Apparent absence of avian malaria and malaria-like parasites in northern blue-footed boobies breeding on Isla Isabel
Atkinson, C. T. & Van Riper, C. Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon, and Haemoproteus. Bird-Parasite Interact. 2, 19–48 (1991).
Google Scholar
Sorci, G. & Moller, A. P. Comparative evidence for a positive correlation between haematozoan prevalence and mortality in waterfowl. J. Evol. Biol. 10, 731–741 (1997).
Google Scholar
Merino, S., Moreno, J., Sanz, J. J. & Arriero, E. Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc. Biol. Sci. 267, 2507–2510 (2000).CAS
PubMed
PubMed Central
Google Scholar
Asghar, M. et al. Hidden costs of infection: Chronic malaria accelerates telomere degradation and senescence in wild birds. Science 347, 436–438 (2015).ADS
CAS
PubMed
Google Scholar
Quillfeldt, P., Arriero, E., Martínez, J., Masello, J. F. & Merino, S. Prevalence of blood parasites in seabirds – A review. Front. Zool. 8, 26 (2011).PubMed
PubMed Central
Google Scholar
Piersma, T. Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure?. Oikos 80, 623 (1997).
Google Scholar
Mendes, L., Piersma, T., Lecoq, M., Spaans, B. & Ricklefs, R. E. Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 109, 396–404 (2005).
Google Scholar
Martínez-Abraín, A., Esparza, B. & Oro, D. Lack of blood parasites in bird species: Does absence of blood parasite vectors explain it all?. Ardeola 51, 225–232 (2004).
Google Scholar
Campioni, L. et al. Absence of haemosporidian parasite infections in the long-lived Cory’s shearwater: Evidence from molecular analyses and review of the literature. Parasitol. Res. 117, 323–329 (2018).PubMed
Google Scholar
Osorio-Beristain, M. & Drummond, H. Non-aggressive mate guarding by the blue-footed booby: A balance of female and male control. Behav. Ecol. Sociobiol. 43, 307–315 (1998).
Google Scholar
Nelson, J. B. Pelicans, Cormorants and Their Relatives: The Pelecaniformes (Oxford University Press, 2006).
Google Scholar
Kim, S. Y., Torres, R., Domínguez, C. A. & Drummond, H. Lifetime philopatry in the blue-footed booby: A longitudinal study. Behav. Ecol. 18, 1132–1138 (2007).
Google Scholar
Drummond, H. & Rodríguez, C. Viability of booby offspring is maximized by having one young parent and one old parent. PLoS ONE 10, e0133213 (2015).PubMed
PubMed Central
Google Scholar
Lee-Cruz, L. et al. Prevalence of Haemoproteus sp. in Galápagos blue-footed boobies: Effects on health and reproduction. Parasitol. Open 2 (2016).Santiago-Alarcon, D., Palinauskas, V. & Schaefer, H. M. Diptera vectors of avian Haemosporidian parasites: Untangling parasite life cycles and their taxonomy. Biol. Rev. 87, 928–964 (2012).PubMed
Google Scholar
Bond, J. G. et al. Diversity of mosquitoes and the aquatic insects associated with their oviposition sites along the Pacific coast of Mexico. Parasit. Vectors 7, 41 (2014).PubMed
PubMed Central
Google Scholar
Ibañez-Bernal, S. Informe Final del Proyecto Actualización del Catálogo de Autoridad Taxonómica del Orden Diptera (Insecta) de México CONABIO (JE006). (2017).Levin, I. I. et al. Hippoboscid-transmitted Haemoproteus parasites (Haemosporida) infect Galapagos Pelecaniform birds: Evidence from molecular and morphological studies, with a description of Haemoproteus iwa. Int. J. Parasitol. 41, 1019–1027 (2011).PubMed
Google Scholar
Madsen, V. et al. Testosterone levels and gular pouch coloration in courting magnificent frigatebird (Fregata magnificens): Variation with age-class, visited status and blood parasite infection. Horm. Behav. 51, 156–163 (2007).CAS
PubMed
Google Scholar
Clark, G. W. & Swinehart, B. Avian haematozoa from the offshore islands of northern Mexico. Wildl. Dis. 5, 111–112 (1969).CAS
PubMed
Google Scholar
Quillfeldt, P. et al. Hemosporidian blood parasites in seabirds—A comparative genetic study of species from Antarctic to tropical habitats. Naturwissenschaften 97, 809–817 (2010).ADS
CAS
PubMed
PubMed Central
Google Scholar
Merino, S. et al. Infection by haemoproteus parasites in four species of frigatebirds and the description of a new species of Haemoproteus (Haemosporida: Haemoproteidae). J. Parasitol. 98, 388–397 (2012).PubMed
Google Scholar
Svensson, L. M. E. & Ricklefs, R. E. Low diversity and high intra-island variation in prevalence of avian Haemoproteus parasites on Barbados, Lesser Antilles. Parasitology 136, 1121–1131 (2009).PubMed
Google Scholar
Loiseau, C. et al. Spatial variation of haemosporidian parasite infection in african rainforest bird species. J. Parasitol. 96, 21–29 (2010).PubMed
Google Scholar
Madsen, V. Female Mate Choice in the Magnificent Frigatebird (Fregata magnificens) (Universidad Nacional Autónoma de México, 2004).
Google Scholar
Super, P. E. & van Riper, C. A comparison of avian hematozoan epizootiology in two California coastal scrub communities. J. Wildl. Dis. 31, 447–461 (1995).CAS
PubMed
Google Scholar
CONANP. Programa de Conservación y Manejo del Parque Nacional Isla Isabel. (2005).Ancona, S., Drummond, H., Rodríguez, C. & Zúñiga-Vega, J. J. Long-term population dynamics reveal that survival and recruitment of tropical boobies improve after a hurricane. J. Avian Biol. 48, 320–332 (2017).
Google Scholar
Martínez-de la Puente, J., Martinez, J., Rivero-de Aguilar, J., Herrero, J. & Merino, S. On the specificity of avian blood parasites: Revealing specific and generalist relationships between haemosporidians and biting midges. Mol. Ecol. 20, 3275–3287 (2011).PubMed
Google Scholar
Bastien, M., Jaeger, A., Le Corre, M., Tortosa, P. & Lebarbenchon, C. Haemoproteus iwa in Great Frigatebirds (Fregata minor) in the Islands of the Western Indian Ocean. PLoS ONE 9, e97185 (2014).ADS
PubMed
PubMed Central
Google Scholar
Maa, T. C. Records of Hippoboscidae (diptera) from the Central Pacific. J. Med. Ent. 3, 325–328 (1968).
Google Scholar
Levin, I. I. & Parker, P. G. Comparative host–parasite population genetic structures: Obligate fly ectoparasites on Galapagos seabirds. Parasitology 140, 1061–1069 (2013).CAS
PubMed
Google Scholar
Ramos-González, A. Hábitat y Edad de los Bobos de Patas Azules: Factores Importantes Para la Paternidad y Abundancia de Garrapatas. Primera edición. 88. (Universidad Nacional Autónoma de México, 2019). Print ISBN 978-607-30-1489-2.Bensch, S. et al. Contaminations contaminate common databases. Mol. Ecol. Resour. 21, 355–362 (2021).CAS
PubMed
Google Scholar
Taylor, S. A., Maclagan, L., Anderson, D. J. & Friesen, V. L. Could specialization to cold-water upwelling systems influence gene flow and population differentiation in marine organisms? A case study using the blue-footed booby, Sula nebouxii. J. Biogeogr. 38, 883–893 (2011).
Google Scholar
Kalbe, M. & Kurtz, J. Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum. Parasitology 132, 105–116 (2006).CAS
PubMed
Google Scholar
Martin, L. B., Gilliam, J., Han, P., Lee, K. & Wikelski, M. Corticosterone suppresses cutaneous immune function in temperate but not tropical house sparrows Passer domesticus. Gen. Comp. Endocrinol. 140, 126–135 (2005).CAS
Google Scholar
Becker, D. J. et al. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J. Anim. Ecol. 89, 972–995 (2020).PubMed
PubMed Central
Google Scholar
Ting, J. et al. Malaria parasites and related haemosporidians cause mortality in cranes: A study on the parasites diversity, prevalence and distribution in Beijing Zoo. Malar. J. 17, 234 (2018).
Google Scholar
Grilo, M. L. et al. Malaria in penguins – Current perceptions. Avian Pathol. 45, 393–407 (2016).CAS
PubMed
Google Scholar
Jovani, R. & Tella, J. L. Parasite prevalence and sample size: misconceptions and solutions. Trends Parasitol. 22, 214–218 (2006).PubMed
Google Scholar
Bensch, S. et al. Temporal dynamics and diversity of avian malaria parasites in a single host species. J. Anim. Ecol. 76, 112–122 (2007).MathSciNet
PubMed
Google Scholar
Lachish, S., Knowles, S. C., Alves, R., Wood, M. J. & Sheldon, B. C. Infection dynamics of endemic malaria in a wild bird population: Parasite species-dependent drivers of spatial and temporal variation in transmission rates. J. Anim. Ecol. 80, 1207–1216 (2011).PubMed
Google Scholar
Lopes, V. L. et al. High fidelity defines the temporal consistency of host-parasite interactions in a tropical coastal ecosystem. Sci. Rep. 10, 16839 (2020).ADS
CAS
PubMed
PubMed Central
Google Scholar
Valkiunas, G. et al. A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J. Parasitol. 94, 1395–1401 (2008).CAS
PubMed
Google Scholar
Santiago-Alarcon, D. et al. Parasites in space and time: A case study of haemosporidian spatiotemporal prevalence in urban birds. Int. J. Parasitol. 49, 235–246 (2019).PubMed
Google Scholar
Ancona, S., Sánchez-Colón, S., Rodríguez, C. & Drummond, H. E. Niño in the warm tropics: Local sea temperature predicts breeding parameters and growth of blue-footed boobies. J. Anim. Ecol. 80, 799–808 (2011).PubMed
Google Scholar
Drummond, H., Torres, R. & Krishnan, V. V. Buffered development: Resilience after aggressive subordination in infancy. Am. Nat. 161, 794–807 (2003).PubMed
Google Scholar
Merino, S. & Potti, J. High prevalence of hematozoa in nestlings of a passerine species, the pied flycatcher (Ficedula hypoleuca). Auk 112, 1041–1043 (1995).
Google Scholar
Gutiérrez-López, R. et al. Low prevalence of blood parasites in a long-distance migratory raptor: The importance of host habitat. Parasit. Vectors 8, 189 (2015).PubMed
PubMed Central
Google Scholar
Hellgren, O., Waldenström, J. & Bensch, S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J. Parasitol. 90, 797–802 (2004).CAS
PubMed
Google Scholar
Bensch, S. et al. Host specificity in avian blood parasites: A study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc. Biol. Sci. 267, 1583–1589 (2000).CAS
PubMed
PubMed Central
Google Scholar More