More stories

  • in

    Ontogeny and caudal autotomy fracture planes in a large scincid lizard, Egernia kingii

    Emberts, Z., Escalante, I. & Bateman, P. W. The ecology and evolution of autotomy. Biol. Rev. 94, 1881–1896. https://doi.org/10.1111/brv.12539 (2019).Article 
    PubMed 

    Google Scholar 
    Dunoyer, L. A., Seifert, A. W. & Van Cleve, J. Evolutionary bedfellows: Reconstructing the ancestral state of autotomy and regeneration. J. Exp. Zool. Part B Mol. Dev. Evol. 336, 94–115. https://doi.org/10.1002/jez.b.22974 (2021).Article 

    Google Scholar 
    Dial, B. E. & Fitzpatrick, L. C. Lizard tail autotomy: function and energetics of postautotomy tail movement in Scincella lateralis. Science https://doi.org/10.1126/science.219.4583.391 (1983).Article 
    PubMed 

    Google Scholar 
    Arnold, E. Caudal autotomy as a defense. Biol. Reptil. 16, 235–273 (1988).
    Google Scholar 
    Bateman, P. W. & Fleming, P. A. To cut a long tail short: A review of lizard caudal autotomy studies carried out over the last 20 years. J. Zool. (Lond.) 277, 1–14 (2009).Article 

    Google Scholar 
    Woodland, W. Memoirs: Some observations on caudal autotomy and regeneration in the gecko (Hemidactylus flaviviridis, Rüppel), with notes on the tails of Sphenodon and Pygopus. J. Cell Sci. 2, 63–100 (1920).Article 

    Google Scholar 
    Alibardi, L. Morphological and Cellular Aspects of Tail and Limb Regeneration in Lizards: A Model System with Implications for Tissue Regeneration in Mammals (Springer, 2010).Book 

    Google Scholar 
    Maginnis, T. L. The costs of autotomy and regeneration in animals: A review and framework for future research. Behav. Ecol. 17, 857–872. https://doi.org/10.1093/beheco/arl010 (2006).Article 

    Google Scholar 
    Dial, B. E. & Fitzpatrick, L. C. The energetic costs of tail autotomy to reproduction in the lizard Coleonyx brevis (Sauria: Gekkonidae). Oecologia 51, 310–317. https://doi.org/10.1007/bf00540899 (1981).ADS 
    Article 
    PubMed 

    Google Scholar 
    Vitt, L. J., Congdon, J. D. & Dickson, N. A. Adaptive strategies and energetics of tail autotomy in Lizards. Ecology 58, 326–337. https://doi.org/10.2307/1935607 (1977).Article 

    Google Scholar 
    Clause, A. R. & Capaldi, E. A. Caudal autotomy and regeneration in lizards. J. Exp. Zool. 305, 965–973 (2006).Article 

    Google Scholar 
    Barr, J. I., Boisvert, C. A. & Bateman, P. W. At what cost? Trade-offs and influences on energetic investment in tail regeneration in lizards following autotomy. J. Dev. Biol. 9, 53 (2021).Article 

    Google Scholar 
    Etheridge, R. Lizard caudal vertebrae. Copeia, 699–721 (1967).Arnold, E. Evolutionary aspects of tail shedding in lizards and their relatives. J. Nat. Hist. 18, 127–169 (1984).Article 

    Google Scholar 
    Zani, P. A. Patterns of caudal-autotomy evolution in lizards. J. Zool. (Lond.) 240, 201–220 (1996).Article 

    Google Scholar 
    Russell, A. & Bauer, A. The m. caudifemoralis longus and its relationship to caudal autotomy and locomotion in lizards (Reptilia: Sauria). J. Zool. (Lond.) 227, 127–143. https://doi.org/10.1111/j.1469-7998.1992.tb04349.x (1992).Article 

    Google Scholar 
    Arnold, E. Investigating the evolutionary effects of one feature on another: Does muscle spread suppress caudal autotomy in lizards?. J. Zool. (Lond.) 232, 505–523. https://doi.org/10.1111/j.1469-7998.1994.tb01591.x (1994).Article 

    Google Scholar 
    Bellairs, A. & Bryant, S. Autotomy and regeneration in reptiles. Biol. Reptil. 15, 301–410 (1985).
    Google Scholar 
    Hoffstetter, R. & Gasc, J. P. Vertebrae and ribs of modern reptiles. Biol. Reptil. 1, 201–310 (1969).
    Google Scholar 
    Cooper, W. E. Jr. & Frederick, W. G. Predator lethality, optimal escape behavior, and autotomy. Behav. Ecol. 21, 91–96. https://doi.org/10.1093/beheco/arp151 (2009).Article 

    Google Scholar 
    Fleming, P. A., Valentine, L. E. & Bateman, P. W. Telling tails: Selective pressures acting on investment in lizard tails. Physiol. Biochem. Zool. 86, 645–658 (2013).Article 

    Google Scholar 
    Bateman, P. W., Fleming, P. A. & Rolek, B. Bite me: Blue tails as a ‘risky-decoy’defense tactic for lizards. Curr. Zool. 60, 333–337 (2014).Article 

    Google Scholar 
    Hawlena, D., Boochnik, R., Abramsky, Z. & Bouskila, A. Blue tail and striped body: Why do lizards change their infant costume when growing up?. Behav. Ecol. 17, 889–896. https://doi.org/10.1093/beheco/arl023 (2006).Article 

    Google Scholar 
    Barr, J. I., Somaweera, R., Godfrey, S. S. & Bateman, P. W. Increased tail length in the King’s skink, Egernia kingii (Reptilia: Scincidae): An anti-predation tactic for juveniles?. Biol. J. Linn. Soc. 126, 268–275 (2019).Article 

    Google Scholar 
    Pafilis, P. & Valakos, E. D. Loss of caudal autotomy during ontogeny of Balkan Green Lizard, Lacerta trilineata. J. Nat. Hist. 42, 409–419 (2008).Article 

    Google Scholar 
    Masters, C. & Shine, R. Sociality in lizards: family structure in free-living King’s Skinks Egernia kingii from southwestern Australia. Aust. Zool. 32, 377–380 (2003).Article 

    Google Scholar 
    Cury de Barros, F., Eduardo de Carvalho, J., Abe, A. S. & Kohlsdorf, T. Fight versus flight: The interaction of temperature and body size determines antipredator behaviour in tegu lizards. Anim. Behav. 79, 83–88. https://doi.org/10.1016/j.anbehav.2009.10.006 (2010).Article 

    Google Scholar 
    Storr, G. The genus Egernia (Lacertilia, Scincidae) in Western Australia. Rec. West. Aust. Mus. 6, 147–187 (1978).
    Google Scholar 
    Cogger, H. G. Reptiles and Amphibians of Australia. 7th edn, (CSIRO Publishing, 2014).Arena, P. C. & Wooller, R. D. The reproduction and diet of Egernia kingii (Reptilia : Scincidae) on Penguin Island, Western Australia. Aust. J. Zool. 51, 495–504. https://doi.org/10.1071/ZO02040 (2003).Article 

    Google Scholar 
    Dilly, M. L. Factors Affecting the Distribution and Variation in Abundance of the King’s Skink (Egernia kingii) (Gray) in Western Australia, Murdoch University (2000).Pearson, D., Shine, R. & How, R. Sex-specific niche partitioning and sexual size dimorphism in Australian pythons (Morelia spilota imbricata). Biol. J. Linn. Soc. 77, 113–125 (2002).Article 

    Google Scholar 
    Chapple, D. G. Ecology, life-history, and behaviour in the Australian scincid genus Egernia, with comments on the evolution of complex sociality in lizards. Herpetol. Monogr. 17, 145–180. https://doi.org/10.1655/0733-1347(2003)017[0145:ELABIT]2.0.CO;2 (2003).Article 

    Google Scholar 
    Itescu, Y., Schwarz, R., Meiri, S., Pafilis, P. & Clegg, S. Intraspecific competition, not predation, drives lizard tail loss on islands. J. Anim. Ecol. 86, 66–74. https://doi.org/10.1111/1365-2656.12591 (2017).Article 
    PubMed 

    Google Scholar 
    Siliceo-Cantero, H., Zúñiga-Vega, J., Renton, K. & Garcia, A. Assessing the relative importance of intraspecific and interspecific interactions on the ecology of Anolis nebulosus lizards from an island vs. a mainland population. Herpetol. Conserv. Biol. 12, 673–682 (2017).
    Google Scholar 
    Langkilde, T. & Shine, R. Interspecific conflict in lizards: Social dominance depends upon an individual’s species not its body size. Austral Ecol. 32, 869–877 (2007).Article 

    Google Scholar 
    Pafilis, P., Pérez-Mellado, V. & Valakos, E. Postautotomy tail activity in the Balearic lizard, Podarcis lilfordi. Naturwissenschaften 95, 217–221 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Browne, C. King’s Skinks (Egernia kingii) Abundance and Juvenile Survival Unaffected by Temporal Change or Presence of Invasive BLACK Rats (Rattus rattus) on Penguin Island, Western Australia, The University of Western Australia (2014).Langton, J. Population Biology of the King’s Skink (Egernia kingii) (Gray) on Penguin Island, Western Australia, Murdoch University (2000).Arena, P. Aspects of the Biology of the King’s Skink Egernia kingii (Gray), Murdoch University (1986).Pafilis, P., Meiri, S., Foufopoulos, J. & Valakos, E. Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften 96, 1107–1113. https://doi.org/10.1007/s00114-009-0564-3 (2009).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Martín, J. & Salvador, A. Tail loss reduces mating success in the Iberian rock-lizard, Lacerta monticola. Behav. Ecol. Sociobiol. 32, 185–189 (1993).Article 

    Google Scholar 
    Salvador, A., Martin, J. & López, P. Tail loss reduces home range size and access to females in male lizards, Psammodromus algirus. Behav. Ecol. 6, 382–387. https://doi.org/10.1093/beheco/6.4.382 (1995).Article 

    Google Scholar 
    Smyth, M. Changes in the fat scores of the skinks Morethia boulengeri and Hemiergis peronii (Lacertilia). Aust. J. Zool. 22, 135–145. https://doi.org/10.1071/ZO9740135 (1974).Article 

    Google Scholar 
    Wilson, R. S. & Booth, D. Effect of tail loss on reproductive output and its ecological significance in the skink Eulamprus quoyii. J. Herpetol. 32, 128–131 (1998).Article 

    Google Scholar 
    Fox, S. F. & McCoy, J. K. The effects of tail loss on survival, growth, reproduction, and sex ratio of offspring in the lizard Uta stansburiana in the field. Oecologia 122, 327–334. https://doi.org/10.1007/s004420050038 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Dial, B. E. & Fitzpatrick, L. C. Predator escape success in tailed versus tailless Scinella lateralis (Sauria: Scincidae). Anim. Behav. 32, 301–302 (1984).Article 

    Google Scholar 
    Downes, S. & Shine, R. Why does tail loss increase a lizard’s later vulnerability to snake predators?. Ecology 82, 1293–1303 (2001).Article 

    Google Scholar 
    Bernardo, J. & Agosta, S. J. Evolutionary implications of hierarchical impacts of nonlethal injury on reproduction, including maternal effects. Biol. J. Linn. Soc. 86, 309–331 (2005).Article 

    Google Scholar 
    Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. Biol. Sci. Ser. B 272, 2627–2634. https://doi.org/10.1098/rspb.2005.3251 (2005).Article 

    Google Scholar 
    Steindler, L. A., Blumstein, D. T., West, R., Moseby, K. E. & Letnic, M. Exposure to a novel predator induces visual predator recognition by naïve prey. Behav. Ecol. Sociobiol. 74, 102. https://doi.org/10.1007/s00265-020-02884-3 (2020).Article 

    Google Scholar 
    Blumstein, D. T. Moving to suburbia: Ontogenetic and evolutionary consequences of life on predator-free islands. J. Biogeogr. 29, 685–692. https://doi.org/10.1046/j.1365-2699.2002.00717.x (2002).Article 

    Google Scholar 
    Sih, A. et al. Predator–prey naïveté, antipredator behavior, and the ecology of predator invasions. Oikos 119, 610–621 (2010).Article 

    Google Scholar 
    Cooper, J. W. E.; Blumstein, D. T. Escaping From Predators: An Integrative View of Escape Decisions. (Cambridge University Press, 2015).Cox, J. G. & Lima, S. L. Naiveté and an aquatic–terrestrial dichotomy in the effects of introduced predators. Trends Ecol. Evol. 21, 674–680 (2006).Article 

    Google Scholar 
    Blumstein, D. T. & Daniel, J. C. The loss of anti-predator behaviour following isolation on islands. Proc. R. Soc. Biol. Sci. Ser. B 272, 1663–1668 (2005).Article 

    Google Scholar 
    Blumstein, D. T., Daniel, J. C. & Springett, B. P. A test of the multi-predator hypothesis: Rapid loss of antipredator behavior after 130 years of isolation. Ethology 110, 919–934 (2004).Article 

    Google Scholar 
    Jolly, C. J., Webb, J. K. & Phillips, B. L. The perils of paradise: An endangered species conserved on an island loses antipredator behaviours within 13 generations. Biol. Lett. 14, 20180222 (2018).Article 

    Google Scholar 
    Cooper, W. E., Pérez-Mellado, V. & Vitt, L. J. Ease and effectiveness of costly autotomy vary with predation intensity among lizard populations. J. Zool. 262, 243–255 (2004).Article 

    Google Scholar 
    Elwood, C., Pelsinski, J. & Bateman, B. Anolis sagrei (Brown Anole). Voluntary autotomy. Herpetol. Rev. 43, 642–642 (2012).
    Google Scholar 
    Slotopolsky, B. Beiträge zur Kenntnis der Verstümmelungs-und Regenerationsvorgänge am Lacertilierschwanze. Zool. Jahrb. Abt. Anat. Ontog. Tiere 43, 39–48 (1922).
    Google Scholar  More

  • in

    Climate change will disproportionally affect the most genetically diverse lineages of a widespread African tree species

    D’Amen, M., Zimmermann, N. E. & Pearman, P. B. Conservation of phylogeographic lineages under climate change. Glob. Ecol. Biogeogr. 22, 93–104. https://doi.org/10.1111/j.1466-8238.2012.00774.x (2013).Article 

    Google Scholar 
    Espíndola, A. et al. Predicting present and future intra-specific genetic structure through niche hindcasting across 24 millennia. Ecol. Lett. 15, 649–657. https://doi.org/10.1111/j.1461-0248.2012.01779.x (2012).Article 
    PubMed 

    Google Scholar 
    Manel, S., Schwartz, M. K., Luikart, G. & Taberlet, P. Landscape genetics: combining landscape ecology and population genetics. Tr. Ecol. Evolut. 18, 189–197. https://doi.org/10.1016/S0169-5347(03)00008-9 (2003).Article 

    Google Scholar 
    Fontaine, C., Lovett, P., Sanou, H., Maley, J. & Bouvet, J. M. Genetic diversity of the shea tree (Vitellaria paradoxa CF Gaertn), detected by RAPD and chloroplast microsatellite markers. Heredity 93, 639 (2004).CAS 
    Article 

    Google Scholar 
    Hampe, A., El Masri, L. & Petit, R. J. Origin of spatial genetic structure in an expanding oak population. Mol. Ecol. 19, 459–471. https://doi.org/10.1111/j.1365-294X.2009.04492.x (2010).Article 
    PubMed 

    Google Scholar 
    Omondi, S. F., Odee, D. W., Ongamo, G. O., Kanya, J. I. & Khasa, D. P. Genetic consequences of anthropogenic disturbances and population fragmentation in Acacia senegal. Conserv. Genet. 17, 1235–1244. https://doi.org/10.1007/s10592-016-0854-1 (2016).Article 

    Google Scholar 
    Hewitt, G. Postglacial recolonization of European biota. Biol. J. Lin. Soc. 68, 87–112 (1999).Article 

    Google Scholar 
    Donkpegan, A. S. L. et al. Population genomics of the widespread African savannah trees Afzelia africana and Afzelia quanzensis reveals no significant past fragmentation of their distribution ranges. Am. J. Bot. 107, 498–509. https://doi.org/10.1002/ajb2.1449 (2020).Article 
    PubMed 

    Google Scholar 
    Etterson, J. R. & Shaw, R. G. Constraint to adaptive evolution in response to global warming. Science 294, 151–154. https://doi.org/10.1126/science.1063656 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Holderegger, R. & Wagner, H. Landscape genetics. Bioscience 58, 199–207. https://doi.org/10.1641/B580306 (2008).Article 

    Google Scholar 
    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x (2005).Article 
    PubMed 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42. https://doi.org/10.1038/nature01286 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Pauls, S. U., Nowak, C., Bálint, M. & Pfenninger, M. The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22, 925–946. https://doi.org/10.1111/mec.12152 (2013).Article 
    PubMed 

    Google Scholar 
    Arnell, N. W. & Lloyd-Hughes, B. The global-scale impacts of climate change on water resources and flooding under new climate and socio-economic scenarios. Climatic Ch. 122, 127–140. https://doi.org/10.1007/s10584-013-0948-4 (2014).ADS 
    Article 

    Google Scholar 
    Moss, R. H. et al. The next generation of scenarios for climate change research and assessment. Nature 463, 747 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Climatic Ch. 109, 5–31. https://doi.org/10.1007/s10584-011-0148-z (2011).ADS 
    Article 

    Google Scholar 
    Prather, M. et al. Annex II: climate system scenario tables. Climate Ch. 1395–1445 (2013).Pachauri, R. K. et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Synthesis report (Intergovernmental Panel on Climate Change, Geneva, Switzerland, 2014).Müller, C. Climate change impact on Sub-Saharan Africa. An overview and analysis of scenarios and models (Dt. Inst. für Entwicklungspolitik, Bonn, 2009).Serdeczny, O. et al. Climate change impacts in Sub-Saharan Africa: From physical changes to their social repercussions. Reg. Environ. Ch. 17, 1585–1600. https://doi.org/10.1007/s10113-015-0910-2 (2016).Article 

    Google Scholar 
    Linder, H. P. et al. The partitioning of Africa: Statistically defined biogeographical regions in sub-Saharan Africa. J. Biogeogr. 39, 1189–1205. https://doi.org/10.1111/j.1365-2699.2012.02728.x (2012).Article 

    Google Scholar 
    Sexton, G. J. et al. Influence of putative forest refugia and biogeographic barriers on the level and distribution of genetic variation in an African savannah tree, Khaya senegalensis (Desr.) A. Juss. Tree Genet. Genomes https://doi.org/10.1007/s11295-015-0933-3 (2015).Article 

    Google Scholar 
    Linder, H. P. et al. Numerical re-evaluation of the sub-Saharan phytopchoria of mainland Africa. Biologiske Skrifter 55, 229–252 (2005).ADS 

    Google Scholar 
    Ruiz Guajardo, J. C. et al. Landscape genetics of the key African acacia species Senegalia mellifera (Vahl)- the importance of the Kenyan Rift Valley. Mol. Ecol. 19, 5126–5139. https://doi.org/10.1111/j.1365-294X.2010.04833.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kebede, M., Enrich, D., Taberlet, P., Nemomissa, S. & Brochmann, C. Phylogeography and conservation genetics of a giant lobelia (Lobelia giberroa) in Ethiopian and Tropical East African mountains. Mol. Ecol. 16, 1233–1243. https://doi.org/10.1111/j.1365-294x.2007.03232.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kadu, C. et al. Phylogeography of the Afromontane Prunus africana reveals a former migration corridor between East and West African highlands. Mol. Ecol. 20, 165–178. https://doi.org/10.1111/j.1365-294X.2010.04931.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Lyam, P. T., Duque-Lazo, J., Schnitzler, J., Hauenschild, F. & Müllner-Riehl, A. N. Testing the forest refuge hypothesis in sub-Saharan Africa using species distribution modeling for a key savannah tree species, Senegalia senegal (L.) Britton. Front. Biogeogr. https://doi.org/10.21425/F5FBG48689 (2020).Article 

    Google Scholar 
    Logossa, Z. A. et al. Molecular data reveal isolation by distance and past population expansion for the shea tree (Vitellaria paradoxa C.F. Gaertn) in West Africa. Mol. Ecol. 20, 4009–4027. https://doi.org/10.1111/j.1365-294X.2011.05249.x (2011).Article 
    PubMed 

    Google Scholar 
    Lompo, D., Vinceti, B., Konrad, H., Gaisberger, H. & Geburek, T. Phylogeography of African locust bean (Parkia biglobosa) reveals genetic divergence and spatially structured populations in west and central Africa. J. Heredity 109, 811–824. https://doi.org/10.1093/jhered/esy047 (2018).Article 

    Google Scholar 
    Leong Pock Tsy, J.-M. et al. Chloroplast DNA phylogeography suggests a West African centre of origin for the baobab, Adansonia digitata L. (Bombacoideae, Malvaceae). Mol. Ecol. 18, 1707–1715. https://doi.org/10.1111/j.1365-294X.2009.04144.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Allal, F. et al. Past climate changes explain the phylogeography of Vitellaria paradoxa over Africa. Heredity 107, 174–186. https://doi.org/10.1038/hdy.2011.5 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fagg, C. W. & Allison, G. E. Acacia Senegal and the gum arabic trade: monograph and annotated bibliography (University of Oxford, United Kingdom, 2004).
    Google Scholar 
    Lézine, A. M. Late Quaternary vegetation and climate of the Sahel. Quatern. Res. 32, 317–334 (1989).ADS 
    Article 

    Google Scholar 
    Steele, T. Vertebrate records: Late Pleistocene of Africa. In Encyclopedia of Quaternary Science, edited by S. Elias. (Elsevier, Oxford, 2007), 3139–3150.Raddad, E., Salih, A., Fadl, M., Kaarakka, V. & Luukkanen, O. Symbiotic nitrogen fixation in eight Acacia senegal provenances in dryland clays of the Blue Nile Sudan estimated by the 15N natural abundance method. Plant Soil 275, 261–269. https://doi.org/10.1007/s11104-005-2152-4 (2005).CAS 
    Article 

    Google Scholar 
    Gray, A. et al. Does geographic origin dictate ecological strategies in Acacia senegal (L.) Willd? Evidence from carbon and nitrogen stable isotopes. Plant Soil 369, 479–496. https://doi.org/10.1007/s11104-013-1593-4 (2013).CAS 
    Article 

    Google Scholar 
    Ross, J. H. A conspectus of African acacia species (1979).Odee, D. W., Telford, A., Wilson, J., Gaye, A. & Cavers, S. Plio-Pleistocene history and phylogeography of Acacia senegal in dry woodlands and savannahs of sub-Saharan tropical Africa: evidence of early colonisation and recent range expansion. Heredity 109, 372–382. https://doi.org/10.1038/hdy.2012.52 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lyam, P. et al. Genetic diversity and distribution of Senegalia senegal (L.) Britton under climate change scenarios in West Africa. PLoS ONE 13, e0194726 (2018).Article 

    Google Scholar 
    Nicotra, A. B. et al. Plant phenotypic plasticity in a changing climate. Trends in Plant Science 15, 684–692; https://doi.org/10.1016/j.tplants.2010.09.008 (2010).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978. https://doi.org/10.1002/joc.1276 (2005).Article 

    Google Scholar 
    ESRI. ArcGIS Desktop: Release 10.5. Redlands, CA: Environmental Systems Research Institute (2020).Kopelman, N. M., Mayzel, J., Jakobsson, M., Rosenberg, N. A. & Mayrose, I. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Res. 15, 1179–1191. https://doi.org/10.1111/1755-0998.12387 (2015).CAS 
    Article 

    Google Scholar 
    Elhadji, S. D. et al. Exploring genetic diversity and structure of Acacia senegal (L.) Willd to improve its conservation in Niger. African J. Biotechnol. 16, 1650–1659 (2017).Article 

    Google Scholar 
    Muriira, N. G., Muchugi, A., Yu, A., Xu, J. & Liu, A. Genetic Diversity Analysis Reveals Genetic Differentiation and Strong Population Structure in Calotropis Plants. Sci. Rep. 8, 7832 (2018).ADS 
    Article 

    Google Scholar 
    Conord, C., Gurevitch, J. & Fady, B. Large-scale longitudinal gradients of genetic diversity: a meta-analysis across six phyla in the Mediterranean basin. Ecol. Evol. 2, 2600–2614. https://doi.org/10.1002/ece3.350 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Omondi, S. F. et al. Genetic diversity and population structure of Acacia senegal (L) Willd Kenya. Trop. Plant Biol. 3, 59–70 (2010).Article 

    Google Scholar 
    Marko, P. B. & Hart, M. W. The complex analytical landscape of gene flow inference. Trends Ecol. Evol. 26, 448–456. https://doi.org/10.1016/j.tree.2011.05.007 (2011).Article 
    PubMed 

    Google Scholar 
    Goncalves, A. L., García, M. V., Heuertz, M. & González-Martínez, S. C. Demographic history and spatial genetic structure in a remnant population of the subtropical tree Anadenanthera colubrina var cebil (Griseb.) Altschul (Fabaceae). Ann. Forest Sci. https://doi.org/10.1007/s13595-019-0797-z (2019).Article 

    Google Scholar 
    Rosenzweig, M. L. Species diversity in space and time (Cambridge university press, 1995).Vellend, M. & Geber, M. A. Connections between species diversity and genetic diversity. Ecol. Lett. 8, 767–781. https://doi.org/10.1111/j.1461-0248.2005.00775.x (2005).Article 

    Google Scholar 
    Ackerly, D. D. et al. The geography of climate change: implications for conservation biogeography. Divers. Distrib. 16, 476–487. https://doi.org/10.1111/j.1472-4642.2010.00654.x (2010).Article 

    Google Scholar 
    Waldvogel, A.-M. et al. Evolutionary genomics can improve prediction of species’ responses to climate change. Evol. Lett. 4, 4–18. https://doi.org/10.1002/evl3.154 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hutchison, D. W. & Templeton, A. R. Correlation of pairwise genetic and geographic distance measures: inferring the relative influences of gene flow and drift on the distribution of genetic variability. Evol.; Int. J. Org. Evol. 53, 1898–1914 (1999).Article 

    Google Scholar 
    Shi, M. M., Michalski, S. G., Welk, E., Chen, X. Y. & Durka, W. Phylogeography of a widespread Asian subtropical tree: genetic east-west differentiation and climate envelope modelling suggest multiple glacial refugia. J. Biogeogr. 41, 1710–1720. https://doi.org/10.1111/jbi.12322 (2014).Article 

    Google Scholar 
    Voss, N., Eckstein, R. L. & Durka, W. Range expansion of a selfing polyploid plant despite widespread genetic uniformity. Ann. Botany 110, 585–593. https://doi.org/10.1093/aob/mcs117 (2012).Article 

    Google Scholar 
    Fiorini, C. F. et al. Phylogeography of the specialist plant Mandirola hirsuta (Gesneriaceae) suggests ancient habitat fragmentation due to savanna expansion. Flora 262, 151522 (2020).Article 

    Google Scholar 
    Sexton, J. P., Hangartner, S. B. & Hoffmann, A. A. Genetic isolation by environment or distance: which pattern of gene flow is most common?. Evolution 68, 1–15. https://doi.org/10.1111/evo.12258 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wang, I. J. & Bradburd, G. S. Isolation by environment. Mol. Ecol. 23, 5649–5662. https://doi.org/10.1111/mec.12938 (2014).Article 
    PubMed 

    Google Scholar 
    Nosil, P., Vines, T. H. & Funk, D. J. Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evol.; Int. J. Org. Evol. 59, 705–719 (2005).
    Google Scholar 
    Wang, I. J. & Summers, K. Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Mol. Ecol. 19, 447–458. https://doi.org/10.1111/j.1365-294X.2009.04465.x (2010).Article 
    PubMed 

    Google Scholar 
    Xu, B. et al. Population genetic structure is shaped by historical, geographic, and environmental factors in the leguminous shrub Caragana microphylla on the Inner Mongolia Plateau of China. BMC Plant Biol. 17, 200 (2017).Article 

    Google Scholar 
    Hendry, A. P. & Day, T. Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol. Ecol. 14, 901–916. https://doi.org/10.1111/j.1365-294X.2005.02480.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Solomon, S., Manning, M., Marquis, M. & Qin, D. Climate change 2007-the physical science basis: Working group I contribution to the fourth assessment report of the IPCC (Cambridge university press, 2007).Thuiller, W. Climate change and the ecologist. Nature 448, 550–552 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Osland, M. J. et al. Tropicalization of temperate ecosystems in North America: The northward range expansion of tropical organisms in response to warming winter temperatures. Global Ch. Biol. 27, 3009–3034 (2021).Article 

    Google Scholar 
    Higgins, S. I., Lavorel, S. & Revilla, E. Estimating plant migration rates under habitat loss and fragmentation. Oikos 101, 354–366 (2003).Article 

    Google Scholar 
    Jump, A. S. & Penuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020. https://doi.org/10.1111/j.1461-0248.2005.00796.x (2005).Article 
    PubMed 

    Google Scholar 
    Jump, A. S., Marchant, R. & Peñuelas, J. Environmental change and the option value of genetic diversity. Trends Plant Sci. 14, 51–58. https://doi.org/10.1016/j.tplants.2008.10.002 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kirk, H. & Freeland, J. R. Applications and implications of neutral versus non-neutral markers in molecular ecology. Int. J. Mol. Sci. 12, 3966–3988. https://doi.org/10.3390/ijms12063966 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bucharova, A. et al. Mix and match: regional admixture provenancing strikes a balance among different seed-sourcing strategies for ecological restoration. Conserv. Genet. 20, 7–17. https://doi.org/10.1007/s10592-018-1067-6 (2019).Article 

    Google Scholar 
    Tong, Y. et al. Ex situ conservation of Pinus koraiensis can preserve genetic diversity but homogenizes population structure. Forest Ecol. Manag. 465, 117820 (2020).Article 

    Google Scholar 
    Vessella, F., Simeone, M. C. & Schirone, B. Quercus suber range dynamics by ecological niche modelling: from the Last Interglacial to present time. Quat. Sci. Rev. 119, 85–93. https://doi.org/10.1016/j.quascirev.2015.04.018 (2015).ADS 
    Article 

    Google Scholar 
    Lovejoy, T. E. Climate change and biodiversity (TERI Press, India, 2006).
    Google Scholar 
    Poczai, P., Varga, I., Bell N.E. & Hyvonen, J. The molecular basis of plant genetic diversity. In Genomics meets biodiversity: advances in molecular marker development and their applications in plant genetic diversity assessment. The molecular basis of plant genetic diversity, edited by M. Caliskan (InTech Open Access Publisher2012), 3–31.Botermans, M., Sosef, M. S. M., Chatrou, L. W. & Couvreur, T. L. P. Revision of the African Genus Hexalobus (Annonaceae). Syst. Bot. 36, 33–48. https://doi.org/10.1600/036364411X553108 (2011).Article 

    Google Scholar 
    Sosef, M. et al. Exploring the floristic diversity of tropical Africa. BMC Biol. 15, 15 (2017).Article 

    Google Scholar 
    Chapuis, M.-P. & Estoup, A. Microsatellite null alleles and estimation of population differentiation. Mol. Biol. Evol. 24, 621–631. https://doi.org/10.1093/molbev/msl191 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Escoffier, L. & Lische, H. ARLEQUIN suite ver. 3.5. A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Res. 10, 564–567 (2010).Article 

    Google Scholar 
    Lewis, P. O. & Zaykin, D. Genetic data analysis: computer program for the analysis of allelic data. Mol. Ecol. 11, 1157–1164 (2002).Article 

    Google Scholar 
    AComputer Program to Calculate F-Statistics. Goudet, J. FSTAT (Version 1.2). J. Hered. 6, 245–246 (1995).
    Google Scholar 
    El Mousadik, A. & Petit, R. J. High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor. Appl. Genet. 92, 832–839 (1996).Article 

    Google Scholar 
    Raymond, M. & Rousset, F. GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J. Heredity 86, 248–249 (1995).Article 

    Google Scholar 
    Pritchard, J., Stephens, M. & Donelly, P. Inference of Population Structure Using Multilocus Genotype Data, 945–959 (2000).Falush, D., Stephens, M. & Pritchard, J. K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164, 1567–1587 (2003).CAS 
    Article 

    Google Scholar 
    Earl, D. A. & von Holdt, B. M. STRUCTURE HARVESTER A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7 (2012).Article 

    Google Scholar 
    Pritchard, J. K., Wen, W. & Falush, D. Documentation for STRUCTURE software: Version 2.3. University of Chicago, Chicago, IL, 1–37 (2010).Eliades, N. G. & Eliades, D. G. HAPLOTYPE ANALYSIS: software for analysis of haplotype data. Forest Goettingen (Germany): Genetics and Forest Tree Breeding, Georg-August University Goettingen (2009).Leigh, J. W. & Bryant, D. POPART: full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).Article 

    Google Scholar 
    Peakall, R. & Smouse, P. E. Genalex 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).Article 

    Google Scholar 
    Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307. https://doi.org/10.1111/ecog.02880 (2018).Article 

    Google Scholar 
    Hengl, T. et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 12, e0169748 (2017).Article 

    Google Scholar 
    Wang, I. J. Examining the full effects of landscape heterogeneity on spatial genetic variation: a multiple matrix regression approach for quantifying geographic and ecological isolation. Evolution 67, 3403–3411. https://doi.org/10.1111/evo.12134 (2013).Article 
    PubMed 

    Google Scholar  More

  • in

    Isotopic composition of the eastern gray whale epidermis indicates contribution of prey outside Arctic feeding grounds

    Clark, C. T. et al. Heavy with child? Pregnancy status and stable isotope ratios as determined from biopsies of humpback whales. Conserv. Physiol. 4, 1–13 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Wasser, S. K. et al. Population growth is limited by nutritional impacts on pregnancy success in endangered Southern Resident killer whales (Orcinus orca). PLoS One 12, e0179824. https://doi.org/10.1371/journal.pone.0179824 (2017).Boeuf, B. J., Perez-Cortes, H., Urbán, J., Mate, B. R. & Ollervides, F. High gray whale mortality and low recruitment in 1999: Potential causes and implications. J. Cetacean Res. Manag. 2, 85–99 (1999).
    Google Scholar 
    Perryman, W. L. & Lynn, M. S. Evaluation of nutritive condition and reproductive status of migrating gray whales (Eschrichtius robustus) based on analysis of photogrammetric data. J. Cetacean Res. Manag. 4, 155–164 (2002).
    Google Scholar 
    Moore, S. E., Grebmeier, J. M. & Davies, J. R. Gray whale distribution relative to forage habitat in the northern Bering Sea: Current conditions and retrospective summary. Can. J. Zool. 81, 734–742 (2003).Article 

    Google Scholar 
    Christiansen, F. et al. Poor body condition associated with an unusual mortality event in gray whales. Mar. Ecol. Prog. Ser. 658, 237–252 (2021).ADS 
    Article 

    Google Scholar 
    Martìnez-Aguilar, S. et al. Gray Whale (Eschrichtius robustus) stranding records in Mexico during the winter breeding season in 2019. In IWC (2019).Villegas-Amtmann, S., Schwarz, L. K., Sumich, J. L. & Costa, D. P. A bioenergetics model to evaluate demographic consequences of disturbance in marine mammals applied to gray whales. Ecosphere 6, art183 (2015).Article 

    Google Scholar 
    Urbán, R. J., Jiménez-López, E., Guzmán, H. M. & Viloria-Gómora, L. Migratory Behavior of an Eastern North Pacific Gray Whale From Baja California Sur to Chirikov Basin, Alaska. Front. Mar. Sci. 8, 1–7 (2021).Article 

    Google Scholar 
    Kim, L. & Oliver, J. S. Swarming benthic crustaceans in the Bering and Chukchi seas and their relation to geographic patterns in gray whale feeding. Can. J. Zool. 67, 1531–1542 (1989).Article 

    Google Scholar 
    Perryman, W. L., Joyce, T., Weller, D. W. & Durban, J. W. Environmental factors influencing eastern North Pacific gray whale calf production 1994–2016. Mar. Mammal Sci. 37, 448–462 (2020).Article 

    Google Scholar 
    Caraveo-Patiño, J. & Soto, L. A. Stable carbon isotope ratios for the gray whale (Eschrichtius robustus) in the breeding grounds of Baja California Sur, Mexico. Hydrobiologia 539, 99–107 (2005).Article 

    Google Scholar 
    Pyenson, N. D. & Lindberg, D. R. What happened to gray whales during the pleistocene? The ecological impact of sea-level change on benthic feeding areas in the north pacific ocean. PLoS One 6, e21295. https://doi.org/10.1371/journal.pone.0021295 (2011).Alter, S. E., Newsome, S. D. & Palumbi, S. R. Pre-whaling genetic diversity and population ecology in eastern pacific gray whales: Insights from ancient DNA and stable isotopes. PLoS One 7, e35039 (2012).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Dunham, J. S. & Duffus, D. A. Foraging patterns of gray whales in central Clayoquot Sound, British Columbia, Canada. Mar. Ecol. Prog. Ser. 223, 299–310 (2001).ADS 
    Article 

    Google Scholar 
    Nerini, M. A Review of Gray Whale Feeding Ecology (Academic Press, Cambridge, 1984).Book 

    Google Scholar 
    Jones, M. Lou & Swartz, S. L. Gray whale. In Encyclopedia of Marine Mammals, Vol. 36 1352 (Academic Press, 2009).Moore, S. E., Wynne, K. M., Kinney, J. C. & Grebmeier, J. M. Gray whale occurrence and forage southeast of Kodiak, Island, Alaska. Mar. Mammal Sci. 23, 419–428 (2007).Article 

    Google Scholar 
    Lagerquist, B. A. et al. Feeding home ranges of pacific coast feeding group gray whales. J. Wildl. Manag. 83, 925–937 (2019).Article 

    Google Scholar 
    Calambokidis, J., Laake, J. L. & Klimek, A. Updated analysis of abundance and population structure of seasonal gray whales in the Pacific, 2010 (2012).Frasier, T. R., Koroscil, S. M., White, B. N. & Darling, J. D. Assessment of population substructure in relation to summer feeding ground use in the eastern North Pacific gray whale. Endanger. Species Res. 14, 39–48 (2011).Article 

    Google Scholar 
    Lang, A. R. et al. Assessment of genetic structure among eastern North Pacific gray whales on their feeding grounds. Mar. Mammal Sci. 30, 1473–1493 (2014).CAS 
    Article 

    Google Scholar 
    Burnham, R. & Duffus, D. Patterns of predator-prey dynamics between gray whales (Eschrichtius robustus) and mysid species in Clayoquot Sound. J. Cetacean Res. Manag. 19, 95–103 (2018).
    Google Scholar 
    Walker, T. J. Primer: With Special Attention to the California Gray Whale (Cabrillo Historical Association Pub QL737, San Diego, 1975).Walker, T. J. The California gray whale comes back (Eschrichtius robustus). Natl. Geogr. Mag. 139(3), 394–415 (1971).
    Google Scholar 
    Caraveo-Patiño, J. et al. Eco-physiological repercussions of dietary arachidonic acid in cell membranes of active tissues of the Gray whale. Mar. Ecol. 30, 437–447. https://doi.org/10.1111/j.1439-0485.2009.00289.x (2009).ADS 
    Article 
    CAS 

    Google Scholar 
    Pirotta, E. et al. A dynamic state model of migratory behavior and physiology to assess the consequences of environmental variation and anthropogenic disturbance on marine vertebrates. Am. Nat. 191, E40–E56. https://doi.org/10.1086/695135 (2018).Busquets-Vass, G. et al. Estimating blue whale skin isotopic incorporation rates and baleen growth rates: Implications for assessing diet and movement patterns in mysticetes. PLoS ONE 12, 1–25 (2017).Article 
    CAS 

    Google Scholar 
    Busquets-Vass, G. et al. Isotope-based inferences of the seasonal foraging and migratory strategies of blue whales in the eastern Pacific Ocean. Mar. Environ. Res. 163, 105201. https://doi.org/10.1016/j.marenvres.2020.105201 (2021).Wild, L. A., Chenoweth, E. M., Mueter, F. J. & Straley, J. M. Evidence for dietary time series in layers of cetacean skin using stable carbon and nitrogen isotope ratios. Rapid Commun. Mass Spectrom. 32, 1425–1438 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gelippi, M., Popp, B., Gauger, M. F. W. & Caraveo-Patiño, J. Tracing gestation and lactation in free ranging gray whales using the stable isotopic composition of epidermis layers. PLoS ONE 15, 1–23. https://doi.org/10.1371/journal.pone.0240171 (2020).Article 
    CAS 

    Google Scholar 
    Graham, B. S., Koch, P. L., Newsome, S. D., McMahon, K. W. & Aurioles, D. Using Isoscapes to Trace the Movements and Foraging Behavior of Top Predators in Oceanic Ecosystems. Isoscapes: Understanding Movement, Pattern, and Process on Earth Through Isotope Mapping. https://doi.org/10.1007/978-90-481-3354-3 (2010).Hobson, K. A. International association for ecology tracing origins and migration of wildlife using stable isotopes: A review. Source Oecol. 120, 314–326 (1999).ADS 

    Google Scholar 
    Ryan, C. et al. Accounting for the effects of lipids in stable isotope (δ13C and δ15N values) analysis of skin and blubber of balaenopterid whales. Rapid Commun. Mass Spectrom. 26, 2745–2754 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vander Zanden, M. J. & Rasmussen, J. B. Variation in δ15N and δ13C trophic fractionation: Implications for aquatic food web studies. Limnol. Oceanogr. 46, 2061–2066 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Newsome, S. D., Clementz, M. T. & Koch, P. L. Using stable isotope biogeochemistry to study marine mammal ecology. Mar. Mammal Sci. 26, 509–572 (2010).CAS 

    Google Scholar 
    Giménez, J., Ramírez, F., Almunia, J., Forero, G. M. & de Stephanis, R. From the pool to the sea: Applicable isotope turnover rates and diet to skin discrimination factors for bottlenose dolphins (Tursiops truncatus). J. Exp. Mar. Bio. Ecol. 475, 54–61 (2016).Article 
    CAS 

    Google Scholar 
    Browning, N. E., Dold, C., I-Fan, J. & Worthy, A. J. Isotope turnover rates and diet–tissue discrimination in skin of ex situ bottlenose dolphins (Tursiops truncatus). J. Exp. Biol. 217, 214–221 (2014).CAS 
    PubMed 

    Google Scholar 
    Borrell, A., Abad-Oliva, N., Gõmez-Campos, E., Giménez, J. & Aguilar, A. Discrimination of stable isotopes in fin whale tissues and application to diet assessment in cetaceans. Rapid Commun. Mass Spectrom. 26, 1596–1602 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Reeb, D., Best, P. B. & Kidson, S. H. Structure of the integument of southern right whales, Eubalaena australis. Anat. Rec. 290, 596–613 (2007).Article 

    Google Scholar 
    Morales-Guerrero, B. et al. Melanin granules melanophages and a fully-melanized epidermis are common traits of odontocete and mysticete cetaceans. Vet. Dermatol. 28, 213–e50. https://doi.org/10.1111/vde.12392 (2017).PubMed 
    Article 

    Google Scholar 
    Ayliffe, L. K. et al. Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139, 11–22 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Hicks, B. D., St. Aubin, D. J., Geraci, J. R. & Brown, W. R. Epidermal growth in the bottlenose dolphin, Tursiops truncatus. J. Invest. Dermatol. 85, 60–63 (1985).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aubin, D. J., St. Smith, T. G. & Geraci, J. R. Seasonal epidermal molt in beluga whales, Delphinapterus leucas. Can. J. Zool. 68, 359–367 (1990).Article 

    Google Scholar 
    Perryman, W. L., Donahue, M. A., Perkins, P. C. & Reilly, S. B. Gray Whale calf production 1994–2000: Are observed fluctuations related to changes in seasonal ice cover?. Mar. Mammal Sci. 18, 121–144 (2002).Article 

    Google Scholar 
    Urbán, R. J. et al. A review of gray whales (Eschrichtius robustus) on their wintering grounds in Mexican waters. J. Cetacean Res. Manag. 5, 281–295 (2003).
    Google Scholar 
    Mann, J. Behavioral sampling methods for cetaceans: A review and critique. Mar. Mammal Sci. 15, 102–122 (1999).Article 

    Google Scholar 
    Tyurneva, O. Y. et al. Photographic identification of the Korean-Okhotsk gray whale (Eschrichtius robustus) offshore northeast Sakhalin island and southeast Kamchatka peninsula (Russia), 2009. In SC/62/BRG9 (2014).Yakovlev, Y. M., Tyurneva, O. M., Vertyankin, V. V. & Van der Wolf, P. Photo-identification of gray whales (Eschrichtius robustus) off the northeast coast of Sakhalin Island in 2018 photo. West. Gray Whale Advis. Panel 20th meeti (2019).Reeb, D. & Best, P. B. A biopsy system for deep core sampling of the blubber of southern right whales, Eubalaena australis. Mar. Mammal Sci. 22, 206–213 (2006).Article 

    Google Scholar 
    Noren, D. P. & Mocklin, J. A. Review of cetacean biopsy techniques: Factors contributing to successful sample collection and physiological and behavioral impacts. Mar. Mammal Sci. 28, 154–199 (2012).Article 

    Google Scholar 
    Caraveo-Patiño, J. Ecología alimenticia de la ballena gris (Eschrichtius robustus, Lilljeborg, 1861): Una ventana a la dinámica interna de los ecosistemas. PhD Thesis. Centro de Investigaciones Biológicas del noroeste S.C. http://dspace.cibnor.mx:8080/handle/123456789/90 (2004).Folch, J., Lees, M. & Stanley, G. H. S. A simple method for the isolation and purification of total lipids from animal tissues. J. Biol. Chem. 226, 497–509 (1957).CAS 
    PubMed 
    Article 

    Google Scholar 
    DeNiro, M. J. & Epstein, S. Influence of diet on the distribution of nitrogen isotopes in animals. Geochim. Cosmochim. Acta 45, 341–351 (1981).ADS 
    CAS 
    Article 

    Google Scholar 
    Iverson, S. J., Arnould, J. P. Y. & Boyd, I. L. Milk fatty acid signatures indicate both major and minor shifts in the diet of lactating Antarctic fur seals. Can. J. Zool. 75, 188–197 (1997).Article 

    Google Scholar 
    Newsome, S. D., Koch, P. L., Etnier, M. A. & Aurioles-Gamboa, D. Using carbon and nitrogen isotope values to investigate maternal strategies in Northeast Pacific otariids. Mar. Mammal Sci. 22, 556–572 (2006).Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Moore, J. W. & Semmens, B. X. Incorporating uncertainty and prior information into stable isotope mixing models. Ecol. Lett. 11, 470–480 (2008).PubMed 
    Article 

    Google Scholar 
    Parnell, A. C. et al. Bayesian stable isotope mixing models. Environmetrics 24, 387–399 (2013).MathSciNet 

    Google Scholar 
    Phillips, D. L. & Gregg, J. W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 136, 261–269 (2003).ADS 
    PubMed 
    Article 

    Google Scholar 
    Phillips, D. L. Converting isotope values to diet composition: The use of mixing models. J. Mammal. 93, 342–352 (2012).Article 

    Google Scholar 
    Parnell, A. C., Inger, R., Bearhop, S. & Jackson, A. L. Source partitioning using stable isotopes: Coping with too much variation. PLoS ONE 5, 1–5 (2010).
    Google Scholar 
    Baker, H. ASM Handbook: Alloy Phase Diagrams ASM Handbook Alloy Phase Diagrams Vol. 3 (ASM International, Materials Park, 1992).
    Google Scholar 
    Pereira, G. H. A. On quantile residuals in beta regression. Commun. Stat. Simul. Comput. 48, 302–316 (2019).MathSciNet 
    Article 

    Google Scholar 
    Osterblom, H., Olsson, O., Blenckner, T. & Furness, W. Junk-food in marine ecosystems. Oikos 117, 967–977 (2008).Article 

    Google Scholar 
    Martínez del Rio, C. & Carleton, S. A. How fast and how faithful: The dynamics of isotopic incorporation into animal tissues. J. Mammal. 93, 353–359. https://doi.org/10.1644/11-MAMM-S-165.1 (2012).Article 

    Google Scholar 
    Vander Zanden, M. J., Clayton, M. K., Moody, E. K., Solomon, C. T. & Weidel, B. C. Stable isotope turnover and half-life in animal tissues: A literature synthesis. PLoS One 10, https://doi.org/10.1371/journal.pone.0116182 (2015).CAS 
    Article 

    Google Scholar 
    Dalerum, F. & Angerbjörn, A. Resolving temporal variation in vertebrate diets using naturally occurring stable isotopes. Oecologia 144, 647–658 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Horstmann-Dehn, L., Follmann, E. H., Rosa, C., Zelensky, G. & George, C. Stable carbon and nitrogen isotope ratios in muscle and epidermis of arctic whales. Mar. Mammal Sci. 28, E173–E190. https://doi.org/10.1111/j.1748-7692.2011.00503.x (2012).Hertz, E., Trudel, M., Cox, M. K. & Mazumder, A. Effects of fasting and nutritional restriction on the isotopic ratios of nitrogen and carbon: a meta-analysis. Ecol. Evol. 5, 4829–4839 (2015).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Lian, M. et al. Assessing δ13C, δ15N and total mercury measures in epidermal biopsies from gray whales. Front. Mar. Sci. 7, 1–9 (2020).ADS 
    Article 

    Google Scholar 
    Gulland, F. et al. Eastern North Pacific gray whale (Eschrichtius robustus) unusual mortality event, 1999–2000. U.S. Dep. Commer. NOAA Tech. Memo. NMFS-AFSC-150. 33 pp (2005).Popp, B. N. et al. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochim. Cosmochim. Acta 62, 69–77 (1998).ADS 
    CAS 
    Article 

    Google Scholar 
    Schell, D. M. Declining carrying capacity in the Bering Sea: Isotopic evidence from whale baleen. Limnol. Oceanogr. 45, 459–462 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Kurle, C. M. & McWhorter, J. K. Spatial and temporal variability within marine isoscapes: Implications for interpreting stable isotope data from marine systems. Mar. Ecol. Prog. Ser. 568, 31–45 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Keeling, C. D. The Suess effect: 13Carbon –14Carbon interrelations. Environ. Int. 2, 229–300 (1979).CAS 
    Article 

    Google Scholar 
    Grecian, W. J. et al. Contrasting migratory responses of two closely related seabirds to long-term climate change. Mar. Ecol. Prog. Ser. 559, 231–242 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Pomerleau, C., Nelson, R. J., Hunt, B. P. V., Sastri, A. R. & Williams, W. J. Spatial patterns in zooplankton communities and stable isotope ratios (δ13C and δ15N) in relation to oceanographic conditions in the sub-Arctic Pacific and western Arctic regions during the summer of 2008. J. Plankton Res. 36, 757–775 (2014).CAS 
    Article 

    Google Scholar 
    Lee, S. H. Use of the Beaufort Sea as feeding habitat by bowhead whales (Balaena mysticetus) as indicated by stable isotope ratios. M.S. Thesis. University of Alaska Fairbanks. http://hdl.handle.net/11122/4931 (2000).Cullen, J. T., Rosenthal, Y. & Falkowski, P. G. The effect of anthropogenic CO2 on the carbon isotope composition of marine phytoplankton. Limnol. Oceanogr. 46, 996–998 (2001).ADS 
    Article 

    Google Scholar 
    Schell, D. M. Carbon isotope ratio variations in Bering Sea biota: The role of anthropogenic carbon dioxide. Limnol. Oceanogr. 46, 999–1000 (2001).ADS 
    Article 

    Google Scholar 
    Eide, M., Olsen, A., Ninnemann, U. S. & Eldevik, T. A global estimate of the full oceanic 13C Suess effect since the preindustrial. Glob. Biogeochem. Cycles 31, 492–514 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Kurle, C. M., Sinclair, E. H., Edwards, A. E. & Gudmundson, C. J. Temporal and spatial variation in the δ15N and δ13C values of fish and squid from Alaskan waters. Mar. Biol. 158, 2389–2404 (2011).Article 

    Google Scholar 
    Ohman, M. D., Rau, G. H. & Hull, P. M. Multi-decadal variations in stable N isotopes of California Current zooplankton. https://doi.org/10.1016/j.dsr.2011.11.003 (2011).Décima, M., Landry, M. R. & Popp, B. N. Environmental perturbation effects on baseline δ15N values and zooplankton trophic flexibility in the southern California current ecosystem. Limnol. Oceanogr. 58, 624–634 (2013).ADS 
    Article 
    CAS 

    Google Scholar 
    Caraveo-Patiño, J., Hobson, K. A. & Soto, L. A. Feeding ecology of gray whales inferred from stable-carbon and nitrogen isotopic analysis of baleen plates. Hydrobiologia 586, 17–25 (2007).Article 

    Google Scholar 
    Hernández-Aguierre, D. Análisis de la composición de ácidos grasos en los estratos de la capa de grasa (blubber) de la ballena gris Eschrichtius robustus (LILLJEBORG, 1861). M.S. Thesis. Centro de Investigaciones Biológicas del noroeste S.C. http://cibnor.repositorioinstitucional.mx/jspui/handle/1001/182 (2012).Ackman, R. G. Nutritional composition of fats in seafoods. Prog. Food Nutr. Sci. 13, 161–289 (1989).CAS 
    PubMed 

    Google Scholar 
    Lahdes, E., Balogh, G., Fodor, E. & Farkas, T. Adaptation of composition and biophysical properties of phospholipids to temperature by the crustacean, Gammarus spp. Lipids 35, 1093–1098 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sarur-Zanatta, J. C., Millán-Nuñez, R., Gutiérrez-Sigala, C. A. & Small Mattox-Sheahen, C. A. Variation and similarity in three zones with-different type of substrate In Laguna Ojo De Liebre, B.C.S., Mexico. Ciencias Mar. 10, 169–179 (1984).Article 

    Google Scholar 
    Pirotta, V., Owen, K., Donnelly, D., Brasier, M. J. & Harcourt, R. First evidence of bubble-net feeding and the formation of ‘super-groups’ by the east Australian population of humpback whales during their southward migration. Aquat. Conserv. Mar. Freshw. Ecosyst. https://doi.org/10.1002/aqc.3621 (2021).Article 

    Google Scholar 
    Carone, E. et al. Sex steroid hormones and behavior reveal seasonal reproduction in a resident fin whale population. Conserv. Physiol. 7, 1–13 (2019).Article 
    CAS 

    Google Scholar 
    Prieto, R., Tobeña, M. & Silva, M. A. Habitat preferences of baleen whales in a mid-latitude habitat. Deep Res. Part II Top. Stud. Oceanogr. 141, 155–167. https://doi.org/10.1016/j.dsr2.2016.07.015 (2017).ADS 
    Article 

    Google Scholar 
    Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014–2016. PLoS One 15 (2020).Savage, K. Alaska and British Columbia large whale unusual mortality event summary report. NOAA Fish Report, Juneau August, 1–42 (2017).Stewart, J. D. & Weller, D. W. NOAA Technical Memorandum NMFS abundance of eastern north pacific gray whales 2019/2020 (2021).Cooke, J. G. Population assessment update for Sakhalin gray whales. West. Gray Whale Advis. Panel 13 (2020). More

  • in

    Effects of conservation tillage strategies on soil physicochemical indicators and N2O emission under spring wheat monocropping system conditions

    Fu, C. H. et al. Relationships among fisheries exploitation, environmental conditions, and ecological indicators across a series of marine ecosystems. J. Mar. Syst. 148, 101–111 (2015).Article 

    Google Scholar 
    Too, C. C., Ong, K. S., Yule, C. M. & Keller, A. Putative roles of bacteria in the carbon and nitrogen cycles in a tropical peat swamp fores. Basic Appl. Ecol. 52, 109–123 (2020).Article 

    Google Scholar 
    Hou, R. J. et al. Effects of biochar and straw on greenhouse gas emission and its response mechanism in seasonally frozen farmland ecosystems. Catena 194, 104735 (2020).CAS 
    Article 

    Google Scholar 
    Wang, X., Lu, P., Yang, P. L. & Ren, S. M. Effects of fertilizer and biochar applications on the relationship among soil moisture, temperature, and N2O emissions in farmland. PeerJ 9, e11674–e11674 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Tang, Z. M., Liu, X. R., Zhang, Q. W. & Li, G. C. Effects of biochar and straw on soil N2O emission from a wheat maize rotation system. Huan Jing Ke Xue 42(3), 1569–1580 (2021).PubMed 

    Google Scholar 
    Kong, Q., Wang, Z. B., Niu, P. F. & Miao, M. S. Greenhouse gas emission and microbial community dynamics during simultaneous nitrification and denitrification process. Biores. Technol. 210, 94–100 (2016).CAS 
    Article 

    Google Scholar 
    Han, Z. M. et al. Spatial-temporal dynamics of agricultural drought in the Loess Plateau under a changing environment: Characteristics and potential influencing factors. Agric. Water Manag. 244, 106540 (2021).Article 

    Google Scholar 
    Clemens, S. et al. Nitrification inhibitors can increase post-harvest nitrous oxide emissions in an intensive vegetable production system. Sci. Rep. 7(1), 1–9 (2017).Article 
    CAS 

    Google Scholar 
    Zhang, D. J. et al. Effects of tillage and fertility on soil nitrogen balance and greenhouse gas emissions of wheat-maize rotation system in Central Henan Province, China. J. Appl. Ecol. 32(5), 1753–1760 (2021).
    Google Scholar 
    Liu, X. C. et al. Response of soil N2O emissions to precipitation pulses under different nitrogen availabilities in a semiarid temperate steppe of Inner Mongolia, China. J. Arid Land 6(04), 410–422 (2014).Article 

    Google Scholar 
    Hu, Q. Y. et al. Combined effects of straw returning and chemical n fertilization on greenhouse gas emissions and yield from paddy fields in northwest Hubei Province, China. J. Soil Sci. Plant Nutr. 20(2), 392–406 (2019).Article 
    CAS 

    Google Scholar 
    Sun, Z. C. et al. Effects of straw returning and feeding on greenhouse gas emissions from integrated rice-crayfish farming in Jianghan Plain, China. Environ. Sci. Pollut. Res. 26(12), 11710–11718 (2019).CAS 
    Article 

    Google Scholar 
    Mei, K. et al. Stimulation of N2O emission by conservation tillage management in agricultural lands: A meta-analysis. Soil Tillage Res. 182, 86–93 (2018).Article 

    Google Scholar 
    Wang, H. Y., Wu, J. Q., Li, G. & Yan, L. J. Changes in soil carbon fractions and enzyme activities under different vegetation types of the northern Loess Plateau. Ecol. Evol. 10(21), 12211–12223 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sadiq, M., Li, G., Rahim, N. & Tahir, M. M. Sustainable conservation tillage technique for improving soil health by enhancing soil physicochemical quality indicators under wheat mono-cropping system conditions. Sustainability 13(15), 8177–8177 (2021).CAS 
    Article 

    Google Scholar 
    Nie, Z. G. et al. Evaluating the effects of different sowing dates and tillage methods on dry-land wheat grain dry matter accumulation based on the APSIM model. J. Appl. Ecol. 32(3), 913–920 (2021).
    Google Scholar 
    Alhassan, A. M., Yang, C. J., Ma, W. W. & Li, G. Influence of conservation tillage on Greenhouse gas fluxes and crop productivity in spring-wheat agroecosystems on the Loess Plateau of China. PeerJ 9, e11064–e11064 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mou, L. M. et al. Breeding report of a new dryland spring wheat variety Dingxi 42. Gansu Agric. Sci. Technol. 01, 1–3 (2015).ADS 

    Google Scholar 
    Ma, W. W., Li, G., Wu, J. H., Xu, G. R. & Wu, J. Q. Respiration and CH4 fluxes in Tibetan peatlands are influenced by vegetation degradation. CATENA 195, 104789 (2020).CAS 
    Article 

    Google Scholar 
    Wu, J. Q. et al. Vegetation degradation impacts soil nutrients and enzyme activities in wet meadow on the Qinghai-Tibet Plateau. Sci. Rep. 10(1), 21271–21271 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Défossez, P. et al. Impact of soil water content on the overturning resistance of young Pinus Pinaster in sandy soil. For. Ecol. Manag. 480, 118614 (2021).Article 

    Google Scholar 
    Mao, J., Nierop, K. G., Rietkerk, M., Damsté, J. S. S. & Te Dekker, S. C. infuence of vegetation on soil water repellency-markers and soil hydrophobicity. Sci. Total Environ. 566, 608–620 (2016).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Lu, Y., Si, B., Li, H. & Biswas, A. Elucidating controls of the variability of deep soil bulk density. Geoderma 348, 146–157 (2019).ADS 
    Article 

    Google Scholar 
    Huang, T. T., Yang, N., Lu, C., Qin, X. L. & Siddique, K. Soil organic carbon, total nitrogen, available nutrients, and yield under different straw returning methods. Soil Tillage Res. 214, 105171 (2021).Article 

    Google Scholar 
    Yang, J. M., Zhang, Z. Q. & Cao, G. J. Soil nitrate and nitrite content determined by Skalar SAN++. Soil Fertil. Sci. China 02, 101–105 (2014).
    Google Scholar 
    Chen, N. et al. Effect of biodegradable film mulching on crop yield, soil microbial and enzymatic activities, and optimal levels of irrigation and nitrogen fertilizer for the Zea mays crops in arid region. Sci. Total Environ. 776, 145970–145970 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Akhtar, K. et al. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci. Tot. Environ. 741, 140488 (2020).CAS 
    Article 

    Google Scholar 
    Ma, E. et al. Effects of rice straw returning methods on N2O emission during wheat-growing season. Nutr. Cycl. Agroecosyst. 88(3), 463–469 (2009).Article 
    CAS 

    Google Scholar 
    Yeboah, S. et al. Greenhouse gas emissions in a spring wheat–field pea sequence under different tillage practices in semi-arid Northwest China. Nutr. Cycl. Agroecosyst. 106(1), 77–91 (2016).CAS 
    Article 

    Google Scholar 
    Zahid, A., Ali, S., Ahmed, M. & Iqbal, N. Improvement of soil health through residue management and conservation tillage in rice-wheat cropping system of Punjab, Pakistan. Agronomy 10(12), 1844–1844 (2020).CAS 
    Article 

    Google Scholar 
    Dharmendra, S. et al. Effect of reversal of conservation tillage on soil nutrient availability and crop nutrient uptake in soybean in the vertisols of central India. Sustainability. 12(16), 6608 (2020).Article 
    CAS 

    Google Scholar 
    Orzech, K., Wanic, M. & Załuski, D. The effects of soil compaction and different tillage systems on the bulk density and moisture content of soil and the yields of winter oilseed rape and cereals. Agriculture 11(7), 666–666 (2021).CAS 
    Article 

    Google Scholar 
    Fan, B. Q. & Liu, Q. L. Effect of conservation tillage and straw application on the soil microorganism and P-dissolving characteristics. Chin. J. Eco-Agric. 03, 130–132 (2005).
    Google Scholar 
    Liu, X. et al. Dynamic contribution of microbial residues to soil organic matter accumulation influenced by maize straw mulching. Geoderma 333, 35–42 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Wang, W. Y. et al. Conservation tillage enhances crop productivity and decreases soil nitrogen losses in a rainfed agroecosystem of the Loess Plateau, China. J. Clean. Prod. 274, 122854 (2020).CAS 
    Article 

    Google Scholar 
    Zhang, Y., Xie, D. T., Ni, J. P. & Zeng, X. B. Conservation tillage practices reduce nitrogen losses in the sloping upland of the Three Gorges Reservoir area: No-till is better than mulch-till. Agric. Ecosyst. Environ. 300, 107003 (2020).CAS 
    Article 

    Google Scholar 
    Andrea, F. et al. May conservation tillage enhance soil C and N accumulation without decreasing yield in intensive irrigated croplands? Results from an eight-year maize monoculture. Agric. Ecosyst. Environ. 296, 106926 (2020).Article 
    CAS 

    Google Scholar 
    Wu, J. et al. Effects of different tillage and straw retention practices on soil aggregates and carbon and nitrogen sequestration in soils of the northwestern China. J. Arid. Land 11(04), 567–578 (2019).Article 

    Google Scholar 
    Niu, Y. N., Shen, Y. Y., Nan, Z. B., Yang, J. & Yang, Z. W. College of Pastoral Agriculture Science & Technology, Lanzhou University, China. Influence of different cultivation managements on organic carbon and nitrate nitrogen of top soil in the Loess Plateau, northwestern China. Proceedings of the XXI International Grassland Congress and the VIII International Rangeland Congress (volume II) (2008).Wang, Q., Li, F. R., Zhang, E. H., Li, G. & Vance, M. The effects of irrigation and nitrogen application rates on yield of spring wheat (longfu-920), and water use efficiency and nitrate nitrogen accumulation in soil. Aust. J. Crop Sci. 6(4), 662–672 (2012).
    Google Scholar 
    Pisani, O. et al. Soil nitrogen dynamics and leaching under conservation tillage in the Atlantic Coastal Plain, Georgia, United States. J. Soil Water Conserv. 72(5), 519–529 (2017).Article 

    Google Scholar 
    Cao, W. C. et al. Key production processes and influencing factors of nitrous oxide emissions from agricultural soils. J. Nutr. Fertil. 25(10), 1781–1798 (2019).
    Google Scholar 
    Liu, B., Huang, G. B., Gao, Y. Q., Li, Q. P. & Huang, T. Effects of no-tillage on daily dynamics of CO2 and N2O emission from spring wheat field during mature stage. J. Gansu Agric. Univ. 45(01), 82–87 (2010).
    Google Scholar 
    Akhtar, K. et al. Straw mulching with inorganic nitrogen fertilizer reduces soil CO2 and N2O emissions and improves wheat yield. Sci. Total Environ. 741, 140488 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Sina, B., Youngsun, K., Janine, K. & Gerhard, G. Plastic mulching in agriculture: Friend or foe of N2O emissions. Agric. Ecosyst. Environ. 167, 43–51 (2013).Article 
    CAS 

    Google Scholar 
    Seiichi, N., Michio, K., Masako, T., Seiichiro, Y. & Naoto, K. Nitrous oxide evolved from soil covered with plastic mulch film in horticultural field. Biol. Fertil. Soils 48(7), 787–795 (2012).Article 
    CAS 

    Google Scholar 
    Wang, J., Cai, L. Q., Zhang, R. Z., Wang, Y. L. & Dong, W. J. Effects of Tillage Measures on soil greenhouse gas (CO2, CH4, N2O) flux in temperate semi-arid area. Chin. J. Eco-Agric. 19(06), 1295–1300 (2011).CAS 
    Article 

    Google Scholar 
    Chen, G. H. et al. Can conservation tillage reduce N2O emissions on cropland transitioning to organic vegetable production?. Sci. Total Environ. 618, 927–940 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Narendra, K. L. & Rattan, L. Soil aggregation and greenhouse gas flux after 15 years of wheat straw and fertilizer management in a no-till system. Soil Tillage Res. 126, 78–89 (2013).Article 

    Google Scholar 
    Liang, W., Shi, Y., Zhang, H., Yue, J. & Huang, G. H. Greenhouse gas emissions from Northeast china rice fields in fallow season. Pedosphere 17(5), 630–638 (2007).CAS 
    Article 

    Google Scholar 
    Bremner, J. M., Robbins, S. G. & Blackmer, A. M. Seasonal variability in emission of nitrous oxide from soil. Geophys. Res. Lett. 7(9), 641–644 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    Maag, M. & Vinther, F. P. Nitrous oxide emission by nitrification and denitrification in the different soil types and at different soil moisture contents and temperature. Appl. Soil. Ecol. 4(1), 5–14 (1996).Article 

    Google Scholar 
    Castaldi, S. Responses of nitrous oxide, dinitrogen and carbon dioxide production and oxygen consumption to temperature in forest and agricultural light-textured soils determined by model experiment. Biol. Fertil. Soils 32(1), 67–72 (2000).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Braker, G., Schwarz, J. & Conrad, R. Influence of temperature on the composition and activity of denitrifying soil communities. FEMS Microbiol. Ecol. 73(1), 134–148 (2010).CAS 
    PubMed 

    Google Scholar 
    Hu, H. W., Chen, D. & He, J. Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. Narnia 39(5), 729–749 (2015).CAS 

    Google Scholar 
    Pokharel, P. & Chang, S. X. Biochar decreases the efficacy of the nitrification inhibitor nitrapyrin in mitigating nitrous oxide emissions at different soil moisture levels. J. Environ. Manage. 295, 113080–113080 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Shu, X. X. et al. Response of soil N2O emission and nitrogen utilization to organic matter in the wheat and maize rotation system. Sci. Rep. 11(1), 4396–4396 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bergaust, L., Mao, Y. J., Bakken, L. R. & Frostegård, A. Denitrification response patterns during the transition to anoxic respiration and posttranscriptional effects of suboptimal pH on nitrous [corrected] oxide reductase in Paracoccus denitrificans. Appl. Environ. Microbiol. 76(19), 6387–6396 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar  More

  • in

    Body size variability across habitats in the Brachionus plicatilis cryptic species complex

    Schwenk, K., Padilla, D. K., Bakken, G. S. & Full, R. J. Grand challenges in organismal biology. Integr. Comp. Biol. 49, 7–14. https://doi.org/10.1093/icb/icp034 (2009).Article 
    PubMed 

    Google Scholar 
    Chapman, L. J., Galis, F. & Shinn, J. Phenotypic plasticity and the possible role of genetic assimilation: Hypoxia-induced trade-offs in the morphological traits of an African cichlid. Ecol. Lett. 3, 387–393. https://doi.org/10.1046/j.1461-0248.2000.00160.x (2000).Article 

    Google Scholar 
    Crispo, E. & Chapman, L. J. Geographic variation in phenotypic plasticity in response to dissolved oxygen in an African cichlid fish. J. Evol. Biol. 23, 2091–2103. https://doi.org/10.1111/j.1420-9101.2010.02069.x (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitan-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. B-Biol. Sci. 374, 20180174 (2019).Article 

    Google Scholar 
    Schmidt-Nielsen, K. Animal physiology: adaptation and environment 4th edn. (Cambridge University Press, 1990).
    Google Scholar 
    Willmer, P., Stone, G. & Johnston, I. A. Environmental physiology of animals (Blackwell, 2000).
    Google Scholar 
    Begon, M., Townsend, C. R. & Harper, J. L. Ecology from individuals to ecosystems 4th edn. (Blackwell Publishing, 2006).
    Google Scholar 
    Johnston, I. A. & Bennett, A. F. Animals and temperature. Phenotypic and Evolutionary Adaptation (Cambridge University Press, 2008).
    Google Scholar 
    Atkinson, D. Temperature and organism size – a biological law for ectotherms. Adv. Ecol. Res. 25, 1–58 (1994).Article 

    Google Scholar 
    Atkinson, D. & Sibly, R. M. Why are organisms usually bigger in colder environments? Making sense of a life history puzzle. Trends Ecol. Evol. 12, 235–239. https://doi.org/10.1016/s0169-5347(97)01058-6 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bergmann, C. Uber die verhaltnisse der warmeokonomie der thiere zuihrer grosse. Gottinger Studien 1, 595–708 (1847).
    Google Scholar 
    Blanckenhorn, W. U. & Demont, M. Bergmann and converse Bergmann latitudinal clines in Arthropods: two ends of a continuum?. Integr. Comp. Biol. 44, 413–424 (2004).CAS 
    Article 

    Google Scholar 
    Blackburn, T. M., Gaston, K. & Loder, N. Geographic gradients in body size: a clarification of Bergmann’s rule. Divers. Distrib. 5, 165–174 (1999).Article 

    Google Scholar 
    Berrigan, D. & Charnov, E. L. Reaction norms for age and size at maturity in response to temperature—a puzzle for life historians. Oikos 70, 474–478 (1994).Article 

    Google Scholar 
    Angilletta, M. J. & Dunham, A. E. The temperature-size rule in ectotherms: Simple evolutionary explanations may not be general. Am. Nat. 162, 332–342 (2003).Article 

    Google Scholar 
    Angilletta, M. J. Jr., Steury, T. D. & Sears, M. W. Temperature, growth rate, and body size in ectotherms: Fitting pieces of a life–history puzzle. Integr. Comp. Biol. 44, 498–509 (2004).Article 

    Google Scholar 
    Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve paremeters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).Article 

    Google Scholar 
    Horne, C. R., Hirst, A. G., Atkinson, D., Neves, A. & Kiorboe, T. A global synthesis of seasonal temperature-size responses in copepods. Glob. Ecol. Biogeogr. 25, 988–999. https://doi.org/10.1111/geb.12460 (2016).Article 

    Google Scholar 
    Kiełbasa, A., Walczyńska, A., Fiałkowska, E., Pajdak-Stós, A. & Kozłowski, J. Seasonal changes in the body size of two rotifer species living in activated sludge follow the Temperature-Size Rule. Ecol. Evol. 4, 4678–4689. https://doi.org/10.1002/ece3.1292 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stoks, R., Geerts, A. N. & De Meester, L. Evolutionary and plastic responses of freshwater invertebrates to climate change: Realized patterns and future potential. Evol. Appl. 7, 42–55. https://doi.org/10.1111/eva.12108 (2014).Article 
    PubMed 

    Google Scholar 
    Hassall, C. Time stress and temperature explain continental variation in damselfly body size. Ecography 36, 894–903. https://doi.org/10.1111/j.1600-0587.2013.00018.x (2013).Article 

    Google Scholar 
    Horne, C. R., Hirst, A. G. & Atkinson, D. Temperature-size responses match latitudinal-size clines in arthropods, revealing critical differences between aquatic and terrestrial species. Ecol. Lett. 18, 327–335. https://doi.org/10.1111/ele.12413 (2015).Article 
    PubMed 

    Google Scholar 
    Merckx, T. et al. Body-size shifts in aquatic and terrestrial urban communities. Nature 558, 113–116. https://doi.org/10.1038/s41586-018-0140-0 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Rollinson, N. & Rowe, L. Oxygen limitation at the larval stage and the evolution of maternal investment per offspring in aquatic environments. Am. Nat. 191, 604–619. https://doi.org/10.1086/696857 (2018).Article 
    PubMed 

    Google Scholar 
    Santilli, J. & Rollinson, N. Toward a general explanation for latitudinal clines in body size among chelonians. Biol. J. Lin. Soc. 124, 381–393. https://doi.org/10.1093/biolinnean/bly054 (2018).Article 

    Google Scholar 
    Walczyńska, A. & Sobczyk, Ł. The underestimated role of temperature–oxygen relationship in large-scale studies on size-to-temperature response. Ecol. Evol. 7, 7434–7441. https://doi.org/10.1002/ece3.3263 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Czarnoleski, M., Ejsmont-Karabin, J., Angilletta, M. J. Jr. & Kozlowski, J. Colder rotifers grow larger but only in oxygenated waters. Ecosphere https://doi.org/10.1890/es15-00024.1 (2015).Article 

    Google Scholar 
    Forster, J., Hirst, A. G. & Atkinson, D. Warming-induced reductions in body size are greater in aquatic than terrestrial species. Proc. Natl. Acad. Sci. U.S.A. 109, 19310–19314. https://doi.org/10.1073/pnas.1210460109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woods, H. A. Egg-mass size and cell size: Effects of temperature on oxygen distribution. Am. Zool. 39, 244–252 (1999).Article 

    Google Scholar 
    Verberk, W. C. E. P., Bilton, D. T., Calosi, P. & Spicer, J. I. Oxygen supply in aquatic ectotherms: Partial pressure and solubility together explain biodiversity and size patterns. Ecology 92, 1565–1572 (2011).Article 

    Google Scholar 
    Berner, R. A., VandenBrooks, J. M. & Ward, P. D. Evolution—Oxygen and evolution. Science 316, 557–558. https://doi.org/10.1126/science.1140273 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Verberk, W. C. E. P. & Atkinson, D. Why polar gigantism and Palaeozoic gigantism are not equivalent: Effects of oxygen and temperature on the body size of ectotherms. Funct. Ecol. 27, 1275–1285. https://doi.org/10.1111/1365-2435.12152 (2013).Article 

    Google Scholar 
    Rollinson, N. & Rowe, L. Temperature-dependent oxygen limitation and the rise of Bergmann’s rule in species with aquatic respiration. Evolution 72, 977–988. https://doi.org/10.1111/evo.13458 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Harrison, J. F., Kaiser, A. & VandenBrooks, J. M. Atmospheric oxygen level and the evolution of insect body size. Proc. R. Soc. B 277, 1937–1946. https://doi.org/10.1098/rspb.2010.0001 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frazier, M. R., Woods, H. A. & Harrison, J. F. Interactive effects of rearing temperature and oxygen on the development of Drosophila melanogaster. Physiol. Biochem. Zool. 74, 641–650. https://doi.org/10.1086/322172 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hoefnagel, K. N. & Verberk, W. Is the temperature-size rule mediated by oxygen in aquatic ectotherms?. J. Therm. Biol 54, 56–65. https://doi.org/10.1016/j.jtherbio.2014.12.003 (2015).Article 
    PubMed 

    Google Scholar 
    Walczyńska, A., Labecka, A. M., Sobczyk, M., Czarnoleski, M. & Kozłowski, J. The Temperature-Size Rule in Lecane inermis (Rotifera) is adaptive and driven by nuclei size adjustment to temperature. J. Therm. Biol 54, 78–85 (2015).Article 

    Google Scholar 
    Whitman, D. W. & Agrawal, A. A. in Phenotypic plasticity of insects: mechanisms and consequences (eds D.W. Whitman & T.N. Ananthakrishnan) 1–63 (Science Publishers, 2009).Stauffer, J. R. & van Snik Gray, E. Phenotypic plasticity: Its role in trophic radiation and explosive speciation in cichlids (Teleostei: Cichlidae). Animal Biol. 54, 137–158 (2004).Article 

    Google Scholar 
    Ishikawa, A. et al. Speciation in ninespine stickleback: Reproductive isolation and phenotypic divergence among cryptic species of Japanese ninespine stickleback. J. Evol. Biol. 26, 1417–1430 (2013).CAS 
    Article 

    Google Scholar 
    Gabaldon, C., Fontaneto, D., Carmona, M. J., Montero-Pau, J. & Serra, M. Ecological differentiation in cryptic rotifer species: What we can learn from the Brachionus plicatilis complex. Hydrobiologia 796, 7–18. https://doi.org/10.1007/s10750-016-2723-9 (2017).Article 

    Google Scholar 
    Mills, S. et al. Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy. Hydrobiologia 796, 39–58. https://doi.org/10.1007/s10750-016-2725-7 (2017).CAS 
    Article 

    Google Scholar 
    Ortells, R., Gomez, A. & Serra, M. Coexistence of cryptic rotifer species: Ecological and genetic characterisation of Brachionus plicatilis. Freshw. Biol. 48, 2194–2202. https://doi.org/10.1046/j.1365-2427.2003.01159.x (2003).Article 

    Google Scholar 
    Serra, M. & Fontaneto, D. in Rotifers. Aquaculture, ecology, gerontology, and ecotoxicology (eds A. Hagiwara & T. Yoshinaga) 15–34 (Springer, 2017).Gomez, A., Montero-Pau, J., Lunt, D. H., Serra, M. & Campillo, S. Persistent genetic signatures of colonization in Brachionus manjavacas rotifers in the Iberian Peninsula. Mol. Ecol. 16, 3228–3240. https://doi.org/10.1111/j.1365-294X.2007.03372.x (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Montero-Pau, J., Ramos-Rodriguez, E., Serra, M. & Gomez, A. Long-term coexistence of rotifer cryptic species. PLoS ONE https://doi.org/10.1371/journal.pone.0021530 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomez, A., Carmona, M. J. & Serra, M. Ecological factors affecting gene flow in the Brachionus plicatilis complex (Rotifera). Oecologia 111, 350–356. https://doi.org/10.1007/s004420050245 (1997).ADS 
    Article 
    PubMed 

    Google Scholar 
    Serrano, L., Serra, M. & Miracle, M. R. Size variation in Brachionus plicatilis resting eggs. Hydrobiologia 186, 381–386. https://doi.org/10.1007/bf00048936 (1989).Article 

    Google Scholar 
    Walczyńska, A. & Serra, M. Inter- and intraspecific relationships between performance and temperature in a cryptic species complex of the rotifer Brachionus plicatilis. Hydrobiologia 734, 17–26 (2014).Article 

    Google Scholar 
    Serra, M. & Miracle, M. R. Bometric variation in three strains of Brachionus plicatilis as a direct response to abiotic variables. Hydrobiologia 147, 83–89. https://doi.org/10.1007/bf00025729 (1987).CAS 
    Article 

    Google Scholar 
    Gomez, A., Temprano, M. & Serra, M. Ecological genetics of a cyclical parthenogen in temporary habitats. J. Evol. Biol. 8, 601–622. https://doi.org/10.1046/j.1420-9101.1995.8050601.x (1995).Article 

    Google Scholar 
    Walczyńska, A. & Serra, M. Species size affects hatching response to different temperature regimes in a rotifer cryptic species complex. Evol. Ecol. 28, 131–140 (2014).Article 

    Google Scholar 
    Walczynska, A., Franch-Gras, L. & Serra, M. Empirical evidence for fast temperature-dependent body size evolution in rotifers. Hydrobiologia 796, 191–200. https://doi.org/10.1007/s10750-017-3206-3 (2017).Article 

    Google Scholar 
    Weider, L. J., Jeyasingh, P. D. & Frisch, D. Evolutionary aspects of resurrection ecology: Progress, scope, and applications-An overview. Evol. Appl. 11, 3–10. https://doi.org/10.1111/eva.12563 (2018).Article 
    PubMed 

    Google Scholar 
    Levis, N. A. & Pfennig, D. W. Evaluating “Plasticity-First” evolution in nature: Key criteria and empirical approaches. Trends Ecol. Evol. 31, 563–574. https://doi.org/10.1016/j.tree.2016.03.012 (2016).Article 
    PubMed 

    Google Scholar 
    O’Rourke, N. & Hatcher, L. A step-by-step approach to using SAS® for Factor Analysis and Structural Equation Modeling 2nd edn. (SAS Institute Inc., 2013).
    Google Scholar 
    Campillo, S., Garcia-Roger, E. M., Jose Carmona, M. & Serra, M. Local adaptation in rotifer populations. Evolut. Ecol. 25, 933–947. https://doi.org/10.1007/s10682-010-9447-5 (2011).Article 

    Google Scholar 
    Gomez, A. & Carvalho, G. R. Sex, parthenogenesis and genetic structure of rotifers: Microsatellite analysis of contemporary and resting egg bank populations. Mol. Ecol. 9, 203–214. https://doi.org/10.1046/j.1365-294x.2000.00849.x (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gabaldon, C., Montero-Pau, J., Carmona, M. J. & Serra, M. Life-history variation, environmental fluctuations and competition in ecologically similar species: Modeling the case of rotifers. J. Plankton Res. 37, 953–965. https://doi.org/10.1093/plankt/fbv072 (2015).Article 

    Google Scholar 
    Wetzel, R. G. Limnology. Lake and river ecosystems (Elsevier Academic Press, 2001).
    Google Scholar 
    Kuhl, M., Cohen, Y., Dalsgaard, T., Jorgensen, B. B. & Revsbech, N. P. Micreoenvironment and photosynthesis of Zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar. Ecol. Prog. Ser. 117, 159–172. https://doi.org/10.3354/meps117159 (1995).ADS 
    Article 

    Google Scholar 
    Denny, M. W. Air and water. The biology and physics of life’s media (Princeton University Press, 1993).Book 

    Google Scholar 
    Montero-Pau, J., Serra, M. & Gomez, A. Diapausing egg banks, lake size, and genetic diversity in the rotifer Brachionus plicatilis Muller (Rotifera, Monogononta). Hydrobiologia 796, 77–91. https://doi.org/10.1007/s10750-016-2833-4 (2017).CAS 
    Article 

    Google Scholar 
    Tarazona, E., Garcia-Roger, E. M. & Carmona, M. J. Experimental evolutioin of bet hedging in rotifer diapause traits as a response to environmental unpredictability. Oikos 126, 1162–1172. https://doi.org/10.1111/oik.04186 (2017).Article 

    Google Scholar 
    Franch-Gras, L., Montero-Pau, J. & Serra, M. The effect of environmental uncertainty and diapause investment on the occurrence of specialist and generalist species. Int. Rev. Hydrobiol. 99, 125–132. https://doi.org/10.1002/iroh.201301712 (2014).Article 

    Google Scholar 
    Martinez-Ruiz, C. & Garcia-Roger, E. M. Being first increases the probability of long diapause in rotifer resting eggs. Hydrobiologia 745, 111–121. https://doi.org/10.1007/s10750-014-2098-8 (2015).Article 

    Google Scholar 
    Garcia-Roger, E. M. Analisis demografico de bancos de huevos diapausicos de rotiferos PhD Thesis thesis, University of Valencia, (2006).Lapesa, S. Efecto de la depredación por invertebrados sobre poblaciones simpátricas de especies crípticas de rotíferos PhD thesis, University of Valencia, (2004).Miracle, M. R. & Serra, M. Salinity and temperature influence in rotifer life-history characteristics. Hydrobiologia 186, 81–102. https://doi.org/10.1007/bf00048900 (1989).Article 

    Google Scholar 
    Fontaneto, D., Giordani, I., Melone, G. & Serra, M. Disentangling the morphological stasis in two rotifer species of the Brachionus plicatilis species complex. Hydrobiologia 583, 297–307. https://doi.org/10.1007/s10750-007-0573-1 (2007).Article 

    Google Scholar 
    Gabaldon, C., Montero-Pau, J., Serra, M. & Carmona, M. J. Morphological similarity and ecological overlap in two rotifer species. PLoS ONE https://doi.org/10.1371/journal.pone.0057087 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gabaldon, C. & Carmona, M. J. Allocation patterns in modes of reproduction in two facultatively sexual cryptic rotifer species. J. Plankton Res. 37, 429–440. https://doi.org/10.1093/plankt/fbv012 (2015).Article 

    Google Scholar 
    Garcia-Roger, E. M., Carmona, M. J. & Serra, M. Deterioration patterns in diapausing egg banks of Brachionus (Muller, 1786) rotifer species. J. Exp. Mar. Biol. Ecol. 314, 149–161. https://doi.org/10.1016/j.jembe.2004.08.023 (2005).Article 

    Google Scholar 
    Lapesa, S., Snell, T. W., Fields, D. M. & Serra, M. Predatory interactions between a cyclopoid copepod and three sibling rotifer species. Freshw. Biol. 47, 1685–1695. https://doi.org/10.1046/j.1365-2427.2002.00926.x (2002).Article 

    Google Scholar 
    Serra, M., Gomez, A. & Carmona, M. J. Ecological genetics of Brachionus sympatric sibling species. Hydrobiologia 387, 373–384. https://doi.org/10.1023/a:1017083820908 (1998).Article 

    Google Scholar 
    Ter Braak, C. J. F. & Šmilauer, P. Canoco reference manual and user’s guide: software for ordination, version 5.0. . 496 (Microcomputer Power, 2012).Ciros-Perez, J., Gomez, A. & Serra, M. On the taxonomy of three sympatric sibling species of the Brachionus plicatilis (Rotifera) complex from Spain, with the description of B. ibericus n. sp. Journal of Plankton Research 23, 1311–1328 (2001).Gomez, A., Serra, M., Carvalho, G. R. & Lunt, D. H. Speciation in ancient cryptic species complexes: Evidence from the molecular phylogeny of Brachionus plicatilis (Rotifera). Evolution 56, 1431–1444 (2002).CAS 
    Article 

    Google Scholar 
    SAS/STAT User’s Guide (Cary NC, SAS Institute Inc., 2013). More

  • in

    Nutritional value and bioaccumulation of heavy metals in nine commercial fish species from Dachen Fishing Ground, East China Sea

    FAO Food and Agriculture Organization). Fishery Information Data and Statistics Unit. FISHSTAT + Databases and Statistics (Food and Agriculture Organization of the United Nation, 2016).
    Google Scholar 
    Ke, P. & Wang, W. X. Trace metal contamination in estuarine and coastal environments in China. Sci. Total Environ. 421–422(Apr.1), 3–16 (2012).
    Google Scholar 
    Jarup, L. Hazards of heavy metal contamination. Brit. Med. Bull. 68(1), 167–182 (2003).PubMed 
    Article 

    Google Scholar 
    Golden, C. et al. Nutrition: Fall in fish catch threatens human health. Nature 534(7607), 317–320 (2016).ADS 
    PubMed 
    Article 

    Google Scholar 
    Baki, A. M. et al. Concentration of heavy metals in seafood (fishes, shrimp, lobster and crabs) and human health assessment in Saint Martin Island, Bangladesh. Ecotoxicol. Environ. Saf. 159, 153–163 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Saha, N., Mollah, M., Alam, M. F. & Rahman, M. S. Seasonal investigation of heavy metals in marine fishes captured from the Bay of Bengal and the implications for human health risk assessment. Food Control 70, 110–118 (2016).CAS 
    Article 

    Google Scholar 
    Gu, Y. G. et al. Heavy metals in fish tissues/stomach contents in four marine wild commercially valuable fish species from the western continental shelf of south china sea. Mar. Pollut. Bull. 114(2), 1125–1129 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Korkmaz, C., Özcan, A., Ersoysal, Y., Köroğlu, M. A. & Erdem, C. Heavy metal levels in muscle tissues of some fish species caught from north-east mediterranean: Evaluation of their effects on human health. J. Food Compos. Anal. 81, 1–9 (2019).CAS 
    Article 

    Google Scholar 
    Rahman, M. S. et al. Assessment of heavy metals contamination in selected tropical marine fish species in Bangladesh and their impact on human health. Environ. Nanotechnol. Monit. Manage. 11, 25 (2019).
    Google Scholar 
    Zhou, X. J., Zhao, X., Zhang, S. Y. & Lin, J. Marine ranching construction and management in East China Sea: Programs for sustainable fishery and aquaculture. Water 6, 25 (2019).
    Google Scholar 
    Lu, C. Thoughts on promoting the construction of Dachen Ecological Island. Decis. Mak. Consult. 03, 80–83 (2017).Article 

    Google Scholar 
    Liu, Y. Y., Ren, M. & Gu, Y. Study on the planning and construction of Taizhou Dachen Marine ecological special reserve. Mar. Dev. Manage. 29(05), 113–115 (2012).
    Google Scholar 
    Wang, J. Y., Wang, Y. C. & Lou, J. H. Analysis on heavy metal pollution in major seafoods from Zhoushan Fishery, China. Chin. J. Epidemiol. 33(10), 1001–1004 (2012).CAS 

    Google Scholar 
    Peng, F. et al. Occurrence and risk assessment of heavy metals and polycyclic aromatic hydrocarbons in marine organisms from Yuwai Fishing Ground. Asian J. Ecotoxicol. 14(01), 168–179 (2019).
    Google Scholar 
    Liu, Q., Liao, Y., Xu, X., Shi, X. & Shou, L. Heavy metal concentrations in tissues of marine fish and crab collected from the middle coast of Zhejiang Province, China. Environ. Monit. Assess. 192, 5 (2020).Article 
    CAS 

    Google Scholar 
    AOAC. Association of Official Analytical Chemists. Official Methods of Analysis 16th edn. (Arlington, 2016).
    Google Scholar 
    Varol, M., Kaya, G. K. & Sünbül, M. R. Evaluation of health risks from exposure to arsenic and heavy metals through consumption of ten fish species. Environ. Sci. Pollut. Res. 26(32), 33311–33320 (2019).CAS 
    Article 

    Google Scholar 
    SOA. GB 17378–2007 (Standardization Administration of the People’s Republic of China (SAC), 2007).
    Google Scholar 
    Yi, Y., Yang, Z. & Zhang, S. Ecological risk assessment of heavy metals in sediment and human health risk assessment of heavy metals in fishes in the middle and lower reaches of the Yangtze River Basin. Environ. Pollut. 159(10), 2575–2585 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lie, A., Poa, A., Aaec, D., It, A. & Eob, D. Potential health risk consequences of heavy metal concentrations in surface water, shrimp (Macrobrachium macrobrachion) and fish (Brycinus longipinnis) from Benin river, Nigeria. Toxicol. Rep. 6, 1–9 (2019).Article 
    CAS 

    Google Scholar 
    Liu, Z. et al. Review on the evaluation methods of food safety of edible fish in Meijiang River. Guangdong Chem. Ind. 46(11), 122–123 (2019).
    Google Scholar 
    Yue, D. D. et al. Relationship between aquatic product consumption and income gap between Chinese urban and rural residents. Fish. Inf. Strat. 33(337), 4–11 (2018).
    Google Scholar 
    USEPA (U.S. Environmental Protection Agency). Guidance for Assessing Chemical Contaminant Data for Use in Fish Advisories, Volume II. Risk Assessment and Fish Consumption Limits. (EPA 823-B-00-008) (United States Environmental Protection Agency, 2000).
    Google Scholar 
    Wang, L. et al. Heavy metal pollution and health risk assessment of fish in the Huizhou section of the Dongjiang River. J. Ecol. Rural Environ. 33(01), 70–76 (2017).CAS 

    Google Scholar 
    Wang, X., Sato, T., Xing, B. & Tao, S. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Sci. Total Environ. 350(1/3), 28–37 (2005).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    USEPA. Risk-Based Concentration Table (United States Environmental Protection Agency, 2009).
    Google Scholar 
    Shang, D. et al. Safety evaluation of arsenic and arsenic compounds in food. Chin. Fish. Qual. Std. 04, 21–32 (2012).
    Google Scholar 
    Ahmed, A. S. S., Sultana, S., Habib, A., Ullah, H. & Sarker, M. S. I. Bioaccumulation of heavy metals in some commercially important fishes from a tropical river estuary suggests higher potential health risk in children than adults. PLoS One 14(10), e0219336 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Quanyou, G. et al. Quality differences of large yellow croaker (Pseudosciaena crocea) cultured in deep-water sea cages of two China Regions. Spine 9(9), 1–8 (2018).ADS 

    Google Scholar 
    Zhu, A. Y., Xie, J. Y., Jiang, L. H. & Lou, B. The nutritional composition and evaluation in muscle of S. marmoratus. Acta Nutr. Sin. 33(06), 621–623 (2011).CAS 

    Google Scholar 
    Xu, X. H. et al. Analysis and quality evaluation of the muscle nutrients of Wild Pirate Goby in Lianyungang Sea. Jiangsu Agric. Sci. 1, 261–265 (2012).
    Google Scholar 
    Jiang, X. H. & Yang, P. M. Nutritional composition analysis in muscle of Tapertail Anchovy Coilia nasus from Dayyang River before and after reproduction. Fish. Sci. 40(06), 835–842 (2021).
    Google Scholar 
    Zeng, S. K., Zhang, C. Y. & Jiang, Z. H. Study on the comparison of the food nutrient contents between the muscle and head of Muraenesox cinereus. Mar. Sci. 05, 13–15 (2002).
    Google Scholar 
    Guo, H., Xu, M., Shen, Y. C., Ye, N. & Cao, Y. T. Analysis and evaluation of nutritional composition in the muscle of Johnius belangerii. Feed Ind. 37(18), 24–26 (2016).
    Google Scholar 
    Wang, Y. H., Lv, Z. H., Gao, T. X. & Zheng, G. X. Research on nutritional components of Lateolabrax sp and L. japonicus. Progress Fish. Sci. 02, 35–39 (2003).ADS 
    CAS 

    Google Scholar 
    Nauen, C. E. Compilation of legal limits for hazardous substances in fish and fishery products. FAO Fisheries Circular (FAO) no 764. (1983).JECFA (Joint FAO/WHO Expert Committee on Food Additives). Evaluation of Certain Food Additives and Contaminants. Thirty-Third Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series, No 776 (World Health Organization, 1989).
    Google Scholar 
    FAO. The State of the World Fisheries and Aquaculture (FAO Fisheries and Aquaculture Dept, 2014).
    Google Scholar 
    JECFA (Joint FAO/WHO Expert Committee on Food Additives). Evaluation of Certain Food Additives and Contaminants. Seventythird Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO technical report series, No 960 (World Health Organization, 2011).
    Google Scholar 
    JECFA (Joint FAO/WHO Expert Committee on Food Additives). Evaluation of Certain Food Additives and Contaminants. Twenty-sixth Report of the Joint FAO/WHO Expert Committee on Food Additives. WHO Technical Report Series, No 683 (World Health Organization, 1982).
    Google Scholar 
    EFSA (European Food Safety Authority). Scientific opinion on lead in food. EFSA J. 8(4), 1570 (2010).
    Google Scholar 
    EFSA (European Food Safety Authority). Scientific opinion on dietary reference values for chromium. EFSA J. 12(10), 3845 (2014).Article 
    CAS 

    Google Scholar 
    Younis, E. M. & Abdel-Warithl-Shayia, A. A. A. S. Chemical composition and mineral contents of six commercial fish species from the Arabian Gulf coast of Saudi Arabia. J. Anim. Vet. Adv. 10(23), 3063–3069 (2011).
    Google Scholar 
    Jakhar, K., Jakhar, J. K., Pal, A. K., Reddy, A. D. & Vardia, H. K. Fatty acids composition of some selected Indian fishes. Afr. J. Basic Appl. Sci. 4(5), 155–160 (2012).CAS 

    Google Scholar 
    Patrizia, C., Francesca, T. & Rosaria, S. Heavy metal bioaccumulation and metallothionein content in tissues of the sea bream Sparus aurata from three different fish farming systems. Environ. Monit. Assess. 20, 1–4 (2010).
    Google Scholar 
    Younis, E. M., Abdel-Warith, A., Al-Asgah, N. A., Elthebite, S. A. & Rahman, M. M. Nutritional value and bioaccumulation of heavy metals in muscle tissues of five commercially important marine fish species from the red sea. Saudi J. Biol. Sci. 20, 20 (2020).
    Google Scholar 
    Nath, A. K. et al. Fatty acid compositions of four edible fishes of Hooghly Estuary, West Bengal, India. Int. J. Curr. Microbiol. Appl. Sci 3, 208–218 (2014).
    Google Scholar 
    Saeed, S. Impact of environmental parameters on fish condition and quality in Lake Edku, Egypt. Egypt. J. Aquat. Biol. Fish. 17(1), 101–112 (2013).
    Google Scholar 
    Xiao, M. S., Wang, S., Bao, F. Y. & Feng, C. Enrichment of heavy metals in economic aquatic animals in huaihe river segment of Bengbu sampling points. Res. Environ. Sci. 24(8), 942–948 (2011).CAS 

    Google Scholar 
    Sun, W. P., Liu, X. Y., Pan, J. M. & Weng, H. X. Levels of heavy metals in commercial fish species from the near-shore of Zhejiang Province. J. Zhejiang Univ. (Sci. Ed.) 26, 1–21 (2012).
    Google Scholar 
    Djikanovic, V., Skoric, S., Spasic, S., Naunovic, Z. & Lenhardt, M. Ecological risk assessment for different macrophytes and fish species in reservoirs using biota-sediment accumulation factors as a useful tool. Environ. Pollut. 241(4), 1167 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wuana, R., Ogbodo, C., Itodo, U. A. P. D. & Eneji, I. Ecological and human health risk assessment of toxic metals in water, sediment and fish from Lower Usuma Dam Abuja, Nigeria. J. Geosci. Environm. Protect. 08, 82–106 (2020).Article 

    Google Scholar 
    UNEP Chemicals. Inter-Organization Programm for the sound Management of Chemicals, Global Mercury Assessment (UNEP Chemicals, 2002).
    Google Scholar 
    Hammerschmidt, C. R. & Fitzgerald, W. Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environ. Sci. Technol. 38(5), 1487–1495 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, Y. F. et al. Heavy metal characterization of fish species in a typical sea area of Guangdong-Hong Kong-Macau Greater Bay Area. Trans. Oceanol. Limnol. 43(03), 107–116 (2021).
    Google Scholar 
    Wang, H., Fang, F. & Xie, H. Research situation and outlook on heavy metal pollution in water environment of China. Guangdong Trace Elem. Sci. 17, 14–18 (2010).CAS 

    Google Scholar 
    Monroy, M., Maceda-Veiga, A. & Sostoa, A. D. Metal concentration in water, sediment and four fish species from lake Titicaca reveals a large-scale environmental concern. Sci. Total Environ. 487(15), JUL.15-244 (2014).
    Google Scholar 
    Canli, M. & Atli, G. The relationships between heavy metal (Cd, Cr, Cu, Fe, Pb, Zn) levels and the size of six mediterranean fish species. Environ. Pollut. 121(1), 129–136 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Makedonski, L., Peycheva, K. & Stancheva, M. Determination of heavy metals in selected black sea fish species. Food Control 72, 313–318 (2017).CAS 
    Article 

    Google Scholar 
    Shinn, C., Dauba, F., Grenouillet, G., Guenard, G. & Lek, S. Temporal variation of heavy metal contamination in fish of the river lot in Southern France. Ecotoxicol. Environ. Saf. 72(7), 1957–1965 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nabavi, S. F., Nabavi, S. M., Latifi, A. M., Eslami, S. & Ebrahimzadeh, M. A. Determination of trace elements level of pikeperch collected from the Caspian sea. Bull. Environ. Contam. Toxicol. 88(3), 401–405 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, H. X. et al. Mechanisms of cr(VI) toxicity to fish in aquatic environment: A review. Chin. J. Appl. Ecol. 10, 3226–3234 (2015).
    Google Scholar 
    Ding, X., Si, Y. E. & Jing, L. The heavy metals distribution pattern and geochemical provinces of the surficial sediments offshore Zhejiang. Mar. Geol. Front. 26(12), 1–8 (2010).ADS 

    Google Scholar 
    Dai, W. Research progress on the toxicity of lead in aquatic animals. J. Anhui Agric. Sci. 38(011), 5819–5820 (2010).CAS 

    Google Scholar 
    Lee, K. G. et al. Characterization of tyrosine-rich antheraea pernyi silk fibroin hydrolysate. Int. J. Biol. Macromol. 48(1), 223–226 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, T. F. Heavy metal content and food risk of aquatic organisms in Jiaojiang district of Taizhou city. J. Food Saf. Qual. 10(16), 5561–5567 (2019).
    Google Scholar 
    Wu, Z. Y., Yang, S. Y., Su, N., Guo, Y. L. & Bi, L. Distribution and pollution assessment of heavy metals in the sediments of Jiaojiang River. Mar. Geol. Q. Geol. 38(01), 96–107 (2018).CAS 

    Google Scholar 
    Bravo, A. G. et al. Mercury human exposure through fish consumption in a reservoir contaminated by a chlor-alkali plant: Babeni reservoir (Romania). Environ. Sci. Pollut. R 17(8), 1422–1432 (2010).CAS 
    Article 

    Google Scholar 
    Vu, C. T., Lin, C., Yeh, G. & Villanueva, M. C. Bioaccumulation and potential sources of heavy metal contamination in fish species in Taiwan: Assessment and possible human health implications. Environ. Sci. Pollut. Res. 24, 19422–19434 (2017).CAS 
    Article 

    Google Scholar 
    Li, P. H. et al. Assessing the hazardous risks of vehicle inspection workers’ exposure to particulate heavy metals in their work places. Aerosol. Air Qual. Res. 13, 255–265 (2013).Article 
    CAS 

    Google Scholar 
    Saha, N. & Zaman, M. R. Evaluation of possible health risks of heavy metals by consumption of foodstuffs available in the central market of Rajshahi City, Bangladesh. Environ. Monit. Assess. 185(5), 3867–3878 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miri, M., Akbari, E., Amrane, A., Jafari, S. J. & Taghavi, M. Health risk assessment of heavy metal intake due to fish consumption in the Sistan Region, Iran. Environ. Monit. Assess. 189(11), 583 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Kalantzi, I. et al. Metals in tissues of seabass and seabream reared in sites with oxic and anoxic substrata and risk assessment for consumers. Food Chem. 194(1), 659–670 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhong, W. et al. Health risk assessment of heavy metals in freshwater fish in the central and Eastern North China. Ecotoxicol. Environ. Saf. 157(AUG), 343–349 (2018).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Climate change increases cross-species viral transmission risk

    At least 10,000 virus species have the capacity to infect humans, but at present, the vast majority are circulating silently in wild mammals1,2. However, climate and land use change will produce novel opportunities for viral sharing among previously geographically-isolated species of wildlife3,4. In some cases, this will facilitate zoonotic spillover—a mechanistic link between global environmental change and disease emergence. Here, we simulate potential hotspots of future viral sharing, using a phylogeographic model of the mammal-virus network, and projections of geographic range shifts for 3,139 mammal species under climate change and land use scenarios for the year 2070. We predict that species will aggregate in new combinations at high elevations, in biodiversity hotspots, and in areas of high human population density in Asia and Africa, driving the novel cross-species transmission of their viruses an estimated 4,000 times. Because of their unique dispersal capacity, bats account for the majority of novel viral sharing, and are likely to share viruses along evolutionary pathways that will facilitate future emergence in humans. Surprisingly, we find that this ecological transition may already be underway, and holding warming under 2 °C within the century will not reduce future viral sharing. Our findings highlight an urgent need to pair viral surveillance and discovery efforts with biodiversity surveys tracking species’ range shifts, especially in tropical regions that harbor the most zoonoses and are experiencing rapid warming. More

  • in

    The rising moon promotes mate finding in moths

    The moon increases mate finding in mothsTo investigate the impact of natural and artificial light sources on mate finding, we analyzed flight behavior in male moths, which were reliably attracted by caged virgin females (see Materials and Methods for details). Since we used these females specifically to exploit their attraction effect, we refer to them as ‘traps’ in the following. To establish a choice scenario (see below), males were released equidistantly from the traps, which were located north and south of the core release site in central Germany. Besides the stars, the moon creates the natural light environment that moths might use for visual orientation. We therefore first tested if the moon affects mate finding. We found that the percentage of males arriving within the experimental time (8 min from release, 58.6% of flights) at a trap increased significantly with the appearance of the moon (logistic regression: z = −2.06, p = 0.04, n = 58) and did not depend on the presence of clouds in front of the moon (z = −0.83, p = 0.406, n = 58). A few males reached the females later during the experimental night (13.8% of flights) and were released again on the next day. Some males never reached a trap and could therefore not be tested again in the next days (27.6% of flights). Furthermore, the time that successful males needed to reach a trap was significantly influenced by the height of the moon above or below the horizon (Fig.1; Cox PH survival model, z = 2.46, p = 0.014, n = 34): the higher the moon was above the horizon, the faster males were able to locate and reach the females. The presence of clouds in front of the moon did not play a significant role in this context either (z = −0.65, p = 0.519, n = 34), leading to the conclusion that the moon was equally well perceived if covered partly by clouds and used for effective orientation towards the females. Although the lunar phase changed during the period of the experiment from full moon to new moon, flight duration was not significantly affected by the percentage of the lit moon disk (z = 0.44, p = 0.66, n = 34). Thus, the properties of the moon that affected the flight duration of males were independent of the lunar phase.Fig. 1: Expected flight duration of a moth.Flight duration (black line) was calculated as the median flight duration predicted by the Cox PH model (p = 0.014, n = 34) for arrivals within 8 minutes after release and averaged over all individuals. Circles represent the actual measured values. Dashed lines indicate the confidence interval of the predicted duration at α = 5% level estimated by bootstrapping (5000 replicates).Full size imageIt is important to emphasize that the results were not significantly affected by traits on the individual level like body size or origin of the animal (see Supplementary Results and Discussion for details). Furthermore, a possible learning effect of animals that were released more than once was not detectable since flight duration did not decrease depending on ‘experience’ but only with the elevation of the moon (Fig. S1). Thus, the moon as an easily perceivable orientation cue increased mate finding in general but also depended on its elevation. Despite two exceptions of long flight durations at moon elevations > 20° that go back to the same animal probably for individual reasons (Fig. S1), the variance in flight duration was highest at low moon elevations (Fig. 1). This relatively high variance at low moon elevations emphasizes the question if artificial lights affected mate finding, particularly whenever the moon as a natural light cue was not yet prominent.Linking flight behavior to the light environmentWe used a calibrated digital all-sky camera to track changes in the natural and artificial components of the night sky brightness24 (Fig. 2 a–c). A similar camera system was recently used to study dung beetle behavior21. Although the impact of light pollution on the site was not strong, the night sky was also not completely pristine. Luminance (LVv) values were about 0.34 mcd/m² at zenith and 1.6 mcd/m² near the horizon under clear sky conditions when the moon was not visible. A natural (unpolluted) sky brightness is 0.25 mcd/m² at zenith and can be used as the reference value “Natural Sky Unit” (NSU) for easy comparison (see also Materials and Methods). The analysis of specific sky sectors revealed that the moon was the strongest factor determining the ambient brightness, brightening every sector of the sky as soon as it appeared above the horizon (Fig. 2d). During observation times, the course of the moon mainly progressed through the eastern part of the sky, affecting particularly the LvV values in the corresponding sectors (Fig. 2d). Furthermore, light conditions never corresponded to a non-light polluted sky, as NSU values were always greater than one. Most sectors in the south, west and north (sectors seven to 12 and one) were hardly subjected to fluctuations. Nevertheless, it is recognizable that the moon made a decisive contribution to the light environment in all directions since images with the moon above the horizon were always brighter than those with the moon below the horizon (Fig. 2d).Fig. 2: Quantification of the light environment with all-sky imagery and its impact on flight behavior of moths.a Raw RGB all-sky image with clear sky and a visible moon 26° above the horizon at 119° azimuth angle, South-east (24 July 2019, 03:23). b Same image as in a with processed luminance values. c Processed all-sky image in luminance with clear sky, a visible milky way (green patches in a ‘ribbon-shape’ across the (blue) night sky), skyglow near the horizon, and a non-visible moon 0° above the horizon at 87° azimuth angle, East (24 July 2019, 0:25). The colors of the processed image correspond to the legend in b. The black lines mark the sky segments used to quantify the light environment. The outer ring covers 5° above the horizon (85°−90° zenith angle), the inner ring 20° above the outer ring (65°−85° zenith angle). Furthermore, the sky was divided into 12 sectors of 30° width along the azimuth direction (extension by dashed line), starting with the sector marked with the small circle (counting clockwise). d Luminance in natural sky units (NSU) for each full sector of 30°. The moon icons indicate sectors in which the moon was visible, regardless of its phase. The size of each symbol encodes the rank of the frequency (n = 33). e Trap choice of arrived males depending on the position of the moon at the moment of release on the north-south axis (north = 0°). The y-axis displays choice of the southern trap at 0.0 and of the northern trap at 1.0. p = 0.022, n = 42. f Male moth affinity to northern trap in response to the direction of maximum luminance measured in the outer ring of 5°. Each circle indicates an observed arrival, p = 0.753, n = 41. g Male moth affinity to northern trap as in f but with luminance measured in the inner ring of 20°, p = 0.065, n = 41. e–g The line represents the prediction of the logistic model, providing a probability value for arriving at the northern trap (north prone = 1; south prone = 0). Dashed lines indicate the confidence interval of the prediction at α = 5% level estimated by bootstrapping (5000 replicates).Full size imageDue to the design of the experiment with one trap located in the north and the other in the south of a central release site, we were able to investigate the choice behavior of males, especially in respect of the possible influence of the cardinal position of the moon as it was almost exclusively visible in the southern hemisphere of the sky (Fig. 2d). Although the moon continued to move south during the night, the moon’s cardinal position never overlapped with the exact direction of the southern trap. The only parameter that had a significant effect on choice behavior was indeed the cardinal position of the moon (Fig. 2e, logistic regression, z = −2.3, p = 0.022, n = 42). The more southern the moon’s position was, the more likely males flew to the southern trap. However, while some clouds in front of the moon had no significant effect on choice behavior (z = 0, p = 1, n = 42), moon above the horizon showed a tendency to affect males (z = −1.82, p = 0.069, n = 42). The results indicate that despite the general increase of ambient brightness by the moon, it is its position that mainly influenced the flight direction of males. Thus, moths preferred a flight direction with the prominent compass cue ahead to steer their flight towards the females but it is important to emphasize that moon and trap had an angular difference of at least 23° (80.8° to the moon’s mean cardinal direction). Therefore, males that chose to fly towards the southern trap did not fly directly towards the direction of the moon.As the moon represents a natural distant light source, we tested whether distant artificial light sources or skyglow might elicit a comparable effect on the behavior of male moths and if such light sources might mask the moon. To evaluate the light environment with regards to these aspects, we defined sky segments of particular interest that occurred due to the location of the experimental field (Fig. 2c). For each arrival at a trap, the brightest sector of the environment was determined and placed on a north-south axis of maximum 180 degrees (Fig. 2f, g). If we look at the brightest sector of the environment and distinguish between the area close to the horizon, i.e. “outer ring” (Fig. 2f) and the one above, i.e. “inner ring” (Fig. 2g), we can observe differences in trap choice. The line indicates the logistic regression model and provides the probability of arriving at the northern trap. For the Lv in the area close to the horizon no effect of maximum Lv on trap choice could be found (logistic regression, z = 0.31, p = 0.753, n = 41). For the segment further above the horizon the probability of flying to the southern trap increased with maximum Lv but the results are marginally not significant (z = −1.85, p = 0.065, n = 41). Our results for trap selection indicate that distant artificial lights of the surroundings did not attract males and support the hypothesis that the moon, once it appears above the horizon and stands out from the general light (pollution) near the horizon (above five degrees), is used as an effective visual cue with moths rather flying towards than away from.Digital cameras are suitable to measure the dynamics of night-time lighting conditions25,26, and allow researchers to track changes in artificial lighting conditions and brightness of the sky simultaneously27. However, it is not straightforward to distinguish between ALAN and natural light sources like the moon with luminance images when the moon is close to the horizon and thus in the section of the sky where most light pollution occurred. Yet, once the moon rose higher than 5° and thus stood out distinctly from the light-polluted horizon, it could be clearly identified on the images (Fig. 2b). In this context, it is particularly remarkable that the speed at which the females were reached increased reliably only above a similar threshold (Fig. 1), with the only exceptions of two flights with long durations at a moon elevation greater than 20° (Fig. 1); both flights originated from the same individual (Fig. S1). Thus, the high variance of flight durations at low moon elevations (Fig. 1) supports our hypothesis that the moon, as an orientation cue, can be masked by artificial light for the animals as well. Yet, this hypothesis needs to be explicitly tested in future experiments. In general, the possible consequences of light pollution are still uncertain28, especially because the amount of artificial light emitted during the night continues to increase exponentially worldwide18. But regardless of this, the moon is the decisive orientation cue as soon as it is visibly silhouetted against the horizon despite possible diffuse light pollution.Another interesting next research project would be to investigate the relevance of polarized light, as this could provide an explanation for the occasional fast flights at times of low lunar elevations (cf. Figure 1). Furthermore, it might explain why flight duration was not significantly affected by clouds in front of the moon since the polarization pattern extends over the whole sky and is therefore not shielded completely by scattered clouds29. For dung beetles it has been already shown that they are capable of using the polarization signal for navigation16,30,31 and it has been proposed that moths might be capable of utilizing the same signal32. At the same time, it has already been demonstrated that urban skyglow can diminish the lunar polarization signal33, making a detailed investigation of the interplay between these two factors and the significance for moth orientation particularly exciting to understand underlying mechanisms.Our results confirm that moths use the moon as an orientation cue, supporting the notion of Vickers & Baker34 that pheromones alone are not sufficient for successful (and fast) orientation. Since flight duration decreased as a function of lunar elevation, we conclude that the moon contributes to mating success, especially when it can be easily perceived. Since nocturnal landscapes around the world have been drastically restructured in terms of light intensity and light spectrum due to the rapid spread and increase of electrical lighting18, a deeper understanding of orientation mechanisms even in the absence of the moon as an easily perceivable cue could provide a valuable contribution to counteract insect decline. More