More stories

  • in

    Sustainable human population density in Western Europe between 560.000 and 360.000 years ago

    Dennell, R. Dispersal and colonisation, long and short chronologies: how continuous is the Early Pleistocene record for hominids outside East Africa?. J. Hum. Evol. 45, 421–440. https://doi.org/10.1016/j.jhevol.2003.09.006 (2003).Article 
    PubMed 

    Google Scholar 
    Moncel, M.-H. et al. Early Levallois core technology between Marine Isotope Stage 12 and 9 in Western Europe. J. Hum. Evol. 139, 102735. https://doi.org/10.1016/j.jhevol.2019.102735 (2020).Article 
    PubMed 

    Google Scholar 
    Moncel, M.-H. et al. Linking environmental changes with human occupations between 900 and 400 ka in Western Europe. Quatern. Int. 480, 78–94. https://doi.org/10.1016/j.quaint.2016.09.065 (2018).Article 

    Google Scholar 
    Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507. https://doi.org/10.1038/nature17405 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Meyer, M. et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505, 403–406. https://doi.org/10.1038/nature12788 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rightmire, G. P. Homo in the Middle Pleistocene: Hypodigms, variation, and species recognition. Evolut. Anthropol. Issues News Rev. 17, 8–21. https://doi.org/10.1002/evan.20160 (2008).Article 

    Google Scholar 
    Stringer, C. B. The Status of Homo heidelbergensis (Schoetensack 1908). Evol. Anthropol. 21, 101–107 (2012).Article 

    Google Scholar 
    Dennell, R. W., Martinón-Torres, M. & Bermúdez de Castro, J. M. Hominin variability, climatic instability and population demography in Middle Pleistocene Europe. Quat. Sci. Rev. 30, 1511–1524 (2011).ADS 
    Article 

    Google Scholar 
    Galway-Witham, J., Cole, J. & Stringer, C. Aspects of human physical and behavioural evolution during the last 1 million years. J. Quat. Sci. 34, 355–378. https://doi.org/10.1002/jqs.3137 (2019).Article 

    Google Scholar 
    Powell, A., Shennan, S. & Thomas, M. G. Late Pleistocene Demography and the Appearance of Modern Human Behavior. Science 324, 1298–1301. https://doi.org/10.1126/science.1170165 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Vaesen, K., Collard, M., Cosgrove, R. & Roebroeks, W. Population size does not explain past changes in cultural complexity. Proc. Natl. Acad. Sci. 113, E2241–E2247. https://doi.org/10.1073/pnas.1520288113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Henrich, J. Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses: the Tasmanian case. Am. Antiq. 69, 197–214. https://doi.org/10.2307/4128416 (2004).Article 

    Google Scholar 
    Cavalli-Sforza, L., Barrai, I. & Edwards, A. W. F. Analysis of human evolution under random genetic drift. Symp. Quant. Biol. 29, 9–20. https://doi.org/10.1101/SQB.1964.029.01.006 (1964).Article 

    Google Scholar 
    Boaz, N. T. Early hominid population densities: new estimates. Science 206, 592–595. https://doi.org/10.1126/science.206.4418.592 (1979).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ashton, N. & Davis, R. Cultural mosaics, social structure, and identity: the Acheulean threshold in Europe. J. Hum. Evol. 156, 103011. https://doi.org/10.1016/j.jhevol.2021.103011 (2021).Article 
    PubMed 

    Google Scholar 
    Hayden, B. Neandertal social structure?. Oxf. J. Archaeol. 31, 1–26. https://doi.org/10.1111/j.1468-0092.2011.00376.x (2012).Article 

    Google Scholar 
    Bocquet-Appel, J.-P., Demars, P.-Y., Noiret, L. & Dobrowsky, D. Estimates of Upper Paleolithic meta-population size in Europe from archaeological data. J. Archaeol. Sci. 32, 1656–1668 (2005).Article 

    Google Scholar 
    Maier, A. et al. Demographic estimates of hunter–gatherers during the Last Glacial Maximum in Europe against the background of palaeoenvironmental data. Quatern. Int. 425, 49–61. https://doi.org/10.1016/j.quaint.2016.04.009 (2016).Article 

    Google Scholar 
    Gautney, J. R. & Holliday, T. W. New estimations of habitable land area and human population size at the Last Glacial Maximum. J. Archaeol. Sci. 58, 103–112. https://doi.org/10.1016/j.jas.2015.03.028 (2015).Article 

    Google Scholar 
    Rodríguez-Gómez, G., Rodríguez, J., Martín-González, J. A., Goikoetxea, I. & Mateos, A. Modeling trophic resource availability for the first human settlers of Europe: the case of Atapuerca TD6. J. Hum. Evol. 64, 645–657. https://doi.org/10.1016/j.jhevol.2013.02.007 (2013).Article 
    PubMed 

    Google Scholar 
    Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H. & Seppä, H. Human population dynamics in Europe over the Last Glacial Maximum. Proc. Natl. Acad. Sci. 112, 8232–8237. https://doi.org/10.1073/pnas.1503784112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-Quinto, F. & Lalueza-Fox, C. Almost 20 years of Neanderthal palaeogenetics: adaptation, admixture, diversity, demography and extinction. Philosophical Trans. Royal Soc. B Biol. Sci. 370, 20130374. https://doi.org/10.1098/rstb.2013.0374 (2015).CAS 
    Article 

    Google Scholar 
    Rodríguez, J., Willmes, C. & Mateos, A. Shivering in the Pleistocene. Human adaptations to cold exposure in Western Europe from MIS 14 to MIS 11. J. Hum. Evol. https://doi.org/10.1016/j.jhevol.2021.102966 (2021).Article 
    PubMed 

    Google Scholar 
    Railsback, L. B., Gibbard, P. L., Head, M. J., Voarintsoa, N. R. G. & Toucanne, S. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quatern. Sci. Rev. 111, 94–106. https://doi.org/10.1016/j.quascirev.2015.01.012 (2015).Article 

    Google Scholar 
    MacDonald, K., Martinón-Torres, M., Dennell, R. W. & Bermúdez de Castro, J. M. Discontinuity in the record for hominin occupation in south-western Europe: implications for occupation of the middle latitudes of Europe. Quatern. Int 271, 84–97. https://doi.org/10.1016/j.quaint.2011.10.009 (2012).Article 

    Google Scholar 
    Gamisch, A. Oscillayers: A dataset for the study of climatic oscillations over Plio-Pleistocene time-scales at high spatial-temporal resolution. Glob. Ecol. Biogeogr. 28, 1552–1156. https://doi.org/10.1111/geb.12979 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gamisch, A. Oscillayers: A dataset for the study of climatic oscillations over Plio-Pleistocene time-scales at high spatial-temporal resolution. https://doi.org/10.5061/dryad.27f8s90 (Dryad, 2019).Banks, W. E. et al. An ecological niche shift for Neanderthal populations in Western Europe 70,000 years ago. Sci. Rep. 11, 5346. https://doi.org/10.1038/s41598-021-84805-6 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Banks, W. E., d’Errico, F. & Zilhão, J. Human–climate interaction during the Early Upper Paleolithic: testing the hypothesis of an adaptive shift between the Proto-Aurignacian and the Early Aurignacian. J. Hum. Evol. 64, 39–55. https://doi.org/10.1016/j.jhevol.2012.10.001 (2013).Article 
    PubMed 

    Google Scholar 
    Soberón, J. & Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. 106, 19644–19650. https://doi.org/10.1073/pnas.0901637106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tallavaara, M., Eronen, J. T. & Luoto, M. Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density. Proc. Natl. Acad. Sci. 115, 1232–1237. https://doi.org/10.1073/pnas.1715638115 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Binford, L. R. Constructing frames of reference: an analytical method for archaeological theory building using ethnographic and environmental data set (University of California Press, Berkeley, 2001).
    Google Scholar 
    Hamilton, M. J., Milne, B. T., Walker, R. S. & Brown, J. H. Nonlinear scaling of space use in human hunter–gatherers. Proc. Natl. Acad. Sci. 104, 4765. https://doi.org/10.1073/pnas.0611197104 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coe, M. J., Cumming, D. H. & Phillipson, J. Biomass and production of large African herbivores in relation to rainfall and primary production. Oecologia 22, 341–354 (1976).ADS 
    CAS 
    Article 

    Google Scholar 
    Hatton, I. A. et al. The predator-prey power law: biomass scaling across terrestrial and aquatic biomes. Science https://doi.org/10.1126/science.aac6284 (2015).Article 
    PubMed 

    Google Scholar 
    Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2275 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Braun, D. R. et al. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. Proc Natl Acad Sci 107, 10002–10007. https://doi.org/10.1073/pnas.1002181107 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marlowe, F. W. Hunter-gatherers and human evolution. Evolut. Anthropol. Issues News Rev. 14, 54–67. https://doi.org/10.1002/evan.20046 (2005).Article 

    Google Scholar 
    Steele, T. A unique hominin menu dated to 1.95 million years ago. Proc. Natl Acad Sci United States of Am 107, 10771–10772. https://doi.org/10.1073/pnas.1005992107 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Conard, N. J. et al. Excavations at Schöningen and paradigm shifts in human evolution. J. Hum. Evol. 89, 1–17. https://doi.org/10.1016/j.jhevol.2015.10.003 (2015).Article 
    PubMed 

    Google Scholar 
    Kelly, R. L. The lifeways of hunter-gatherers: the foraging spectrum 2nd edn. (Cambridge Univ Press, Cambridge, 2013).Book 

    Google Scholar 
    Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205. https://doi.org/10.1111/2041-210X.12261 (2014).Article 

    Google Scholar 
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643. https://doi.org/10.1111/jbi.12227 (2014).Article 

    Google Scholar 
    Morales, N. S., Fernández, I. & Baca-González, V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ 5, e3093. https://doi.org/10.7717/peerj.3093 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, R. P. & Gonzalez, I. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol. Model. 222, 2796–2811. https://doi.org/10.1016/j.ecolmodel.2011.04.011 (2011).Article 

    Google Scholar 
    Lisiecki, L. & Raymo, M. A Pliocene-Pleistocene stack of 57 globally distributed benthic 18O records. Paleoceanography https://doi.org/10.1029/2004PA001071 (2005).Article 

    Google Scholar 
    Carrión, J. S., Rose, J. & Stringer, C. B. Early human evolution in the western Palaearctic: ecological scenarios. Quat. Sci. Rev. 30, 1281–1295 (2011).ADS 
    Article 

    Google Scholar 
    Davis, R. & Ashton, N. Landscapes, environments and societies: the development of culture in Lower Palaeolithic Europe. J. Anthropol. Archaeol. 56, 101107. https://doi.org/10.1016/j.jaa.2019.101107 (2019).Article 

    Google Scholar 
    Davis, R., Ashton, N., Hatch, M., Hoare, P. G. & Lewis, S. G. Palaeolithic archaeology of the Bytham River: human occupation of Britain during the early Middle Pleistocene and its European context. J. Quat. Sci. 36, 526–546. https://doi.org/10.1002/jqs.3305 (2021).Article 

    Google Scholar 
    Soberón, J. & Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. https://doi.org/10.17161/bi.v2i0.4 (2005).Article 

    Google Scholar 
    Kahlke, R.-D. et al. Western Palaearctic palaeoenvironmental conditions during the Early and early Middle Pleistocene inferred from large mammal communities, and implications for hominin dispersal in Europe. Quat. Sci. Rev. 11–12, 1368–1395 (2011).ADS 
    Article 

    Google Scholar 
    Hosfield, R. The earliest Europeans a year in the life (Oxbow Books, Oxford, 2020).Book 

    Google Scholar 
    Dunbar, R. I. M. Neocortex size as a constraint on group size in primates. J. Hum. Evol. 22, 469–493. https://doi.org/10.1016/0047-2484(92)90081-J (1992).Article 

    Google Scholar 
    Bird, D. W., Bird, R. B., Codding, B. F. & Zeanah, D. W. Variability in the organization and size of hunter-gatherer groups: foragers do not live in small-scale societies. J. Hum. Evol. 131, 96–108. https://doi.org/10.1016/j.jhevol.2019.03.005 (2019).Article 
    PubMed 

    Google Scholar 
    Arsuaga, J. L. et al. Neandertal roots: Cranial and chronological evidence from Sima de los Huesos. Science 344, 1358–1363. https://doi.org/10.1126/science.1253958 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Traill, L. W., Bradshaw, R. H. W. & Brook, B. W. Minimum viable population size: a meta-analysis of 30 years of published estimates. Biol. Cons. 139, 159–166 (2007).Article 

    Google Scholar 
    Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 20, 1–9. https://doi.org/10.1111/ddi.12144 (2014).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).Article 

    Google Scholar 
    Lieth, H. F. H. Primary production: terrestrial ecosystems. Hum. Ecol. 1, 303–332 (1973).Article 

    Google Scholar 
    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9 (2000).Article 

    Google Scholar 
    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x (2013).Article 

    Google Scholar 
    Braunisch, V. et al. Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography 36, 971–983. https://doi.org/10.1111/j.1600-0587.2013.00138.x (2013).Article 

    Google Scholar 
    De Marco, P. J. & Nóbrega, C. C. Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLoS ONE 13, e0202403. https://doi.org/10.1371/journal.pone.0202403 (2018).CAS 
    Article 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x (2013).Article 

    Google Scholar 
    Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 27, 245–256. https://doi.org/10.1111/geb.12684 (2018).Article 

    Google Scholar 
    Harell Jr., F. E. & with contributions from Charles Dupont and many others. Hmisc: Harrell Miscellaneous (2021).Barbosa, A. M. fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Methods Ecol. Evol. 6, 853–858. https://doi.org/10.1111/2041-210X.12372 (2015).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).Article 

    Google Scholar 
    James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning with Appllication in R. 1 edn, (Springer, 2013).Amante, C. & Eakins, B. ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis. https://doi.org/10.7289/V5C8276M (2009).Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x (2006).Article 

    Google Scholar 
    Tsoar, A., Allouche, O., Steinitz, O., Rotem, D. & Kadmon, R. A comparative evaluation of presence-only methods for modelling species distribution. Divers. Distrib. 13, 397–405. https://doi.org/10.1111/j.1472-4642.2007.00346.x (2007).Article 

    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x (2008).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893. https://doi.org/10.1111/ecog.03049 (2017).Article 

    Google Scholar 
    755026R: A Language and Environment for STATISTICAL Computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342. https://doi.org/10.1890/10-1171.1 (2011).Article 
    PubMed 

    Google Scholar 
    Kelt, D. & Vuren, D. The ecology and macroecology of mammalian home range area. Am. Nat. 157, 637–645. https://doi.org/10.1086/320621 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rodríguez, J., Sommer, C., Willmes, C. & Mateos, A. Data and code for “Sustainable Human Population Density in Western Europe between 560.000 and 360.000 years ago” https://doi.org/10.5281/zenodo.6045917 (2022). More

  • in

    The relationship between ecosystem services and human modification displays decoupling across global delta systems

    Cumming, G. S. et al. Implications of agricultural transitions and urbanization for ecosystem services. Nature 515, 50–57 (2014).CAS 
    Article 

    Google Scholar 
    Cumming, G. S. & Von Cramon-Taubadel, S. Linking economic growth pathways and environmental sustainability by understanding development as alternate social-ecological regimes. Proc. Natl. Acad. Sci.115, 9533–9538 (2018).CAS 
    Article 

    Google Scholar 
    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).CAS 
    Article 

    Google Scholar 
    de Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010).Article 

    Google Scholar 
    Clapp, J. Financialization, distance and global food politics. J. Peasant Stud. 41, 797–814 (2014).Article 

    Google Scholar 
    Crona, B. I. et al. Masked, diluted and drowned out: how global seafood trade weakens signals from marine ecosystems. Fish Fish. 17, 1175–1182 (2016).Article 

    Google Scholar 
    United Nations Environment Programme International Resource Panel. Decoupling Natural Resource Use and Environmental Impacts from Economic Growth (2011).Srinivasana, U. T. et al. The debt of nations and the distribution of ecological impacts from human activities. Proc. Natl. Acad. Sci. 105, 1768–1773 (2008).Article 

    Google Scholar 
    Rist, L. et al. Applying resilience thinking to production ecosystems. Ecosphere 5, 1–11 (2014).Article 

    Google Scholar 
    Dermody, B. J. et al. A virtual water network of the Roman world. Hydrol. Earth Syst. Sci. 18, 5025–5040 (2014).Article 

    Google Scholar 
    Maskell, L. C. et al. Exploring the ecological constraints to multiple ecosystem service delivery and biodiversity. J. Appl. Ecol. 50, 561–571 (2013).Article 

    Google Scholar 
    Potschin, M. B. & Haines-Young, R. H. Ecosystem services: Exploring a geographical perspective. Prog. Phys. Geogr. 35, 575–594 (2011).Article 

    Google Scholar 
    Peng, J. et al. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 607–608, 706–714 (2017).Article 
    CAS 

    Google Scholar 
    Millennium Ecosystem Assessment. Ecosystems and human well-being: Biodiversity synthesis (2005). https://doi.org/10.1057/9780230625600Díaz, S. et al. Assessing nature’s contributions to people: Recognizing culture, and diverse sources of knowledge, can improve assessments. Science 359, 270–272 (2018).Article 

    Google Scholar 
    Wallace, K. J. Classification of ecosystem services: Problems and solutions. Biol. Conserv. 139, 235–246 (2007).Article 

    Google Scholar 
    Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).Article 

    Google Scholar 
    Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).Article 

    Google Scholar 
    Saidi, N. & Spray, C. Ecosystem services bundles: Challenges and opportunities for implementation and further research. Environ. Res. Lett. 13, 113001 (2018).Cord, A. F. et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 28, 264–272 (2017).Article 

    Google Scholar 
    Mitsch, W. J. & Gosselink, J. G. The value of wetlands: importance of scale and landscape setting. Ecol. Econ. 35, 25–33 (2000).Article 

    Google Scholar 
    Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. 107, 5242–5247 (2010).CAS 
    Article 

    Google Scholar 
    Hamann, M., Biggs, R. & Reyers, B. Mapping social-ecological systems: Identifying ‘green-loop’ and ‘red-loop’ dynamics based on characteristic bundles of ecosystem service use. Glob. Environ. Change 34, 218–226 (2015).Article 

    Google Scholar 
    Macklin, M. G. & Lewin, J. The rivers of civilization. Quat. Sci. Rev. 114, 228–244 (2015).Article 

    Google Scholar 
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    Stanley, D. J. & Warne, A. G. Sea level and initiation of Predynastic culture in the Nile delta. Nature 363, 435–438 (1993).Article 

    Google Scholar 
    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    Edmonds, D. A., Caldwell, R. L., Brondizio, E. S. & Siani, S. M. O. Coastal flooding will disproportionately impact people on river deltas. Nat. Commun. 11, 1–8 (2020).Article 
    CAS 

    Google Scholar 
    Renaud, F. G. et al. Tipping from the Holocene to the Anthropocene: How threatened are major world deltas? Curr. Opin. Environ. Sustain. 5, 644–654 (2013).Article 

    Google Scholar 
    Santos, M. J. & Dekker, S. C. Locked‑in and living delta pathways in the Anthropocene. Sci. Rep. 10, 19598 (2020).Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).CAS 
    Article 

    Google Scholar 
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).Article 

    Google Scholar 
    Seto, K. C. Exploring the dynamics of migration to mega-delta cities in Asia and Africa: Contemporary drivers and future scenarios. Glob. Environ. Change 21, S94–S107 (2011).Article 

    Google Scholar 
    Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. State of the World’s Freshwater Ecosystems: Physical, Chemical, and Biological Changes. Annu. Rev. Environ. Resour. 36, 75–99 (2011).Article 

    Google Scholar 
    Dugan, P. J. et al. Fish migration, dams, and loss of ecosystem services in the mekong basin. Ambio 39, 344–348 (2010).Article 

    Google Scholar 
    Notebaert, B., Broothaerts, N. & Verstraeten, G. Evidence of anthropogenic tipping points in fluvial dynamics in Europe. Glob. Planet. Change 164, 27–38 (2018).Article 

    Google Scholar 
    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).Article 
    CAS 

    Google Scholar 
    Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. 104, 12942–12947 (2007).CAS 
    Article 

    Google Scholar 
    Minderhoud, P. S. J. et al. The relation between land use and subsidence in the Vietnamese Mekong delta. Sci. Total Environ. 634, 715–726 (2018).CAS 
    Article 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    FAO. AQUASTAT Database. (2022). Available at: https://www.fao.org/aquastat/statistics/query/index.html. (Accessed: 14th February 2022)Chau, N. D. G., Sebesvari, Z., Amelung, W. & Renaud, F. G. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environ. Sci. Pollut. Res. 22, 9042–9058 (2015).CAS 
    Article 

    Google Scholar 
    Phien-wej, N., Giao, P. H. & Nutalaya, P. Land subsidence in Bangkok, Thailand. Eng. Geol. 82, 187–201 (2006).Article 

    Google Scholar 
    Käkönen, M. Mekong Delta at the crossroads: more control or adaptation? Ambio 37, 205–212 (2008).Article 

    Google Scholar 
    Smajgl, A. et al. Responding to rising sea levels in the Mekong Delta. Nat. Clim. Change 5, 167–174 (2015).Article 

    Google Scholar 
    Schneider, P. & Asch, F. Rice production and food security in Asian Mega deltas—A review on characteristics, vulnerabilities and agricultural adaptation options to cope with climate change. J. Agron. Crop Sci. 206, 491–503 (2020).Article 

    Google Scholar 
    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).CAS 
    Article 

    Google Scholar 
    Davis, M., Faurby, S. & Svenning, J. C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl. Acad. Sci. 115, 11262–11267 (2018).CAS 
    Article 

    Google Scholar 
    Arowolo, A. O., Deng, X., Olatunji, O. A. & Obayelu, A. E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 636, 597–609 (2018).CAS 
    Article 

    Google Scholar 
    Lang, Y. & Song, W. Quantifying and mapping the responses of selected ecosystem services to projected land use changes. Ecol. Indic. 102, 186–198 (2019).Article 

    Google Scholar 
    Tilman, D., Reich, P. B. & Isbell, F. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc. Natl. Acad. Sci. 109, 10394–10397 (2012).CAS 
    Article 

    Google Scholar 
    Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).CAS 
    Article 

    Google Scholar 
    Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Evolution of the global virtual water trade network. Proc. Natl. Acad. Sci. 109, 5989–5994 (2012).CAS 
    Article 

    Google Scholar 
    Van Asselen, S., Verburg, P. H., Vermaat, J. E. & Janse, J. H. Drivers of wetland conversion: A global meta-analysis. PLoS One 8, e81292 (2013).Davidson, N. C., Fluet-Chouinard, E. & Finlayson, C. M. Global extent and distribution of wetlands: trends and issues. Mar. Freshw. Res. 69, 620–627 (2018).Article 

    Google Scholar 
    Gordon, L. J., Finlayson, C. M. & Falkenmark, M. Managing water in agriculture for food production and other ecosystem services. Agric. Water Manag. 97, 512–519 (2010).Article 

    Google Scholar 
    Syvitski, J. P. M. & Kettner, A. J. Sediment flux and the anthropocene. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 957–975 (2011).Article 

    Google Scholar 
    Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land area gain. Nature 577, 514–518 (2020).CAS 
    Article 

    Google Scholar 
    Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).CAS 
    Article 

    Google Scholar 
    Stott, I., Soga, M., Inger, R. & Gaston, K. J. Land sparing is crucial for urban ecosystem services. Front. Ecol. Environ. 13, 387–393 (2015).Article 

    Google Scholar 
    Caldwell, R. L. et al. A global delta dataset and the environmental variables that predict delta formation. Earth Surf. Dyn. Discuss. 7, 773–787 (2019).Article 

    Google Scholar 
    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos (Washington DC) 89, 93–94 (2008).USGS. HYDRO1k Elevation Derivative Database. https://doi.org/10.5066/F77P8WN0 (2000).CIESIN – Center for International Earth Science Information Network Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC) https://doi.org/10.7927/H4JW8BX5 (2018).Venter, O. et al. Last of the Wild Project, Version 3 (LWP-3): 2009 Human Footprint, 2018 Release. NASA Socioeconomic Data and Applications Center https://doi.org/10.7927/H46T0JQ4 (2018).Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 1–11 (2016).Article 
    CAS 

    Google Scholar 
    Zeileis, A., Leisch, F., Hornik, K. & Kleiber, C. strucchange: An R package for testing for structural change in linear regression models. J. Stat. Softw. 7, 1–38 (2002).Article 

    Google Scholar 
    Monti, S., Tamayo, P., Mesirov, J. & Golub, T. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52, 91–118 (2003).Article 

    Google Scholar 
    Reader, M. O. et al. Zenodo. https://doi.org/10.5281/zenodo.6346472 (2022).QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2019).R Core Team. R: A language and environment for statistical computing. (2020). More

  • in

    Mycelium chemistry differs markedly between ectomycorrhizal and arbuscular mycorrhizal fungi

    Melillo, J. M. et al. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stockmann, U. et al. The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric. Ecosyst. Environ. 164, 80–99 (2013).CAS 
    Article 

    Google Scholar 
    Sokol, N. W., Sanderman, J. & Bradford, M. A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Chang. Biol. 25, 12–24 (2019).PubMed 
    Article 

    Google Scholar 
    Krull, E. S., Baldock, J. A. & Skjemstad, J. O. Importance of mechanisms and processes of the stabilisation of soil organic matter for modelling carbon turnover. Funct. Plant Biol. 30, 207–222 (2003).PubMed 
    Article 

    Google Scholar 
    Langley, J. A. & Hungate, B. A. Mycorrhizal controls on belowground litter quality. Ecology 84, 2302–2312 (2003).Article 

    Google Scholar 
    Strickland, M. S., Osburn, E., Lauber, C., Fierer, N. & Bradford, M. A. Litter quality is in the eye of the beholder: Initial decomposition rates as a function of inoculum characteristics. Funct. Ecol. 23, 627–636 (2009).Article 

    Google Scholar 
    Cou ̂teaux, M. M., Bottner, P. & Berg, B. Litter decomposition, climate and litter quality. Trends Ecol. Evol. 10, 63–66 (1995).Article 

    Google Scholar 
    Prescott, C. E. Litter decomposition: What controls it and how can we alter it to sequester more carbon in forest soils? Biogeochemistry 101, 133–149 (2010).CAS 
    Article 

    Google Scholar 
    Frey, S. D., Lee, J., Melillo, J. M. & Six, J. The temperature response of soil microbial efficiency and its feedback to climate. Nat. Clim. Chang. 3, 395–398 (2013).CAS 
    Article 

    Google Scholar 
    Fernandez, C. W., Heckman, K., Kolka, R. & Kennedy, P. G. Melanin mitigates the accelerated decay of mycorrhizal necromass with peatland warming. Ecol. Lett. 22, 498–505 (2019).PubMed 
    Article 

    Google Scholar 
    Brovkin, V. et al. Plant-driven variation in decomposition rates improves projections of global litter stock distribution. Biogeosciences 9, 565–576 (2012).CAS 
    Article 

    Google Scholar 
    Aponte, C., García, L. V., & Marañón, T. Tree species effect on litter decomposition and nutrient release in mediterranean oak forests changes over time. Ecosystems 15, 1204–1218 (2012).CAS 
    Article 

    Google Scholar 
    Hättenschwiler, S. & Jørgensen, H. B. Carbon quality rather than stoichiometry controls litter decomposition in a tropical rain forest. J. Ecol. 98, 754–763 (2010).Article 
    CAS 

    Google Scholar 
    van der Heijden, M. G., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. N. Phytol. 205, 1406–1423 (2015).Article 
    CAS 

    Google Scholar 
    Lin, G., McCormack, M. L., Ma, C. & Guo, D. Similar below-ground carbon cycling dynamics but contrasting modes of nitrogen cycling between arbuscular mycorrhizal and ectomycorrhizal forests. N. Phytol. 213, 1440–1451 (2017).CAS 
    Article 

    Google Scholar 
    Högberg, M. N. & Högberg, P. Extramatrical ectomycorrhizal mycelium contributes one‐third of microbial biomass and produces, together with associated roots, half the dissolved organic carbon in a forest soil. N. Phytol. 154, 791–795 (2002).Article 

    Google Scholar 
    Leake, J. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045 (2004).Article 

    Google Scholar 
    Bååth, E., Nilsson, L. O., Göransson, H. & Wallander, H. Can the extent of degradation of soil fungal mycelium during soil incubation be used to estimate ectomycorrhizal biomass in soil? Soil Biol. Biochem. 36, 2105–2109 (2004).Article 
    CAS 

    Google Scholar 
    Kaiser, C. et al. Exploring the transfer of recent plant photosynthates to soil microbes: Mycorrhizal pathway vs direct root exudation. N. Phytol. 205, 1537–1551 (2015).CAS 
    Article 

    Google Scholar 
    Konvalinková, T., Püschel, D., Řezáčová, V., Gryndlerová, H. & Jansa, J. Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant Soil 419, 319–333 (2017).Article 
    CAS 

    Google Scholar 
    Ouimette, A. P. et al. Accounting for carbon flux to mycorrhizal fungi may resolve discrepancies in forest carbon budgets. Ecosystems 23, 715–729 (2019).Article 
    CAS 

    Google Scholar 
    Wallander, H., Nilsson, L. O., Hagerberg, D. & Bååth, E. Estimation of the biomass and seasonal growth of external mycelium of ectomycorrhizal fungi in the field. N. Phytol. 151, 753–760 (2001).CAS 
    Article 

    Google Scholar 
    Allen, M. F. & Kitajima, K. Net primary production of ectomycorrhizas in a California forest. Fungal Ecol. 10, 81–90 (2014).Article 

    Google Scholar 
    Godbold, D. L. et al. Mycorrhizal hyphal turnover as a dominant process for carbon input into soil organic matter. Plant Soil 281, 15–24 (2006).CAS 
    Article 

    Google Scholar 
    Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).Article 

    Google Scholar 
    Brundrett, M. C. & Tedersoo, L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. N. Phytol. 220, 1108–1115 (2018).Article 

    Google Scholar 
    Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).CAS 
    Article 

    Google Scholar 
    Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 5125 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Harley, J. L. Fungi in ecosystems. J. Ecol. 59, 653 (1971).Article 

    Google Scholar 
    Fernandez, C. W., Langley, J. A., Chapman, S., McCormack, M. L. & Koide, R. T. The decomposition of ectomycorrhizal fungal necromass. Soil Biol. Biochem. 93, 38–49 (2016).CAS 
    Article 

    Google Scholar 
    Fernandez, C. W. & Koide, R. T. Initial melanin and nitrogen concentrations control the decomposition of ectomycorrhizal fungal litter. Soil Biol. Biochem. 77, 150–157 (2014).CAS 
    Article 

    Google Scholar 
    Trofymow, J. A. The Canadian Institute Decomposition Experiment (CIDET): project and site establishment report / J.A. Trofymow and the CIDET Working Group. (1998).Gholz, H. L., Wedin, D. A., Smitherman, S. M., Harmon, M. E. & Parton, W. J. Long-term dynamics of pine and hardwood litter in contrasting environments: Toward a global model of decomposition. Glob. Chang. Biol. 6, 751–765 (2000).Article 

    Google Scholar 
    Kögel-Knabner, I. The macromolecular organic composition of plant and microbial residues as inputs to soil organic matter. Soil Biol. Biochem 34, 139–162 (2002).Article 

    Google Scholar 
    Zeglin, L. H. & Myrold, D. D. Fate of decomposed fungal cell wall material in organic horizons of old-growth douglas-fir forest soils. Soil Sci. Soc. Am. J. 77, 489–500 (2013).CAS 
    Article 

    Google Scholar 
    Kleber, M. et al. Mineral-organic associations: formation, properties, and relevance in soil environments. in. Adv. Agron. 130, 1–140 (2015).Article 

    Google Scholar 
    Fortin, J. A. et al. Arbuscular mycorrhiza on root-organ cultures. Can. J. Bot. 80, 1–20 (2002).CAS 
    Article 

    Google Scholar 
    Declerck, S., Séguin, S. & Dalpé, Y. The monoxenic culture of Arbuscular Mycorrhizal fungi as a tool for germplasm collections. in In Vitro Culture of Mycorrhizas 17–30 (Springer-Verlag, 2005).Lalaymia, I. & Declerck, S. The Mycorrhizal Donor Plant (MDP) in vitro culture system for the efficient colonization of whole plants. 2146, (Springer US, 2020).Crous, P. W., Verkley, G. J. M., Groenewald, J. Z. & Houbraken, J. Westerdijk Laboratory Manual Series 1: Fungal Biodiversity. (2019).Tuomi, M. et al. Leaf litter decomposition-Estimates of global variability based on Yasso07 model. Ecol. Modell. 220, 3362–3371 (2009).CAS 
    Article 

    Google Scholar 
    Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long‐term succession in boreal forests. N. Phytol. 205, 1525–1536 (2015).CAS 
    Article 

    Google Scholar 
    Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Staddon, P. L., Ramsey, C. B., Ostle, N., Ineson, P. & Fitter, A. H. Rapid turnover of hyphae of mycorrhizal fungi determined by AMS microanalysis of 14C. Science 300, 1138–1140 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Adamczyk, B., Sietiö, O., Biasi, C. & Heinonsalo, J. Interaction between tannins and fungal necromass stabilizes fungal residues in boreal forest soils. N. Phytol. 223, 16–21 (2019).Article 

    Google Scholar 
    Davison, J. et al. Plant functional groups associate with distinct arbuscular mycorrhizal fungal communities. N. Phytol. 226, 1117–1128 (2020).Article 

    Google Scholar 
    Liski, J., Palosuo, T., Peltoniemi, M. & Sievänen, R. Carbon and decomposition model Yasso for forest soils. Ecol. Modell. 189, 168–182 (2005).CAS 
    Article 

    Google Scholar 
    Guendehou, G. H. S. et al. Decomposition and changes in chemical composition of leaf litter of five dominant tree species in a West African tropical forest. Trop. Ecol. 55, 207–220 (2014).
    Google Scholar 
    Paterson, E. et al. Labile and recalcitrant plant fractions are utilised by distinct microbial communities in soil: Independent of the presence of roots and mycorrhizal fungi. Soil Biol. Biochem. 40, 1103–1113 (2008).CAS 
    Article 

    Google Scholar 
    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant inputs form stable soil organic matter? Glob. Chang. Biol. 19, 988–995 (2013).PubMed 
    Article 

    Google Scholar 
    Xia, J. et al. Global patterns in Net Primary Production allocation regulated by environmental conditions and forest stand age: a model‐data comparison. J. Geophys. Res. Biogeosciences 124, 2039–2059 (2019).Article 

    Google Scholar 
    Malhi, Y., Doughty, C. & Galbraith, D. The allocation of ecosystem net primary productivity in tropical forests. Philos. Trans. R. Soc. B Biol. Sci. 366, 3225–3245 (2011).CAS 
    Article 

    Google Scholar 
    Tedersoo, L., May, T. W. & Smith, M. E. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza 20, 217–263 (2010).PubMed 
    Article 

    Google Scholar 
    Rinaldi, A. C., Comandini, O. & Kuyper, T. W. Ectomycorrhizal fungal diversity: separating the wheat from the chaff. Fungal Divers 33, 1–45 (2008).
    Google Scholar 
    Krüger, M., Krüger, C., Walker, C., Stockinger, H. & Schüßler, A. Phylogenetic reference data for systematics and phylotaxonomy of arbuscular mycorrhizal fungi from phylum to species level. N. Phytol. 193, 970–984 (2012).Article 

    Google Scholar 
    Lee, E.-H., Eo, J.-K., Ka, K.-H. & Eom, A.-H. Diversity of arbuscular mycorrhizal fungi and their roles in ecosystems. Mycobiology 41, 121–125 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schüβler, A., Schwarzott, D. & Walker, C. A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol. Res. 105, 1413–1421 (2001).Article 

    Google Scholar 
    Declerck, S., Strullu, D. G. & Plenchette, C. Monoxenic culture of the intraradical forms of Glomus sp. isolated from a tropical ecosystem: a proposed methodology for germplasm collection. Mycologia 90, 579 (1998).Article 

    Google Scholar 
    Voets, L. et al. Extraradical mycelium network of arbuscular mycorrhizal fungi allows fast colonization of seedlings under in vitro conditions. Mycorrhiza 19, 347–356 (2009).PubMed 
    Article 

    Google Scholar 
    von Lützow, M. et al. SOM fractionation methods: Relevance to functional pools and to stabilization mechanisms. Soil Biol. Biochem. 39, 2183–2207 (2007).Article 
    CAS 

    Google Scholar 
    Davidson, E. A., Galloway, L. F. & Strand, M. K. Assessing available carbon: Comparison of techniques across selected forest soils. Commun. Soil Sci. Plant Anal. 18, 45–64 (1987).CAS 
    Article 

    Google Scholar 
    Trumbore, S. E., Vogel, J. S. & Southon, J. R. AMS 14C measurements of fractionated soil organic matter: an approach to deciphering the soil carbon cycle. Radiocarbon 31, 644–654 (1989).Article 

    Google Scholar 
    Henriksen, T. & Breland, T. Evaluation of criteria for describing crop residue degradability in a model of carbon and nitrogen turnover in soil. Soil Biol. Biochem 31, 1135–1149 (1999).CAS 
    Article 

    Google Scholar 
    Schnitzer, M. & Schuppli, P. Method for the sequential extraction of organic matter from soils and soil fractions. Soil Sci. Soc. Am. J. 53, 1418–1424 (1989).CAS 
    Article 

    Google Scholar 
    Ryan, M. G., Melillo, J. M. & Ricca, A. A comparison of methods for determining proximate carbon fractions of forest litter. Can. J . Res. 20, 166–171 (1990).Article 

    Google Scholar 
    Wieder, R. K. & Starr, S. T. Quantitative determination of organic fractions in highly organic, Sphagnum peat soils. Commun. Soil Sci. Plant Anal. 29, 847–857 (1998).CAS 
    Article 

    Google Scholar 
    Xu, G. et al. Differential responses of soil hydrolytic and oxidative enzyme activities to the natural forest conversion. Sci. Total Environ. 716, 136414 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Viskari, T. et al. Improving Yasso15 soil carbon model estimates with ensemble adjustment Kalman filter state data assimilation. Geosci. Model Dev. 13, 5959–5971 (2020). https://doi.org/10.5194/gmd-13-5959-2020.CAS 
    Article 

    Google Scholar 
    Anderson, M. J. Permutational multivariate analysis of variance (PERMANOVA). Wiley StatsRef: Statistics Reference Online, https://doi.org/10.1002/9781118445112.stat07841 (2014).Anderson, M. J., Ellingsen, K. E. & McArdle, B. H. Multivariate dispersion as a measure of beta diversity. Ecol. Lett. 9, 683–693 (2006).PubMed 
    Article 

    Google Scholar 
    Tomczak, M. & Tomczak, E. The need to report effect size estimates revisited. An overview of some recommended measures of effect size. Trends Sport Sci. 1, 19–25 (2014).
    Google Scholar 
    Kattge, J. et al. TRY – a global database of plant traits. Glob. Chang. Biol. 17, 2905–2935 (2011).PubMed Central 
    Article 

    Google Scholar 
    Engemann, K. et al. A plant growth form dataset for the New World. Ecology 97, 3243 (2016).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Spatial epidemiology of hemorrhagic disease in Illinois wild white-tailed deer

    Shope, R. E., MacNamara, L. G. & Mangold, R. Report on the deer mortality, epizootic hemorrhagic disease of deer. NJ Outdoors 6, 17–21 (1955).
    Google Scholar 
    Trainer, D. O. Epizootic hemorrhagic disease of deer. J. Wildl. Dis. 28, 377–381 (1964).
    Google Scholar 
    Shope, R. E., MacNamara, L. G. & Mangold, R. A virus-induced epizootic hemorrhagic disease of the Virginia white-tailed deer (Odocoileus virginianus). J. Exp. Med. 111, 155–170 (1960).CAS 
    PubMed 

    Google Scholar 
    Chalmers, G. A., Vance, H. N. & Mitchell, G. J. An outbreak of epizootic hemorrhagic disease in wild ungulates in Alberta. Wildl. Dis. 4, 1–6 (1964).
    Google Scholar 
    Stallknecht, D. E. et al. Apparent increase of reported hemorrhagic disease in the midwestern and northeastern USA. J. Wildl. Dis. 51, 348–361 (2015).PubMed 

    Google Scholar 
    Ruder, M. G. et al. The first 10 years (2006–2015) of epizootic hemorrhagic disease virus serotype 6 in the USA. J. Wildl. Dis. 53, 901–905 (2017).PubMed 

    Google Scholar 
    Pybus, M. J., Ravi, M. & Pollock, C. Epizootic hemorrhagic disease in Alberta, Canada. J. Wildl. Dis. 50, 720–722 (2014).PubMed 

    Google Scholar 
    Ruder, M. G. et al. Transmission and epidemiology of bluetongue and epizootic hemorrhagic disease in North America: current perspectives, research gaps, and future directions. Vector-Borne Zoonotic Dis. 15, 348–363 (2015).PubMed 

    Google Scholar 
    Rivera, N. A. et al. Bluetongue and epizootic hemorrhagic disease in the United States of America at the wildlife: livestock interface. Pathogens 10, 915 (2021).PubMed 

    Google Scholar 
    Mellor, P. S., Boorman, J. & Baylis, M. Culicoides biting midges: their role as arbovirus vectors. Annu. Rev. Entomol. 45, 307–340 (2000).CAS 
    PubMed 

    Google Scholar 
    Pfannenstiel, R. S. et al. Management of North American Culicoides biting midges: current knowledge and research needs. Vector-Borne Zoonotic Dis. 15, 374–384 (2015).PubMed 

    Google Scholar 
    Mcgregor, B. L. et al. Vector competence of Florida Culicoides insignis (Diptera: Ceratopogonidae) for epizootic hemorrhagic disease virus serotype-2. (2021). https://doi.org/10.3390/v13030410.Vigil, S. L. et al. Apparent range expansion of Culicoides (Hoffmania) insignis (Diptera: Ceratopogonidae) in the Southeastern United States. https://doi.org/10.1093/jme/tjy036.Mullen, G. R. & Murphree, C. S. Chapter 13-biting midges (Ceratopogonidae). in (eds. Mullen, G. R. & Durden, L. A. B. T.-M. and V. E. (Third E.) 213–236 (Academic Press, 2019). https://doi.org/10.1016/B978-0-12-814043-7.00013-3.Werner, D., Groschupp, S., Bauer, C. & Kampen, H. Breeding Habitat Preferences of major Culicoides Species (Diptera: Ceratopogonidae) in Germany. Int. J. Environ. Res. Public Health 17, 5000 (2020).
    Google Scholar 
    Tabachnick, W. J., Smartt, C. T. & Rutledge-Connelly, C. R. Bluetongue: ENY-743/IN768, 4/2008. EDIS 2008, (2008).Schmidtmann, E. T., Bobian, R. J. & Belden, R. P. Soil chemistries define aquatic habitats with immature populations of the Culicoides variipennis complex (Diptera: Ceratopogonidae). J. Med. Entomol. 37, 58–64 (2000).CAS 
    PubMed 

    Google Scholar 
    Schmidtmann, E. T. et al. Distribution of Culicoides sonorensis (Diptera: Ceratopogonidae) in Nebraska, South Dakota, and North Dakota: clarifying the epidemiology of bluetongue disease in the Northern great plains region of the United States. J. Med. Entomol. 48, 634–643 (2011).CAS 
    PubMed 

    Google Scholar 
    Mullens, B. A. & Holbrook, F. R. Temperature effects on the gonotrophic cycle of Culicoides variipennis (Diptera: Ceratopogonidae). J. Am. Mosq. Control Assoc. 7, 588–591 (1991).CAS 
    PubMed 

    Google Scholar 
    Lysyk, T. J. & Dergousoff, S. J. Distribution of Culicoides sonorensis (Diptera: Ceratopogonidae) in Alberta, Canada. J. Med. Entomol. 51, 560–571 (2014).CAS 
    PubMed 

    Google Scholar 
    Christensen, S. A., Ruder, M. G., Williams, D. M., Porter, W. F. & Stallknecht, D. E. The role of drought as a determinant of hemorrhagic disease in the eastern United States. Glob. Chang. Biol. 26, 3799–3808 (2020).ADS 
    PubMed 

    Google Scholar 
    Lysyk, T. J. & Danyk, T. Effect of temperature on life history parameters of adult Culicoides sonorensis (Diptera: Ceratopogonidae) in relation to geographic origin and vectorial capacity for bluetongue virus. J. Med. Entomol. 44, 741–751 (2007).CAS 
    PubMed 

    Google Scholar 
    Wittmann, E. J., Mellor, P. S. & Baylis, M. Effect of temperature on the transmission of orbiviruses by the biting midge, Culicoides sonorensis. Med. Vet. Entomol. 16, 147–156 (2002).CAS 
    PubMed 

    Google Scholar 
    Brand, S. P. C. & Keeling, M. J. The impact of temperature changes on vector-borne disease transmission: Culicoides midges and bluetongue virus. J. R. Soc. Interface 14, 20160481 (2017).PubMed 

    Google Scholar 
    Couvillion, C. E., Nettles, V. F., Davidson, W. R., Pearson, J. E. & Gustafson, G. A. Hemorrhagic disease among white-tailed deer in the Southeast from 1971 through 1980. Proc. US Anim. Hlth. Assoc. 85, 522–537 (1981).
    Google Scholar 
    Zarnke, R. L. Serologic survey for selected microbial pathogens in Alaskan wildlife. J. Wildl. Dis. 19, 324–329 (1983).CAS 
    PubMed 

    Google Scholar 
    Howerth, E. W., Stallknecht, D. E. & Kirkland, P. D. Bluetongue, epizootic hemorrhagic disease, and other orbivirus-related diseases. Infect. Dis. Wild Mammals https://doi.org/10.1002/9780470344880.ch3 (2001).Article 

    Google Scholar 
    Stevens, G., McCluskey, B., King, A., O’Hearn, E. & Mayr, G. Review of the 2012 epizootic hemorrhagic disease outbreak in domestic ruminants in the United States. PLoS ONE 10, 1–11 (2015).
    Google Scholar 
    Fischer, J. R. et al. An epizootic of hemorrhagic disease in white-tailed deer (Odocoileus virginianus) in Missouri: necropsy findings and population impact. J. Wildl. Dis. 31, 30–36 (1995).CAS 
    PubMed 

    Google Scholar 
    Pierce, B. EHD outbreak takes toll on white-tailed deer population. Bozeman Daily Chronicle (2011).Gaydos, J. K., Davidson, W. R., Mead, D. G., Howerth, E. W. & Stallknecht, D. E. Innate resistance to epizootic hemorrhagic disease in white-tailed deer. J. Wildl. Dis. 38, 713–719 (2002).PubMed 

    Google Scholar 
    Stallknecht, D. E. & Howerth, E. W. Epidemiology of bluetongue and epizootic haemorrhagic disease in wildlife: surveillance methods. Vet. Ital. 40, 203–207 (2004).CAS 
    PubMed 

    Google Scholar 
    Hedman, H. D. et al. Spatial analysis of chronic wasting disease in free-ranging white-tailed deer (Odocoileus virginianus) in Illinois, 2008–2019. Transbound. Emerg. Dis. 68, 2376–2383 (2020).PubMed 

    Google Scholar 
    Baygents, G. & Bani-Yaghoub, M. Cluster analysis of hemorrhagic disease in Missouri’s white-tailed deer population: 1980–2013. BMC Ecol. 18, 35 (2018).PubMed 

    Google Scholar 
    French, S. K., Pearl, D. L., Peregrine, A. S. & Jardine, C. M. Spatio-temporal clustering of Baylisascaris procyonis, a zoonotic parasite, in raccoons across different landscapes in southern Ontario. Spat. Spatiotemporal. Epidemiol. 35, 100371 (2020).PubMed 

    Google Scholar 
    Kulldorff, M., Heffernan, R., Hartman, J., Assunção, R. & Mostashari, F. A space-time permutation scan statistic for disease outbreak detection. PLoS Med. 2, 0216–0224 (2005).
    Google Scholar 
    Allison, A. B. et al. Detection of a novel reassortant epizootic hemorrhagic disease virus (EHDV) in the USA containing RNA segments derived from both exotic (EHDV-6) and endemic (EHDV-2) serotypes. J. Gen. Virol. 91, 430–439 (2010).CAS 
    PubMed 

    Google Scholar 
    Allen, S. E. et al. Epizootic hemorrhagic disease in white-tailed deer, Canada. Emerg. Infect. Dis. 25, 832–834 (2019).PubMed 

    Google Scholar 
    Boyer, T. C., Ward, M. P., Wallace, R. L. & Singer, R. S. Regional seroprevalence of bluetongue virus in cattle in Illinois and western Indiana. Am. J. Vet. Res. 68, 1212–1219 (2007).PubMed 

    Google Scholar 
    Pedersen, K. et al. Serologic Evidence of various arboviruses detected in white-tailed deer (Odocoileus virginianus) in the United States. Am. J. Trop. Med. Hyg. 97, 319–323 (2017).PubMed 

    Google Scholar 
    Garrett, E. F. et al. Clinical disease associated with epizootic hemorrhagic disease virus in cattle in Illinois. J. Am. Vet. Med. Assoc. 247, 190–195 (2015).PubMed 

    Google Scholar 
    Boyer, T. C., Ward, M. P. & Singer, R. S. Climate, landscape, and the risk of orbivirus exposure in cattle in Illinois and western Indiana. Am. J. Trop. Med. Hyg. 83, 789–794 (2010).PubMed 

    Google Scholar 
    Cauvin, A. et al. Antibodies to epizootic hemorrhagic disease virus (EHDV) in farmed and wild Florida white-tailed deer (Odocoileus virginianus). J. Wildl. Dis. 56, 208–213 (2020).CAS 
    PubMed 

    Google Scholar 
    McGregor, B. L. et al. Host use patterns of Culicoides spp. biting midges at a big game preserve in Florida, USA, and implications for the transmission of orbiviruses. Med. Vet. Entomol. 33, 110–120 (2019).CAS 
    PubMed 

    Google Scholar 
    Berke, O. Exploratory disease mapping: kriging the spatial risk function from regional count data. 11, 1–11 (2004).Svoboda, M. et al. The drought monitor. Bull. Am. Meterol. Soc. 83, 1181–1190 (2002).ADS 

    Google Scholar 
    NOAA National Centers for Environmental Information. State of the Climate: National Climate Report for Annual 2012. https://www.ncdc.noaa.gov/sotc/national/201213. (Accessed: 5th February 2022)Calzolari, M. & Albieri, A. Could drought conditions trigger Schmallenberg virus and other arboviruses circulation?. Int. J. Health Geogr. 12, 6–10 (2013).
    Google Scholar 
    Zuliani, A. et al. Modelling the northward expansion of Culicoides sonorensis (Diptera: Ceratopogonidae) under future climate scenarios. PLoS ONE 10, 1–23 (2015).
    Google Scholar 
    Burns, D. Diseases caused by arthropods and other noxious animals. in Rook’s Textbook of Dermatology 1555–1618 (Blackwell Publishing, 2004).Mullens, B. A. A quantitative survey of Culicoides variipennis (Diptera: Ceratopogonidae) in dairy waste water ponds in Southern California. J. Med. Entomol. 26, 559–565 (1989).CAS 
    PubMed 

    Google Scholar 
    Wang, D., Hejazi, M., Cai, X. & Valocchi, A. J. Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois. Water Resour. Res. 47, 9527 (2011).ADS 

    Google Scholar 
    Tomasek, B. J., Williams, M. M. II. & Davis, A. S. Changes in field workability and drought risk from projected climate change drive spatially variable risks in Illinois cropping systems. PLoS ONE 12, e0172301 (2017).PubMed 

    Google Scholar 
    Casey, C. L., Rathbun, S. L., Stallknecht, D. E. & Ruder, M. G. Spatial analysis of the 2017 outbreak of hemorrhagic disease and physiographic region in the eastern United States. Viruses 13, 550 (2021).CAS 
    PubMed 

    Google Scholar 
    Berry, B. S., Magori, K., Perofsky, A. C., Stallknecht, D. E. & Park, A. W. Wetland cover dynamics drive hemorrhagic disease patterns in white-tailed deer in the United States. J. Wildl. Dis. 49, 501–509 (2013).PubMed 

    Google Scholar 
    Uslu, U. & Dik, B. Chemical characteristics of breeding sites of Culicoides species (Diptera: Ceratopogonidae). Vet. Parasitol. 169, 178–184 (2010).CAS 
    PubMed 

    Google Scholar 
    Lysyk, T. J. Abundance and species composition of Culicoides (Diptera : Ceratopogonidae) at cattle facilities in southern Alberta, Canada. (2006).Erram, D., Blosser, E. M. & Cadena, N. B. Habitat associations of Culicoides species (Diptera : Ceratopogonidae) abundant on a commercial cervid farm in Florida, USA. Parasit. Vectors https://doi.org/10.1186/s13071-019-3626-1 (2019).Article 
    PubMed 

    Google Scholar 
    Jones, R. H. Observations on the larval habitats of some North American species of Culicoides (Diptera: Ceratopogonidae). Ann. Entomol. Soc. Am. 54, 702–710 (1961).
    Google Scholar 
    Schmidtmann, E. T., Jones, C. J. & Gollands, B. Comparative host-seeking activity of Culicoides (Diptera: Ceratopogonidae) attracted to pastured livestock in central New York State, USA. J. Med. Entomol. 17, 221–231 (1980).
    Google Scholar 
    Schlichting, P. E. Summary of 2019–2020 Illinois deer seasons. Illinois Dep. Nat. Resour. 1–12 (2020).Orange, J. P. et al. Evidence of epizootic hemorrhagic disease virus and bluetongue virus exposure in nonnative ruminant species in northern Florida. J. Zoo Wildl. Med. 51, 745–751 (2021).PubMed 

    Google Scholar 
    Purse, B. V. et al. Impacts of climate, host and landscape factors on Culicoides species in Scotland. Med. Vet. Entomol. 26, 168–177 (2012).CAS 
    PubMed 

    Google Scholar 
    Searle, K. R. et al. Identifying environmental drivers of insect phenology across space and time: Culicoides in Scotland as a case study. Bull. Entomol. Res. 103, 155–170 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Shimizu, S., Toyota, I., Arishima, T. & Goto, Y. Frequency of serological cross-reactions between Ibaraki and bluetongue viruses using the agar gel immunodiffusion test. Vet. Ital. 40, 583–586 (2004).CAS 
    PubMed 

    Google Scholar 
    Alkhamis, M. A. et al. Global emergence and evolutionary dynamics of bluetongue virus. Sci. Rep. 10, 21677 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cottingham, S. L., White, Z. S., Wisely, S. M. & Campos-Krauer, J. M. A Mortality-based description of EHDV and BTV prevalence in farmed white-tailed deer (Odocoileus virginianus) in Florida, USA. Viruses 13, 1443 (2021).CAS 
    PubMed 

    Google Scholar 
    Nettles, V. F., Davidson, W. R. & Stallknecht, D. E. Surveillance for hemorrhagic disease in white-tailed deer and other wild ruminants, 1980-1989. In Proceeding of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies. 46, 138–146 (1992).Maclachlan, N. J., Zientara, S., Wilson, W. C., Richt, J. A. & Savini, G. Bluetongue and epizootic hemorrhagic disease viruses: recent developments with these globally re-emerging arboviral infections of ruminants. Curr. Opin. Virol. 34, 56–62 (2019).PubMed 

    Google Scholar 
    Savini, G. et al. Epizootic haemorragic disease. Res. Vet. Sci. 91, 1–17 (2011).CAS 
    PubMed 

    Google Scholar 
    Kedmi, M. et al. The association of winds with the spread of EHDV in dairy cattle in Israel during an outbreak in 2006. Prev. Vet. Med. 96, 152–160 (2010).PubMed 

    Google Scholar 
    Mayo, C. E. et al. Seasonal and interseasonal dynamics of bluetongue virus infection of dairy cattle and Culicoides sonorensis Midges in Northern California: implications for virus overwintering in temperate zones. PLoS ONE 9, e106975 (2014).ADS 
    PubMed 

    Google Scholar 
    USGS National Wildlife Health Center. Wildlife Health Information Sharing Partnership-event reporting system (WHISPers). https://www.nwhc.usgs.gov/whispers/.Lenoch, J. & Nguyen, N. WHISPers, the USGS-NWHC Wildlife Health event reporting system. Proc. Wildl. Dis. Assoc. 8, 2579 (2016).
    Google Scholar 
    Brooks, J. W. Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet. Pathol. 53, 929–940 (2016).CAS 
    PubMed 

    Google Scholar 
    Pilz, J. & Spöck, G. Why do we need and how should we implement Bayesian Kriging methods. Stoch. Environ. Res. Risk Assess. 22, 621–632 (2007).MathSciNet 

    Google Scholar 
    Krivoruchko, K. Empirical Bayesian Kriging. ArcUser Fall 6, (2012).Ord, J. K. & Getis, A. Local spatial autocorrelation statistics: distributional issues and an application. Geogr. Anal. 27, 286–306 (1995).
    Google Scholar 
    Kulldorff, M. & Information Management Services Inc. SaTScanTM v 9.6: Software for the spatial and space-time scan statistics. (2018).Kulldorff, M., Athas, W. F., Feuer, E. J., Miller, B. A. & Key, C. R. Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am. J. Public Health 88, 1377–1380 (1998).CAS 
    PubMed 

    Google Scholar  More

  • in

    A perspective of scale differences for studying the green total factor productivity of Chinese laying hens

    Minimum distance to weak efficient frontierBriec and Charnes et al. first proposed the Minimum distance to weak efficient frontier (MinDW) model39,40, which can be expressed as (m + n) linear programming ((m) is the number of input indicators and (n) is the number of output indicators), assuming that the input variable is (x) and the output variable is (y). The specific formula is shown in Eq. (1):$$ begin{aligned} & max beta_{z} ,z = 1,2, ldots ,m + n \ & s.t.left{ begin{gathered} sumnolimits_{j = 1}^{q} {alpha_{j} x_{rj} + beta_{z} e_{r} le x_{rk} ,r = 1,2, ldots ,m} hfill \ sumnolimits_{j = 1}^{q} {alpha_{j} x_{ij} + beta_{z} e_{i} ge y_{ik} ,i = 1,2, ldots ,n} hfill \ alpha_{j} ge 0 hfill \ end{gathered} right. \ end{aligned} $$
    (1)
    (e_{r}) and (e_{i}) are constants. In the programming formula, only one (e) is equal to 1, and the others are 0, that is shown in Eq. (2):$$ begin{aligned} & e_{r} = 1;{text{ if}}; , r = z; , e_{r} = 0 , ;{text{if}}; , r ne z \ & e_{i} = 1 , ;{text{if}}; , i = z – m; , e_{r} = 0 , ;{text{if}}; , i ne z – m \ end{aligned} $$
    (2)
    The efficiency value of model is expressed as Eq. (3):$$ theta_{z}^{*} = frac{{1 – frac{1}{m}sumnolimits_{r = 1}^{m} {frac{{beta_{z}^{*} e_{r} }}{{x_{rk} }}} }}{{1 + frac{1}{n}sumnolimits_{i = 1}^{n} {frac{{beta_{z}^{*} e_{i} }}{{y_{ik} }}} }} $$
    (3)
    The efficiency value of MinDW model is expressed as (theta_{max }^{*} = max (theta_{z}^{*} ,z = 1,2, cdots ,m + n)), and the maximum efficiency value corresponds to the minimum (beta^{*}), that is the nearest distance to the frontier.This paper uses the MinDW model with negative output to conduct empirical analysis. The method can be expressed as (m + n + d) linear programming ((m) is the number of inputs, (n) is the number of desirable output, (d) is the number of unexpected output), assuming that the input variable is (x), the desirable output variable is (y), and the undesirable output variable is (f). The specific formula is shown in Eq. (4):$$ begin{aligned} & max beta_{z} ,z = 1,2, ldots ,m + n + d \ & s.t.left{ begin{gathered} sumnolimits_{j = 1}^{q} {alpha_{j} x_{rj} + beta_{z} e_{r} le x_{rk} ,r = 1,2, ldots ,m} hfill \ sumnolimits_{j = 1}^{q} {alpha_{j} x_{ij} – beta_{z} e_{i} ge y_{ik} ,i = 1,2, ldots ,n} hfill \ sumnolimits_{j = 1}^{q} {alpha_{j} x_{lj} + beta_{z} e_{l} le f_{lk} ,l = 1,2, ldots ,d} hfill \ alpha_{j} ge 0 hfill \ end{gathered} right. \ end{aligned} $$
    (4)
    (e_{r}), (e_{i}) and (e_{l}) are constants. In the programming formula, only one (e) is equal to 1, and the others are 0, that is shown in Eq. (5):$$ begin{aligned} & e_{r} = 1;{text{ if}}; , r = z; , e_{r} = 0 , ;{text{if}}; , r ne z \ & e_{i} = 1 , ;{text{if }};i = z – m; , e_{r} = 0 , ;{text{if}}; , i ne z – m \ & e_{l} = 1 , ;{text{if}}; , l = z – m – n; , e_{l} = 0 , ;{text{if}}; , l ne z – m – n \ end{aligned} $$
    (5)
    The efficiency value of model is expressed as Eq. (6):$$ theta_{z}^{*} = frac{{1 – frac{1}{m}sumnolimits_{r = 1}^{m} {frac{{beta_{z}^{*} e_{r} }}{{x_{rk} }}} }}{{1 + frac{1}{n + d}left( {sumnolimits_{i = 1}^{n} {frac{{beta_{z}^{*} e_{i} }}{{y_{ik} }}} + sumnolimits_{l = 1}^{d} {frac{{beta_{z}^{*} e_{l} }}{{f_{lk} }}} } right)}} $$
    (6)
    The efficiency value of MinDW model is expressed as (theta_{max }^{*} = max (theta_{z}^{*} ,z = 1,2, cdots ,m + n + d)), and the maximum efficiency value corresponds to the minimum (beta^{*}), which means the nearest distance to the frontier.The efficiency value of MinDW model will not be less than the efficiency value of directional distance function model with any direction vector or other distance types (such as radial model and SBM model). In other words, the efficiency value of MinDW model is the largest. Combined with the above process, we can define the common boundary ((beta^{meta*})) and the model is as Eq. (7):$$ begin{aligned} & beta^{meta*} = max frac{{1 – frac{1}{m}sumnolimits_{r = 1}^{m} {frac{{beta_{z} e_{r} }}{{x_{rk} }}} }}{{1 + frac{1}{n + d}left( {sumnolimits_{i = 1}^{n} {frac{{beta_{z} e_{i} }}{{y_{ik} }}} + sumnolimits_{l = 1}^{d} {frac{{beta_{z} e_{l} }}{{f_{lk} }}} } right)}} \ & s.t.left{ begin{gathered} sumnolimits_{j = 1}^{{q_{m} }} {alpha_{j} x_{rj} + beta_{z} e_{r} le x_{rk} ,r = 1,2, cdots ,m} hfill \ sumnolimits_{j = 1}^{{q_{m} }} {alpha_{j} x_{ij} – beta_{z} e_{i} ge y_{ik} ,i = 1,2, cdots ,n} hfill \ sumnolimits_{j = 1}^{{q_{m} }} {alpha_{j} x_{lj} + beta_{z} e_{l} le f_{lk} ,l = 1,2, cdots ,d} hfill \ alpha_{j} ge 0 hfill \ end{gathered} right. \ end{aligned} $$
    (7)
    Similarly, the efficiency value of DMU relative to the scale frontier ((beta^{scale*})) can be obtained by the Eq. (8):$$ begin{aligned} & beta^{scale*} = max frac{{1 – frac{1}{m}sumnolimits_{r = 1}^{m} {frac{{beta_{z} e_{r} }}{{x_{rk} }}} }}{{1 + frac{1}{n + d}left( {sumnolimits_{i = 1}^{n} {frac{{beta_{z} e_{i} }}{{y_{ik} }}} + sumnolimits_{l = 1}^{d} {frac{{beta_{z} e_{l} }}{{f_{lk} }}} } right)}} \ & s.t.left{ begin{gathered} sumnolimits_{j = 1}^{{q_{s} }} {alpha_{j} x_{rj} + beta_{z} e_{r} le x_{rk} ,r = 1,2, ldots ,m} hfill \ sumnolimits_{j = 1}^{{q_{s} }} {alpha_{j} x_{ij} – beta_{z} e_{i} ge y_{ik} ,i = 1,2, ldots ,n} hfill \ sumnolimits_{j = 1}^{{q_{s} }} {alpha_{j} x_{lj} + beta_{z} e_{l} le f_{lk} ,l = 1,2, ldots ,d} hfill \ alpha_{j} ge 0 hfill \ end{gathered} right. \ end{aligned} $$
    (8)
    Finally, in the common frontier model, the technology gap ratio (TGR) is equal to the ratio of the efficiency value of the common frontier to the scale frontier41. The formula is as Eq. (9):$$ TGR^{MinDW} = frac{{beta^{meta*} }}{{beta^{scale*} }} $$
    (9)
    (beta^{meta*}) and (beta^{scale*}) represent the optimal solution of formula (7) and formula (8), respectively. Obviously, (0 le TGR le 1). TGR is used to measure the distance between the optimal production technology and the potential optimal technology of a group, and identify whether there are any differences in LHG under different groups. The closer the TGR is to 1, the closer the technology level is to the optimal potential technology level. Conversely, it shows the larger gap between the technology level and the potential optimal technology level.Metafrontier-Malmquist–Luenberger indexMalmquist productivity index is widely used in the study of dynamic efficiency change trend, and has good adaptability to multiple input–output data and panel data analysis. The actual production process often contains unexpected output. After Chung et al. proposed Malmquist–Luenberger (ML) index, any Malmquist index with undesired output can be called ML index42. Oh constructed the Global-Malmquist–Luenberger index43. All the evaluated DMUs are included in the global reference set, which avoids the phenomenon of infeasible solution in VRS. The global reference set constructed in this paper is as Eqs. (10)–(11):$$ Q^{G} left( x right) = Q^{1} left( {x^{1} } right) cup Q^{2} left( {x^{2} } right) cup cdots cup Q^{T} left( {x^{T} } right) $$
    (10)
    $$ Q^{t} left( {x^{t} } right) = left{ {left( {y^{t} ,f^{t} } right)left| {x^{t} ;can;produce} right.;left( {y^{t} ,f^{t} } right)} right} $$
    (11)
    This paper takes MML index as the LHG.$$ begin{aligned} MML_{t – 1}^{t} & = sqrt {frac{{1 – D_{t – 1} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t – 1} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} times frac{{1 – D_{t} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}}} \ & = sqrt {frac{{1 – D_{t – 1} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}}{{1 – D_{t} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} times frac{{1 – D_{t – 1} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}} \ & ;;;;; times frac{{1 – D_{t} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t – 1} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} \ end{aligned} $$
    (12)
    Next, it further decompose the MML index into efficiency change (EC) and technology change (TC). The specific formula is shown in Eqs. (13)–(14):$$ TC_{t – 1}^{t} = sqrt {frac{{1 – D_{t – 1} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}}{{1 – D_{t} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} times frac{{1 – D_{t – 1} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}} $$
    (13)
    $$ EC_{t – 1}^{t} = frac{{1 – D_{t} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t – 1} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} $$
    (14)
    where (left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} } right)) and (left( {x^{t} ,y^{t} ,f^{t} } right)) represent the input, expected output and unexpected output of t-1 and t, respectively. (TC_{t – 1}^{t}) is the devotion to LHG raise of DMU’s technical progress from (t – 1) to (t). And (EC_{t – 1}^{t}) represents the devotion to LHG raise of DMU’s efficiency improvement from (t – 1) to (t). The higher the value is, the larger the devotion is. The (MML) index is recorded as (MI). The value of (MI) is the LHG. The green total factor productivity index of laying hens breeding under the common frontier and scale frontier are as Eqs. (15)–(16):$$ metaMI_{t – 1}^{t} = sqrt {frac{{1 – D_{{_{t – 1} }}^{m} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{{_{t – 1} }}^{m} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} times frac{{1 – D_{{_{t} }}^{m} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{{_{t} }}^{m} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}}} $$
    (15)
    $$ groupMI_{t – 1}^{t} = sqrt {frac{{1 – D_{{_{t – 1} }}^{g} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{{_{t – 1} }}^{g} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} times frac{{1 – D_{{_{t} }}^{g} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{{_{t} }}^{g} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}}} $$
    (16)
    For the DMUs with scale heterogeneity, we can measure the technology gap between the group frontier and the common frontier, which is caused by the specific group structure.Data and variablesBased on the research of the existing literature36, this paper selects five indexes to build the input–output indicator system. Details are as below:

    1.

    Input variables:

    (1)

    Quantity of concentrated forage. Mainly includes seeds of crops and their by-products.

    (2)

    Quantity of grain consumption. Quantity of grain consumed is the quantity of grain consumed by laying hens when they are raised. For example: corn, sorghum, broken rice, wheat, barley, wheat bran, etc.

    (3)

    Material expenses. The sum of water and fuel power costs, labor costs, and medical epidemic prevention fees. Water and fuel power costs include water, electricity, coal and other fuel power costs; labor costs mean the human management cost of each laying hen from the brood stage to the laying stage; medical and epidemic prevention costs include the cost of disease prevention and control.

    2.

    Positive output Main product production, which is the egg production per layer.

    3.

    Negative output Total discharge. According to the calculation method of The Manual of Pollutant Discharge Coefficient, Eq. (17) is used to calculate the COD, TN, and the TP of each layer. Then, according to the calculation method of class GB3838-2002 water quality standard in V, Eq. (18) is used to calculate the total discharge.

    $$ POLLUTANTS = FP(FD) times Days $$
    (17)
    $$ TOTAL , POLLUTANTS = frac{COD}{{40}} + frac{TN}{2} + frac{TP}{{0.4}} $$
    (18)
    where, (FP(FD)) is the pollution discharge coefficient and the (Days) is the average raising days. Descriptive statistics of input and output indicators are shown in Table 1.Table 1 Descriptive statistics of input and output indicators.Full size tableThe quantity of concentrate, the quantity of food consumed, the cost of labor, the cost of medical treatment all come from “National Agricultural Product Cost and Benefit Data Compilation”. The pollutant discharge coefficient of laying hens is derived from “The Manual of Pollutant Discharge Coefficient”. According to the definition of scale in above two materials, a small scale 300–1000 laying hens, a medium scale 1000–10,000 laying hens, and a large scale greater than 10,000 laying hens are grouped to calculate cost efficiency.From 2004 to 2018, this paper selects 24 major egg-producing provinces (municipalities) in China as samples, after eliminating singular data in the three scales and averaging the missing data, the final small-scale group is left with 7 provinces including Liaoning, Shandong, Henan, Heilongjiang, Jilin, Shanxi, and Shaanxi; the medium-scale group is the remaining 21 provinces of Beijing, Hebei, Jiangsu, Liaoning, Shandong, Tianjin, Zhejiang, Anhui, Henan, Heilongjiang, Jilin, Hubei, Inner Mongolia, Shanxi, Yunnan, Gansu, Ningxia, Shaanxi, Sichuan, Xinjiang, Chongqing; the large-scale group has 18 provinces, including Beijing, Fujian, Guangdong, Henan, Jiangsu, Liaoning, Shandong, Tianjin, Anhui, Henan, Heilongjiang, Hubei, Jilin, Shanxi, Yunnan, Gansu, Sichuan and Chongqing.As is shown in Table 2, after dividing the provinces by region, the eastern region has 10 provinces (municipalities): Liaoning, Shandong, Beijing, Hebei, Jiangsu, Tianjin, Zhejiang, Fujian, Guangdong, Henan. The central region has 7 provinces (autonomous region): Henan, Heilongjiang, Jilin, Shanxi, Anhui, Hubei, Inner Mongolia. The western region has 7 provinces (municipalities): Shaanxi, Gansu, Ningxia, Sichuan, Xinjiang, Chongqing, Yunnan.Table 2 Samples selected from 2004–2018.Full size table More

  • in

    Collegiality pays and biodiversity struggles

    Animals such as this orangutan in Indonesia are endangered because of illegal deforestation.Credit: Jami Tarris/Future Publishing via Getty

    Funding battles stymie plan to protect global biodiversityScientists are frustrated with slow progress towards a new deal to protect the natural world. Government officials from around the globe met in Geneva, Switzerland, on 14–29 March to find common ground on a draft of the deal, known as the post-2020 global biodiversity framework, but discussions stalled.The framework so far sets out 4 broad goals, including slowing species extinction, and 21 mostly quantitative targets, such as protecting at least 30% of the world’s land and seas. It is part of an international treaty known as the United Nations Convention on Biological Diversity, and aims to address the global biodiversity crisis, which could see one million plant and animal species go extinct in the next few decades.Many who were at the meeting say that disagreements over funding for biodiversity conservation were the main hold-up in negotiations. For example, the draft deal proposed that US$10 billion of funding per year should flow from developed nations to low- and middle-income countries to help them to implement the biodiversity framework. But many think this is not enough.Negotiators say they will now have to meet again before a highly anticipated UN biodiversity summit later this year, where the deal was to be signed.‘Collegiality’ influences researchers’ promotion prospectsUniversities in North America often consider how well researchers interact with each other when making decisions about who gets promoted, a study has found, even though these factors are not formally acknowledged in review guidelines.A researcher’s performance is usually assessed according to three pillars: research, teaching and service. But in recent years, there has been a push from some academics to add another pillar: collegiality. Many say that the concepts of cooperation, collaboration and respect, which broadly fall under the definition of collegiality, are important to the functioning of laboratories and research teams.DeDe Dawson, an academic librarian at the University of Saskatchewan in Saskatoon, Canada, and colleagues analysed more than 860 review, promotion and tenure documents from different departments at 129 universities in the United States and Canada to get a sense of how often collegiality is taken into account.The study, published on 6 April (D. Dawson et al. PLoS ONE 17, e0265506; 2022), found that the concept of collegiality was widespread: the word ‘collegiality’ and related terms, such as ‘citizenship’ or ‘professionalism’, appeared 507 times in 213 of the documents, suggesting that it was often taken into account in evaluations. But just 85 documents included a definition of the term, and fewer still explained how it was measured or used in assessments.

    Source: D. Dawson et al. PLoS ONE 17, e0265506 (2022)

    Collegiality was mentioned most often in research-intensive institutions (see ‘Academia’s fourth pillar’). The authors say that this could be because the behaviour involved is valued in research groups.Dawson and her colleagues warn that relying on collegiality in performance reviews without adequate guidance could introduce bias, as those in charge fill in the blanks with their own definitions.“We need to make sure that we don’t use collegiality to exclude others that may communicate or interact differently,” says Sujay Kaushal, a geologist at the University of Maryland in College Park, who has previously studied collegiality. More

  • in

    Expanding ocean food production under climate change

    United Nations. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248 (UN-DESA, 2017).Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019).FAO. Mapping Supply and Demand for Animal-Source Foods to 2030 (2011).Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Rockström, J. et al. Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour. Res. 45, W00A12 (2009).Article 

    Google Scholar 
    IPCC. IPCC Special Report on Climate Change and Land (2019).Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action (2020).Bryndum‐Buchholz, A. et al. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Change Biol. 25, 459–472 (2019).ADS 
    Article 

    Google Scholar 
    Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018 (2011).Article 

    Google Scholar 
    Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2, 1745–1750 (2018).PubMed 
    Article 

    Google Scholar 
    Handisyde, N., Telfer, T. C. & Ross, L. G. Vulnerability of aquaculture-related livelihoods to changing climate at the global scale. Fish Fish. 18, 466–488 (2017).Article 

    Google Scholar 
    Szuwalski, C. S. & Hollowed, A. B. Climate change and non-stationary population processes in fisheries management. ICES J. Mar. Sci. 73, 1297–1305 (2016).Article 

    Google Scholar 
    Pinsky, M. L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gaines, S. D. et al. Improved fisheries management could offset many negative effects of climate change. Sci. Adv. 4, eaao1378 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Free, C. M. et al. Realistic fisheries management reforms could mitigate the impacts of climate change in most countries. PLoS ONE 15, e0224347 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clapp, J. Food self-sufficiency: making sense of it, and when it makes sense. Food Policy 66, 88–96 (2017).Article 

    Google Scholar 
    Barange, M., Bahri, T., Beveridge, M. & Cochrane, K. L. Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options. Fisheries and Aquaculture Technical Paper No. 627 (FAO, 2018).Lester, S. E. et al. Marine spatial planning makes room for offshore aquaculture in crowded coastal waters. Nat. Commun. 9, 945 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 1, 301–308 (2020).Article 

    Google Scholar 
    Hua, K. et al. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth 1, 316–329 (2019).ADS 
    Article 

    Google Scholar 
    Chavanne, H. et al. A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry. Aquacult. Int. 24, 1287–1307 (2016).Article 

    Google Scholar 
    Troell, M., Jonell, M. & Henriksson, P. J. G. Ocean space for seafood. Nat. Ecol. Evol. 1, 1224–1225 (2017).PubMed 
    Article 

    Google Scholar 
    European Union. Commission Regulation (EC) No 710/2009 of 5 August 2009 Amending Regulation (EC) No 889/2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007, as regards laying down detailed rules on organic aquaculture animal and seaweed production. http://data.europa.eu/eli/reg/2009/710/oj (2009).Golden, C. D. et al. Aquatic foods to nourish nations. Nature 598, 315–320 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Davies, I. P. et al. Governance of marine aquaculture: pitfalls, potential, and pathways forward. Mar. Policy 104, 29–36 (2019).Article 

    Google Scholar 
    Gentry, R. R. et al. Exploring the potential for marine aquaculture to contribute to ecosystem services. Rev. Aquacult. 12, 499–512 (2020).Article 

    Google Scholar 
    Troell, M. et al. Ecological engineering in aquaculture — potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297, 1–9 (2009).Article 

    Google Scholar 
    Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).Article 

    Google Scholar 
    Øverland, M., Mydland, L. T. & Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 99, 13–24 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Besson, M. et al. Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations. J. Clean. Prod. 116, 100–109 (2016).Article 

    Google Scholar 
    Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aguilar-Manjarrez, J., Soto, D., Brummett, R. E. Aquaculture Zoning, Site Selection and Area Management under the Ecosystem Approach to Aquaculture (FAO, 2017).Soto, D. et al. In Impacts Of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options Ch. 26 (FAO, 2018).Darwin, C. The Variation of Animals and Plants Under Domestication (John Murray, 1868).Gjedrem, T., Robinson, N. & Rye, M. The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350–353, 117–129 (2012).Article 

    Google Scholar 
    Antonello, J. et al. Estimates of heritability and genetic correlation for body length and resistance to fish pasteurellosis in the gilthead sea bream (Sparus aurata L.). Aquaculture 298, 29–35 (2009).Article 

    Google Scholar 
    Saillant, E., Dupont-Nivet, M., Haffray, P. & Chatain, B. Estimates of heritability and genotype–environment interactions for body weight in sea bass (Dicentrarchus labrax L.) raised under communal rearing conditions. Aquaculture 254, 139–147 (2006).Article 

    Google Scholar 
    Klinger, D. H., Levin, S. A. & Watson, J. R. The growth of finfish in global open-ocean aquaculture under climate change. Proc. R. Soc. B 284, 20170834 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salayo, N. D., Perez, M. L., Garces, L. R. & Pido, M. D. Mariculture development and livelihood diversification in the Philippines. Mar. Policy 36, 867–881 (2012).Article 

    Google Scholar 
    Boyce, D. G., Lotze, H. K., Tittensor, D. P., Carozza, D. A. & Worm, B. Future ocean biomass losses may widen socioeconomic equity gaps. Nat. Commun. 11, 2235 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sumaila, U. R. et al. Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv. 5, eaau3855 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2017).Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl Acad. Sci. USA 117, 2218–2224 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ye, Y. & Gutierrez, N. L. Ending fishery overexploitation by expanding from local successes to globalized solutions. Nat. Ecol. Evol. 1, 0179 (2017).Article 

    Google Scholar 
    Leape, J. et al. Technology, Data and New Models for Sustainably Managing Ocean Resources (World Resources Institute, 2020).Anderson, C. R. et al. Scaling up from regional case studies to a global harmful algal bloom observing system. Front. Mar. Sci. 6, 250 (2019).Article 

    Google Scholar 
    Dunn, D. C., Maxwell, S. M., Boustany, A. M. & Halpin, P. N. Dynamic ocean management increases the efficiency and efficacy of fisheries management. Proc. Natl Acad. Sci. USA 113, 668–673 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    FAO. Aquaculture Development: 7. Aquaculture Governance and Sector Development (2017).Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C., Troell, M. & Cheung, W. W. L. Global estimation of areas with suitable environmental conditions for mariculture species. PLoS ONE 13, e0191086 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jackson, A. Fish in-fish out ratio explained. Aquacult. Eur. 34, 5–10 (2009).
    Google Scholar 
    Tacon, A. G. J. & Metian, M. Feed matters: satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquacult. 23, 1–10 (2015).Article 

    Google Scholar 
    Tacon, A. G. J. & Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285, 146–158 (2008).CAS 
    Article 

    Google Scholar 
    World Bank. Population, Total (2020); https://data.worldbank.org/indicator/SP.POP.TOTLEdwards, P., Zhang, W., Belton, B. & Little, D. C. Misunderstandings, myths and mantras in aquaculture: its contribution to world food supplies has been systematically over reported. Mar. Policy 106, 103547 (2019).Article 

    Google Scholar 
    Roberts, P. Conversion Factors for Estimating the Equivalent Live Weight of Fisheries Products (The Food and Agriculture Organization of the United Nations, 1998).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species https://www.aquamaps.org/ (2019).García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).ADS 
    Article 

    Google Scholar 
    Cashion, T., Le Manach, F., Zeller, D. & Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 18, 837–844 (2017).Article 

    Google Scholar 
    Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Synthesis and comparative analysis of physiological tolerance and life-history growth traits of marine aquaculture species. Aquaculture 460, 75–82 (2016).Article 

    Google Scholar 
    Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).PubMed 
    Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase http://www.fishbase.org (2021).Palomares, M. & Pauly, D. SeaLifeBase http://www.sealifebase.org (2019).FAO. Cultured Aquatic Species (2019).Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).ADS 
    Article 

    Google Scholar 
    Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).ADS 
    Article 

    Google Scholar 
    Song, Z. et al. Centuries of monthly and 3-hourly global ocean wave data for past, present, and future climate research. Sci. Data 7, 226 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gentry, R. R. et al. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1, 1317–1324 (2017).PubMed 
    Article 

    Google Scholar 
    Barton, A. et al. Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 25, 146–159 (2015).Article 

    Google Scholar 
    Froehlich, H. E., Smith, A., Gentry, R. R. & Halpern, B. S. Offshore aquaculture: I know it when I see it. Front. Mar. Sci. 4, 154 (2017).Article 

    Google Scholar 
    World Bank. Adjusted Net National Income per Capita (Current US$) (2019); https://data.worldbank.org/indicator/NY.ADJ.NNTY.PC.CDWorld Bank. Pump Price for Diesel Fuel (US$ per liter) (2019); https://data.worldbank.org/indicator/EP.PMP.DESL.CDPiburn, J. wbstats: programmatic access to the World Bank API. R package v.1.0.4 https://cran.r-project.org/web/packages/wbstats/index.html (2018).Rubino, M. (ed.) Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities NOAA Technical Memorandum NMFS F/SPO-103 (US Department of Commerce, 2008).Jackson, A. & Newton, R. Project to Model the Use of Fisheries By-products in the Production of Marine Ingredients, with Special Reference to the Omega 3 Fatty Acids EPA and DHA (Institute Of Aquaculture, University Of Stirling And IFFO, 2016). More

  • in

    Changes to the gut microbiota of a wild juvenile passerine in a multidimensional urban mosaic

    Szulkin, M. et al. How to quantify urbanization when testing for urban evolution?. Urban Evol. Biol. https://doi.org/10.1093/oso/9780198836841.003.0002 (2020).Article 

    Google Scholar 
    Slabbekoorn, H. Songs of the city: Noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Anim. Behav. https://doi.org/10.1016/j.anbehav.2013.01.021 (2013).Article 

    Google Scholar 
    Christiansen, N. A., Fryirs, K. A., Green, T. J. & Hose, G. C. The impact of urbanisation on community structure, gene abundance and transcription rates of microbes in upland swamps of Eastern Australia. PLoS ONE https://doi.org/10.1371/journal.pone.0213275 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1606034114 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McFall-Ngai, M. M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1218525110 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. https://doi.org/10.1111/j.1574-6976.2008.00123.x (2008).Article 
    PubMed 

    Google Scholar 
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2018.2448 (2019).Article 

    Google Scholar 
    Jarrett, C., Powell, L. L., McDevitt, H., Helm, B. & Welch, A. J. Bitter fruits of hard labour: diet metabarcoding and telemetry reveal that urban songbirds travel further for lower-quality food. Oecologia https://doi.org/10.1007/s00442-020-04678-w (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zollinger, S. A. et al. Traffic noise exposure depresses plasma corticosterone and delays offspring growth in breeding zebra finches. Conserv. Physiol. https://doi.org/10.1093/conphys/coz056 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sprau, P., Mouchet, A. & Dingemanse, N. J. Multidimensional environmental predictors of variation in avian forest and city life histories. Behav. Ecol. https://doi.org/10.1093/beheco/arw130 (2017).Article 

    Google Scholar 
    Teyssier, A. et al. Inside the guts of the city: Urban-induced alterations of the gut microbiota in a wild passerine. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2017.09.035 (2018).Article 
    PubMed 

    Google Scholar 
    Murray, M. H. et al. Gut microbiome shifts with urbanization and potentially facilitates a zoonotic pathogen in a wading bird. PLoS ONE https://doi.org/10.1371/journal.pone.0220926 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuirst, M., Veit, R. R., Hahn, M., Dheilly, N. & Thorne, L. H. Effects of urbanization on the foraging ecology and microbiota of the generalist seabird Larus argentatus. PLoS ONE https://doi.org/10.1371/journal.pone.0209200 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, J. N., Berlow, M. & Derryberry, E. P. The effects of landscape urbanization on the gut microbiome: An exploration into the gut of urban and rural white-crowned sparrows. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00148 (2018).Article 

    Google Scholar 
    Berlow, M., Phillips, J. N. & Derryberry, E. P. Effects of urbanization and landscape on gut microbiomes in white-crowned sparrows. Microb. Ecol. https://doi.org/10.1007/s00248-020-01569-8 (2020).Article 
    PubMed 

    Google Scholar 
    Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell https://doi.org/10.1016/j.cell.2014.05.052 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knutie, S. A., Wilkinson, C. L., Kohl, K. D. & Rohr, J. R. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nat. Commun. 8, 1–8 (2017).CAS 
    Article 

    Google Scholar 
    Sudyka, J., Di Lecce, I., Wojas, L., Rowiński, P. & Szulkin, M. Nest-boxes alter the reproductive ecology of urban cavity-nesters in a species-dependent way. https://doi.org/10.32942/OSF.IO/WP9MN.
    Maziarz, M., Broughton, R. K. & Wesołowski, T. Microclimate in tree cavities and nest-boxes: Implications for hole-nesting birds. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2017.01.001 (2017).Article 

    Google Scholar 
    Thompson, M. J., Capilla-Lasheras, P., Dominoni, D. M., Réale, D. & Charmantier, A. Phenotypic variation in urban environments: mechanisms and implications. Trends Ecol. Evol. 37, 171–182 (2022).CAS 
    Article 

    Google Scholar 
    Salmón, P. et al. Continent-wide genomic signatures of adaptation to urbanisation in a songbird across Europe. Nat. Commun. 12, 1–14 (2021).ADS 
    Article 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. https://doi.org/10.1186/s13059-014-0550-8 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sackey, B. A., Mensah, P., Collison, E. & Sakyi-Dawson, E. Campylobacter, Salmonella, Shigella and Escherichia coli in live and dressed poultry from metropolitan Accra. Int. J. Food Microbiol. https://doi.org/10.1016/S0168-1605(01)00595-5 (2001).Article 
    PubMed 

    Google Scholar 
    Benskin, C. M. W. H., Wilson, K., Jones, K. & Hartley, I. R. Bacterial pathogens in wild birds: A review of the frequency and effects of infection. Biol. Rev. https://doi.org/10.1111/j.1469-185X.2008.00076.x (2009).Article 
    PubMed 

    Google Scholar 
    Hansell, M. & Overhill, R. Bird nests and construction behaviour. Bird Nests Constr. Behav. https://doi.org/10.1017/cbo9781139106788 (2000).Article 

    Google Scholar 
    Siddiqui, S. H., Khan, M., Kang, D., Choi, H. W. & Shim, K. Meta-analysis and systematic review of the thermal stress response: Gallus gallus domesticus show low immune responses during heat stress. Front. Physiol. 13, 31 (2022).Article 

    Google Scholar 
    Sepulveda, J. & Moeller, A. H. The effects of temperature on animal gut microbiomes. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00384 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kohl, K. D. & Yahn, J. Effects of environmental temperature on the gut microbial communities of tadpoles. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13255 (2016).Article 
    PubMed 

    Google Scholar 
    Teyssier, A. et al. Diet contributes to urban-induced alterations in gut microbiota: Experimental evidence from a wild passerine. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2019.2182 (2020).Article 

    Google Scholar 
    Benskin, C. M. W. H., Rhodes, G., Pickup, R. W., Wilson, K. & Hartley, I. R. Diversity and temporal stability of bacterial communities in a model passerine bird, the zebra finch. Mol. Ecol. https://doi.org/10.1111/j.1365-294X.2010.04892.x (2010).Article 
    PubMed 

    Google Scholar 
    Garrett, W. S. et al. Enterobacteriaceae Act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe https://doi.org/10.1016/j.chom.2010.08.004 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Videvall, E. et al. Early-life gut dysbiosis linked to juvenile mortality in ostriches. BMC Microbiome 8, 1–13 (2020).Article 

    Google Scholar 
    Hooper, L. V. & MacPherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. https://doi.org/10.1038/nri2710 (2010).Article 
    PubMed 

    Google Scholar 
    Borre, Y. E. et al. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol. Med. https://doi.org/10.1016/j.molmed.2014.05.002 (2014).Article 
    PubMed 

    Google Scholar 
    Jones, E. L. & Leather, S. R. Invertebrates in urban areas: A review. Eur. J. Entomol. https://doi.org/10.14411/eje.2012.060 (2012).Article 

    Google Scholar 
    Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. https://doi.org/10.1111/j.1600-048X.2009.04362.x (2009).Article 

    Google Scholar 
    Pollock, C. J., Capilla-Lasheras, P., McGill, R. A. R., Helm, B. & Dominoni, D. M. Integrated behavioural and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus). Sci. Rep. https://doi.org/10.1038/s41598-017-04575-y (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davidson, G. L. et al. Diet induces parallel changes to the gut microbiota and problem solving performance in a wild bird. Sci. Rep. https://doi.org/10.1038/s41598-020-77256-y (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bodawatta, K. H. et al. Flexibility and resilience of great tit (Parus major) gut microbiomes to changing diets. Anim. Microbiome 2021(3), 1–14 (2021).
    Google Scholar 
    Baniel, A. et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome 9, 1–20 (2021).Article 

    Google Scholar 
    Sullam, K. E. et al. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Mol. Ecol. https://doi.org/10.1111/j.1365-294X.2012.05552.x (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martiny, J. B. H. et al. Microbial biogeography: Putting microorganisms on the map. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro1341 (2006).Article 
    PubMed 

    Google Scholar 
    Lucass, C., Eens, M. & Müller, W. When ambient noise impairs parent-offspring communication. Environ. Pollut. https://doi.org/10.1016/j.envpol.2016.03.015 (2016).Article 
    PubMed 

    Google Scholar 
    Kight, C. R. & Swaddle, J. P. How and why environmental noise impacts animals: An integrative, mechanistic review. Ecol. Lett. https://doi.org/10.1111/j.1461-0248.2011.01664.x (2011).Article 
    PubMed 

    Google Scholar 
    Cui, B., Gai, Z., She, X., Wang, R. & Xi, Z. Effects of chronic noise on glucose metabolism and gut microbiota-host inflammatory homeostasis in rats. Sci. Rep. https://doi.org/10.1038/srep36693 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campo, J. L., Gil, M. G. & Dávila, S. G. Effects of specific noise and music stimuli on stress and fear levels of laying hens of several breeds. Appl. Anim. Behav. Sci. https://doi.org/10.1016/j.applanim.2004.08.028 (2005).Article 

    Google Scholar 
    Injaian, A. S., Taff, C. C. & Patricelli, G. L. Experimental anthropogenic noise impacts avian parental behaviour, nestling growth and nestling oxidative stress. Anim. Behav. https://doi.org/10.1016/j.anbehav.2017.12.003 (2018).Article 

    Google Scholar 
    Cui, B. et al. Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: Implications for Alzheimer’s disease. J. Neuroinflammation https://doi.org/10.1186/s12974-018-1223-4 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wei, L. et al. Constant light exposure alters gut microbiota and promotes the progression of steatohepatitis in high fat diet rats. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.01975 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chatelain, M. et al. Replicated, urban-driven exposure to metallic trace elements in two passerines. Sci. Rep. 11, 1–10 (2021).Article 

    Google Scholar 
    Chatelain, M. et al. Urban metal pollution explains variation in reproductive outputs in great tits and blue tits. Sci. Total Environ. 776, 145966 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Rosenfeld, C. S. Gut dysbiosis in animals due to environmental chemical exposures. Front. Cell. Infect. Microbiol. 7, 396 (2017).Article 

    Google Scholar 
    Sommer, F. & Bäckhed, F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro2974 (2013).Article 
    PubMed 

    Google Scholar 
    Tomiałojć, L. & Wesołowski, T. Diversity of the Białowieza forest avifauna in space and time. J. Ornithol. https://doi.org/10.1007/s10336-003-0017-2 (2004).Article 

    Google Scholar 
    Corsini, M. et al. Growing in the city: Urban evolutionary ecology of avian growth rates. Evol. Appl. https://doi.org/10.1111/eva.13081 (2021).Article 
    PubMed 

    Google Scholar 
    Teyssier, A., Lens, L., Matthysen, E. & White, J. Dynamics of gut microbiota diversity during the early development of an avian host: Evidence from a cross-foster experiment. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01524 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tremblay, I., Thomas, D., Blondel, J., Perret, P. & Lambrechts, M. M. The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus. Ibis (Lond 1859). 147, 17–24 (2005).Article 

    Google Scholar 
    Corsini, M., Marrot, P. & Szulkin, M. Quantifying human presence in a heterogeneous urban landscape. Behav. Ecol. https://doi.org/10.1093/beheco/arz128 (2019).Article 

    Google Scholar 
    Corsini, M., Dubiec, A., Marrot, P. & Szulkin, M. Humans and tits in the city: Quantifying the effects of human presence on great tit and blue tit reproductive trait variation. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00082 (2017).Article 

    Google Scholar 
    Kyba, C. C. M. et al. High-resolution imagery of earth at night: New sources, opportunities and challenges. Remote Sens. https://doi.org/10.3390/rs70100001 (2015).Article 

    Google Scholar 
    Maraci, Ö. et al. The gut microbial composition is species-specific and individual-specific in two species of estrildid finches, the Bengalese finch and the zebra finch. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.619141 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Engel, K. et al. Individual- and species-specific skin microbiomes in three different estrildid finch species revealed by 16S amplicon sequencing. Microb. Ecol. https://doi.org/10.1007/s00248-017-1130-8 (2017).Article 
    PubMed 

    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics https://doi.org/10.1093/bioinformatics/btr507 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01541-09 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics https://doi.org/10.1093/bioinformatics/btq461 (2010).Article 
    PubMed 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. https://doi.org/10.1093/nar/gks1219 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Clarke, K. R., Gorley, R., Somerfield, P. & Warwick, R. Change in Marine Communities: an Approach to Statistical Analysis and Interpretation 3rd edn (Prim. Plymouth, 2014).Shannon, C. E. The mathematical theory of communication. MD Comput. https://doi.org/10.2307/410457 (1997).Article 
    PubMed 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. https://doi.org/10.1016/0006-3207(92)91201-3 (1992).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Fox, J. et al. The car Package. R (2012).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. https://doi.org/10.1111/j.2041-210x.2009.00001.x (2010).Article 

    Google Scholar 
    DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).Book 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE https://doi.org/10.1371/journal.pone.0061217 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).Article 
    MATH 

    Google Scholar 
    Whittaker, R. H. Vegetation of the Siskiyou mountains Oregon and California. Ecol. Monogr. https://doi.org/10.2307/1948435 (1960).Article 

    Google Scholar 
    Paulson, J. metagenomeSeq: Statistical analysis for sparse high-throughput sequencing. Bioconductor.Jp (2014).Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. https://doi.org/10.2307/1942268 (1957).Article 

    Google Scholar 
    Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01996-06 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. Package ‘vegan’ Title Community Ecology Package Version 2.5-6. cran.ism.ac.jp (2019).Anderson, M. J. & Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. https://doi.org/10.1046/j.1442-9993.2001.01070.x (2001).Article 

    Google Scholar 
    Clarke, K. R. & Ainsworth, M. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps092205 (1993).Article 

    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System (Open Source Geospatial Foundation, 2019).
    Google Scholar  More