More stories

  • in

    Changes to the gut microbiota of a wild juvenile passerine in a multidimensional urban mosaic

    Szulkin, M. et al. How to quantify urbanization when testing for urban evolution?. Urban Evol. Biol. https://doi.org/10.1093/oso/9780198836841.003.0002 (2020).Article 

    Google Scholar 
    Slabbekoorn, H. Songs of the city: Noise-dependent spectral plasticity in the acoustic phenotype of urban birds. Anim. Behav. https://doi.org/10.1016/j.anbehav.2013.01.021 (2013).Article 

    Google Scholar 
    Christiansen, N. A., Fryirs, K. A., Green, T. J. & Hose, G. C. The impact of urbanisation on community structure, gene abundance and transcription rates of microbes in upland swamps of Eastern Australia. PLoS ONE https://doi.org/10.1371/journal.pone.0213275 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberti, M. et al. Global urban signatures of phenotypic change in animal and plant populations. Proc. Natl. Acad. Sci. USA https://doi.org/10.1073/pnas.1606034114 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McFall-Ngai, M. M. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl. Acad. Sci. https://doi.org/10.1073/pnas.1218525110 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zilber-Rosenberg, I. & Rosenberg, E. Role of microorganisms in the evolution of animals and plants: the hologenome theory of evolution. FEMS Microbiol. Rev. https://doi.org/10.1111/j.1574-6976.2008.00123.x (2008).Article 
    PubMed 

    Google Scholar 
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: A call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2018.2448 (2019).Article 

    Google Scholar 
    Jarrett, C., Powell, L. L., McDevitt, H., Helm, B. & Welch, A. J. Bitter fruits of hard labour: diet metabarcoding and telemetry reveal that urban songbirds travel further for lower-quality food. Oecologia https://doi.org/10.1007/s00442-020-04678-w (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zollinger, S. A. et al. Traffic noise exposure depresses plasma corticosterone and delays offspring growth in breeding zebra finches. Conserv. Physiol. https://doi.org/10.1093/conphys/coz056 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sprau, P., Mouchet, A. & Dingemanse, N. J. Multidimensional environmental predictors of variation in avian forest and city life histories. Behav. Ecol. https://doi.org/10.1093/beheco/arw130 (2017).Article 

    Google Scholar 
    Teyssier, A. et al. Inside the guts of the city: Urban-induced alterations of the gut microbiota in a wild passerine. Sci. Total Environ. https://doi.org/10.1016/j.scitotenv.2017.09.035 (2018).Article 
    PubMed 

    Google Scholar 
    Murray, M. H. et al. Gut microbiome shifts with urbanization and potentially facilitates a zoonotic pathogen in a wading bird. PLoS ONE https://doi.org/10.1371/journal.pone.0220926 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuirst, M., Veit, R. R., Hahn, M., Dheilly, N. & Thorne, L. H. Effects of urbanization on the foraging ecology and microbiota of the generalist seabird Larus argentatus. PLoS ONE https://doi.org/10.1371/journal.pone.0209200 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, J. N., Berlow, M. & Derryberry, E. P. The effects of landscape urbanization on the gut microbiome: An exploration into the gut of urban and rural white-crowned sparrows. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2018.00148 (2018).Article 

    Google Scholar 
    Berlow, M., Phillips, J. N. & Derryberry, E. P. Effects of urbanization and landscape on gut microbiomes in white-crowned sparrows. Microb. Ecol. https://doi.org/10.1007/s00248-020-01569-8 (2020).Article 
    PubMed 

    Google Scholar 
    Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell https://doi.org/10.1016/j.cell.2014.05.052 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knutie, S. A., Wilkinson, C. L., Kohl, K. D. & Rohr, J. R. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nat. Commun. 8, 1–8 (2017).CAS 
    Article 

    Google Scholar 
    Sudyka, J., Di Lecce, I., Wojas, L., Rowiński, P. & Szulkin, M. Nest-boxes alter the reproductive ecology of urban cavity-nesters in a species-dependent way. https://doi.org/10.32942/OSF.IO/WP9MN.
    Maziarz, M., Broughton, R. K. & Wesołowski, T. Microclimate in tree cavities and nest-boxes: Implications for hole-nesting birds. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2017.01.001 (2017).Article 

    Google Scholar 
    Thompson, M. J., Capilla-Lasheras, P., Dominoni, D. M., Réale, D. & Charmantier, A. Phenotypic variation in urban environments: mechanisms and implications. Trends Ecol. Evol. 37, 171–182 (2022).CAS 
    Article 

    Google Scholar 
    Salmón, P. et al. Continent-wide genomic signatures of adaptation to urbanisation in a songbird across Europe. Nat. Commun. 12, 1–14 (2021).ADS 
    Article 

    Google Scholar 
    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. https://doi.org/10.1186/s13059-014-0550-8 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sackey, B. A., Mensah, P., Collison, E. & Sakyi-Dawson, E. Campylobacter, Salmonella, Shigella and Escherichia coli in live and dressed poultry from metropolitan Accra. Int. J. Food Microbiol. https://doi.org/10.1016/S0168-1605(01)00595-5 (2001).Article 
    PubMed 

    Google Scholar 
    Benskin, C. M. W. H., Wilson, K., Jones, K. & Hartley, I. R. Bacterial pathogens in wild birds: A review of the frequency and effects of infection. Biol. Rev. https://doi.org/10.1111/j.1469-185X.2008.00076.x (2009).Article 
    PubMed 

    Google Scholar 
    Hansell, M. & Overhill, R. Bird nests and construction behaviour. Bird Nests Constr. Behav. https://doi.org/10.1017/cbo9781139106788 (2000).Article 

    Google Scholar 
    Siddiqui, S. H., Khan, M., Kang, D., Choi, H. W. & Shim, K. Meta-analysis and systematic review of the thermal stress response: Gallus gallus domesticus show low immune responses during heat stress. Front. Physiol. 13, 31 (2022).Article 

    Google Scholar 
    Sepulveda, J. & Moeller, A. H. The effects of temperature on animal gut microbiomes. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00384 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kohl, K. D. & Yahn, J. Effects of environmental temperature on the gut microbial communities of tadpoles. Environ. Microbiol. https://doi.org/10.1111/1462-2920.13255 (2016).Article 
    PubMed 

    Google Scholar 
    Teyssier, A. et al. Diet contributes to urban-induced alterations in gut microbiota: Experimental evidence from a wild passerine. Proc. R. Soc. B Biol. Sci. https://doi.org/10.1098/rspb.2019.2182 (2020).Article 

    Google Scholar 
    Benskin, C. M. W. H., Rhodes, G., Pickup, R. W., Wilson, K. & Hartley, I. R. Diversity and temporal stability of bacterial communities in a model passerine bird, the zebra finch. Mol. Ecol. https://doi.org/10.1111/j.1365-294X.2010.04892.x (2010).Article 
    PubMed 

    Google Scholar 
    Garrett, W. S. et al. Enterobacteriaceae Act in concert with the gut microbiota to induce spontaneous and maternally transmitted colitis. Cell Host Microbe https://doi.org/10.1016/j.chom.2010.08.004 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Videvall, E. et al. Early-life gut dysbiosis linked to juvenile mortality in ostriches. BMC Microbiome 8, 1–13 (2020).Article 

    Google Scholar 
    Hooper, L. V. & MacPherson, A. J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. https://doi.org/10.1038/nri2710 (2010).Article 
    PubMed 

    Google Scholar 
    Borre, Y. E. et al. Microbiota and neurodevelopmental windows: Implications for brain disorders. Trends Mol. Med. https://doi.org/10.1016/j.molmed.2014.05.002 (2014).Article 
    PubMed 

    Google Scholar 
    Jones, E. L. & Leather, S. R. Invertebrates in urban areas: A review. Eur. J. Entomol. https://doi.org/10.14411/eje.2012.060 (2012).Article 

    Google Scholar 
    Wilkin, T. A., King, L. E. & Sheldon, B. C. Habitat quality, nestling diet, and provisioning behaviour in great tits Parus major. J. Avian Biol. https://doi.org/10.1111/j.1600-048X.2009.04362.x (2009).Article 

    Google Scholar 
    Pollock, C. J., Capilla-Lasheras, P., McGill, R. A. R., Helm, B. & Dominoni, D. M. Integrated behavioural and stable isotope data reveal altered diet linked to low breeding success in urban-dwelling blue tits (Cyanistes caeruleus). Sci. Rep. https://doi.org/10.1038/s41598-017-04575-y (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Davidson, G. L. et al. Diet induces parallel changes to the gut microbiota and problem solving performance in a wild bird. Sci. Rep. https://doi.org/10.1038/s41598-020-77256-y (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bodawatta, K. H. et al. Flexibility and resilience of great tit (Parus major) gut microbiomes to changing diets. Anim. Microbiome 2021(3), 1–14 (2021).
    Google Scholar 
    Baniel, A. et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome 9, 1–20 (2021).Article 

    Google Scholar 
    Sullam, K. E. et al. Environmental and ecological factors that shape the gut bacterial communities of fish: A meta-analysis. Mol. Ecol. https://doi.org/10.1111/j.1365-294X.2012.05552.x (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martiny, J. B. H. et al. Microbial biogeography: Putting microorganisms on the map. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro1341 (2006).Article 
    PubMed 

    Google Scholar 
    Lucass, C., Eens, M. & Müller, W. When ambient noise impairs parent-offspring communication. Environ. Pollut. https://doi.org/10.1016/j.envpol.2016.03.015 (2016).Article 
    PubMed 

    Google Scholar 
    Kight, C. R. & Swaddle, J. P. How and why environmental noise impacts animals: An integrative, mechanistic review. Ecol. Lett. https://doi.org/10.1111/j.1461-0248.2011.01664.x (2011).Article 
    PubMed 

    Google Scholar 
    Cui, B., Gai, Z., She, X., Wang, R. & Xi, Z. Effects of chronic noise on glucose metabolism and gut microbiota-host inflammatory homeostasis in rats. Sci. Rep. https://doi.org/10.1038/srep36693 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campo, J. L., Gil, M. G. & Dávila, S. G. Effects of specific noise and music stimuli on stress and fear levels of laying hens of several breeds. Appl. Anim. Behav. Sci. https://doi.org/10.1016/j.applanim.2004.08.028 (2005).Article 

    Google Scholar 
    Injaian, A. S., Taff, C. C. & Patricelli, G. L. Experimental anthropogenic noise impacts avian parental behaviour, nestling growth and nestling oxidative stress. Anim. Behav. https://doi.org/10.1016/j.anbehav.2017.12.003 (2018).Article 

    Google Scholar 
    Cui, B. et al. Effects of chronic noise exposure on the microbiome-gut-brain axis in senescence-accelerated prone mice: Implications for Alzheimer’s disease. J. Neuroinflammation https://doi.org/10.1186/s12974-018-1223-4 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wei, L. et al. Constant light exposure alters gut microbiota and promotes the progression of steatohepatitis in high fat diet rats. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.01975 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chatelain, M. et al. Replicated, urban-driven exposure to metallic trace elements in two passerines. Sci. Rep. 11, 1–10 (2021).Article 

    Google Scholar 
    Chatelain, M. et al. Urban metal pollution explains variation in reproductive outputs in great tits and blue tits. Sci. Total Environ. 776, 145966 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Rosenfeld, C. S. Gut dysbiosis in animals due to environmental chemical exposures. Front. Cell. Infect. Microbiol. 7, 396 (2017).Article 

    Google Scholar 
    Sommer, F. & Bäckhed, F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. https://doi.org/10.1038/nrmicro2974 (2013).Article 
    PubMed 

    Google Scholar 
    Tomiałojć, L. & Wesołowski, T. Diversity of the Białowieza forest avifauna in space and time. J. Ornithol. https://doi.org/10.1007/s10336-003-0017-2 (2004).Article 

    Google Scholar 
    Corsini, M. et al. Growing in the city: Urban evolutionary ecology of avian growth rates. Evol. Appl. https://doi.org/10.1111/eva.13081 (2021).Article 
    PubMed 

    Google Scholar 
    Teyssier, A., Lens, L., Matthysen, E. & White, J. Dynamics of gut microbiota diversity during the early development of an avian host: Evidence from a cross-foster experiment. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01524 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tremblay, I., Thomas, D., Blondel, J., Perret, P. & Lambrechts, M. M. The effect of habitat quality on foraging patterns, provisioning rate and nestling growth in Corsican Blue Tits Parus caeruleus. Ibis (Lond 1859). 147, 17–24 (2005).Article 

    Google Scholar 
    Corsini, M., Marrot, P. & Szulkin, M. Quantifying human presence in a heterogeneous urban landscape. Behav. Ecol. https://doi.org/10.1093/beheco/arz128 (2019).Article 

    Google Scholar 
    Corsini, M., Dubiec, A., Marrot, P. & Szulkin, M. Humans and tits in the city: Quantifying the effects of human presence on great tit and blue tit reproductive trait variation. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2017.00082 (2017).Article 

    Google Scholar 
    Kyba, C. C. M. et al. High-resolution imagery of earth at night: New sources, opportunities and challenges. Remote Sens. https://doi.org/10.3390/rs70100001 (2015).Article 

    Google Scholar 
    Maraci, Ö. et al. The gut microbial composition is species-specific and individual-specific in two species of estrildid finches, the Bengalese finch and the zebra finch. Front. Microbiol. https://doi.org/10.3389/fmicb.2021.619141 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Engel, K. et al. Individual- and species-specific skin microbiomes in three different estrildid finch species revealed by 16S amplicon sequencing. Microb. Ecol. https://doi.org/10.1007/s00248-017-1130-8 (2017).Article 
    PubMed 

    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics https://doi.org/10.1093/bioinformatics/btr507 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: Open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01541-09 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics https://doi.org/10.1093/bioinformatics/btq461 (2010).Article 
    PubMed 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. https://doi.org/10.1093/nar/gks1219 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Clarke, K. R., Gorley, R., Somerfield, P. & Warwick, R. Change in Marine Communities: an Approach to Statistical Analysis and Interpretation 3rd edn (Prim. Plymouth, 2014).Shannon, C. E. The mathematical theory of communication. MD Comput. https://doi.org/10.2307/410457 (1997).Article 
    PubMed 

    Google Scholar 
    Faith, D. P. Conservation evaluation and phylogenetic diversity. Biol. Conserv. https://doi.org/10.1016/0006-3207(92)91201-3 (1992).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    Fox, J. et al. The car Package. R (2012).Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. https://doi.org/10.1111/j.2041-210x.2009.00001.x (2010).Article 

    Google Scholar 
    DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. https://cran.r-project.org/web/packages/DHARMa/vignettes/DHARMa.html.Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).Book 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. Phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE https://doi.org/10.1371/journal.pone.0061217 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B https://doi.org/10.1111/j.2517-6161.1995.tb02031.x (1995).Article 
    MATH 

    Google Scholar 
    Whittaker, R. H. Vegetation of the Siskiyou mountains Oregon and California. Ecol. Monogr. https://doi.org/10.2307/1948435 (1960).Article 

    Google Scholar 
    Paulson, J. metagenomeSeq: Statistical analysis for sparse high-throughput sequencing. Bioconductor.Jp (2014).Bray, J. R. & Curtis, J. T. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. https://doi.org/10.2307/1942268 (1957).Article 

    Google Scholar 
    Lozupone, C. A., Hamady, M., Kelley, S. T. & Knight, R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl. Environ. Microbiol. https://doi.org/10.1128/AEM.01996-06 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. Package ‘vegan’ Title Community Ecology Package Version 2.5-6. cran.ism.ac.jp (2019).Anderson, M. J. & Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. https://doi.org/10.1046/j.1442-9993.2001.01070.x (2001).Article 

    Google Scholar 
    Clarke, K. R. & Ainsworth, M. A method of linking multivariate community structure to environmental variables. Mar. Ecol. Prog. Ser. https://doi.org/10.3354/meps092205 (1993).Article 

    Google Scholar 
    QGIS Development Team. QGIS Geographic Information System (Open Source Geospatial Foundation, 2019).
    Google Scholar  More

  • in

    Apparent absence of avian malaria and malaria-like parasites in northern blue-footed boobies breeding on Isla Isabel

    Atkinson, C. T. & Van Riper, C. Pathogenicity and epizootiology of avian haematozoa: Plasmodium, Leucocytozoon, and Haemoproteus. Bird-Parasite Interact. 2, 19–48 (1991).
    Google Scholar 
    Sorci, G. & Moller, A. P. Comparative evidence for a positive correlation between haematozoan prevalence and mortality in waterfowl. J. Evol. Biol. 10, 731–741 (1997).
    Google Scholar 
    Merino, S., Moreno, J., Sanz, J. J. & Arriero, E. Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc. Biol. Sci. 267, 2507–2510 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Asghar, M. et al. Hidden costs of infection: Chronic malaria accelerates telomere degradation and senescence in wild birds. Science 347, 436–438 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Quillfeldt, P., Arriero, E., Martínez, J., Masello, J. F. & Merino, S. Prevalence of blood parasites in seabirds – A review. Front. Zool. 8, 26 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Piersma, T. Do global patterns of habitat use and migration strategies co-evolve with relative investments in immunocompetence due to spatial variation in parasite pressure?. Oikos 80, 623 (1997).
    Google Scholar 
    Mendes, L., Piersma, T., Lecoq, M., Spaans, B. & Ricklefs, R. E. Disease-limited distributions? Contrasts in the prevalence of avian malaria in shorebird species using marine and freshwater habitats. Oikos 109, 396–404 (2005).
    Google Scholar 
    Martínez-Abraín, A., Esparza, B. & Oro, D. Lack of blood parasites in bird species: Does absence of blood parasite vectors explain it all?. Ardeola 51, 225–232 (2004).
    Google Scholar 
    Campioni, L. et al. Absence of haemosporidian parasite infections in the long-lived Cory’s shearwater: Evidence from molecular analyses and review of the literature. Parasitol. Res. 117, 323–329 (2018).PubMed 

    Google Scholar 
    Osorio-Beristain, M. & Drummond, H. Non-aggressive mate guarding by the blue-footed booby: A balance of female and male control. Behav. Ecol. Sociobiol. 43, 307–315 (1998).
    Google Scholar 
    Nelson, J. B. Pelicans, Cormorants and Their Relatives: The Pelecaniformes (Oxford University Press, 2006).
    Google Scholar 
    Kim, S. Y., Torres, R., Domínguez, C. A. & Drummond, H. Lifetime philopatry in the blue-footed booby: A longitudinal study. Behav. Ecol. 18, 1132–1138 (2007).
    Google Scholar 
    Drummond, H. & Rodríguez, C. Viability of booby offspring is maximized by having one young parent and one old parent. PLoS ONE 10, e0133213 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Lee-Cruz, L. et al. Prevalence of Haemoproteus sp. in Galápagos blue-footed boobies: Effects on health and reproduction. Parasitol. Open 2 (2016).Santiago-Alarcon, D., Palinauskas, V. & Schaefer, H. M. Diptera vectors of avian Haemosporidian parasites: Untangling parasite life cycles and their taxonomy. Biol. Rev. 87, 928–964 (2012).PubMed 

    Google Scholar 
    Bond, J. G. et al. Diversity of mosquitoes and the aquatic insects associated with their oviposition sites along the Pacific coast of Mexico. Parasit. Vectors 7, 41 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Ibañez-Bernal, S. Informe Final del Proyecto Actualización del Catálogo de Autoridad Taxonómica del Orden Diptera (Insecta) de México CONABIO (JE006). (2017).Levin, I. I. et al. Hippoboscid-transmitted Haemoproteus parasites (Haemosporida) infect Galapagos Pelecaniform birds: Evidence from molecular and morphological studies, with a description of Haemoproteus iwa. Int. J. Parasitol. 41, 1019–1027 (2011).PubMed 

    Google Scholar 
    Madsen, V. et al. Testosterone levels and gular pouch coloration in courting magnificent frigatebird (Fregata magnificens): Variation with age-class, visited status and blood parasite infection. Horm. Behav. 51, 156–163 (2007).CAS 
    PubMed 

    Google Scholar 
    Clark, G. W. & Swinehart, B. Avian haematozoa from the offshore islands of northern Mexico. Wildl. Dis. 5, 111–112 (1969).CAS 
    PubMed 

    Google Scholar 
    Quillfeldt, P. et al. Hemosporidian blood parasites in seabirds—A comparative genetic study of species from Antarctic to tropical habitats. Naturwissenschaften 97, 809–817 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Merino, S. et al. Infection by haemoproteus parasites in four species of frigatebirds and the description of a new species of Haemoproteus (Haemosporida: Haemoproteidae). J. Parasitol. 98, 388–397 (2012).PubMed 

    Google Scholar 
    Svensson, L. M. E. & Ricklefs, R. E. Low diversity and high intra-island variation in prevalence of avian Haemoproteus parasites on Barbados, Lesser Antilles. Parasitology 136, 1121–1131 (2009).PubMed 

    Google Scholar 
    Loiseau, C. et al. Spatial variation of haemosporidian parasite infection in african rainforest bird species. J. Parasitol. 96, 21–29 (2010).PubMed 

    Google Scholar 
    Madsen, V. Female Mate Choice in the Magnificent Frigatebird (Fregata magnificens) (Universidad Nacional Autónoma de México, 2004).
    Google Scholar 
    Super, P. E. & van Riper, C. A comparison of avian hematozoan epizootiology in two California coastal scrub communities. J. Wildl. Dis. 31, 447–461 (1995).CAS 
    PubMed 

    Google Scholar 
    CONANP. Programa de Conservación y Manejo del Parque Nacional Isla Isabel. (2005).Ancona, S., Drummond, H., Rodríguez, C. & Zúñiga-Vega, J. J. Long-term population dynamics reveal that survival and recruitment of tropical boobies improve after a hurricane. J. Avian Biol. 48, 320–332 (2017).
    Google Scholar 
    Martínez-de la Puente, J., Martinez, J., Rivero-de Aguilar, J., Herrero, J. & Merino, S. On the specificity of avian blood parasites: Revealing specific and generalist relationships between haemosporidians and biting midges. Mol. Ecol. 20, 3275–3287 (2011).PubMed 

    Google Scholar 
    Bastien, M., Jaeger, A., Le Corre, M., Tortosa, P. & Lebarbenchon, C. Haemoproteus iwa in Great Frigatebirds (Fregata minor) in the Islands of the Western Indian Ocean. PLoS ONE 9, e97185 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maa, T. C. Records of Hippoboscidae (diptera) from the Central Pacific. J. Med. Ent. 3, 325–328 (1968).
    Google Scholar 
    Levin, I. I. & Parker, P. G. Comparative host–parasite population genetic structures: Obligate fly ectoparasites on Galapagos seabirds. Parasitology 140, 1061–1069 (2013).CAS 
    PubMed 

    Google Scholar 
    Ramos-González, A. Hábitat y Edad de los Bobos de Patas Azules: Factores Importantes Para la Paternidad y Abundancia de Garrapatas. Primera edición. 88. (Universidad Nacional Autónoma de México, 2019). Print ISBN 978-607-30-1489-2.Bensch, S. et al. Contaminations contaminate common databases. Mol. Ecol. Resour. 21, 355–362 (2021).CAS 
    PubMed 

    Google Scholar 
    Taylor, S. A., Maclagan, L., Anderson, D. J. & Friesen, V. L. Could specialization to cold-water upwelling systems influence gene flow and population differentiation in marine organisms? A case study using the blue-footed booby, Sula nebouxii. J. Biogeogr. 38, 883–893 (2011).
    Google Scholar 
    Kalbe, M. & Kurtz, J. Local differences in immunocompetence reflect resistance of sticklebacks against the eye fluke Diplostomum pseudospathaceum. Parasitology 132, 105–116 (2006).CAS 
    PubMed 

    Google Scholar 
    Martin, L. B., Gilliam, J., Han, P., Lee, K. & Wikelski, M. Corticosterone suppresses cutaneous immune function in temperate but not tropical house sparrows Passer domesticus. Gen. Comp. Endocrinol. 140, 126–135 (2005).CAS 

    Google Scholar 
    Becker, D. J. et al. Macroimmunology: The drivers and consequences of spatial patterns in wildlife immune defence. J. Anim. Ecol. 89, 972–995 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ting, J. et al. Malaria parasites and related haemosporidians cause mortality in cranes: A study on the parasites diversity, prevalence and distribution in Beijing Zoo. Malar. J. 17, 234 (2018).
    Google Scholar 
    Grilo, M. L. et al. Malaria in penguins – Current perceptions. Avian Pathol. 45, 393–407 (2016).CAS 
    PubMed 

    Google Scholar 
    Jovani, R. & Tella, J. L. Parasite prevalence and sample size: misconceptions and solutions. Trends Parasitol. 22, 214–218 (2006).PubMed 

    Google Scholar 
    Bensch, S. et al. Temporal dynamics and diversity of avian malaria parasites in a single host species. J. Anim. Ecol. 76, 112–122 (2007).MathSciNet 
    PubMed 

    Google Scholar 
    Lachish, S., Knowles, S. C., Alves, R., Wood, M. J. & Sheldon, B. C. Infection dynamics of endemic malaria in a wild bird population: Parasite species-dependent drivers of spatial and temporal variation in transmission rates. J. Anim. Ecol. 80, 1207–1216 (2011).PubMed 

    Google Scholar 
    Lopes, V. L. et al. High fidelity defines the temporal consistency of host-parasite interactions in a tropical coastal ecosystem. Sci. Rep. 10, 16839 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valkiunas, G. et al. A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J. Parasitol. 94, 1395–1401 (2008).CAS 
    PubMed 

    Google Scholar 
    Santiago-Alarcon, D. et al. Parasites in space and time: A case study of haemosporidian spatiotemporal prevalence in urban birds. Int. J. Parasitol. 49, 235–246 (2019).PubMed 

    Google Scholar 
    Ancona, S., Sánchez-Colón, S., Rodríguez, C. & Drummond, H. E. Niño in the warm tropics: Local sea temperature predicts breeding parameters and growth of blue-footed boobies. J. Anim. Ecol. 80, 799–808 (2011).PubMed 

    Google Scholar 
    Drummond, H., Torres, R. & Krishnan, V. V. Buffered development: Resilience after aggressive subordination in infancy. Am. Nat. 161, 794–807 (2003).PubMed 

    Google Scholar 
    Merino, S. & Potti, J. High prevalence of hematozoa in nestlings of a passerine species, the pied flycatcher (Ficedula hypoleuca). Auk 112, 1041–1043 (1995).
    Google Scholar 
    Gutiérrez-López, R. et al. Low prevalence of blood parasites in a long-distance migratory raptor: The importance of host habitat. Parasit. Vectors 8, 189 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Hellgren, O., Waldenström, J. & Bensch, S. A new PCR assay for simultaneous studies of Leucocytozoon, Plasmodium, and Haemoproteus from avian blood. J. Parasitol. 90, 797–802 (2004).CAS 
    PubMed 

    Google Scholar 
    Bensch, S. et al. Host specificity in avian blood parasites: A study of Plasmodium and Haemoproteus mitochondrial DNA amplified from birds. Proc. Biol. Sci. 267, 1583–1589 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Variations in leaf water status and drought tolerance of dominant tree species growing in multi-aged tropical forests in Thailand

    Stibig, H. J., Achard, F., Carboni, S., Raši, R. & Miettinen, J. Change in tropical forest cover of Southeast Asia from 1990 to 2010. Biogeosciences 11, 247–258. https://doi.org/10.5194/bg-11-247-2014 (2014).ADS 
    Article 

    Google Scholar 
    Wilcove, D. S., Giam, X., Edwards, D. P., Fisher, B. & Koh, L. P. Navjot’s nightmare revisited: Logging, agriculture, and biodiversity in Southeast Asia. Trends Ecol. Evol. 28, 531–540. https://doi.org/10.1016/j.tree.2013.04.005 (2013).Article 
    PubMed 

    Google Scholar 
    Zeng, Z. et al. Highland cropland expansion and forest loss in Southeast Asia in the twenty-first century. Nat. Geosci. 11, 556–562. https://doi.org/10.1038/s41561-018-0166-9 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Imai, N., Furukawa, T., Tsujino, R., Kitamura, S. & Yumoto, T. Correction: Factors affecting forest area change in Southeast Asia during 1980–2010. PLoS ONE 13, e0199908. https://doi.org/10.1371/journal.pone.0199908 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684. https://doi.org/10.1016/j.foreco.2009.09.001 (2010).Article 

    Google Scholar 
    McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Change 6, 295–300. https://doi.org/10.1038/nclimate2873 (2015).ADS 
    Article 

    Google Scholar 
    Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287–295. https://doi.org/10.1038/nature12350 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Barbeta, A. et al. The combined effects of a long-term experimental drought and an extreme drought on the use of plant-water sources in a Mediterranean forest. Global Change Biol. 21, 1213–1225. https://doi.org/10.1111/gcb.12785 (2015).ADS 
    Article 

    Google Scholar 
    Mueller, R. C. et al. Differential tree mortality in response to severe drought: Evidence for long-term vegetation shifts. J. Ecol. 93, 1085–1093. https://doi.org/10.1111/j.1365-2745.2005.01042.x (2005).Article 

    Google Scholar 
    Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. USA 108, 1474–1478. https://doi.org/10.1073/pnas.1010070108 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shaw, J. D., Steed, B. E. & DeBlander, L. T. Forest Inventory and Analysis (FIA) annual inventory answers the question: What is happening to pinyon-juniper woodlands?. J. For. 103, 280–285 (2005).
    Google Scholar 
    Lebrija-Trejos, E., Pérez-García, E. A., Meave, J. A., Poorter, L. & Bongers, F. Environmental changes during secondary succession in a tropical dry forest in Mexico. J. Trop. Ecol. 27, 477–489. https://doi.org/10.1017/s0266467411000253 (2011).Article 

    Google Scholar 
    Lee, Y. K. et al. Differences of tree species composition and microclimate between a mahogany(swietenia macrophyllaking) plantation and a secondary forest in Mt. Makiling, Philippines. For. Sci. Technol. 2, 1–12. https://doi.org/10.1080/21580103.2006.9656293 (2006).CAS 
    Article 

    Google Scholar 
    Lebrija-Trejos, E., Perez-Garcia, E. A., Meave, J. A., Bongers, F. & Poorter, L. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91, 386–398. https://doi.org/10.1890/08-1449.1 (2010).Article 
    PubMed 

    Google Scholar 
    Heithecker, T. D. & Halpern, C. B. Edge-related gradients in microclimate in forest aggregates following structural retention harvests in western Washington. For. Ecol. Manag. 248, 163–173. https://doi.org/10.1016/j.foreco.2007.05.003 (2007).Article 

    Google Scholar 
    Marthews, T. R., Burslem, D. F. R. P., Paton, S. R., Yangüez, F. & Mullins, C. E. Soil drying in a tropical forest: Three distinct environments controlled by gap size. Ecol. Model. 216, 369–384. https://doi.org/10.1016/j.ecolmodel.2008.05.011 (2008).Article 

    Google Scholar 
    Pineda-Garcia, F., Paz, H. & Meinzer, F. C. Drought resistance in early and late secondary successional species from a tropical dry forest: The interplay between xylem resistance to embolism, sapwood water storage and leaf shedding. Plant Cell Environ. 36, 405–418. https://doi.org/10.1111/j.1365-3040.2012.02582.x (2013).Article 
    PubMed 

    Google Scholar 
    Bretfeld, M., Ewers, B. E. & Hall, J. S. Plant water use responses along secondary forest succession during the 2015–2016 El Nino drought in Panama. New Phytol. 219, 885–899. https://doi.org/10.1111/nph.15071 (2018).Article 
    PubMed 

    Google Scholar 
    Matheny, A. M. et al. Contrasting strategies of hydraulic control in two codominant temperate tree species. Ecohydrology https://doi.org/10.1002/eco.1815 (2016).Article 

    Google Scholar 
    Pineda-Garcia, F., Paz, H., Meinzer, F. C. & Angeles, G. Exploiting water versus tolerating drought: Water-use strategies of trees in a secondary successional tropical dry forest. Tree Physiol. 36, 208–217. https://doi.org/10.1093/treephys/tpv124 (2016).Article 
    PubMed 

    Google Scholar 
    Powell, T. L. et al. Differences in xylem and leaf hydraulic traits explain differences in drought tolerance among mature Amazon rainforest trees. Global Change Biol. 23, 4280–4293. https://doi.org/10.1111/gcb.13731 (2017).ADS 
    Article 

    Google Scholar 
    Ruiz-Benito, P. et al. Climate- and successional-related changes in functional composition of European forests are strongly driven by tree mortality. Global Change Biol. 23, 4162–4176. https://doi.org/10.1111/gcb.13728 (2017).ADS 
    Article 

    Google Scholar 
    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539. https://doi.org/10.1038/s41586-018-0240-x (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sevanto, S., McDowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161. https://doi.org/10.1111/pce.12141 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: Why do some plants survive while others succumb to drought?. New Phytol. 178, 719–739. https://doi.org/10.1111/j.1469-8137.2008.02436.x (2008).Article 
    PubMed 

    Google Scholar 
    Rowland, L. et al. Death from drought in tropical forests is triggered by hydraulics not carbon starvation. Nature 528, 119–122. https://doi.org/10.1038/nature15539 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lazar, T., Taiz, L. & Zeiger, E. Plant physiology. 3rd edn. Ann. Bot. 91, 750–751. https://doi.org/10.1093/aob/mcg079 (2003).Article 
    PubMed Central 

    Google Scholar 
    Steppe, K. The potential of the tree water potential. Tree Physiol. 38, 937–940. https://doi.org/10.1093/treephys/tpy064 (2018).Article 
    PubMed 

    Google Scholar 
    Johnson, D., Katul, G. G. & Domec, J. C. Catastrophic hydraulic failure and tipping points in plants. Plant Cell Environ. (2022).Adams, H. D. et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291. https://doi.org/10.1038/s41559-017-0248-x (2017).Article 
    PubMed 

    Google Scholar 
    Skelton, R. P., West, A. G. & Dawson, T. E. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proc. Natl. Acad. Sci. USA 112, 5744–5749. https://doi.org/10.1073/pnas.1503376112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Domec, J.-C. et al. Conversion of natural forests to managed forest plantations decreases tree resistance to prolonged droughts. For. Ecol. Manag. 355, 58–71. https://doi.org/10.1016/j.foreco.2015.04.012 (2015).Article 

    Google Scholar 
    Maherali, H., Pockman, W. T. & Jackson, R. B. Adaptive variation in the vulnerability of woody plants to xylem cavitation. Ecology 85, 2184–2199. https://doi.org/10.1890/02-0538 (2004).Article 

    Google Scholar 
    Barros, F. V. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Nino-induced drought. New Phytol. 223, 1253–1266. https://doi.org/10.1111/nph.15909 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bittencourt, P. R. L. et al. Amazonia trees have limited capacity to acclimate plant hydraulic properties in response to long-term drought. Global Change Biol. 26, 3569–3584. https://doi.org/10.1111/gcb.15040 (2020).ADS 
    Article 

    Google Scholar 
    Nolf, M. et al. Stem and leaf hydraulic properties are finely coordinated in three tropical rain forest tree species. Plant Cell Environ. 38, 2652–2661. https://doi.org/10.1111/pce.12581 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Trueba, S. et al. Vulnerability to xylem embolism as a major correlate of the environmental distribution of rain forest species on a tropical island. Plant, Cell Environ. 40, 277–289. https://doi.org/10.1111/pce.12859 (2017).CAS 
    Article 

    Google Scholar 
    Zhu, S. D., Chen, Y. J., Fu, P. L. & Cao, K. F. Different hydraulic traits of woody plants from tropical forests with contrasting soil water availability. Tree Physiol. 37, 1469–1477. https://doi.org/10.1093/treephys/tpx094 (2017).Article 
    PubMed 

    Google Scholar 
    Chen, Y. J. et al. Physiological regulation and efficient xylem water transport regulate diurnal water and carbon balances of tropical lianas. Funct. Ecol. 31, 306–317. https://doi.org/10.1111/1365-2435.12724 (2016).Article 

    Google Scholar 
    Tan, F.-S. et al. Hydraulic safety margins of co-occurring woody plants in a tropical karst forest experiencing frequent extreme droughts. Agr. Forest Meteorol. https://doi.org/10.1016/j.agrformet.2020.108107 (2020).Article 

    Google Scholar 
    Markesteijn, L., Iraipi, J., Bongers, F. & Poorter, L. Seasonal variation in soil and plant water potentials in a Bolivian tropical moist and dry forest. J. Trop. Ecol. 26, 497–508. https://doi.org/10.1017/s0266467410000271 (2010).Article 

    Google Scholar 
    Mitchell, P. J., Veneklaas, E. J., Lambers, H. & Burgess, S. S. Leaf water relations during summer water deficit: Differential responses in turgor maintenance and variation in leaf structure among different plant communities in south-western Australia. Plant Cell Environ. 31, 1791–1802. https://doi.org/10.1111/j.1365-3040.2008.01882.x (2008).Article 
    PubMed 

    Google Scholar 
    Baltzer, J. L., Davies, S. J., Bunyavejchewin, S. & Noor, N. S. M. The role of desiccation tolerance in determining tree species distributions along the Malay-Thai Peninsula. Funct. Ecol. 22, 221–231. https://doi.org/10.1111/j.1365-2435.2007.01374.x (2008).Article 

    Google Scholar 
    Kursar, T. A. et al. Tolerance to low leaf water status of tropical tree seedlings is related to drought performance and distribution. Funct. Ecol. 23, 93–102. https://doi.org/10.1111/j.1365-2435.2008.01483.x (2009).Article 

    Google Scholar 
    Engelbrecht, B. M. J., Tyree, M. T. & Kursar, T. A. Visual assessment of wilting as a measure of leaf water potential and seedling drought survival. J. Trop. Ecol. 23, 497–500. https://doi.org/10.1017/s026646740700421x (2007).Article 

    Google Scholar 
    Blackman, C. J. et al. Drought response strategies and hydraulic traits contribute to mechanistic understanding of plant dry-down to hydraulic failure. Tree Physiol. 39, 910–924. https://doi.org/10.1093/treephys/tpz016 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bucci, S. J. et al. Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in Neotropical savanna trees. Trees 19, 296–304. https://doi.org/10.1007/s00468-004-0391-2 (2004).Article 

    Google Scholar 
    Prado, C. H. B. A., Wenhui, Z., Cardoza Rojas, M. H. & Souza, G. M. Seasonal leaf gas exchange and water potential in a woody cerrado species community. Braz. J. Plant Physiol. 16, 7–16. https://doi.org/10.1590/s1677-04202004000100002 (2004).Article 

    Google Scholar 
    Fetcher, N., Oberbauer, S. F. & Strain, B. R. Vegetation effects on microclimate in lowland tropical forest in Costa Rica. Int. J. Biometeorol. 29, 145–155. https://doi.org/10.1007/bf02189035 (1985).ADS 
    Article 

    Google Scholar 
    McCarthy, J. Gap dynamics of forest trees: A review with particular attention to boreal forests. Environ. Rev. 9, 1–59. https://doi.org/10.1139/a00-012 (2001).Article 

    Google Scholar 
    Zhu, S.-D. & Cao, K.-F. Hydraulic properties and photosynthetic rates in co-occurring lianas and trees in a seasonal tropical rainforest in southwestern China. Plant Ecol. 204, 295–304. https://doi.org/10.1007/s11258-009-9592-5 (2009).Article 

    Google Scholar 
    Sperry, J. S., Hacke, U. G., Oren, R. & Comstock, J. P. Water deficits and hydraulic limits to leaf water supply. Plant Cell Environ. 25, 251–263. https://doi.org/10.1046/j.0016-8025.2001.00799.x (2002).Article 
    PubMed 

    Google Scholar 
    Choat, B., Sack, L. & Holbrook, N. M. Diversity of hydraulic traits in nine Cordia species growing in tropical forests with contrasting precipitation. New Phytol. 175, 686–698. https://doi.org/10.1111/j.1469-8137.2007.02137.x (2007).Article 
    PubMed 

    Google Scholar 
    Vinya, R. et al. Xylem cavitation vulnerability influences tree species’ habitat preferences in miombo woodlands. Oecologia 173, 711–720. https://doi.org/10.1007/s00442-013-2671-2 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    Vander Willigen, C., Sherwin, H. W. & Pammenter, N. W. Xylem hydraulic characteristics of subtropical trees from contrasting habitats grown under identical environmental conditions. New Phytol. 145, 51–59. https://doi.org/10.1046/j.1469-8137.2000.00549.x (2000).Article 

    Google Scholar 
    Domec, J. C. et al. Diurnal and seasonal variation in root xylem embolism in neotropical savanna woody species: Impact on stomatal control of plant water status. Plant Cell Environ. 29, 26–35. https://doi.org/10.1111/j.1365-3040.2005.01397.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barnard, D. M. et al. Climate-related trends in sapwood biophysical properties in two conifers: Avoidance of hydraulic dysfunction through coordinated adjustments in xylem efficiency, safety and capacitance. Plant Cell Environ. 34, 643–654. https://doi.org/10.1111/j.1365-3040.2010.02269.x (2011).Article 
    PubMed 

    Google Scholar 
    Rosner, S., Heinze, B., Savi, T. & Dalla-Salda, G. Prediction of hydraulic conductivity loss from relative water loss: New insights into water storage of tree stems and branches. Physiol. Plant. 165, 843–854. https://doi.org/10.1111/ppl.12790 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Markesteijn, L., Poorter, L., Paz, H., Sack, L. & Bongers, F. Ecological differentiation in xylem cavitation resistance is associated with stem and leaf structural traits. Plant Cell Environ. 34, 137–148. https://doi.org/10.1111/j.1365-3040.2010.02231.x (2011).Article 
    PubMed 

    Google Scholar 
    Cartwright, J. M., Littlefield, C. E., Michalak, J. L., Lawler, J. J. & Dobrowski, S. Z. Topographic, soil, and climate drivers of drought sensitivity in forests and shrublands of the Pacific Northwest, USA. Sci. Rep. 10, 18486. https://doi.org/10.1038/s41598-020-75273-5 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Choat, B., Ball, M. C., Luly, J. G. & Holtum, J. A. M. Hydraulic architecture of deciduous and evergreen dry rainforest tree species from north-eastern Australia. Trees 19, 305–311. https://doi.org/10.1007/s00468-004-0392-1 (2004).Article 

    Google Scholar 
    Krober, W., Zhang, S., Ehmig, M. & Bruelheide, H. Linking xylem hydraulic conductivity and vulnerability to the leaf economics spectrum–a cross-species study of 39 evergreen and deciduous broadleaved subtropical tree species. PLoS ONE 9, e109211. https://doi.org/10.1371/journal.pone.0109211 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brockelman, W. Y., Nathalang, A. & Maxwell, J. F. Mo Singto Forest Dynamics Plot: Flora and Ecology (National Science and Technology Development Agency, 2017).
    Google Scholar 
    Zhang, Q. W., Zhu, S. D., Jansen, S., Cao, K. F. & McCulloh, K. Topography strongly affects drought stress and xylem embolism resistance in woody plants from a karst forest in Southwest China. Funct. Ecol. 35, 566–577. https://doi.org/10.1111/1365-2435.13731 (2020).Article 

    Google Scholar 
    Ishida, A. et al. Seasonal variations of gas exchange and water relations in deciduous and evergreen trees in monsoonal dry forests of Thailand. Tree Physiol. 30, 935–945. https://doi.org/10.1093/treephys/tpq025 (2010).Article 
    PubMed 

    Google Scholar 
    Nardini, A., Battistuzzo, M. & Savi, T. Shoot desiccation and hydraulic failure in temperate woody angiosperms during an extreme summer drought. New Phytol. 200, 322–329. https://doi.org/10.1111/nph.12288 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755. https://doi.org/10.1038/nature11688 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Brodribb, T. J. Progressing from “functional” to mechanistic traits. New Phytol. 215, 9–11. https://doi.org/10.1111/nph.14620 (2017).Article 
    PubMed 

    Google Scholar 
    Oliveira, R. S. et al. Embolism resistance drives the distribution of Amazonian rainforest tree species along hydro-topographic gradients. New Phytol. 221, 1457–1465. https://doi.org/10.1111/nph.15463 (2019).Article 
    PubMed 

    Google Scholar 
    Popradit, A. et al. Anthropogenic effects on a tropical forest according to the distance from human settlements. Sci. Rep. 5, 14689. https://doi.org/10.1038/srep14689 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hérault, B. & Gourlet-Fleury, S. In Climate Change and Agriculture Worldwide (ed. Torquebiau, E.) 183–196 (Springer, 2016).Chapter 

    Google Scholar 
    Elliott, S. et al. Selecting framework tree species for restoring seasonally dry tropical forests in northern Thailand based on field performance. For. Ecol. Manag. 184, 177–191. https://doi.org/10.1016/s0378-1127(03)00211-1 (2003).Article 

    Google Scholar 
    Vieira, D. L. M. & Scariot, A. Principles of natural regeneration of tropical dry forests for restoration. Restor. Ecol. 14, 11–20. https://doi.org/10.1111/j.1526-100X.2006.00100.x (2006).Article 

    Google Scholar 
    Hérault, B. & Piponiot, C. Key drivers of ecosystem recovery after disturbance in a neotropical forest. For. Ecosyst. 5, 2. https://doi.org/10.1186/s40663-017-0126-7 (2018).Article 

    Google Scholar 
    Davies, S. J. et al. ForestGEO: Understanding forest diversity and dynamics through a global observatory network. Biol. Conserv. 253, 108907. https://doi.org/10.1016/j.biocon.2020.108907 (2021).Article 

    Google Scholar 
    Chanthorn, W. et al. Viewing tropical forest succession as a three-dimensional dynamical system. Theor. Ecol. 9, 163–172. https://doi.org/10.1007/s12080-015-0278-4 (2015).Article 

    Google Scholar 
    Chanthorn, W., Hartig, F. & Brockelman, W. Y. Structure and community composition in a tropical forest suggest a change of ecological processes during stand development. For. Ecol. Manag. 404, 100–107. https://doi.org/10.1016/j.foreco.2017.08.001 (2017).Article 

    Google Scholar 
    Rodtassana, C. et al. Different responses of soil respiration to environmental factors across forest stages in a Southeast Asian forest. Ecol. Evol. 11, 15430–15443. https://doi.org/10.1002/ece3.8248 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tor-ngern, P. et al. Variation of leaf-level gas exchange rates and leaf functional traits of dominant trees across three successional stages in a Southeast Asian tropical forest. For. Ecol. Manag. https://doi.org/10.1016/j.foreco.2021.119101 (2021).Article 

    Google Scholar 
    Zhu, S. D., Song, J. J., Li, R. H. & Ye, Q. Plant hydraulics and photosynthesis of 34 woody species from different successional stages of subtropical forests. Plant Cell Environ. 36, 879–891. https://doi.org/10.1111/pce.12024 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Martin-StPaul, N. K. et al. How reliable are methods to assess xylem vulnerability to cavitation? The issue of “open vessel” artifact in oaks. Tree Physiol. 34, 894–905. https://doi.org/10.1093/treephys/tpu059 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ennajeh, M., Simoes, F., Khemira, H. & Cochard, H. How reliable is the double-ended pressure sleeve technique for assessing xylem vulnerability to cavitation in woody angiosperms?. Physiol. Plant. 142, 205–210. https://doi.org/10.1111/j.1399-3054.2011.01470.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. Corrigendum to: New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 64, 715–716. https://doi.org/10.1071/bt12225_co (2016).Article 

    Google Scholar 
    Ewers, F. W. & Fisher, J. B. Techniques for measuring vessel lengths and diameters in stems of woody plants. Am. J. Bot. 76, 645–656. https://doi.org/10.1002/j.1537-2197.1989.tb11360.x (1989).Article 

    Google Scholar 
    Gao, H. et al. Vessel-length determination using silicone and air injection: Are there artifacts?. Tree Physiol. 39, 1783–1791. https://doi.org/10.1093/treephys/tpz064 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sperry, J. S. & Saliendra, N. Z. Intra- and inter-plant variation in xylem cavitation in Betula occidentalis. Plant Cell Environ. 17, 1233–1241. https://doi.org/10.1111/j.1365-3040.1994.tb02021.x (1994).Article 

    Google Scholar 
    Melcher, P. J. et al. Measurements of stem xylem hydraulic conductivity in the laboratory and field. Methods Ecol. Evol. 3, 685–694. https://doi.org/10.1111/j.2041-210X.2012.00204.x (2012).Article 

    Google Scholar 
    Edwards, W. R. N. & Jarvis, P. G. Relations between water content, potential and permeability in stems of conifers. Plant Cell Environ. 5, 271–277. https://doi.org/10.1111/1365-3040.ep11572656 (1982).Article 

    Google Scholar 
    Sperry, J. S. & Ikeda, T. Xylem cavitation in roots and stems of Douglas-fir and white fir. Tree Physiol. 17, 275–280. https://doi.org/10.1093/treephys/17.4.275 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Pammenter, N. W. & Vander Willigen, C. A mathematical and statistical analysis of the curves illustrating vulnerability of xylem to cavitation. Tree Physiol. 18, 589–593. https://doi.org/10.1093/treephys/18.8-9.589 (1998).Article 
    PubMed 

    Google Scholar 
    Domec, J.-C. & Gartner, B. L. Cavitation and water storage capacity in bole xylem segments of mature and young Douglas-fir trees. Trees 15, 204–214. https://doi.org/10.1007/s004680100095 (2001).Article 

    Google Scholar  More

  • in

    A global reptile assessment highlights shared conservation needs of tetrapods

    We used the IUCN Red List criteria34,35 and methods developed in other global status-assessment efforts36,37 to assess 10,078 reptile species for extinction risk. We additionally include recommended Red List categories for 118 turtle species38, for a total of 10,196 species covered, representing 89% of the 11,341 described reptile species as of August 202039.Data compilationWe compiled assessment data primarily through regional in-person and remote (that is, through phone and email) workshops with species experts (9,536 species) and consultation with IUCN Species Survival Commission Specialist Groups and stand-alone Red List Authorities (442 species, primarily marine turtles, terrestrial and freshwater turtles, iguanas, sea snakes, mainland African chameleons and crocodiles). We conducted 48 workshops between 2004 and 2019 (Supplementary Table 1). Workshop participants provided information to complete the required species assessment fields (geographical distribution, population abundance and trends, habitat and ecological requirements, threats, use and trade, literature) and draw a distribution map. We then applied the Red List criteria34 to this information to assign a Red List category: extinct, extinct in the wild, critically endangered, endangered, vulnerable, near threatened, least concern and data deficient. Threatened species are those categorized as critically endangered, endangered and vulnerable.TaxonomyWe used The Reptile Database39 as a taxonomic standard, diverging only to follow well-justified taxonomic standards from the IUCN Species Survival Commission40. We could not revisit new descriptions for most regions after the end of the original assessment, so the final species list is not fully consistent with any single release of The Reptile Database.Distribution mapsWhere data allowed, we developed distribution maps in Esri shapefile format using the IUCN mapping guidelines41 (1,003 species). These maps are typically broad polygons that encompass all known localities, with provisions made to show obvious discontinuity in areas of unsuitable habitat. Each polygon is coded according to species’ presence (extant, possibly extant or extinct) and origin (native, introduced or reintroduced)41. For some regions covered in workshops (Caucasus, Southeast Asia, much of Africa, Australia and western South America), we collaborated with the Global Assessment of Reptile Distributions (GARD) (http://www.gardinitiative.org/) to provide contributing experts with a baseline species distribution map for review. Although refined maps were returned to the GARD team, not all of these maps have been incorporated into the GARD.Habitat preferencesWhere known, species habitats were coded using the IUCN Habitat Classification Scheme (v.3.1) (https://www.iucnredlist.org/resources/habitat-classification-scheme). Species were assigned to all habitat classes in which they are known to occur. Where possible, habitat suitability (suitable, marginal or unknown) and major importance (yes or no) was recorded. Habitat data were available for 9,484 reptile species.ThreatsAll known historical, current and projected (within 10 years or 3 generations, whichever is the longest; generation time estimated, when not available, from related species for which it is known; generation time recorded for 76.3% of the 186 species categorized as threatened under Red List criteria A and C1, the only criteria using generation length) threats were coded using the IUCN Threats Classification Scheme v.3.2 (https://www.iucnredlist.org/resources/threat-classification-scheme), which follows a previously published study42. Where possible, the scope (whole ( >90%), majority (50–90%), minority (30%), rapid ( >20%), slow but notable ( More

  • in

    Impact of disabled circadian clock on yellow fever mosquito Aedes aegypti fitness and behaviors

    Bell-Pedersen, D., Cassone, V. M., Earnest, D. J., Golden, S. S. & Hardin, P. E. Circadian rhythms from multiple oscillators: Lessons from diverse organisms. Nat. Rev. Drug Discov. 4, 121–130 (2005).Article 
    CAS 

    Google Scholar 
    Taylor, B. & Jones, M. D. The circadian rhythm of flight activity in the mosquito Aedes aegypti (L.): The phase-setting effects of light-on and light-off. J. Exp. Biol. 51, 59–70 (1969).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, M. D. R. The programming of circadian flight-activity in relation to mating and the gonotrophic cycle in the mosquito. Physiol. Entomol. 6, 307–313 (1981).Article 

    Google Scholar 
    Lee, H., Yang, Y., Liu, Y., Teng, H. & Sauman, I. Circadian control of permethrin-resistance in the mosquito Aedes aegypti. Physiol. Entomol. 56, 1219–1223 (2010).
    Google Scholar 
    Ptitsyn, A. A. et al. Rhythms and synchronization patterns in gene expression in the Aedes aegypti mosquito. BMC Genom. 12, 153 (2011).CAS 
    Article 

    Google Scholar 
    Rund, S. S. C., Hou, T. Y., Ward, S. M., Collins, F. H. & Duf, G. E. Genome-wide profiling of diel and circadian gene expression in the malaria vector Anopheles gambiae. Proc. Natl. Acad. Sci. USA. 108, 419–444 (2011).Article 

    Google Scholar 
    Rund, S. S. C., Gentile, J. E. & Duffield, G. E. Extensive circadian and light regulation of the transcriptome in the malaria mosquito Anopheles gambiae. BMC Genom. 14, 218 (2013).CAS 
    Article 

    Google Scholar 
    Leming, M. T., Rund, S. S. C., Behura, S. K., Duffield, G. E. & O’Tousa, J. E. A database of circadian and diel rhythmic gene expression in the yellow fever mosquito Aedes aegypti. BMC Genom. 15, 1–9 (2014).Article 
    CAS 

    Google Scholar 
    Faria, N. R. et al. Establishment and cryptic transmission of Zika virus in Brazil and the Americas. Nature 546, 406–410 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Araujo, M. S., Guo, F. & Rosbash, M. Video recording can conveniently assay mosquito locomotor activity. Sci. Rep. 10, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Lima-Camara, T. N. et al. Dengue infection increases the locomotor activity of Aedes aegypti females. PLoS ONE 6, 1–5 (2011).Article 
    CAS 

    Google Scholar 
    Das, S. & Dimopoulos, G. Molecular analysis of photic inhibition of blood-feeding in Anopheles gambiae. BMC Physiol. 19, 1–19 (2008).
    Google Scholar 
    Gentile, C. et al. Circadian clock of Aedes aegypti: Effects of blood-feeding, insemination and RNA interference. Mem. Inst. Oswaldo Cruz 108, 80–87 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Meireles-filho, A. C. A. & Kyriacou, C. P. Circadian rhythms in insect disease vectors. Mem. Inst. Oswaldo Cruz 108, 48–58 (2013).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yuan, Q., Metterville, D., Briscoe, A. D. & Reppert, S. M. Insect cryptochromes: Gene duplication and loss define diverse ways to construct insect circadian clocks. Mol. Biol. Evol. 24, 948–955 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gentile, C., Rivas, G. B. S., Meireles-Filho, A. C. A., Lima, J. B. P. & Peixoto, A. A. Circadian expression of clock genes in two mosquito disease vectors: Cry2 is different. J. Biol. Rhythms 24, 444–451 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, Y., Markert, M. J., Groves, S. C., Hardin, P. E. & Merlin, C. Vertebrate-like CRYPTOCHROME 2 from monarch regulates circadian transcription via independent repression of CLOCK and BMAL1 activity. Proc. Natl. Acad. Sci. USA. 114, E7516–E7525 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matthews, B. J. et al. Improved reference genome of Aedes aegypti informs arbovirus vector control. Nature 563, 501–507 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Baylies, M. K., Bargiello, T. A., Jackson, F. R. & Young, M. W. Changes in abundance or structure of the per gene product can alter periodicity of the Drosophila clock. Nature 48, 1986–1988 (1987).
    Google Scholar 
    Sehgal, A., Price, J. L., Man, B. & Young, M. W. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 263, 1603–1606 (1994).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Allada, R., White, N. E., So, W. V., Hall, J. C. & Rosbash, M. A mutant Drosophila homolog of mammalian clock disrupts circadian rhythms and transcription of period and timeless. Cell 93, 791–804 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rutila, J. E., Maltseva, O. & Rosbash, M. The timSL mutant affects a restricted portion of the drosophila melanogaster circadian cycle. J. Biol. Rhythms 13, 380–392 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rund, S. S. C. et al. Daily rhythms in antennal protein and olfactory sensitivity in the malaria mosquito Anopheles gambiae. Sci. Rep. 3, 1–9 (2013).Article 

    Google Scholar 
    Meireles-Filho, A. C. A. et al. The biological clock of an hematophagous insect: Locomotor activity rhythms, circadian expression and downregulation after a blood meal. FEBS Lett. 580, 2–8 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tallon, A. K., Hill, S. R. & Ignell, R. Sex and age modulate antennal chemosensory-related genes linked to the onset of host seeking in the yellow-fever mosquito, Aedes aegypti. FEBS Lett. https://doi.org/10.1038/s41598-018-36550-6 (2019).Article 

    Google Scholar 
    Hug, N., Longman, D. & Cáceres, J. F. Mechanism and regulation of the nonsense-mediated decay pathway. Nucleic Acids Res. 44, 1483–1495 (2015).Article 

    Google Scholar 
    Hardin, P. E. Molecular genetic analysis of circadian timekeeping in Drosophila. Adv. Genet. 74, 147 (2011).
    Google Scholar 
    Tauber, E., Roe, H., Costa, R., Hennessy, J. M. & Kyriacou, C. P. Temporal mating isolation driven by a behavioral gene in Drosophila. Curr. Biol. 13, 140–145 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rutila, J. E. et al. Cycle is a second bHLH-PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 93, 805–814 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lin, F.-J., Song, W., Meyer-Bernstein, E., Naidoo, N. & Sehgal, A. Photic signaling by cryptochrome in the Drosophila circadian system. Mol. Cell. Biol. 21, 7287–7294 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Yadav, P., Thandapani, M. & Sharma, V. K. Interaction of light regimes and circadian clocks modulate timing of pre-adult developmental events in Drosophila. BMC Dev. Biol. 14, 1–12 (2014).Article 
    CAS 

    Google Scholar 
    Jones, M. & Reiter, P. Entrainment of the pupation and adult activity rhythms during development in the mosquito Anopheles gambiae. Nature 254, 242–244 (1968).ADS 
    Article 

    Google Scholar 
    Nayar, J. K. The pupation rhythm in Aedes taeniorhynchus (Diptera: Culicidae). II. Ontogenetic timing, rate of development, and endogenous diurnal rhythm of pupation. Ann. Entomol. Soc. Am. 60, 946–971 (1967).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nijhout, H. F. et al. The developmental control of size in insects. Wiley Interdiscip. Rev. Dev. Biol. 3, 113–134 (2014).PubMed 
    Article 

    Google Scholar 
    Kaneko, M., Hamblen, M. J. & Hall, J. C. Involvement of the period gene in developmental time-memory: Effect of the per(Short) mutation on phase shifts induced by light pulses delivered to Drosophila larvae. J. Biol. Rhythms 15, 13–30 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Srivastava, M., James, A., Varma, V., Sharma, V. K. & Sheeba, V. Environmental cycles regulate development time via circadian clock mediated gating of adult emergence. BMC Dev. Biol. 18, 1–10 (2018).Article 
    CAS 

    Google Scholar 
    Duffield, G. E. et al. Circadian programs of transcriptional activation, signaling, and protein turnover revealed by microarray analysis of mammalian cells. Curr. Biol. 12, 551–557 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Menon, A., Varma, V. & Sharma, V. K. Rhythmic egg-laying behaviour in virgin females of fruit flies Drosophila melanogaster. Chronobiol. Int. 31, 433–441 (2014).PubMed 
    Article 

    Google Scholar 
    Kyriacou, C. P., Oldroyd, M., Wood, J., Sharp, M. & Hill, M. Clock mutations alter developmental timing in drosophila. Heredity 64, 395–401 (1990).PubMed 
    Article 

    Google Scholar 
    Allada, R. & Chung, B. Y. Circadian organization of behavior and physiology in Drosophila. Annu. Rev. Physiol. 72, 605–624 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lima-Camara, T. N., Lima, J. B. P., Bruno, R. V. & Peixoto, A. A. Effects of insemination and blood-feeding on locomotor activity of Aedes albopictus and Aedes aegypti (Diptera: Culicidae) females under laboratory conditions. Parasit. Vectors 7, 1–8 (2014).Article 

    Google Scholar 
    Krishnan, B., Dryer, S. E. & Hardin, P. E. Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 400, 375–378 (1999).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Delventhal, R. et al. Dissection of central clock function in Drosophila through cell-specific CRISPR-mediated clock gene disruption. Elife 8, 48305 (2019).Article 

    Google Scholar 
    Nayar, J. K. & Sauerman, D. M. The effect of light regimes on the circadian rhythm of flight activity in the mosquito Aedes taeniorhynchus. J. Exp. Biol. 54, 745–756 (1971).CAS 
    PubMed 
    Article 

    Google Scholar 
    Granados-Fuentes, D., Tseng, A. & Herzog, E. D. A circadian clock in the olfactory bulb controls olfactory responsivity. J. Neurosci. 26, 12219–12225 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Eilerts, D. F., Vandergiessen, M., Bose, E. A. & Broxton, K. Odor-specific daily rhythms in the olfactory sensitivity and behavior of Aedes aegypti mosquitoes. Insects 9, 147 (2018).PubMed Central 
    Article 

    Google Scholar 
    Tanoue, S., Krishnan, P., Krishnan, B., Dryer, S. E. & Hardin, P. E. Circadian clocks in antennal neurons are necessary and sufficient for olfaction rhythms in Drosophila. Curr. Biol. 14, 638–649 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, G. et al. Clock genes and environmental cues coordinate Anopheles pheromone synthesis, swarming, and mating. Science 371, 411–415 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sakai, T. & Ishida, N. Circadian rhythms of female mating activity governed by clock genes in Drosophila. Proc. Natl. Acad. Sci. USA. 98, 9221–9225 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Petersen, G., Hall, J. C. & Rosbash, M. The period gene of Drosophila carries species-specific behavioral instructions. EMBO J. 7, 3939–3947 (1988).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cabrera, M. & Jaffe, K. An aggregation pheromone modulates lekking behavior in the vector mosquito Aedes aegypti (Diptera: Culicidae). J. Am. Mosq. Control Assoc. 23, 1–10 (2007).PubMed 
    Article 

    Google Scholar 
    Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. CHOPCHOP: A CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 42, 401–407 (2014).Article 
    CAS 

    Google Scholar 
    Labun, K., Montague, T. G., Gagnon, J. A., Thyme, S. B. & Valen, E. CHOPCHOP v2: A web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 44, W272–W276 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bassett, A. R., Tibbit, C., Ponting, C. P. & Liu, J. L. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep. 4, 220–228 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhu, H. et al. The two CRYs of the butterfly. Curr. Biol. 15, 730 (2005).Article 
    CAS 

    Google Scholar 
    McDonald, M. J., Rosbash, M. & Emery, P. Wild-type circadian rhythmicity is dependent on closely spaced e boxes in the Drosophila timeless promoter. Mol. Cell. Biol. 21, 1207–1217 (2001).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chang, D. C. & Reppert, S. M. A novel c-terminal domain of drosophila PERIOD inhibits dCLOCK:CYCLE-mediated transcription. Curr. Biol. 13, 654–658 (2003).Article 
    CAS 

    Google Scholar  More

  • in

    Mammal extinction facilitated biome shift and human population change during the last glacial termination in East-Central Europe

    Vörös, I. Large mammal remains from the Upper Palaeolithic site at Esztergom-Gyurgyalag. Acta Archaeol. Hung. 43, 261–263 (1991).
    Google Scholar 
    Jánossy, D. Pleistocene Vertebrate Faunas of Hungary. Journal of Chemical Information and Modeling (Akadémiai Kiadó, 1986).
    Google Scholar 
    Kordos, L. A sketch of the vertebrata biostratigraphy of the Hungarian Holocene. Földrajzi Közlemények 101, 144–160 (1978).
    Google Scholar 
    Sümegi, P., Rudner, E. & Törőcsik, T. Environmental and chronological reconstruction problems during the Pleistocene/Holocene transition in Hungary (Magyarország pleisztocén végi és kora holocén környezeti változások kronológiai, tér és időbeli rekonstrukciós problémái). In Őskoros Kutatók IV. Összejövetelének Konferenciakötete (ed. Kolozsi, B.) 279–298 (Hajdú-Bihar Megyei Múzeumok Igazgatósága, 2012).
    Google Scholar 
    Bösken, J. et al. Investigating the last glacial Gravettian site ‘Ságvár Lyukas Hill’ (Hungary) and its paleoenvironmental and geochronological context using a multi-proxy approach. Palaeogeogr. Palaeoclimatol. Palaeoecol. 509, 77–90 (2018).Article 

    Google Scholar 
    Wilczyński, J. et al. Mammoth hunting strategies during the Late Gravettian in Central Europe as determined from case studies of Milovice I (Czech Republic) and Kraków Spadzista (Poland). Quat. Sci. Rev. 223, 105919 (2019).Article 

    Google Scholar 
    Lengyel, G. Reassessing the middle and late upper palaeolithic in Hungary. Acta Archaeol. Carpathica 51, 47–66 (2016).
    Google Scholar 
    Béres, S. et al. Zöld cave and the late epigravettian in eastern central Europe. Quat. Int. 587–588, 158–171 (2021).Article 

    Google Scholar 
    Feurdean, A. et al. Trends in biomass burning in the Carpathian region over the last 15,000 years. Quat. Sci. Rev. 45, 111–125 (2012).Article 
    ADS 

    Google Scholar 
    Kuneš, P. et al. Interpretation of the last-glacial vegetation of eastern-central Europe using modern analogues from southern Siberia. J. Biogeogr. 35, 2223–2236 (2008).Article 

    Google Scholar 
    Pazonyi, P. Mammalian ecosystem dynamics in the Carpathian Basin during the last 27,000 years. Palaeogeogr. Palaeoclimatol. Palaeoecol. 212, 295–314 (2004).Article 

    Google Scholar 
    Sümegi, P. et al. Climatic fluctuations inferred for the middle and late pleniglacial (MIS 2) based on high-resolution (∼ca. 20 y) preliminary environmental magnetic investigation of the loess section of the Madaras brickyard (Hungary). Cent. Eur. Geol. 55, 329–345 (2012).Article 

    Google Scholar 
    Magyari, E. K. et al. Vegetation and environmental responses to climate forcing during the last glacial maximum and deglaciation in the East Carpathians: attenuated response to maximum cooling and increased biomass burning. Quat. Sci. Rev. 106, 278–298 (2014).Article 
    ADS 

    Google Scholar 
    Feurdean, A. et al. Climate variability and associated vegetation response throughout central and eastern Europe (CEE) between 60 and 8 ka. Quat. Sci. Rev. 106, 206–224 (2014).Article 
    ADS 

    Google Scholar 
    Mann, D. H. et al. Life and extinction of megafauna in the ice-age Arctic. Proc. Natl. Acad. Sci. U. S. A. 112, 14301–14306 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Magyari, E. K. et al. Rapid vegetation response to Lateglacial and early Holocene climatic fluctuation in the South Carpathian Mountains (Romania). Quat. Sci. Rev. 35, 116–130 (2012).Article 
    ADS 

    Google Scholar 
    Magyari, E. K. et al. Late Pleniglacial vegetation in eastern-central Europe: are there modern analogues in Siberia?. Quat. Sci. Rev. 95, 60–79 (2014).Article 
    ADS 

    Google Scholar 
    Magyari, E. K. et al. Warm Younger Dryas summers and early late glacial spread of temperate deciduous trees in the Pannonian Basin during the last glacial termination (20–9 kyr cal BP). Quat. Sci. Rev. 225, 105980 (2019).Article 

    Google Scholar 
    Sümegi, P., Magyari, E., Dániel, P., Molnár, M. & Törocsik, T. Responses of terrestrial ecosystems to Dansgaard-Oeshger cycles and Heinrich-events: a 28,000-year record of environmental changes from SE Hungary. Quat. Int. 293, 34–50 (2013).Article 

    Google Scholar 
    Hillebrand, J. Paleolithic History (Az őskőkor Története) (Magyar Szemle Társaság, 1934).
    Google Scholar 
    Vértes, L., Kretzoi, M. & Herrmann, M. Neuere Forschungen in der Jankovich-Höhle. Folia Archaeol. 9, 3–23 (1957).
    Google Scholar 
    Jánossy, D. Preliminary results of the paleontological investigations of a yet unknown rock shelter in the Bükk Mountains (A Bükk-hegység eddig ismeretlen kőfülkéjében végzett őslénytani ásatás előzetes eredménye, Répáshuta, Rejtek). Karszt- és Barlkut. Tájékoztató 72 (1963).Jánossy, D. & Kordos, L. Pleistocene-Holocene Mollusc and Vertebrate Fauna of two caves in Hungary. Ann. Hist. Musei Natl. Hungarici 68, 5–29 (1976).
    Google Scholar 
    Vértes, L. Paleolithic and Mesolithic Remains in Hungary (Az Őskőkor és az Átmeneti Kőkor Emlékei Magyarországon) (Akadémiai Kiadó, 1965).
    Google Scholar 
    Stieber, J. Oberpleistozäne Vegetationsgeschichte Ungarns im Spiegel anthrakotomischer Ergebnisse (bis 1957) (A magyarországi felsőpleisztocén vegetáció-története az anthrakotómiai eredmények (1957-ig) tükrében). Földtani Közlöny 97, 305–317 (1967).
    Google Scholar 
    Jánossy, D. Vorläufige Ergebnisse der Ausgrabungen in der Felsnische Rejtek I. (Bükkgebirge, Gem. Répáshuta). Karszt- és Barlangkutatás 3, 49–58 (1961).
    Google Scholar 
    Kovács, J. Radiocarbon chronology of late Pleistocene large mammal faunas from the Pannonian basin (Hungary). Bull. Geosci. 87, 13–19 (2012).Article 

    Google Scholar 
    Willis, K. J., Braun, M., Sümegi, P. & Tóth, A. Does soil change cause vegetation change or vice versa? A temporal perspective from Hungary. Ecology 78, 740–750 (1997).Article 

    Google Scholar 
    Magyari, E. Holocene biogeography of Fagus sylvatica L. and Carpinus betulus L. in the Carpathian-Alpine Region. Folia Hist. Musei Matra. 26, 15–35 (2002).
    Google Scholar 
    Magri, D. Persistence of tree taxa in Europe and quaternary climate changes. Quat. Int. 219, 145–151 (2010).Article 

    Google Scholar 
    Füköh, L. Biostratigraphical investigation of the mollusc fauna of Rejtek I. rock-niche and Petényi Cave: Bükk Mountains, Hungary (Rejtek kőfülke és a Petényi-barlang (Bükk-hegység) Mollusca faunájának malakosztratigráfiai vizsgálata). Folia Hist. Musei Matra. 12, 9–13 (1987).
    Google Scholar 
    Ramsey, C. B. & Lee, S. Recent and planned developments of the program OxCal. Radiocarbon 55, 720–730 (2013).CAS 
    Article 

    Google Scholar 
    Bradshaw, C. J. A., Cooper, A., Turney, C. S. M. & Brook, B. W. Robust estimates of extinction time in the geological record. Quat. Sci. Rev. 33, 14–19 (2012).Article 
    ADS 

    Google Scholar 
    Rasmussen, S. O. et al. A stratigraphic framework for abrupt climatic changes during the last glacial period based on three synchronized Greenland ice-core records: refining and extending the INTIMATE event stratigraphy. Quat. Sci. Rev. 106, 14–28 (2014).Article 
    ADS 

    Google Scholar 
    Reimer, P. J. et al. The IntCal20 Northern Hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Katona, L., Kovács, J., Kordos, L., Szappanos, B. & Linkai, I. The Csajág mammoths (Mammuthus primigenius): late Pleniglacial finds from Hungary and their chronological significance. Quat. Int. 255, 130–138 (2012).Article 

    Google Scholar 
    Buczkó, K. et al. Responses of diatoms to the Younger Dryas climatic reversal in a South Carpathian mountain lake (Romania). J. Paleolimnol. 48, 417–431 (2012).Article 
    ADS 

    Google Scholar 
    Tóth, M. et al. A chironomid-based reconstruction of late glacial summer temperatures in the southern Carpathians (Romania). Quat. Res. 77, 122–131 (2012).Article 
    CAS 

    Google Scholar 
    Sümegi, P. et al. Radiocarbon-dated paleoenvironmental changes on a lake and peat sediment sequence from the central Great Hungarian Plain (Central Europe) during the last 25,000 years. Radiocarbon 53, 85–97 (2011).Article 

    Google Scholar 
    Gill, J. L., Williams, J. W., Jackson, S. T., Lininger, K. B. & Robinson, G. S. Pleistocene megafaunal collapse, novel plant communities, and enhanced fire regimes in North America. Science 326, 1100–1103 (2009).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Feurdean, A. et al. Fire hazard modulation by long-term dynamics in land cover and dominant forest type in eastern and central Europe. Biogeosciences 17, 1213–1230 (2020).Article 
    ADS 

    Google Scholar 
    Sümegi, P. et al. Radiocarbon dated complex paleoecological and geoarcheological analyses at the Bodrogkeresztúr—Henye Gravettian site (Ne Hungary). Archeometriai Műhely 13, 31–41 (2016).
    Google Scholar 
    Herrmann, M., Jánossy, D., Stieber, J. & Vértes, L. Ausgrabungen in der Petényi- und Pesko-Höhle (Bükk-Gebirge). Folia Archaeol. 8, 3–22 (1956).
    Google Scholar 
    Royer, A. How complex is the evolution of small mammal communities during the Late Glacial in southwest France?. Quat. Int. 414, 23–33 (2016).Article 

    Google Scholar 
    Crégut-Bonnoure, E. et al. The karst of the Vaucluse, an exceptional record for the last glacial maximum (LGM) and the Late-glacial period palaeoenvironment of southeastern France. Quat. Int. 339–340, 41–61 (2014).Article 

    Google Scholar 
    Cuenca-Bescós, G., Straus, L. G., González Morales, M. R. & García Pimienta, J. C. The reconstruction of past environments through small mammals: from the Mousterian to the Bronze Age in El Mirón Cave (Cantabria, Spain). J. Archaeol. Sci. 36, 947–955 (2009).Article 

    Google Scholar 
    Kovalchuk, O. et al. Living in a time of change: late Pleistocene/Holocene transitional vertebrate fauna of Grot Skeliastyi (Crimea, Ukraine). Hist. Biol. https://doi.org/10.1080/08912963.2020.1769094 (2020).Article 

    Google Scholar 
    Puzachenko, A. Y. & Markova, A. K. Evolution of mammal species composition and species richness during the Late Pleistocene—Holocene transition in Europe: a general view at the regional scale. Quat. Int. 530–531, 88–106 (2019).Article 

    Google Scholar 
    Varga, Z. Extra-Mediterranean refugia, post-glacial vegetation history and area dynamics in Eastern Central Europe. In Relict Species: Phylogeography and Conservation Biology (eds Habel, J. C. & Assmann, T.) 57–87 (Springer Berlin Heidelberg, 2010).Chapter 

    Google Scholar 
    Magyari, E. K. et al. Holocene persistence of wooded steppe in the Great Hungarian Plain. J. Biogeogr. 37, 915–935 (2010).Article 

    Google Scholar 
    Sommer, R. S. & Nadachowski, A. Glacial refugia of mammals in Europe: evidence from fossil records. Mamm. Rev. 36, 251–265 (2006).Article 

    Google Scholar 
    Mann, D. H., Groves, P., Gaglioti, B. V. & Shapiro, B. A. Climate-driven ecological stability as a globally shared cause of Late Quaternary megafaunal extinctions: the Plaids and Stripes Hypothesis. Biol. Rev. 94, 328–352 (2019).Article 

    Google Scholar 
    Lister, A. M. & Sher, A. V. Ice cores and mammoth extinction. Nature 378, 23–24 (1995).CAS 
    Article 
    ADS 

    Google Scholar 
    Owen-Smith, N. R. Megaherbivores: The Influence of Very Large Body Size on Ecology (Cambridge University Press, 1988).Book 

    Google Scholar 
    Guthrie, R. D. Frozen Fauna of the Mammoth Steppe: The story of Blue Babe (The University of Chicago Press, 1990).Book 

    Google Scholar 
    Huntley, B. et al. Millennial climatic fluctuations are key to the structure of last glacial ecosystems. PLoS One 8, e61963 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Vörös, I. Large mammalian faunal changes during the Late Upper Pleistocene and Early Holocene times in the Carpathian Basin. In Pleistocene Environment in Hungary (ed. Pécsi, M.) 81–102 (Geographical Research Institute HAS, 1987).
    Google Scholar 
    Németh, A. et al. Holocene mammal extinctions in the Carpathian Basin: a review. Mamm. Rev. 47, 38–52 (2017).Article 

    Google Scholar 
    Marchant, R., Brewer, S., Webb, T. I. & Turvey, S. T. Holocenedeforestation: a history of human–environmental interactions, climate change, and extinction. In Holocene Extinctions (ed. Turvey, S. T.) 213–234 (Oxford University Press, 2009).Chapter 

    Google Scholar 
    Lorenzen, E. D. et al. Species-specific responses of Late Quaternary megafauna to climate and humans. Nature 479, 359–364 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 
    Herre, W. Rangifer tarandus—Ren, Rentier. In Handbuch der Saugetiere Europas 2/II Paarhufer—Artiodactyla (eds Niethammer, J. & Krapp, F.) 198–216 (Aula Publisher, 1986).
    Google Scholar 
    Sommer, R. S., Kalbe, J., Ekström, J., Benecke, N. & Liljegren, R. Range dynamics of the reindeer in Europe during the last 25,000 years. J. Biogeogr. 41, 298–306 (2014).Article 

    Google Scholar 
    Lengyel, G. & Wilczyński, J. (2018) The Gravettian and the Epigravettian chronology in eastern central Europe: a comment on Bösken et al. (2017). Palaeogeogr. Palaeoclimatol. Palaeoecol. 506, 265–269 (2018).Article 

    Google Scholar 
    Sommer, R. S. Late Pleistocene and Holocene history of mammals in Europe. Handb. Mamm. Eur. https://doi.org/10.1007/978-3-319-65038-8_3-1 (2020).Article 

    Google Scholar 
    Palkopoulou, E. et al. Holarctic genetic structure and range dynamics in the woolly mammoth. Proc. R. Soc. B Biol. Sci. 280, 20131910 (2013).Article 

    Google Scholar 
    Spötl, C., Reimer, P. J. & Göhlich, U. B. Mammoths inside the Alps during the last glacial period: radiocarbon constraints from Austria and palaeoenvironmental implications. Quat. Sci. Rev. 190, 11–19 (2018).Article 
    ADS 

    Google Scholar 
    Sümegi, P. Loess and Upper Paleolithic Environment in Hungary: An Introduction to the Environmental History of Hungary (Aurea, 2005).
    Google Scholar 
    Újvári, G. et al. Coupled European and Greenland last glacial dust activity driven by North Atlantic climate. Proc. Natl. Acad. Sci. U. S. A. 114, E10632–E10638 (2017).PubMed 
    PubMed Central 
    Article 
    ADS 
    CAS 

    Google Scholar 
    Haynes, G. Extinctions in North America’s late glacial landscapes. Quat. Int. 285, 89–98 (2013).Article 

    Google Scholar 
    Cooper, A. et al. Abrupt warming events drove Late Pleistocene Holarctic megafaunal turnover. Science 349, 602–606 (2015).CAS 
    PubMed 
    Article 
    ADS 

    Google Scholar 
    Lengyel, G. et al. The Epigravettian chronology and the human population of eastern Central Europe during MIS2. Quat. Sci. Rev. 271, 107187 (2021).Article 

    Google Scholar 
    Sajó, I. E. et al. Core-shell processing of natural pigment: upper Palaeolithic red ochre from Lovas, Hungary. PLoS One 10, 1–18 (2015).Article 
    CAS 

    Google Scholar 
    Horváth, T. & Ilon, G. Mezőlak-Szélmező-peatbog: an unusual prehistoric site (Mezőlak-szélmező-tőzegtelep: egy nem hétköznapi őskori lelőhely). Archeometriai Műhely 14, 143–183 (2017).
    Google Scholar 
    Zalai-Gaál, I. Possibilites of the social-archaeological studies of the Neolithic. Antaeus 27, 449–471 (2004).
    Google Scholar 
    Reade, H. et al. Magdalenian and Epimagdalenian chronology and palaeoenvironments at Kůlna Cave, Moravia, Czech Republic. Archaeol. Anthropol. Sci. https://doi.org/10.1007/s12520-020-01254-4 (2021).Article 
    PubMed 

    Google Scholar 
    Łanczont, M. et al. Late Glacial environment and human settlement of the Central Western Carpathians: a case study of the Nowa Biała 1 open-air site (Podhale Region, southern Poland). Quat. Int. 512, 113–132 (2019).Article 

    Google Scholar 
    Mészáros, G. & Vértes, L. A paint mine from the early Upper Palaeolithic age near Lovas (Hungary, county Veszprém). Acta Archaeol. Acad. Sci. Hung. 5, 5–34 (1955).
    Google Scholar 
    Pathou-Mathis, M. Nouvelle analyse du metérial osseux du site de Lovas. Praehistoria 3, 161–175 (2002).
    Google Scholar 
    Sobkowiak-Tabaka, I. & Diachenko, A. Approaching daily life at Late Palaeolithic camps: the case of Lubrza 10, Western Poland. Prahistorische Z. 95, 311–333 (2020).Article 

    Google Scholar 
    Molnár, M. et al. EnvironMICADAS : a mini 14C AMS with enhanced gas ion source. Radiocarbon 55, 338–344 (2013).Article 

    Google Scholar 
    Major, I. et al. Assessment and development of bone preparation for radiocarbon dating at HEKAL. Radiocarbon 61, 1551–1561 (2019).CAS 
    Article 

    Google Scholar 
    Rinyu, L. et al. Optimization of sealed tube graphitization method for environmental C-14 studies using MICADAS. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 294, 270–275 (2013).CAS 
    Article 
    ADS 

    Google Scholar 
    Molnár, M. et al. Status report of the new AMS 14 C sample preparation lab of the Hertelendi laboratory of environmental studies (Debrecen, Hungary). Radiocarbon 55, 665–676 (2013).Article 

    Google Scholar 
    Blaauw, M. & Christeny, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474 (2011).MathSciNet 
    MATH 
    Article 

    Google Scholar 
    Kosintsev, P. et al. Evolution and extinction of the giant rhinoceros Elasmotherium sibiricum sheds light on late Quaternary megafaunal extinctions. Nat. Ecol. Evol. 3, 31–38 (2019).PubMed 
    Article 

    Google Scholar 
    Davis, B. A. S. et al. The European modern pollen database (EMPD) project. Veg. Hist. Archaeobot. 22, 521–530 (2013).Article 

    Google Scholar 
    ter Braak, C. J. F. & Juggins, S. Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia 269–270, 485–502 (1993).Article 

    Google Scholar 
    Birks, H. J. B., Line, J. M., Juggings, S., Stevenson, A. C. & ter Braak, C. J. F. Diatoms and pH reconstruction. Philos. Trans. R. Soc. B 327, 263–278 (1990).ADS 

    Google Scholar 
    Prentice, I. C. Multidimensional scaling as a research tool in quaternary palynology: a review of theory and methods. Rev. Palaeobot. Palynol. 31, 71–104 (1980).Article 

    Google Scholar 
    van der Voet, H. Comparing the predictive accuracy of models using a simple randomization test. Chemom. Intell. Lab. Syst. 25, 313–323 (1994).Article 

    Google Scholar 
    Birks, H. J. B. Quantitative palaeoenvironmental reconstructions from holocene biological data. Glob. Change Holocene https://doi.org/10.4324/9780203785027 (2003).Article 

    Google Scholar 
    Rioja, J. S. Analysis of Quaternary Science Data, R package version (0.8-5). (2012).Telford, R. J. & Birks, H. J. B. A novel method for assessing the statistical significance of quantitative reconstructions inferred from biotic assemblages. Quat. Sci. Rev. 30, 1272–1278 (2011).Article 
    ADS 

    Google Scholar 
    Guiot, J. Methodology of the last climatic cycle reconstruction in France from pollen data. Palaeogeogr. Palaeoclimatol. Palaeoecol. 80, 49–69 (1990).Article 

    Google Scholar 
    Birks, H. J. B. Ecological palaeoecology and conservation biology: controversies, challenges, and compromises. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 8, 292–304 (2012).Article 

    Google Scholar 
    Kordos, L. Climatostratigraphy of Upper Pleistocene vertebrates and the conditions of loess formation in Hungary. GeoJournal 15, 163–166 (1987).Article 

    Google Scholar 
    Prentice, I. C., Guiot, J., Huntley, B., Jolly, D. & Cheddadi, R. Reconstructing biomes from palaeoecological data: a general method and its application to European pollen data at 0 and 6 ka. Clim. Dyn. 12, 185–194 (1996).Article 

    Google Scholar 
    Tarasov, P. E. et al. Present-day and mid-Holocene biomes reconstructed from pollen and plant macrofossil data from the former Soviet Union and Mongolia. J. Biogeogr. 25, 1029–1053 (1998).Article 

    Google Scholar 
    Allen, J. R. M., Watts, W. A. & Huntley, B. Weichselian palynostratigraphy, palaeovegetation and palaeoenvironment; the record from Lago Grande di Monticchio, southern Italy. Quat. Int. 73–74, 91–110 (2000).Article 

    Google Scholar  More

  • in

    Africans and Europeans differ in their facial perception of dominance and sex-typicality: a multidimensional Bayesian approach

    de Waal-Andrews, W., Gregg, A. P. & Lammers, J. When status is grabbed and when status is granted: Getting ahead in dominance and prestige hierarchies. Br. J. Soc. Psychol. 54, 445–464 (2015).PubMed 

    Google Scholar 
    Mileva, V. R., Cowan, M. L., Cobey, K. D., Knowles, K. K. & Little, A. C. In the face of dominance: Self-perceived and other-perceived dominance are positively associated with facial-width-to-height ratio in men. Pers. Individ. Dif. 69, 115–118 (2014).
    Google Scholar 
    Quist, M. C., Watkins, C. D., Smith, F. G., DeBruine, L. M. & Jones, B. C. Facial masculinity is a cue to women’s dominance. Pers. Individ. Dif. 50, 1089–1093 (2011).
    Google Scholar 
    Gallup, A. C., O’Brien, D. T., White, D. D. & Wilson, D. S. Handgrip strength and socially dominant behavior in male adolescents. Evol. Psychol. 8, 229–243 (2010).PubMed 

    Google Scholar 
    Toscano, H., Schubert, T. W. & Sell, A. N. Judgments of dominance from the face track physical strength. Evol. Psychol. 12, 1–18 (2014).PubMed 

    Google Scholar 
    Toscano, H., Schubert, T. W., Dotsch, R., Falvello, V. & Todorov, A. Physical strength as a cue to dominance: A data-driven approach. Personal. Soc. Psychol. Bull. 42, 1603–1616 (2016).
    Google Scholar 
    Kordsmeyer, T. L., Freund, D., van Vugt, M. & Penke, L. Honest signals of status: Facial and bodily dominance are related to success in physical but not nonphysical competition. Evol. Psychol. 17, 147470491986316 (2019).
    Google Scholar 
    Han, C. et al. Interrelationships among men’s threat potential, facial dominance, and vocal dominance. Evol. Psychol. 15, 1–4 (2017).
    Google Scholar 
    Sell, A. et al. Human adaptations for the visual assessment of strength and fighting ability from the body and face. Proc. R. Soc. B Biol. Sci. 276, 575–584 (2009).
    Google Scholar 
    Kleisner, K., Kočnar, T., Rubešová, A. & Flegr, J. Eye color predicts but does not directly influence perceived dominance in men. Pers. Individ. Dif. 49, 59–64 (2010).
    Google Scholar 
    Windhager, S., Schaefer, K. & Fink, B. Geometric morphometrics of male facial shape in relation to physical strength and perceived attractiveness, dominance, and masculinity. Am. J. Hum. Biol. 23, 805–814 (2011).PubMed 

    Google Scholar 
    Albert, G., Wells, E., Arnocky, S., Liu, C. H. & Hodges-Simeon, C. R. Observers use facial masculinity to make physical dominance assessments following 100-ms exposure. Aggress. Behav. https://doi.org/10.1002/ab.21941 (2020).Article 
    PubMed 

    Google Scholar 
    Batres, C., Re, D. E. & Perrett, D. I. Influence of perceived height, masculinity, and age on each other and on perceptions of dominance in male faces. Perception 44, 1293–1309 (2015).PubMed 

    Google Scholar 
    Boothroyd, L. G., Jones, B. C., Burt, D. M. & Perrett, D. I. Partner characteristics associated with masculinity, health and maturity in male faces. Pers. Individ. Dif. 43, 1161–1173 (2007).
    Google Scholar 
    Main, J. C., Jones, B. C., DeBruine, L. M. & Little, A. C. Integrating gaze direction and sexual dimorphism of face shape when perceiving the dominance of others. Perception 38, 1275–1283 (2009).PubMed 

    Google Scholar 
    Van Dongen, S. & Sprengers, E. Hand grip strength in relation to morphological measures of masculinity, fluctuating asymmetry and sexual behaviour in males and females. Sex Horm. https://doi.org/10.5772/25880 (2012).Article 

    Google Scholar 
    Fink, B., Neave, N. & Seydel, H. Male facial appearance signals physical strength to women. Am. J. Hum. Biol. 19, 82–87 (2007).PubMed 

    Google Scholar 
    Little, A. C., Třebický, V., Havlíček, J., Roberts, S. C. & Kleisner, K. Human perception of fighting ability: Facial cues predict winners and losers in mixed martial arts fights. Behav. Ecol. 26, 1470–1475 (2015).
    Google Scholar 
    Law, S. M. J. et al. Facial appearance is a cue to oestrogen levels in women. Proc. Biol. Sci. 273, 135–140 (2006).
    Google Scholar 
    Probst, F., Bobst, C. & Lobmaier, J. S. Testosterone-to-estradiol ratio is associated with female facial attractiveness. Q. J. Exp. Psychol. 69, 89–99 (2016).
    Google Scholar 
    Marečková, K. et al. Testosterone-mediated sex differences in the face shape during adolescence: Subjective impressions and objective features. Horm. Behav. 60, 681–690 (2011).PubMed 

    Google Scholar 
    Whitehouse, A. J. O. et al. Prenatal testosterone exposure is related to sexually dimorphic facial morphology in adulthood. Proc. R. Soc. B Biol. Sci. 282, 78–94 (2015).
    Google Scholar 
    Kordsmeyer, T. L., Freund, D., Pita, S. R., Jünger, J. & Penke, L. Further evidence that facial width-to-height ratio and global facial masculinity are not positively associated with testosterone levels. Adapt. Hum. Behav. Physiol. 5, 117–130 (2019).
    Google Scholar 
    Chiu, H. T., Shih, M. T. & Chen, W. L. Examining the association between grip strength and testosterone. Aging Male 3, 1–8 (2019).
    Google Scholar 
    Hirschberg, A. L. et al. Effects of moderately increased testosterone concentration on physical performance in young women: A double blind, randomised, placebo controlled study. Br. J. Sports Med. 3, 1–7. https://doi.org/10.1136/bjsports-2018-100525 (2019).Article 

    Google Scholar 
    Finkelstein, J. S. et al. Gonadal steroids and body composition, strength, and sexual function in men. N. Engl. J. Med. 369, 1011–1022 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Bokhoven, I. et al. Salivary testosterone and aggression, delinquency, and social dominance in a population-based longitudinal study of adolescent males. Horm. Behav. 50, 118–125 (2006).PubMed 

    Google Scholar 
    Carré, J. M. & Olmstead, N. A. Social neuroendocrinology of human aggression: Examining the role of competition-induced testosterone dynamics. Neuroscience 286, 171–186 (2015).PubMed 

    Google Scholar 
    Lefevre, C. E., Etchells, P. J., Howell, E. C., Clark, A. P. & Penton-Voak, I. S. Facial width-to-height ratio predicts self-reported dominance and aggression in males and females, but a measure of masculinity does not. Biol. Lett. 10, 20140729 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Alrajih, S. & Ward, J. Increased facial width-to-height ratio and perceived dominance in the faces of the UK’s leading business leaders. Br. J. Psychol. 105, 153–161 (2014).PubMed 

    Google Scholar 
    Watkins, C. D., Jones, B. C. & DeBruine, L. M. Individual differences in dominance perception: Dominant men are less sensitive to facial cues of male dominance. Pers. Individ. Dif. 49, 967–971 (2010).
    Google Scholar 
    Wang, X., Guinote, A. & Krumhuber, E. G. Dominance biases in the perception and memory for the faces of powerholders, with consequences for social inferences. J. Exp. Soc. Psychol. 78, 23–33 (2018).
    Google Scholar 
    de Carrito, M. L. et al. The role of sexually dimorphic skin colour and shape in attractiveness of male faces. Evol. Hum. Behav. 37, 125–133 (2016).
    Google Scholar 
    Stephen, I. D., Oldham, F. H., Perrett, D. I. & Barton, R. A. Redness enhances perceived aggression, dominance and attractiveness in men’s faces. Evol. Psychol. 10, 562–572 (2012).PubMed 

    Google Scholar 
    Stephen, I. D. & Perrett, D. I. Color and face perception. in Handbook of Color Psychology (eds. Elliot, A. J., Fairchild, M. D. & Franklin, A.) 585–602 (Cambridge University Press, 2016). https://doi.org/10.1017/cbo9781107337930.029.Carrito, M. L. & Semin, G. R. When we don’t know what we know–Sex and skin color. Cognition 191, 103972 (2019).PubMed 

    Google Scholar 
    Said, C. P. & Todorov, A. A statistical model of facial attractiveness. Psychol. Sci. 22, 1183–1190 (2011).PubMed 

    Google Scholar 
    Mitteroecker, P., Windhager, S., Møller, G. B. & Schaefer, K. The morphometrics of ‘masculinity’ in human faces. PLoS One 10, e0118374 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez-Pages, S., Rodriguez-Ruiz, C. & Turiegano, E. Facial masculinity: How the choice of measurement method enables to detect its influence on behaviour. PLoS One 9, 10078 (2014).
    Google Scholar 
    Scott, I. M. L., Pound, N., Stephen, I. D., Clark, A. P. & Penton-Voak, I. S. Does masculinity matter? The contribution of masculine face shape to male attractiveness in humans. PLoS One 5, e13585 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rennels, J. L., Bronstad, P. M. & Langlois, J. H. Are attractive men’s faces masculine or feminine ? The importance of type of facial stimuli. J. Exp. Psychol. Hum. Percept. Perform. 34, 884–893 (2008).PubMed 

    Google Scholar 
    Swaddle, J. P. & Reierson, G. W. Testosterone increases perceived dominance but not attractiveness in human males. Proc. R. Soc. B Biol. Sci. 269, 2285–2289 (2002).CAS 

    Google Scholar 
    Hester, N., Jones, B. C. & Hehman, E. Perceived femininity and masculinity contribute independently to facial impressions. J. Exp. Psychol. Gen. https://doi.org/10.1037/xge0000989 (2020).Article 
    PubMed 

    Google Scholar 
    Howansky, K., Albuja, A. & Cole, S. Seeing Gender: Perceptual Representations of Transgender Individuals. Soc. Psychol. Personal. Sci. 11, 474–482 (2020).
    Google Scholar 
    Kleisner, K. et al. How and why patterns of sexual dimorphism in human faces vary across the world. Sci. Rep. 7, 10048 (2021).
    Google Scholar 
    Kleisner, K. et al. African and European perception of African female attractiveness. Evol. Hum. Behav. 38, 744–755 (2017).
    Google Scholar 
    Strom, M. A., Zebrowitz, L. A., Zhang, S., Bronstad, P. M. & Lee, H. K. Skin and bones: The contribution of skin tone and facial structure to racial prototypicality ratings. PLoS One 7, e41193 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coetzee, V., Greeff, J. M., Stephen, I. D. & Perrett, D. I. Cross-cultural agreement in facial attractiveness preferences: The role of ethnicity and gender. PLoS One 9, 1700 (2014).
    Google Scholar 
    Henrich, J., Heine, S. J. & Norenzayan, A. Most people are not WEIRD. Nature 466, 29–29 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Třebický, V., Fialová, J., Kleisner, K. & Havlíček, J. Focal length affects depicted shape and perception of facial images. PLoS One 11, e0149313 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Nábělková, M. Closely-related languages in contact: Czech, Slovak, “Czechoslovak”. Int. J. Soc. Lang. 183, 53–73 (2007).
    Google Scholar 
    Dixson, B. J. Facial width to height ratio and dominance. Encycl. Evol. Psychol. Sci. https://doi.org/10.1007/978-3-319-16999-6 (2017).Article 

    Google Scholar 
    Geniole, S. N. & McCormick, C. M. Facing our ancestors: Judgements of aggression are consistent and related to the facial width-to-height ratio in men irrespective of beards. Evol. Hum. Behav. 36, 279–285 (2015).
    Google Scholar 
    Třebický, V. et al. Further evidence for links between facial width-to-height ratio and fighting success: Commentary on Zilioli et al. (2014). Aggress. Behav. 41, 331–334 (2015).PubMed 

    Google Scholar 
    McLaren, K. The development of the CIE 1976 (L*a*b*) uniform colour space and colour-difference formula. J. Soc. Dye. Colour. 92, 338–341 (1976).
    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coetzee, V. et al. African perceptions of female attractiveness. PLoS ONE 7, 3–8 (2012).
    Google Scholar 
    Webster, M. & Sheets, H. D. A practical introduction to landmark-based geometric morphometrics. Paleontol. Soc. Pap. 16, 163–188 (2010).Kleisner, K., Pokorný, Š & Saribay, S. A. Toward a new approach to cross-cultural distinctiveness and typicality of human faces: The cross-group typicality/ distinctiveness metric. Front. Psychol. 10, 124 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Bookstein, F. L. Biometrics, biomathematics and the morphometric synthesis. Bull. Math. Biol. 58, 313–365 (1996).CAS 
    PubMed 
    MATH 

    Google Scholar 
    Rohlf, F. J. The tps series of software. Hystrix 26, 1–4 (2015).
    Google Scholar 
    Adams, D. C. & Otárola-Castillo, E. Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (2021).Revelle, W. psych: Procedures for Personality and Psychological Research. (2018).Shrout, P. E. & Fleiss, J. L. Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86, 420–428 (1979).CAS 
    PubMed 

    Google Scholar 
    McElreath, R. rethinking: Statistical Rethinking book package. R package version 2.13. (2020).Stan Development Team. RStan: The R interface to Stan. R package version 2.21.2. (2020).Rhodes, G. The evolutionary psychology of facial beauty. Annu. Rev. Psychol. 57, 199–226 (2006).PubMed 

    Google Scholar 
    Voegeli, R. et al. Cross-cultural perception of female facial appearance: A multi-ethnic and multi-centre study. PLoS ONE 16, 8–12 (2021).
    Google Scholar 
    Kočnar, T., Adil Saribay, S. & Kleisner, K. Perceived attractiveness of Czech faces across 10 cultures: Associations with sexual shape dimorphism, averageness, fluctuating asymmetry, and eye color. PLoS One 14, e0225549 (2019).Pavlovič, O., Fiala, V. & Kleisner, K. Environmental convergence in facial preferences: A cross-group comparison of Asian Vietnamese, Czech Vietnamese, and Czechs. Sci. Rep. 11, 1–10 (2021).
    Google Scholar 
    Gonzalez-Santoyo, I. et al. The face of female dominance: Women with dominant faces have lower cortisol. Horm. Behav. 71, 16–21 (2015).CAS 
    PubMed 

    Google Scholar 
    Perrett, D. I. et al. Effects of sexual dimorphism on facial attractiveness. Nature 394, 884–887 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Saribay, S. A. et al. The Bogazici face database: Standardized photographs of Turkish faces with supporting materials. PLoS One 13, 10058 (2018).
    Google Scholar 
    Alharbi, S. A. H., Holzleitner, I. J., Lee, A. J., Saribay, S. A. & Jones, B. C. Women’s preferences for sexual dimorphism in faces: Data from a sample of arab women. Evol. Psychol. Sci. 6, 328–334 (2020).
    Google Scholar 
    Jones, B. C. et al. To which world regions does the valence–dominance model of social perception apply?. Nat. Hum. Behav. 5, 159–169 (2021).PubMed 

    Google Scholar 
    Sutherland, C. A. M. et al. Facial first impressions across culture: Data-driven modeling of Chinese and British perceivers’ unconstrained facial impressions. Personal. Soc. Psychol. Bull. 44, 521–537 (2017).
    Google Scholar 
    Marcinkowska, U. M. et al. Cross-cultural variation in men’s preference for sexual dimorphism in women’s faces. Biol. Lett. 10, 4–7 (2014).
    Google Scholar 
    Marcinkowska, U. M. et al. Women’s preferences for men’s facial masculinity are strongest under favorable ecological conditions. Sci. Rep. 9, 1–10 (2019).CAS 

    Google Scholar 
    Todorov, A., Olivola, C. Y., Dotsch, R. & Mende-Siedlecki, P. Social attributions from faces: Determinants, consequences, accuracy, and functional significance. Annu. Rev. Psychol. 66, 519–545 (2015).PubMed 

    Google Scholar 
    Little, A. C., Jones, B. C. & Debruine, L. M. Facial attractiveness: Evolutionary based research. Philos. Trans. R. Soc. B Biol. Sci. 366, 1638–1659 (2011).Foo, Y. Z., Simmons, L. W. & Rhodes, G. Predictors of facial attractiveness and health in humans. Sci. Rep. 7, 39731 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dion, K., Berscheid, E. & Walster, E. What is beautiful is good. J. Pers. Soc. Psychol. 24, 285–290 (1972).CAS 
    PubMed 

    Google Scholar 
    Cheng, J. T., Tracy, J. L., Foulsham, T., Kingstone, A. & Henrich, J. Two ways to the top: Evidence that dominance and prestige are distinct yet viable avenues to social rank and influence. J. Pers. Soc. Psychol. 104, 103–125 (2013).PubMed 

    Google Scholar 
    van den Berghe, P. L. & Frost, P. Skin color preference, sexual dimorphism and sexual selection: A case of gene culture co-evolution?. Ethn. Racial Stud. 9, 87–113 (1986).
    Google Scholar 
    Fink, B. et al. Colour homogeneity and visual perception of age, health and attractiveness of male facial skin. J. Eur. Acad. Dermatology Venereol. 26, 1486–1492 (2012).CAS 

    Google Scholar 
    Gallagher, N. M. & Bodenhausen, G. V. Gender essentialism and the mental representation of transgender women and men: A multimethod investigation of stereotype content. Cognition 217, 104887 (2021).Fiala, V. et al. Facial attractiveness and preference of sexual dimorphism: A comparison across five populations. Evol. Hum. Sci. 3, e38 (2021). More

  • in

    Role of trade agreements in the global cereal market and implications for virtual water flows

    Link activationContingency tables corresponding to the three cases described in the “Methods” section are shown in Table 1. This Table is quite revealing in several ways. The most interesting aspect is that the highest probability of link establishment occurs when an agreement is activated (Operational Activation in t).Table 1 Contingency tables.Full size tableIn this case, the probability of activation of a new link is 8.8%—namely, the ratio of new activation 7.3% to the total number of links that were not active at year t-1 (82.6%)—which is significantly higher than in the case of links not covered by a commercial agreement (No Trade Agreement), amounting to 1.4%.Therefore, the findings show that operational activation is associated with creating new trade relations between two particular countries. The third set, which considers links where a trade agreement exists in both years (t-1) and t (Trade Agreement in t-1 and t), also shows a consistent activation probability of 6%. This result confirms the assumption that the coverage of a commercial agreement, and not only its implementation, encourages the genesis of new links.Moreover, Table 1 suggests some interesting considerations on trade persistence. To establish these probabilities, we focus on the row totals in which a trade relationship is present at year (t-1), i.e., 28.8% in the case Trade Agreement in t-1 and t. The presence of an agreement influences in a positive way the probability of maintaining a trade relationship. In fact, when a trade agreement is present in both years, (t-1) and t, the probability of preserving the trade relationship is 87.1% ((frac{25.1}{28.8}times {100})), while when a trade agreement is activated at year t, the probability slightly decreases to 81.6%. In cases where trade agreements are missing (No Trade Agreement in t) we observe the probability of retaining a relationship decreases to 77.3%.Another interesting aspect concerns the probability of link deactivation. Once more, the coverage of a trade agreement favors a lower likelihood of deactivation of existing links. The ratio of the percentage of links that were active at year (t-1) and are no more active at year t to the total is 22.7% ((frac{1}{4.4}times {100})) in the case of a lack of agreement. This probability decreases to 18.4% ((frac{3.2}{17.4}times {100})) if we consider only the year of activation of the agreement (Operational Activation), and drops to 12.8% ((frac{3.7}{28.8}times {100})) when looking at agreements present in both years.Together, these results provide insights into the role of trade agreements in the network topology of cereal trade. While the establishment of a trade agreement promotes the potential for new trade links, the presence of the agreement in two consecutive years allows both to maintain an existing relationship and reduce the likelihood of link shutdowns.Flow variationsIn this second part, we study the impact of trade agreements on existing trade flows, analyzing the relationship between the flows at time t and the flows at time (t-1) in each of the three cases described in the “Methods” section—i.e., No trade agreements, Operational Activation in t, and Trade agreement in t-1 and t—measured in US$, Kcal and m(^3) of virtual water.Figure 3Kernel Density scatterplot between trade flows of cereals at time t (on the y-axis) and time (t-1) (on the x-axis) for the three different sets: No trade agreements (column a), Operational Activation in t (b), and Trade agreement in (t-1) and t (c). Panels in the first, second and third row refer to flows in US$, Kcal, and virtual water (m(^3)), respectively. Flow values are shown on a logarithmic scale. The color bar indicates probability densities, and the bisector is highlighted. Notice (i) the higher volumes in the case of flows covered by trade agreement and (ii) a a less relevant increase in volume when the flows are seen in the virtual water lens.Full size imageFigure 3 shows three different scatterplots for each unit of measure (US$ and Kcal and m(^3)). The scatterplots are colored by Kernel Density Estimation (KDE), a non-parametric technique for probability density functions. KDE aims to take a finite sample of data and infer the underlying probability density function. Figure 3 relates the flows at time (t-1) with the flows at time t, both reported on a logarithmic scale since the quantities span several orders of magnitude. Let’s start focusing on flows in terms of dollars and kilocalories. What stands out from the figure is the displacement of the flows toward higher values when they are covered by trade agreements (Trade Agreement in t-1 and t), compared to the case where flows have no trade agreement.We have quantitative evidence of this result by looking at Table 2 where the average flows in both years are shown. The average values of flows in both US$ and Kcal are much higher when there is a trade agreement over time (Trade agreement in t-1 and t). Flows have an average value of (6.13times 10^{7})$, larger than the mean of (3.05times 10^{7})$ achieved by flows not covered by a trade agreement. By comparing the distributions of the two distinct sets with different dimensions by applying the non-parametric Mann-Whitney test, we stand to evaluate this result as extremely significant (p-value approximately 0).Table 2 Average values of trade flows and flow variation index (rho _{ij}) for each of the three sets, in US$ (a), Kcal (b), and Virtual water (VW, m(^3)). The bar indicates the average operator.Full size tableAlso, while operational activation plays a crucial role in creating new links in the global cereal trade, it does not appear to hold central importance in driving flow increases. The average value of flows in both years (t-1) and t are, in fact, smaller than those not covered by trade agreements.The view appears slightly different when we look at the values in terms of virtual water (VW, m(^3)), i.e., the sum of the blue and green components. Flows with a commercial agreement show higher averages values than those not covered by agreements (see panel (c) of Table 2), but the increase is significantly lower than the one recorded in the other two units (US$ and Kcal). The increase recorded in dollars is about 100%, while in terms of virtual water this increase is less than 30%. In the next subsection, we will focus on this peculiar behavior, which reveals a different water content of the goods traded along links covered or not by agreements.Another significant result that emerges from Fig. 3 is the smaller amplitude (around the bisector) of the cloud in the case of link covered by agreements in both years (t-1) and t. This is confirmed by comparing the weighted average of the absolute value of the inter-annual flow variation index (overline{rho _{ij}}_{w}) (weights are the flows traded in the year (t-1)). The index (rho _{ij}) is used to highlight cases where the activation or the presence of the agreement generates a significant flow increase.Larger (rho _{ij}) values correspond to larger average variations from year (t-1) to year t. Accordingly, we observe that in the presence of trade agreement at time (t-1) and t a smaller (rho _{ij}) value of 24.79 percentage points (p.p) is found (see panel (a) of Table 2).Considering all the units (US$, Kcal, and m(^3)), this value is about half of the average inter-annual variation that occurs when there is no trade agreement. Hence, the presence of a commercial agreement over time reduces large fluctuations, stabilizing the year-to-year variations.To shed light on the response of water flows to the occurrence of the agreement, we refer to water productivity (WP)34, both in economic and nutritional terms. Table 3 shows that the Nutritional WP for the total virtual water is, on average, 35% higher in the flows under a trade agreement than in flows that are not under any treaty, while the Economic WP is 62% higher. We also analyze the two virtual water components, blue and green, separately.Interestingly, for blue water in the presence of a trade agreement, the Nutritional WP and the Economic WP for the flows covered by trade agreement are, on average, 68% and 93% higher than for the flows not covered by agreements. In other words, for one cubic meter of water used for grain production, more kilo-calories and dollars are exchanged when an agreement is in place, and this difference is even more significant in terms of blue water.Table 3 Average of nutritional ((mathrm {kcal/m^3})) and economic ((mathrm {US$/m^3})) water productivity (WP) for the total, blue and green virtual water.Full size tableWe also investigate in detail which products contribute most to the imbalance between flows in terms of kcal or water. To this aim, Fig. 4 reports the nutritional WP for each grain item distinguishing whether or not there is a commercial agreement (similar results occur if the economic WP is considered).The figure highlights that the nutritional WP is generally higher in the case where flows are covered by trade agreements (green bars). The most noticeable cases are Maize and Wheat, which are also the most traded products: the value of nutritional WP increases from 1978 (mathrm {kcal/m^3}) (No trade agreement) to 2851 (mathrm {kcal/m^3}) in case of a trade agreement for Wheat, and from 4471 (mathrm {kcal/m^3}) to 5026 for Maize.Figure 4The bar chart shows the nutritional WP for each cereal product in the two sets of Trade agreement in t-1 and t (in green) and No trade agreement (in red). The number over the bars represents the percentage of kcal traded for each product compared to the total kcal of all cereals. Note that green bars are higher than the red ones in 80% of cases.Full size imageA few products have a higher nutritional WP value when the flows are not involved in any treaty, e.g., Rye. This behavior can be traced back to a few flows that dominate the market between countries not linked by trade agreements. For example, trade in Rye in 2014 is attributable to just two major flows in terms of caloric intake relative to water quantity (notably, one between Germany and Japan, the other between Russia and Turkey).Figure 4 clearly shows that grains characterized by greater water efficiency generally move along the links covered by agreements.Performance of trade agreements in increasing flowOur results show that links covered by agreements exhibit larger flows than links not covered by treaties. We also intend to obtain information about the possible flow increase under a specific agreement.As mentioned in the “Methods” section, we selected only those operating links when the agreement came into force to evaluate the variation index ((rho _a)) under a specific treaty. Consequently, since there are trade agreements that came into force before the time interval considered, these are excluded from this analysis. As a result, the total number of agreements selected for this analysis is 99, 61 of which show an increase (positive (rho _{a}) values), while the remaining 38 exhibits a decrease in the flux intensities compared to the overall global trend. We present in Table 5 the results for positive (rho _{a}) variations, while trade agreements with negative (rho _{a}) values are reported in Supplementary Material (5). We provide this analysis in terms of economic flows (US$), but very similar results are obtained if calories (kcal) or virtual water (m(^3)) are chosen as the unit of measure.Table 4 Flow values in millions of dollars in year t and percent changes (rho _{a}) from (t-1) to t for each trade agreement.Full size tableWhat stands out in Table 4 is that most of the positive percentage changes occur in Europe and Central Asia regions. This may be due to long-term commercial activities in Europe, which are supported by the geographical proximity of the countries, as well as the wide variety of political and economic treaties among them. Europe, in fact, is characterized by a fourfold increase in cereal production since the 1960s due to the adoption of the Common Agricultural Policy, which has intensified trade in Europe and towards external markets30.A closer inspection of Table 4 shows that among the agreements with the most significant flows that showed the greatest increases, we find EEA (European Economic Area) in Europe and Central Asia, Japan-ASEAN in East Asia and Pacific, and COMESA in Sub-Saharan Africa.With lower flow values but large increases ((rho _{a})) due to the entry into force of trade agreements, the India-Sri Lanka agreement in South Asia stands out above all others. Also, the treaty signed in 2013 between EU-Colombia and Peru shows significant variations in terms of the percentage of flow increase, but the volume of the corresponding flow is inferior when compared with other trade agreements. On the other hand, the North American Free Trade Agreement (NAFTA), which became effective in 1994, has a lower (rho _{a}) value, but the flows on which the variation is calculated are significantly higher. More