Africans and Europeans differ in their facial perception of dominance and sex-typicality: a multidimensional Bayesian approach
de Waal-Andrews, W., Gregg, A. P. & Lammers, J. When status is grabbed and when status is granted: Getting ahead in dominance and prestige hierarchies. Br. J. Soc. Psychol. 54, 445–464 (2015).PubMed
Google Scholar
Mileva, V. R., Cowan, M. L., Cobey, K. D., Knowles, K. K. & Little, A. C. In the face of dominance: Self-perceived and other-perceived dominance are positively associated with facial-width-to-height ratio in men. Pers. Individ. Dif. 69, 115–118 (2014).
Google Scholar
Quist, M. C., Watkins, C. D., Smith, F. G., DeBruine, L. M. & Jones, B. C. Facial masculinity is a cue to women’s dominance. Pers. Individ. Dif. 50, 1089–1093 (2011).
Google Scholar
Gallup, A. C., O’Brien, D. T., White, D. D. & Wilson, D. S. Handgrip strength and socially dominant behavior in male adolescents. Evol. Psychol. 8, 229–243 (2010).PubMed
Google Scholar
Toscano, H., Schubert, T. W. & Sell, A. N. Judgments of dominance from the face track physical strength. Evol. Psychol. 12, 1–18 (2014).PubMed
Google Scholar
Toscano, H., Schubert, T. W., Dotsch, R., Falvello, V. & Todorov, A. Physical strength as a cue to dominance: A data-driven approach. Personal. Soc. Psychol. Bull. 42, 1603–1616 (2016).
Google Scholar
Kordsmeyer, T. L., Freund, D., van Vugt, M. & Penke, L. Honest signals of status: Facial and bodily dominance are related to success in physical but not nonphysical competition. Evol. Psychol. 17, 147470491986316 (2019).
Google Scholar
Han, C. et al. Interrelationships among men’s threat potential, facial dominance, and vocal dominance. Evol. Psychol. 15, 1–4 (2017).
Google Scholar
Sell, A. et al. Human adaptations for the visual assessment of strength and fighting ability from the body and face. Proc. R. Soc. B Biol. Sci. 276, 575–584 (2009).
Google Scholar
Kleisner, K., Kočnar, T., Rubešová, A. & Flegr, J. Eye color predicts but does not directly influence perceived dominance in men. Pers. Individ. Dif. 49, 59–64 (2010).
Google Scholar
Windhager, S., Schaefer, K. & Fink, B. Geometric morphometrics of male facial shape in relation to physical strength and perceived attractiveness, dominance, and masculinity. Am. J. Hum. Biol. 23, 805–814 (2011).PubMed
Google Scholar
Albert, G., Wells, E., Arnocky, S., Liu, C. H. & Hodges-Simeon, C. R. Observers use facial masculinity to make physical dominance assessments following 100-ms exposure. Aggress. Behav. https://doi.org/10.1002/ab.21941 (2020).Article
PubMed
Google Scholar
Batres, C., Re, D. E. & Perrett, D. I. Influence of perceived height, masculinity, and age on each other and on perceptions of dominance in male faces. Perception 44, 1293–1309 (2015).PubMed
Google Scholar
Boothroyd, L. G., Jones, B. C., Burt, D. M. & Perrett, D. I. Partner characteristics associated with masculinity, health and maturity in male faces. Pers. Individ. Dif. 43, 1161–1173 (2007).
Google Scholar
Main, J. C., Jones, B. C., DeBruine, L. M. & Little, A. C. Integrating gaze direction and sexual dimorphism of face shape when perceiving the dominance of others. Perception 38, 1275–1283 (2009).PubMed
Google Scholar
Van Dongen, S. & Sprengers, E. Hand grip strength in relation to morphological measures of masculinity, fluctuating asymmetry and sexual behaviour in males and females. Sex Horm. https://doi.org/10.5772/25880 (2012).Article
Google Scholar
Fink, B., Neave, N. & Seydel, H. Male facial appearance signals physical strength to women. Am. J. Hum. Biol. 19, 82–87 (2007).PubMed
Google Scholar
Little, A. C., Třebický, V., Havlíček, J., Roberts, S. C. & Kleisner, K. Human perception of fighting ability: Facial cues predict winners and losers in mixed martial arts fights. Behav. Ecol. 26, 1470–1475 (2015).
Google Scholar
Law, S. M. J. et al. Facial appearance is a cue to oestrogen levels in women. Proc. Biol. Sci. 273, 135–140 (2006).
Google Scholar
Probst, F., Bobst, C. & Lobmaier, J. S. Testosterone-to-estradiol ratio is associated with female facial attractiveness. Q. J. Exp. Psychol. 69, 89–99 (2016).
Google Scholar
Marečková, K. et al. Testosterone-mediated sex differences in the face shape during adolescence: Subjective impressions and objective features. Horm. Behav. 60, 681–690 (2011).PubMed
Google Scholar
Whitehouse, A. J. O. et al. Prenatal testosterone exposure is related to sexually dimorphic facial morphology in adulthood. Proc. R. Soc. B Biol. Sci. 282, 78–94 (2015).
Google Scholar
Kordsmeyer, T. L., Freund, D., Pita, S. R., Jünger, J. & Penke, L. Further evidence that facial width-to-height ratio and global facial masculinity are not positively associated with testosterone levels. Adapt. Hum. Behav. Physiol. 5, 117–130 (2019).
Google Scholar
Chiu, H. T., Shih, M. T. & Chen, W. L. Examining the association between grip strength and testosterone. Aging Male 3, 1–8 (2019).
Google Scholar
Hirschberg, A. L. et al. Effects of moderately increased testosterone concentration on physical performance in young women: A double blind, randomised, placebo controlled study. Br. J. Sports Med. 3, 1–7. https://doi.org/10.1136/bjsports-2018-100525 (2019).Article
Google Scholar
Finkelstein, J. S. et al. Gonadal steroids and body composition, strength, and sexual function in men. N. Engl. J. Med. 369, 1011–1022 (2013).CAS
PubMed
PubMed Central
Google Scholar
van Bokhoven, I. et al. Salivary testosterone and aggression, delinquency, and social dominance in a population-based longitudinal study of adolescent males. Horm. Behav. 50, 118–125 (2006).PubMed
Google Scholar
Carré, J. M. & Olmstead, N. A. Social neuroendocrinology of human aggression: Examining the role of competition-induced testosterone dynamics. Neuroscience 286, 171–186 (2015).PubMed
Google Scholar
Lefevre, C. E., Etchells, P. J., Howell, E. C., Clark, A. P. & Penton-Voak, I. S. Facial width-to-height ratio predicts self-reported dominance and aggression in males and females, but a measure of masculinity does not. Biol. Lett. 10, 20140729 (2014).PubMed
PubMed Central
Google Scholar
Alrajih, S. & Ward, J. Increased facial width-to-height ratio and perceived dominance in the faces of the UK’s leading business leaders. Br. J. Psychol. 105, 153–161 (2014).PubMed
Google Scholar
Watkins, C. D., Jones, B. C. & DeBruine, L. M. Individual differences in dominance perception: Dominant men are less sensitive to facial cues of male dominance. Pers. Individ. Dif. 49, 967–971 (2010).
Google Scholar
Wang, X., Guinote, A. & Krumhuber, E. G. Dominance biases in the perception and memory for the faces of powerholders, with consequences for social inferences. J. Exp. Soc. Psychol. 78, 23–33 (2018).
Google Scholar
de Carrito, M. L. et al. The role of sexually dimorphic skin colour and shape in attractiveness of male faces. Evol. Hum. Behav. 37, 125–133 (2016).
Google Scholar
Stephen, I. D., Oldham, F. H., Perrett, D. I. & Barton, R. A. Redness enhances perceived aggression, dominance and attractiveness in men’s faces. Evol. Psychol. 10, 562–572 (2012).PubMed
Google Scholar
Stephen, I. D. & Perrett, D. I. Color and face perception. in Handbook of Color Psychology (eds. Elliot, A. J., Fairchild, M. D. & Franklin, A.) 585–602 (Cambridge University Press, 2016). https://doi.org/10.1017/cbo9781107337930.029.Carrito, M. L. & Semin, G. R. When we don’t know what we know–Sex and skin color. Cognition 191, 103972 (2019).PubMed
Google Scholar
Said, C. P. & Todorov, A. A statistical model of facial attractiveness. Psychol. Sci. 22, 1183–1190 (2011).PubMed
Google Scholar
Mitteroecker, P., Windhager, S., Møller, G. B. & Schaefer, K. The morphometrics of ‘masculinity’ in human faces. PLoS One 10, e0118374 (2015).PubMed
PubMed Central
Google Scholar
Sanchez-Pages, S., Rodriguez-Ruiz, C. & Turiegano, E. Facial masculinity: How the choice of measurement method enables to detect its influence on behaviour. PLoS One 9, 10078 (2014).
Google Scholar
Scott, I. M. L., Pound, N., Stephen, I. D., Clark, A. P. & Penton-Voak, I. S. Does masculinity matter? The contribution of masculine face shape to male attractiveness in humans. PLoS One 5, e13585 (2010).ADS
PubMed
PubMed Central
Google Scholar
Rennels, J. L., Bronstad, P. M. & Langlois, J. H. Are attractive men’s faces masculine or feminine ? The importance of type of facial stimuli. J. Exp. Psychol. Hum. Percept. Perform. 34, 884–893 (2008).PubMed
Google Scholar
Swaddle, J. P. & Reierson, G. W. Testosterone increases perceived dominance but not attractiveness in human males. Proc. R. Soc. B Biol. Sci. 269, 2285–2289 (2002).CAS
Google Scholar
Hester, N., Jones, B. C. & Hehman, E. Perceived femininity and masculinity contribute independently to facial impressions. J. Exp. Psychol. Gen. https://doi.org/10.1037/xge0000989 (2020).Article
PubMed
Google Scholar
Howansky, K., Albuja, A. & Cole, S. Seeing Gender: Perceptual Representations of Transgender Individuals. Soc. Psychol. Personal. Sci. 11, 474–482 (2020).
Google Scholar
Kleisner, K. et al. How and why patterns of sexual dimorphism in human faces vary across the world. Sci. Rep. 7, 10048 (2021).
Google Scholar
Kleisner, K. et al. African and European perception of African female attractiveness. Evol. Hum. Behav. 38, 744–755 (2017).
Google Scholar
Strom, M. A., Zebrowitz, L. A., Zhang, S., Bronstad, P. M. & Lee, H. K. Skin and bones: The contribution of skin tone and facial structure to racial prototypicality ratings. PLoS One 7, e41193 (2012).ADS
CAS
PubMed
PubMed Central
Google Scholar
Coetzee, V., Greeff, J. M., Stephen, I. D. & Perrett, D. I. Cross-cultural agreement in facial attractiveness preferences: The role of ethnicity and gender. PLoS One 9, 1700 (2014).
Google Scholar
Henrich, J., Heine, S. J. & Norenzayan, A. Most people are not WEIRD. Nature 466, 29–29 (2010).ADS
CAS
PubMed
Google Scholar
Třebický, V., Fialová, J., Kleisner, K. & Havlíček, J. Focal length affects depicted shape and perception of facial images. PLoS One 11, e0149313 (2016).PubMed
PubMed Central
Google Scholar
Nábělková, M. Closely-related languages in contact: Czech, Slovak, “Czechoslovak”. Int. J. Soc. Lang. 183, 53–73 (2007).
Google Scholar
Dixson, B. J. Facial width to height ratio and dominance. Encycl. Evol. Psychol. Sci. https://doi.org/10.1007/978-3-319-16999-6 (2017).Article
Google Scholar
Geniole, S. N. & McCormick, C. M. Facing our ancestors: Judgements of aggression are consistent and related to the facial width-to-height ratio in men irrespective of beards. Evol. Hum. Behav. 36, 279–285 (2015).
Google Scholar
Třebický, V. et al. Further evidence for links between facial width-to-height ratio and fighting success: Commentary on Zilioli et al. (2014). Aggress. Behav. 41, 331–334 (2015).PubMed
Google Scholar
McLaren, K. The development of the CIE 1976 (L*a*b*) uniform colour space and colour-difference formula. J. Soc. Dye. Colour. 92, 338–341 (1976).
Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS
PubMed
PubMed Central
Google Scholar
Coetzee, V. et al. African perceptions of female attractiveness. PLoS ONE 7, 3–8 (2012).
Google Scholar
Webster, M. & Sheets, H. D. A practical introduction to landmark-based geometric morphometrics. Paleontol. Soc. Pap. 16, 163–188 (2010).Kleisner, K., Pokorný, Š & Saribay, S. A. Toward a new approach to cross-cultural distinctiveness and typicality of human faces: The cross-group typicality/ distinctiveness metric. Front. Psychol. 10, 124 (2019).PubMed
PubMed Central
Google Scholar
Bookstein, F. L. Biometrics, biomathematics and the morphometric synthesis. Bull. Math. Biol. 58, 313–365 (1996).CAS
PubMed
MATH
Google Scholar
Rohlf, F. J. The tps series of software. Hystrix 26, 1–4 (2015).
Google Scholar
Adams, D. C. & Otárola-Castillo, E. Geomorph: An r package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).
Google Scholar
R Core Team. R: A language and environment for statistical computing. (2021).Revelle, W. psych: Procedures for Personality and Psychological Research. (2018).Shrout, P. E. & Fleiss, J. L. Intraclass correlations: uses in assessing rater reliability. Psychol. Bull. 86, 420–428 (1979).CAS
PubMed
Google Scholar
McElreath, R. rethinking: Statistical Rethinking book package. R package version 2.13. (2020).Stan Development Team. RStan: The R interface to Stan. R package version 2.21.2. (2020).Rhodes, G. The evolutionary psychology of facial beauty. Annu. Rev. Psychol. 57, 199–226 (2006).PubMed
Google Scholar
Voegeli, R. et al. Cross-cultural perception of female facial appearance: A multi-ethnic and multi-centre study. PLoS ONE 16, 8–12 (2021).
Google Scholar
Kočnar, T., Adil Saribay, S. & Kleisner, K. Perceived attractiveness of Czech faces across 10 cultures: Associations with sexual shape dimorphism, averageness, fluctuating asymmetry, and eye color. PLoS One 14, e0225549 (2019).Pavlovič, O., Fiala, V. & Kleisner, K. Environmental convergence in facial preferences: A cross-group comparison of Asian Vietnamese, Czech Vietnamese, and Czechs. Sci. Rep. 11, 1–10 (2021).
Google Scholar
Gonzalez-Santoyo, I. et al. The face of female dominance: Women with dominant faces have lower cortisol. Horm. Behav. 71, 16–21 (2015).CAS
PubMed
Google Scholar
Perrett, D. I. et al. Effects of sexual dimorphism on facial attractiveness. Nature 394, 884–887 (1998).ADS
CAS
PubMed
Google Scholar
Saribay, S. A. et al. The Bogazici face database: Standardized photographs of Turkish faces with supporting materials. PLoS One 13, 10058 (2018).
Google Scholar
Alharbi, S. A. H., Holzleitner, I. J., Lee, A. J., Saribay, S. A. & Jones, B. C. Women’s preferences for sexual dimorphism in faces: Data from a sample of arab women. Evol. Psychol. Sci. 6, 328–334 (2020).
Google Scholar
Jones, B. C. et al. To which world regions does the valence–dominance model of social perception apply?. Nat. Hum. Behav. 5, 159–169 (2021).PubMed
Google Scholar
Sutherland, C. A. M. et al. Facial first impressions across culture: Data-driven modeling of Chinese and British perceivers’ unconstrained facial impressions. Personal. Soc. Psychol. Bull. 44, 521–537 (2017).
Google Scholar
Marcinkowska, U. M. et al. Cross-cultural variation in men’s preference for sexual dimorphism in women’s faces. Biol. Lett. 10, 4–7 (2014).
Google Scholar
Marcinkowska, U. M. et al. Women’s preferences for men’s facial masculinity are strongest under favorable ecological conditions. Sci. Rep. 9, 1–10 (2019).CAS
Google Scholar
Todorov, A., Olivola, C. Y., Dotsch, R. & Mende-Siedlecki, P. Social attributions from faces: Determinants, consequences, accuracy, and functional significance. Annu. Rev. Psychol. 66, 519–545 (2015).PubMed
Google Scholar
Little, A. C., Jones, B. C. & Debruine, L. M. Facial attractiveness: Evolutionary based research. Philos. Trans. R. Soc. B Biol. Sci. 366, 1638–1659 (2011).Foo, Y. Z., Simmons, L. W. & Rhodes, G. Predictors of facial attractiveness and health in humans. Sci. Rep. 7, 39731 (2017).ADS
CAS
PubMed
PubMed Central
Google Scholar
Dion, K., Berscheid, E. & Walster, E. What is beautiful is good. J. Pers. Soc. Psychol. 24, 285–290 (1972).CAS
PubMed
Google Scholar
Cheng, J. T., Tracy, J. L., Foulsham, T., Kingstone, A. & Henrich, J. Two ways to the top: Evidence that dominance and prestige are distinct yet viable avenues to social rank and influence. J. Pers. Soc. Psychol. 104, 103–125 (2013).PubMed
Google Scholar
van den Berghe, P. L. & Frost, P. Skin color preference, sexual dimorphism and sexual selection: A case of gene culture co-evolution?. Ethn. Racial Stud. 9, 87–113 (1986).
Google Scholar
Fink, B. et al. Colour homogeneity and visual perception of age, health and attractiveness of male facial skin. J. Eur. Acad. Dermatology Venereol. 26, 1486–1492 (2012).CAS
Google Scholar
Gallagher, N. M. & Bodenhausen, G. V. Gender essentialism and the mental representation of transgender women and men: A multimethod investigation of stereotype content. Cognition 217, 104887 (2021).Fiala, V. et al. Facial attractiveness and preference of sexual dimorphism: A comparison across five populations. Evol. Hum. Sci. 3, e38 (2021). More