More stories

  • in

    Sabertooth carcass consumption behavior and the dynamics of Pleistocene large carnivoran guilds

    Turner, A. & Antón, M. The Big Cats and Their Fossil Relatives (Columbia University Press, 1997).
    Google Scholar 
    Werdelin, L., Yamaguchi, N., Johnson, W. E. & O’Brien, S. J. Phylogeny and evolution of cats (Felidae). In Biology and Conservation of Wild Felids (eds MacDonald, D. W. & Loveridge, A. J.) 59–82 (Oxford University Press, 2011).
    Google Scholar 
    Antón, M. Sabertooth (Indiana University Press, 2013).
    Google Scholar 
    Ewer, R. F. The Carnivores (Cornell University Press, 1973).
    Google Scholar 
    Terborgh, J. W. et al. Ecological meltdown in predator-free forest fragments. Science 294, 1923–1926. https://doi.org/10.1126/science.1064397 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sinclair, A. R. E., Mduma, S. & Brashares, J. S. Patterns of predation in a diverse predator–prey system. Nature 425, 288–290. https://doi.org/10.1038/nature01934 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet Earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ripple, W. J. & Van Valkenburgh, B. Linking top-down forces to the Pleistocene megafaunal extinctions. Bioscience 60, 516–526. https://doi.org/10.1525/bio.2010.60.7.7 (2010).Article 

    Google Scholar 
    Van Valkenburgh, B., Hayward, M. W., Ripple, W. J., Meloro, C. & Roth, V. L. The impact of large terrestrial carnivores on Pleistocene ecosystems. Proc Natl Acad Sci USA 113, 862–867. https://doi.org/10.1073/pnas.1502554112 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lewis, M. E. Carnivoran paleoguilds of Africa: implications for hominid food procurement strategies. J. Hum. Evol. 32, 257–288. https://doi.org/10.1006/jhev.1996.0103 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lewis, M. E. The postcranial morphology of Smilodon. In Smilodon: The Iconic Sabertooth (eds Werdelin, L. et al.) 171–195 (Johns Hopkins University Press, 2018).
    Google Scholar 
    Antón, M., Galobart, A. & Turner, A. Co-existence of scimitar-toothed cats, lions and hominins in the European Pleistocene. Implications of the post-cranial anatomy of Homotherium latidens (Owen) for comparative palaeoecology. Q. Sci. Rev. 24, 1287–1301. https://doi.org/10.1016/j.quascirev.2004.09.008 (2005).ADS 
    Article 

    Google Scholar 
    Hartstone-Rose, A. & Wahl, S. Using radii-of-curvature for the reconstruction of extinct South African carnivoran masticatory behavior. C.R. Palevol 7, 629–643. https://doi.org/10.1016/j.crpv.2008.09.015 (2008).Article 

    Google Scholar 
    Andersson, K., Norman, D. & Werdelin, L. Sabretoothed carnivores and the killing of large prey. PLoS ONE 6, e24971. https://doi.org/10.1371/journal.pone.0024971 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Valkenburgh, B. & Hertel, F. Tough times at La Brea: tooth breakage in large carnivores of the Late Pleistocene. Science 261, 456–459 (1993).ADS 
    Article 

    Google Scholar 
    DeSantis, L. R. G., Schubert, B. W., Scott, J. R. & Ungar, P. S. Implications of diet for the extinction of saber-toothed cats and American lions. PLoS ONE 7, e52453. https://doi.org/10.1371/journal.pone.0052453 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bocherens, H. et al. Paleobiology of sabretooth cat Smilodon populator in the Pampean Region (Buenos Aires Province, Argentina) around the Last Glacial Maximum: insights from carbon and nitrogen stable isotopes in bone collagen. Palaeogeogr. Palaeoclimatol. Palaeoecol. 449, 463–474. https://doi.org/10.1016/j.palaeo.2016.02.017 (2016).Article 

    Google Scholar 
    DeSantis, L. R. G. et al. Causes and consequences of Pleistocene megafaunal extinctions as revealed from Rancho La Brea mammals. Curr. Biol. 29, 2488-2495.e2. https://doi.org/10.1016/j.cub.2019.06.059 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    DeSantis, L. R. G., Feranec, R. S., Antón, M. & Lundelius, E. L. Dietary ecology of the scimitar-toothed cat Homotherium serum. Curr. Biol. 31, 1–8. https://doi.org/10.1016/j.cub.2021.03.061 (2021).CAS 
    Article 

    Google Scholar 
    Christiansen, P. & Adolfssen, J. S. Osteology and ecology of Megantereon cultridens SE311 (Mammalia; Felidae; Machairodontinae), a sabrecat from the Late Pliocene—Early Pleistocene of Senéze, France. Zool. J. Linn. Soc. 151, 833–884 (2007).Article 

    Google Scholar 
    Van Valkenburgh, B. Predation in sabre-tooth cats. In Palaeobiology II (eds Briggs, D. E. G. & Crowther, P. R.) 420–423 (Wiley, 2001). https://doi.org/10.1002/9780470999295.ch101.Chapter 

    Google Scholar 
    DeSantis, L. R. G. Dietary ecology of Smilodon. In Smilodon: The Iconic Sabertooth (eds Werdelin, L. et al.) 153–170 (Johns Hopkins University Press, 2018).
    Google Scholar 
    Palmqvist, P., Torregrosa, V., Pérez-Claros, J. A., Martínez-Navarro, B. & Turner, A. A re-evaluation of the diversity of Megantereon (Mammalia, Carnivora, Machairodontinae) and the problem of species identification in extinct carnivores. J. Vertebr. Paleontol. 27, 160–175. https://doi.org/10.1671/0272-4634(2007)27[160:AROTDO]2.0.CO;2 (2007).Article 

    Google Scholar 
    Van Valkenburgh, B. & Ruff, C. B. Canine tooth strength and killing behaviour in large carnivores. J. Zool. 212, 379–397 (1987).Article 

    Google Scholar 
    Gittleman, J. L. Carnivore body size: ecological and taxonomic correlates. Oecologia 67, 540–554. https://doi.org/10.1007/BF00790026 (1985).ADS 
    Article 
    PubMed 

    Google Scholar 
    Hemmer, H. Saber-tooth cats and cave lions—from fossils to felid performance and former living communities. In Late Neogene and Quaternary Biodiversity and Evolution: Regional Developments and Interregional Correlations, Courier Forschungsinstitut Senckenberg (eds Kahlke, R.-D. et al.) 1–12 (E. Schweizerbart’sche Verlagsbuchhandlung, 2007).
    Google Scholar 
    Domingo, L., Domingo, M. S., Koch, P. L., Morales, J. & Alberdi, M. T. Carnivoran resource and habitat use in the context of a Late Miocene faunal turnover episode. Palaeontology 60, 461–483. https://doi.org/10.1111/pala.12296 (2017).Article 

    Google Scholar 
    Marean, C. W. & Ehrhardt, C. L. Paleoanthropological and paleoecological implications of the taphonomy of a sabertooth’s den. J. Hum. Evol. 29, 515–547 (1995).Article 

    Google Scholar 
    Spencer, L. M., Van Valkenburgh, B. & Harris, J. M. Taphonomic analysis of large mammals recovered from the Pleistocene Rancho La Brea tar seeps. Paleobiology 29, 561–575. https://doi.org/10.1666/0094-8373(2003)029%3c0561:TAOLMR%3e2.0.CO;2 (2003).Article 

    Google Scholar 
    Chahud, A. Occurrence of the sabretooth cat Smilodon populator (Felidae, Machairodontinae) in the Cuvieri cave, eastern Brazil. Palaeontol. Electron. 23, a24. https://doi.org/10.26879/1056 (2020).Article 

    Google Scholar 
    Prevosti, F. J. & Martín, F. M. Paleoecology of the mammalian predator guild of southern Patagonia during the latest Pleistocene: ecomorphology, stable isotopes, and taphonomy. Quat. Int. 305, 74–84. https://doi.org/10.1016/j.quaint.2012.12.039 (2013).Article 

    Google Scholar 
    Lindsey, E. L. & Seymour, K. L. “Tar Pits” of the western neotropics: paleoecology, taphonomy, and mammalian biogeography. In La Brea and Beyond: The Palaeontology of Asphalt-Preserved Biotas (ed. Harris, J. M.) 111–123 (Natural History Museum of Los Angeles County, 2015).
    Google Scholar 
    Hulbert, R. C. The Fossil Vertebrates of Florida (University of Florida Press, 2001).
    Google Scholar 
    Domingo, M. S., Alberdi, M. T., Azanza, B., Silva, P. G. & Morales, J. Origin of an assemblage massively dominated by carnivorans from the Miocene of Spain. PLoS ONE 8, e63046. https://doi.org/10.1371/journal.pone.0063046 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brain, C. K. The Hunters or the Hunted: An Introduction to African Cave Taphonomy (University of Chicago Press, 1981).
    Google Scholar 
    Palmqvist, P., Martínez-Navarro, B. & Arribas, A. Prey selection by terrestrial carnivores in a lower Pleistocene paleocommunity. Paleobiology 22, 514–534. https://doi.org/10.1017/S009483730001650X (1996).Article 

    Google Scholar 
    Morgan, G. S. & Hulbert, R. C. Overview of the geology and vertebrate biochronology of the Leisey Shell Pit Local Fauna, Hillsborough County, Florida. Bull. Am. Mus. Nat. Hist. 37, 1–92 (1995).
    Google Scholar 
    Martin, L. D., Babiarz, J. P., Naples, V. L. & Hearst, J. Three ways to be a saber-toothed cat. Naturwissenschaften 87, 41–44 (2000).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    M. Domínguez-Rodrigo, C.P. Egeland, T.R. Pickering, Equifinality in carnivore tooth marks and the extended concept of archaeological palimpsests: implications for models of passive scavenging by early hominid. In: Breathing Life into Fossils: Taphonomic Studies in Honor of C.K. (Bob) Brain, Stone Age Institute Press, Gosport, Indiana, 2007, pp. 255–267.Gidna, A. O., Kisui, B., Mabulla, A. Z. P., Musiba, C. & Domínguez-Rodrigo, M. An ecological neo-taphonomic study of carcass consumption by lions in Tarangire National Park (Tanzania) and its relevance for human evolutionary biology. Quat. Int. 322–323, 167–180. https://doi.org/10.1016/j.quaint.2013.08.059 (2014).Article 

    Google Scholar 
    Gidna, A. O., Domínguez-Rodrigo, M. & Pickering, T. R. Patterns of bovid long limb bone modification created by wild and captive leopards and their relevance to the elaboration of referential frameworks for paleoanthropology. J. Archaeol. Sci. Rep. 2, 302–309. https://doi.org/10.1016/j.jasrep.2015.03.003 (2015).Article 

    Google Scholar 
    Yravedra, J., Lagos, L. & Bárcena, F. A taphonomic study of wild wolf (Canis lupus) modification of horse bones in northwestern Spain. J. Taphon. 9, 37–65 (2011).
    Google Scholar 
    Fosse, P. et al. Bone modification by modern wolf (Canis lupus): a taphonomic study from their natural feeding places. J. Taphon. 10, 197–217 (2012).
    Google Scholar 
    Domínguez-Rodrigo, M. & Pickering, T. R. A multivariate approach for discriminating bone accumulations created by spotted hyenas and leopards: harnessing actualistic data from East and southern Africa. J. Taphon. 8, 155–179 (2010).
    Google Scholar 
    Domínguez-Rodrigo, M., Gidna, A. O., Yravedra, J. & Musiba, C. A comparative neo-taphonomic study of felids, hyaenids and canids: an analogical framework based on long bone modification patterns. J. Taphon. 10, 151–170 (2012).
    Google Scholar 
    Gidna, A., Yravedra, J. & Domínguez-Rodrigo, M. A cautionary note on the use of captive carnivores to model wild predator behavior: a comparison of bone modification patterns on long bones by captive and wild lions. J. Archaeol. Sci. 40, 1903–1910. https://doi.org/10.1016/j.jas.2012.11.023 (2013).Article 

    Google Scholar 
    Parkinson, J. A., Plummer, T. & Hartstone-Rose, A. Characterizing felid tooth marking and gross bone damage patterns using GIS image analysis: an experimental feeding study with large felids. J. Hum. Evol. 80, 114–134. https://doi.org/10.1016/j.jhevol.2014.10.011 (2015).Article 
    PubMed 

    Google Scholar 
    Domínguez-Rodrigo, M. et al. A 3D taphonomic model of long bone modification by lions in medium-sized ungulate carcasses. Sci. Rep. 11, 4944. https://doi.org/10.1038/s41598-021-84246-1 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arriaza, M. C. et al. Striped hyenas as bone modifiers in dual human-to-carnivore experimental models. Archaeol. Anthropol. Sci. 11, 3187–3199. https://doi.org/10.1007/s12520-018-0747-y (2019).Article 

    Google Scholar 
    Marean, C. W., Spencer, L. M., Blumenschine, R. J. & Capaldo, S. D. Captive hyaena bone choice and destruction, the Schlepp effect and Olduvai archaeofaunas. J. Archaeol. Sci. 19, 101–121. https://doi.org/10.1016/0305-4403(92)90009-R (1992).Article 

    Google Scholar 
    Woodruff, A. L. & Schubert, B. W. Seasonal denning behavior and population dynamics of the late Pleistocene peccary Platygonus compressus (Artiodactyla: Tayassuidae) from Bat Cave, Missouri. PeerJ 7, 1–18. https://doi.org/10.7717/peerj.7161 (2019).Article 

    Google Scholar 
    de Ruiter, D. J. & Berger, L. R. Leopards as taphonomic agents in dolomitic caves—implications for bone accumulations in the hominid-bearing deposits of South Africa. J. Archaeol. Sci. 27, 665–684. https://doi.org/10.1006/jasc.1999.0470 (2000).Article 

    Google Scholar 
    Domínguez-Rodrigo, M. Dinámica trófica, estrategias de consumo y alteraciones óseas en la sabana africana: resumen de un proyecto de investigación etoarqueológico (1991–1993). Trab. Prehist. 51, 15–37 (1994).Article 

    Google Scholar 
    Arriaza, M. C., Domínguez-Rodrigo, M., Yravedra, J. & Baquedano, E. Lions as bone accumulators? Paleontological and ecological implications of a modern bone assemblage from Olduvai Gorge. PLoS ONE 11, e0153797. https://doi.org/10.1371/journal.pone.0153797 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schaller, G. B. The Serengeti Lion: A Study of Predator-Prey Relations (University of Chicago Press, 1972).
    Google Scholar 
    Brain, C. K. Some suggested procedures in the analysis of bone accumulations from southern African Quaternary sites. Ann. Transvaal Mus. 29, 1–8 (1974).
    Google Scholar 
    Christiansen, P. Phylogeny of the sabertoothed felids (Carnivora: Felidae: Machairodontinae). Cladistics 29, 543–559. https://doi.org/10.1111/cla.12008 (2013).Article 
    PubMed 

    Google Scholar 
    Rawn-Schatzinger, V. Development and eruption sequence of deciduous and permanent teeth in the saber-tooth cat Homotherium serum Cope. J. Vertebr. Paleontol. 3, 49–57. https://doi.org/10.1080/02724634.1983.10011958 (1983).Article 

    Google Scholar 
    Rawn-Schatzinger,V. The Scimitar Cat Homotherium serum Cope: Osteology, Functional Morphology, and Predatory Behavior, Illinois State Museum, Springfield, IL, 1992.White, P. A. & Diedrich, C. G. Taphonomy story of a modern African elephant Loxodonta africana carcass on a lakeshore in Zambia (Africa). Quat. Int. 276–277, 287–296 (2012).Article 

    Google Scholar 
    Haynes, G. & Klimowicz, J. Recent elephant-carcass utilization as a basis for interpreting mammoth exploitation. Quat. Int. 359–360, 19–37. https://doi.org/10.1016/j.quaint.2013.12.040 (2015).Article 

    Google Scholar 
    Biknevicius, A. R., Van Valkenburgh, B. & Walker, J. Incisor size and shape: implications for feeding behaviors in saber-toothed “cats”. J. Vertebr. Paleontol. 16, 510–521 (1996).Article 

    Google Scholar 
    Van Valkenburgh, B. Incidence of tooth breakage among large, predatory mammals. Am. Nat. 131, 291–302. https://doi.org/10.1086/284790 (1988).Article 

    Google Scholar 
    DeSantis, L. R. G. et al. Dental microwear textures of carnivorans from the La Brea Tar Pits, California, and potential extinction implications. In La Brea and Beyond: The Paleontology of Asphalt-Preserved Biotas (ed. Harris, J. M.) 37–52 (Natural History Museum of Los Angeles County, 2015).
    Google Scholar 
    Paijmans, J. L. A. et al. Evolutionary history of saber-toothed cats based on ancient mitogenomics. Curr. Biol. 27, 3330-3336.e5. https://doi.org/10.1016/j.cub.2017.09.033 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Antón, M., Salesa, M. J., Galobart, A. & Tseng, Z. J. The Plio-Pleistocene scimitar-toothed felid genus Homotherium Fabrini, 1890 (Machairodontinae, Homotherini): diversity, palaeogeography and taxonomic implications. Quat. Sci. Rev. 96, 259–268. https://doi.org/10.1016/j.quascirev.2013.11.022 (2014).ADS 
    Article 

    Google Scholar 
    Thompson, J. C., Carvalho, S., Marean, C. W. & Alemseged, Z. Origins of the human predatory pattern: The transition to large-animal exploitation by early hominins. Curr. Anthropol. 60, 1–23. https://doi.org/10.1086/701477 (2019).Article 

    Google Scholar 
    Plummer, T. Flaked stones and old bones: biological and cultural evolution at the dawn of technology. Yearb. Phys. Anthropol. 47, 118–164. https://doi.org/10.1002/ajpa.20157 (2004).Article 

    Google Scholar 
    Turner, A. Relative scavenging opportunities for East and South African Plio-Pleistocene hominids. J. Archaeol. Sci. 15, 327–341 (1988).Article 

    Google Scholar 
    Turner, A. The evolution of the guild of larger terrestrial carnivores during the Plio-Pleistocene in Africa. Geobios 23, 349–368 (1990).Article 

    Google Scholar 
    Turner, A. Large carnivores and earliest European hominids: changing determinants of resource availability during the Lower and Middle Pleistocene. J. Hum. Evol. 22, 109–126 (1992).Article 

    Google Scholar 
    Van Valkenburgh, B. The dog-eat-dog world of carnivores: a review of past and present carnivore community dynamics. In Meat-Eating and Human Evolution (eds Stanford, C. B. & Bunn, H. T.) 101–121 (Oxford University Press, 2001).
    Google Scholar 
    Werdelin, L. & Lewis, M. E. Plio-Pleistocene Carnivora of eastern Africa: species richness and turnover patterns. Zool. J. Linn. Soc. 144, 121–144. https://doi.org/10.1111/j.1096-3642.2005.00165.x (2005).Article 

    Google Scholar 
    Werdelin, L. & Lewis, M. E. Temporal change in functional richness and evenness in the eastern African Plio-Pleistocene carnivoran guild. PLoS ONE 8, e57944. https://doi.org/10.1371/journal.pone.0057944 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lewis, M. E. Carnivore guilds and the impact of hominin dispersals. In Human Dispersal and Species Movement: From Prehistory to the Present (eds Boivin, N. et al.) 29–61 (Cambridge University Press, 2017). https://doi.org/10.1017/9781316686942.003.Chapter 

    Google Scholar 
    Stiner, M. C. Competition theory and the case for Pleistocene hominin-carnivore co-evolution. J. Taphon. 10, 129–145 (2012).
    Google Scholar 
    Marean, C. W. Sabertooth cats and their relevance for early hominid diet and evolution. J. Hum. Evol. 18, 559–582 (1989).Article 

    Google Scholar 
    Martínez-Navarro, B. & Palmqvist, P. Presence of the African saber-toothed felid Megantereon whitei (Broom, 1937) (Mammalia, Carnivora, Machairodontinae) in Apollonia-1 (Mygdonia Basin, Macedonia, Greece). J. Archaeol. Sci. 23, 869–872. https://doi.org/10.1006/jasc.1996.0081 (1996).Article 

    Google Scholar 
    Arribas, A. & Palmqvist, P. On the ecological connection between sabre-tooths and hominids: Faunal dispersal events in the Lower Pleistocene and a review of the evidence for the first human arrival in Europe. J. Archaeol. Sci. 26, 571–585. https://doi.org/10.1006/jasc.1998.0346 (1999).Article 

    Google Scholar 
    Blumenschine, R. J. Characteristics of an early hominid scavenging niche. Curr. Anthropol. 28, 383–407. https://doi.org/10.1086/203544 (1987).Article 

    Google Scholar 
    Ewer, R. F. Sabre-toothed tigers. N. Biol. 17, 27–40 (1954).
    Google Scholar 
    Dominguez-Rodrigo, M. Flesh availability and bone modifications in carcasses consumed by lions: palaeoecological relevance in hominid foraging patterns. Palaeogeogr. Palaeoclimatol. Palaeoecol. 149, 373–388. https://doi.org/10.1016/S0031-0182(98)00213-2 (1999).Article 

    Google Scholar 
    Pobiner, B. L. & Blumenschine, R. J. A taphonomic perspective on Oldowan hominid encroachment on the carnivores paleoguild. J. Taphon. 1, 115–141 (2003).
    Google Scholar 
    Pobiner, B. L., Dumouchel, L. & Parkinson, J. A new semi-quantitative method for coding carnivore chewing damage with an application to modern African lion-damaged bones. Palaios 35, 302–315 (2020).ADS 
    Article 

    Google Scholar 
    Arribas, A. & Palmqvist, P. Taphonomy and palaeoecology of an assemblage of large mammals: hyaenid activity in the Lower Pleistocene site at Venta Micena (Orce, Guadix-Baza Basin, Granada, Spain). Geobios 31, 3–47. https://doi.org/10.1016/S0016-6995(98)80056-9 (1998).Article 

    Google Scholar 
    Palmqvist, P. et al. The giant hyena Pachycrocuta brevirostris: modelling the bone-cracking behavior of an extinct carnivore. Quat. Int. 243, 61–79. https://doi.org/10.1016/j.quaint.2010.12.035 (2011).Article 

    Google Scholar 
    Coca-Ortega, C. & Pérez-Claros, J. A. Characterizing ecomorphological patterns in hyenids: a multivariate approach using postcanine dentition. PeerJ 6, e6238. https://doi.org/10.7717/peerj.6238 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pobiner, B. L. The zooarchaeology and paleoecology of early hominin scavenging. Evol. Anthropol. 29, 68–82. https://doi.org/10.1002/evan.21824 (2020).Article 
    PubMed 

    Google Scholar 
    Domínguez-Rodrigo, M., Pickering, T. R., Semaw, S. & Rogers, M. J. Cutmarked bones from Pliocene archaeological sites at Gona, Afar, Ethiopia: implications for the function of the world’s oldest stone tools. J. Hum. Evol. 48, 109–121. https://doi.org/10.1016/j.jhevol.2004.09.004 (2005).Article 
    PubMed 

    Google Scholar 
    Domínguez-Rodrigo, M. & Barba, R. The behavioral meaning of cut marks at the FLK Zinj level: the carnivore-hominid-carnivore hypothesis falsified (II). In Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites (eds Domínguez-Rodrigo, M. et al.) 75–100 (Springer, 2007).Chapter 

    Google Scholar 
    Ferraro, J. V. et al. Earliest archaeological evidence of persistent hominin carnivory. PLoS ONE 8, e62174. https://doi.org/10.1371/journal.pone.0062174 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oliver, J. S., Plummer, T. W., Hertel, F. & Bishop, L. C. Bovid mortality patterns from Kanjera South, Homa Peninsula, Kenya and FLK-Zinj, Olduvai Gorge, Tanzania: evidence for habitat mediated variability in Oldowan hominin hunting and scavenging behavior. J. Hum. Evol. 131, 61–75. https://doi.org/10.1016/j.jhevol.2019.03.009 (2019).Article 
    PubMed 

    Google Scholar 
    Bunn, H. T. Hunting, power scavenging, and butchering by Hadza foragers and by Plio-Pleistocene Homo. In Meat-Eating and Human Evolution (eds Stanford, C. B. & Bunn, H. T.) 199–218 (Oxford University Press, 2001).
    Google Scholar 
    Landeck, G. & García Garriga, J. New taphonomic data of the 1 Myr hominin butchery at Untermassfeld (Thuringia, Germany). Quat. Int. 436, 138–161. https://doi.org/10.1016/j.quaint.2016.11.016 (2017).Article 

    Google Scholar 
    Domínguez-Rodrigo, M. et al. On meat eating and human evolution: a taphonomic analysis of BK4b (Upper Bed II, Olduvai Gorge, Tanzania), and its bearing on hominin megafaunal consumption. Quat. Int. 322–323, 129–152. https://doi.org/10.1016/j.quaint.2013.08.015 (2014).Article 

    Google Scholar 
    Organista, E. et al. Taphonomic analysis of the level 3b fauna at BK, Olduvai Gorge. Quat. Int. 526, 116–128 (2019).Article 

    Google Scholar 
    Haynes, G. Prey bones and predators: potential ecologic information from analysis of bone sites. OSSA 7, 75–97 (1980).
    Google Scholar 
    Haynes, G. Evidence of carnivore gnawing on Pleistocene and recent mammalian bones. Paleobiology 6, 341–351. https://doi.org/10.1017/S0094837300006849 (1980).Article 

    Google Scholar 
    Haynes, G. A guide for differentiating mammalian carnivore taxa responsible for gnaw damage to herbivore limb bones. Paleobiology 9, 164–172 (1983).Article 

    Google Scholar 
    Sala, N., Arsuaga, J. L. & Haynes, G. Taphonomic comparison of bone modifications caused by wild and captive wolves (Canis lupus). Quat. Int. 330, 126–135. https://doi.org/10.1016/j.quaint.2013.08.017 (2014).Article 

    Google Scholar 
    Berta, A. The Plio-Pleistocene hyaena Chasmaporthetes ossifragus from Florida. J. Vertebr. Paleontol. 1, 341–356. https://doi.org/10.1080/02724634.1981.10011905 (1981).Article 

    Google Scholar 
    Anyonge, W. N. & Baker, A. Craniofacial morphology and feeding behavior in Canis dirus, the extinct Pleistocene dire wolf. J. Zool. 269, 309–316. https://doi.org/10.1111/j.1469-7998.2006.00043.x (2006).Article 

    Google Scholar 
    Figueirido, B., Pérez-Claros, J. A., Torregrosa, V., Martín-Serra, A. & Palmqvist, P. Demythologizing Arctodus simus, the ‘short-faced’ long-legged and predaceous bear that never was. J. Vertebr. Paleontol. 30, 262–275. https://doi.org/10.1080/02724630903416027 (2010).Article 

    Google Scholar 
    Pobiner, B. L. New actualistic data on the ecology and energetics of hominin scavenging opportunities. J. Hum. Evol. 80, 1–16 (2015).PubMed 
    Article 

    Google Scholar 
    Lautenschlager, S., Figueirido, B., Cashmore, D. D., Bendel, E.-M. & Stubbs, T. L. Morphological convergence obscures functional diversity in sabre-toothed carnivores. Proc. R. Soc. B. 287, 20201818. https://doi.org/10.1098/rspb.2020.1818 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Figueirido, B., Lautenschlager, S., Pérez-Ramos, A. & Van Valkenburgh, B. Distinct predatory behaviors in scimitar- and dirk-toothed sabertooth cats. Curr. Biol. 28, 3260-3266.e3. https://doi.org/10.1016/j.cub.2018.08.012 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hartstone-Rose, A. Reconstructing the diets of extinct South African carnivorans from premolar ‘intercuspid notch’ morphology. J. Zool. 285, 119–127. https://doi.org/10.1111/j.1469-7998.2011.00821.x (2011).Article 

    Google Scholar 
    Van Valkenburgh, B. Costs of carnivory: tooth fracture in Pleistocene and recent carnivorans. Biol. J. Lin. Soc. 96, 68–81. https://doi.org/10.1111/j.1095-8312.2008.01108.x (2009).Article 

    Google Scholar 
    Thieme, H. Lower Palaeolithic hunting spears from Germany. Nature 385, 807–810. https://doi.org/10.1038/385807a0 (1997).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Conard, N. J., Serangeli, J., Gerlinde, B. & Veerle, R. A 300,000-year-old throwing stick from Schöningen, northern Germany, documents the evolution of human hunting. Nat. Ecol. Evol. 4, 690–693 (2020).PubMed 
    Article 

    Google Scholar 
    Austin, L. A., Bergman, C. A., Roberts, M. B. & Wilhelmsen, K. H. Archaeology of the excavated areas. In Boxgrove: A Middle Pleistocene Hominid Site at Eartham Quarry (eds Roberts, M. B. & Parfitt, S. A.) 312–378 (Boxgrove, 1999).
    Google Scholar 
    Domínguez-Rodrigo, M., Baquedano, E., Organista, E. et al. Early Pleistocene faunivorous hominins were not kleptoparasitic, and this impacted the evolution of human anatomy and socio-ecology. Sci Rep 11, 16135 (2021). https://doi.org/10.1038/s41598-021-94783-4ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gohn, G. S. Late Mesozoic and early Cenozoic geology of the Atlantic Coastal Plain: North Carolina to Florida. In The Geology of North America, Volume I-2, The Atlantic Continental Margin (eds Sheridan, R. E. & Grow, J. A.) 107–130 (Geological Society of America, Boulder, CO, 1988).
    Google Scholar 
    Pirkle, E. C. Notes on physiographic features of Alachua County, Florida. Q. J. Fla. Acad. Sci. 19, 168–182 (1956).
    Google Scholar 
    Beck, B. F. A generalized genetic framework for the development of sinkholes and karst in Florida, U.S.A. Environ. Geol. Water Sci. 8, 5–18. https://doi.org/10.1007/BF02525554 (1986).ADS 
    Article 

    Google Scholar 
    Beck, B. F. & Sinclair, W. C. Sinkholes in Florida: An Introduction (The Florida Sinkhole Research Institute, 1986).
    Google Scholar 
    Brinkman, R. Florida Sinkholes: Science and Policy (University of Florida Press, 2013).Book 

    Google Scholar 
    Hines, A. C. Geologic History of Florida: Major Events that Formed the Sunshine State (University of Florida Press, 2013).
    Google Scholar 
    Bader, R. S. Two Pleistocene mammalian faunas from Alachua County, Florida. Bull. Fla State Mus. 2, 53–75 (1957).
    Google Scholar 
    Patton, T. H. An Oligocene land vertebrate fauna from Florida. J. Paleontol. 43, 543–546 (1969).
    Google Scholar 
    Pratt, A. E. Taphonomy of the large vertebrate fauna from the Thomas Farm Locality (Miocene, Hemingfordian), Gilchrist County, Florida, Bulletin of the Florida Museum of. Nat. Hist. 35, 35–130 (1990).
    Google Scholar 
    Ruez, D. R. Jr. Mammalian taphonomy of the Early Irvingtonian (Late Pliocene) Inglis 1C fauna (Citrus County, Florida). Southeast. Geol. 41, 159–168 (2002).
    Google Scholar 
    Hansen, B. C. S., Grimm, E. C. & Watts, W. A. Palynology of the Peace Creek site, Polk County, Florida. Geol. Soc. Am. Bull. 113, 682–692 (2001).ADS 
    Article 

    Google Scholar 
    Morgan, G. S. & Emslie, S. D. Tropical and western influences in vertebrate faunas from the Pliocene and Pleistocene of Florida. Quat. Int. 217, 143–158. https://doi.org/10.1016/j.quaint.2009.11.030 (2010).Article 

    Google Scholar 
    Yann, L. T. & DeSantis, L. R. G. Effects of Pleistocene climates on local environments and dietary behavior of mammals in Florida. Palaeogeogr. Palaeoclimatol. Palaeoecol. 414, 370–381. https://doi.org/10.1016/j.palaeo.2014.09.020 (2014).Article 

    Google Scholar 
    Perrotti, A. G., Winsborough, B., Halligan, J. J. & Waters, M. R. Reconstructing terminal Pleistocene-early Holocene environmental change at Page-Ladson, Florida using diatom evidence. PaleoAmerica 6, 181–193. https://doi.org/10.1080/20555563.2019.1689010 (2020).Article 

    Google Scholar 
    Tanner, B. R., Work, K. A. & Evans, J. M. The potential of organic sediments in Florida spring runs as records of environmental change. Southeast. Geogr. 60, 200–214. https://doi.org/10.1353/sgo.2020.0017 (2020).Article 

    Google Scholar 
    Simpson, G. G. The Extinct Land Mammals of Florida (Florida Geological Survey, 1928).
    Google Scholar 
    Simpson, G. G. Tertiary land mammals of Florida. Bull. Am. Mus. Nat. Hist. 59, 149–211 (1930).
    Google Scholar 
    Olsen, S. J. Fossil Mammals of Florida (Florida Geological Survey, 1959).
    Google Scholar 
    Webb, S. D. Pleistocene Mammals of Florida (University of Florida Press, 1974).
    Google Scholar 
    Tihen, J. A. Rana grylio from the Pleistocene of Florida. Herpetologica 8, 107 (1952).
    Google Scholar 
    Brodkorb, P. Pleistocene birds from Haile, Florida. Wilson Bull. 65, 49–50 (1953).
    Google Scholar 
    Brodkorb, P. Another new rail from the Pleistocene of Florida. The Condor. 56, 103–104 (1954).
    Google Scholar 
    Brodkorb, P. Fossil birds from the Alachua clay of Florida, Florida Geological Survey, Contributions to Florida Vertebrate Paleontology. Spec. Publ. 2, 1–17 (1963).
    Google Scholar 
    Auffenburg, W. Additional specimens of Gavialosuchus americanus (Sellards) from a new locality in Florida. Q. J. Fla. Acad. Sci. 17, 185–209 (1954).
    Google Scholar 
    Auffenburg, W. Glass lizards (Ophisaurus) in the Pleistocene and Pliocene of Florida. Herpetologica 11, 133–136 (1955).
    Google Scholar 
    Auffenburg, W. Additional records of Pleistocene lizards from Florida. Q. J. Fla. Acad. Sci. 19, 157–167 (1956).
    Google Scholar 
    Auffenburg, W. A new species of Bufo from the Pliocene of Florida. Q. J. Fla. Acad. Sci. 20, 14–20 (1957).
    Google Scholar 
    Goin, C. J. & Auffenburg, W. The fossil salamanders of the Family Sirenidae, Bulletin of the Museum of Comparative. Zoology 113, 497–514 (1955).
    Google Scholar 
    Ligon, J. D. A Pleistocene avifauna from Haile, Florida. Bull. Fla. State Mus. 10, 127–158 (1965).
    Google Scholar 
    Kinsey, P. E. A new species of Mylohyus peccary from the Florida early Pleistocene. In Pleistocene Mammals of Florida (ed. Webb, S. D.) 158–169 (University of Florida Press, 1974).
    Google Scholar 
    Martin, R. A. Fossil vertebrates from the Haile XIVA fauna, Alachua County. In Pleistocene Mammals of Florida (ed. Webb, S. D.) 100–113 (University of Florida Press, 1974).
    Google Scholar 
    Robertson, J. S. Fossil Bison of Florida. In Pleistocene Mammals of Florida (ed. Webb, S. D.) 214–246 (University of Florida Press, 1974).
    Google Scholar 
    Robertson, J. S. Late Pliocene mammals from Haile XV A, Alachua County, Florida. Bull. Fla. State Mus. 20, 111–186 (1976).ADS 

    Google Scholar 
    Webb, S. D. Pleistocene llamas of Florida, with a brief review of the Lamini. In Pleistocene Mammals of Florida (ed. Webb, S. D.) 170–213 (University of Florida Press, 1974).
    Google Scholar 
    Campbell, K. E. An early Pleistocene avifauna from Haile XVA, Florida. Wilson Bull. 88, 345–347 (1976).
    Google Scholar 
    Morgan, G. S., Linares, O. J. & Ray, C. E. New species of fossil vampire bats (Mammalia, Chiroptera, Desmodontidae) from Florida and Venezuela. Proc. Biol. Soc. Wash. 101, 912–928 (1988).
    Google Scholar 
    Hulbert, R. C. A new late Pliocene porcupine (Rodentia: Erethizontidae) from Florida. J. Vertebr. Paleontol. 17, 623–626. https://doi.org/10.1080/02724634.1997.10011010 (1997).Article 

    Google Scholar 
    de Iuliis, G. & Cartelle, C. A new giant megatheriine ground sloth (Mammalia: Xenarthra: Megatheriidae) from the late Blancan to early Irvingtonian of Florida. Zool. J. Linn. Soc. 127, 495–515 (1999).Article 

    Google Scholar 
    Portell, R. W. & Hulbert, R. C. Haile Quarries Fieldguide Newberry (Southeastern Geological Society, 2011).
    Google Scholar 
    Morgan, G. S. Neotropical Chiroptera from the Pliocene and Pleistocene of Florida. Bull. Am. Mus. Nat. Hist. 206, 176–213 (1991).
    Google Scholar 
    Hulbert, R. C., Morgan, G. S. & Webb, S. D. Paleontology and geology of the Leisey shell pits, early Pleistocene of Florida. Bull. Fla. Mus. Nat. Hist. 37, 1–660 (1995).
    Google Scholar 
    Berta, A. Fossil carnivores from the Leisey Shell Pits, Hillsborough County, Florida. Bull. Am. Mus. Nat. Hist. 37, 463–499 (1995).
    Google Scholar 
    Hulbert, R. C. The giant tapir, Tapirus haysii, from Leisey Shell Pit 1A and other Florida Invingtonian localities. Bull. Am. Mus. Nat. Hist. 37, 515–551 (1995).
    Google Scholar 
    Wright, D. B. Tayassuidae of the Irvingtonian Leisey Shell Pit local fauna, Hillsborough County, Florida. Bull. Am. Mus. Nat. Hist. 37, 603–619 (1995).
    Google Scholar 
    Martin, L. D., Babiarz, J. P. & Naples, V. L. The osteology of a cookie-cutter cat, Xenosmilus hodsonae. In The Other Saber-Tooths: Scimitar-Tooth Cats of the Western Hemisphere (eds Naples, V. L. et al.) 43–97 (Johns Hopkins University Press, 2011).
    Google Scholar 
    Gifford-Gonzalez, D. Bones are not enough: analogues, knowledge, and interpretive strategies in zooarchaeology. J. Anthropol. Archaeol. 10, 215–254. https://doi.org/10.1016/0278-4165(91)90014-O (1991).Article 

    Google Scholar 
    Capaldo, S. D. Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania. J. Hum. Evol. 33, 555–597. https://doi.org/10.1006/jhev.1997.0150 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Johnson, E. Current developments in bone technology. Adv. Archeol. Method Theory 8, 157–235. https://doi.org/10.1016/B978-0-12-003108-5.50010-5 (1985).Article 

    Google Scholar 
    Binford, L. R. Bones: Ancient Men and Modern Myths (Academic Press, 1981).
    Google Scholar 
    Dominguez-Rodrigo, M. & Barba, R. New estimates of tooth-mark and percussion-mark frequencies at the FLK Zinjanthropus level: the carnivore–hominid–carnivore hypothesis falsified (I). In Deconstructing Olduvai: A Taphonomic Study of the Bed I Sites (eds Dominguez-Rodrigo, M. et al.) 39–74 (Springer, 2007).Chapter 

    Google Scholar 
    Domínguez-Rodrigo, M. et al. A new methodological approach to the taphonomic study of paleontological and archaeological faunal assemblages: a preliminary case study from Olduvai Gorge (Tanzania). J. Archaeol. Sci. 59, 35–53. https://doi.org/10.1016/j.jas.2015.04.007 (2015).Article 

    Google Scholar 
    Andrés, M., Gidna, A. O., Yravedra, J. & Domínguez-Rodrigo, M. A study of dimensional differences of tooth marks (pits and scores) on bones modified by small and large carnivores. Archaeol. Anthropol. Sci. 4, 209–219. https://doi.org/10.1007/s12520-012-0093-4 (2012).Article 

    Google Scholar 
    Behrensmeyer, A. K. Taphonomic and ecologic information from bone weathering. Paleobiology 4, 150–162. https://doi.org/10.1017/S0094837300005820 (1978).Article 

    Google Scholar 
    Behrensmeyer, A. K., Gordon, K. D. & Yanagi, G. T. Trampling as a cause of bone surface damage and pseudo-cutmarks. Nature 319, 768–771 (1986).ADS 
    Article 

    Google Scholar 
    Egeland, C. P. et al. The taphonomy of fallow deer (Dama dama) skeletons from Denmark and its bearing on the pre-Weichselian occupation of northern Europe by humans. Archaeol. Anthropol. Sci. 6, 31–61 (2014).Article 

    Google Scholar 
    H.T. Bunn, Meat-Eating and Human Evolution: Studies on the Diet and Subsistence Patterns of Plio-Pleistocene Hominids in East Africa, Ph.D. Dissertation, University of California, 1982. More

  • in

    Urban-adapted mammal species have more known pathogens

    Morse, S. S. et al. Prediction and prevention of the next pandemic zoonosis. Lancet 380, 1956–1965 (2012).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Jones, K. E. et al. Global trends in emerging infectious diseases. Nature 451, 990–993 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Keesing, F. et al. Impacts of biodiversity on the emergence and transmission of infectious diseases. Nature 468, 647–652 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Carlson, C. J. et al. Climate change will drive novel cross-species viral transmission. Preprint at bioRxiv https://doi.org/10.1101/2020.01.24.918755 (2020).Gibb, R. et al. Zoonotic host diversity increases in human-dominated ecosystems. Nature https://doi.org/10.1038/s41586-020-2562-8 (2020).Loh, E. H. et al. Targeting transmission pathways for emerging zoonotic disease surveillance and control. Vector Borne Zoonotic Dis. 15, 432–437 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hassell, J. M., Begon, M., Ward, M. J. & Fèvre, E. M. Urbanization and disease emergence: dynamics at the wildlife–livestock–human interface. Trends Ecol. Evol. 32, 55–67 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cohen, J. M., Sauer, E. L., Santiago, O., Spencer, S. & Rohr, J. R. Divergent impacts of warming weather on wildlife disease risk across climates. Science 370, eabb1702 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Murray, M. H. et al. City sicker? A meta-analysis of wildlife health and urbanization. Front. Ecol. Environ. 17, 575–583 (2019).Article 

    Google Scholar 
    Becker, D. J., Hall, R. J., Forbes, K. M., Plowright, R. K. & Altizer, S. Anthropogenic resource subsidies and host–parasite dynamics in wildlife. Phil. Trans. R. Soc. B 373, 20170086 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Werner, C. S. & Nunn, C. L. Effect of urban habitat use on parasitism in mammals: a meta-analysis. Proc. Biol. Sci. 287, 20200397 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Becker, D. J., Streicker, D. G. & Altizer, S. Linking anthropogenic resources to wildlife–pathogen dynamics: a review and meta-analysis. Ecol. Lett. 18, 483–495 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Becker, D. J. et al. Macroimmunology: the drivers and consequences of spatial patterns in wildlife immune defense. J. Anim. Ecol. 89, 972–995 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albery, G. F. & Becker, D. J. Fast-lived hosts and zoonotic risk. Trends Parasitol. https://doi.org/10.1016/j.pt.2020.10.012 (2021).Seto, K. C., Güneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proc. Natl Acad. Sci. USA 109, 16083–16088 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Chen, G. et al. Global projections of future urban land expansion under shared socioeconomic pathways. Nat. Commun. 11, 537 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gao, J. & O’Neill, B. C. Mapping global urban land for the twenty-first century with data-driven simulations and shared socioeconomic pathways. Nat. Commun. 11, 2302 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Santini, L. et al. One strategy does not fit all: determinants of urban adaptation in mammals. Ecol. Lett. 22, 365–376 (2019).PubMed 
    Article 

    Google Scholar 
    Ostfeld, R. S. et al. Life history and demographic drivers of reservoir competence for three tick-borne zoonotic pathogens. PLoS ONE 9, e107387 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Olival, K. J. et al. Host and viral traits predict zoonotic spillover from mammals. Nature 546, 646–650 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mollentze, N. & Streicker, D. G. Viral zoonotic risk is homogenous among taxonomic orders of mammalian and avian reservoir hosts. Proc. Natl Acad. Sci. USA 117, 9423–9430 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gutiérrez, J. S., Piersma, T. & Thieltges, D. W. Micro- and macroparasite species richness in birds: the role of host life history and ecology. J. Anim. Ecol. 88, 1226–1239 (2019).PubMed 
    Article 

    Google Scholar 
    Teitelbaum, C. S. et al. A comparison of diversity estimators applied to a database of host–parasite associations. Ecography 43, 1316–1328 (2019).Article 

    Google Scholar 
    Jorge, F. & Poulin, R. Poor geographical match between the distributions of host diversity and parasite discovery effort. Proc. R. Soc. B 285, 20180072 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Allen, T. et al. Global hotspots and correlates of emerging zoonotic diseases. Nat. Commun. 8, 1124 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gibb, R. et al. Mammal virus diversity estimates are unstable due to accelerating discovery effort. Biol. Lett. https://doi.org/10.1098/rsbl.2021.0427 (2022).Hughes, A. et al. Sampling biases shape our view of the natural world. Ecography 44, 1259–1269 (2021).Article 

    Google Scholar 
    Estes, L. et al. The spatial and temporal domains of modern ecology. Nat. Ecol. Evol. 2, 819–826 (2018).PubMed 
    Article 

    Google Scholar 
    Titley, M. A., Snaddon, J. L. & Turner, E. C. Scientific research on animal biodiversity is systematically biased towards vertebrates and temperate regions. PLoS ONE 12, e0189577 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Lloyd-Smith, J. O. et al. Should we expect population thresholds for wildlife disease? Trends Ecol. Evol. 20, 511–519 (2005).PubMed 
    Article 

    Google Scholar 
    Cummings, C. R. et al. Foraging in urban environments increases bactericidal capacity in plasma and decreases corticosterone concentrations in white ibises. Front. Ecol. Evol. 8, 575980 (2020).Article 

    Google Scholar 
    Hwang, J. et al. Anthropogenic food provisioning and immune phenotype: association among supplemental food, body condition, and immunological parameters in urban environments. Ecol. Evol. 8, 3037–3046 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strandin, T., Babayan, S. A. & Forbes, K. M. Reviewing the effects of food provisioning on wildlife immunity. Phil. Trans. R. Soc. B 373, 20170088 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Downs, C. J., Dochtermann, N. A., Ball, R., Klasing, K. C. & Martin, L. B. The effects of body mass on immune cell concentrations of mammals. Am. Nat. 195, 107–114 (2020).PubMed 
    Article 

    Google Scholar 
    Downs, C. J. et al. Extreme hyperallometry of mammalian antibacterial defenses. Preprint at bioRxiv https://doi.org/10.1101/2020.09.04.242107 (2020).Becker, D. J., Seifert, S. N. & Carlson, C. J. Beyond infection: integrating competence into reservoir host prediction. Trends Ecol. Evol. 35, 1062–1065 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hanson, D. A., Britten, H. B., Restani, M. & Washburn, L. R. High prevalence of Yersinia pestis in black-tailed prairie dog colonies during an apparent enzootic phase of sylvatic plague. Conserv. Genet. 8, 789–795 (2007).CAS 
    Article 

    Google Scholar 
    Gecchele, L. V., Pedersen, A. B. & Bell, M. Fine-scale variation within urban landscapes affects marking patterns and gastrointestinal parasite diversity in red foxes. Ecol. Evol. 10, 13796–13809 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Albery, G. F., Sweeny, A. R., Becker, D. J. & Bansal, S. Fine-scale spatial patterns of wildlife disease are common and understudied. Funct. Ecol. https://doi.org/10.1111/1365-2435.13942 (2021).Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648–2648 (2009).Article 

    Google Scholar 
    Fritz, S. A., Bininda-Emonds, O. R. P. & Purvis, A. Geographical variation in predictors of mammalian extinction risk: big is bad, but only in the tropics. Ecol. Lett. 12, 538–549 (2009).PubMed 
    Article 

    Google Scholar 
    Albery, G. F., Eskew, E. A., Ross, N. & Olival, K. J. Predicting the global mammalian viral sharing network using phylogeography. Nat. Commun. https://doi.org/10.1038/s41467-020-16153-4 (2020).IUCN Red List of Threatened Species Version 2019-2 (IUCN, 2019); https://www.iucnredlist.orgBecker, D. J. et al. Optimising predictive models to prioritise viral discovery in zoonotic reservoirs. Lancet Microbe https://doi.org/10.1016/S2666-5247(21)00245-7 (2022).Mason, P. Parasites of deer in New Zealand. N. Zeal. J. Zool. 21, 39–47 (1994).Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    Plourde, B. T. et al. Are disease reservoirs special? Taxonomic and life history characteristics. PLoS ONE 12, e0180716 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gibb, R. et al. Data proliferation, reconciliation, and synthesis in viral ecology. Bioscience https://doi.org/10.1101/2021.01.14.426572 (2021).Stephens, P. R. et al. Global mammal parasite database version 2.0. Ecology 98, 1476 (2017).PubMed 
    Article 

    Google Scholar 
    Wardeh, M., Risley, C., Mcintyre, M. K., Setzkorn, C. & Baylis, M. Database of host–pathogen and related species interactions, and their global distribution. Sci. Data 2, 150049 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shaw, L. P. et al. The phylogenetic range of bacterial and viral pathogens of vertebrates. Mol. Ecol. 29, 3361–3379 (2020).PubMed 
    Article 

    Google Scholar 
    Chamberlain, S. A. & Szöcs, E. taxize: taxonomic search and retrieval in R. F1000Res https://doi.org/10.12688/f1000research.2-191.v2 (2013).Carlson, C. J. et al. The Global Virome in One Network (VIRION): an atlas of vertebrate–virus associations. mBio 13, e0298521 (2022).Article 

    Google Scholar 
    Lindgren, F. & Rue, H. Bayesian spatial modelling with R-INLA. J. Stat. Softw. 63, 1–25 (2015).Article 

    Google Scholar 
    Lindgren, F., Rue, H. & Lindstrom, J. An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial differential equation approach. J. R. Stat. Soc. B 73, 423–498 (2011).Article 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).Article 

    Google Scholar 
    Winter, D. J. rentrez: an R package for the NCBI eUtils API. R J. 9, 520–526 (2017).Article 

    Google Scholar 
    Shipley, B. Confirmatory path analysis in a generalized multilevel context. Ecology 90, 363–368 (2009).PubMed 
    Article 

    Google Scholar 
    Carlson, C. J., Dallas, T. A., Alexander, L. W., Phelan, A. L. & Phillips, A. J. What would it take to describe the global diversity of parasites? Proc. R. Soc. B 287, 20201841 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Portfolio effects and functional redundancy contribute to the maintenance of octocoral forests on Caribbean reefs

    Loya, Y. et al. Coral bleaching: the winners and the losers. Ecol. Lett. 4, 122–131. https://doi.org/10.1046/j.1461-0248.2001.00203.x (2001).Article 

    Google Scholar 
    Hughes, T. P. et al. Global warming transforms coral reef assemblages. Nature 556, 492–496 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Darling, E. S., Alvarez-Filip, L., Oliver, T. A., McClanahan, T. R. & Côté, I. M. Evaluating life-history strategies of reef corals from species traits. Ecol. Lett. 15, 1378–1386 (2012).PubMed 
    Article 

    Google Scholar 
    Toth, L. T. et al. The unprecedented loss of Florida’s reef-building corals and the emergence of a novel coral-reef assemblage. Ecology 100, e02781. https://doi.org/10.1002/ecy.2781 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Green, D. H., Edmunds, P. J. & Carpenter, R. C. Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar. Ecol. Prog. Ser. 359, 1–10 (2008).ADS 
    Article 

    Google Scholar 
    Alvarez-Filip, L., Carricart-Ganivet, J. P., Horta-Puga, G. & Iglesias-Prieto, R. Shifts in coral-assemblage composition do not ensure persistence of reef functionality. Sci. Rep. 3, 3486. https://doi.org/10.1038/srep03486 (2013).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hughes, T. P. et al. Ecological memory modifies the cumulative impact of recurrent climate extremes. Nat. Clim. Change 9, 40–43 (2019).ADS 
    Article 

    Google Scholar 
    Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W. & Dove, S. Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci. https://doi.org/10.3389/fmars.2017.00158 (2017).Article 

    Google Scholar 
    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Jackson, J., Donovan, M., Cramer, K. & Lam, V. Status and trends of Caribbean coral reefs. Global Coral Reef Monitoring Network, IUCN, Gland, Switzerland, 1970–2012 (2014).Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R. & Schutte, V. G. Ecosystem-based management. Ecology 90, 1478–1484 (2009).PubMed 
    Article 

    Google Scholar 
    Roff, G. & Mumby, P. J. Global disparity in the resilience of coral reefs. Trends Ecol. Evol. 27, 404–413 (2012).PubMed 
    Article 

    Google Scholar 
    Bak, R. P. M., Lambrechts, D. Y. M., Joenje, M., Nieuwland, G. & Van Veghel, M. L. J. Long-term changes on coral reefs in booming populations of a competitive colonial ascidian. Mar. Ecol. Prog. Ser. 133, 303–306 (1996).ADS 
    Article 

    Google Scholar 
    Norström, A. V., Nyström, M., Lokrantz, J. & Folke, C. Alternative states on coral reefs: beyond coral–macroalgal phase shifts. Mar. Ecol. Prog. Ser. 376, 295–306 (2009).ADS 
    Article 

    Google Scholar 
    Lenz, E. A., Bramanti, L., Lasker, H. R. & Edmunds, P. J. Long-term variation of octocoral populations in St. John, US Virgin Islands. Coral Reefs 34, 1099–1109 (2015).ADS 
    Article 

    Google Scholar 
    Pawlik, J. R. & McMurray, S. E. The emerging ecological and biogeochemical importance of sponges on coral reefs. Ann. Rev. Mar Sci. 12, 315–337 (2020).PubMed 
    Article 

    Google Scholar 
    Lasker, H. R., Bramanti, L., Tsounis, G. & Edmunds, P. J. in Advances in Marine Biology Vol. 87 (ed. Riegl, B. M.) 361–410 (Academic Press, 2020).
    Google Scholar 
    Pearson, R. Recovery and recolonization of coral reefs. Mar. Ecol. Prog. Ser. 4, 105–122 (1981).ADS 
    Article 

    Google Scholar 
    Connell, J. H., Hughes, T. P. & Wallace, C. C. A 30-year study of coral abundance, recruitment, and disturbance at several scales in space and time. Ecol. Monogr. 67, 461–488 (1997).Article 

    Google Scholar 
    França, F. M. et al. Climatic and local stressor interactions threaten tropical forests and coral reefs. Philos. Trans. R. Soc. B 375, 20190116 (2020).Article 

    Google Scholar 
    Ruzicka, R. et al. Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño. Mar. Ecol. Prog. Ser. 489, 125–141 (2013).ADS 
    Article 

    Google Scholar 
    Sánchez, J. A. et al. in Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 729–747 (Springer International Publishing, 2019).Chapter 

    Google Scholar 
    Tsounis, G., Edmunds, P. J., Bramanti, L., Gambrel, B. & Lasker, H. R. Variability of size structure and species composition in Caribbean octocoral communities under contrasting environmental conditions. Mar. Biol. 165, 29. https://doi.org/10.1007/s00227-018-3286-2 (2018).Article 

    Google Scholar 
    Kinzie, R. A. III. The zonation of West Indian gorgonians. Bull. Mar. Sci. 23, 93–155 (1973).
    Google Scholar 
    Yoshioka, P. M. & Yoshioka, B. B. A comparison of the survivorship and growth of shallow-water gorgonian species of Puerto Rico. Mar. Ecol. Prog. Ser. 69, 253–260 (1991).ADS 
    Article 

    Google Scholar 
    De’ath, G., Fabricius, K. E., Sweatman, H. & Puotinen, M. The 27–year decline of coral cover on the Great Barrier Reef and its causes. Proc. Natl. Acad. Sci. USA 109, 17995–17999 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Newman, M. J., Paredes, G. A., Sala, E. & Jackson, J. B. Structure of Caribbean coral reef communities across a large gradient of fish biomass. Ecol. Lett. 9, 1216–1227 (2006).PubMed 
    Article 

    Google Scholar 
    Tilman, D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80, 1455–1474 (1999).
    Google Scholar 
    Lawton, J. H. & Brown, V. K. in Biodiversity and Ecosystem Function (eds Schulze, E. D. & Mooney, H. A.) 255–270 (Springer, 1994).Chapter 

    Google Scholar 
    Loreau, M. et al. Biodiversity as insurance: from concept to measurement and application. Biol. Rev. 96(5), 2333–2354 (2021).PubMed 
    Article 

    Google Scholar 
    Bellwood, D. R., Stret, R. P., Brandl, S. J. & Tebbett, S. B. The meaning of the term ‘function’ in ecology: a coral reef perspective. Funct. Ecol. 33, 948–961 (2018).Article 

    Google Scholar 
    Caswell, H. Construction, analysis, and interpretation. Sunderland: Sinauer 585, 258–277 (2001).
    Google Scholar 
    Bayer, F. M. The shallow-water Octocorallia of the West Indian region. Stud. Fauna Curacao Caribb. Isl. 12, 1–373 (1961).
    Google Scholar 
    Rossi, S., Bramanti, L., Gori, A. & Orejas, C. An overview of the animal forests of the world. In Marine Animal Forest (ed. Rossi, S.) 1–25 (Springer, 2017).Chapter 

    Google Scholar 
    Sánchez, J. A. Diversity and evolution of octocoral animal forests at both sides of tropical america. in Marine Animal Forests (eds Rossi, S. et al.) (Springer, 2016).
    Google Scholar 
    Thibaut, L. M. & Connolly, S. R. Understanding diversity–stability relationships: towards a unified model of portfolio effects. Ecol. Lett. 16, 140–150 (2013).PubMed 
    Article 

    Google Scholar 
    Schindler, D. E., Armstrong, J. B. & Reed, T. E. The portfolio concept in ecology and evolution. Front. Ecol. Environ. 13, 257–263 (2015).Article 

    Google Scholar 
    Biggs, C. R. et al. Does functional redundancy affect ecological stability and resilience? A review and meta-analysis. Ecosphere 11, e03184 (2020).Article 

    Google Scholar 
    Anderson, S. C., Moore, J. W., McClure, M. M., Dulvy, N. K. & Cooper, A. B. Portfolio conservation of metapopulations under climate change. Ecol. Appl. 25, 559–572 (2015).PubMed 
    Article 

    Google Scholar 
    Mellin, C., MacNeil, A. M., Cheal, A. J., Emslie, M. J. & Caley, J. M. Marine protected areas increase resilience among coral reef communities. Ecol. Lett. 19, 629–637 (2016).PubMed 
    Article 

    Google Scholar 
    Webster, N. et al. Host-associated coral reef microbes respond to the cumulative pressures of ocean warming and ocean acidification. Sci. rep. 6, 1–9 (2016).Article 
    CAS 

    Google Scholar 
    Tsounis, G. & Edmunds, P. J. Three decades of coral reef community dynamics in St. John, USVI: a contrast of scleractinians and octocorals. Ecosphere 8, e01646 (2017).Article 

    Google Scholar 
    Hurlbert, S. H. Pseudoreplication and the design of ecological field experiments. Ecol. Monogr. 54, 187–211 (1984).Article 

    Google Scholar 
    Tsounis, G., Edmunds, P. J., Bramanti, L., Gambrel, B. & Lasker, H. R. Variability of size structure and species composition in Caribbean octocoral communities under contrasting environmental conditions. Mar. Biol. 165, 1–14 (2018).Article 

    Google Scholar 
    Browning, T. N. et al. Widespread deposition in a coastal bay following three major 2017 hurricanes (Irma, Jose, and Maria). Sci. Rep. 9, 1–13 (2019).CAS 
    Article 

    Google Scholar 
    Edmunds, P. J. Three decades of degradation lead to diminished impacts of severe hurricanes on Caribbean reefs. Ecology 100, e02587 (2019).PubMed 
    Article 

    Google Scholar 
    Clarke, K. & Warwick, R. Quantifying structural redundancy in ecological communities. Oecologia 113, 278–289 (1998).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Menge, B. A., Berlow, E. L., Blanchette, C. A., Navarrete, S. A. & Yamada, S. B. The keystone species concept: variation in interaction strength in a rocky intertidal habitat. Ecol. Monogr. 64, 249–286 (1994).Article 

    Google Scholar 
    Frost, T. M., Carpenter, S. R., Ives, A. R. & Kratz, T. K. in Linking Species & Ecosystems (eds Jones, C. G. & Lawton, J. H.) 224–239 (Springer, 1995).Chapter 

    Google Scholar 
    Lasker, H., Martínez-Quintana, Á., Bramanti, L. & Edmunds, P. J. Resilience of octocoral forests to catastrophic storms. Sci. Rep. 10, 1–8 (2020).Article 
    CAS 

    Google Scholar 
    Goffredo, S. & Lasker, H. R. Modular growth of a gorgonian coral can generate predictable patterns of colony growth. J. Exp. Mar. Biol. Ecol. 336, 221–229 (2006).Article 

    Google Scholar 
    Grigg, R. W. Growth rings: annual periodicity in two gorgonian corals. Ecology 55, 876–881 (1974).Article 

    Google Scholar 
    Grigg, R. W. Resource management of precious corals a review and application ton shallow water reef building corals. Mar. Ecol. 5, 57–74 (1984).ADS 
    Article 

    Google Scholar 
    Clarke, K. R. & Gorley, R. N. Primer v6: User Manual/Tutorial (PRIMER-E Ltd., 2006).
    Google Scholar 
    Schutte, V. G., Selig, E. R. & Bruno, J. F. Regional spatio-temporal trends in Caribbean coral reef benthic communities. Mar. Ecol. Prog. Ser. 402, 115–122 (2010).ADS 
    Article 

    Google Scholar 
    Edmunds, P. J. Decadal-scale changes in the community structure of coral reefs of St. John, US Virgin Islands. Mar. Ecol. Prog. Ser. 489, 107–123 (2013).ADS 
    Article 

    Google Scholar 
    Chollett, I., Mumby, P. J., Müller-Karger, F. E. & Hu, C. Physical environments of the Caribbean Sea. Limnol. Oceanogr. 57, 1233–1244 (2012).ADS 
    Article 

    Google Scholar 
    Fowell, S. E. et al. Historical trends in pH and carbonate biogeochemistry on the Belize Mesoamerican Barrier Reef System. Geophys. Res. Lett. 45, 3228–3237. https://doi.org/10.1002/2017GL076496 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Edmunds, P. J. & Lasker, H. R. Regulation of population size of arborescent octocorals on shallow Caribbean reefs. Mar. Ecol. Prog. Ser. 615, 1–14 (2019).ADS 
    Article 

    Google Scholar 
    Borgstein, N., Beltrán, D. M. & Prada, C. Variable growth across species and life stages in Caribbean reef octocorals. Front. Mar. Sci. 7, 483 (2020).Article 

    Google Scholar 
    Guizien, K. & Ghisalberti, M. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S. et al.) 1–22 (Springer International Publishing, 2015).
    Google Scholar 
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).PubMed 
    Article 

    Google Scholar 
    Simonson, W. D., Allen, H. D., Coomes, D. A. & Tatem, A. Applications of airborne lidar for the assessment of animal species diversity. Methods Ecol. Evol. 5, 719–729 (2014).Article 

    Google Scholar 
    Roscher, C. et al. Identifying population- and community-level mechanisms of diversity-stability relationships in experimental grasslands. J. Ecol. 99, 1460–1469 (2011).Article 

    Google Scholar 
    Yang, Z., Ruijven, V. J. & Du, G. The effects of long-term fertilization on the temporal stability of alpine meadow communities. Plant Soil 345, 315–324 (2011).CAS 
    Article 

    Google Scholar 
    Wilcox, K. R. et al. Asynchrony among local communities stabilises ecosystem function of metacommunities. Ecol. Lett. 20, 1534–1545 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rosenfeld, J. S. Logical fallacies in the assessment of functional redundancy. Conserv. Biol. 16, 837–839 (2002).Article 

    Google Scholar 
    Loreau, M. Does functional redundancy exist?. Oikos 104, 606–611 (2004).Article 

    Google Scholar 
    Gambrel, B. & Lasker, H. R. Interactions in the canopy among Caribbean reef octocorals. Mar. Ecol. Prog. Ser. 546, 85–95 (2016).ADS 
    Article 

    Google Scholar 
    Zambrano, J. et al. Tree crown overlap improves predictions of the functional neighbourhood effects on tree survival and growth. J. Ecol. 107, 887–900 (2019).Article 

    Google Scholar 
    Pescador, et al. 2018 The shape is more important than we ever thought: Plant to plant interactions in a high mountain community. Methods Ecol. Evol. 10, 1584–1593 (2019).Article 

    Google Scholar 
    Cerpovicz, A. F. & Lasker, H. R. Canopy effects of octocoral communities on sedimentation: modern baffles on the shallow-water reefs of St. John, USVI. Coral Reefs 40, 295 (2021).Article 

    Google Scholar 
    Martinez-Quintana, Á. & Lasker, H. R. Early life-history dynamics of Caribbean octocorals: the critical role of larval supply and partial mortality. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.705563 (2021).Article 

    Google Scholar 
    Tsounis, G., Steele, M. A. & Edmunds, P. J. Elevated feeding rates of fishes within octocoral canopies on Caribbean reefs. Coral Reefs 39, 1299–1311 (2020).Article 

    Google Scholar 
    Girard, J. & Edmunds, P.J. Effects of arborescent octocoral assemblages on the understory benthic communities of shallow Caribbean reefs. J. Exp. Mar. Biol. Ecol. (in review).Privitera-Johnson, K., Lenz, E. A. & Edmunds, P. J. Density-associated recruitment in octocoral communities in St. John, US Virgin Islands. J. Exp. Mar. Biol. Ecol. 473, 103–109. https://doi.org/10.1016/j.jembe.2015.08.006 (2015).Article 

    Google Scholar 
    Slattery, M. & Lesser, M. P. Gorgonians are foundation species on sponge-dominated Mesophotic Coral Reefs in the Caribbean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.654268 (2021).Article 

    Google Scholar 
    Lasker, H. R. & Porto-Hannes, I. Population structure among octocoral adults and recruits identifies scale dependent patterns of population isolation in The Bahamas. PeerJ 3, e1019. https://doi.org/10.7717/peerj.1019 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark, D. A. & Clark, D. B. Getting to the canopy: tree height growth in a neotropical rain forest. Ecology 82, 1460–1472 (2001).Article 

    Google Scholar 
    Birkeland, C. Coral Reefs in the Anthropocene 1–15 (Springer, 2015).Book 

    Google Scholar 
    Petraitis, P. S. & Dudgeon, S. R. Cusps and butterflies: multiple stable states in marine systems as catastrophes. Mar. Freshw. Res. 67, 37–46 (2015).Article 

    Google Scholar  More

  • in

    Mitogenome-wise codon usage pattern from comparative analysis of the first mitogenome of Blepharipa sp. (Muga uzifly) with other Oestroid flies

    Outcome of DNA sequencing, assembly, and validationIn this study, initially total DNA was isolated from the finely chopped, full-grown pupa of Blepharipa sp. The NanoDrop spectrophotometer (1294 ng/μl) and the Qubit fluorometer (732.8 ng/μl) both found that the concentration of total DNA in the sample at an optimum level for mitochondrial DNA enrichment. The Tape Station profile showed that the size of the fragments of the mitogenomic library were in the range of 250 to 550 bp. The complete insert size distribution ranged from 130 to 430 bp, with the combined adapter size being ~ 120 bp with mitogenome fragments. The appropriate distribution of fragments and their concentrations (~ 27.1 ng/μl) were also found to be suitable for sequencing. Sequencing through Illumina NextSeq500 yielded 4,402,752 raw reads, of which around 3,663,404 high-quality reads were retained after post-quality filtering. The final scaffolding and assembly of contigs generated a 15,080 bp single scaffold MtDNA in Blepharipa sp. (N50 = 15,080).The sequencing outcome was validated by performing PCR amplification of one of the protein-coding genes, in this case, nad6. Where PCR amplification resulted in a single band of expected amplicon size (shown in Supplementary Method Online). Sanger sequencing and subsequent alignment of these amplicons showed almost 92% sequence similarity to our assembled Blepharipa sp. nad6 gene (see Supplementary Method Online). This provided strong evidence that our mitogenome assembly is reliable and can be used for general applications of mitochondrial genes, e.g., as a biomarker. The second mitogenomic region, the control region (CR) was suggested by the reviewer. We have discussed that CRs constitute repetitive A + T regions (“AT richness of Control Region and role of sequencing method” and “Impact of repeats on different sequencing technologies and assembly method” section). One or more repetitive regions within the CR identified in certain species (e.g. fish, human) have shown undesirable effects on PCR amplification and sequencing125,126. Many organisms have segmental duplications in CR induced by the appearance of pseudogenes that PCR can co-amplify127,128,129,130,131. Due to these associated problems, researchers generally rely on protein or ribosomal RNA genes for phylogenetics instead of CRs132,133,134. In this case, we also faced problems validating the CR. The PCR and gel electrophoresis using external PCR primers did not show a desirable single band as seen for nad6. As an alternative strategy, we used two pairs of primers, CR int_fwd and CR int_rev, internal primers, with CR15fwd and CR08rev primers, to perform a two-way sequencing of each amplicon, which generated multiple bands (see Supplementary Method Online, Figs. S1, S2). The most prominent bands were subjected to sequencing and yielded two mixed sequences, the best of which exhibited nearly 54% sequence resemblance with the Blepharipa sp. control region (see Method in Supplementary Note). Further mapping of the Illumina reads with the assembly revealed that the depth of coverage across the CR was not as deep as that of protein-coding genes such as cox2, and it was also not inflated only over a repeated section of the CR. The depth over 1–112 varied from 5 to 20×, and that for the 15,025–15,080 bp was around 30×. We did observe that our reads didn’t cover a 10 bp stretch of CR around 15,030–15,040 bp (see Method in Supplementary Note and Figs. S3–S6). We believe that our sequencing and assembly experiment was able to cover the majority of CR successfully with reasonable coverage barring that 10 bp stretch. Our results corroborate with the difficulties of CR sequencing seen with other species, and while this doesn’t reflect on the quality of our whole mitogenome assembly, researchers using mitogenomic CR regions for any kind of phylogenetic inference should proceed with caution.Size and organization of mitogenome
    Blepharipa sp. mitogenome organization and structureThe newly sequenced mitochondrial genome of Blepharipa sp. is closed circular and has a size of 15,080 bp, which falls within the typical insect mitogenome size (14 to 20 kb)135,136,137. Similar to other sequenced bilaterian mitogenomes, the Blepharipa sp. mitogenome has conventional gene content, a total of 37 genes (viz. 13 PCGs, 22 tRNAs, 2 rRNAs) and an AT-rich control region (CR) (Fig. 2A)138,139,140,141. Among these, 23 genes are present on the major strand (J strand or +ve strand), while the remaining 14 genes are present in the minor strand (N strand or –ve strand). The intron-less 13 PCGs are also separately encoded by these two strands, 9 PCGs (nad2, cox1, cox2, atp8, atp6, cox3, nad3, nad6, cytb) from the J strand and 4 PCGs (nad5, nad4, nad4l, nad1) from N strand covering 6899 bp and 4300 bp respectively constituting around 74.31% of the entire mitogenome (Fig. 2). The largest PCG present in this organism is nad5 (1716 bp), and the smallest one is the atp8 (165 bp). Excluding stop codons, the J strand has 2237 codons, and the N strand has 1430 codons. Apart from cox1 (TCG) and nad1 (TTG), 11 PCGs follow the canonical “ATN” start codon. Ten PCGs of this mitogenome have “TAA or TAG” as their stop codon except for cox1, cox2, and nad4, where they end with an incomplete stop codon, a single T (Fig. 2)142. A total of 22 tRNAs are interspersed all over the entire mitogenome, ranging from 63 bp (trnT) to 72 bp (trnV) in size. The J and N strands have 14 tRNAs and 8 tRNAs, respectively, with 928 bp and 528 bp of nucleotides. Typical clover-leaf shaped secondary structures of tRNAs have been observed with a few exceptions where trnC, trnF, trnP, and trnN lack a stable TΨC loop see Supplementary Fig. S7 online). Two N-strand rRNAs with nucleotides of 1360 bp and 783 bp are transcribed individually for rrnL and rrnS (Fig. 2B).Figure 2Complete mitochondrial genome structure of Blepharipa sp.; (A) Circular Map (B) Annotation and genome organization of mitogenome. tRNAs are represented as trn followed by the IUPAC-IUB single letter amino acid codes e.g., trnI denote tRNA-Ile.Full size imageThis mitogenome has 10 gene boundaries where genes overlap with adjacent genes, varying from 1 to 8 bp in length, for a total of 35 bp. The longest overlapping sequence of 8 bp is present over the trnW and trnC genes. Likewise, the total length of all intergenic spacer sequences (excluding the control region) is 139 bp, present at 15 gene boundaries. The length of each intergenic spacer varies between 1 and 40 bp, and the longest one is located between the trnE and trnF genes. In this organism, eleven pairs of genes are located discreetly but adjacent to each other and any PCG adjacent to tRNA, ending with an incomplete stop codon (cox1-trnL2, cox2-trnK). The control region’s length of this dipteran fly is 168 bp, and the nature of this region is highly biased towards A + T content (Fig. 2).Size comparison of Oestroidea mitogenome and their genesTo better understand the mitogenome of Blepharipa sp., it has been compared with the flies of the Oestroidea superfamily (blowflies, bot flies, flesh flies, uzi flies, and relatives). Various features have been taken into account for this comparison: mitogenome size, gene sizes, gene content, and how genes are placed in each mitogenome.The mitogenome of eukaryotic organisms shows that there are significant size differences across mammals, fungi, and plants. The typical size of an animal mitogenome is near about 16 kb, a fungal mitogenome is 19–176 kb, and a plant mitogenome is far larger, with a size range of 200 to 2500 kb143. We have shown that the Blepharipa sp. whole mitogenome size (15,080 bp) is 416 bp smaller than the average Oestroidea flies mitogenome. As for the Oestroidea superfamily, D. hominis (human bot fly), an Oestridae fly has the longest mitogenome of all (16,360 bp), and A. grahami, a Calliphoridae fly, has the shortest mitogenome of all (14,903 bp). Tachinid flies have a smaller average mitogenome size (~ 15,076 bp) than the other flies in this superfamily, and the Oestridae flies have a relatively larger mitogenome (~ 16,031 bp). We observed that the size of the total PCGs, tRNAs, and rRNAs are well-maintained across this superfamily, with an average length of 11,145 bp, 1482 bp, and 2113 bp, respectively (Fig. 1A, green, yellow, and blue line, Table 1).The difference in mitogenome size in insects can be attributed to variations in the length of non-coding regions, especially the control region that differs in length as well as the pattern of sequences (Fig. 1B)104,144. In addition, based on mtDNA sequence similarity among all the Oestroidea flies, Blepharipa sp. has high similitude with the Tachinid Fly E. flavipalpis (87.83%), followed by the two hairy maggot blowflies, Chrysomya albiceps (85.51%) and C. rufifacies (85.44%). Another well-studied uzi fly, E. sorbilans has an 84.82% sequence similarity with Blepharipa sp., while Gasterophilus horse botfly has the lowest sequence similarity (~ 77%) with Blepharipa sp. (Supplementary Data 3A).Gene content and arrangementWe found that the Oestroidea mitogenome represents the reserved gene arrangement of Ecdysozoan, for which it can be easily distinguishable from other bilaterians (Lophotrochozoa and Deuterostomia)140. The mitogenome of Blepharipa sp. and other Oestroidea have three core tRNA clusters, including (1) trnI-trnQ-trnM, (2) trnW-trnC-trnY and (3) trnA-trnR-trnN-trnS1-trnE-trnF, as depicted in Figs. 1C and 2. A comparative study revealed that the Oestroidea superfamily has 4 different kinds of mitogenome arrangements (Fig. 1C). The majority of the Oestroidea flies (25 out of 36) in this study have ancestral (A) dipteran type mitogenome sequences (Table 1)145. However, there are some minor inconsistencies exist in the Calliphoridae family (blowflies), such as the insertion of extra tRNAs (trnI in the genus Chrysomya and trnV in D. hominis) or the translocation of tRNA (trnS1 in C. chinghaiensis) (Fig. 1C)21,24. Barring this, all organisms, including Blepharipa sp., follow a standard dipteran gene arrangement and have 37 genes in their respective mitogenomes (insertion of tRNA into the genus Chrysomya and D. hominis raises gene count) (Fig. 1C (i)(ii), Table 1). In the case of dipterans other than the Oestroidea superfamily, species like gall midge (Cecidomyiidae), mosquitos (Culicidae), and crane flies (Tipulidae) exhibit various rearrangements in mitochondrial tRNAs, such as the absence, inversion, translocation, and extreme truncation of certain genes (Supplementary Data 1A)146,147.Non-coding regionsControl region (CR) of Blepharipa sp. and comparison with OestroideaThis region in the metazoan mitogenome is a single sizeable non-coding sequence containing essential regulatory elements for transcription and replication initiation; it is therefore named the control region148,149. Similar to other Diptera, the CR of Blepharipa sp. is also flanked by rrnS and the trnI-trnQ-trnM gene cluster (Fig. 2). Sequence similarity with other Oestroidea superfamily species indicates that this segment is variable due to the lack of coding constraints150. The CR sequence of Blepharipa sp. 75.49% similar to another tachinid fly Elodia flavipalpis, followed by Chrysomya bezziana (71.15%) (Supplementary Data 3B). Despite its overall high variation in nucleotides, this region harbors multiple different types of repeats (e.g., tandem repeats, inverted repeats)42,151 and conserved structures namely Poly-T stretch (15 bp), [TA(A)]n-like, G(A)nT-like stretches, and poly A tail (15 bp)152,153,154(Fig. 3A). Another conserved motif, “ATTGTAAATT” we found in the CR of Blepharipa sp. and E. flavipalpis (Fig. 3A). Such conserved structures are thought to play role in the regulatory process of transcription or replication. After binding with RNA polymerase,  they keep the initiating mode of transcription or replication by preventing the transition to elongation mode without affecting its open-complex structure155,156.Figure 3Conserved non-coding regions; (A) AT rich control region Alignment of Blepharipa sp. with other two Tachinidae species. (B) Three alignments of the common overlap region between trnW-trnC, atp8-atp6 and nad4-nad4l. (C) Three alignment of the consensus gap region between trnS2-nad1 (TACTAAAHHHHAWWMH), trnE-trnF (ACTAAHWWWAATTMHHWA), nad5-trnH (WGAYADATWYTTCAY) genes of all 36 Oestroidea mitogenome (where, W = A/T, H = A/T/C, Y = T/C, D = G/T/A, M = A/C).Full size imageThe CR is also known as the AT-rich region for having the maximum proportion of A/T nucleotides (91.4% for Blepharipa sp.) than other regions of the entire mitogenome. We observed that the Tachinidae family has higher A + T content than other groups, with the highest levels in the Mulberry uzi fly, E. sorbillans (98.10%), and AT poor CR regions identified in G. intestinalis (80.80%) and G. pecorum (80.82%) (Oestridae)42 (Supplementary Data 2A). In this study, the CR of thirteen species have above 90% A + T content, and the top 3 are the tachinid flies, led by A. grahami, D. hominis and Blepharipa sp. consecutively. The CR is prone to high mutation, yet the substitution rate is low due to high A + T content and directional mutation pressure144,154. This part of the mitogenome differs significantly in length among insects, ranging from 70 bp to 13 kb, and it accounts for most of the variation in mitogenome size153. We noted that the CR size of 36 Oestroidea flies ranges from 89 to 1750 bp, of which 16, 12, and 8 species can be categorized as large ( > 800 bp), medium (200–800 bp), and small ( 5 to  0.025 to  0.005 to  More

  • in

    Ontogeny and caudal autotomy fracture planes in a large scincid lizard, Egernia kingii

    Emberts, Z., Escalante, I. & Bateman, P. W. The ecology and evolution of autotomy. Biol. Rev. 94, 1881–1896. https://doi.org/10.1111/brv.12539 (2019).Article 
    PubMed 

    Google Scholar 
    Dunoyer, L. A., Seifert, A. W. & Van Cleve, J. Evolutionary bedfellows: Reconstructing the ancestral state of autotomy and regeneration. J. Exp. Zool. Part B Mol. Dev. Evol. 336, 94–115. https://doi.org/10.1002/jez.b.22974 (2021).Article 

    Google Scholar 
    Dial, B. E. & Fitzpatrick, L. C. Lizard tail autotomy: function and energetics of postautotomy tail movement in Scincella lateralis. Science https://doi.org/10.1126/science.219.4583.391 (1983).Article 
    PubMed 

    Google Scholar 
    Arnold, E. Caudal autotomy as a defense. Biol. Reptil. 16, 235–273 (1988).
    Google Scholar 
    Bateman, P. W. & Fleming, P. A. To cut a long tail short: A review of lizard caudal autotomy studies carried out over the last 20 years. J. Zool. (Lond.) 277, 1–14 (2009).Article 

    Google Scholar 
    Woodland, W. Memoirs: Some observations on caudal autotomy and regeneration in the gecko (Hemidactylus flaviviridis, Rüppel), with notes on the tails of Sphenodon and Pygopus. J. Cell Sci. 2, 63–100 (1920).Article 

    Google Scholar 
    Alibardi, L. Morphological and Cellular Aspects of Tail and Limb Regeneration in Lizards: A Model System with Implications for Tissue Regeneration in Mammals (Springer, 2010).Book 

    Google Scholar 
    Maginnis, T. L. The costs of autotomy and regeneration in animals: A review and framework for future research. Behav. Ecol. 17, 857–872. https://doi.org/10.1093/beheco/arl010 (2006).Article 

    Google Scholar 
    Dial, B. E. & Fitzpatrick, L. C. The energetic costs of tail autotomy to reproduction in the lizard Coleonyx brevis (Sauria: Gekkonidae). Oecologia 51, 310–317. https://doi.org/10.1007/bf00540899 (1981).ADS 
    Article 
    PubMed 

    Google Scholar 
    Vitt, L. J., Congdon, J. D. & Dickson, N. A. Adaptive strategies and energetics of tail autotomy in Lizards. Ecology 58, 326–337. https://doi.org/10.2307/1935607 (1977).Article 

    Google Scholar 
    Clause, A. R. & Capaldi, E. A. Caudal autotomy and regeneration in lizards. J. Exp. Zool. 305, 965–973 (2006).Article 

    Google Scholar 
    Barr, J. I., Boisvert, C. A. & Bateman, P. W. At what cost? Trade-offs and influences on energetic investment in tail regeneration in lizards following autotomy. J. Dev. Biol. 9, 53 (2021).Article 

    Google Scholar 
    Etheridge, R. Lizard caudal vertebrae. Copeia, 699–721 (1967).Arnold, E. Evolutionary aspects of tail shedding in lizards and their relatives. J. Nat. Hist. 18, 127–169 (1984).Article 

    Google Scholar 
    Zani, P. A. Patterns of caudal-autotomy evolution in lizards. J. Zool. (Lond.) 240, 201–220 (1996).Article 

    Google Scholar 
    Russell, A. & Bauer, A. The m. caudifemoralis longus and its relationship to caudal autotomy and locomotion in lizards (Reptilia: Sauria). J. Zool. (Lond.) 227, 127–143. https://doi.org/10.1111/j.1469-7998.1992.tb04349.x (1992).Article 

    Google Scholar 
    Arnold, E. Investigating the evolutionary effects of one feature on another: Does muscle spread suppress caudal autotomy in lizards?. J. Zool. (Lond.) 232, 505–523. https://doi.org/10.1111/j.1469-7998.1994.tb01591.x (1994).Article 

    Google Scholar 
    Bellairs, A. & Bryant, S. Autotomy and regeneration in reptiles. Biol. Reptil. 15, 301–410 (1985).
    Google Scholar 
    Hoffstetter, R. & Gasc, J. P. Vertebrae and ribs of modern reptiles. Biol. Reptil. 1, 201–310 (1969).
    Google Scholar 
    Cooper, W. E. Jr. & Frederick, W. G. Predator lethality, optimal escape behavior, and autotomy. Behav. Ecol. 21, 91–96. https://doi.org/10.1093/beheco/arp151 (2009).Article 

    Google Scholar 
    Fleming, P. A., Valentine, L. E. & Bateman, P. W. Telling tails: Selective pressures acting on investment in lizard tails. Physiol. Biochem. Zool. 86, 645–658 (2013).Article 

    Google Scholar 
    Bateman, P. W., Fleming, P. A. & Rolek, B. Bite me: Blue tails as a ‘risky-decoy’defense tactic for lizards. Curr. Zool. 60, 333–337 (2014).Article 

    Google Scholar 
    Hawlena, D., Boochnik, R., Abramsky, Z. & Bouskila, A. Blue tail and striped body: Why do lizards change their infant costume when growing up?. Behav. Ecol. 17, 889–896. https://doi.org/10.1093/beheco/arl023 (2006).Article 

    Google Scholar 
    Barr, J. I., Somaweera, R., Godfrey, S. S. & Bateman, P. W. Increased tail length in the King’s skink, Egernia kingii (Reptilia: Scincidae): An anti-predation tactic for juveniles?. Biol. J. Linn. Soc. 126, 268–275 (2019).Article 

    Google Scholar 
    Pafilis, P. & Valakos, E. D. Loss of caudal autotomy during ontogeny of Balkan Green Lizard, Lacerta trilineata. J. Nat. Hist. 42, 409–419 (2008).Article 

    Google Scholar 
    Masters, C. & Shine, R. Sociality in lizards: family structure in free-living King’s Skinks Egernia kingii from southwestern Australia. Aust. Zool. 32, 377–380 (2003).Article 

    Google Scholar 
    Cury de Barros, F., Eduardo de Carvalho, J., Abe, A. S. & Kohlsdorf, T. Fight versus flight: The interaction of temperature and body size determines antipredator behaviour in tegu lizards. Anim. Behav. 79, 83–88. https://doi.org/10.1016/j.anbehav.2009.10.006 (2010).Article 

    Google Scholar 
    Storr, G. The genus Egernia (Lacertilia, Scincidae) in Western Australia. Rec. West. Aust. Mus. 6, 147–187 (1978).
    Google Scholar 
    Cogger, H. G. Reptiles and Amphibians of Australia. 7th edn, (CSIRO Publishing, 2014).Arena, P. C. & Wooller, R. D. The reproduction and diet of Egernia kingii (Reptilia : Scincidae) on Penguin Island, Western Australia. Aust. J. Zool. 51, 495–504. https://doi.org/10.1071/ZO02040 (2003).Article 

    Google Scholar 
    Dilly, M. L. Factors Affecting the Distribution and Variation in Abundance of the King’s Skink (Egernia kingii) (Gray) in Western Australia, Murdoch University (2000).Pearson, D., Shine, R. & How, R. Sex-specific niche partitioning and sexual size dimorphism in Australian pythons (Morelia spilota imbricata). Biol. J. Linn. Soc. 77, 113–125 (2002).Article 

    Google Scholar 
    Chapple, D. G. Ecology, life-history, and behaviour in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetol. Monogr. 17, 145–180. https://doi.org/10.1655/0733-1347(2003)017[0145:ELABIT]2.0.CO;2 (2003).Article 

    Google Scholar 
    Itescu, Y., Schwarz, R., Meiri, S., Pafilis, P. & Clegg, S. Intraspecific competition, not predation, drives lizard tail loss on islands. J. Anim. Ecol. 86, 66–74. https://doi.org/10.1111/1365-2656.12591 (2017).Article 
    PubMed 

    Google Scholar 
    Siliceo-Cantero, H., Zúñiga-Vega, J., Renton, K. & Garcia, A. Assessing the relative importance of intraspecific and interspecific interactions on the ecology of Anolis nebulosus lizards from an island vs. a mainland population. Herpetol. Conserv. Biol. 12, 673–682 (2017).
    Google Scholar 
    Langkilde, T. & Shine, R. Interspecific conflict in lizards: Social dominance depends upon an individual’s species not its body size. Austral Ecol. 32, 869–877 (2007).Article 

    Google Scholar 
    Pafilis, P., Pérez-Mellado, V. & Valakos, E. Postautotomy tail activity in the Balearic lizard, Podarcis lilfordi. Naturwissenschaften 95, 217–221 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Browne, C. King’s Skinks (Egernia kingii) Abundance and Juvenile Survival Unaffected by Temporal Change or Presence of Invasive BLACK Rats (Rattus rattus) on Penguin Island, Western Australia, The University of Western Australia (2014).Langton, J. Population Biology of the King’s Skink (Egernia kingii) (Gray) on Penguin Island, Western Australia, Murdoch University (2000).Arena, P. Aspects of the Biology of the King’s Skink Egernia kingii (Gray), Murdoch University (1986).Pafilis, P., Meiri, S., Foufopoulos, J. & Valakos, E. Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften 96, 1107–1113. https://doi.org/10.1007/s00114-009-0564-3 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Martín, J. & Salvador, A. Tail loss reduces mating success in the Iberian rock-lizard, Lacerta monticola. Behav. Ecol. Sociobiol. 32, 185–189 (1993).Article 

    Google Scholar 
    Salvador, A., Martin, J. & López, P. Tail loss reduces home range size and access to females in male lizards, Psammodromus algirus. Behav. Ecol. 6, 382–387. https://doi.org/10.1093/beheco/6.4.382 (1995).Article 

    Google Scholar 
    Smyth, M. Changes in the fat scores of the skinks Morethia boulengeri and Hemiergis peronii (Lacertilia). Aust. J. Zool. 22, 135–145. https://doi.org/10.1071/ZO9740135 (1974).Article 

    Google Scholar 
    Wilson, R. S. & Booth, D. Effect of tail loss on reproductive output and its ecological significance in the skink Eulamprus quoyii. J. Herpetol. 32, 128–131 (1998).Article 

    Google Scholar 
    Fox, S. F. & McCoy, J. K. The effects of tail loss on survival, growth, reproduction, and sex ratio of offspring in the lizard Uta stansburiana in the field. Oecologia 122, 327–334. https://doi.org/10.1007/s004420050038 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Dial, B. E. & Fitzpatrick, L. C. Predator escape success in tailed versus tailless Scinella lateralis (Sauria: Scincidae). Anim. Behav. 32, 301–302 (1984).Article 

    Google Scholar 
    Downes, S. & Shine, R. Why does tail loss increase a lizard’s later vulnerability to snake predators?. Ecology 82, 1293–1303 (2001).Article 

    Google Scholar 
    Bernardo, J. & Agosta, S. J. Evolutionary implications of hierarchical impacts of nonlethal injury on reproduction, including maternal effects. Biol. J. Linn. Soc. 86, 309–331 (2005).Article 

    Google Scholar 
    Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. Biol. Sci. Ser. B 272, 2627–2634. https://doi.org/10.1098/rspb.2005.3251 (2005).Article 

    Google Scholar 
    Steindler, L. A., Blumstein, D. T., West, R., Moseby, K. E. & Letnic, M. Exposure to a novel predator induces visual predator recognition by naïve prey. Behav. Ecol. Sociobiol. 74, 102. https://doi.org/10.1007/s00265-020-02884-3 (2020).Article 

    Google Scholar 
    Blumstein, D. T. Moving to suburbia: Ontogenetic and evolutionary consequences of life on predator-free islands. J. Biogeogr. 29, 685–692. https://doi.org/10.1046/j.1365-2699.2002.00717.x (2002).Article 

    Google Scholar 
    Sih, A. et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621 (2010).Article 

    Google Scholar 
    Cooper, J. W. E.; Blumstein, D. T. Escaping From Predators: An Integrative View of Escape Decisions. (Cambridge University Press, 2015).Cox, J. G. & Lima, S. L. Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680 (2006).Article 

    Google Scholar 
    Blumstein, D. T. & Daniel, J. C. The loss of anti-predator behaviour following isolation on islands. Proc. R. Soc. Biol. Sci. Ser. B 272, 1663–1668 (2005).Article 

    Google Scholar 
    Blumstein, D. T., Daniel, J. C. & Springett, B. P. A test of the multi-predator hypothesis: Rapid loss of antipredator behavior after 130 years of isolation. Ethology 110, 919–934 (2004).Article 

    Google Scholar 
    Jolly, C. J., Webb, J. K. & Phillips, B. L. The perils of paradise: An endangered species conserved on an island loses antipredator behaviours within 13 generations. Biol. Lett. 14, 20180222 (2018).Article 

    Google Scholar 
    Cooper, W. E., Pérez-Mellado, V. & Vitt, L. J. Ease and effectiveness of costly autotomy vary with predation intensity among lizard populations. J. Zool. 262, 243–255 (2004).Article 

    Google Scholar 
    Elwood, C., Pelsinski, J. & Bateman, B. Anolis sagrei (Brown Anole). Voluntary autotomy. Herpetol. Rev. 43, 642–642 (2012).
    Google Scholar 
    Slotopolsky, B. Beiträge zur Kenntnis der Verstümmelungs-und Regenerationsvorgänge am Lacertilierschwanze. Zool. Jahrb. Abt. Anat. Ontog. Tiere 43, 39–48 (1922).
    Google Scholar  More

  • in

    Climate change will disproportionally affect the most genetically diverse lineages of a widespread African tree species

    D’Amen, M., Zimmermann, N. E. & Pearman, P. B. Conservation of phylogeographic lineages under climate change. Glob. Ecol. Biogeogr. 22, 93–104. https://doi.org/10.1111/j.1466-8238.2012.00774.x (2013).Article 

    Google Scholar 
    Espíndola, A. et al. Predicting present and future intra-specific genetic structure through niche hindcasting across 24 millennia. Ecol. Lett. 15, 649–657. https://doi.org/10.1111/j.1461-0248.2012.01779.x (2012).Article 
    PubMed 

    Google Scholar 
    Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Tr. Ecol. Evolut. 18, 189–197. https://doi.org/10.1016/S0169-5347(03)00008-9 (2003).Article 

    Google Scholar 
    Fontaine, C., Lovett, P., Sanou, H., Maley, J. & Bouvet, J. M. Genetic diversity of the shea tree (Vitellaria paradoxa CF Gaertn), detected by RAPD and chloroplast microsatellite markers. Heredity 93, 639 (2004).CAS 
    Article 

    Google Scholar 
    Hampe, A., El Masri, L. & Petit, R. J. Origin of spatial genetic structure in an expanding oak population. Mol. Ecol. 19, 459–471. https://doi.org/10.1111/j.1365-294X.2009.04492.x (2010).Article 
    PubMed 

    Google Scholar 
    Omondi, S. F., Odee, D. W., Ongamo, G. O., Kanya, J. I. & Khasa, D. P. Genetic consequences of anthropogenic disturbances and population fragmentation in Acacia senegal. Conserv. Genet. 17, 1235–1244. https://doi.org/10.1007/s10592-016-0854-1 (2016).Article 

    Google Scholar 
    Hewitt, G. Postglacial recolonization of European biota. Biol. J. Lin. Soc. 68, 87–112 (1999).Article 

    Google Scholar 
    Donkpegan, A. S. L. et al. Population genomics of the widespread African savannah trees Afzelia africana and Afzelia quanzensis reveals no significant past fragmentation of their distribution ranges. Am. J. Bot. 107, 498–509. https://doi.org/10.1002/ajb2.1449 (2020).Article 
    PubMed 

    Google Scholar 
    Etterson, J. R. & Shaw, R. G. Constraint to adaptive evolution in response to global warming. Science 294, 151–154. https://doi.org/10.1126/science.1063656 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Holderegger, R. & Wagner, H. Landscape genetics. Bioscience 58, 199–207. https://doi.org/10.1641/B580306 (2008).Article 

    Google Scholar 
    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x (2005).Article 
    PubMed 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946. https://doi.org/10.1111/mec.12152 (2013).Article 
    PubMed 

    Google Scholar 
    Arnell, N. W. & Lloyd-Hughes, B. The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Climatic Ch. 122, 127–140. https://doi.org/10.1007/s10584-013-0948-4 (2014).ADS 
    Article 

    Google Scholar 
    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Ch. 109, 5–31. https://doi.org/10.1007/s10584-011-0148-z (2011).ADS 
    Article 

    Google Scholar 
    Prather, M. et al. Annex II: climate system scenario tables. Climate Ch. 1395–1445 (2013).Pachauri, R. K. et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Synthesis report (Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2014).Müller, C. Climate change impact on Sub-Saharan Africa. An overview and analysis of scenarios and models (Dt. Inst. für Entwicklungspolitik, Bonn, 2009).Serdeczny, O. et al. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Ch. 17, 1585–1600. https://doi.org/10.1007/s10113-015-0910-2 (2016).Article 

    Google Scholar 
    Linder, H. P. et al. The partitioning of Africa: Statistically defined biogeographical regions in sub-Saharan Africa. J. Biogeogr. 39, 1189–1205. https://doi.org/10.1111/j.1365-2699.2012.02728.x (2012).Article 

    Google Scholar 
    Sexton, G. J. et al. Influence of putative forest refugia and biogeographic barriers on the level and distribution of genetic variation in an African savannah tree, Khaya senegalensis (Desr.) A. Juss. Tree Genet. Genomes https://doi.org/10.1007/s11295-015-0933-3 (2015).Article 

    Google Scholar 
    Linder, H. P. et al. Numerical re-evaluation of the sub-Saharan phytopchoria of mainland Africa. Biologiske Skrifter 55, 229–252 (2005).ADS 

    Google Scholar 
    Ruiz Guajardo, J. C. et al. Landscape genetics of the key African acacia species Senegalia mellifera (Vahl)- the importance of the Kenyan Rift Valley. Mol. Ecol. 19, 5126–5139. https://doi.org/10.1111/j.1365-294X.2010.04833.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kebede, M., Enrich, D., Taberlet, P., Nemomissa, S. & Brochmann, C. Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East African mountains. Mol. Ecol. 16, 1233–1243. https://doi.org/10.1111/j.1365-294x.2007.03232.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kadu, C. et al. Phylogeography of the Afromontane Prunus africana reveals a former migration corridor between East and West African highlands. Mol. Ecol. 20, 165–178. https://doi.org/10.1111/j.1365-294X.2010.04931.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lyam, P. T., Duque-Lazo, J., Schnitzler, J., Hauenschild, F. & Müllner-Riehl, A. N. Testing the forest refuge hypothesis in sub-Saharan Africa using species distribution modeling for a key savannah tree species, Senegalia senegal (L.) Britton. Front. Biogeogr. https://doi.org/10.21425/F5FBG48689 (2020).Article 

    Google Scholar 
    Logossa, Z. A. et al. Molecular data reveal isolation by distance and past population expansion for the shea tree (Vitellaria paradoxa C.F. Gaertn) in West Africa. Mol. Ecol. 20, 4009–4027. https://doi.org/10.1111/j.1365-294X.2011.05249.x (2011).Article 
    PubMed 

    Google Scholar 
    Lompo, D., Vinceti, B., Konrad, H., Gaisberger, H. & Geburek, T. Phylogeography of African locust bean (Parkia biglobosa) reveals genetic divergence and spatially structured populations in west and central Africa. J. Heredity 109, 811–824. https://doi.org/10.1093/jhered/esy047 (2018).Article 

    Google Scholar 
    Leong Pock Tsy, J.-M. et al. Chloroplast DNA phylogeography suggests a West African centre of origin for the baobab, Adansonia digitata L. (Bombacoideae, Malvaceae). Mol. Ecol. 18, 1707–1715. https://doi.org/10.1111/j.1365-294X.2009.04144.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Allal, F. et al. Past climate changes explain the phylogeography of Vitellaria paradoxa over Africa. Heredity 107, 174–186. https://doi.org/10.1038/hdy.2011.5 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fagg, C. W. & Allison, G. E. Acacia Senegal and the gum arabic trade: monograph and annotated bibliography (University of Oxford, United Kingdom, 2004).
    Google Scholar 
    Lézine, A. M. Late Quaternary vegetation and climate of the Sahel. Quatern. Res. 32, 317–334 (1989).ADS 
    Article 

    Google Scholar 
    Steele, T. Vertebrate records: Late Pleistocene of Africa. In Encyclopedia of Quaternary Science, edited by S. Elias. (Elsevier, Oxford, 2007), 3139–3150.Raddad, E., Salih, A., Fadl, M., Kaarakka, V. & Luukkanen, O. Symbiotic nitrogen fixation in eight Acacia senegal provenances in dryland clays of the Blue Nile Sudan estimated by the 15N natural abundance method. Plant Soil 275, 261–269. https://doi.org/10.1007/s11104-005-2152-4 (2005).CAS 
    Article 

    Google Scholar 
    Gray, A. et al. Does geographic origin dictate ecological strategies in Acacia senegal (L.) Willd? Evidence from carbon and nitrogen stable isotopes. Plant Soil 369, 479–496. https://doi.org/10.1007/s11104-013-1593-4 (2013).CAS 
    Article 

    Google Scholar 
    Ross, J. H. A conspectus of African acacia species (1979).Odee, D. W., Telford, A., Wilson, J., Gaye, A. & Cavers, S. Plio-Pleistocene history and phylogeography of Acacia senegal in dry woodlands and savannahs of sub-Saharan tropical Africa: evidence of early colonisation and recent range expansion. Heredity 109, 372–382. https://doi.org/10.1038/hdy.2012.52 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lyam, P. et al. Genetic diversity and distribution of Senegalia senegal (L.) Britton under climate change scenarios in West Africa. PLoS ONE 13, e0194726 (2018).Article 

    Google Scholar 
    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15, 684–692; https://doi.org/10.1016/j.tplants.2010.09.008 (2010).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).Article 

    Google Scholar 
    ESRI. ArcGIS Desktop: Release 10.5. Redlands, CA: Environmental Systems Research Institute (2020).Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Res. 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).CAS 
    Article 

    Google Scholar 
    Elhadji, S. D. et al. Exploring genetic diversity and structure of Acacia senegal (L.) Willd to improve its conservation in Niger. African J. Biotechnol. 16, 1650–1659 (2017).Article 

    Google Scholar 
    Muriira, N. G., Muchugi, A., Yu, A., Xu, J. & Liu, A. Genetic Diversity Analysis Reveals Genetic Differentiation and Strong Population Structure in Calotropis Plants. Sci. Rep. 8, 7832 (2018).ADS 
    Article 

    Google Scholar 
    Conord, C., Gurevitch, J. & Fady, B. Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin. Ecol. Evol. 2, 2600–2614. https://doi.org/10.1002/ece3.350 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Omondi, S. F. et al. Genetic diversity and population structure of Acacia senegal (L) Willd Kenya. Trop. Plant Biol. 3, 59–70 (2010).Article 

    Google Scholar 
    Marko, P. B. & Hart, M. W. The complex analytical landscape of gene flow inference. Trends Ecol. Evol. 26, 448–456. https://doi.org/10.1016/j.tree.2011.05.007 (2011).Article 
    PubMed 

    Google Scholar 
    Goncalves, A. L., García, M. V., Heuertz, M. & González-Martínez, S. C. Demographic history and spatial genetic structure in a remnant population of the subtropical tree Anadenanthera colubrina var cebil (Griseb.) Altschul (Fabaceae). Ann. Forest Sci. https://doi.org/10.1007/s13595-019-0797-z (2019).Article 

    Google Scholar 
    Rosenzweig, M. L. Species diversity in space and time (Cambridge university press, 1995).Vellend, M. & Geber, M. A. Connections between species diversity and genetic diversity. Ecol. Lett. 8, 767–781. https://doi.org/10.1111/j.1461-0248.2005.00775.x (2005).Article 

    Google Scholar 
    Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487. https://doi.org/10.1111/j.1472-4642.2010.00654.x (2010).Article 

    Google Scholar 
    Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18. https://doi.org/10.1002/evl3.154 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hutchison, D. W. & Templeton, A. R. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evol.; Int. J. Org. Evol. 53, 1898–1914 (1999).Article 

    Google Scholar 
    Shi, M. M., Michalski, S. G., Welk, E., Chen, X. Y. & Durka, W. Phylogeography of a widespread Asian subtropical tree: genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia. J. Biogeogr. 41, 1710–1720. https://doi.org/10.1111/jbi.12322 (2014).Article 

    Google Scholar 
    Voss, N., Eckstein, R. L. & Durka, W. Range expansion of a selfing polyploid plant despite widespread genetic uniformity. Ann. Botany 110, 585–593. https://doi.org/10.1093/aob/mcs117 (2012).Article 

    Google Scholar 
    Fiorini, C. F. et al. Phylogeography of the specialist plant Mandirola hirsuta (Gesneriaceae) suggests ancient habitat fragmentation due to savanna expansion. Flora 262, 151522 (2020).Article 

    Google Scholar 
    Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or distance: which pattern of gene flow is most common?. Evolution 68, 1–15. https://doi.org/10.1111/evo.12258 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662. https://doi.org/10.1111/mec.12938 (2014).Article 
    PubMed 

    Google Scholar 
    Nosil, P., Vines, T. H. & Funk, D. J. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evol.; Int. J. Org. Evol. 59, 705–719 (2005).
    Google Scholar 
    Wang, I. J. & Summers, K. Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Mol. Ecol. 19, 447–458. https://doi.org/10.1111/j.1365-294X.2009.04465.x (2010).Article 
    PubMed 

    Google Scholar 
    Xu, B. et al. Population genetic structure is shaped by historical, geographic, and environmental factors in the leguminous shrub Caragana microphylla on the Inner Mongolia Plateau of China. BMC Plant Biol. 17, 200 (2017).Article 

    Google Scholar 
    Hendry, A. P. & Day, T. Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol. Ecol. 14, 901–916. https://doi.org/10.1111/j.1365-294X.2005.02480.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Solomon, S., Manning, M., Marquis, M. & Qin, D. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Cambridge university press, 2007).Thuiller, W. Climate change and the ecologist. Nature 448, 550–552 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Osland, M. J. et al. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. Global Ch. Biol. 27, 3009–3034 (2021).Article 

    Google Scholar 
    Higgins, S. I., Lavorel, S. & Revilla, E. Estimating plant migration rates under habitat loss and fragmentation. Oikos 101, 354–366 (2003).Article 

    Google Scholar 
    Jump, A. S. & Penuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020. https://doi.org/10.1111/j.1461-0248.2005.00796.x (2005).Article 
    PubMed 

    Google Scholar 
    Jump, A. S., Marchant, R. & Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51–58. https://doi.org/10.1016/j.tplants.2008.10.002 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kirk, H. & Freeland, J. R. Applications and implications of neutral versus non-neutral markers in molecular ecology. Int. J. Mol. Sci. 12, 3966–3988. https://doi.org/10.3390/ijms12063966 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bucharova, A. et al. Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conserv. Genet. 20, 7–17. https://doi.org/10.1007/s10592-018-1067-6 (2019).Article 

    Google Scholar 
    Tong, Y. et al. Ex situ conservation of Pinus koraiensis can preserve genetic diversity but homogenizes population structure. Forest Ecol. Manag. 465, 117820 (2020).Article 

    Google Scholar 
    Vessella, F., Simeone, M. C. & Schirone, B. Quercus suber range dynamics by ecological niche modelling: from the Last Interglacial to present time. Quat. Sci. Rev. 119, 85–93. https://doi.org/10.1016/j.quascirev.2015.04.018 (2015).ADS 
    Article 

    Google Scholar 
    Lovejoy, T. E. Climate change and biodiversity (TERI Press, India, 2006).
    Google Scholar 
    Poczai, P., Varga, I., Bell N.E. & Hyvonen, J. The molecular basis of plant genetic diversity. In Genomics meets biodiversity: advances in molecular marker development and their applications in plant genetic diversity assessment. The molecular basis of plant genetic diversity, edited by M. Caliskan (InTech Open Access Publisher2012), 3–31.Botermans, M., Sosef, M. S. M., Chatrou, L. W. & Couvreur, T. L. P. Revision of the African Genus Hexalobus (Annonaceae). Syst. Bot. 36, 33–48. https://doi.org/10.1600/036364411X553108 (2011).Article 

    Google Scholar 
    Sosef, M. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).Article 

    Google Scholar 
    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631. https://doi.org/10.1093/molbev/msl191 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Escoffier, L. & Lische, H. ARLEQUIN suite ver. 3.5. A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567 (2010).Article 

    Google Scholar 
    Lewis, P. O. & Zaykin, D. Genetic data analysis: computer program for the analysis of allelic data. Mol. Ecol. 11, 1157–1164 (2002).Article 

    Google Scholar 
    AComputer Program to Calculate F-Statistics. Goudet, J. FSTAT (Version 1.2). J. Hered. 6, 245–246 (1995).
    Google Scholar 
    El Mousadik, A. & Petit, R. J. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839 (1996).Article 

    Google Scholar 
    Raymond, M. & Rousset, F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86, 248–249 (1995).Article 

    Google Scholar 
    Pritchard, J., Stephens, M. & Donelly, P. Inference of Population Structure Using Multilocus Genotype Data, 945–959 (2000).Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).CAS 
    Article 

    Google Scholar 
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Pritchard, J. K., Wen, W. & Falush, D. Documentation for STRUCTURE software: Version 2.3. University of Chicago, Chicago, IL, 1–37 (2010).Eliades, N. G. & Eliades, D. G. HAPLOTYPE ANALYSIS: software for analysis of haplotype data. Forest Goettingen (Germany): Genetics and Forest Tree Breeding, Georg-August University Goettingen (2009).Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Peakall, R. & Smouse, P. E. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).Article 

    Google Scholar 
    Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307. https://doi.org/10.1111/ecog.02880 (2018).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67, 3403–3411. https://doi.org/10.1111/evo.12134 (2013).Article 
    PubMed 

    Google Scholar  More

  • in

    Isotopic composition of the eastern gray whale epidermis indicates contribution of prey outside Arctic feeding grounds

    Clark, C. T. et al. Heavy with child? Pregnancy status and stable isotope ratios as determined from biopsies of humpback whales. Conserv. Physiol. 4, 1–13 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Wasser, S. K. et al. Population growth is limited by nutritional impacts on pregnancy success in endangered Southern Resident killer whales (Orcinus orca). PLoS One 12, e0179824. https://doi.org/10.1371/journal.pone.0179824 (2017).Boeuf, B. J., Perez-Cortes, H., Urbán, J., Mate, B. R. & Ollervides, F. High gray whale mortality and low recruitment in 1999: Potential causes and implications. J. Cetacean Res. Manag. 2, 85–99 (1999).
    Google Scholar 
    Perryman, W. L. & Lynn, M. S. Evaluation of nutritive condition and reproductive status of migrating gray whales (Eschrichtius robustus) based on analysis of photogrammetric data. J. Cetacean Res. Manag. 4, 155–164 (2002).
    Google Scholar 
    Moore, S. E., Grebmeier, J. M. & Davies, J. R. Gray whale distribution relative to forage habitat in the northern Bering Sea: Current conditions and retrospective summary. Can. J. Zool. 81, 734–742 (2003).Article 

    Google Scholar 
    Christiansen, F. et al. Poor body condition associated with an unusual mortality event in gray whales. Mar. Ecol. Prog. Ser. 658, 237–252 (2021).ADS 
    Article 

    Google Scholar 
    Martìnez-Aguilar, S. et al. Gray Whale (Eschrichtius robustus) stranding records in Mexico during the winter breeding season in 2019. In IWC (2019).Villegas-Amtmann, S., Schwarz, L. K., Sumich, J. L. & Costa, D. P. A bioenergetics model to evaluate demographic consequences of disturbance in marine mammals applied to gray whales. Ecosphere 6, art183 (2015).Article 

    Google Scholar 
    Urbán, R. J., Jiménez-López, E., Guzmán, H. M. & Viloria-Gómora, L. Migratory Behavior of an Eastern North Pacific Gray Whale From Baja California Sur to Chirikov Basin, Alaska. Front. Mar. Sci. 8, 1–7 (2021).Article 

    Google Scholar 
    Kim, L. & Oliver, J. S. Swarming benthic crustaceans in the Bering and Chukchi seas and their relation to geographic patterns in gray whale feeding. Can. J. Zool. 67, 1531–1542 (1989).Article 

    Google Scholar 
    Perryman, W. L., Joyce, T., Weller, D. W. & Durban, J. W. Environmental factors influencing eastern North Pacific gray whale calf production 1994–2016. Mar. Mammal Sci. 37, 448–462 (2020).Article 

    Google Scholar 
    Caraveo-Patiño, J. & Soto, L. A. Stable carbon isotope ratios for the gray whale (Eschrichtius robustus) in the breeding grounds of Baja California Sur, Mexico. Hydrobiologia 539, 99–107 (2005).Article 

    Google Scholar 
    Pyenson, N. D. & Lindberg, D. R. What happened to gray whales during the pleistocene? The ecological impact of sea-level change on benthic feeding areas in the north pacific ocean. PLoS One 6, e21295. https://doi.org/10.1371/journal.pone.0021295 (2011).Alter, S. E., Newsome, S. D. & Palumbi, S. R. Pre-whaling genetic diversity and population ecology in eastern pacific gray whales: Insights from ancient DNA and stable isotopes. PLoS One 7, e35039 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dunham, J. S. & Duffus, D. A. Foraging patterns of gray whales in central Clayoquot Sound, British Columbia, Canada. Mar. Ecol. Prog. Ser. 223, 299–310 (2001).ADS 
    Article 

    Google Scholar 
    Nerini, M. A Review of Gray Whale Feeding Ecology (Academic Press, Cambridge, 1984).Book 

    Google Scholar 
    Jones, M. Lou & Swartz, S. L. Gray whale. In Encyclopedia of Marine Mammals, Vol. 36 1352 (Academic Press, 2009).Moore, S. E., Wynne, K. M., Kinney, J. C. & Grebmeier, J. M. Gray whale occurrence and forage southeast of Kodiak, Island, Alaska. Mar. Mammal Sci. 23, 419–428 (2007).Article 

    Google Scholar 
    Lagerquist, B. A. et al. Feeding home ranges of pacific coast feeding group gray whales. J. Wildl. Manag. 83, 925–937 (2019).Article 

    Google Scholar 
    Calambokidis, J., Laake, J. L. & Klimek, A. Updated analysis of abundance and population structure of seasonal gray whales in the Pacific, 2010 (2012).Frasier, T. R., Koroscil, S. M., White, B. N. & Darling, J. D. Assessment of population substructure in relation to summer feeding ground use in the eastern North Pacific gray whale. Endanger. Species Res. 14, 39–48 (2011).Article 

    Google Scholar 
    Lang, A. R. et al. Assessment of genetic structure among eastern North Pacific gray whales on their feeding grounds. Mar. Mammal Sci. 30, 1473–1493 (2014).CAS 
    Article 

    Google Scholar 
    Burnham, R. & Duffus, D. Patterns of predator-prey dynamics between gray whales (Eschrichtius robustus) and mysid species in Clayoquot Sound. J. Cetacean Res. Manag. 19, 95–103 (2018).
    Google Scholar 
    Walker, T. J. Primer: With Special Attention to the California Gray Whale (Cabrillo Historical Association Pub QL737, San Diego, 1975).Walker, T. J. The California gray whale comes back (Eschrichtius robustus). Natl. Geogr. Mag. 139(3), 394–415 (1971).
    Google Scholar 
    Caraveo-Patiño, J. et al. Eco-physiological repercussions of dietary arachidonic acid in cell membranes of active tissues of the Gray whale. Mar. Ecol. 30, 437–447. https://doi.org/10.1111/j.1439-0485.2009.00289.x (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    Pirotta, E. et al. A dynamic state model of migratory behavior and physiology to assess the consequences of environmental variation and anthropogenic disturbance on marine vertebrates. Am. Nat. 191, E40–E56. https://doi.org/10.1086/695135 (2018).Busquets-Vass, G. et al. Estimating blue whale skin isotopic incorporation rates and baleen growth rates: Implications for assessing diet and movement patterns in mysticetes. PLoS ONE 12, 1–25 (2017).Article 
    CAS 

    Google Scholar 
    Busquets-Vass, G. et al. Isotope-based inferences of the seasonal foraging and migratory strategies of blue whales in the eastern Pacific Ocean. Mar. Environ. Res. 163, 105201. https://doi.org/10.1016/j.marenvres.2020.105201 (2021).Wild, L. A., Chenoweth, E. M., Mueter, F. J. & Straley, J. M. Evidence for dietary time series in layers of cetacean skin using stable carbon and nitrogen isotope ratios. Rapid Commun. Mass Spectrom. 32, 1425–1438 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gelippi, M., Popp, B., Gauger, M. F. W. & Caraveo-Patiño, J. Tracing gestation and lactation in free ranging gray whales using the stable isotopic composition of epidermis layers. PLoS ONE 15, 1–23. https://doi.org/10.1371/journal.pone.0240171 (2020).Article 
    CAS 

    Google Scholar 
    Graham, B. S., Koch, P. L., Newsome, S. D., McMahon, K. W. & Aurioles, D. Using Isoscapes to Trace the Movements and Foraging Behavior of Top Predators in Oceanic Ecosystems. Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping. https://doi.org/10.1007/978-90-481-3354-3 (2010).Hobson, K. A. International association for ecology tracing origins and migration of wildlife using stable isotopes: A review. Source Oecol. 120, 314–326 (1999).ADS 

    Google Scholar 
    Ryan, C. et al. Accounting for the effects of lipids in stable isotope (δ13C and δ15N values) analysis of skin and blubber of balaenopterid whales. Rapid Commun. Mass Spectrom. 26, 2745–2754 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mammal Sci. 26, 509–572 (2010).CAS 

    Google Scholar 
    Giménez, J., Ramírez, F., Almunia, J., Forero, G. M. & de Stephanis, R. From the pool to the sea: Applicable isotope turnover rates and diet to skin discrimination factors for bottlenose dolphins (Tursiops truncatus). J. Exp. Mar. Bio. Ecol. 475, 54–61 (2016).Article 
    CAS 

    Google Scholar 
    Browning, N. E., Dold, C., I-Fan, J. & Worthy, A. J. Isotope turnover rates and diet–tissue discrimination in skin of ex situ bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 217, 214–221 (2014).CAS 
    PubMed 

    Google Scholar 
    Borrell, A., Abad-Oliva, N., Gõmez-Campos, E., Giménez, J. & Aguilar, A. Discrimination of stable isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid Commun. Mass Spectrom. 26, 1596–1602 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Reeb, D., Best, P. B. & Kidson, S. H. Structure of the integument of southern right whales, Eubalaena australis. Anat. Rec. 290, 596–613 (2007).Article 

    Google Scholar 
    Morales-Guerrero, B. et al. Melanin granules melanophages and a fully-melanized epidermis are common traits of odontocete and mysticete cetaceans. Vet. Dermatol. 28, 213–e50. https://doi.org/10.1111/vde.12392 (2017).PubMed 
    Article 

    Google Scholar 
    Ayliffe, L. K. et al. Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139, 11–22 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hicks, B. D., St. Aubin, D. J., Geraci, J. R. & Brown, W. R. Epidermal growth in the bottlenose dolphin, Tursiops truncatus. J. Invest. Dermatol. 85, 60–63 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aubin, D. J., St. Smith, T. G. & Geraci, J. R. Seasonal epidermal molt in beluga whales, Delphinapterus leucas. Can. J. Zool. 68, 359–367 (1990).Article 

    Google Scholar 
    Perryman, W. L., Donahue, M. A., Perkins, P. C. & Reilly, S. B. Gray Whale calf production 1994–2000: Are observed fluctuations related to changes in seasonal ice cover?. Mar. Mammal Sci. 18, 121–144 (2002).Article 

    Google Scholar 
    Urbán, R. J. et al. A review of gray whales (Eschrichtius robustus) on their wintering grounds in Mexican waters. J. Cetacean Res. Manag. 5, 281–295 (2003).
    Google Scholar 
    Mann, J. Behavioral sampling methods for cetaceans: A review and critique. Mar. Mammal Sci. 15, 102–122 (1999).Article 

    Google Scholar 
    Tyurneva, O. Y. et al. Photographic identification of the Korean-Okhotsk gray whale (Eschrichtius robustus) offshore northeast Sakhalin island and southeast Kamchatka peninsula (Russia), 2009. In SC/62/BRG9 (2014).Yakovlev, Y. M., Tyurneva, O. M., Vertyankin, V. V. & Van der Wolf, P. Photo-identification of gray whales (Eschrichtius robustus) off the northeast coast of Sakhalin Island in 2018 photo. West. Gray Whale Advis. Panel 20th meeti (2019).Reeb, D. & Best, P. B. A biopsy system for deep core sampling of the blubber of southern right whales, Eubalaena australis. Mar. Mammal Sci. 22, 206–213 (2006).Article 

    Google Scholar 
    Noren, D. P. & Mocklin, J. A. Review of cetacean biopsy techniques: Factors contributing to successful sample collection and physiological and behavioral impacts. Mar. Mammal Sci. 28, 154–199 (2012).Article 

    Google Scholar 
    Caraveo-Patiño, J. Ecología alimenticia de la ballena gris (Eschrichtius robustus, Lilljeborg, 1861): Una ventana a la dinámica interna de los ecosistemas. PhD Thesis. Centro de Investigaciones Biológicas del noroeste S.C. http://dspace.cibnor.mx:8080/handle/123456789/90 (2004).Folch, J., Lees, M. & Stanley, G. H. S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).CAS 
    PubMed 
    Article 

    Google Scholar 
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Iverson, S. J., Arnould, J. P. Y. & Boyd, I. L. Milk fatty acid signatures indicate both major and minor shifts in the diet of lactating Antarctic fur seals. Can. J. Zool. 75, 188–197 (1997).Article 

    Google Scholar 
    Newsome, S. D., Koch, P. L., Etnier, M. A. & Aurioles-Gamboa, D. Using carbon and nitrogen isotope values to investigate maternal strategies in Northeast Pacific otariids. Mar. Mammal Sci. 22, 556–572 (2006).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Moore, J. W. & Semmens, B. X. Incorporating uncertainty and prior information into stable isotope mixing models. Ecol. Lett. 11, 470–480 (2008).PubMed 
    Article 

    Google Scholar 
    Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399 (2013).MathSciNet 

    Google Scholar 
    Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 136, 261–269 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    Phillips, D. L. Converting isotope values to diet composition: The use of mixing models. J. Mammal. 93, 342–352 (2012).Article 

    Google Scholar 
    Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5, 1–5 (2010).
    Google Scholar 
    Baker, H. ASM Handbook: Alloy Phase Diagrams ASM Handbook Alloy Phase Diagrams Vol. 3 (ASM International, Materials Park, 1992).
    Google Scholar 
    Pereira, G. H. A. On quantile residuals in beta regression. Commun. Stat. Simul. Comput. 48, 302–316 (2019).MathSciNet 
    Article 

    Google Scholar 
    Osterblom, H., Olsson, O., Blenckner, T. & Furness, W. Junk-food in marine ecosystems. Oikos 117, 967–977 (2008).Article 

    Google Scholar 
    Martínez del Rio, C. & Carleton, S. A. How fast and how faithful: The dynamics of isotopic incorporation into animal tissues. J. Mammal. 93, 353–359. https://doi.org/10.1644/11-MAMM-S-165.1 (2012).Article 

    Google Scholar 
    Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS One 10, https://doi.org/10.1371/journal.pone.0116182 (2015).CAS 
    Article 

    Google Scholar 
    Dalerum, F. & Angerbjörn, A. Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144, 647–658 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Horstmann-Dehn, L., Follmann, E. H., Rosa, C., Zelensky, G. & George, C. Stable carbon and nitrogen isotope ratios in muscle and epidermis of arctic whales. Mar. Mammal Sci. 28, E173–E190. https://doi.org/10.1111/j.1748-7692.2011.00503.x (2012).Hertz, E., Trudel, M., Cox, M. K. & Mazumder, A. Effects of fasting and nutritional restriction on the isotopic ratios of nitrogen and carbon: a meta-analysis. Ecol. Evol. 5, 4829–4839 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lian, M. et al. Assessing δ13C, δ15N and total mercury measures in epidermal biopsies from gray whales. Front. Mar. Sci. 7, 1–9 (2020).ADS 
    Article 

    Google Scholar 
    Gulland, F. et al. Eastern North Pacific gray whale (Eschrichtius robustus) unusual mortality event, 1999–2000. U.S. Dep. Commer. NOAA Tech. Memo. NMFS-AFSC-150. 33 pp (2005).Popp, B. N. et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta 62, 69–77 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Schell, D. M. Declining carrying capacity in the Bering Sea: Isotopic evidence from whale baleen. Limnol. Oceanogr. 45, 459–462 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Kurle, C. M. & McWhorter, J. K. Spatial and temporal variability within marine isoscapes: Implications for interpreting stable isotope data from marine systems. Mar. Ecol. Prog. Ser. 568, 31–45 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Keeling, C. D. The Suess effect: 13Carbon –14Carbon interrelations. Environ. Int. 2, 229–300 (1979).CAS 
    Article 

    Google Scholar 
    Grecian, W. J. et al. Contrasting migratory responses of two closely related seabirds to long-term climate change. Mar. Ecol. Prog. Ser. 559, 231–242 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Pomerleau, C., Nelson, R. J., Hunt, B. P. V., Sastri, A. R. & Williams, W. J. Spatial patterns in zooplankton communities and stable isotope ratios (δ13C and δ15N) in relation to oceanographic conditions in the sub-Arctic Pacific and western Arctic regions during the summer of 2008. J. Plankton Res. 36, 757–775 (2014).CAS 
    Article 

    Google Scholar 
    Lee, S. H. Use of the Beaufort Sea as feeding habitat by bowhead whales (Balaena mysticetus) as indicated by stable isotope ratios. M.S. Thesis. University of Alaska Fairbanks. http://hdl.handle.net/11122/4931 (2000).Cullen, J. T., Rosenthal, Y. & Falkowski, P. G. The effect of anthropogenic CO2 on the carbon isotope composition of marine phytoplankton. Limnol. Oceanogr. 46, 996–998 (2001).ADS 
    Article 

    Google Scholar 
    Schell, D. M. Carbon isotope ratio variations in Bering Sea biota: The role of anthropogenic carbon dioxide. Limnol. Oceanogr. 46, 999–1000 (2001).ADS 
    Article 

    Google Scholar 
    Eide, M., Olsen, A., Ninnemann, U. S. & Eldevik, T. A global estimate of the full oceanic 13C Suess effect since the preindustrial. Glob. Biogeochem. Cycles 31, 492–514 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Kurle, C. M., Sinclair, E. H., Edwards, A. E. & Gudmundson, C. J. Temporal and spatial variation in the δ15N and δ13C values of fish and squid from Alaskan waters. Mar. Biol. 158, 2389–2404 (2011).Article 

    Google Scholar 
    Ohman, M. D., Rau, G. H. & Hull, P. M. Multi-decadal variations in stable N isotopes of California Current zooplankton. https://doi.org/10.1016/j.dsr.2011.11.003 (2011).Décima, M., Landry, M. R. & Popp, B. N. Environmental perturbation effects on baseline δ15N values and zooplankton trophic flexibility in the southern California current ecosystem. Limnol. Oceanogr. 58, 624–634 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Caraveo-Patiño, J., Hobson, K. A. & Soto, L. A. Feeding ecology of gray whales inferred from stable-carbon and nitrogen isotopic analysis of baleen plates. Hydrobiologia 586, 17–25 (2007).Article 

    Google Scholar 
    Hernández-Aguierre, D. Análisis de la composición de ácidos grasos en los estratos de la capa de grasa (blubber) de la ballena gris Eschrichtius robustus (LILLJEBORG, 1861). M.S. Thesis. Centro de Investigaciones Biológicas del noroeste S.C. http://cibnor.repositorioinstitucional.mx/jspui/handle/1001/182 (2012).Ackman, R. G. Nutritional composition of fats in seafoods. Prog. Food Nutr. Sci. 13, 161–289 (1989).CAS 
    PubMed 

    Google Scholar 
    Lahdes, E., Balogh, G., Fodor, E. & Farkas, T. Adaptation of composition and biophysical properties of phospholipids to temperature by the crustacean, Gammarus spp. Lipids 35, 1093–1098 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarur-Zanatta, J. C., Millán-Nuñez, R., Gutiérrez-Sigala, C. A. & Small Mattox-Sheahen, C. A. Variation and similarity in three zones with-different type of substrate In Laguna Ojo De Liebre, B.C.S., Mexico. Ciencias Mar. 10, 169–179 (1984).Article 

    Google Scholar 
    Pirotta, V., Owen, K., Donnelly, D., Brasier, M. J. & Harcourt, R. First evidence of bubble-net feeding and the formation of ‘super-groups’ by the east Australian population of humpback whales during their southward migration. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3621 (2021).Article 

    Google Scholar 
    Carone, E. et al. Sex steroid hormones and behavior reveal seasonal reproduction in a resident fin whale population. Conserv. Physiol. 7, 1–13 (2019).Article 
    CAS 

    Google Scholar 
    Prieto, R., Tobeña, M. & Silva, M. A. Habitat preferences of baleen whales in a mid-latitude habitat. Deep Res. Part II Top. Stud. Oceanogr. 141, 155–167. https://doi.org/10.1016/j.dsr2.2016.07.015 (2017).ADS 
    Article 

    Google Scholar 
    Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS One 15 (2020).Savage, K. Alaska and British Columbia large whale unusual mortality event summary report. NOAA Fish Report, Juneau August, 1–42 (2017).Stewart, J. D. & Weller, D. W. NOAA Technical Memorandum NMFS abundance of eastern north pacific gray whales 2019/2020 (2021).Cooke, J. G. Population assessment update for Sakhalin gray whales. West. Gray Whale Advis. Panel 13 (2020). More

  • in

    Effects of conservation tillage strategies on soil physicochemical indicators and N2O emission under spring wheat monocropping system conditions

    Fu, C. H. et al. Relationships among fisheries exploitation, environmental conditions, and ecological indicators across a series of marine ecosystems. J. Mar. Syst. 148, 101–111 (2015).Article 

    Google Scholar 
    Too, C. C., Ong, K. S., Yule, C. M. & Keller, A. Putative roles of bacteria in the carbon and nitrogen cycles in a tropical peat swamp fores. Basic Appl. Ecol. 52, 109–123 (2020).Article 

    Google Scholar 
    Hou, R. J. et al. Effects of biochar and straw on greenhouse gas emission and its response mechanism in seasonally frozen farmland ecosystems. Catena 194, 104735 (2020).CAS 
    Article 

    Google Scholar 
    Wang, X., Lu, P., Yang, P. L. & Ren, S. M. Effects of fertilizer and biochar applications on the relationship among soil moisture, temperature, and N2O emissions in farmland. PeerJ 9, e11674–e11674 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tang, Z. M., Liu, X. R., Zhang, Q. W. & Li, G. C. Effects of biochar and straw on soil N2O emission from a wheat maize rotation system. Huan Jing Ke Xue 42(3), 1569–1580 (2021).PubMed 

    Google Scholar 
    Kong, Q., Wang, Z. B., Niu, P. F. & Miao, M. S. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process. Biores. Technol. 210, 94–100 (2016).CAS 
    Article 

    Google Scholar 
    Han, Z. M. et al. Spatial-temporal dynamics of agricultural drought in the Loess Plateau under a changing environment: Characteristics and potential influencing factors. Agric. Water Manag. 244, 106540 (2021).Article 

    Google Scholar 
    Clemens, S. et al. Nitrification inhibitors can increase post-harvest nitrous oxide emissions in an intensive vegetable production system. Sci. Rep. 7(1), 1–9 (2017).Article 
    CAS 

    Google Scholar 
    Zhang, D. J. et al. Effects of tillage and fertility on soil nitrogen balance and greenhouse gas emissions of wheat-maize rotation system in Central Henan Province, China. J. Appl. Ecol. 32(5), 1753–1760 (2021).
    Google Scholar 
    Liu, X. C. et al. Response of soil N2O emissions to precipitation pulses under different nitrogen availabilities in a semiarid temperate steppe of Inner Mongolia, China. J. Arid Land 6(04), 410–422 (2014).Article 

    Google Scholar 
    Hu, Q. Y. et al. Combined effects of straw returning and chemical n fertilization on greenhouse gas emissions and yield from paddy fields in northwest Hubei Province, China. J. Soil Sci. Plant Nutr. 20(2), 392–406 (2019).Article 
    CAS 

    Google Scholar 
    Sun, Z. C. et al. Effects of straw returning and feeding on greenhouse gas emissions from integrated rice-crayfish farming in Jianghan Plain, China. Environ. Sci. Pollut. Res. 26(12), 11710–11718 (2019).CAS 
    Article 

    Google Scholar 
    Mei, K. et al. Stimulation of N2O emission by conservation tillage management in agricultural lands: A meta-analysis. Soil Tillage Res. 182, 86–93 (2018).Article 

    Google Scholar 
    Wang, H. Y., Wu, J. Q., Li, G. & Yan, L. J. Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecol. Evol. 10(21), 12211–12223 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sadiq, M., Li, G., Rahim, N. & Tahir, M. M. Sustainable conservation tillage technique for improving soil health by enhancing soil physicochemical quality indicators under wheat mono-cropping system conditions. Sustainability 13(15), 8177–8177 (2021).CAS 
    Article 

    Google Scholar 
    Nie, Z. G. et al. Evaluating the effects of different sowing dates and tillage methods on dry-land wheat grain dry matter accumulation based on the APSIM model. J. Appl. Ecol. 32(3), 913–920 (2021).
    Google Scholar 
    Alhassan, A. M., Yang, C. J., Ma, W. W. & Li, G. Influence of conservation tillage on Greenhouse gas fluxes and crop productivity in spring-wheat agroecosystems on the Loess Plateau of China. PeerJ 9, e11064–e11064 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mou, L. M. et al. Breeding report of a new dryland spring wheat variety Dingxi 42. Gansu Agric. Sci. Technol. 01, 1–3 (2015).ADS 

    Google Scholar 
    Ma, W. W., Li, G., Wu, J. H., Xu, G. R. & Wu, J. Q. Respiration and CH4 fluxes in Tibetan peatlands are influenced by vegetation degradation. CATENA 195, 104789 (2020).CAS 
    Article 

    Google Scholar 
    Wu, J. Q. et al. Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau. Sci. Rep. 10(1), 21271–21271 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Défossez, P. et al. Impact of soil water content on the overturning resistance of young Pinus Pinaster in sandy soil. For. Ecol. Manag. 480, 118614 (2021).Article 

    Google Scholar 
    Mao, J., Nierop, K. G., Rietkerk, M., Damsté, J. S. S. & Te Dekker, S. C. infuence of vegetation on soil water repellency-markers and soil hydrophobicity. Sci. Total Environ. 566, 608–620 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Lu, Y., Si, B., Li, H. & Biswas, A. Elucidating controls of the variability of deep soil bulk density. Geoderma 348, 146–157 (2019).ADS 
    Article 

    Google Scholar 
    Huang, T. T., Yang, N., Lu, C., Qin, X. L. & Siddique, K. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil Tillage Res. 214, 105171 (2021).Article 

    Google Scholar 
    Yang, J. M., Zhang, Z. Q. & Cao, G. J. Soil nitrate and nitrite content determined by Skalar SAN++. Soil Fertil. Sci. China 02, 101–105 (2014).
    Google Scholar 
    Chen, N. et al. Effect of biodegradable film mulching on crop yield, soil microbial and enzymatic activities, and optimal levels of irrigation and nitrogen fertilizer for the Zea mays crops in arid region. Sci. Total Environ. 776, 145970–145970 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Akhtar, K. et al. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci. Tot. Environ. 741, 140488 (2020).CAS 
    Article 

    Google Scholar 
    Ma, E. et al. Effects of rice straw returning methods on N2O emission during wheat-growing season. Nutr. Cycl. Agroecosyst. 88(3), 463–469 (2009).Article 
    CAS 

    Google Scholar 
    Yeboah, S. et al. Greenhouse gas emissions in a spring wheat–field pea sequence under different tillage practices in semi-arid Northwest China. Nutr. Cycl. Agroecosyst. 106(1), 77–91 (2016).CAS 
    Article 

    Google Scholar 
    Zahid, A., Ali, S., Ahmed, M. & Iqbal, N. Improvement of soil health through residue management and conservation tillage in rice-wheat cropping system of Punjab, Pakistan. Agronomy 10(12), 1844–1844 (2020).CAS 
    Article 

    Google Scholar 
    Dharmendra, S. et al. Effect of reversal of conservation tillage on soil nutrient availability and crop nutrient uptake in soybean in the vertisols of central India. Sustainability. 12(16), 6608 (2020).Article 
    CAS 

    Google Scholar 
    Orzech, K., Wanic, M. & Załuski, D. The effects of soil compaction and different tillage systems on the bulk density and moisture content of soil and the yields of winter oilseed rape and cereals. Agriculture 11(7), 666–666 (2021).CAS 
    Article 

    Google Scholar 
    Fan, B. Q. & Liu, Q. L. Effect of conservation tillage and straw application on the soil microorganism and P-dissolving characteristics. Chin. J. Eco-Agric. 03, 130–132 (2005).
    Google Scholar 
    Liu, X. et al. Dynamic contribution of microbial residues to soil organic matter accumulation influenced by maize straw mulching. Geoderma 333, 35–42 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, W. Y. et al. Conservation tillage enhances crop productivity and decreases soil nitrogen losses in a rainfed agroecosystem of the Loess Plateau, China. J. Clean. Prod. 274, 122854 (2020).CAS 
    Article 

    Google Scholar 
    Zhang, Y., Xie, D. T., Ni, J. P. & Zeng, X. B. Conservation tillage practices reduce nitrogen losses in the sloping upland of the Three Gorges Reservoir area: No-till is better than mulch-till. Agric. Ecosyst. Environ. 300, 107003 (2020).CAS 
    Article 

    Google Scholar 
    Andrea, F. et al. May conservation tillage enhance soil C and N accumulation without decreasing yield in intensive irrigated croplands? Results from an eight-year maize monoculture. Agric. Ecosyst. Environ. 296, 106926 (2020).Article 
    CAS 

    Google Scholar 
    Wu, J. et al. Effects of different tillage and straw retention practices on soil aggregates and carbon and nitrogen sequestration in soils of the northwestern China. J. Arid. Land 11(04), 567–578 (2019).Article 

    Google Scholar 
    Niu, Y. N., Shen, Y. Y., Nan, Z. B., Yang, J. & Yang, Z. W. College of Pastoral Agriculture Science & Technology, Lanzhou University, China. Influence of different cultivation managements on organic carbon and nitrate nitrogen of top soil in the Loess Plateau, northwestern China. Proceedings of the XXI International Grassland Congress and the VIII International Rangeland Congress (volume II) (2008).Wang, Q., Li, F. R., Zhang, E. H., Li, G. & Vance, M. The effects of irrigation and nitrogen application rates on yield of spring wheat (longfu-920), and water use efficiency and nitrate nitrogen accumulation in soil. Aust. J. Crop Sci. 6(4), 662–672 (2012).
    Google Scholar 
    Pisani, O. et al. Soil nitrogen dynamics and leaching under conservation tillage in the Atlantic Coastal Plain, Georgia, United States. J. Soil Water Conserv. 72(5), 519–529 (2017).Article 

    Google Scholar 
    Cao, W. C. et al. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils. J. Nutr. Fertil. 25(10), 1781–1798 (2019).
    Google Scholar 
    Liu, B., Huang, G. B., Gao, Y. Q., Li, Q. P. & Huang, T. Effects of no-tillage on daily dynamics of CO2 and N2O emission from spring wheat field during mature stage. J. Gansu Agric. Univ. 45(01), 82–87 (2010).
    Google Scholar 
    Akhtar, K. et al. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci. Total Environ. 741, 140488 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sina, B., Youngsun, K., Janine, K. & Gerhard, G. Plastic mulching in agriculture: Friend or foe of N2O emissions. Agric. Ecosyst. Environ. 167, 43–51 (2013).Article 
    CAS 

    Google Scholar 
    Seiichi, N., Michio, K., Masako, T., Seiichiro, Y. & Naoto, K. Nitrous oxide evolved from soil covered with plastic mulch film in horticultural field. Biol. Fertil. Soils 48(7), 787–795 (2012).Article 
    CAS 

    Google Scholar 
    Wang, J., Cai, L. Q., Zhang, R. Z., Wang, Y. L. & Dong, W. J. Effects of Tillage Measures on soil greenhouse gas (CO2, CH4, N2O) flux in temperate semi-arid area. Chin. J. Eco-Agric. 19(06), 1295–1300 (2011).CAS 
    Article 

    Google Scholar 
    Chen, G. H. et al. Can conservation tillage reduce N2O emissions on cropland transitioning to organic vegetable production?. Sci. Total Environ. 618, 927–940 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Narendra, K. L. & Rattan, L. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Tillage Res. 126, 78–89 (2013).Article 

    Google Scholar 
    Liang, W., Shi, Y., Zhang, H., Yue, J. & Huang, G. H. Greenhouse gas emissions from Northeast china rice fields in fallow season. Pedosphere 17(5), 630–638 (2007).CAS 
    Article 

    Google Scholar 
    Bremner, J. M., Robbins, S. G. & Blackmer, A. M. Seasonal variability in emission of nitrous oxide from soil. Geophys. Res. Lett. 7(9), 641–644 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    Maag, M. & Vinther, F. P. Nitrous oxide emission by nitrification and denitrification in the different soil types and at different soil moisture contents and temperature. Appl. Soil. Ecol. 4(1), 5–14 (1996).Article 

    Google Scholar 
    Castaldi, S. Responses of nitrous oxide, dinitrogen and carbon dioxide production and oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiment. Biol. Fertil. Soils 32(1), 67–72 (2000).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Braker, G., Schwarz, J. & Conrad, R. Influence of temperature on the composition and activity of denitrifying soil communities. FEMS Microbiol. Ecol. 73(1), 134–148 (2010).CAS 
    PubMed 

    Google Scholar 
    Hu, H. W., Chen, D. & He, J. Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. Narnia 39(5), 729–749 (2015).CAS 

    Google Scholar 
    Pokharel, P. & Chang, S. X. Biochar decreases the efficacy of the nitrification inhibitor nitrapyrin in mitigating nitrous oxide emissions at different soil moisture levels. J. Environ. Manage. 295, 113080–113080 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shu, X. X. et al. Response of soil N2O emission and nitrogen utilization to organic matter in the wheat and maize rotation system. Sci. Rep. 11(1), 4396–4396 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bergaust, L., Mao, Y. J., Bakken, L. R. & Frostegård, A. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrous [corrected] oxide reductase in Paracoccus denitrificans. Appl. Environ. Microbiol. 76(19), 6387–6396 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More