More stories

  • in

    The rising moon promotes mate finding in moths

    The moon increases mate finding in mothsTo investigate the impact of natural and artificial light sources on mate finding, we analyzed flight behavior in male moths, which were reliably attracted by caged virgin females (see Materials and Methods for details). Since we used these females specifically to exploit their attraction effect, we refer to them as ‘traps’ in the following. To establish a choice scenario (see below), males were released equidistantly from the traps, which were located north and south of the core release site in central Germany. Besides the stars, the moon creates the natural light environment that moths might use for visual orientation. We therefore first tested if the moon affects mate finding. We found that the percentage of males arriving within the experimental time (8 min from release, 58.6% of flights) at a trap increased significantly with the appearance of the moon (logistic regression: z = −2.06, p = 0.04, n = 58) and did not depend on the presence of clouds in front of the moon (z = −0.83, p = 0.406, n = 58). A few males reached the females later during the experimental night (13.8% of flights) and were released again on the next day. Some males never reached a trap and could therefore not be tested again in the next days (27.6% of flights). Furthermore, the time that successful males needed to reach a trap was significantly influenced by the height of the moon above or below the horizon (Fig.1; Cox PH survival model, z = 2.46, p = 0.014, n = 34): the higher the moon was above the horizon, the faster males were able to locate and reach the females. The presence of clouds in front of the moon did not play a significant role in this context either (z = −0.65, p = 0.519, n = 34), leading to the conclusion that the moon was equally well perceived if covered partly by clouds and used for effective orientation towards the females. Although the lunar phase changed during the period of the experiment from full moon to new moon, flight duration was not significantly affected by the percentage of the lit moon disk (z = 0.44, p = 0.66, n = 34). Thus, the properties of the moon that affected the flight duration of males were independent of the lunar phase.Fig. 1: Expected flight duration of a moth.Flight duration (black line) was calculated as the median flight duration predicted by the Cox PH model (p = 0.014, n = 34) for arrivals within 8 minutes after release and averaged over all individuals. Circles represent the actual measured values. Dashed lines indicate the confidence interval of the predicted duration at α = 5% level estimated by bootstrapping (5000 replicates).Full size imageIt is important to emphasize that the results were not significantly affected by traits on the individual level like body size or origin of the animal (see Supplementary Results and Discussion for details). Furthermore, a possible learning effect of animals that were released more than once was not detectable since flight duration did not decrease depending on ‘experience’ but only with the elevation of the moon (Fig. S1). Thus, the moon as an easily perceivable orientation cue increased mate finding in general but also depended on its elevation. Despite two exceptions of long flight durations at moon elevations > 20° that go back to the same animal probably for individual reasons (Fig. S1), the variance in flight duration was highest at low moon elevations (Fig. 1). This relatively high variance at low moon elevations emphasizes the question if artificial lights affected mate finding, particularly whenever the moon as a natural light cue was not yet prominent.Linking flight behavior to the light environmentWe used a calibrated digital all-sky camera to track changes in the natural and artificial components of the night sky brightness24 (Fig. 2 a–c). A similar camera system was recently used to study dung beetle behavior21. Although the impact of light pollution on the site was not strong, the night sky was also not completely pristine. Luminance (LVv) values were about 0.34 mcd/m² at zenith and 1.6 mcd/m² near the horizon under clear sky conditions when the moon was not visible. A natural (unpolluted) sky brightness is 0.25 mcd/m² at zenith and can be used as the reference value “Natural Sky Unit” (NSU) for easy comparison (see also Materials and Methods). The analysis of specific sky sectors revealed that the moon was the strongest factor determining the ambient brightness, brightening every sector of the sky as soon as it appeared above the horizon (Fig. 2d). During observation times, the course of the moon mainly progressed through the eastern part of the sky, affecting particularly the LvV values in the corresponding sectors (Fig. 2d). Furthermore, light conditions never corresponded to a non-light polluted sky, as NSU values were always greater than one. Most sectors in the south, west and north (sectors seven to 12 and one) were hardly subjected to fluctuations. Nevertheless, it is recognizable that the moon made a decisive contribution to the light environment in all directions since images with the moon above the horizon were always brighter than those with the moon below the horizon (Fig. 2d).Fig. 2: Quantification of the light environment with all-sky imagery and its impact on flight behavior of moths.a Raw RGB all-sky image with clear sky and a visible moon 26° above the horizon at 119° azimuth angle, South-east (24 July 2019, 03:23). b Same image as in a with processed luminance values. c Processed all-sky image in luminance with clear sky, a visible milky way (green patches in a ‘ribbon-shape’ across the (blue) night sky), skyglow near the horizon, and a non-visible moon 0° above the horizon at 87° azimuth angle, East (24 July 2019, 0:25). The colors of the processed image correspond to the legend in b. The black lines mark the sky segments used to quantify the light environment. The outer ring covers 5° above the horizon (85°−90° zenith angle), the inner ring 20° above the outer ring (65°−85° zenith angle). Furthermore, the sky was divided into 12 sectors of 30° width along the azimuth direction (extension by dashed line), starting with the sector marked with the small circle (counting clockwise). d Luminance in natural sky units (NSU) for each full sector of 30°. The moon icons indicate sectors in which the moon was visible, regardless of its phase. The size of each symbol encodes the rank of the frequency (n = 33). e Trap choice of arrived males depending on the position of the moon at the moment of release on the north-south axis (north = 0°). The y-axis displays choice of the southern trap at 0.0 and of the northern trap at 1.0. p = 0.022, n = 42. f Male moth affinity to northern trap in response to the direction of maximum luminance measured in the outer ring of 5°. Each circle indicates an observed arrival, p = 0.753, n = 41. g Male moth affinity to northern trap as in f but with luminance measured in the inner ring of 20°, p = 0.065, n = 41. e–g The line represents the prediction of the logistic model, providing a probability value for arriving at the northern trap (north prone = 1; south prone = 0). Dashed lines indicate the confidence interval of the prediction at α = 5% level estimated by bootstrapping (5000 replicates).Full size imageDue to the design of the experiment with one trap located in the north and the other in the south of a central release site, we were able to investigate the choice behavior of males, especially in respect of the possible influence of the cardinal position of the moon as it was almost exclusively visible in the southern hemisphere of the sky (Fig. 2d). Although the moon continued to move south during the night, the moon’s cardinal position never overlapped with the exact direction of the southern trap. The only parameter that had a significant effect on choice behavior was indeed the cardinal position of the moon (Fig. 2e, logistic regression, z = −2.3, p = 0.022, n = 42). The more southern the moon’s position was, the more likely males flew to the southern trap. However, while some clouds in front of the moon had no significant effect on choice behavior (z = 0, p = 1, n = 42), moon above the horizon showed a tendency to affect males (z = −1.82, p = 0.069, n = 42). The results indicate that despite the general increase of ambient brightness by the moon, it is its position that mainly influenced the flight direction of males. Thus, moths preferred a flight direction with the prominent compass cue ahead to steer their flight towards the females but it is important to emphasize that moon and trap had an angular difference of at least 23° (80.8° to the moon’s mean cardinal direction). Therefore, males that chose to fly towards the southern trap did not fly directly towards the direction of the moon.As the moon represents a natural distant light source, we tested whether distant artificial light sources or skyglow might elicit a comparable effect on the behavior of male moths and if such light sources might mask the moon. To evaluate the light environment with regards to these aspects, we defined sky segments of particular interest that occurred due to the location of the experimental field (Fig. 2c). For each arrival at a trap, the brightest sector of the environment was determined and placed on a north-south axis of maximum 180 degrees (Fig. 2f, g). If we look at the brightest sector of the environment and distinguish between the area close to the horizon, i.e. “outer ring” (Fig. 2f) and the one above, i.e. “inner ring” (Fig. 2g), we can observe differences in trap choice. The line indicates the logistic regression model and provides the probability of arriving at the northern trap. For the Lv in the area close to the horizon no effect of maximum Lv on trap choice could be found (logistic regression, z = 0.31, p = 0.753, n = 41). For the segment further above the horizon the probability of flying to the southern trap increased with maximum Lv but the results are marginally not significant (z = −1.85, p = 0.065, n = 41). Our results for trap selection indicate that distant artificial lights of the surroundings did not attract males and support the hypothesis that the moon, once it appears above the horizon and stands out from the general light (pollution) near the horizon (above five degrees), is used as an effective visual cue with moths rather flying towards than away from.Digital cameras are suitable to measure the dynamics of night-time lighting conditions25,26, and allow researchers to track changes in artificial lighting conditions and brightness of the sky simultaneously27. However, it is not straightforward to distinguish between ALAN and natural light sources like the moon with luminance images when the moon is close to the horizon and thus in the section of the sky where most light pollution occurred. Yet, once the moon rose higher than 5° and thus stood out distinctly from the light-polluted horizon, it could be clearly identified on the images (Fig. 2b). In this context, it is particularly remarkable that the speed at which the females were reached increased reliably only above a similar threshold (Fig. 1), with the only exceptions of two flights with long durations at a moon elevation greater than 20° (Fig. 1); both flights originated from the same individual (Fig. S1). Thus, the high variance of flight durations at low moon elevations (Fig. 1) supports our hypothesis that the moon, as an orientation cue, can be masked by artificial light for the animals as well. Yet, this hypothesis needs to be explicitly tested in future experiments. In general, the possible consequences of light pollution are still uncertain28, especially because the amount of artificial light emitted during the night continues to increase exponentially worldwide18. But regardless of this, the moon is the decisive orientation cue as soon as it is visibly silhouetted against the horizon despite possible diffuse light pollution.Another interesting next research project would be to investigate the relevance of polarized light, as this could provide an explanation for the occasional fast flights at times of low lunar elevations (cf. Figure 1). Furthermore, it might explain why flight duration was not significantly affected by clouds in front of the moon since the polarization pattern extends over the whole sky and is therefore not shielded completely by scattered clouds29. For dung beetles it has been already shown that they are capable of using the polarization signal for navigation16,30,31 and it has been proposed that moths might be capable of utilizing the same signal32. At the same time, it has already been demonstrated that urban skyglow can diminish the lunar polarization signal33, making a detailed investigation of the interplay between these two factors and the significance for moth orientation particularly exciting to understand underlying mechanisms.Our results confirm that moths use the moon as an orientation cue, supporting the notion of Vickers & Baker34 that pheromones alone are not sufficient for successful (and fast) orientation. Since flight duration decreased as a function of lunar elevation, we conclude that the moon contributes to mating success, especially when it can be easily perceived. Since nocturnal landscapes around the world have been drastically restructured in terms of light intensity and light spectrum due to the rapid spread and increase of electrical lighting18, a deeper understanding of orientation mechanisms even in the absence of the moon as an easily perceivable cue could provide a valuable contribution to counteract insect decline. More

  • in

    Sustainable human population density in Western Europe between 560.000 and 360.000 years ago

    Dennell, R. Dispersal and colonisation, long and short chronologies: how continuous is the Early Pleistocene record for hominids outside East Africa?. J. Hum. Evol. 45, 421–440. https://doi.org/10.1016/j.jhevol.2003.09.006 (2003).Article 
    PubMed 

    Google Scholar 
    Moncel, M.-H. et al. Early Levallois core technology between Marine Isotope Stage 12 and 9 in Western Europe. J. Hum. Evol. 139, 102735. https://doi.org/10.1016/j.jhevol.2019.102735 (2020).Article 
    PubMed 

    Google Scholar 
    Moncel, M.-H. et al. Linking environmental changes with human occupations between 900 and 400 ka in Western Europe. Quatern. Int. 480, 78–94. https://doi.org/10.1016/j.quaint.2016.09.065 (2018).Article 

    Google Scholar 
    Meyer, M. et al. Nuclear DNA sequences from the Middle Pleistocene Sima de los Huesos hominins. Nature 531, 504–507. https://doi.org/10.1038/nature17405 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Meyer, M. et al. A mitochondrial genome sequence of a hominin from Sima de los Huesos. Nature 505, 403–406. https://doi.org/10.1038/nature12788 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rightmire, G. P. Homo in the Middle Pleistocene: Hypodigms, variation, and species recognition. Evolut. Anthropol. Issues News Rev. 17, 8–21. https://doi.org/10.1002/evan.20160 (2008).Article 

    Google Scholar 
    Stringer, C. B. The Status of Homo heidelbergensis (Schoetensack 1908). Evol. Anthropol. 21, 101–107 (2012).Article 

    Google Scholar 
    Dennell, R. W., Martinón-Torres, M. & Bermúdez de Castro, J. M. Hominin variability, climatic instability and population demography in Middle Pleistocene Europe. Quat. Sci. Rev. 30, 1511–1524 (2011).ADS 
    Article 

    Google Scholar 
    Galway-Witham, J., Cole, J. & Stringer, C. Aspects of human physical and behavioural evolution during the last 1 million years. J. Quat. Sci. 34, 355–378. https://doi.org/10.1002/jqs.3137 (2019).Article 

    Google Scholar 
    Powell, A., Shennan, S. & Thomas, M. G. Late Pleistocene Demography and the Appearance of Modern Human Behavior. Science 324, 1298–1301. https://doi.org/10.1126/science.1170165 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Vaesen, K., Collard, M., Cosgrove, R. & Roebroeks, W. Population size does not explain past changes in cultural complexity. Proc. Natl. Acad. Sci. 113, E2241–E2247. https://doi.org/10.1073/pnas.1520288113 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Henrich, J. Demography and cultural evolution: how adaptive cultural processes can produce maladaptive losses: the Tasmanian case. Am. Antiq. 69, 197–214. https://doi.org/10.2307/4128416 (2004).Article 

    Google Scholar 
    Cavalli-Sforza, L., Barrai, I. & Edwards, A. W. F. Analysis of human evolution under random genetic drift. Symp. Quant. Biol. 29, 9–20. https://doi.org/10.1101/SQB.1964.029.01.006 (1964).Article 

    Google Scholar 
    Boaz, N. T. Early hominid population densities: new estimates. Science 206, 592–595. https://doi.org/10.1126/science.206.4418.592 (1979).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Ashton, N. & Davis, R. Cultural mosaics, social structure, and identity: the Acheulean threshold in Europe. J. Hum. Evol. 156, 103011. https://doi.org/10.1016/j.jhevol.2021.103011 (2021).Article 
    PubMed 

    Google Scholar 
    Hayden, B. Neandertal social structure?. Oxf. J. Archaeol. 31, 1–26. https://doi.org/10.1111/j.1468-0092.2011.00376.x (2012).Article 

    Google Scholar 
    Bocquet-Appel, J.-P., Demars, P.-Y., Noiret, L. & Dobrowsky, D. Estimates of Upper Paleolithic meta-population size in Europe from archaeological data. J. Archaeol. Sci. 32, 1656–1668 (2005).Article 

    Google Scholar 
    Maier, A. et al. Demographic estimates of hunter–gatherers during the Last Glacial Maximum in Europe against the background of palaeoenvironmental data. Quatern. Int. 425, 49–61. https://doi.org/10.1016/j.quaint.2016.04.009 (2016).Article 

    Google Scholar 
    Gautney, J. R. & Holliday, T. W. New estimations of habitable land area and human population size at the Last Glacial Maximum. J. Archaeol. Sci. 58, 103–112. https://doi.org/10.1016/j.jas.2015.03.028 (2015).Article 

    Google Scholar 
    Rodríguez-Gómez, G., Rodríguez, J., Martín-González, J. A., Goikoetxea, I. & Mateos, A. Modeling trophic resource availability for the first human settlers of Europe: the case of Atapuerca TD6. J. Hum. Evol. 64, 645–657. https://doi.org/10.1016/j.jhevol.2013.02.007 (2013).Article 
    PubMed 

    Google Scholar 
    Tallavaara, M., Luoto, M., Korhonen, N., Järvinen, H. & Seppä, H. Human population dynamics in Europe over the Last Glacial Maximum. Proc. Natl. Acad. Sci. 112, 8232–8237. https://doi.org/10.1073/pnas.1503784112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-Quinto, F. & Lalueza-Fox, C. Almost 20 years of Neanderthal palaeogenetics: adaptation, admixture, diversity, demography and extinction. Philosophical Trans. Royal Soc. B Biol. Sci. 370, 20130374. https://doi.org/10.1098/rstb.2013.0374 (2015).CAS 
    Article 

    Google Scholar 
    Rodríguez, J., Willmes, C. & Mateos, A. Shivering in the Pleistocene. Human adaptations to cold exposure in Western Europe from MIS 14 to MIS 11. J. Hum. Evol. https://doi.org/10.1016/j.jhevol.2021.102966 (2021).Article 
    PubMed 

    Google Scholar 
    Railsback, L. B., Gibbard, P. L., Head, M. J., Voarintsoa, N. R. G. & Toucanne, S. An optimized scheme of lettered marine isotope substages for the last 1.0 million years, and the climatostratigraphic nature of isotope stages and substages. Quatern. Sci. Rev. 111, 94–106. https://doi.org/10.1016/j.quascirev.2015.01.012 (2015).Article 

    Google Scholar 
    MacDonald, K., Martinón-Torres, M., Dennell, R. W. & Bermúdez de Castro, J. M. Discontinuity in the record for hominin occupation in south-western Europe: implications for occupation of the middle latitudes of Europe. Quatern. Int 271, 84–97. https://doi.org/10.1016/j.quaint.2011.10.009 (2012).Article 

    Google Scholar 
    Gamisch, A. Oscillayers: A dataset for the study of climatic oscillations over Plio-Pleistocene time-scales at high spatial-temporal resolution. Glob. Ecol. Biogeogr. 28, 1552–1156. https://doi.org/10.1111/geb.12979 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gamisch, A. Oscillayers: A dataset for the study of climatic oscillations over Plio-Pleistocene time-scales at high spatial-temporal resolution. https://doi.org/10.5061/dryad.27f8s90 (Dryad, 2019).Banks, W. E. et al. An ecological niche shift for Neanderthal populations in Western Europe 70,000 years ago. Sci. Rep. 11, 5346. https://doi.org/10.1038/s41598-021-84805-6 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Banks, W. E., d’Errico, F. & Zilhão, J. Human–climate interaction during the Early Upper Paleolithic: testing the hypothesis of an adaptive shift between the Proto-Aurignacian and the Early Aurignacian. J. Hum. Evol. 64, 39–55. https://doi.org/10.1016/j.jhevol.2012.10.001 (2013).Article 
    PubMed 

    Google Scholar 
    Soberón, J. & Nakamura, M. Niches and distributional areas: Concepts, methods, and assumptions. Proc. Natl. Acad. Sci. 106, 19644–19650. https://doi.org/10.1073/pnas.0901637106 (2009).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tallavaara, M., Eronen, J. T. & Luoto, M. Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density. Proc. Natl. Acad. Sci. 115, 1232–1237. https://doi.org/10.1073/pnas.1715638115 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Binford, L. R. Constructing frames of reference: an analytical method for archaeological theory building using ethnographic and environmental data set (University of California Press, Berkeley, 2001).
    Google Scholar 
    Hamilton, M. J., Milne, B. T., Walker, R. S. & Brown, J. H. Nonlinear scaling of space use in human hunter–gatherers. Proc. Natl. Acad. Sci. 104, 4765. https://doi.org/10.1073/pnas.0611197104 (2007).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coe, M. J., Cumming, D. H. & Phillipson, J. Biomass and production of large African herbivores in relation to rainfall and primary production. Oecologia 22, 341–354 (1976).ADS 
    CAS 
    Article 

    Google Scholar 
    Hatton, I. A. et al. The predator-prey power law: biomass scaling across terrestrial and aquatic biomes. Science https://doi.org/10.1126/science.aac6284 (2015).Article 
    PubMed 

    Google Scholar 
    Carbone, C. & Gittleman, J. L. A common rule for the scaling of carnivore density. Science 295, 2273–2275 (2002).ADS 
    CAS 
    Article 

    Google Scholar 
    Braun, D. R. et al. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. Proc Natl Acad Sci 107, 10002–10007. https://doi.org/10.1073/pnas.1002181107 (2010).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marlowe, F. W. Hunter-gatherers and human evolution. Evolut. Anthropol. Issues News Rev. 14, 54–67. https://doi.org/10.1002/evan.20046 (2005).Article 

    Google Scholar 
    Steele, T. A unique hominin menu dated to 1.95 million years ago. Proc. Natl Acad Sci United States of Am 107, 10771–10772. https://doi.org/10.1073/pnas.1005992107 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Conard, N. J. et al. Excavations at Schöningen and paradigm shifts in human evolution. J. Hum. Evol. 89, 1–17. https://doi.org/10.1016/j.jhevol.2015.10.003 (2015).Article 
    PubMed 

    Google Scholar 
    Kelly, R. L. The lifeways of hunter-gatherers: the foraging spectrum 2nd edn. (Cambridge Univ Press, Cambridge, 2013).Book 

    Google Scholar 
    Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205. https://doi.org/10.1111/2041-210X.12261 (2014).Article 

    Google Scholar 
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643. https://doi.org/10.1111/jbi.12227 (2014).Article 

    Google Scholar 
    Morales, N. S., Fernández, I. & Baca-González, V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ 5, e3093. https://doi.org/10.7717/peerj.3093 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, R. P. & Gonzalez, I. Species-specific tuning increases robustness to sampling bias in models of species distributions: an implementation with Maxent. Ecol. Model. 222, 2796–2811. https://doi.org/10.1016/j.ecolmodel.2011.04.011 (2011).Article 

    Google Scholar 
    Lisiecki, L. & Raymo, M. A Pliocene-Pleistocene stack of 57 globally distributed benthic 18O records. Paleoceanography https://doi.org/10.1029/2004PA001071 (2005).Article 

    Google Scholar 
    Carrión, J. S., Rose, J. & Stringer, C. B. Early human evolution in the western Palaearctic: ecological scenarios. Quat. Sci. Rev. 30, 1281–1295 (2011).ADS 
    Article 

    Google Scholar 
    Davis, R. & Ashton, N. Landscapes, environments and societies: the development of culture in Lower Palaeolithic Europe. J. Anthropol. Archaeol. 56, 101107. https://doi.org/10.1016/j.jaa.2019.101107 (2019).Article 

    Google Scholar 
    Davis, R., Ashton, N., Hatch, M., Hoare, P. G. & Lewis, S. G. Palaeolithic archaeology of the Bytham River: human occupation of Britain during the early Middle Pleistocene and its European context. J. Quat. Sci. 36, 526–546. https://doi.org/10.1002/jqs.3305 (2021).Article 

    Google Scholar 
    Soberón, J. & Peterson, A. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodivers. Inform. https://doi.org/10.17161/bi.v2i0.4 (2005).Article 

    Google Scholar 
    Kahlke, R.-D. et al. Western Palaearctic palaeoenvironmental conditions during the Early and early Middle Pleistocene inferred from large mammal communities, and implications for hominin dispersal in Europe. Quat. Sci. Rev. 11–12, 1368–1395 (2011).ADS 
    Article 

    Google Scholar 
    Hosfield, R. The earliest Europeans a year in the life (Oxbow Books, Oxford, 2020).Book 

    Google Scholar 
    Dunbar, R. I. M. Neocortex size as a constraint on group size in primates. J. Hum. Evol. 22, 469–493. https://doi.org/10.1016/0047-2484(92)90081-J (1992).Article 

    Google Scholar 
    Bird, D. W., Bird, R. B., Codding, B. F. & Zeanah, D. W. Variability in the organization and size of hunter-gatherer groups: foragers do not live in small-scale societies. J. Hum. Evol. 131, 96–108. https://doi.org/10.1016/j.jhevol.2019.03.005 (2019).Article 
    PubMed 

    Google Scholar 
    Arsuaga, J. L. et al. Neandertal roots: Cranial and chronological evidence from Sima de los Huesos. Science 344, 1358–1363. https://doi.org/10.1126/science.1253958 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Traill, L. W., Bradshaw, R. H. W. & Brook, B. W. Minimum viable population size: a meta-analysis of 30 years of published estimates. Biol. Cons. 139, 159–166 (2007).Article 

    Google Scholar 
    Booth, T. H., Nix, H. A., Busby, J. R. & Hutchinson, M. F. BIOCLIM: the first species distribution modelling package, its early applications and relevance to most current MaxEnt studies. Divers. Distrib. 20, 1–9. https://doi.org/10.1111/ddi.12144 (2014).Article 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).Article 

    Google Scholar 
    Lieth, H. F. H. Primary production: terrestrial ecosystems. Hum. Ecol. 1, 303–332 (1973).Article 

    Google Scholar 
    Guisan, A. & Zimmermann, N. E. Predictive habitat distribution models in ecology. Ecol. Model. 135, 147–186. https://doi.org/10.1016/S0304-3800(00)00354-9 (2000).Article 

    Google Scholar 
    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x (2013).Article 

    Google Scholar 
    Braunisch, V. et al. Selecting from correlated climate variables: a major source of uncertainty for predicting species distributions under climate change. Ecography 36, 971–983. https://doi.org/10.1111/j.1600-0587.2013.00138.x (2013).Article 

    Google Scholar 
    De Marco, P. J. & Nóbrega, C. C. Evaluating collinearity effects on species distribution models: an approach based on virtual species simulation. PLoS ONE 13, e0202403. https://doi.org/10.1371/journal.pone.0202403 (2018).CAS 
    Article 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x (2013).Article 

    Google Scholar 
    Fourcade, Y., Besnard, A. G. & Secondi, J. Paintings predict the distribution of species, or the challenge of selecting environmental predictors and evaluation statistics. Glob. Ecol. Biogeogr. 27, 245–256. https://doi.org/10.1111/geb.12684 (2018).Article 

    Google Scholar 
    Harell Jr., F. E. & with contributions from Charles Dupont and many others. Hmisc: Harrell Miscellaneous (2021).Barbosa, A. M. fuzzySim: applying fuzzy logic to binary similarity indices in ecology. Methods Ecol. Evol. 6, 853–858. https://doi.org/10.1111/2041-210X.12372 (2015).Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14. https://doi.org/10.1111/j.2041-210X.2009.00001.x (2010).Article 

    Google Scholar 
    James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning with Appllication in R. 1 edn, (Springer, 2013).Amante, C. & Eakins, B. ETOPO1 1 Arc-Minute Global Relief Model: procedures, data sources and analysis. https://doi.org/10.7289/V5C8276M (2009).Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x (2006).Article 

    Google Scholar 
    Tsoar, A., Allouche, O., Steinitz, O., Rotem, D. & Kadmon, R. A comparative evaluation of presence-only methods for modelling species distribution. Divers. Distrib. 13, 397–405. https://doi.org/10.1111/j.1472-4642.2007.00346.x (2007).Article 

    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x (2008).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography 40, 887–893. https://doi.org/10.1111/ecog.03049 (2017).Article 

    Google Scholar 
    755026R: A Language and Environment for STATISTICAL Computing (R Foundation for Statistical Computing, Vienna, Austria, 2021).Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342. https://doi.org/10.1890/10-1171.1 (2011).Article 
    PubMed 

    Google Scholar 
    Kelt, D. & Vuren, D. The ecology and macroecology of mammalian home range area. Am. Nat. 157, 637–645. https://doi.org/10.1086/320621 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rodríguez, J., Sommer, C., Willmes, C. & Mateos, A. Data and code for “Sustainable Human Population Density in Western Europe between 560.000 and 360.000 years ago” https://doi.org/10.5281/zenodo.6045917 (2022). More

  • in

    The relationship between ecosystem services and human modification displays decoupling across global delta systems

    Cumming, G. S. et al. Implications of agricultural transitions and urbanization for ecosystem services. Nature 515, 50–57 (2014).CAS 
    Article 

    Google Scholar 
    Cumming, G. S. & Von Cramon-Taubadel, S. Linking economic growth pathways and environmental sustainability by understanding development as alternate social-ecological regimes. Proc. Natl. Acad. Sci.115, 9533–9538 (2018).CAS 
    Article 

    Google Scholar 
    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).CAS 
    Article 

    Google Scholar 
    de Groot, R. S., Alkemade, R., Braat, L., Hein, L. & Willemen, L. Challenges in integrating the concept of ecosystem services and values in landscape planning, management and decision making. Ecol. Complex. 7, 260–272 (2010).Article 

    Google Scholar 
    Clapp, J. Financialization, distance and global food politics. J. Peasant Stud. 41, 797–814 (2014).Article 

    Google Scholar 
    Crona, B. I. et al. Masked, diluted and drowned out: how global seafood trade weakens signals from marine ecosystems. Fish Fish. 17, 1175–1182 (2016).Article 

    Google Scholar 
    United Nations Environment Programme International Resource Panel. Decoupling Natural Resource Use and Environmental Impacts from Economic Growth (2011).Srinivasana, U. T. et al. The debt of nations and the distribution of ecological impacts from human activities. Proc. Natl. Acad. Sci. 105, 1768–1773 (2008).Article 

    Google Scholar 
    Rist, L. et al. Applying resilience thinking to production ecosystems. Ecosphere 5, 1–11 (2014).Article 

    Google Scholar 
    Dermody, B. J. et al. A virtual water network of the Roman world. Hydrol. Earth Syst. Sci. 18, 5025–5040 (2014).Article 

    Google Scholar 
    Maskell, L. C. et al. Exploring the ecological constraints to multiple ecosystem service delivery and biodiversity. J. Appl. Ecol. 50, 561–571 (2013).Article 

    Google Scholar 
    Potschin, M. B. & Haines-Young, R. H. Ecosystem services: Exploring a geographical perspective. Prog. Phys. Geogr. 35, 575–594 (2011).Article 

    Google Scholar 
    Peng, J. et al. Ecosystem services response to urbanization in metropolitan areas: Thresholds identification. Sci. Total Environ. 607–608, 706–714 (2017).Article 
    CAS 

    Google Scholar 
    Millennium Ecosystem Assessment. Ecosystems and human well-being: Biodiversity synthesis (2005). https://doi.org/10.1057/9780230625600Díaz, S. et al. Assessing nature’s contributions to people: Recognizing culture, and diverse sources of knowledge, can improve assessments. Science 359, 270–272 (2018).Article 

    Google Scholar 
    Wallace, K. J. Classification of ecosystem services: Problems and solutions. Biol. Conserv. 139, 235–246 (2007).Article 

    Google Scholar 
    Lee, H. & Lautenbach, S. A quantitative review of relationships between ecosystem services. Ecol. Indic. 66, 340–351 (2016).Article 

    Google Scholar 
    Bennett, E. M., Peterson, G. D. & Gordon, L. J. Understanding relationships among multiple ecosystem services. Ecol. Lett. 12, 1394–1404 (2009).Article 

    Google Scholar 
    Saidi, N. & Spray, C. Ecosystem services bundles: Challenges and opportunities for implementation and further research. Environ. Res. Lett. 13, 113001 (2018).Cord, A. F. et al. Towards systematic analyses of ecosystem service trade-offs and synergies: Main concepts, methods and the road ahead. Ecosyst. Serv. 28, 264–272 (2017).Article 

    Google Scholar 
    Mitsch, W. J. & Gosselink, J. G. The value of wetlands: importance of scale and landscape setting. Ecol. Econ. 35, 25–33 (2000).Article 

    Google Scholar 
    Raudsepp-Hearne, C., Peterson, G. D. & Bennett, E. M. Ecosystem service bundles for analyzing tradeoffs in diverse landscapes. Proc. Natl. Acad. Sci. 107, 5242–5247 (2010).CAS 
    Article 

    Google Scholar 
    Hamann, M., Biggs, R. & Reyers, B. Mapping social-ecological systems: Identifying ‘green-loop’ and ‘red-loop’ dynamics based on characteristic bundles of ecosystem service use. Glob. Environ. Change 34, 218–226 (2015).Article 

    Google Scholar 
    Macklin, M. G. & Lewin, J. The rivers of civilization. Quat. Sci. Rev. 114, 228–244 (2015).Article 

    Google Scholar 
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    Stanley, D. J. & Warne, A. G. Sea level and initiation of Predynastic culture in the Nile delta. Nature 363, 435–438 (1993).Article 

    Google Scholar 
    Costanza, R. et al. Changes in the global value of ecosystem services. Glob. Environ. Change 26, 152–158 (2014).Article 

    Google Scholar 
    Edmonds, D. A., Caldwell, R. L., Brondizio, E. S. & Siani, S. M. O. Coastal flooding will disproportionately impact people on river deltas. Nat. Commun. 11, 1–8 (2020).Article 
    CAS 

    Google Scholar 
    Renaud, F. G. et al. Tipping from the Holocene to the Anthropocene: How threatened are major world deltas? Curr. Opin. Environ. Sustain. 5, 644–654 (2013).Article 

    Google Scholar 
    Santos, M. J. & Dekker, S. C. Locked‑in and living delta pathways in the Anthropocene. Sci. Rep. 10, 19598 (2020).Tessler, Z. D. et al. Profiling risk and sustainability in coastal deltas of the world. Science 349, 638–643 (2015).CAS 
    Article 

    Google Scholar 
    Kennedy, C. M., Oakleaf, J. R., Theobald, D. M., Baruch-Mordo, S. & Kiesecker, J. Managing the middle: A shift in conservation priorities based on the global human modification gradient. Glob. Change Biol. 25, 811–826 (2019).Article 

    Google Scholar 
    Seto, K. C. Exploring the dynamics of migration to mega-delta cities in Asia and Africa: Contemporary drivers and future scenarios. Glob. Environ. Change 21, S94–S107 (2011).Article 

    Google Scholar 
    Carpenter, S. R., Stanley, E. H. & Vander Zanden, M. J. State of the World’s Freshwater Ecosystems: Physical, Chemical, and Biological Changes. Annu. Rev. Environ. Resour. 36, 75–99 (2011).Article 

    Google Scholar 
    Dugan, P. J. et al. Fish migration, dams, and loss of ecosystem services in the mekong basin. Ambio 39, 344–348 (2010).Article 

    Google Scholar 
    Notebaert, B., Broothaerts, N. & Verstraeten, G. Evidence of anthropogenic tipping points in fluvial dynamics in Europe. Glob. Planet. Change 164, 27–38 (2018).Article 

    Google Scholar 
    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561 (2010).Article 
    CAS 

    Google Scholar 
    Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl. Acad. Sci. 104, 12942–12947 (2007).CAS 
    Article 

    Google Scholar 
    Minderhoud, P. S. J. et al. The relation between land use and subsidence in the Vietnamese Mekong delta. Sci. Total Environ. 634, 715–726 (2018).CAS 
    Article 

    Google Scholar 
    Venter, O. et al. Global terrestrial Human Footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    FAO. AQUASTAT Database. (2022). Available at: https://www.fao.org/aquastat/statistics/query/index.html. (Accessed: 14th February 2022)Chau, N. D. G., Sebesvari, Z., Amelung, W. & Renaud, F. G. Pesticide pollution of multiple drinking water sources in the Mekong Delta, Vietnam: evidence from two provinces. Environ. Sci. Pollut. Res. 22, 9042–9058 (2015).CAS 
    Article 

    Google Scholar 
    Phien-wej, N., Giao, P. H. & Nutalaya, P. Land subsidence in Bangkok, Thailand. Eng. Geol. 82, 187–201 (2006).Article 

    Google Scholar 
    Käkönen, M. Mekong Delta at the crossroads: more control or adaptation? Ambio 37, 205–212 (2008).Article 

    Google Scholar 
    Smajgl, A. et al. Responding to rising sea levels in the Mekong Delta. Nat. Clim. Change 5, 167–174 (2015).Article 

    Google Scholar 
    Schneider, P. & Asch, F. Rice production and food security in Asian Mega deltas—A review on characteristics, vulnerabilities and agricultural adaptation options to cope with climate change. J. Agron. Crop Sci. 206, 491–503 (2020).Article 

    Google Scholar 
    Gibson, L. et al. Primary forests are irreplaceable for sustaining tropical biodiversity. Nature 478, 378–381 (2011).CAS 
    Article 

    Google Scholar 
    Davis, M., Faurby, S. & Svenning, J. C. Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc. Natl. Acad. Sci. 115, 11262–11267 (2018).CAS 
    Article 

    Google Scholar 
    Arowolo, A. O., Deng, X., Olatunji, O. A. & Obayelu, A. E. Assessing changes in the value of ecosystem services in response to land-use/land-cover dynamics in Nigeria. Sci. Total Environ. 636, 597–609 (2018).CAS 
    Article 

    Google Scholar 
    Lang, Y. & Song, W. Quantifying and mapping the responses of selected ecosystem services to projected land use changes. Ecol. Indic. 102, 186–198 (2019).Article 

    Google Scholar 
    Tilman, D., Reich, P. B. & Isbell, F. Biodiversity impacts ecosystem productivity as much as resources, disturbance, or herbivory. Proc. Natl. Acad. Sci. 109, 10394–10397 (2012).CAS 
    Article 

    Google Scholar 
    Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).Diaz, R. J. & Rosenberg, R. Spreading dead zones and consequences for marine ecosystems. Science 321, 926–929 (2008).CAS 
    Article 

    Google Scholar 
    Dalin, C., Konar, M., Hanasaki, N., Rinaldo, A. & Rodriguez-Iturbe, I. Evolution of the global virtual water trade network. Proc. Natl. Acad. Sci. 109, 5989–5994 (2012).CAS 
    Article 

    Google Scholar 
    Van Asselen, S., Verburg, P. H., Vermaat, J. E. & Janse, J. H. Drivers of wetland conversion: A global meta-analysis. PLoS One 8, e81292 (2013).Davidson, N. C., Fluet-Chouinard, E. & Finlayson, C. M. Global extent and distribution of wetlands: trends and issues. Mar. Freshw. Res. 69, 620–627 (2018).Article 

    Google Scholar 
    Gordon, L. J., Finlayson, C. M. & Falkenmark, M. Managing water in agriculture for food production and other ecosystem services. Agric. Water Manag. 97, 512–519 (2010).Article 

    Google Scholar 
    Syvitski, J. P. M. & Kettner, A. J. Sediment flux and the anthropocene. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 369, 957–975 (2011).Article 

    Google Scholar 
    Nienhuis, J. H. et al. Global-scale human impact on delta morphology has led to net land area gain. Nature 577, 514–518 (2020).CAS 
    Article 

    Google Scholar 
    Cinner, J. E. et al. Bright spots among the world’s coral reefs. Nature 535, 416–419 (2016).CAS 
    Article 

    Google Scholar 
    Stott, I., Soga, M., Inger, R. & Gaston, K. J. Land sparing is crucial for urban ecosystem services. Front. Ecol. Environ. 13, 387–393 (2015).Article 

    Google Scholar 
    Caldwell, R. L. et al. A global delta dataset and the environmental variables that predict delta formation. Earth Surf. Dyn. Discuss. 7, 773–787 (2019).Article 

    Google Scholar 
    Lehner, B., Verdin, K. & Jarvis, A. New global hydrography derived from spaceborne elevation data. Eos (Washington DC) 89, 93–94 (2008).USGS. HYDRO1k Elevation Derivative Database. https://doi.org/10.5066/F77P8WN0 (2000).CIESIN – Center for International Earth Science Information Network Columbia University. Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC) https://doi.org/10.7927/H4JW8BX5 (2018).Venter, O. et al. Last of the Wild Project, Version 3 (LWP-3): 2009 Human Footprint, 2018 Release. NASA Socioeconomic Data and Applications Center https://doi.org/10.7927/H46T0JQ4 (2018).Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 1–11 (2016).Article 
    CAS 

    Google Scholar 
    Zeileis, A., Leisch, F., Hornik, K. & Kleiber, C. strucchange: An R package for testing for structural change in linear regression models. J. Stat. Softw. 7, 1–38 (2002).Article 

    Google Scholar 
    Monti, S., Tamayo, P., Mesirov, J. & Golub, T. Consensus clustering: A resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52, 91–118 (2003).Article 

    Google Scholar 
    Reader, M. O. et al. Zenodo. https://doi.org/10.5281/zenodo.6346472 (2022).QGIS Development Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. (2019).R Core Team. R: A language and environment for statistical computing. (2020). More

  • in

    Insight into impact of sewage discharge on microbial dynamics and pathogenicity in river ecosystem

    Zhang, Y., Wu, J. & Xu, B. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ. Earth Sci. 77, 273 (2018).Article 
    CAS 

    Google Scholar 
    Zhang, D. et al. Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Sci. Total Environ. 741, 140445 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ahmed, W. et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 728, 138764 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haramoto, E., Malla, B., Thakali, O. & Kitajima, M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci. Total Environ. 737, 140405 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Naddeo, V. & Liu, H. Editorial Perspectives: 2019 novel coronavirus (SARS-CoV-2): What is its fate in urban water cycle and how can the water research community respond?. Environ. Sci. Water Res. Technol. 6, 1213–1216 (2020).CAS 
    Article 

    Google Scholar 
    Cornelisen, C. D., Gillespie, P. A., Kirs, M., Young, R. G. & Harwood, V. J. Motueka River plume facilitates transport of ruminant faecal contaminants into shellfish growing waters, Tasman Bay, New Zealand. N. Z. J. Mar. Freshw. Res. 45, 477–495 (2011).Article 

    Google Scholar 
    Devane, M. L., Moriarty, E. M., Wood, D., Webster-Brown, J. & Gilpin, B. J. The impact of major earthquakes and subsequent sewage discharges on the microbial quality of water and sediments in an urban river. Sci. Total Environ. 485–486, 666–680 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Duttagupta, S. et al. Achieving sustainable development goal for clean water in India: Influence of natural and anthropogenic factors on groundwater microbial pollution. Environ. Manag. 66, 42–755 (2020).Article 

    Google Scholar 
    Huelsen, T. et al. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor. Water Res. 100, 486–495 (2016).Article 
    CAS 

    Google Scholar 
    Johnson, D. R. et al. The functional and taxonomic richness of wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon availability. Environ. Microbiol. 17(12), 4851–4860 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lei, Z. J. M. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol. Biochem. 44(1), 31–38 (2012).Article 
    CAS 

    Google Scholar 
    Jian, L. Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biol. Fertil. Soils 51, 207–215 (2015).Article 
    CAS 

    Google Scholar 
    Yu, S. X., Pang, Y. L., Wang, Y. C., Li, J. L. & Qin, S. Spatial variation of microbial communities in sediments along the environmental gradients from Xiaoqing River to Laizhou Bay. Mar. Pollut. Bull. 76, 1048–1056 (2017).
    Google Scholar 
    Reidl, J. & Klose, K. E. Vibrio cholerae and cholera: Out of the water and into the host. FEMS Microbiol. Rev. 26(2), 125–139 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chin, C.-S. et al. The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 364, 33–42 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Minoru, K., Miho, F., Mao, T., Yoko, S. & Kanae, M. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucl. Acids Res. 45, D353–D361 (2017).Article 
    CAS 

    Google Scholar 
    Zieliński, W. et al. The prevalence of drug-resistant and virulent Staphylococcus spp. in a municipal wastewater treatment plant and their spread in the environment. Environ. Int. 143, 105914 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Dietrich, J. E. S. & Doherty, T. M. Interaction of Mycobacterium tuberculosis with the host: Consequences for vaccine development. APMIS 117, 440–457 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Velayati, A. A. et al. Identification and genotyping of Mycobacterium tuberculosis isolated from water and soil samples of a metropolitan city. Chest 147, 1094–1102 (2015).PubMed 
    Article 

    Google Scholar 
    Pereira, M. I. & Medeiros, J. A. Role of Helicobacter pylori in gastric mucosa-associated lymphoid tissue lymphomas. World J. Gastroenterol. 20, 684–698 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    West, A. P., Millar, M. R. & Tompkins, D. S. Effect of physical environment on survival of Helicobacter pylori. J. Clin. Pathol. 45, 228–231 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miller, W. A. et al. Salmonella spp., Vibrio spp., Clostridium perfringens, and Plesiomonas shigelloides in marine and freshwater invertebrates from coastal California ecosystems. Microb. Ecol. 52, 198–206 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    McCarthy, S. A. Effects of temperature and salinity on survival of toxigenic Vibrio cholerae O1 in seawater. Microb Ecol 31, 167–175 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Heaney, N. et al. Effects of softwood biochar on the status of nitrogen species and elements of potential toxicity in soils. Ecotoxicol. Environ. Saf. 166, 383–389 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, Z. B., Miao, M. S., Kong, Q. & Ni, S. Q. Evaluation of microbial diversity of activated sludge in a municipal wastewater treatment plant of northern China by high-throughput sequencing technology. Desalin. Water Treat. 57, 1–6 (2016).Article 
    CAS 

    Google Scholar 
    Wang, Z. et al. Weak magnetic field: A powerful strategy to enhance partial nitrification. Water Res. 120, 190–198 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, X. et al. Reduction of nitrous oxide emissions from partial nitrification process by using innovative carbon source (mannitol). Bioresour. Technol. 218, 789–795 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, X. et al. N2O emission and bacterial community dynamics during realization of the partial nitrification process. RSC Adv. 8, 24305–24311 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Lv, L., Ren, L. F., Ni, S. Q., Gao, B. Y. & Wang, Y. N. The effect of magnetite on the start-up and N2O emission reduction of the anammox process. RSC Adv. 6, 99989–99996 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, S., Liebner, S., Alawi, M., Ebenhöh, O. & Wagner, D. Taxonomic database and cut-off value for processing mcrA gene 454 pyrosequencing data by MOTHUR. J. Microbiol. Methods 103, 3–5 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xu, F. et al. Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chem. Eng. J. 339, 479–486 (2018).CAS 
    Article 

    Google Scholar 
    Bu, C. et al. Dissimilatory nitrate reduction to ammonium in the yellow river estuary: Rates, abundance, and community diversity. Sci. Rep. 7, 6830 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhou, J., Fries, M. R., Cheesanford, J. C. & Tiedje, J. M. Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov.. Int. J. Syst. Bacteriol. 194, 500–506 (1995).Article 

    Google Scholar 
    Casanova, L., Rutala, W. A., Weber, D. J. & Sobsey, M. D. Survival of surrogate coronaviruses in water. Water Res. 43, 1893–1898 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elreedy, A. et al. Unraveling the capability of graphene nanosheets and γ-Fe2O3 nanoparticles to stimulate anammox granular sludge. J. Environ. Manag. 277, 111495 (2021).CAS 
    Article 

    Google Scholar 
    Ismail, S. et al. Response of anammox bacteria to short-term exposure of 1,4-dioxane: Bacterial activity and community dynamics. Sep. Purif. Technol. 266, 118539 (2021).CAS 
    Article 

    Google Scholar 
    Shen, X., Xu, M., Li, M., Zhao, Y. & Shao, X. Response of sediment bacterial communities to the drainage of wastewater from aquaculture ponds in different seasons. Sci. Total Environ. 717, 137180 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ismail, S. et al. Fatigue of anammox consortia under long-term 1,4-dioxane exposure and recovery potential: N-kinetics and microbial dynamics. J. Hazard. Mater. 414, 125533 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, H. F., Li, B. Z., Wang, E. T., Yang, J. S. & Yuan, H. L. Removal of low concentration of phosphorus from solution by free and immobilized cells of Pseudomonas stutzeri YG-24. Desalination 286, 242–247 (2012).CAS 
    Article 

    Google Scholar 
    Xia, J., Ye, L., Ren, H. & Zhang, X. X. Microbial community structure and function in aerobic granular sludge. Appl. Microbiol. Biotechnol. 102(9), 3967–3979 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Akizuki, S. et al. Effects of substrate COD/NO2-N ratio on simultaneous methanogenesis and short-cut denitrification in the treatment of blue mussel using acclimated sludge. Biochem. Eng. J. 99, 16–23 (2015).CAS 
    Article 

    Google Scholar 
    Liao, K. et al. Use of convertible flow cells to simulate the impacts of anthropogenic activities on river biofilm bacterial communities. Sci. Total Environ. 653, 148–156 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Marassi, R. J. et al. Performance and toxicity assessment of an up-flow tubular microbial fuel cell during long-term operation with high-strength dairy wastewater. J. Clean. Prod. 259, 120882 (2020).CAS 
    Article 

    Google Scholar 
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Medema, G. J., Schets, F. M., Teunis, P. F. M. & Havelaar, A. H. Sedimentation of free and attached Cryptosporidium oocysts and Giardia cysts in water. Appl. Environ. Microbiol. 64, 4460–4466 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Igbinosa, E. O., Obi, L. C. & Okoh, A. I. Occurrence of potentially pathogenic vibrios in final effluents of a wastewater treatment facility in a rural community of the Eastern Cape Province of South Africa. Res. Microbiol. 160, 531–537 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goh, S. G., Bayen, S., Burger, D., Kelly, B. C. & Gin, Y. H. Occurrence and distribution of bacteria indicators, chemical tracers and pathogenic vibrios in Singapore coastal waters. Mar. Pollut. Bull. 114, 627–634 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cui, Q., Huang, Y., Wang, H. & Fang, T. Diversity and abundance of bacterial pathogens in urban rivers impacted by domestic sewage. Environ. Pollut. 249, 24–35 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Suzuki, Y. et al. Growth and antibiotic resistance acquisition of Escherichia coli in a river that receives treated sewage effluent. Sci. Total Environ. 690, 696–704 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Silva, D. C. V. R. et al. Predicting zebrafish spatial avoidance triggered by discharges of dairy wastewater: An experimental approach based on self-purification in a model river. Environ. Pollut. 266, 115325 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagner, I. & Zalewski, M. Temporal changes in the abiotic/biotic drivers of selfpurification in a temperate river. Ecol. Eng. 94, 275–285 (2016).Article 

    Google Scholar 
    Clements, W. H. & Rohr, J. R. Community responses to contaminants: Using basic ecological principles to predict ecotoxicological effects. Environ. Toxicol. Chem. 28, 1789–1800 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ismail, S. & Tawfik, A. Comprehensive study for Anammox process via multistage anaerobic baffled reactors. E3S Web Conf. 22, 4–11 (2017).Article 
    CAS 

    Google Scholar  More

  • in

    Spatial epidemiology of hemorrhagic disease in Illinois wild white-tailed deer

    Shope, R. E., MacNamara, L. G. & Mangold, R. Report on the deer mortality, epizootic hemorrhagic disease of deer. NJ Outdoors 6, 17–21 (1955).
    Google Scholar 
    Trainer, D. O. Epizootic hemorrhagic disease of deer. J. Wildl. Dis. 28, 377–381 (1964).
    Google Scholar 
    Shope, R. E., MacNamara, L. G. & Mangold, R. A virus-induced epizootic hemorrhagic disease of the Virginia white-tailed deer (Odocoileus virginianus). J. Exp. Med. 111, 155–170 (1960).CAS 
    PubMed 

    Google Scholar 
    Chalmers, G. A., Vance, H. N. & Mitchell, G. J. An outbreak of epizootic hemorrhagic disease in wild ungulates in Alberta. Wildl. Dis. 4, 1–6 (1964).
    Google Scholar 
    Stallknecht, D. E. et al. Apparent increase of reported hemorrhagic disease in the midwestern and northeastern USA. J. Wildl. Dis. 51, 348–361 (2015).PubMed 

    Google Scholar 
    Ruder, M. G. et al. The first 10 years (2006–2015) of epizootic hemorrhagic disease virus serotype 6 in the USA. J. Wildl. Dis. 53, 901–905 (2017).PubMed 

    Google Scholar 
    Pybus, M. J., Ravi, M. & Pollock, C. Epizootic hemorrhagic disease in Alberta, Canada. J. Wildl. Dis. 50, 720–722 (2014).PubMed 

    Google Scholar 
    Ruder, M. G. et al. Transmission and epidemiology of bluetongue and epizootic hemorrhagic disease in North America: current perspectives, research gaps, and future directions. Vector-Borne Zoonotic Dis. 15, 348–363 (2015).PubMed 

    Google Scholar 
    Rivera, N. A. et al. Bluetongue and epizootic hemorrhagic disease in the United States of America at the wildlife: livestock interface. Pathogens 10, 915 (2021).PubMed 

    Google Scholar 
    Mellor, P. S., Boorman, J. & Baylis, M. Culicoides biting midges: their role as arbovirus vectors. Annu. Rev. Entomol. 45, 307–340 (2000).CAS 
    PubMed 

    Google Scholar 
    Pfannenstiel, R. S. et al. Management of North American Culicoides biting midges: current knowledge and research needs. Vector-Borne Zoonotic Dis. 15, 374–384 (2015).PubMed 

    Google Scholar 
    Mcgregor, B. L. et al. Vector competence of Florida Culicoides insignis (Diptera: Ceratopogonidae) for epizootic hemorrhagic disease virus serotype-2. (2021). https://doi.org/10.3390/v13030410.Vigil, S. L. et al. Apparent range expansion of Culicoides (Hoffmania) insignis (Diptera: Ceratopogonidae) in the Southeastern United States. https://doi.org/10.1093/jme/tjy036.Mullen, G. R. & Murphree, C. S. Chapter 13-biting midges (Ceratopogonidae). in (eds. Mullen, G. R. & Durden, L. A. B. T.-M. and V. E. (Third E.) 213–236 (Academic Press, 2019). https://doi.org/10.1016/B978-0-12-814043-7.00013-3.Werner, D., Groschupp, S., Bauer, C. & Kampen, H. Breeding Habitat Preferences of major Culicoides Species (Diptera: Ceratopogonidae) in Germany. Int. J. Environ. Res. Public Health 17, 5000 (2020).
    Google Scholar 
    Tabachnick, W. J., Smartt, C. T. & Rutledge-Connelly, C. R. Bluetongue: ENY-743/IN768, 4/2008. EDIS 2008, (2008).Schmidtmann, E. T., Bobian, R. J. & Belden, R. P. Soil chemistries define aquatic habitats with immature populations of the Culicoides variipennis complex (Diptera: Ceratopogonidae). J. Med. Entomol. 37, 58–64 (2000).CAS 
    PubMed 

    Google Scholar 
    Schmidtmann, E. T. et al. Distribution of Culicoides sonorensis (Diptera: Ceratopogonidae) in Nebraska, South Dakota, and North Dakota: clarifying the epidemiology of bluetongue disease in the Northern great plains region of the United States. J. Med. Entomol. 48, 634–643 (2011).CAS 
    PubMed 

    Google Scholar 
    Mullens, B. A. & Holbrook, F. R. Temperature effects on the gonotrophic cycle of Culicoides variipennis (Diptera: Ceratopogonidae). J. Am. Mosq. Control Assoc. 7, 588–591 (1991).CAS 
    PubMed 

    Google Scholar 
    Lysyk, T. J. & Dergousoff, S. J. Distribution of Culicoides sonorensis (Diptera: Ceratopogonidae) in Alberta, Canada. J. Med. Entomol. 51, 560–571 (2014).CAS 
    PubMed 

    Google Scholar 
    Christensen, S. A., Ruder, M. G., Williams, D. M., Porter, W. F. & Stallknecht, D. E. The role of drought as a determinant of hemorrhagic disease in the eastern United States. Glob. Chang. Biol. 26, 3799–3808 (2020).ADS 
    PubMed 

    Google Scholar 
    Lysyk, T. J. & Danyk, T. Effect of temperature on life history parameters of adult Culicoides sonorensis (Diptera: Ceratopogonidae) in relation to geographic origin and vectorial capacity for bluetongue virus. J. Med. Entomol. 44, 741–751 (2007).CAS 
    PubMed 

    Google Scholar 
    Wittmann, E. J., Mellor, P. S. & Baylis, M. Effect of temperature on the transmission of orbiviruses by the biting midge, Culicoides sonorensis. Med. Vet. Entomol. 16, 147–156 (2002).CAS 
    PubMed 

    Google Scholar 
    Brand, S. P. C. & Keeling, M. J. The impact of temperature changes on vector-borne disease transmission: Culicoides midges and bluetongue virus. J. R. Soc. Interface 14, 20160481 (2017).PubMed 

    Google Scholar 
    Couvillion, C. E., Nettles, V. F., Davidson, W. R., Pearson, J. E. & Gustafson, G. A. Hemorrhagic disease among white-tailed deer in the Southeast from 1971 through 1980. Proc. US Anim. Hlth. Assoc. 85, 522–537 (1981).
    Google Scholar 
    Zarnke, R. L. Serologic survey for selected microbial pathogens in Alaskan wildlife. J. Wildl. Dis. 19, 324–329 (1983).CAS 
    PubMed 

    Google Scholar 
    Howerth, E. W., Stallknecht, D. E. & Kirkland, P. D. Bluetongue, epizootic hemorrhagic disease, and other orbivirus-related diseases. Infect. Dis. Wild Mammals https://doi.org/10.1002/9780470344880.ch3 (2001).Article 

    Google Scholar 
    Stevens, G., McCluskey, B., King, A., O’Hearn, E. & Mayr, G. Review of the 2012 epizootic hemorrhagic disease outbreak in domestic ruminants in the United States. PLoS ONE 10, 1–11 (2015).
    Google Scholar 
    Fischer, J. R. et al. An epizootic of hemorrhagic disease in white-tailed deer (Odocoileus virginianus) in Missouri: necropsy findings and population impact. J. Wildl. Dis. 31, 30–36 (1995).CAS 
    PubMed 

    Google Scholar 
    Pierce, B. EHD outbreak takes toll on white-tailed deer population. Bozeman Daily Chronicle (2011).Gaydos, J. K., Davidson, W. R., Mead, D. G., Howerth, E. W. & Stallknecht, D. E. Innate resistance to epizootic hemorrhagic disease in white-tailed deer. J. Wildl. Dis. 38, 713–719 (2002).PubMed 

    Google Scholar 
    Stallknecht, D. E. & Howerth, E. W. Epidemiology of bluetongue and epizootic haemorrhagic disease in wildlife: surveillance methods. Vet. Ital. 40, 203–207 (2004).CAS 
    PubMed 

    Google Scholar 
    Hedman, H. D. et al. Spatial analysis of chronic wasting disease in free-ranging white-tailed deer (Odocoileus virginianus) in Illinois, 2008–2019. Transbound. Emerg. Dis. 68, 2376–2383 (2020).PubMed 

    Google Scholar 
    Baygents, G. & Bani-Yaghoub, M. Cluster analysis of hemorrhagic disease in Missouri’s white-tailed deer population: 1980–2013. BMC Ecol. 18, 35 (2018).PubMed 

    Google Scholar 
    French, S. K., Pearl, D. L., Peregrine, A. S. & Jardine, C. M. Spatio-temporal clustering of Baylisascaris procyonis, a zoonotic parasite, in raccoons across different landscapes in southern Ontario. Spat. Spatiotemporal. Epidemiol. 35, 100371 (2020).PubMed 

    Google Scholar 
    Kulldorff, M., Heffernan, R., Hartman, J., Assunção, R. & Mostashari, F. A space-time permutation scan statistic for disease outbreak detection. PLoS Med. 2, 0216–0224 (2005).
    Google Scholar 
    Allison, A. B. et al. Detection of a novel reassortant epizootic hemorrhagic disease virus (EHDV) in the USA containing RNA segments derived from both exotic (EHDV-6) and endemic (EHDV-2) serotypes. J. Gen. Virol. 91, 430–439 (2010).CAS 
    PubMed 

    Google Scholar 
    Allen, S. E. et al. Epizootic hemorrhagic disease in white-tailed deer, Canada. Emerg. Infect. Dis. 25, 832–834 (2019).PubMed 

    Google Scholar 
    Boyer, T. C., Ward, M. P., Wallace, R. L. & Singer, R. S. Regional seroprevalence of bluetongue virus in cattle in Illinois and western Indiana. Am. J. Vet. Res. 68, 1212–1219 (2007).PubMed 

    Google Scholar 
    Pedersen, K. et al. Serologic Evidence of various arboviruses detected in white-tailed deer (Odocoileus virginianus) in the United States. Am. J. Trop. Med. Hyg. 97, 319–323 (2017).PubMed 

    Google Scholar 
    Garrett, E. F. et al. Clinical disease associated with epizootic hemorrhagic disease virus in cattle in Illinois. J. Am. Vet. Med. Assoc. 247, 190–195 (2015).PubMed 

    Google Scholar 
    Boyer, T. C., Ward, M. P. & Singer, R. S. Climate, landscape, and the risk of orbivirus exposure in cattle in Illinois and western Indiana. Am. J. Trop. Med. Hyg. 83, 789–794 (2010).PubMed 

    Google Scholar 
    Cauvin, A. et al. Antibodies to epizootic hemorrhagic disease virus (EHDV) in farmed and wild Florida white-tailed deer (Odocoileus virginianus). J. Wildl. Dis. 56, 208–213 (2020).CAS 
    PubMed 

    Google Scholar 
    McGregor, B. L. et al. Host use patterns of Culicoides spp. biting midges at a big game preserve in Florida, USA, and implications for the transmission of orbiviruses. Med. Vet. Entomol. 33, 110–120 (2019).CAS 
    PubMed 

    Google Scholar 
    Berke, O. Exploratory disease mapping: kriging the spatial risk function from regional count data. 11, 1–11 (2004).Svoboda, M. et al. The drought monitor. Bull. Am. Meterol. Soc. 83, 1181–1190 (2002).ADS 

    Google Scholar 
    NOAA National Centers for Environmental Information. State of the Climate: National Climate Report for Annual 2012. https://www.ncdc.noaa.gov/sotc/national/201213. (Accessed: 5th February 2022)Calzolari, M. & Albieri, A. Could drought conditions trigger Schmallenberg virus and other arboviruses circulation?. Int. J. Health Geogr. 12, 6–10 (2013).
    Google Scholar 
    Zuliani, A. et al. Modelling the northward expansion of Culicoides sonorensis (Diptera: Ceratopogonidae) under future climate scenarios. PLoS ONE 10, 1–23 (2015).
    Google Scholar 
    Burns, D. Diseases caused by arthropods and other noxious animals. in Rook’s Textbook of Dermatology 1555–1618 (Blackwell Publishing, 2004).Mullens, B. A. A quantitative survey of Culicoides variipennis (Diptera: Ceratopogonidae) in dairy waste water ponds in Southern California. J. Med. Entomol. 26, 559–565 (1989).CAS 
    PubMed 

    Google Scholar 
    Wang, D., Hejazi, M., Cai, X. & Valocchi, A. J. Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois. Water Resour. Res. 47, 9527 (2011).ADS 

    Google Scholar 
    Tomasek, B. J., Williams, M. M. II. & Davis, A. S. Changes in field workability and drought risk from projected climate change drive spatially variable risks in Illinois cropping systems. PLoS ONE 12, e0172301 (2017).PubMed 

    Google Scholar 
    Casey, C. L., Rathbun, S. L., Stallknecht, D. E. & Ruder, M. G. Spatial analysis of the 2017 outbreak of hemorrhagic disease and physiographic region in the eastern United States. Viruses 13, 550 (2021).CAS 
    PubMed 

    Google Scholar 
    Berry, B. S., Magori, K., Perofsky, A. C., Stallknecht, D. E. & Park, A. W. Wetland cover dynamics drive hemorrhagic disease patterns in white-tailed deer in the United States. J. Wildl. Dis. 49, 501–509 (2013).PubMed 

    Google Scholar 
    Uslu, U. & Dik, B. Chemical characteristics of breeding sites of Culicoides species (Diptera: Ceratopogonidae). Vet. Parasitol. 169, 178–184 (2010).CAS 
    PubMed 

    Google Scholar 
    Lysyk, T. J. Abundance and species composition of Culicoides (Diptera : Ceratopogonidae) at cattle facilities in southern Alberta, Canada. (2006).Erram, D., Blosser, E. M. & Cadena, N. B. Habitat associations of Culicoides species (Diptera : Ceratopogonidae) abundant on a commercial cervid farm in Florida, USA. Parasit. Vectors https://doi.org/10.1186/s13071-019-3626-1 (2019).Article 
    PubMed 

    Google Scholar 
    Jones, R. H. Observations on the larval habitats of some North American species of Culicoides (Diptera: Ceratopogonidae). Ann. Entomol. Soc. Am. 54, 702–710 (1961).
    Google Scholar 
    Schmidtmann, E. T., Jones, C. J. & Gollands, B. Comparative host-seeking activity of Culicoides (Diptera: Ceratopogonidae) attracted to pastured livestock in central New York State, USA. J. Med. Entomol. 17, 221–231 (1980).
    Google Scholar 
    Schlichting, P. E. Summary of 2019–2020 Illinois deer seasons. Illinois Dep. Nat. Resour. 1–12 (2020).Orange, J. P. et al. Evidence of epizootic hemorrhagic disease virus and bluetongue virus exposure in nonnative ruminant species in northern Florida. J. Zoo Wildl. Med. 51, 745–751 (2021).PubMed 

    Google Scholar 
    Purse, B. V. et al. Impacts of climate, host and landscape factors on Culicoides species in Scotland. Med. Vet. Entomol. 26, 168–177 (2012).CAS 
    PubMed 

    Google Scholar 
    Searle, K. R. et al. Identifying environmental drivers of insect phenology across space and time: Culicoides in Scotland as a case study. Bull. Entomol. Res. 103, 155–170 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Shimizu, S., Toyota, I., Arishima, T. & Goto, Y. Frequency of serological cross-reactions between Ibaraki and bluetongue viruses using the agar gel immunodiffusion test. Vet. Ital. 40, 583–586 (2004).CAS 
    PubMed 

    Google Scholar 
    Alkhamis, M. A. et al. Global emergence and evolutionary dynamics of bluetongue virus. Sci. Rep. 10, 21677 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cottingham, S. L., White, Z. S., Wisely, S. M. & Campos-Krauer, J. M. A Mortality-based description of EHDV and BTV prevalence in farmed white-tailed deer (Odocoileus virginianus) in Florida, USA. Viruses 13, 1443 (2021).CAS 
    PubMed 

    Google Scholar 
    Nettles, V. F., Davidson, W. R. & Stallknecht, D. E. Surveillance for hemorrhagic disease in white-tailed deer and other wild ruminants, 1980-1989. In Proceeding of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies. 46, 138–146 (1992).Maclachlan, N. J., Zientara, S., Wilson, W. C., Richt, J. A. & Savini, G. Bluetongue and epizootic hemorrhagic disease viruses: recent developments with these globally re-emerging arboviral infections of ruminants. Curr. Opin. Virol. 34, 56–62 (2019).PubMed 

    Google Scholar 
    Savini, G. et al. Epizootic haemorragic disease. Res. Vet. Sci. 91, 1–17 (2011).CAS 
    PubMed 

    Google Scholar 
    Kedmi, M. et al. The association of winds with the spread of EHDV in dairy cattle in Israel during an outbreak in 2006. Prev. Vet. Med. 96, 152–160 (2010).PubMed 

    Google Scholar 
    Mayo, C. E. et al. Seasonal and interseasonal dynamics of bluetongue virus infection of dairy cattle and Culicoides sonorensis Midges in Northern California: implications for virus overwintering in temperate zones. PLoS ONE 9, e106975 (2014).ADS 
    PubMed 

    Google Scholar 
    USGS National Wildlife Health Center. Wildlife Health Information Sharing Partnership-event reporting system (WHISPers). https://www.nwhc.usgs.gov/whispers/.Lenoch, J. & Nguyen, N. WHISPers, the USGS-NWHC Wildlife Health event reporting system. Proc. Wildl. Dis. Assoc. 8, 2579 (2016).
    Google Scholar 
    Brooks, J. W. Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet. Pathol. 53, 929–940 (2016).CAS 
    PubMed 

    Google Scholar 
    Pilz, J. & Spöck, G. Why do we need and how should we implement Bayesian Kriging methods. Stoch. Environ. Res. Risk Assess. 22, 621–632 (2007).MathSciNet 

    Google Scholar 
    Krivoruchko, K. Empirical Bayesian Kriging. ArcUser Fall 6, (2012).Ord, J. K. & Getis, A. Local spatial autocorrelation statistics: distributional issues and an application. Geogr. Anal. 27, 286–306 (1995).
    Google Scholar 
    Kulldorff, M. & Information Management Services Inc. SaTScanTM v 9.6: Software for the spatial and space-time scan statistics. (2018).Kulldorff, M., Athas, W. F., Feuer, E. J., Miller, B. A. & Key, C. R. Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am. J. Public Health 88, 1377–1380 (1998).CAS 
    PubMed 

    Google Scholar  More

  • in

    A perspective of scale differences for studying the green total factor productivity of Chinese laying hens

    Minimum distance to weak efficient frontierBriec and Charnes et al. first proposed the Minimum distance to weak efficient frontier (MinDW) model39,40, which can be expressed as (m + n) linear programming ((m) is the number of input indicators and (n) is the number of output indicators), assuming that the input variable is (x) and the output variable is (y). The specific formula is shown in Eq. (1):$$ begin{aligned} & max beta_{z} ,z = 1,2, ldots ,m + n \ & s.t.left{ begin{gathered} sumnolimits_{j = 1}^{q} {alpha_{j} x_{rj} + beta_{z} e_{r} le x_{rk} ,r = 1,2, ldots ,m} hfill \ sumnolimits_{j = 1}^{q} {alpha_{j} x_{ij} + beta_{z} e_{i} ge y_{ik} ,i = 1,2, ldots ,n} hfill \ alpha_{j} ge 0 hfill \ end{gathered} right. \ end{aligned} $$
    (1)
    (e_{r}) and (e_{i}) are constants. In the programming formula, only one (e) is equal to 1, and the others are 0, that is shown in Eq. (2):$$ begin{aligned} & e_{r} = 1;{text{ if}}; , r = z; , e_{r} = 0 , ;{text{if}}; , r ne z \ & e_{i} = 1 , ;{text{if}}; , i = z – m; , e_{r} = 0 , ;{text{if}}; , i ne z – m \ end{aligned} $$
    (2)
    The efficiency value of model is expressed as Eq. (3):$$ theta_{z}^{*} = frac{{1 – frac{1}{m}sumnolimits_{r = 1}^{m} {frac{{beta_{z}^{*} e_{r} }}{{x_{rk} }}} }}{{1 + frac{1}{n}sumnolimits_{i = 1}^{n} {frac{{beta_{z}^{*} e_{i} }}{{y_{ik} }}} }} $$
    (3)
    The efficiency value of MinDW model is expressed as (theta_{max }^{*} = max (theta_{z}^{*} ,z = 1,2, cdots ,m + n)), and the maximum efficiency value corresponds to the minimum (beta^{*}), that is the nearest distance to the frontier.This paper uses the MinDW model with negative output to conduct empirical analysis. The method can be expressed as (m + n + d) linear programming ((m) is the number of inputs, (n) is the number of desirable output, (d) is the number of unexpected output), assuming that the input variable is (x), the desirable output variable is (y), and the undesirable output variable is (f). The specific formula is shown in Eq. (4):$$ begin{aligned} & max beta_{z} ,z = 1,2, ldots ,m + n + d \ & s.t.left{ begin{gathered} sumnolimits_{j = 1}^{q} {alpha_{j} x_{rj} + beta_{z} e_{r} le x_{rk} ,r = 1,2, ldots ,m} hfill \ sumnolimits_{j = 1}^{q} {alpha_{j} x_{ij} – beta_{z} e_{i} ge y_{ik} ,i = 1,2, ldots ,n} hfill \ sumnolimits_{j = 1}^{q} {alpha_{j} x_{lj} + beta_{z} e_{l} le f_{lk} ,l = 1,2, ldots ,d} hfill \ alpha_{j} ge 0 hfill \ end{gathered} right. \ end{aligned} $$
    (4)
    (e_{r}), (e_{i}) and (e_{l}) are constants. In the programming formula, only one (e) is equal to 1, and the others are 0, that is shown in Eq. (5):$$ begin{aligned} & e_{r} = 1;{text{ if}}; , r = z; , e_{r} = 0 , ;{text{if}}; , r ne z \ & e_{i} = 1 , ;{text{if }};i = z – m; , e_{r} = 0 , ;{text{if}}; , i ne z – m \ & e_{l} = 1 , ;{text{if}}; , l = z – m – n; , e_{l} = 0 , ;{text{if}}; , l ne z – m – n \ end{aligned} $$
    (5)
    The efficiency value of model is expressed as Eq. (6):$$ theta_{z}^{*} = frac{{1 – frac{1}{m}sumnolimits_{r = 1}^{m} {frac{{beta_{z}^{*} e_{r} }}{{x_{rk} }}} }}{{1 + frac{1}{n + d}left( {sumnolimits_{i = 1}^{n} {frac{{beta_{z}^{*} e_{i} }}{{y_{ik} }}} + sumnolimits_{l = 1}^{d} {frac{{beta_{z}^{*} e_{l} }}{{f_{lk} }}} } right)}} $$
    (6)
    The efficiency value of MinDW model is expressed as (theta_{max }^{*} = max (theta_{z}^{*} ,z = 1,2, cdots ,m + n + d)), and the maximum efficiency value corresponds to the minimum (beta^{*}), which means the nearest distance to the frontier.The efficiency value of MinDW model will not be less than the efficiency value of directional distance function model with any direction vector or other distance types (such as radial model and SBM model). In other words, the efficiency value of MinDW model is the largest. Combined with the above process, we can define the common boundary ((beta^{meta*})) and the model is as Eq. (7):$$ begin{aligned} & beta^{meta*} = max frac{{1 – frac{1}{m}sumnolimits_{r = 1}^{m} {frac{{beta_{z} e_{r} }}{{x_{rk} }}} }}{{1 + frac{1}{n + d}left( {sumnolimits_{i = 1}^{n} {frac{{beta_{z} e_{i} }}{{y_{ik} }}} + sumnolimits_{l = 1}^{d} {frac{{beta_{z} e_{l} }}{{f_{lk} }}} } right)}} \ & s.t.left{ begin{gathered} sumnolimits_{j = 1}^{{q_{m} }} {alpha_{j} x_{rj} + beta_{z} e_{r} le x_{rk} ,r = 1,2, cdots ,m} hfill \ sumnolimits_{j = 1}^{{q_{m} }} {alpha_{j} x_{ij} – beta_{z} e_{i} ge y_{ik} ,i = 1,2, cdots ,n} hfill \ sumnolimits_{j = 1}^{{q_{m} }} {alpha_{j} x_{lj} + beta_{z} e_{l} le f_{lk} ,l = 1,2, cdots ,d} hfill \ alpha_{j} ge 0 hfill \ end{gathered} right. \ end{aligned} $$
    (7)
    Similarly, the efficiency value of DMU relative to the scale frontier ((beta^{scale*})) can be obtained by the Eq. (8):$$ begin{aligned} & beta^{scale*} = max frac{{1 – frac{1}{m}sumnolimits_{r = 1}^{m} {frac{{beta_{z} e_{r} }}{{x_{rk} }}} }}{{1 + frac{1}{n + d}left( {sumnolimits_{i = 1}^{n} {frac{{beta_{z} e_{i} }}{{y_{ik} }}} + sumnolimits_{l = 1}^{d} {frac{{beta_{z} e_{l} }}{{f_{lk} }}} } right)}} \ & s.t.left{ begin{gathered} sumnolimits_{j = 1}^{{q_{s} }} {alpha_{j} x_{rj} + beta_{z} e_{r} le x_{rk} ,r = 1,2, ldots ,m} hfill \ sumnolimits_{j = 1}^{{q_{s} }} {alpha_{j} x_{ij} – beta_{z} e_{i} ge y_{ik} ,i = 1,2, ldots ,n} hfill \ sumnolimits_{j = 1}^{{q_{s} }} {alpha_{j} x_{lj} + beta_{z} e_{l} le f_{lk} ,l = 1,2, ldots ,d} hfill \ alpha_{j} ge 0 hfill \ end{gathered} right. \ end{aligned} $$
    (8)
    Finally, in the common frontier model, the technology gap ratio (TGR) is equal to the ratio of the efficiency value of the common frontier to the scale frontier41. The formula is as Eq. (9):$$ TGR^{MinDW} = frac{{beta^{meta*} }}{{beta^{scale*} }} $$
    (9)
    (beta^{meta*}) and (beta^{scale*}) represent the optimal solution of formula (7) and formula (8), respectively. Obviously, (0 le TGR le 1). TGR is used to measure the distance between the optimal production technology and the potential optimal technology of a group, and identify whether there are any differences in LHG under different groups. The closer the TGR is to 1, the closer the technology level is to the optimal potential technology level. Conversely, it shows the larger gap between the technology level and the potential optimal technology level.Metafrontier-Malmquist–Luenberger indexMalmquist productivity index is widely used in the study of dynamic efficiency change trend, and has good adaptability to multiple input–output data and panel data analysis. The actual production process often contains unexpected output. After Chung et al. proposed Malmquist–Luenberger (ML) index, any Malmquist index with undesired output can be called ML index42. Oh constructed the Global-Malmquist–Luenberger index43. All the evaluated DMUs are included in the global reference set, which avoids the phenomenon of infeasible solution in VRS. The global reference set constructed in this paper is as Eqs. (10)–(11):$$ Q^{G} left( x right) = Q^{1} left( {x^{1} } right) cup Q^{2} left( {x^{2} } right) cup cdots cup Q^{T} left( {x^{T} } right) $$
    (10)
    $$ Q^{t} left( {x^{t} } right) = left{ {left( {y^{t} ,f^{t} } right)left| {x^{t} ;can;produce} right.;left( {y^{t} ,f^{t} } right)} right} $$
    (11)
    This paper takes MML index as the LHG.$$ begin{aligned} MML_{t – 1}^{t} & = sqrt {frac{{1 – D_{t – 1} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t – 1} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} times frac{{1 – D_{t} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}}} \ & = sqrt {frac{{1 – D_{t – 1} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}}{{1 – D_{t} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} times frac{{1 – D_{t – 1} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}} \ & ;;;;; times frac{{1 – D_{t} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t – 1} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} \ end{aligned} $$
    (12)
    Next, it further decompose the MML index into efficiency change (EC) and technology change (TC). The specific formula is shown in Eqs. (13)–(14):$$ TC_{t – 1}^{t} = sqrt {frac{{1 – D_{t – 1} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}}{{1 – D_{t} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} times frac{{1 – D_{t – 1} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}} $$
    (13)
    $$ EC_{t – 1}^{t} = frac{{1 – D_{t} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{t – 1} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} $$
    (14)
    where (left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} } right)) and (left( {x^{t} ,y^{t} ,f^{t} } right)) represent the input, expected output and unexpected output of t-1 and t, respectively. (TC_{t – 1}^{t}) is the devotion to LHG raise of DMU’s technical progress from (t – 1) to (t). And (EC_{t – 1}^{t}) represents the devotion to LHG raise of DMU’s efficiency improvement from (t – 1) to (t). The higher the value is, the larger the devotion is. The (MML) index is recorded as (MI). The value of (MI) is the LHG. The green total factor productivity index of laying hens breeding under the common frontier and scale frontier are as Eqs. (15)–(16):$$ metaMI_{t – 1}^{t} = sqrt {frac{{1 – D_{{_{t – 1} }}^{m} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{{_{t – 1} }}^{m} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} times frac{{1 – D_{{_{t} }}^{m} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{{_{t} }}^{m} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}}} $$
    (15)
    $$ groupMI_{t – 1}^{t} = sqrt {frac{{1 – D_{{_{t – 1} }}^{g} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{{_{t – 1} }}^{g} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}} times frac{{1 – D_{{_{t} }}^{g} left( {x^{t} ,y^{t} ,f^{t} ;y^{t} , – f^{t} } right)}}{{1 – D_{{_{t} }}^{g} left( {x^{t – 1} ,y^{t – 1} ,f^{t – 1} ;y^{t – 1} , – f^{t – 1} } right)}}} $$
    (16)
    For the DMUs with scale heterogeneity, we can measure the technology gap between the group frontier and the common frontier, which is caused by the specific group structure.Data and variablesBased on the research of the existing literature36, this paper selects five indexes to build the input–output indicator system. Details are as below:

    1.

    Input variables:

    (1)

    Quantity of concentrated forage. Mainly includes seeds of crops and their by-products.

    (2)

    Quantity of grain consumption. Quantity of grain consumed is the quantity of grain consumed by laying hens when they are raised. For example: corn, sorghum, broken rice, wheat, barley, wheat bran, etc.

    (3)

    Material expenses. The sum of water and fuel power costs, labor costs, and medical epidemic prevention fees. Water and fuel power costs include water, electricity, coal and other fuel power costs; labor costs mean the human management cost of each laying hen from the brood stage to the laying stage; medical and epidemic prevention costs include the cost of disease prevention and control.

    2.

    Positive output Main product production, which is the egg production per layer.

    3.

    Negative output Total discharge. According to the calculation method of The Manual of Pollutant Discharge Coefficient, Eq. (17) is used to calculate the COD, TN, and the TP of each layer. Then, according to the calculation method of class GB3838-2002 water quality standard in V, Eq. (18) is used to calculate the total discharge.

    $$ POLLUTANTS = FP(FD) times Days $$
    (17)
    $$ TOTAL , POLLUTANTS = frac{COD}{{40}} + frac{TN}{2} + frac{TP}{{0.4}} $$
    (18)
    where, (FP(FD)) is the pollution discharge coefficient and the (Days) is the average raising days. Descriptive statistics of input and output indicators are shown in Table 1.Table 1 Descriptive statistics of input and output indicators.Full size tableThe quantity of concentrate, the quantity of food consumed, the cost of labor, the cost of medical treatment all come from “National Agricultural Product Cost and Benefit Data Compilation”. The pollutant discharge coefficient of laying hens is derived from “The Manual of Pollutant Discharge Coefficient”. According to the definition of scale in above two materials, a small scale 300–1000 laying hens, a medium scale 1000–10,000 laying hens, and a large scale greater than 10,000 laying hens are grouped to calculate cost efficiency.From 2004 to 2018, this paper selects 24 major egg-producing provinces (municipalities) in China as samples, after eliminating singular data in the three scales and averaging the missing data, the final small-scale group is left with 7 provinces including Liaoning, Shandong, Henan, Heilongjiang, Jilin, Shanxi, and Shaanxi; the medium-scale group is the remaining 21 provinces of Beijing, Hebei, Jiangsu, Liaoning, Shandong, Tianjin, Zhejiang, Anhui, Henan, Heilongjiang, Jilin, Hubei, Inner Mongolia, Shanxi, Yunnan, Gansu, Ningxia, Shaanxi, Sichuan, Xinjiang, Chongqing; the large-scale group has 18 provinces, including Beijing, Fujian, Guangdong, Henan, Jiangsu, Liaoning, Shandong, Tianjin, Anhui, Henan, Heilongjiang, Hubei, Jilin, Shanxi, Yunnan, Gansu, Sichuan and Chongqing.As is shown in Table 2, after dividing the provinces by region, the eastern region has 10 provinces (municipalities): Liaoning, Shandong, Beijing, Hebei, Jiangsu, Tianjin, Zhejiang, Fujian, Guangdong, Henan. The central region has 7 provinces (autonomous region): Henan, Heilongjiang, Jilin, Shanxi, Anhui, Hubei, Inner Mongolia. The western region has 7 provinces (municipalities): Shaanxi, Gansu, Ningxia, Sichuan, Xinjiang, Chongqing, Yunnan.Table 2 Samples selected from 2004–2018.Full size table More

  • in

    Collegiality pays and biodiversity struggles

    Animals such as this orangutan in Indonesia are endangered because of illegal deforestation.Credit: Jami Tarris/Future Publishing via Getty

    Funding battles stymie plan to protect global biodiversityScientists are frustrated with slow progress towards a new deal to protect the natural world. Government officials from around the globe met in Geneva, Switzerland, on 14–29 March to find common ground on a draft of the deal, known as the post-2020 global biodiversity framework, but discussions stalled.The framework so far sets out 4 broad goals, including slowing species extinction, and 21 mostly quantitative targets, such as protecting at least 30% of the world’s land and seas. It is part of an international treaty known as the United Nations Convention on Biological Diversity, and aims to address the global biodiversity crisis, which could see one million plant and animal species go extinct in the next few decades.Many who were at the meeting say that disagreements over funding for biodiversity conservation were the main hold-up in negotiations. For example, the draft deal proposed that US$10 billion of funding per year should flow from developed nations to low- and middle-income countries to help them to implement the biodiversity framework. But many think this is not enough.Negotiators say they will now have to meet again before a highly anticipated UN biodiversity summit later this year, where the deal was to be signed.‘Collegiality’ influences researchers’ promotion prospectsUniversities in North America often consider how well researchers interact with each other when making decisions about who gets promoted, a study has found, even though these factors are not formally acknowledged in review guidelines.A researcher’s performance is usually assessed according to three pillars: research, teaching and service. But in recent years, there has been a push from some academics to add another pillar: collegiality. Many say that the concepts of cooperation, collaboration and respect, which broadly fall under the definition of collegiality, are important to the functioning of laboratories and research teams.DeDe Dawson, an academic librarian at the University of Saskatchewan in Saskatoon, Canada, and colleagues analysed more than 860 review, promotion and tenure documents from different departments at 129 universities in the United States and Canada to get a sense of how often collegiality is taken into account.The study, published on 6 April (D. Dawson et al. PLoS ONE 17, e0265506; 2022), found that the concept of collegiality was widespread: the word ‘collegiality’ and related terms, such as ‘citizenship’ or ‘professionalism’, appeared 507 times in 213 of the documents, suggesting that it was often taken into account in evaluations. But just 85 documents included a definition of the term, and fewer still explained how it was measured or used in assessments.

    Source: D. Dawson et al. PLoS ONE 17, e0265506 (2022)

    Collegiality was mentioned most often in research-intensive institutions (see ‘Academia’s fourth pillar’). The authors say that this could be because the behaviour involved is valued in research groups.Dawson and her colleagues warn that relying on collegiality in performance reviews without adequate guidance could introduce bias, as those in charge fill in the blanks with their own definitions.“We need to make sure that we don’t use collegiality to exclude others that may communicate or interact differently,” says Sujay Kaushal, a geologist at the University of Maryland in College Park, who has previously studied collegiality. More

  • in

    Expanding ocean food production under climate change

    United Nations. World Population Prospects: The 2017 Revision, Key Findings and Advance Tables. Working Paper No. ESA/P/WP/248 (UN-DESA, 2017).Costello, C. et al. The future of food from the sea. Nature 588, 95–100 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    IPCC. IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (2019).FAO. Mapping Supply and Demand for Animal-Source Foods to 2030 (2011).Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    DeFries, R. S., Rudel, T., Uriarte, M. & Hansen, M. Deforestation driven by urban population growth and agricultural trade in the twenty-first century. Nat. Geosci. 3, 178–181 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Rockström, J. et al. Future water availability for global food production: the potential of green water for increasing resilience to global change. Water Resour. Res. 45, W00A12 (2009).Article 

    Google Scholar 
    IPCC. IPCC Special Report on Climate Change and Land (2019).Poore, J. & Nemecek, T. Reducing food’s environmental impacts through producers and consumers. Science 360, 987–992 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    FAO. The State of World Fisheries and Aquaculture 2020: Sustainability in Action (2020).Bryndum‐Buchholz, A. et al. Twenty-first-century climate change impacts on marine animal biomass and ecosystem structure across ocean basins. Glob. Change Biol. 25, 459–472 (2019).ADS 
    Article 

    Google Scholar 
    Cheung, W. W. L., Dunne, J., Sarmiento, J. L. & Pauly, D. Integrating ecophysiology and plankton dynamics into projected maximum fisheries catch potential under climate change in the Northeast Atlantic. ICES J. Mar. Sci. 68, 1008–1018 (2011).Article 

    Google Scholar 
    Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Global change in marine aquaculture production potential under climate change. Nat. Ecol. Evol. 2, 1745–1750 (2018).PubMed 
    Article 

    Google Scholar 
    Handisyde, N., Telfer, T. C. & Ross, L. G. Vulnerability of aquaculture-related livelihoods to changing climate at the global scale. Fish Fish. 18, 466–488 (2017).Article 

    Google Scholar 
    Szuwalski, C. S. & Hollowed, A. B. Climate change and non-stationary population processes in fisheries management. ICES J. Mar. Sci. 73, 1297–1305 (2016).Article 

    Google Scholar 
    Pinsky, M. L. et al. Preparing ocean governance for species on the move. Science 360, 1189–1191 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gaines, S. D. et al. Improved fisheries management could offset many negative effects of climate change. Sci. Adv. 4, eaao1378 (2018).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Free, C. M. et al. Realistic fisheries management reforms could mitigate the impacts of climate change in most countries. PLoS ONE 15, e0224347 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Clapp, J. Food self-sufficiency: making sense of it, and when it makes sense. Food Policy 66, 88–96 (2017).Article 

    Google Scholar 
    Barange, M., Bahri, T., Beveridge, M. & Cochrane, K. L. Impacts of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options. Fisheries and Aquaculture Technical Paper No. 627 (FAO, 2018).Lester, S. E. et al. Marine spatial planning makes room for offshore aquaculture in crowded coastal waters. Nat. Commun. 9, 945 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Cottrell, R. S., Blanchard, J. L., Halpern, B. S., Metian, M. & Froehlich, H. E. Global adoption of novel aquaculture feeds could substantially reduce forage fish demand by 2030. Nat. Food 1, 301–308 (2020).Article 

    Google Scholar 
    Hua, K. et al. The future of aquatic protein: implications for protein sources in aquaculture diets. One Earth 1, 316–329 (2019).ADS 
    Article 

    Google Scholar 
    Chavanne, H. et al. A comprehensive survey on selective breeding programs and seed market in the European aquaculture fish industry. Aquacult. Int. 24, 1287–1307 (2016).Article 

    Google Scholar 
    Troell, M., Jonell, M. & Henriksson, P. J. G. Ocean space for seafood. Nat. Ecol. Evol. 1, 1224–1225 (2017).PubMed 
    Article 

    Google Scholar 
    European Union. Commission Regulation (EC) No 710/2009 of 5 August 2009 Amending Regulation (EC) No 889/2008 laying down detailed rules for the implementation of Council Regulation (EC) No 834/2007, as regards laying down detailed rules on organic aquaculture animal and seaweed production. http://data.europa.eu/eli/reg/2009/710/oj (2009).Golden, C. D. et al. Aquatic foods to nourish nations. Nature 598, 315–320 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Davies, I. P. et al. Governance of marine aquaculture: pitfalls, potential, and pathways forward. Mar. Policy 104, 29–36 (2019).Article 

    Google Scholar 
    Gentry, R. R. et al. Exploring the potential for marine aquaculture to contribute to ecosystem services. Rev. Aquacult. 12, 499–512 (2020).Article 

    Google Scholar 
    Troell, M. et al. Ecological engineering in aquaculture — potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297, 1–9 (2009).Article 

    Google Scholar 
    Froehlich, H. E., Jacobsen, N. S., Essington, T. E., Clavelle, T. & Halpern, B. S. Avoiding the ecological limits of forage fish for fed aquaculture. Nat. Sustain. 1, 298–303 (2018).Article 

    Google Scholar 
    Øverland, M., Mydland, L. T. & Skrede, A. Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. J. Sci. Food Agric. 99, 13–24 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Besson, M. et al. Environmental impacts of genetic improvement of growth rate and feed conversion ratio in fish farming under rearing density and nitrogen output limitations. J. Clean. Prod. 116, 100–109 (2016).Article 

    Google Scholar 
    Froehlich, H. E., Runge, C. A., Gentry, R. R., Gaines, S. D. & Halpern, B. S. Comparative terrestrial feed and land use of an aquaculture-dominant world. Proc. Natl Acad. Sci. USA 115, 5295–5300 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Aguilar-Manjarrez, J., Soto, D., Brummett, R. E. Aquaculture Zoning, Site Selection and Area Management under the Ecosystem Approach to Aquaculture (FAO, 2017).Soto, D. et al. In Impacts Of Climate Change on Fisheries and Aquaculture: Synthesis of Current Knowledge, Adaptation and Mitigation Options Ch. 26 (FAO, 2018).Darwin, C. The Variation of Animals and Plants Under Domestication (John Murray, 1868).Gjedrem, T., Robinson, N. & Rye, M. The importance of selective breeding in aquaculture to meet future demands for animal protein: a review. Aquaculture 350–353, 117–129 (2012).Article 

    Google Scholar 
    Antonello, J. et al. Estimates of heritability and genetic correlation for body length and resistance to fish pasteurellosis in the gilthead sea bream (Sparus aurata L.). Aquaculture 298, 29–35 (2009).Article 

    Google Scholar 
    Saillant, E., Dupont-Nivet, M., Haffray, P. & Chatain, B. Estimates of heritability and genotype–environment interactions for body weight in sea bass (Dicentrarchus labrax L.) raised under communal rearing conditions. Aquaculture 254, 139–147 (2006).Article 

    Google Scholar 
    Klinger, D. H., Levin, S. A. & Watson, J. R. The growth of finfish in global open-ocean aquaculture under climate change. Proc. R. Soc. B 284, 20170834 (2017).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Salayo, N. D., Perez, M. L., Garces, L. R. & Pido, M. D. Mariculture development and livelihood diversification in the Philippines. Mar. Policy 36, 867–881 (2012).Article 

    Google Scholar 
    Boyce, D. G., Lotze, H. K., Tittensor, D. P., Carozza, D. A. & Worm, B. Future ocean biomass losses may widen socioeconomic equity gaps. Nat. Commun. 11, 2235 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sumaila, U. R. et al. Benefits of the Paris Agreement to ocean life, economies, and people. Sci. Adv. 5, eaau3855 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development (United Nations, 2017).Hilborn, R. et al. Effective fisheries management instrumental in improving fish stock status. Proc. Natl Acad. Sci. USA 117, 2218–2224 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Free, C. M. et al. Impacts of historical warming on marine fisheries production. Science 363, 979–983 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Costello, C. et al. Global fishery prospects under contrasting management regimes. Proc. Natl Acad. Sci. USA 113, 5125–5129 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ye, Y. & Gutierrez, N. L. Ending fishery overexploitation by expanding from local successes to globalized solutions. Nat. Ecol. Evol. 1, 0179 (2017).Article 

    Google Scholar 
    Leape, J. et al. Technology, Data and New Models for Sustainably Managing Ocean Resources (World Resources Institute, 2020).Anderson, C. R. et al. Scaling up from regional case studies to a global harmful algal bloom observing system. Front. Mar. Sci. 6, 250 (2019).Article 

    Google Scholar 
    Dunn, D. C., Maxwell, S. M., Boustany, A. M. & Halpin, P. N. Dynamic ocean management increases the efficiency and efficacy of fisheries management. Proc. Natl Acad. Sci. USA 113, 668–673 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    FAO. Aquaculture Development: 7. Aquaculture Governance and Sector Development (2017).Oyinlola, M. A., Reygondeau, G., Wabnitz, C. C. C., Troell, M. & Cheung, W. W. L. Global estimation of areas with suitable environmental conditions for mariculture species. PLoS ONE 13, e0191086 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Jackson, A. Fish in-fish out ratio explained. Aquacult. Eur. 34, 5–10 (2009).
    Google Scholar 
    Tacon, A. G. J. & Metian, M. Feed matters: satisfying the feed demand of aquaculture. Rev. Fish. Sci. Aquacult. 23, 1–10 (2015).Article 

    Google Scholar 
    Tacon, A. G. J. & Metian, M. Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: trends and future prospects. Aquaculture 285, 146–158 (2008).CAS 
    Article 

    Google Scholar 
    World Bank. Population, Total (2020); https://data.worldbank.org/indicator/SP.POP.TOTLEdwards, P., Zhang, W., Belton, B. & Little, D. C. Misunderstandings, myths and mantras in aquaculture: its contribution to world food supplies has been systematically over reported. Mar. Policy 106, 103547 (2019).Article 

    Google Scholar 
    Roberts, P. Conversion Factors for Estimating the Equivalent Live Weight of Fisheries Products (The Food and Agriculture Organization of the United Nations, 1998).R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Kaschner, K. et al. AquaMaps: Predicted Range Maps for Aquatic Species https://www.aquamaps.org/ (2019).García Molinos, J. et al. Climate velocity and the future global redistribution of marine biodiversity. Nat. Clim. Change 6, 83–88 (2016).ADS 
    Article 

    Google Scholar 
    Cashion, T., Le Manach, F., Zeller, D. & Pauly, D. Most fish destined for fishmeal production are food-grade fish. Fish Fish. 18, 837–844 (2017).Article 

    Google Scholar 
    Froehlich, H. E., Gentry, R. R. & Halpern, B. S. Synthesis and comparative analysis of physiological tolerance and life-history growth traits of marine aquaculture species. Aquaculture 460, 75–82 (2016).Article 

    Google Scholar 
    Thorson, J. T., Munch, S. B., Cope, J. M. & Gao, J. Predicting life history parameters for all fishes worldwide. Ecol. Appl. 27, 2262–2276 (2017).PubMed 
    Article 

    Google Scholar 
    Froese, R. & Pauly, D. FishBase http://www.fishbase.org (2021).Palomares, M. & Pauly, D. SeaLifeBase http://www.sealifebase.org (2019).FAO. Cultured Aquatic Species (2019).Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part I: physical formulation and baseline simulation characteristics. J. Clim. 25, 6646–6665 (2012).ADS 
    Article 

    Google Scholar 
    Dunne, J. P. et al. GFDL’s ESM2 global coupled climate–carbon Earth system models. Part II: carbon system formulation and baseline simulation characteristics. J. Clim. 26, 2247–2267 (2013).ADS 
    Article 

    Google Scholar 
    Song, Z. et al. Centuries of monthly and 3-hourly global ocean wave data for past, present, and future climate research. Sci. Data 7, 226 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gentry, R. R. et al. Mapping the global potential for marine aquaculture. Nat. Ecol. Evol. 1, 1317–1324 (2017).PubMed 
    Article 

    Google Scholar 
    Barton, A. et al. Impacts of coastal acidification on the Pacific Northwest shellfish industry and adaptation strategies implemented in response. Oceanography 25, 146–159 (2015).Article 

    Google Scholar 
    Froehlich, H. E., Smith, A., Gentry, R. R. & Halpern, B. S. Offshore aquaculture: I know it when I see it. Front. Mar. Sci. 4, 154 (2017).Article 

    Google Scholar 
    World Bank. Adjusted Net National Income per Capita (Current US$) (2019); https://data.worldbank.org/indicator/NY.ADJ.NNTY.PC.CDWorld Bank. Pump Price for Diesel Fuel (US$ per liter) (2019); https://data.worldbank.org/indicator/EP.PMP.DESL.CDPiburn, J. wbstats: programmatic access to the World Bank API. R package v.1.0.4 https://cran.r-project.org/web/packages/wbstats/index.html (2018).Rubino, M. (ed.) Offshore Aquaculture in the United States: Economic Considerations, Implications & Opportunities NOAA Technical Memorandum NMFS F/SPO-103 (US Department of Commerce, 2008).Jackson, A. & Newton, R. Project to Model the Use of Fisheries By-products in the Production of Marine Ingredients, with Special Reference to the Omega 3 Fatty Acids EPA and DHA (Institute Of Aquaculture, University Of Stirling And IFFO, 2016). More