on the content of saponins in plants Influence of environmental abiotic factors on the content of saponins in plants. Phytochem Rev. 10, (2011). https://doi.org/10.1007/s11101-010-9177-xObata, T. & Fernie, A. R. The use of metabolomics to dissect plant responses to abiotic stresses. Cell. Mol. Life Sci. 69, 3225–3243 (2012).CAS 
    Article 

    Google Scholar 
    Hamidou, M. et al. Genetic Variability and its implications on early generation sorghum lines selection for yield, Yield contributing traits, and resistance to sorghum midge. 2018, (2018).Tierno, R. & Galarreta, J. I. R. De. Heritability of target bioactive compounds and hydrophilic antioxidant capacity in purple- and red- fl eshed tetraploid potatoes. Crop Pasture Sci. 67, 1309–1317 (2016).Culley, D. Variation of anthocyanin and carotenoid contents and associated antioxidant values in potato breeding Lines. J. Am. Soc. Hortic. Sci. 130 (2005). https://doi.org/10.21273/JASHS.130.2.174Stephens, M. J., Hall, H. K. & Alspach, P. A. Variation and heritabilities of antioxidant activity and total phenolic content estimated from a red raspberry factorial experiment. J. Am. Soc. Hortic. Sci. 130, 403–411 (2015). https://doi.org/10.21273/JASHS.130.3.403Antoine, M., Nicolas, Y., Noubissié, T. J., Marcel, R. & Martin, J. Genetics of seed flavonoid content and antioxidant activity in cowpea (Vigna unguiculata L . Walp .). Crop J. 4, 391–397 (2016).Matros, A. et al. Genome-metabolite associations revealed low heritability, high genetic complexity, and causal relations for leaf metabolites in winter wheat (Triticum aestivum L.). J. Exp. Bot
    .
    68, 415–428 (2017).Labarrere, B., Prinzing, A., Dorey, T., Chesneau, E., Hennion, F. Variations of secondary metabolites among natural suggest functional redundancy and versatility. Plants. 19, 234 (2019).Ghaffari, M. R., Shahinnia, F. & Schreiber, F. The metabolic signature of biomass formation in barley. Plant Cell Physiol. 57, 1943–1960 (2016).Aryal S, Baniya MK, Danekhu K, Kunwar P, Gurung R, Koirala N. Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants. 11, 96 (2019).Praksh, R., Singh, D., Meena, B. L., Kumari, R. & Meena, S. K. Assessment of genetic variability, heritability and genetic advance for quantitative traits in Fenugreek (Trigonella foenum-graecum L.). Int. J. Curr. Microbiol. App.Sci. 6, 2389–2399 (2017).Haefelé, C., Bonfils, C. & Sauvaire, Y. Characterization of a dioxygenase from Trigonella foenum-graecum involved in 4-hydroxyisoleucine biosynthesis. Phytochemistry 44, 563–566 (1997).Article 

    Google Scholar 
    Zafar, M. I. & Gao, F. 4-Hydroxyisoleucine: A Potential New Treatment for Type 2 Diabetes Mellitus. BioDrugs 30, 255–262 (2016).CAS 
    Article 

    Google Scholar 
    Hosamath, J. V., Hegde, R. V & Venugopal, C. K. Studies on genetic variability, heritability and genetic advance in Fenugreek (Trigonella foenum-graecum L .). Int. J. Curr. Microbiol. App.Sci. 6, 4029–4036 (2017).Al-Naggar AM, El-Salam R, Badran AE, Boulos ST, El-Moghazi M. Heritability and genetic advance from selection for morphological, biochemical and anatomical traits of Chenopodium quinoa under water stress. Bionature. 38, 66–85 (2018).Yadav, T. C., Meena, R. S. & Dhakar, L. Genetic variability analysis in Fenugreek (Trigonella foenum-graecum L.) Genotypes. Int. J. Curr. Microbiol. App. Sci. 7, 2998–3003 (2018).Di Martino, C., Delfine, S., Pizzuto, R., Loreto, F. & Fuggi, A. Free amino acids and glycine betaine in leaf osmoregulation of spinach responding to increasing salt stress. New Phytol. 158, 455–463 (2003).Article 

    Google Scholar 
    Haji, M. H., Sadat, E. S., Amanzadeh, Y., Izaddoust, M., Givi, E. Identification and quantitative determination of 4-hydroxyisoleucine in Trigonella foenum-graecum L. from Iran. J. Med. Plants 9, 29–34 (2010).Zhuo, R., Wang, L., Wang, L., Xiao, H. & Cai, S. Determination of trigonelline in Trigonella foenum-graecum L. by hydrophilic interaction chromatography. Se pu. 28, 379—382 (2010).CAS 
    PubMed 

    Google Scholar 
    Kim, D. O., Jeong, S. W. & Lee, C. Y. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81, 321–326 (2003).CAS 
    Article 

    Google Scholar 
    Molyneux, P. The use of the stable free radical diphenylpicryl- hydrazyl (DPPH) for estimating antioxidant activity. Songklanakarin J. Sci. Technol. 26, 211–216 (2004)CAS 

    Google Scholar 
    Wei, T. Title visualization of a correlation matrix. R Packag. 56, 1–17 (2017).
    Google Scholar 
    Husson, F., Josse, J. and Pages, J., 2010. Principal component methods-hierarchical clustering-partitional clustering: why would we need to choose for visualizing data. Applied Mathematics Department, 17 (2010)Hanson, C. H., Robinson, H. F. & Comstock, R. E. Biometrical studies of yield in segregating populations of Korean Lespedeza1. Agron. J. 48, 268–272 (1956).Article 

    Google Scholar 
    Herbert, W., Robinson, H. F. & Comstock, R. E. Estimates of Genetic and Environmental Variability in Soybeans. Agron J. 46, 314–318 (1955).
    Google Scholar 
    Oksanen, J. et al. Package ‘vegan’ title community ecology package. Community Ecol. Packag. 2, 1–297 (2019).
    Google Scholar 
    R Foundation for Statistical Computing. R: A language and environment for statistical computing. Vienna, Austria 2, (2008). More