More stories

  • in

    Greenhouse gas emissions rise due to tillage

    Globally, agriculture represents a substantial contributor to net greenhouse gas (GHG) emissions (c. 25%)1, and accounts for at least 10% of all GHG emissions in the United States2. To address the current climate emergency, agriculture remains a key player, with substantial potential to contribute to the solution. Reduced tillage as part of a ‘conservation agriculture’ approach is considered an important way of achieving this and is gaining popularity globally. Leaving the soil uncultivated, also referred to as zero or no tillage (that is, not ploughing), has been shown to offer considerable benefits for the ‘health’ of soil, including improved soil structure, a thriving soil faunal community (for example, earthworms) and, potentially, sequestration of carbon3. It has recently been shown, for temperate arable systems, that there is potential for a substantial (up to 30%) reduction in GHG emissions by simply moving to direct drilling, as the resulting changes in the soil structure help reduce GHG emissions4. Minimizing tillage also dramatically cuts the diesel consumption linked to crop production. However, there are negatives associated with this reductionist approach, most notably the proliferation of weed plant species that have traditionally been controlled via the implementation of tillage. More

  • in

    Anthropogenic disruptions to longstanding patterns of trophic-size structure in vertebrates

    Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).Article 

    Google Scholar 
    Price, S. A. & Hopkins, S. S. B. The macroevolutionary relationship between diet and body mass across mammals. Biol. J. Linn. Soc. Lond. 115, 173–184 (2015).Article 

    Google Scholar 
    Hiiemae, K. M. in Feeding: Form, Function, and Evolution in Tetrapod Vertebrates (ed. Schwenk, K.) 411–448 (Academic Press, 2000).Pineda-Munoz, S., Evans, A. R. & Alroy, J. The relationship between diet and body mass in terrestrial mammals. Paleobiology 42, 659–669 (2016).Article 

    Google Scholar 
    Clauss, M., Steuer, P., Müller, D. W. H., Codron, D. & Hummel, J. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS ONE 8, e68714 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jarman, P. J. The Effect of the Creation of Lake Kariba upon the Terrestrial Ecology of the Middle Zambezi Valley, with Particular References to the Large Mammals. PhD thesis, Univ. of Manchester (1968).Bell, R. H. V. A grazing ecosystem in the Serengeti. Sci. Am. 225, 86–93 (1971).Article 

    Google Scholar 
    Belovsky, G. E. Optimal foraging and community structure: the allometry of herbivore food selection and competition. Evol. Ecol. 11, 641–672 (1997).Article 

    Google Scholar 
    Carbone, C., Mace, G. M., Roberts, S. C. & Macdonald, D. W. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Carbone, C., Teacher, A. & Rowcliffe, J. M. The costs of carnivory. PLoS Biol. 5, e22 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peters, R. H. The Ecological Implications of Body Size (Cambridge Univ. Press, 1983).Burness, G. P., Diamond, J. & Flannery, T. Dinosaurs, dragons, and dwarfs: the evolution of maximal body size. Proc. Natl Acad. Sci. USA 98, 14518–14523 (2001).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bergmann, C. Über die Verhältnisse der Wärmeökonomie der Thiere zu ihrer Grösse (Vandenhoeck & Ruprecht Verlage, 1848).Gearty, W., McClain, C. R. & Payne, J. L. Energetic tradeoffs control the size distribution of aquatic mammals. Proc. Natl Acad. Sci. USA 115, 4194–4199 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gearty, W. & Payne, J. L. Physiological constraints on body size distributions in Crocodyliformes. Evolution 74, 245–255 (2020).Article 
    PubMed 

    Google Scholar 
    Tucker, M. A. & Rogers, T. L. Examining predator–prey body size, trophic level and body mass across marine and terrestrial mammals. Proc. Biol. Sci. 281, 20142103 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Archibald, J. D. Extinction and Radiation: How the Fall of the Dinosaurs Led to the Rise of Mammals (The Johns Hopkins Univ. Press, 2011).Ripple, W. J. et al. Extinction risk is most acute for the world’s largest and smallest vertebrates. Proc. Natl Acad. Sci. USA 114, 10678–10683 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alroy, J. Cope’s rule and the dynamics of body mass evolution in North American fossil mammals. Science 280, 731–734 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Smith, F. A. et al. The evolution of maximum body size of terrestrial mammals. Science 330, 1216–1219 (2010).CAS 
    Article 
    PubMed 

    Google Scholar 
    Smith, F. A., Smith, R. E. E., Lyons, S. K. & Payne, J. L. Body size downgrading of mammals over the Late Quaternary. Science 360, 310–313 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alroy, J. The fossil record of North American mammals: evidence for a Paleocene evolutionary radiation. Syst. Biol. 48, 107–118 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Slater, G. J. Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous-Palaeogene boundary. Methods Ecol. Evol. 4, 734–744 (2013).Article 

    Google Scholar 
    Tucker, M. A., Ord, T. J. & Rogers, T. L. Evolutionary predictors of mammalian home range size: body mass, diet and the environment. Glob. Ecol. Biogeogr. 23, 1105–1114 (2014).Article 

    Google Scholar 
    Slater, G. J., Goldbogen, J. A. & Pyenson, N. D. Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proc. Biol. Sci. 284, 20170546 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Bojarska, K. & Selva, N. Spatial patterns in brown bear Ursus arctos diet: the role of geographical and environmental factors. Mamm. Rev. 42, 120–143 (2012).Article 

    Google Scholar 
    Virgós, E. et al. Body size clines in the European badger and the abundant centre hypothesis. J. Biogeogr. 38, 1546–1556 (2011).Article 

    Google Scholar 
    Lyons, S. K., Smith, F. A. & Brown, J. H. Of mice, mastodons and men: human-mediated extinctions on four continents. Evol. Ecol. Res. 6, 339–358 (2004).
    Google Scholar 
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the causes of late Pleistocene extinctions on the continents. Science 306, 70–75 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Blois, J. L. & Hadly, E. A. Mammalian response to Cenozoic climatic change. Annu. Rev. Earth Planet. Sci. 37, 181–208 (2009).CAS 
    Article 

    Google Scholar 
    Tomašových, A. & Kidwell, S. M. Fidelity of variation in species composition and diversity partitioning by death assemblages: time-averaging transfers diversity from beta to alpha levels. Paleobiology 35, 94–118 (2009).Article 

    Google Scholar 
    Bakker, E. S. et al. Combining paleo-data and modern exclosure experiments to assess the impact of megafauna extinctions on woody vegetation. Proc. Natl Acad. Sci. USA 113, 847–855 (2016).Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. Proc. Natl Acad. Sci. USA 113, 838–846 (2016).Pires, M. M., Guimarães, P. R., Galetti, M. & Jordano, P. Pleistocene megafaunal extinctions and the functional loss of long-distance seed-dispersal services. Ecography 41, 153–163 (2018).Article 

    Google Scholar 
    Doughty, C. E. et al. Global nutrient transport in a world of giants. Proc. Natl Acad. Sci. USA 113, 868–873 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Enquist, B. J., Abraham, A. J., Harfoot, M. B. J., Malhi, Y. & Doughty, C. E. The megabiota are disproportionately important for biosphere functioning. Nat. Commun. 11, 699 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Estes, J. A., Heithaus, M., McCauley, D. J., Rasher, D. B. & Worm, B. Megafaunal impacts on structure and function of ocean ecosystems. Annu. Rev. Environ. Resour. 41, 83–116 (2016).Article 

    Google Scholar 
    Bellwood, D. R., Hoey, A. S. & Choat, J. H. Limited functional redundancy in high diversity systems: resilience and ecosystem function on coral reefs. Ecol. Lett. 6, 281–285 (2003).Article 

    Google Scholar 
    Leip, A. et al. Impacts of European livestock production: nitrogen, sulphur, phosphorus and greenhouse gas emissions, land-use, water eutrophication and biodiversity. Environ. Res. Lett. 10, 115004 (2015).Article 
    CAS 

    Google Scholar 
    Smith, D., King, R. & Allen, B. L. Impacts of exclusion fencing on target and non-target fauna: a global review. Biol. Rev. Camb. Philos. Soc. 95, 1590–1606 (2020).Article 
    PubMed 

    Google Scholar 
    Galetti, M. et al. Ecological and evolutionary legacy of megafauna extinctions. Biol. Rev. 93, 845–862 (2018).Article 
    PubMed 

    Google Scholar 
    Sandom, C. J. et al. Learning from the past to prepare for the future: felids face continued threat from declining prey. Ecography 41, 140–152 (2018).Article 

    Google Scholar 
    Zavaleta, E. et al. Ecosystem responses to community disassembly. Ann. N. Y. Acad. Sci. 1162, 311–333 (2009).Article 
    PubMed 

    Google Scholar 
    Hoy, S. R., Peterson, R. O. & Vucetich, J. A. Climate warming is associated with smaller body size and shorter lifespans in moose near their southern range limit. Glob. Change Biol. 24, 2488–2497 (2018).Article 

    Google Scholar 
    Peralta-Maraver, I. & Rezende, E. L. Heat tolerance in ectotherms scales predictably with body size. Nat. Clim. Change 11, 58–63 (2020).Article 

    Google Scholar 
    Smith, F. A. et al. Unraveling the consequences of the terminal Pleistocene megafauna extinction on mammal community assembly. Ecography 39, 223–239 (2016).Article 

    Google Scholar 
    Cooke, R. S. C., Eigenbrod, F. & Bates, A. E. Projected losses of global mammal and bird ecological strategies. Nat. Commun. 10, 2279 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, F. A., Elliott Smith, R. E., Lyons, S. K., Payne, J. L. & Villaseñor, A. The accelerating influence of humans on mammalian macroecological patterns over the Late Quaternary. Quat. Sci. Rev. 211, 1–16 (2019).Article 

    Google Scholar 
    Middleton, O. S., Scharlemann, J. P. W. & Sandom, C. J. Homogenization of carnivorous mammal ensembles caused by global range reductions of large-bodied hypercarnivores during the Late Quaternary. Proc. Biol. Sci. 287, 20200804 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Pimiento, C. et al. Functional diversity of marine megafauna in the Anthropocene. Sci. Adv. 6, eaay7650 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2021).Schreiber, E. A. & Burger, J. Biology of Marine Birds (CRC Press, 2001).Cooke, R. S. C., Bates, A. E. & Eigenbrod, F. Global trade-offs of functional redundancy and functional dispersion for birds and mammals. Glob. Ecol. Biogeogr. 28, 484–495 (2019).Article 

    Google Scholar 
    Jones, K. E. et al. PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals. Ecology 90, 2648 (2009).Article 

    Google Scholar 
    Pacifici, M. et al. Generation length for mammals. Nat. Conserv. 5, 89–94 (2013).Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    Myhrvold, N. P. et al. An amniote life-history database to perform comparative analyses with birds, mammals, and reptiles. Ecology 96, 3109 (2015).Article 

    Google Scholar 
    Atwood, T. B. et al. Herbivores at the highest risk of extinction among mammals, birds, and reptiles. Sci. Adv. 6, eabb8458 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, G. J. & Stuart-Smith, R. D. Systematic global assessment of reef fish communities by the Reef Life Survey program. Sci. Data 1, 140007 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pineda-Munoz, S. & Alroy, J. Dietary characterization of terrestrial mammals. Proc. Biol. Sci. 281, 20141173 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Holm, S. A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6, 65–70 (1979).
    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51, 933–938 (2001).Article 

    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: a bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).Article 

    Google Scholar 
    Kidwell, S. M. & Flessa, K. W. The quality of the fossil record: populations, species, and communities. Annu. Rev. Earth Planet. Sci. 24, 433–464 (1996).CAS 
    Article 

    Google Scholar 
    Miller, J. H. et al. Ecological fidelity of functional traits based on species presence–absence in a modern mammalian bone assemblage (Amboseli, Kenya). Paleobiology 40, 560–583 (2014).Article 

    Google Scholar 
    Smith, F. A. et al. Similarity of mammalian body size across the taxonomic hierarchy and across space and time. Am. Nat. 163, 672–691 (2004).Article 
    PubMed 

    Google Scholar 
    Andermann, T., Faurby, S., Cooke, R., Silvestro, D. & Antonelli, A. iucn_sim: a new program to simulate future extinctions based on IUCN threat status. Ecography 44, 162–176 (2021).Article 

    Google Scholar 
    Mooers, A., Faith, D. P. & Maddison, W. P. Converting endangered species categories to probabilities of extinction for phylogenetic conservation prioritization. PLoS ONE 3, e3700 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koch, P. L. & Barnosky, A. D. Late Quaternary extinctions: state of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250 (2006).Article 

    Google Scholar 
    Clauset, A. & Erwin, D. H. The evolution and distribution of species body size. Science 321, 399–401 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Clauss, M. et al. The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters. Oecologia 136, 14–27 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alexander, R. M. All-time giants: the largest animals and their problems. Palaeontology 41, 1231–1245 (1998).
    Google Scholar 
    Dobson, G. P. On being the right size: heart design, mitochondrial efficiency and lifespan potential. Clin. Exp. Pharmacol. Physiol. 30, 590–597 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Blackburn, T. M., Gaston, K. J. & Loder, N. Geographic gradients in body size: a clarification of Bergmann’s rule. Divers. Distrib. 5, 165–174 (1999).Article 

    Google Scholar  More

  • in

    Emerging weed resistance increases tillage intensity and greenhouse gas emissions in the US corn–soybean cropping system

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).US Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2018 (EPA, 2020).Lu, C. et al. Century‐long changes and drivers of soil nitrous oxide (N2O) emissions across the contiguous United States. Glob. Chang. Biol. https://doi.org/10.1111/gcb.16061 (2022).Article 

    Google Scholar 
    Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).CAS 
    Article 

    Google Scholar 
    2004 National Crop Residue Management Survey (Conservation Technology Information Center, 2004); www.ctic.purdue.eduClaassen, R., Bowman, M., Wallander, J., David, M. & Steven, S. Tillage Intensity and Conservation Cropping in the United States, EIB-197 (United States Department of Agriculture, Economic Research Service, 2018).Grant, R. F. Changes in soil organic matter under different tillage and rotation: mathematical modeling in ecosystems. Soil Sci. Soc. Am. J. 61, 1159–1175 (1997).CAS 
    Article 

    Google Scholar 
    Claassen, R., Langpap, C. & Wu, J. Impacts of federal crop insurance on land use and environmental quality. Am. J. Agric. Econ. 99, 592–613 (2017).Article 

    Google Scholar 
    Davis, A. S. Cover-crop roller–crimper contributes to weed management in no-till soybean. Weed Sci. 58, 300–309 (2010).CAS 
    Article 

    Google Scholar 
    Pittelkow, C. M. et al. Nitrogen management and methane emissions in direct-seeded rice systems. Agron. J. 106, 968–980 (2014).CAS 
    Article 

    Google Scholar 
    Weber, J. F., Kunz, C., Peteinatos, G. G., Zikeli, S. & Gerhards, R. Weed control using conventional tillage, reduced tillage, no-tillage, and cover crops in organic soybean. Agric 7, 43 (2017).
    Google Scholar 
    Triplett, G. B. & Dick, W. A. No-tillage crop production: a revolution in agriculture!. Agron. J. 100, 153–165 (2008).Article 

    Google Scholar 
    Wade, T., Claassen, R. & Wallander, S. Conservation-Practice Adoption Rates Vary Widely by Crop and Region, EIB-147, 40 (United States Department of Agriculture, Economic Research Service, 2015).Perry, E. D., Ciliberto, F., Hennessy, D. A. & Moschini, G. Genetically engineered crops and pesticide use in US maize and soybeans. Sci. Adv. https://doi.org/10.1126/sciadv.1600850 (2016).Article 

    Google Scholar 
    Heap, I. & Duke, S. O. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Science 74, 1040–1049 (2018).CAS 
    Article 

    Google Scholar 
    Owen, M. D. K. Diverse approaches to herbicide-resistant weed management. Weed Sci. 64, 570–584 (2016).Article 

    Google Scholar 
    Van Deynze, B., Swinton, S. M. & Hennessy, D. A. Are glyphosate-resistant weeds a threat to conservation agriculture? Evidence from tillage practices in soybeans. Am. J. Agric. Econ. https://doi.org/10.1111/ajae.12243 (2021).Eagle, A. et al. Greenhouse Gas Mitigation Potential of Agricultural Land Management in the United States. A Synthesis of the Literature (Technical Working Group on Agricultural Greenhouse Gases, 2010).Parton, W. J. et al. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000. Proc. Natl. Acad. Sci. USA 112, E4681–E4688 (2015).CAS 
    Article 

    Google Scholar 
    Stevanović, M. et al. Mitigation strategies for greenhouse gas emissions from agriculture and land-use change: consequences for food prices. Environ. Sci. Technol. 51, 365–374 (2017).Article 

    Google Scholar 
    Glenk, K., Eory, V., Colombo, S. & Barnes, A. Adoption of greenhouse gas mitigation in agriculture: an analysis of dairy farmers’ perceptions and adoption behaviour. Ecol. Econ. 108, 49–58 (2014).Article 

    Google Scholar 
    Galik, C., Murray, B. & Parish, M. Near-term pathways for achieving forest and agricultural greenhouse gas mitigation in the US Climate 5, 69 (2017).Article 

    Google Scholar 
    Pape, D. et al. Managing Agricultural Land for Greenhouse Gas Mitigation within the United States (ICF/USDA, 2016); https://www.usda.gov/sites/default/files/documents/White_Paper_WEB71816.pdfCooper, H. V., Sjögersten, S., Lark, R. M. & Mooney, S. J. To till or not to till in a temperate ecosystem? Implications for climate change mitigation. Environ. Res. Lett. 16, 054022 (2021).CAS 
    Article 

    Google Scholar 
    Baker, N. T. Tillage Practices in the Conterminous United States, 1989–2004—Datasets Aggregated by Watershed (No. 573), U.S. Geological Survey, 2011; https://pubs.usgs.gov/ds/ds573/pdf/dataseries573final.pdfPrice, A. et al. Glyphosate-resistant Palmer amaranth: a threat to conservation agriculture. J. Soil Water Conserv. 66, 265–275 (2011).Article 

    Google Scholar 
    Livingston, M., Fernandez-Cornejo, J. & Frisvold, G. B. Economic returns to herbicide resistance management in the short and long run: the role of neighbor effects. Weed Sci. 64, 595–608 (2016).Article 

    Google Scholar 
    Cao, P., Lu, C. & Yu, Z. Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850–2015: application rate, timing, and fertilizer types. Earth Syst. Sci. Data 10, 969–984 (2018).Article 

    Google Scholar 
    US Greenhouse Gas Emissions and Sinks, 1990–2016, Epa 430-R-18-003 (EPA, 2018).Deng, Q. et al. Assessing the impacts of tillage and fertilization management on nitrous oxide emissions in a cornfield using the DNDC model. J. Geophys. Res. Biogeosciences https://doi.org/10.1002/2015JG003239 (2016).Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).CAS 
    Article 

    Google Scholar 
    Yu, Z., Lu, C., Cao, P. & Tian, H. Long-term terrestrial carbon dynamics in the Midwestern United States during 1850–2015: roles of land use and cover change and agricultural management. Glob. Chang. Biol. 12, 3218–3221 (2018).
    Google Scholar 
    Lu, C. et al. Increasing carbon footprint of grain crop production in the US western Corn Belt. Environ. Res. Lett. 13, 124007 (2018).CAS 
    Article 

    Google Scholar 
    Wimberly, M. C. et al. Cropland expansion and grassland loss in the eastern Dakotas: new insights from a farm-level survey. Land Use Policy 63, 160–173 (2017).Article 

    Google Scholar 
    Adler, P. R., Del Grosso, S. J. & Parton, W. J. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol. Appl. 17, 675–691 (2007).Article 

    Google Scholar 
    Halvorson, A. D., Schweissing, F. C., Bartolo, M. E. & Reule, C. A. Corn response to nitrogen fertilization in a soil with high residual nitrogen. Agron. J. 97, 1222–1229 (2005).Article 

    Google Scholar 
    Al-Kaisi, M. M., Archontoulis, S. V., Kwaw-Mensah, D. & Miguez, F. Tillage and crop rotation effects on corn agronomic response and economic return at seven Iowa locations. Agron. J. 107, 1411–1424 (2015).Article 

    Google Scholar 
    Jarecki, M. et al. Long-term trends in corn yields and soil carbon under diversified crop rotations. J. Environ. Qual. 47, 635–643 (2018).CAS 
    Article 

    Google Scholar 
    Gelfand, I. et al. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Proc. Natl Acad. Sci. USA 108, 13864–13869 (2011).CAS 
    Article 

    Google Scholar 
    West, T. O. & Post, W. M. Soil organic carbon sequestration rates by tillage and crop rotation. Soil Sci. Soc. Am. J. 66, 1930–1946 (2002).CAS 
    Article 

    Google Scholar 
    Ogle, S. M. et al. Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Glob. Chang. Biol. 16, 810–822 (2010).Article 

    Google Scholar 
    Al-Kaisi, M. M., Yin, X. & Licht, M. A. Soil carbon and nitrogen changes as influenced by tillage and cropping systems in some Iowa soils. Agric. Ecosyst. Environ. 105, 635–647 (2005).CAS 
    Article 

    Google Scholar 
    Perry, E. D., Moschini, G. C. & Hennessy, D. A. Testing for complementarity: glyphosate tolerant soybeans and conservation tillage. Am. J. Agric. Econ. https://doi.org/10.1093/ajae/aaw001 (2016).Perry, E. D., Hennessy, D. A. & Moschini, G. C. Product concentration and usage: behavioral effects in the glyphosate market. J. Econ. Behav. Organ. 158, 543–559 (2019).Article 

    Google Scholar 
    Yu, Z. & Lu, C. Historical cropland expansion and abandonment in the continental US during 1850 to 2016. Glob. Ecol. Biogeogr. 27, 322–333 (2018).Article 

    Google Scholar 
    Yu, Z., Lu, C., Tian, H. & Canadell, J. G. Largely underestimated carbon emission from land use and land cover change in the conterminous US. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14768 (2019).Yu, Z., Lu, C., Hennessy, D. A., Feng, H. & Tian, H. Impacts of tillage practices on soil carbon stocks in the US corn–soybean cropping system during 1998 to 2016. Environ. Res. Lett. 15, 014008 (2020).CAS 
    Article 

    Google Scholar 
    Liu, M. et al. Long-term trends in evapotranspiration and runoff over the drainage basins of the Gulf of Mexico during 1901–2008. Water Resour. Res. 49, 1988–2012 (2013).Article 

    Google Scholar 
    Lu, C. & Tian, H. Net greenhouse gas balance in response to nitrogen enrichment: perspectives from a coupled biogeochemical model. Glob. Chang. Biol. 19, 571–588 (2013).Article 

    Google Scholar 
    Tian, H. et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531, 225–228 (2016).CAS 
    Article 

    Google Scholar 
    Chen, G. et al. Drought in the southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Clim. Change 114, 379–397 (2012).CAS 
    Article 

    Google Scholar 
    Lu, C. et al. Effect of nitrogen deposition on China’s terrestrial carbon uptake in the context of multifactor environmental changes. Ecol. Appl. 22, 53–75 (2012).Article 

    Google Scholar 
    Ren, W. et al. Spatial and temporal patterns of CO2 and CH4 fluxes in China’s croplands in response to multifactor environmental changes. Tellus 63, 222–240 (2011).CAS 
    Article 

    Google Scholar 
    Tian, H. et al. Net exchanges of CO2, CH4, and N2O between China’s terrestrial ecosystems and the atmosphere and their contributions to global climate warming. J. Geophys. Res. Biogeosci. 116, 1–13 (2011).
    Google Scholar 
    Ren, W., Tian, H., Tao, B., Huang, Y. & Pan, S. China’s crop productivity and soil carbon storage as influenced by multifactor global change. Glob. Chang. Biol. 18, 2945–2957 (2012).Article 

    Google Scholar 
    Residue Management Choices: A Guide to Managing Crop Residues in Corn and Soybeans (USDA Natural Resources Conservation Service and University of Wisconsin, 2019). More

  • in

    Impacts of climate change on reproductive phenology in tropical rainforests of Southeast Asia

    Data collection of flowering and fruiting phenologyMonthly reproductive phenology data recorded over 35 years (from April 1976 to September 2010) were collected from the Bulletin Fenologi Biji Benih dan Anak Benih (Bulletin of Seed and Seedling Phenology), which was deposited at the FRIM library. The bulletin reported seed and seedling availabilities and the flowering and fruiting phenology of trees at several research stations in Malaysia. The present study collected flowering and fruiting records of trees grown in FRIM arboretums located approximately 12 km northwest of Kuala Lumpur, Malaysia (latitude 3°24 ‘N, longitude 101°63 ‘E, elevation 80 m). There are both dipterocarp and non-dipterocarp arboretums in FRIM, both of which were founded in 1929. These arboretums preserve and maintain living trees for research and other purposes. Each month, three research staff members of FRIM with sufficient phenology monitoring training made observations with binoculars to record the presence of flowers and fruits on trees of each species on the forest floor from April 1976 to September 2010. The phenological status of the trees was recorded as flowering during the developmental stages from flower budding to blooming and as fruiting during the developmental stages from the occurrence of immature fruit to fruit ripening. Because only one or two individuals per species are grown at the FRIM arboretums, the flowering and fruiting phenology were monitored using these individuals. The resultant flowering and fruiting phenology data included a time series of binary data (1 for presence and 0 for absence) with a length of 417 months.The original data included 112 dipterocarp and 240 non-dipterocarp species. We excluded 17 dipterocarps and 125 non-dipterocarp species based on the following five criteria for data accuracy.

    1.

    Percentage of missing values is ≤50%: If the monthly flowering or fruiting phenology data of a species included a substantially large number of missing values ( >50%), the species was excluded.

    2.

    Stable flowering period: We considered an observation to be unreliable if the flowering period was significantly different among flowering events (if the coefficient of variation in the flowering period was larger or equal to 1.0).

    3.

    Flowering period is shorter than or equal to 12 months: we considered an observation to be unreliable if the flowering period was longer than 12 months because it was unlikely that the same tree would flower continuously for longer than 1 year.

    4.

    The flowering and fruiting frequencies were not significantly different between the first and second half of the census period: when the flowering frequency was zero for the first half of the observation period but was larger than 0.1 for the second half of the observation period, or when the flowering frequency was zero for the second half of the observation period but was larger than 0.1 for the first half of the observation period, we removed these species because data are not reliable (e.g., physiological conditions may have changed significantly). We adopted the same criteria for the fruiting phenology data.

    5.

    We removed overlapping species, herb species, and specimens with unknown species names.

    After removing unreliable species based on the five criteria explained above, we obtained 95 dipterocarp and 115 non-dipterocarp species (Supplementary Data 1). We used these species for further analyses. It is unlikely that our final data includes trees that were replaced by young trees during the census period because newly planted seedlings do not flower over 20–30 years until they are fully grown to the reproductive stage ( >20–30 cm DBH)45.Detection of seasonality in reproductive phenologyTo compare the flowering and fruiting phenology seasonality among different families, nine families that included at least five species were used. The number of flowering or fruiting events was counted for each month from January to December during a census, and then the frequency distribution was drawn as a histogram. Similarly, we also generated a histogram for the seed dispersal month, which was calculated as the month when fruiting ended (i.e., when the binary fruiting phenology data changed from one to zero).Classification of phenological patternsTo classify the phenological patterns, we performed time-series clustering using the R package TSclust46 with the hierarchical clustering method based on the Dynamic Time Warping distance of the flowering phenology data of each species. For this analysis, time points at which there were missing values for at least one species were excluded. Because of the large number of missing values in non-Dipterocarpaceae species, we performed time-series clustering only for the Dipterocarpaceae species based on 394 time points in total. The number of phenological clusters was estimated based on AIC, as explained below.Climate dataDaily minimum, mean, and maximum temperatures and precipitation data monitored at the FRIM KEPONG (3° 14’ N, 101° 42’ E, elevation 97 m) weather station were provided by the Malaysian Meteorological Department. We used the daily minimum temperature for our analysis because there were fewer missing values compared to the numbers of missing daily mean and daily maximum temperature values. The periods in which climate data were available were from 1 March 1973 to 31 March 1996, and from 23 July 1997 to 20 April 2005. We removed periods in which there were missing values spanning longer than 5 days. When the range of missing values spanned a period shorter than 3 days, we approximated these missing values using the mean minimum temperatures recorded on the adjacent three days. Although solar radiation data were not available for our study, the use of precipitation is sufficient for model fitting because there is a significant negative correlation between solar radiation and precipitation in Southeast Asia47.Climate data generated by GCMsAs the future climate inputs, we used bias-corrected climate input data from 1 January 2050 to 31 December 2099, with a daily temporal resolution and a 0.5° spatial resolution, provided by the ISI-MIP project48; these data are based on the Coupled Model Intercomparison Project Phase 5 outputs from three GCMs: GFDL–ESM2M, IPSL–CM5A-LR, and MIROC5. To compare the flowering phenology between 1976–1996 and 2050–2099, bias-corrected GCM data from 1 May 1976 to 31 March 1996, were also used. This period (1 May 1976–31 March 1996) is consistent with the period used for model fitting. We selected daily minimum temperature and precipitation time series from the 0.5° grid cells corresponding to the study site for phenology monitoring at FRIM. To compare flowering phenology among regions, we also used the same set of data from three other regions in Southeast Asia: Trang Province in Thailand (7° 4’ N, 99° 47’ E), Lambir Hills National Park in Malaysia (4° 2’ N, 113° 50’ E), and central Kalimantan in Indonesia (0° 06’ S, 114° 0’ E). Because the study site in FRIM was not in the center of a 0.5° grid cell, we interpolated the data using four grid cells in the vicinity of the observation site. We used the weighted average according to the distance between each observation site and the center of each corresponding grid cell.Although the climate input data provided by ISI-MIP were already bias-corrected, we conducted additional bias correction at FRIM using a historical scenario for each GCM data set and the observed weather data from 1 January 1976 to 31 December 2004 based on previously presented protocol49. We did not implement any bias correction for the frequency of dry days or precipitation intensity of wet days49 because we only focused on the average precipitation.The variances in the annual fluctuation of the monthly mean precipitation were not the same between the observation data and historical GCM runs at FRIM. For all three GCMs (GFDL–ESM2M, IPSL–CM5A-LR, and MIROC5), the variances in the yearly fluctuation output by the GCMs tended to be larger than that of the observed data at the FRIM KEPONG weather station during winter and spring. On the other hand, during summer and fall, the variances output by the GCMs tended to be smaller than that of the observed data. These biases could not be corrected using the previous method49. Therefore, we conducted the following bias correction for these data:$${p}_{i,m,y}^{{{{{{rm{GCM}}}}}}* }={r}_{i,m,y}^{{{{{{rm{GCM}}}}}}}cdot left[{F}_{Gamma }^{-1}left({F}_{Gamma }left({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}|{k}_{m,y},{theta }_{m,y}right)|{k}_{m,y}^{* },{theta }_{m,y}^{* }right)cdot {rho }_{m,y}^{{{{{{rm{GCM}}}}}}}right],$$
    (1)
    where ({p}_{i,m,y}^{{{{{{rm{GCM}}}}}}* }) is the bias-corrected precipitation value of the target GCM at year y, month m, and date i. In the equation, ({r}_{i,m,y}^{{{{{{rm{GCM}}}}}}}) is the ratio of the precipitation value of the GCM relative to the monthly mean value. Then, the following equation is used:$${r}_{i,m,y}^{{{{{{rm{GCM}}}}}}}=frac{{p}_{i,m,y}^{{{{{{rm{GCM}}}}}}}}{{bar{p}}_{m,y}^{{{{{{rm{GCM}}}}}}}},$$
    (2)
    where ({p}_{i,m,y}^{{{{{{rm{GCM}}}}}}}) is the precipitation value (not bias-corrected) of the GCM at year (y), month (m), and date i and ({bar{p}}_{m,y}^{{{{{{rm{GCM}}}}}}}) is the monthly mean precipitation value of the GCM at year (y) and month (m). In Eq. 1, ({F}_{Gamma }) represents the cumulative distribution function of a gamma distribution, ({F}_{Gamma }^{-1}) represents the inverse function of the cumulative distribution function of the gamma distribution, and ({k}_{m,y}) and ({theta }_{m,y}) are the shape parameters. In Eq. 1, ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) indicates the deviation of the monthly mean from the normal climate value of the corresponding period, and this value is calculated as follows:$${delta }_{m,y}^{{{{{{rm{GCM}}}}}}}=frac{{bar{p}}_{m,y}^{{{{{{rm{GCM}}}}}}}}{{rho }_{m,y}^{{{{{{rm{GCM}}}}}}}},$$
    (3)
    where ({rho }_{m,y}^{{{{{{rm{GCM}}}}}}}) is the normal climate value during the target period. In this method, we defined the normal climate value as the mean of the monthly mean precipitation values over 31 years.$${rho }_{m,y}^{{{{{{rm{GCM}}}}}}}=frac{1}{31}mathop{sum }limits_{j=y-15}^{y+15}{bar{p}}_{m,j}^{{{{{{rm{GCM}}}}}}}.$$
    (4)
    When the mean of a gamma distribution is fixed at one, the shape parameters are represented as follows:$${k}_{m,y}=frac{1}{Vleft({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}right)},$$
    (5)
    $${theta }_{m,y}=frac{1}{{k}_{m,y}},$$
    (6)
    where (Vleft({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}right)) indicates the variance in ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) at month (m) over 31 years.In this method, we assumed that the ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) value follows a gamma distribution and that the ratio of the variance of ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) to the variance of ({delta }_{m,y}^{{{{{{rm{obs}}}}}}}) is maintained even in the future scenario. Here, ({delta }_{m,y}^{{{{{{rm{obs}}}}}}}) represents the deviation of the monthly mean in the observation data from the normal climate value.$${delta }_{m,y}^{{{{{{rm{obs}}}}}}}=frac{{bar{p}}_{m,y}^{{{{{{rm{obs}}}}}}}}{{rho }_{m}^{{{{{{rm{obs}}}}}}}},$$
    (7)
    $${rho }_{m}^{{{{{{rm{obs}}}}}}}=frac{1}{28}mathop{sum }limits_{j=1976}^{2004}{bar{p}}_{m,y}^{{{{{{rm{obs}}}}}}}.$$
    (8)
    In the above equations, ({bar{p}}_{m,y}^{{{{{{rm{obs}}}}}}}) indicates the monthly mean precipitation value in the observed data. As mentioned above, because we assume that the ratio of the variance in ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) to the variance in ({delta }_{m,y}^{{{{{{rm{obs}}}}}}}) is maintained, ({k}_{m,y}^{* }) and ({theta }_{m,y}^{* }) are calculated as follows:$${k}_{m,y}^{* }=frac{{k}_{m,y}}{alpha },$$
    (9)
    $${theta }_{m,y}^{* }=frac{1}{{k}_{m,y}^{* }},$$
    (10)
    where$$alpha =frac{Vleft({delta }_{m,y}^{{{{{{{rm{GCM}}}}}}}^{{{{{{rm{h}}}}}}}}right)}{Vleft({delta }_{m,y}^{{{{{{rm{obs}}}}}}}right)}.$$
    (11)
    In Eq. 11, ({delta }_{m,y}^{{{{{{{rm{GCM}}}}}}}^{{{{{{rm{h}}}}}}}}) is the deviation of the monthly mean of the historical GCM precipitation data from the normal climate value. Here, we defined the normal climate value as the average monthly mean during 1976–2004.The method proposed here is an original bias correction method, but the above equations are easily derived if we assume that the ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) value follows a gamma distribution and that the ratio of the variance in ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) to the variance in ({delta }_{m,y}^{{{{{{rm{obs}}}}}}}) is maintained even in the future scenario. Notably, because we combined this method with the bias correction method described previously49, Eq. 2 should be expressed as follows:$${r}_{i,m,y}^{{{{{{rm{GCM}}}}}}}=frac{{widetilde{p}}_{l,m,y}^{{{{{{rm{GCM}}}}}}}}{{bar{p}}_{m,y}^{{{{{{rm{GCM}}}}}}}},$$
    (12)
    where ({widetilde{p}}_{l,m,y}^{{{{{{rm{GCM}}}}}}}) is the precipitation data that are bias-corrected using the method described previously49. Bias-corrected data were compared with the data without bias correction (Supplementary Figs. 8–11).Statistical analyses and reproducibilityWe adopted previously presented models in which environmental triggers for floral induction accumulate for n1 days prior to the onset of floral induction21 (Supplementary Fig. 2). Flowers then develop for n2 days before opening (Supplementary Fig. 2). The model assumption of the time lag between floral induction and anthesis, which is denoted as n2, was validated by a previous finding in which the expression peaks of flowering-time genes, which are used as molecular markers of floral induction, were shown to occur at least one month before anthesis in Shorea curtisii19. S. curtissi is included in our data set. The CU at time t, ({{{{{rm{CU}}}}}}left(t|{theta }^{C}right)), is calculated as follows:$${{{{{rm{CU}}}}}}left(t|{theta }^{C}right)=mathop{sum }limits_{n={n}_{2}}^{{n}_{2}+{n}_{1}-1}{{{{{rm{max }}}}}}{bar{C}-xleft(t-nright),0},$$
    (13)
    where ({theta }^{C}=left{{n}_{1},{n}_{2},bar{C}right}) is the set of parameters and x(t) is the temperature at time t. Here, (bar{C}) indicates the threshold temperature. The term max{x1, x2} is a function that returns a larger value for the two arguments. Similarly, given ({theta }^{D}={{n}_{1},{n}_{2},bar{D}},) the DU at time t, ({{{{{rm{DU}}}}}}left(t|{theta }^{D}right)), is defined as the difference between the mean daily accumulation of rainfall over n1 days and a threshold rainfall level ((bar{D})):$${{{{{rm{DU}}}}}}left(t|{theta }^{D}right)={{{{{rm{max }}}}}}left{bar{D}-mathop{sum }limits_{n={n}_{2}}^{{n}_{2}+{n}_{1}-1}yleft(t-nright)/{n}_{1},0right},$$
    (14)
    where y(t) is the rainfall value at time t. The term max{x1, x2} is defined similarly as in Eq. 13.Logistic regression was performed using only the DU and using the product of CU and DU (CU × DU) as the explanatory variables and using the presence or absence of a first flowering event as the dependent variable for each phenological cluster. Because the number of phenological clusters is unknown, we performed forward selection on the cluster number based on the AIC. Let m be the number of phenological clusters based on the dendrogram drawn from the time-series clustering explained above (Supplementary Fig. 5). Given m phenological clusters, let ({G}_{k}^{m}) be the kth set of clusters in which the DU model is adopted for model fitting. Here, ({G}_{k}^{m}) indicates the set of cluster IDs, and k ranges from 0 to m(m+1)/2. For example, when m = 2 (i.e., there are two clusters, clusters 1 and 2), there are four cluster sets, calculated as follows:$${G}_{0}^{m=2}={},{G}_{1}^{m=2}={1},{G}_{2}^{m=2}={2},{G}_{3}^{m=2}={1,2},$$
    (15)
    where the element in the bracket indicates the ID of the cluster in which the DU model is adopted for model fitting. When k = 0, the DU model is not used; instead, the CU × DU model is adopted for model fitting for both clusters 1 and 2. Let i be the ith element of the vector E, which is defined as follows:$${{{{{bf{E}}}}}}={{t}_{1}^{1},,{t}_{2}^{1},…,,,{t}_{n}^{1},,…,,,{t}_{1}^{m},,{t}_{2}^{m},…,,{t}_{n}^{m}},$$
    (16)
    where n is the length of the time-series data for each cluster. Notably, n = 223 is the same for all species and clusters. The term ({t}_{1}^{m}) in the above equation denotes the first time point of the time series of length n for the species included in cluster m. Given m and k, let ({p}^{(m,k)}(i)) be the flowering probability of element i of vector E. The term ({p}^{(m,k)}(i)) is expressed as follows:$${{log }}left[frac{{p}^{left(m,kright)}left(iright)}{1-{p}^{left(m,kright)}left(iright)}right]= mathop{sum }limits_{j=1}^{m}{alpha }_{m,j}cdot {Z}_{m,j}left(iright)+mathop{sum }limits_{jin {G}_{k}^{left(mright)}}^{m}{beta }_{m,j}cdot {Z}_{m,j}left(iright)cdot {{{{{{rm{DU}}}}}}}_{m,j}left(i|{theta }_{j}^{D}right)\ +mathop{sum }limits_{jnotin {G}_{k}^{left(mright)}}^{m}{beta }_{m,j}cdot {Z}_{m,j}left(iright)cdot {{{{{rm{CU}}}}}}left(i|{theta }_{j}^{C}right)times {{{{{{rm{DU}}}}}}}_{m,j}left(i|{theta }_{j}^{D}right),$$
    (17)
    where ({Z}_{m,j}(i)) is the dummy variable indicating a cluster for i; ({Z}_{m,j}(i)) equals 1 if the ith element of E belongs to the jth cluster, otherwise it is zero, and ({alpha }_{m,j}) and ({beta }_{m,j}) in Eq. (5) are regression coefficients for the jth cluster when the species are grouped into m clusters. We estimate the parameters and the number of clusters based on a finite number of observations. Given the number of clusters m, for each of m clusters, the parameters were estimated by maximizing the loglikelihood value calculated for all combinations of potential parameter values for ({n}_{1},{n}_{2},bar{C},) and (bar{D}) within the ranges of [1 (min), 50 (max)] for n1, [1,50] for n2, [19,25] for (bar{C}), and [1,9] for (bar{D}). We varied the days (n1 and n2) by integers, temperature ((bar{C})) by tenths of a degree C, and daily precipitation ((bar{D})) by tenths of a mm. Regression coefficients (({alpha }_{m,j}), ({beta }_{m,j})) for all j values under a given m value and associated likelihoods were determined using generalized linear models with binomial error structures.With the results of the parameter estimations, we determined the number of clusters in two steps. For the first step, for a given m, we obtained (hat{k}(m)) according to the following equation:$$hat{k}(m)={arg }mathop{{min }}limits_{k}{{{{{{rm{AIC}}}}}}{m,k(m)},,k(m),=,0,,…,{2}^{m}}.$$
    (18)
    For the second step, with the results of (hat{k}) obtained from the first step, we obtained the estimate of the number of clusters according to forward selection by searching for the (hat{m}) value that satisfies the following inequalities:$${{{{{rm{AIC}}}}}}(hat{m},,hat{k}(hat{m})), < ,{{{{{rm{AIC}}}}}}(hat{m}+1,,hat{k}(hat{m}+1))cap {{{{{rm{AIC}}}}}}(hat{m},,hat{k}(hat{m})), < ,{{{{{rm{AIC}}}}}}(hat{m}-1,,hat{k}(hat{m}-1)).$$ (19) For model fitting, the first flowering month was extracted from the flowering phenology data. When flowering lasted more than 1 month, the month after the first flowering month was replaced by a value of zero (absence of flowering). If the month before the first flowering month was a missing value, the first flowering month was treated as a missing value and was not used for further analyses. We assumed that phenology monitoring was performed on the first date of each month.Projections of 21st-century changes in flowering phenologyWe used two scenarios (RCP2.6 and RCP8.5) to forecast future reproductive phenology in dipterocarp species for each of the three GCMs (GFDL–ESM2M, IPSL–CM5A-LR, and MIROC5). We predicted the flowering probability per month for each phenological cluster during the periods from 1 May 1976–31 March 1996 and from 1 January 2050–31 December 2099 based on the best model (Supplementary Table 2). The predicted flowering probability during the 2050–2099 period was normalized to that during the 1976–1996 period for each climate scenario and for each of three GCMs. To compare the seasonal patterns between 1976–1996 and 2050–2099, the predicted flowering probability was averaged for each month from January to December and plotted for each month in Fig. 6. R version 3.6.3 was used for all analyses.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Agriculture and climate change are reshaping insect biodiversity worldwide

    Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl Acad. Sci. USA 115, E10397–E10406 (2018).CAS 
    Article 

    Google Scholar 
    Soroye, P., Newbold, T. & Kerr, J. Climate change contributes to widespread declines among bumble bees across continents. Science 367, 685–688 (2020).CAS 
    Article 

    Google Scholar 
    Outhwaite, C. L., Gregory, R. D., Chandler, R. E., Collen, B. & Isaac, N. J. B. Complex long-term biodiversity change among invertebrates, bryophytes and lichens. Nat. Ecol. Evol. 4, 384–392 (2020).Article 

    Google Scholar 
    Crossley, M. S. et al. No net insect abundance and diversity declines across US long term ecological research sites. Nat. Ecol. Evol. 4, 1368–1376 (2020).Article 

    Google Scholar 
    Janzen, D. H. & Hallwachs, W. To us insectometers, it is clear that insect decline in our Costa Rican tropics is real, so let’s be kind to the survivors. Proc. Natl Acad. Sci. USA 118, e2002546117 (2021).CAS 
    Article 

    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    Article 

    Google Scholar 
    Spooner, F. E. B., Pearson, R. G. & Freeman, R. Rapid warming is associated with population decline among terrestrial birds and mammals globally. Glob. Change Biol. 24, 4521–4531 (2018).Article 

    Google Scholar 
    Powney, G. D. et al. Widespread losses of pollinating insects in Britain. Nat. Commun. 10, 1018 (2019).Article 

    Google Scholar 
    van Klink, R. et al. Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances. Science 368, 417–420 (2020).Article 

    Google Scholar 
    Yang, L. H. & Gratton, C. Insects as drivers of ecosystem processes. Curr. Opin. Insect Sci. 2, 26–32 (2014).Article 

    Google Scholar 
    Dainese, M. et al. A global synthesis reveals biodiversity-mediated benefits for crop production. Sci. Adv. 5, eaax0121 (2019).Article 

    Google Scholar 
    Halsch, C. A. et al. Insects and recent climate change. Proc. Natl. Acad. Sci. USA 118, e2002543117 (2021).CAS 
    Article 

    Google Scholar 
    Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: moth biodiversity trends are complex and heterogeneous. Proc. Natl Acad. Sci. USA 118, e2002549117 (2021).CAS 
    Article 

    Google Scholar 
    Maxwell, S. L., Fuller, R. A., Brooks, T. M. & Watson, J. E. M. Biodiversity: the ravages of guns, nets and bulldozers. Nature 536, 143–145 (2016).CAS 
    Article 

    Google Scholar 
    Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).CAS 
    Article 

    Google Scholar 
    Uhler, J. et al. Relationship of insect biomass and richness with land use along a climate gradient. Nat. Commun. 12, 5946 (2021).CAS 
    Article 

    Google Scholar 
    Oliver, T. H. & Morecroft, M. D. Interactions between climate change and land use change on biodiversity: attribution problems, risks, and opportunities. Wiley Interdiscip. Rev. Clim. Change 5, 317–335 (2014).Article 

    Google Scholar 
    Williams, J. J. & Newbold, T. Local climatic changes affect biodiversity responses to land use: a review. Divers. Distrib. 26, 76–92 (2020).Article 

    Google Scholar 
    González del Pliego, P. et al. Thermally buffered microhabitats recovery in tropical secondary forests following land abandonment. Biol. Conserv. 201, 385–395 (2016).Article 

    Google Scholar 
    Senior, R. A., Hill, J. K., González del Pliego, P., Goode, L. K. & Edwards, D. P. A pantropical analysis of the impacts of forest degradation and conversion on local temperature. Ecol. Evol. 7, 7897–7908 (2017).Article 

    Google Scholar 
    Peters, M. K. et al. Climate–land-use interactions shape tropical mountain biodiversity and ecosystem functions. Nature 568, 88–92 (2019).CAS 
    Article 

    Google Scholar 
    Mantyka-Pringle, C. S., Martin, T. G. & Rhodes, J. R. Interactions between climate and habitat loss effects on biodiversity: a systematic review and meta-analysis. Glob. Change Biol. 18, 1239–1252 (2012).Article 

    Google Scholar 
    Northrup, J. M., Rivers, J. W., Yang, Z. & Betts, M. G. Synergistic effects of climate and land-use change influence broad-scale avian population declines. Glob. Change Biol. 25, 1561–1575 (2019).Article 

    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).CAS 
    Article 

    Google Scholar 
    Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).Article 

    Google Scholar 
    Perez, T. M., Stroud, J. T. & Feeley, K. J. Thermal trouble in the tropics. Science 351, 1392–1393 (2016).CAS 
    Article 

    Google Scholar 
    Betts, M. G., Phalan, B., Frey, S. J. K., Rousseau, J. S. & Yang, Z. Old-growth forests buffer climate-sensitive bird populations from warming. Divers. Distrib. 24, 439–447 (2018).Article 

    Google Scholar 
    Hendershot, J. N. et al. Intensive farming drives long-term shifts in avian community composition. Nature 579, 393–396 (2020).CAS 
    Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685 (2012).Article 

    Google Scholar 
    Suggitt, A. J. et al. Extinction risk from climate change is reduced by microclimatic buffering. Nat. Clim. Change 8, 713–717 (2018).Article 

    Google Scholar 
    Hudson, L. N. et al. The database of the PREDICTS (Projecting Responses of Ecological Diversity in Changing Terrestrial Systems) project. Ecol. Evol. 7, 145–188 (2017).Article 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 

    Google Scholar 
    Johansson, F., Orizaola, G. & Nilsson-Örtman, V. Temperate insects with narrow seasonal activity periods can be as vulnerable to climate change as tropical insect species. Sci. Rep. 10, 8822 (2020).CAS 
    Article 

    Google Scholar 
    Hoskins, A. J. et al. Downscaling land-use data to provide global 30′′ estimates of five land-use classes. Ecol. Evol. 6, 3040–3055 (2016).Article 

    Google Scholar 
    Grab, H. et al. Agriculturally dominated landscapes reduce bee phylogenetic diversity and pollination services. Science 363, 282–284 (2019).CAS 
    Article 

    Google Scholar 
    Rusch, A. et al. Agricultural landscape simplification reduces natural pest control: a quantitative synthesis. Agric. Ecosyst. Environ. 221, 198–204 (2016).Article 

    Google Scholar 
    Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).Article 

    Google Scholar 
    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc. Natl Acad. Sci. USA. 111, 5610–5615 (2014).CAS 
    Article 

    Google Scholar 
    Balmford, A. Extinction filters and current resilience: the significance of past selection pressures for conservation biology. Trends Ecol. Evol. 11, 193–196 (1996).CAS 
    Article 

    Google Scholar 
    Garibaldi, L. A. et al. Stability of pollination services decreases with isolation from natural areas despite honey bee visits. Ecol. Lett. 14, 1062–1072 (2011).Article 

    Google Scholar 
    Carvalheiro, L. G., Seymour, C. L., Veldtman, R. & Nicolson, S. W. Pollination services decline with distance from natural habitat even in biodiversity-rich areas. J. Appl. Ecol. 47, 810–820 (2010).Article 

    Google Scholar 
    Dainese, M., Luna, D. I., Sitzia, T. & Marini, L. Testing scale-dependent effects of seminatural habitats on farmland biodiversity. Ecol. Appl. 25, 1681–1690 (2015).Article 

    Google Scholar 
    Fourcade, Y. et al. Habitat amount and distribution modify community dynamics under climate change. Ecol. Lett. 24, 950–957 (2021).Article 

    Google Scholar 
    Alexander, L. V. et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. 111, D05109 (2006).
    Google Scholar 
    Seibold, S. et al. Arthropod decline in grasslands and forests is associated with landscape-level drivers. Nature 574, 671–674 (2019).CAS 
    Article 

    Google Scholar 
    De Palma, A. et al. Dimensions of biodiversity loss: spatial mismatch in land-use impacts on species, functional and phylogenetic diversity of European bees. Divers. Distrib. 23, 1435–1446 (2017).Article 

    Google Scholar 
    Collen, B., Ram, M., Zamin, T. & McRae, L. The tropical biodiversity data gap: addressing disparity in global monitoring. Trop. Conserv. Sci. 1, 75–88 (2008).Article 

    Google Scholar 
    Menéndez, R. How are insects responding to global warming? Tijdschr. Entomol. 150, 355 (2007).
    Google Scholar 
    Bale, J. S. et al. Herbivory in global climate change research: direct effects of rising temperature on insect herbivores. Glob. Change Biol. 8, 1–16 (2002).Article 

    Google Scholar 
    Hudson, L. N. et al. The 2016 release of the PREDICTS database. Natural History Museum Data Portal, https://doi.org/10.5519/0066354 (2016).Hudson, L. N. et al. The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts. Ecol. Evol. 4, 4701–4735 (2014).Article 

    Google Scholar 
    De Palma, A. et al. Annual changes in the Biodiversity Intactness Index in tropical and subtropical forest biomes, 2001–2012. Sci. Rep. 11, 20249 (2021).Article 

    Google Scholar 
    Chao, A., Chazdon, R. L., Colwell, R. K. & Shen, T.-J. A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8, 148–159 (2005).Article 

    Google Scholar 
    Ndakidemi, B., Mtei, K. & Ndakidemi, P. A. Impacts of synthetic and botanical pesticides on beneficial insects. Agric. Sci. 07, 364–372 (2016).CAS 

    Google Scholar 
    Wang, X., Hua, F., Wang, L., Wilcove, D. S. & Yu, D. W. The biodiversity benefit of native forests and mixed‐species plantations over monoculture plantations. Divers. Distrib. 25, 1721–1735 (2019).Article 

    Google Scholar 
    Weedon, G. P. et al. The WFDEI meteorological forcing data set: WATCH Forcing Data methodology applied to ERA-Interim reanalysis data. Water Resour. Res. 50, 7505–7514 (2014).Article 

    Google Scholar 
    Warszawski, L. et al. The inter-sectoral impact model intercomparison project (ISI-MIP): project framework. Proc. Natl Acad. Sci. USA 111, 3228–3232 (2014).CAS 
    Article 

    Google Scholar 
    van Vuuren, D. P. et al. The representative concentration pathways: an overview. Clim. Change 109, 5–31 (2011).Article 

    Google Scholar 
    New, M., Hulme, M. & Jones, P. Representing twentieth-century space–time climate variability. Part I: development of a 1961–90 mean monthly terrestrial climatology. J. Clim. 12, 829–856 (1999).Article 

    Google Scholar 
    Hijmans, R. J. Raster: Geographic data analysis and modelling. R package version 2.8-42018, https://CRAN.R-project.org/package=raster (2018).Rigby, R. A., Stasinopoulos, D. M. & Akantziliotou, C. A framework for modelling overdispersed count data, including the Poisson-shifted generalized inverse Gaussian distribution. Comput. Stat. Data Anal. 53, 381–393 (2008).MathSciNet 
    Article 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar  More

  • in

    Analysis: the biodiversity footprint of the University of Oxford

    To help to achieve ecological recovery worldwide, more multinational corporations are making commitments to biodiversity conservation1–3. According to the most recent assessment in 2018, 31 of the 100 largest companies by revenue worldwide (the global Fortune 100) have done so, from the retail corporation Walmart to the insurance company AXA4.To deliver real gains — in the population sizes of endangered species, say, or in the number of hectares of restored forests, grasslands or wetlands — large organizations need to determine which of their activities have the greatest impacts on biodiversity5. And they need to disclose and mitigate those impacts. Currently, methods for doing this are lacking (see ‘Promises are hard to keep’). (By large organizations, we mean formal entities composed of hundreds of people or more that act towards a certain purpose, whether in the public, private or non-profit sectors.)
    Promises are hard to keep

    A lack of consensus on methods and metrics means companies are struggling to clearly define — and deliver on — commitments relating to biodiversity.
    So far, most studies of the environmental impacts of organizations, such as multinational corporations and universities, have focused on greenhouse-gas emissions.
    The G7 group of the world’s largest economies endorsed the new Taskforce on Nature-related Financial Disclosures (TNFD) only last year. This builds on a similar approach used for climate change — the Taskforce on Climate-related Financial Disclosures. The TNFD aims to guide organizations on how to disclose environmental harms tied to their activities, but is still being developed.
    The number of corporations making commitments to achieve ‘net gain’ or ‘no net loss’ outcomes in relation to biodiversity has risen steadily in the past two decades3. But some of these promises have subsequently been retracted. In 2016, for example, the mining corporation Rio Tinto moved away from its 2006 agenda-setting ‘net positive impact’ biodiversity commitment, reportedly to focus on minimizing impacts3 (see also go.nature.com/3xtjggo).
    Many other commitments are not quantitative. As of 2018, only 5 of the 31 global Fortune 100 companies making biodiversity-related commitments had provided ones that were SMART — specific, measurable, ambitious, realistic and time-bound4 (the global Fortune 100 is an annual list of the 100 largest firms worldwide by revenue, as ranked by Fortune magazine).
    When quantitative analyses have been done, they tend to be of limited use, mainly because of inconsistencies in the biodiversity metrics used, and limitations in the scope of the assessment made. Disclosure of results is also limited.

    When quantitative analyses have been done, a variety of metrics have been used to quantify impacts. These range from the proportion of local species that would be lost as a result of an activity, to factors such as hectares of habitat affected, or the amount of sustainably sourced paper, fish or palm oil that is used4. But the choice of metric can radically alter the results of an impact assessment, so it is difficult to compare organizations. Likewise, few analyses consider the impacts of activities that are not under the direct control of the organization, such as those associated with supply chains6.As a proof of principle, we conducted a comprehensive assessment of biodiversity losses associated with activities at the University of Oxford, UK. We used data on purchasing, travel bookings, utility bills and other information from the 2018–19 and 2019–20 academic years. The 60 activities we assessed included the day-to-day running of buildings and transport services; travel (including flights) for students and researchers; construction of laboratories and other buildings; consumption of food and beverages at restaurants and cafeterias; and use of medical supplies and other materials in research labs.Our aim was to demonstrate what it would take for a large organization such as the University of Oxford to bring about a net gain in biodiversity — meaning that, thanks to its actions, the world’s biodiversity is left in a better state than it was before. As part of our analysis, we assessed how the university’s various activities and operations also affect greenhouse-gas emissions, and how those, in turn, affect biodiversity by driving climate change.We are confident that the approach we’ve developed for Oxford could be applied more broadly. Indeed, we hope that such a well-known institution disclosing a full assessment of its biodiversity footprint will offer powerful inspiration for others. (All seven of us have a current or previous affiliation with the university.)What we didThe University of Oxford launched an ambitious environmental sustainability strategy in March 2021. Its two main goals are to achieve biodiversity net gain and net-zero carbon, both by 2035. (The latter means that the university will remove as much carbon from the atmosphere as it adds.)To understand how challenging these goals might be to fulfil, we assessed the environmental impacts of the university’s various activities. This covered all those to do with research, education and operations during an academic year for staff and students (see ‘Upstream effects’). For our purposes, operations includes the university transport fleet, consumption of departmental food and utilities, waste disposal and the operational supply chain, including for paper.

    Source: J. W. Bull et al.

    As a first step, we defined a conceptual framework to systematically categorize the environmental impacts. We grouped activities in research, education and operations according to whether they involved any of five features: travel; food; the built environment (university buildings); the natural environment (any green space or land owned by the university, including managed parks and gardens); and resource use and waste (see ‘What we left out’). Each of these is associated with five general environmental impacts: greenhouse-gas emissions, the use of land and water, and pollution of water and air.
    What we left out

    Other organizations could assess different types of impact on biodiversity.
    Our biodiversity analysis of the University of Oxford, UK, included most upstream impacts — those resulting from consumption of goods and services created outside the university, such as food or medical supplies. We excluded the downstream impacts of research and education, such as those of a discovery in gene editing or chemistry, because it would be impossible to comprehensively account for all of the environmental impacts of knowledge generation. Also not included in our analysis were the university’s 39 colleges, 6 permanent private halls and more than 260 commercial buildings. These are independent legal entities that manage sustainability issues separately.
    Other analyses in different sectors might well be able to include downstream impacts. The effects of discarded plastic bottles or clothes could be included for a soft-drinks company or clothing manufacturer, for example.

    To further categorize the environmental impacts, we assigned each activity to one of two groups: those under direct university control or influence (through staff and key contractors), and those that the university can influence only indirectly (through students and supply chains). We deemed students buying tuna sandwiches from a university-owned cafe as direct control, for instance, because the university could decide to serve only vegetarian food. However, it can influence only indirectly what happens up the supply chain, before materials are used in a research lab, for example.Using this organizational framework, we worked with administrators to obtain the relevant information, such as travel bookings for staff and students, electricity and water bills, and purchasing records for goods, services and materials used in construction projects.Next, we used various tools to convert all the activities data into estimates of ‘mid-point environmental impacts’ (amount of carbon dioxide emitted, land or water used, and air or water pollutants produced). The database Exiobase 3 is one of the most extensive sources of international supply-chain impacts worldwide7. It shows, for instance, that the roughly US$3.5 million the university spent on paper and paper products in 2019–20 contributed to atmospheric acidification by releasing 2,448 kilograms of sulfur dioxide equivalent. Similarly, the UK Higher Education Supply Chain Emissions Tool uses spending data on goods and services to estimate greenhouse-gas emissions. The roughly $23 million Oxford spent on personal computers, printers and calculators in 2019–20, for example, produced an estimated 20,105 tonnes of CO2 equivalent.We then needed to estimate the extent of biodiversity loss associated with this wide range of broad environmental impacts. So we converted the mid-point environmental impacts into ‘end-point impacts’ that are specifically concerned with biodiversity. To do this, we used an established conversion methodology called ReCiPe8. The output metric ultimately linked to each activity is based on the proportion of local species that would be lost as a result of that activity, relative to the number that exists currently (see Supplementary information for all results and conversion factors).CaveatsWe refined our methods slightly when analysing data from the 2019–20 academic year. This, combined with the disruption caused by the COVID-19 pandemic, makes it difficult to compare years. So for simplicity, we report our results only from the 2019–20 academic year.The biodiversity metric we obtain using ReCiPe is based on strong evidence: the conversion tool is derived from the results of hundreds of studies of the impacts of human pressures on biodiversity8. But, in general, we weren’t able to factor in fine-level variables, such as whether the beef steaks in a university-owned restaurant are sourced from a UK or Brazilian farm. As such, our approach is best seen as a way to evaluate relative impacts, rather than as an indicator of precise absolute impacts.This difficulty aside, it is hard to compare the impact of the University of Oxford on biodiversity with that of similarly sized organizations. As yet, and as far as we know, no other organization has comprehensively evaluated and disclosed its impact on biodiversity, and then had its assessment independently validated. (Ecologists and other stakeholders at the University of Jyväskylä in Finland have begun to explore the impacts of that university’s activities on biodiversity using a similar approach to ours.)Using the greenhouse-gas metric, however, we can compare the impacts of the University of Oxford on emissions (which are related to its impacts on biodiversity) with those of comparably sized organizations.What we foundThe absolute size of the university’s greenhouse-gas footprint is astonishingly large — comparable to that of the eastern Caribbean island nation of Saint Lucia. It is two orders of magnitude smaller than Microsoft’s greenhouse-gas footprint, but one order of magnitude larger than that of the London Stock Exchange, according to estimates publicly disclosed by those organizations.Perhaps the most striking finding in our assessment of impacts specifically on biodiversity is that most of the harms are tied to university activities that are not under its direct control. In fact, the activities with the five biggest impacts on biodiversity are (from biggest to smallest): the supply chain for research activities (such as for chemicals, medical products, organic tissue and plastics); the supply chain for the day-to-day running of buildings (for paper, information technology and so on); food consumption; electricity consumption; and the supply chain for construction. All of these activities are associated with resource use and waste, food and the built environment.

    The University of Oxford’s use of laboratory materials has a large impact on biodiversity because of the upstream supply chain.Credit: Peter Nicholls/Reuters

    In short, supplies of lab equipment have much greater impacts on biodiversity overall than do international flights, the university’s consumption of electricity or its use of construction materials. (Personal protective equipment used in the lab, for example, requires the extraction and industrial processing of hydrocarbons, often from areas that are rich in biodiversity.)This observation is in line with the results of a handful of studies that suggest that supply chains, not transport or the day-to-day running of buildings, are the main contributors to greenhouse-gas emissions for universities (see, for example, ref. 9). It also aligns with the results of assessments by the fashion giant Kering since 2012, using its Environmental Profit & Loss account — a tool designed to quantify the environmental impacts of the company’s activities. These have revealed that Kering’s procurements of commodities, such as leather, wool and metals, have much more impact on greenhouse-gas emissions, particularly on those from land use, than does the day-to-day running of its factories and offices10.Yet the sustainability strategies of large organizations typically focus not on supply chains, but on recycling, reducing the number of flights people take or the amount of electricity used11–13 (see also Nature 546, 565–567; 2017).Another important finding is the scale of intervention needed. Restoring the university’s owned land (around 1,000 hectares) to native woodland or some other natural habitat would make little difference when it comes to compensating for the impacts on biodiversity that result from just one year of activity. The university colleges own much more land than the university itself — some 50,000 hectares — but we excluded them from our analysis because they are independent legal entities that manage sustainability issues separately.Biodiversity boostHow could the university reverse the biodiversity losses stemming from its activities and operations?Here we consider three options. It could pursue its current environmental sustainability strategy. This entails (among other steps) setting quantitative targets to reduce flights, limiting consumption of all single-use products, making university-catered food vegetarian by default, and achieving 20% net gain for biodiversity in new construction projects. Alternatively, it could focus more heavily on preventing harms to biodiversity. We model a scenario in which all staff flights are prevented, all use of paper and any further construction is stopped, and the purchasing of lab materials is halved. Or the university could focus on compensating for the impacts that its activities and operations have on the planet, by taking steps to increase biodiversity in other places (see ‘Oxford’s options’).

    Source: J. W. Bull et al.

    Using the 2018–19 academic year results (selected because the COVID-19 pandemic made 2019–20 so unusual), we estimated how far these mitigation strategies might take the university towards biodiversity net gain.Our analysis indicates that the set of preventive measures proposed under the university’s environmental sustainability strategy get it about one-third of the way towards net gain. The findings also indicate that focusing mainly on the prevention of impacts is operationally unfeasible. Activities that have most effect on biodiversity, such as purchasing lab consumables, are central to the university’s existence and cannot simply stop.To achieve net gain, preventive measures, such as reducing flights and paper use, will have to be accompanied by additional and extensive actions to compensate for the remaining impacts on biodiversity.Such actions could include investing in reforestation, wetland restoration, sustainable land-management programmes and prevention of habitat loss caused by independent parties. For example, those directing the Oyu Tolgoi mining project in Mongolia are seeking to achieve biodiversity net gain by spending around 0.6% of the total project cost on actions that benefit biodiversity, such as sustainable grazing practices (see go.nature.com/3tkkbjh). Similarly, the Ambatovy metals mine in Madagascar is on course to offset its impacts on biodiverse eastern rainforests by preventing deforestation of those same habitats through small-scale agriculture14.Achieving true biodiversity net gain will require substantial offsetting that does not necessarily contribute to the university’s reductions in greenhouse-gas emissions. But whatever mix of approaches the institution pursues, it should strive for win–wins on both biodiversity and climate.Many types of action can simultaneously increase biodiversity and reduce greenhouse-gas emissions. For example, restoring mangroves in Bangladesh increased populations of wintering water birds 20-fold in just three years from 2004. And these restored mangroves can absorb carbon four times faster than land-based forests can15. But in other cases, there are trade-offs. Constructing wind turbines and solar photovoltaics to produce renewable energy, for instance, requires extensive mining of metals in places that can be rich in biodiversity16.Net gain for other organizationsOur calculations are likely to be comparable to results for other universities. In our analysis, we do not include the impacts of individual colleges. But because similar kinds of activity occur in colleges as in the rest of the university, their inclusion — or of halls of residence at other universities — is unlikely to qualitatively change our main findings. In fact, because of the colleges’ unusually large land holdings, including them would arguably result in an assessment that doesn’t so easily compare with those of other universities.Crucially, however, the analytical framework we have developed can be applied to a wide range of large organizations — whether they be universities, multinational corporations or government institutions.

    Restoring mangroves in western Bangladesh increased populations of wintering water birds, such as this oriental darter (Anhinga melanogaster).Credit: Muhammad Mostafigur Rahman/Alamy

    Governments, intergovernmental organizations and multinational corporations are increasingly recognizing that it will not be enough to simply slow the loss of the world’s biodiversity. Damaged habitats and depleted natural resources must be restored to prevent the collapse of ecosystems.Last year, the United Nations called for the urgent revival of nature in farmlands, forests and other ecosystems, declaring 2021–30 to be the Decade on Ecosystem Restoration. Later this year, at a meeting in Kunming, China, it is hoped that 196 nations will agree to the Post-2020 Global Biodiversity Framework of the Convention on Biological Diversity. Among the goals listed in the draft document are a “net gain in the area, connectivity and integrity of natural systems of at least 5 per cent”17.We urge all large organizations, academic or otherwise, to commit to strategies for a net gain in biodiversity — and to adopt formalized approaches that quantify current impacts and allow transparent tracking of progress. Otherwise, the degree of worldwide recovery of natural resources increasingly recognized as crucial for resilient societies to function will not happen.A key challenge is the lack of traceability for commodities. Both our assessment of the University of Oxford and those of others have revealed that large organizations often don’t know which country their commodities (such as cotton, flour or cement) come from — let alone which supplier or what kinds of biodiversity are being affected as a result.According to its 2022 report, for example, even a sector leader such as Kering could trace the source of only about three-quarters of its cotton. Supply chains for other commodities, such as sand, are even more opaque18.Encouragingly, various initiatives are being developed to provide more transparency about environmental impacts across supply chains. These include the supply-chain mapping tool TRASE, which aims to address deforestation.A related challenge, covered extensively elsewhere19,20, is how to ensure that biodiversity offsets are effectively and appropriately implemented such that they lead to conservation outcomes that are truly additional.Currently, there are uncertainties around how long it takes for a restored forest to start delivering biodiversity gains, whether promises to offset harms to biodiversity are actually met, what level of biodiversity gain is delivered by the restoration of a particular habitat, and so on. Take the Ambatovy mine in Madagascar. Its directors began protecting areas of eastern rainforest in 2009 to offset the impacts of deforestation directly caused by the mine. Yet forest gains are not estimated to balance losses until sometime between 2018 and 203314.Despite such challenges, however, we think that a commitment to full transparency, and to improving data collection over time, will enable organizations to compare performance and drive change — both in their own operations and throughout supply chains.Time is too short to let the perfect be the enemy of the good, or to claim that biodiversity net gain is too hard to achieve because there is no universal biodiversity metric. Individual metrics are imperfect but improving, and their limitations should not be a reason to delay measuring, disclosing and tackling impacts on biodiversity. More

  • in

    Highly-resolved interannual phytoplankton community dynamics of the coastal Northwest Atlantic

    Boyce DG, Lewis MR, Worm B. Global phytoplankton decline over the past century. Nature. 2010;466:591–6.CAS 
    Article 

    Google Scholar 
    Bonachela JA, Klausmeier CA, Edwards KF, Litchman E, Levin SA. The role of phytoplankton diversity in the emergent oceanic stoichiometry. J Plankton Res. 2016;38:1021–35.CAS 
    Article 

    Google Scholar 
    Falkowski PG. The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynth Res. 1994;39:235–58.CAS 
    Article 

    Google Scholar 
    Longhurst A. Seasonal cycles of pelagic production and consumption. Prog Oceanogr. 1995;36:77–167.Article 

    Google Scholar 
    Li WKW, Glen Harrison W, Head EJH. Coherent assembly of phytoplankton communities in diverse temperate ocean ecosystems. Proc R Soc B Biol Sci. 2006;273:1953–60.Article 

    Google Scholar 
    Bolaños LM, Karp-Boss L, Choi CJ, Worden AZ, Graff JR, Haëntjens N, et al. Small phytoplankton dominate western North Atlantic biomass. ISME J. 2020;14:1–12.Article 

    Google Scholar 
    Buttigieg PL, Fadeev E, Bienhold C, Hehemann L, Offre P, Boetius A. Marine microbes in 4D—using time series observation to assess the dynamics of the ocean microbiome and its links to ocean health. Curr Opin Microbiol. 2018;43:169–85.Article 

    Google Scholar 
    Hirata T, Aiken J, Hardman-Mountford N, Smyth TJ, Barlow RG. An absorption model to determine phytoplankton size classes from satellite ocean colour. Remote Sens Environ. 2008;112:3153–9.Article 

    Google Scholar 
    Li WKW, Dickie PM. Monitoring phytoplankton, bacterioplankton, and virioplankton in a coastal inlet (Bedford Basin) by flow cytometry. Cytometry. 2001;44:236–46.CAS 
    Article 

    Google Scholar 
    Karl DM, Lukas R. The Hawaii Ocean Time-series (HOT) program: background, rationale and field implementation. Deep Sea Res Part II Top Stud Oceanogr. 1996;43:129–56.CAS 
    Article 

    Google Scholar 
    Steinberg DK, Carlson CA, Bates NR, Johnson RJ, Michaels AF, Knap AH. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res Part II Top Stud Oceanogr. 2001;48:1405–47.CAS 
    Article 

    Google Scholar 
    Harris R. The L4 time-series: the first 20 years. J Plankton Res. 2010;32:577–83.Article 

    Google Scholar 
    Hunter-Cevera KR, Neubert MG, Olson RJ, Solow AR, Shalapyonok A, Sosik HM. Physiological and ecological drivers of early spring blooms of a coastal phytoplankter. Science. 2016;354:326–9.CAS 
    Article 

    Google Scholar 
    Shi Q, Wallace D. A 3-year time series of volatile organic iodocarbons in Bedford Basin, Nova Scotia: a northwestern Atlantic fjord. Ocean Sci. 2018;14:1385–403.CAS 
    Article 

    Google Scholar 
    Crawford A, Shore J, Shan S. Measurement of tidal currents using an autonomous underwater vehicle. IEEE J Ocean Eng 2021;1–13.Kerrigan EA, Kienast M, Thomas H, Wallace DWR. Using oxygen isotopes to establish freshwater sources in Bedford Basin, Nova Scotia, a Northwestern Atlantic fjord. Estuar Coast Shelf Sci. 2017;199:96–104.CAS 
    Article 

    Google Scholar 
    Shan S, Sheng J. Examination of circulation, flushing time and dispersion in Halifax Harbour of Nova Scotia. Water Qual Res J. 2012;47:353–74.CAS 
    Article 

    Google Scholar 
    Clayton S, Dutkiewicz S, Jahn O, Follows MJ. Dispersal, eddies, and the diversity of marine phytoplankton. Limnol Oceanogr Fluids Environ. 2013;3:182–97.Article 

    Google Scholar 
    Barton AD, Dutkiewicz S, Flierl G, Bragg J, Follows MJ. Patterns of diversity in marine phytoplankton. Science. 2010;327:1509–11.CAS 
    Article 

    Google Scholar 
    Dutkiewicz S, Cermeno P, Jahn O, Follows MJ, Hickman AE, Taniguchi DAA, et al. Dimensions of marine phytoplankton diversity. Biogeosciences. 2020;17:609–34.Article 

    Google Scholar 
    Righetti D, Vogt M, Gruber N, Psomas A, Zimmermann NE. Global pattern of phytoplankton diversity driven by temperature and environmental variability. Sci Adv. 2019;5:eaau6253.Article 

    Google Scholar 
    Li WKW. Annual average abundance of heterotrophic bacteria and Synechococcus in surface ocean waters. Limnol Oceanogr. 1998;43:1746–53.Article 

    Google Scholar 
    DFO Canada. AZMP Bulletin PMZA. 2006. DFO.Cullen JJ, Doolittle WF, Levin SA, Li WKW. Patterns and prediction in microbial oceanography. Oceanography. 2007;20:34–46.Article 

    Google Scholar 
    El‐Swais H, Dunn KA, Bielawski JP, Li WKW, Walsh DA. Seasonal assemblages and short-lived blooms in coastal north-west Atlantic Ocean bacterioplankton. Environ Microbiol. 2015;17:3642–61.Article 

    Google Scholar 
    Georges AA, El-Swais H, Craig SE, Li WK, Walsh DA. Metaproteomic analysis of a winter to spring succession in coastal northwest Atlantic Ocean microbial plankton. ISME J. 2014;8:1301–13.CAS 
    Article 

    Google Scholar 
    Conover SAM. Nitrogen utilization during spring blooms of marine phytoplankton in Bedford Basin, Nova Scotia, Canada. Mar Biol. 1975;32:247–61.CAS 
    Article 

    Google Scholar 
    Lehman PW. Comparison of chlorophyll a and carotenoid pigments as predictors of phytoplankton biomass. Mar Biol. 1981;65:237–44.CAS 
    Article 

    Google Scholar 
    Siddig AAH, Ellison AM, Ochs A, Villar-Leeman C, Lau MK. How do ecologists select and use indicator species to monitor ecological change? Insights from 14 years of publication in Ecological Indicators. Ecol Indic. 2016;60:223–30.Article 

    Google Scholar 
    Zorz J, Willis C, Comeau AM, Langille MGI, Johnson CL, Li WKW, et al. Drivers of regional bacterial community structure and diversity in the Northwest Atlantic Ocean. Front Microbiol 2019;10.Comeau AM, Douglas GM, Langille MGI. Microbiome Helper: a custom and streamlined workflow for microbiome research. mSystems. 2017;2:e00127–16.CAS 
    Article 

    Google Scholar 
    Comeau AM, Li WKW, Tremblay J-É, Carmack EC, Lovejoy C. Arctic Ocean microbial community structure before and after the 2007 record sea ice minimum. PLOS ONE. 2011;6:e27492.CAS 
    Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    Article 

    Google Scholar 
    Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A, et al. Improved bacterial 16S rRNA gene (V4 and V4-5) and fungal Internal Transcribed Spacer marker gene primers for microbial community surveys. mSystems. 2015;1:e00009–15.Article 

    Google Scholar 
    Willis C, Desai D, LaRoche J. Influence of 16S rRNA variable region on perceived diversity of marine microbial communities of the Northern North Atlantic. FEMS Microbiol Lett. 2019;366:1–9.Article 

    Google Scholar 
    Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37:852–7.CAS 
    Article 

    Google Scholar 
    Decelle J, Romac S, Stern RF, Bendif EM, Zingone A, Audic S, et al. PhytoREF: a reference database of the plastidial 16S rRNA gene of photosynthetic eukaryotes with curated taxonomy. Mol Ecol Resour. 2015;15:1435–45.CAS 
    Article 

    Google Scholar 
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41:D590–96.CAS 
    Article 

    Google Scholar 
    NCBI Resource Coordinators. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2018;46:D8–13.Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. 2020. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/RStudio Team. RStudio: Integrated Development for R. 2020. RStudio, Inc., Boston, MA. http://www.rstudio.com/.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    Article 

    Google Scholar 
    Johnson M, Zaretskaya I, Raytselis Y, Merezhuk Y, McGinnis S, Madden TL. NCBI BLAST: a better web interface. Nucleic Acids Res. 2008;36:W5–9.CAS 
    Article 

    Google Scholar 
    Cáceres MD, Legendre P. Associations between species and groups of sites: indices and statistical inference. Ecology. 2009;90:3566–74.Article 

    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    Article 

    Google Scholar 
    Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33:1870–4.CAS 
    Article 

    Google Scholar 
    Oksanen J, Blanchet F, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: community ecology package. R package version. 2019;2:5–6. https://CRAN.R-project.org/package=vegan.
    Google Scholar 
    Wickham H. ggplot2: Elegant graphics for data analysis. 2016. Springer-Verlag, New York.Sohm JA, Ahlgren NA, Thomson ZJ, Williams C, Moffett JW, Saito MA, et al. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. 2016;10:333–45.CAS 
    Article 

    Google Scholar 
    Ahlgren NA, Rocap G. Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front Microbiol. 2012;3:1–24.Article 

    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.Article 

    Google Scholar 
    Logares R, Sunagawa S, Salazar G, Cornejo‐Castillo FM, Ferrera I, Sarmento H, et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ Microbiol. 2014;16:2659–71.CAS 
    Article 

    Google Scholar 
    Faust K, Raes J. CoNet app: inference of biological association networks using Cytoscape. F1000Research. 2016;5:1519.Article 

    Google Scholar 
    Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, et al. Integration of biological networks and gene expression data using Cytoscape. Nat Protoc. 2007;2:2366–82.CAS 
    Article 

    Google Scholar 
    Fuhrman JA, Cram JA, Needham DM. Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol. 2015;13:133–46.CAS 
    Article 

    Google Scholar 
    Cram JA, Chow C-ET, Sachdeva R, Needham DM, Parada AE, Steele JA, et al. Seasonal and interannual variability of the marine bacterioplankton community throughout the water column over ten years. ISME J. 2015;9:563–80.Article 

    Google Scholar 
    Schoemann V, Becquevort S, Stefels J, Rousseau V, Lancelot C. Phaeocystis blooms in the global ocean and their controlling mechanisms: a review. J Sea Res. 2005;53:43–66.CAS 
    Article 

    Google Scholar 
    Li W, Dickie P, Spry J. Plankton monitoring programme in the Bedford Basin, 1991-1997. 1998. Canadian Data Report of Fisheries and Aquatic Sciences 1036. Ocean Sciences Division, Maritimes Region, Fisheries and Oceans Canada.Bork P, Bowler C, Vargas C, de, Gorsky G, Karsenti E, Wincker P. Tara Oceans studies plankton at planetary scale. Science. 2015;348:873–873.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Holmes SP. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 2017;11:2639–43.Article 

    Google Scholar 
    McLachlan JL, Seguel MR, Fritz L. Tetreutreptia pomquetensis gen. et sp. nov. (Euglenophyceae): a quadriflagellate, phototrophic marine Euglenoid. J Phycol. 1994;30:538–44.Article 

    Google Scholar 
    Edlund MB, Stoermer EF. Resting spores of the freshwater diatoms Acanthoceras and Urosolenia. J Paleolimnol. 1993;9:55–61.Article 

    Google Scholar 
    Tomas CR. Marine Phytoplankton: a guide to naked flagellates and coccolithophorids. 2012. Academic Press.Haas S, Robicheau BM, Rakshit S, Tolman J, Algar CK, LaRoche J, et al. Physical mixing in coastal waters controls and decouples nitrification via biomass dilution. Proc Natl Acad Sci. 2021;118:e2004877118.CAS 
    Article 

    Google Scholar 
    Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, et al. The evolution of modern eukaryotic phytoplankton. Science. 2004;305:354–60.CAS 
    Article 

    Google Scholar 
    Needham DM, Sachdeva R, Fuhrman JA. Ecological dynamics and co-occurrence among marine phytoplankton, bacteria and myoviruses shows microdiversity matters. ISME J. 2017;11:1614–29.Article 

    Google Scholar 
    Choi CJ, Bachy C, Jaeger GS, Poirier C, Sudek L, Sarma VVSS, et al. Newly discovered deep-branching marine plastid lineages are numerically rare but globally distributed. Curr Biol. 2017;27:R15–16.CAS 
    Article 

    Google Scholar 
    Yoo YD, Seong KA, Kim HS, Jeong HJ, Yoon EY, Park J, et al. Feeding and grazing impact by the bloom-forming euglenophyte Eutreptiella eupharyngea on marine eubacteria and cyanobacteria. Harmful Algae. 2018;73:98–109.Article 

    Google Scholar 
    Dasilva CR, Li WKW, Lovejoy C. Phylogenetic diversity of eukaryotic marine microbial plankton on the Scotian Shelf Northwestern Atlantic Ocean. J Plankton Res. 2014;36:344–63.CAS 
    Article 

    Google Scholar 
    Bolaños LM, Choi CJ, Worden AZ, Baetge N, Carlson CA, Giovannoni SJ. Seasonality of the microbial community composition in the North Atlantic. Front Mar Sci. 2021;8:23.Article 

    Google Scholar 
    Monier A, Worden AZ, Richards TA. Phylogenetic diversity and biogeography of the Mamiellophyceae lineage of eukaryotic phytoplankton across the oceans. Environ Microbiol Rep. 2016;8:461–9.CAS 
    Article 

    Google Scholar 
    Irion S, Christaki U, Berthelot H, L’Helguen S, Jardillier L. Small phytoplankton contribute greatly to CO2-fixation after the diatom bloom in the Southern Ocean. ISME J. 2021;15:2509–22.CAS 
    Article 

    Google Scholar 
    Choi CJ, Jimenez V, Needham D, Poirier C, Bachy C, Alexander H, et al. Seasonal and geographical transitions in eukaryotic phytoplankton community structure in the Atlantic and Pacific Oceans. Front Microbiol. 2020;11:2187.
    Google Scholar 
    Leblanc K, Quéguiner B, Diaz F, Cornet V, Michel-Rodriguez M, Durrieu de Madron X, et al. Nanoplanktonic diatoms are globally overlooked but play a role in spring blooms and carbon export. Nat Commun. 2018;9:953.Article 

    Google Scholar 
    Lundholm N, Hasle GR. Fragilariopsis (Bacillariophyceae) of the Northern Hemisphere – morphology, taxonomy, phylogeny and distribution, with a description of F. pacifica sp. nov. Phycologia. 2010;49:438–60.Article 

    Google Scholar 
    Martínez-pérez C, Mohr W, Löscher CR, Dekaezemacker J, Littmann S, Yilmaz P, et al. The small unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine nitrogen cycle. Nat Microbiol. 2016;1:16163.Article 

    Google Scholar 
    Zehr JP, Shilova IN, Farnelid HM, Muñoz-Marín M, del C, Turk-Kubo KA. Unusual marine unicellular symbiosis with the nitrogen-fixing cyanobacterium UCYN-A. Nat Microbiol. 2016;2:1–11.
    Google Scholar 
    Worden AZ, Janouskovec J, McRose D, Engman A, Welsh RM, Malfatti S, et al. Global distribution of a wild alga revealed by targeted metagenomics. Curr Biol. 2012;22:R675–77.CAS 
    Article 

    Google Scholar 
    Altenburger A, Blossom HE, Garcia-Cuetos L, Jakobsen HH, Carstensen J, Lundholm N, et al. Dimorphism in cryptophytes—The case of Teleaulax amphioxeia/Plagioselmis prolonga and its ecological implications. Sci Adv. 2020;6:eabb1611.CAS 
    Article 

    Google Scholar 
    Kling JD, Lee MD, Fu F, Phan MD, Wang X, Qu P, et al. Transient exposure to novel high temperatures reshapes coastal phytoplankton communities. ISME J. 2020;14:413–24.CAS 
    Article 

    Google Scholar 
    Chassot E, Bonhommeau S, Dulvy NK, Mélin F, Watson R, Gascuel D, et al. Global marine primary production constrains fisheries catches. Ecol Lett. 2010;13:495–505.Article 

    Google Scholar 
    Gentry RR, Froehlich HE, Grimm D, Kareiva P, Parke M, Rust M, et al. Mapping the global potential for marine aquaculture. Nat Ecol Evol. 2017;1:1317–24.Article 

    Google Scholar 
    Benway HM, Lorenzoni L, White AE, Fiedler B, Levine NM, Nicholson DP, et al. Ocean time series observations of changing marine ecosystems: an era of integration, synthesis, and societal applications. Front Mar Sci. 2019;6:393.Article 

    Google Scholar 
    Rigosi A, Fleenor W, Rueda F. State-of-the-art and recent progress in phytoplankton succession modelling. Environ Rev. 2010;18:423–40.Article 

    Google Scholar 
    Daniels CJ, Poulton AJ, Esposito M, Paulsen ML, Bellerby R, St John M, et al. Phytoplankton dynamics in contrasting early stage North Atlantic spring blooms: composition, succession, and potential drivers. Biogeosciences. 2015;12:2395–409.Article 

    Google Scholar 
    Masuda Y, Yamanaka Y, Hirata T, Nakano H. Competition and community assemblage dynamics within a phytoplankton functional group: Simulation using an eddy-resolving model to disentangle deterministic and random effects. Ecol Model. 2017;343:1–14.Article 

    Google Scholar 
    Percopo I, Siano R, Cerino F, Sarno D, Zingone A. Phytoplankton diversity during the spring bloom in the northwestern Mediterranean Sea. Botanica Marina. 2011;54:243–67.Article 

    Google Scholar 
    Sun J, Liu D. Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res. 2003;25:1331–46.Article 

    Google Scholar 
    Agawin N, Duarte C, Agustí S, Vaqué D. Effect of N:P ratios on response of Mediterranean picophytoplankton to experimental nutrient inputs. Aquat Microb Ecol. 2004;34:57–67.Article 

    Google Scholar 
    Bertilsson S, Berglund O, Karl DM, Chisholm SW. Elemental composition of marine Prochlorococcus and Synechococcus: Implications for the ecological stoichiometry of the sea. Limnology Oceanogr. 2003;48:1721–31.CAS 
    Article 

    Google Scholar 
    Tomas CR. Identifying Marine Phytoplankton. 1997. Elsevier.Harrison PJ, Zingone A, Mickelson MJ, Lehtinen S, Ramaiah N, Kraberg AC, et al. Cell volumes of marine phytoplankton from globally distributed coastal data sets. Estuarine, Coastal Shelf Sci. 2015;162:130–42.CAS 
    Article 

    Google Scholar 
    Guillou L, Chrétiennot-Dinet M-J, Medlin LK, Claustre H, Goër SL, Vaulot D. Bolidomonas: a new genus with two species belonging to a new algal class, the Bolidophyceae (Heterokonta). J Phycol. 1999;35:368–81.Article 

    Google Scholar  More