Evolutionary causes and consequences of ungulate migration
Dobson, A. P. et al. Road will ruin Serengeti. Nature 467, 272–273 (2010).CAS 
 PubMed 
 Article 
 Google Scholar 
 Larsen, F. et al. Wildebeest migration drives tourism demand in the Serengeti. Biol. Conserv. 248, 108688 (2020).Article 
 Google Scholar 
 Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 20, 741–750 (2017).PubMed 
 Article 
 Google Scholar 
 Bischof, R. et al. A migratory northern ungulate in the pursuit of spring: jumping or surfing the green wave? Am. Nat. 180, 407–424 (2012).PubMed 
 Article 
 Google Scholar 
 Merkle, J. A. et al. Large herbivores surf waves of green-up during spring. Proc. Biol. Sci. 283, 20160456 (2016).PubMed 
 PubMed Central 
 Google Scholar 
 Fryxell, J. M., Greever, J. & Sinclair, A. R. E. Why are migratory ungulates so abundant? Am. Nat.131, 781–798 (1988).Article 
 Google Scholar 
 Staver, A. C. & Hempson, G. P. Seasonal dietary changes increase the abundances of savanna herbivore species. Sci. Adv. 6, eabd2848 (2020).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Kauffman, M. J. et al. Causes, consequences, and conservation of ungulate migration. Annu. Rev. Ecol. Evol. Syst. 52, 453–478 (2021).Article 
 Google Scholar 
 Lundberg, J. & Moberg, F. Mobile link organisms and ecosystem functioning: implications for ecosystem resilience and management. Ecosystems 6, 0087–0098 (2003).Article 
 Google Scholar 
 Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CAS 
 PubMed 
 Article 
 Google Scholar 
 Bolger, D. T., Newmark, W. D., Morrison, T. A., & Doak, D. F. The need for integrative approaches to understand and conserve migratory ungulates. Ecol. Lett. 11, 63–77 (2007).PubMed 
 Google Scholar 
 Fryxell, J. M. & Holt, R. D. Environmental change and the evolution of migration. Ecology 94, 1274–1279 (2013).CAS 
 PubMed 
 Article 
 Google Scholar 
 Shaw, A. K. Drivers of animal migration and implications in changing environments. Evol. Ecol. 30, 991–1007 (2016).Article 
 Google Scholar 
 Hebblewhite, M. & Merrill, E. H. Trade-offs between predation risk and forage differ between migrant strategies in a migratory ungulate. Ecology 90, 3445–3454 (2009).PubMed 
 Article 
 Google Scholar 
 Nelson, M. E. Development of migratory behavior in northern white-tailed deer. Can. J. Zool. 76, 426–432 (1998).Article 
 Google Scholar 
 Berg, J. E., Hebblewhite, M., St. Clair, C. C. & Merrill, E. H. Prevalence and mechanisms of partial migration in ungulates. Front. Ecol. Evol. 7, 325 (2019).Article 
 Google Scholar 
 Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).CAS 
 PubMed 
 Article 
 Google Scholar 
 Sih, A., Bell, A. & Johnson, J. C. Behavioral syndromes: an ecological and evolutionary overview. Trends Ecol. Evol. 19, 372–378 (2004).PubMed 
 Article 
 Google Scholar 
 Found, R. & St. Clair, C. C. Behavioural syndromes predict loss of migration in wild elk. Anim. Behav. 115, 35–46 (2016).Article 
 Google Scholar 
 Abraham, J. O., Hempson, G. P., Faith, J. T. & Staver, A. C.Seasonal strategies differ between tropical and extratropical herbivores. J. Anim. Ecol. 91, 681–692 (2022).PubMed 
 Article 
 Google Scholar 
 Whitehead, H., Laland, K. N., Rendell, L., Thorogood, R. & Whiten, A. The reach of gene–culture coevolution in animals. Nat. Commun. 10, 2405 (2019).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Scanlon, T. M., Caylor, K. K., Manfreda, S., Levin, S. A. & Rodriguez-Iturbe, I. Dynamic response of grass cover to rainfall variability: implications for the function and persistence of savanna ecosystems. Adv. Water Res. 28, 291–302 (2005).Article 
 Google Scholar 
 Staver, A. C., Wigley-Coetsee, C. & Botha, J. Grazer movements exacerbate grass declines during drought in an African savanna. J. Ecol. 107, 1482–1491 (2019).Article 
 Google Scholar 
 Fryxell, J. M. & Sinclair, A. R. Causes and consequences of migration by large herbivores. Trends Ecol. Evol. 3, 237–241 (1988).CAS 
 PubMed 
 Article 
 Google Scholar 
 Running, S. W. et al. A continuous satellite-derived measure of global terrestrial primary production. Bioscience 54, 547–560 (2004).Article 
 Google Scholar 
 Langvatn, R., Albon, S. D., Burkey, T. & Clutton-Brock, T. H. Climate, plant phenology and variation in age of first reproduction in a temperate herbivore. J. Anim. Ecol. 65, 653–670 (1996).Article 
 Google Scholar 
 Webber, Q. M. R. & McGuire, L. P. Heterothermy, body size, and locomotion as ecological predictors of migration in mammals. Mamm. Rev. 52, 82–95 (2022).Article 
 Google Scholar 
 Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis. Biol. Rev. Camb. Philos. Soc. 94, 328–352 (2018).PubMed Central 
 Article 
 Google Scholar 
 Jarman, P. J. The social organisation of antelope in relation to their ecology. Behaviour 48, 215–267 (1974).Article 
 Google Scholar 
 Hein, A. M., Hou, C. & Gillooly, J. F. Energetic and biomechanical constraints on animal migration distance. Ecol. Lett. 15, 104–110 (2012).PubMed 
 Article 
 Google Scholar 
 Abraham, J. O., Hempson, G. P. & Staver, A. C. Drought-response strategies of savanna herbivores. Ecol. Evol. 9, 7047–7056 (2019).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Owen-Smith, R. N. Megaherbivores: the Influence of Very Large Body Size on Ecology (Cambridge Univ. Press, 1988).Book 
 Google Scholar 
 Gonzalez-Voyer, A. & von Hardenberg, A. in Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice (ed. Garamszegi, L. Z.) 201–229 (Springer, 2014).Pérez-Barbería, F. J., Gordon, I. J. & Nores, C. Evolutionary transitions among feeding styles and habitats in ungulates. Evol. Ecol. Res. 3, 221–230 (2001).
 Google Scholar 
 Staver, A. C., Abraham, J. O., Hempson, G. P., Karp, A. T. & Faith, J. T. The past, present, and future of herbivore impacts on savanna vegetation. J. Ecol. 109, 2804–2822 (2021).Article 
 Google Scholar 
 Janis, C. M. in The Ecology of Browsing and Grazing (eds Gordon, I. J. & Prins, H. H. T.) 21–45 (Springer, 2008).Janis, C. M. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annu. Rev. Ecol. Syst. 24, 467–500 (1993).Article 
 Google Scholar 
 Zachos, J., Pagani, M., Sloan, L., Thomas, E. & Billups, K. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292, 686–693 (2001).CAS 
 PubMed 
 Article 
 Google Scholar 
 Edwards, E. J. et al. The origins of C4 grasslands: integrating evolutionary and ecosystem. Science 328, 587–591 (2010).CAS 
 PubMed 
 Article 
 Google Scholar 
 Bhat, U., Kempes, C. P. & Yeakel, J. D. Scaling the risk landscape drives optimal life-history strategies and the evolution of grazing. Proc. Natl Acad. Sci. USA 117, 1580–1586 (2020).CAS 
 PubMed 
 Article 
 Google Scholar 
 Fagan, W. F. et al. Spatial memory and animal movement. Ecol. Lett. 16, 1316–1329 (2013).PubMed 
 Article 
 Google Scholar 
 Merkle, J. A. et al. Spatial memory shapes migration and its benefits: evidence from a large herbivore. Ecol. Lett. 22, 1797–1805 (2019).PubMed 
 Article 
 Google Scholar 
 Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).CAS 
 PubMed 
 Article 
 Google Scholar 
 Wcislo, W. T. Behavioral environments and evolutionary change. Annu. Rev. Ecol. Syst. 20, 137–169 (1989).Article 
 Google Scholar 
 Wyles, J. S., Kunkel, J. G. & Wilson, A. C. Birds, behavior, and anatomical evolution. Proc. Natl Acad. Sci. USA 80, 4394–4397 (1983).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Yeakel, J. D., Kempes, C. P. & Redner, S. Dynamics of starvation and recovery predict extinction risk and both Damuth’s law and Cope’s rule. Nat. Commun. 9, 657 (2018).PubMed 
 PubMed Central 
 Article 
 CAS 
 Google Scholar 
 Purdon, A., Mole, M. A., Chase, M. J. & van Aarde, R. J. Partial migration in savanna elephant populations distributed across southern Africa. Sci. Rep. 8, 11331 (2018).PubMed 
 PubMed Central 
 Article 
 CAS 
 Google Scholar 
 Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Abrahms, B. et al. Memory and resource tracking drive blue whale migrations. Proc. Natl Acad. Sci. USA 116, 5582–5587 (2019).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).CAS 
 PubMed 
 Article 
 Google Scholar 
 Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).CAS 
 PubMed 
 Article 
 Google Scholar 
 Faith, J. T., Rowan, J. & Du, A. Early hominins evolved within non-analog ecosystems. Proc. Natl Acad. Sci. USA 116, 21478–21483 (2019).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Holdo, R. M. et al. A disease-mediated trophic cascade in the Serengeti and its implications for ecosystem C. PLoS Biol. 7, e1000210 (2009).PubMed 
 PubMed Central 
 Article 
 CAS 
 Google Scholar 
 Janzen, D. H. & Martin, P. S. Neotropical anachronisms: the fruits the gomphotheres ate. Science 215, 19–27 (1982).CAS 
 PubMed 
 Article 
 Google Scholar 
 Dantas, V. L. & Pausas, J. G. The legacy of the extinct Neotropical megafauna on plants and biomes. Nat. Commun. 13, 129 (2022).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Harris, G., Thirgood, S., Hopcraft, J. G. C., Cromsigt, J. P. G. M. & Berger, J. Global decline in aggregated migrations of large terrestrial mammals. Endanger. Species Res. 7, 55–76 (2009).Article 
 Google Scholar 
 Seersholm, F. V. et al. Rapid range shifts and megafaunal extinctions associated with late Pleistocene climate change. Nat. Commun. 11, 2770 (2020).CAS 
 PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Alroy, J. A multispecies overkill simulation of the end-Pleistocene megafaunal mass extinction. Science 292, 1893–1896 (2001).CAS 
 PubMed 
 Article 
 Google Scholar 
 Berger, J. The last mile: how to sustain long-distance migration in mammals. Conserv. Biol. 18, 320–331 (2004).Article 
 Google Scholar 
 Faurby, S. & Svenning, J.-C. Resurrection of the island rule: human-driven extinctions have obscured a basic evolutionary pattern. Am. Nat. 187, 812–820 (2016).PubMed 
 Article 
 Google Scholar 
 Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 
 Google Scholar 
 Smith, F. A. et al. Body mass of late Quaternary mammals. Ecology 84, 3403 (2003).Article 
 Google Scholar 
 IUCN. IUCN Red List of Threatened Species 2019 (IUCN, 2019).Toljagić, O., Voje, K. L., Matschiner, M., Liow, L. H. & Hansen, T. F. Millions of years behind: slow adaptation of ruminants to grasslands. Syst. Biol. 67, 145–157 (2018).PubMed 
 Article 
 Google Scholar 
 Pinzon, J. E. & Tucker, C. J. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 6, 6929–6960 (2014).Article 
 Google Scholar 
 R Core Team. R: a Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 
 Google Scholar 
 Blomberg, S. P., Garland, T. Jr. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution 57, 717–745 (2003).PubMed 
 Article 
 Google Scholar 
 Orme, D. The caper package: Comparative analysis of phylogenetics and evolution in R. R package version 1.0.1 https://cran.r-project.org/web/packages/caper/vignettes/caper.pdf (2018).Beaulieu, J. M. & O’Meara, B. OUwie: Analysis of evolutionary rates in an OU framework. R package version 2.6 https://rdrr.io/cran/OUwie/ (2014).Cressler, C. E., Butler, M. A. & King, A. A. Detecting adaptive evolution in phylogenetic comparative analysis using the Ornstein–Uhlenbeck model. Syst. Biol. 64, 953–968 (2015).PubMed 
 Article 
 Google Scholar 
 Ho, L. S. & Ané, C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014).PubMed 
 Article 
 Google Scholar 
 van der Bijl, W. phylopath: easy phylogenetic path analysis in R. PeerJ 6, e4718 (2018).PubMed 
 PubMed Central 
 Article 
 Google Scholar 
 Chen, L. et al. Large-scale ruminant genome sequencing provides insights into their evolution and distinct traits. Science 364, eaav6202 (2019).CAS 
 PubMed 
 Article 
Google Scholar More
 