More stories

  • in

    Author Correction: Recent expansion of oil palm plantations into carbon-rich forests

    In the version of this article initially published, there were mistakes in affiliations 1, 2 and 6. The corrected affiliations should read as follows: 1. Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China; 2. Ministry of Education Ecological Field Station for East Asian Migratory Birds, Department of Earth System Science, Tsinghua University, Beijing, China; 6. Department of Geography, Department of Earth Sciences, and Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China. The affiliations have been corrected in the HTML and PDF versions of the article. More

  • in

    eDNA-based detection of the invasive crayfish Pacifastacus leniusculus in streams with a LAMP assay using dependent replicates to gain higher sensitivity

    Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. https://doi.org/10.1093/nar/28.12.e63 (2000).Article 

    Google Scholar 
    Nagamine, K., Hase, T. & Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 16, 223–229. https://doi.org/10.1006/mcpr.2002.0415 (2002).CAS 
    Article 

    Google Scholar 
    Nagamine, K., Watanabe, K., Ohtsuka, K., Hase, T. & Notomi, T. Loop-mediated isothermal amplification reaction using a nondenatured template. Clin. Chem. 47, 1742–1743 (2001).CAS 
    Article 

    Google Scholar 
    Thai, H. T. C. et al. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 42, 1956–1961. https://doi.org/10.1128/jcm.42.5.1956-1961.2004 (2004).CAS 
    Article 

    Google Scholar 
    Geojith, G., Dhanasekaran, S., Chandran, S. P. & Kenneth, J. Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting. J. Microbiol. Methods 84, 71–73. https://doi.org/10.1016/j.mimet.2010.10.015 (2011).CAS 
    Article 

    Google Scholar 
    Saengsawang, N. et al. Development of a fluorescent distance-based paper device using loop-mediated isothermal amplification to detect Escherichia coli in urine. Analyst 145, 8077–8086. https://doi.org/10.1039/d0an01306d (2020).CAS 
    Article 

    Google Scholar 
    Yoshikawa, R. et al. Development and evaluation of a rapid and simple diagnostic assay for COVID-19 based on loop-mediated isothermal amplification. Plos Neglect. Trop. Dis. 14, 14. https://doi.org/10.1371/journal.pntd.000885 (2021).Article 

    Google Scholar 
    Kim, J. et al. Development and evaluation of a multiplex loop-mediated isothermal amplification (LAMP) assay for differentiation of Mycobacterium tuberculosis and non-tuberculosis mycobacterium in clinical samples. PLoS ONE 16, 11. https://doi.org/10.1371/journal.pone.0244753 (2021).CAS 
    Article 

    Google Scholar 
    Hongjaisee, S. et al. Rapid visual detection of hepatitis C virus using a reverse transcription loop-mediated isothermal ampli fi cation assay. Int. J. Infect. Dis. 102, 440–445. https://doi.org/10.1016/j.ijid.2020.10.082 (2021).CAS 
    Article 

    Google Scholar 
    Niessen, L. & Vogel, R. F. Detection of Fusarium graminearum DNA using a loop-mediated isothermal amplification (LAMP) assay. Int. J. Food Microbiol. 140, 183–191. https://doi.org/10.1016/j.ijfoodmicro.2010.03.036 (2010).CAS 
    Article 

    Google Scholar 
    Ren, W. C., Liu, N. & Li, B. H. Development and application of a LAMP method for rapid detection of apple blotch caused by Marssonina coronaria. Crop Prot. 141, 6. https://doi.org/10.1016/j.cropro.2020.105452 (2021).CAS 
    Article 

    Google Scholar 
    Kong, G. H. et al. Detection of Peronophythora litchii on lychee by loop-mediated isothermal amplification assay. Crop Prot. 139, 6. https://doi.org/10.1016/j.cropro.2020.105370 (2021).CAS 
    Article 

    Google Scholar 
    Zhou, Q. J. et al. Simultaneous detection of multiple bacterial and viral aquatic pathogens using a fluorogenic loop-mediated isothermal amplification-based dual-sample microfluidic chip. J. Fish Dis. https://doi.org/10.1111/jfd.13325 (2020).Article 

    Google Scholar 
    Huang, H. L. et al. Molecular method for rapid detection of the red tide dinoflagellate Karenia mikimotoi in the coastal region of Xiangshan Bay, China. J. Microbiol. Methods 168, 7. https://doi.org/10.1016/j.mimet.2019.105801 (2020).CAS 
    Article 

    Google Scholar 
    Sridapan, T. et al. Rapid detection of Clostridium perfringens in food by loop-mediated isothermal amplification combined with a lateral flow biosensor. PLoS ONE 16, 14. https://doi.org/10.1371/journal.pone.0245144 (2021).CAS 
    Article 

    Google Scholar 
    Xiong, X. et al. Using real time fluorescence loop-mediated isothermal amplification for rapid species authentication of Atlantic salmon (Salmo salar). J. Food Compos. Anal. 95, 7. https://doi.org/10.1016/j.jfca.2020.103659 (2021).CAS 
    Article 

    Google Scholar 
    Huang, C. G., Hsu, J. C., Haymer, D. S., Lin, G. C. & Wu, W. J. Rapid identification of the Mediterranean fruit fly (Diptera: Tephritidae) by loop-mediated isothermal amplification. J. Econ. Entomol. 102, 1239–1246 (2009).CAS 
    Article 

    Google Scholar 
    Ide, T., Kanzaki, N., Ohmura, W. & Okabe, K. Molecular identification of an invasive wood-boring insect Lyctus brunneus (Coleoptera: Bostrichidae: Lyctinae) using frass by loop-mediated isothermal amplification and nested PCR assays. J. Econ. Entomol. 109, 1410–1414. https://doi.org/10.1093/jee/tow030 (2016).CAS 
    Article 

    Google Scholar 
    Stainton, K., Hall, J., Budge, G. E., Boonham, N. & Hodgetts, J. Rapid molecular methods for in-field and laboratory identification of the yellow-legged Asian hornet (Vespa velutina nigrithorax). J. Appl. Entomol. 142, 610–616. https://doi.org/10.1111/jen.12506 (2018).CAS 
    Article 

    Google Scholar 
    Agarwal, A., Cunningham, J. P., Valenzuela, I. & Blacket, M. J. A diagnostic LAMP assay for the destructive grapevine insect pest, phylloxera (Daktulosphaira vitifoliae). Sci. Rep. 10, 10. https://doi.org/10.1038/s41598-020-77928-9 (2020).CAS 
    Article 

    Google Scholar 
    Rizzo, D. et al. Molecular identification of Anoplophora glabripennis (Coleoptera: Cerambycidae) from frass by loop-mediated isothermal amplification. J. Econ. Entomol. 113, 2911–2919. https://doi.org/10.1093/jee/toaa206 (2020).CAS 
    Article 

    Google Scholar 
    Hsieh, C. H., Wang, H. Y., Chen, Y. F. & Ko, C. C. Loop-mediated isothermal amplification for rapid identification of biotypes B and Q of the globally invasive pest Bemisia tabaci, and studying population dynamics. Pest Manag. Sci. 68, 1206–1213. https://doi.org/10.1002/ps.3298 (2012).CAS 
    Article 

    Google Scholar 
    Williams, M. R. et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE 12, 18. https://doi.org/10.1371/journal.pone.0186462 (2017).CAS 
    Article 

    Google Scholar 
    Ponting, S., Tomkies, V. & Stainton, K. Rapid identification of the invasive small hive beetle (Aethina tumida) using LAMP. Pest Manag. Sci. 77, 1476–1481. https://doi.org/10.1002/ps.6168 (2020).CAS 
    Article 

    Google Scholar 
    Davis, C. N. et al. Rapid detection of Galba truncatula in water sources on pasture-land using loop-mediated isothermal amplification for control of trematode infections. Parasites Vectors 13, 11. https://doi.org/10.1186/s13071-020-04371-0 (2020).CAS 
    Article 

    Google Scholar 
    Carvalho, J. et al. Faster monitoring of the invasive alien species (IAS) Dreissena polymorpha in river basins through isothermal amplification. Sci. Rep. 11, 10. https://doi.org/10.1038/s41598-021-89574-w (2021).CAS 
    Article 

    Google Scholar 
    Treguier, A. et al. Environmental DNA surveillance for invertebrate species: Advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds. J. Appl. Ecol. 51, 871–879. https://doi.org/10.1111/1365-2664.12262 (2014).CAS 
    Article 

    Google Scholar 
    Cai, W. et al. Using eDNA to detect the distribution and density of invasive crayfish in the Honghe-Hani rice terrace World Heritage site. PLoS ONE https://doi.org/10.1371/journal.pone.0177724 (2017).Article 

    Google Scholar 
    Wilcox, T. M. et al. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis. Biol. Conserv. 194, 209–216. https://doi.org/10.1016/j.biocon.2015.12.023 (2016).Article 

    Google Scholar 
    Hunter, M. E., Ferrante, J. A., Meigs-Friend, G. & Ulmer, A. Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques. Sci. Rep. https://doi.org/10.1038/s41598-019-40977-w (2019).Article 

    Google Scholar 
    Twardochleb, L. A., Olden, J. D. & Larson, E. R. A global meta-analysis of the ecological impacts of nonnative crayfish. Freshw. Sci. 32, 1367–1382. https://doi.org/10.1899/12-203.1 (2013).Article 

    Google Scholar 
    Andruszkiewicz, A. E., Zhang, W. G. & Govindarajan, A. F. Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environ. DNA 3, 492–514. https://doi.org/10.1002/edn3.141 (2021).Article 

    Google Scholar 
    Stedtfeld, R. D. et al. Static self-directed sample dispensing into a series of reaction wells on a microfluidic card for parallel genetic detection of microbial pathogens. Biomed. Microdev. 17, 89. https://doi.org/10.1007/s10544-015-9994-1 (2015).CAS 
    Article 

    Google Scholar 
    Koloren, Z., Sotiriadou, I. & Karanis, P. Investigations and comparative detection of Cryptosporidium species by microscopy, nested PCR and LAMP in water supplies of Ordu, Middle Black Sea, Turkey. Ann. Trop. Med. Parasitol. 105, 607–615. https://doi.org/10.1179/2047773211y.0000000011 (2011).CAS 
    Article 

    Google Scholar 
    Sabike, I. I. et al. Use of direct LAMP screening of broiler fecal samples for Campylobacter jejuni and Campylobacter coli in the positive flock identification strategy. Front. Microbiol. 7, 1582. https://doi.org/10.3389/fmicb.2016.01582 (2016).Article 

    Google Scholar 
    Gahlawat, S. K., Ellis, A. E. & Collet, B. A sensitive loop-mediated isothermal amplification (LAMP) method for detection of Renibacterium salmoninarum, causative agent of bacterial kidney disease in salmonids. J. Fish Dis. 32, 491–497. https://doi.org/10.1111/j.1365-2761.2009.01005.x (2009).CAS 
    Article 

    Google Scholar 
    Levy, J. et al. Methods for rapid and effective PCR-based detection of ‘Candidatus Liberibacter solanacearum’ from the insect vector Bactericera cockerelli: Streamlining the DNA extraction/purification process. J. Econ. Entomol. 106, 1440–1445. https://doi.org/10.1603/ec12419 (2013).CAS 
    Article 

    Google Scholar 
    Kaneko, H., Kawana, T., Fukushima, E. & Suzutani, T. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J. Biochem. Biophys. Methods 70, 499–501. https://doi.org/10.1016/j.jbbm.2006.08.008 (2007).CAS 
    Article 

    Google Scholar 
    Curtis, A. N., Tiemann, J. S., Douglass, S. A., Davis, M. A. & Larson, E. R. High stream flows dilute environmental DNA (eDNA) concentrations and reduce detectability. Divers. Distrib. 27, 1918–1931. https://doi.org/10.1111/ddi.13196 (2020).Article 

    Google Scholar 
    Mauvisseau, Q. et al. Environmental DNA as an efficient tool for detecting invasive crayfishes in freshwater ponds. Hydrobiologia 805, 163–175. https://doi.org/10.1007/s10750-017-3288-y (2018).CAS 
    Article 

    Google Scholar 
    RStudioTeam. Boston (ed. PBC) (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 

    Google Scholar  More

  • in

    Potential negative effects of ocean afforestation on offshore ecosystems

    Bach, L. T. et al. Testing the climate intervention potential of ocean afforestation using the Great Atlantic Sargassum Belt. Nat. Commun. 12, 2556 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    N‘Yeurt, A. D. R., Chynoweth, D. P., Capron, M. E., Stewart, J. R. & Hasan, M. A. Negative carbon via ocean afforestation. Process Saf. Environ. Prot. 90, 467–474 (2012).Article 
    CAS 

    Google Scholar 
    Duarte, C. M., Bruhn, A. & Krause-Jensen, D. A seaweed aquaculture imperative to meet global sustainability targets. Nat. Sustain. 5, 185–193 (2022).Article 

    Google Scholar 
    Woody, T. Seaweed ‘forests’ can help fight climate change. National Geographic https://www.nationalgeographic.co.uk/environment-and-conservation/2019/08/seaweed-forests-can-help-fight-climate-change (2019).Godin, M. The ocean farmers trying to save the world with seaweed. Time https://time.com/5848994/seaweed-climate-change-solution/ (2020).Marshall, M. Kelp is coming: how seaweed could prevent catastrophic climate change. New Scientist https://www.newscientist.com/article/mg24632821-100-kelp-is-coming-how-seaweed-could-prevent-catastrophic-climate-change/ (2020).Bever, F. ‘Run the oil industry in reverse’: fighting climate change by farming kelp. NPR https://www.npr.org/2021/03/01/970670565/run-the-oil-industry-in-reverse-fighting-climate-change-by-farming-kelp (2021).Running Tide. https://www.runningtide.com/ (2022).IPCC: Summary for Policymakers. In Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) (WMO, 2018).IPCC: Summary for Policymakers. In Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press) (in the press).GESAMP. High Level Review of a Wide Range of Proposed Marine Geoengineering Techniques (eds Boyd, P. W. & Vivian, C. M. G.) GESAMP Working Group 41 (International Maritime Organization, 2019).Boyd, P. & Vivian, C. Should we fertilize oceans or seed clouds? No one knows. Nature 570, 155–157 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Law, C. S. Predicting and monitoring the impact of large-scale iron fertilisation on marine trace gas emissions. Mar. Ecol. Prog. Ser. 364, 283–288 (2008).CAS 
    Article 

    Google Scholar 
    Russell, L. M. et al. Ecosystem impacts of geoengineering: a review for developing a science plan. Ambio 41, 350–369 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Costello, C., Fries, L. & Gaines, S. Transformational opportunities in ocean-based food & nutrition. Zenodo https://zenodo.org/record/4646319#.YkBFxhPMLAw (2021).Jouffray, J.-B., Blasiak, R., Norström, A. V., Österblom, H. & Nyström, M. The blue acceleration: the trajectory of human expansion into the ocean. One Earth 2, 43–54 (2020).Article 

    Google Scholar 
    Cullen, J. J. & Boyd, P. W. Predicting and verifying the intended and uninterested consequence of large-scale iron fertilization. Mar. Ecol. Prog. Ser. 364, 295–301 (2008).CAS 
    Article 

    Google Scholar 
    Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S. & Renforth, P. CO2 removal with enhanced weathering and ocean alkalinity enhancement: potential risks and co-benefits for marine pelagic ecosystems. Front. Clim. https://doi.org/10.3389/fclim.2019.00007 (2019).Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS 
    Article 

    Google Scholar 
    Suchet, P. A., Probst, J.-L. & Ludwig, L. Worldwide distribution of continental rock lithology: implications for the atmospheric/soil CO2 uptake by continental weathering and alkalinity river transport to the oceans. Glob. Biogeochem. Cycles 17, 1038 (2003).
    Google Scholar 
    Macreadie, P. I. et al. The future of blue carbon science. Nat. Commun. 10, 3998 (2019).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Fraser, C. I., Nikula, R. & Waters, J. M. Oceanic rafting by a coastal community. Proc. Biol. Sci. 278, 649–655 (2011).PubMed 

    Google Scholar 
    Fraser, C. I., Davies, I. D., Bryant, D. & Waters, J. M. How disturbance and dispersal influence intraspecific structure. J. Ecol. 106, 1298–1306 (2018).Article 

    Google Scholar 
    Fraser, C. I. et al. Antarctica’s ecological isolation will be broken by storm-driven dispersal and warming. Nat. Clim. Change 8, 704–708 (2018).Article 

    Google Scholar 
    Chung, I. K., Beardall, J., Mehta, S., Sahoo, D. & Stojkovic, S. Using marine macroalgae for carbon sequestration: a critical appraisal. J. Appl. Phycol. 23, 877–886 (2011).CAS 
    Article 

    Google Scholar 
    Krause-Jensen, D. & Duarte, C. M. Substantial role of macroalgae in marine carbon sequestration. Nat. Geosci. 9, 737–742 (2016).CAS 
    Article 

    Google Scholar 
    Hurd, C. L. et al. Forensic carbon accounting: assessing the role of seaweeds for carbon sequestration. J. Phycol., https://doi.org/10.1111/jpy.13249 (2022).Stripe commits $8M to six new carbon removal companies. Stripe https://stripe.com/newsroom/news/spring-21-carbon-removal-purchases (2021).General application. Stripe https://github.com/stripe/carbon-removal-source-materials/blob/master/Project%20Applications/Spring2021/Running%20Tide%20-%20Stripe%20Spring21%20CDR%20Purchase%20Application.pdf (2021).Coston-Clements, L. Utilization of the Sargassum Habitat by Marine Invertebrates and Vertebrates: a Review. NOAA Technical Memorandum NMFS-SEFSC, 296 (U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service, Southeast Fisheries Science Center & Beaufort Laboratory, 1991).Egan, S. et al. The seaweed holobiont: understanding seaweed–bacteria interactions. FEMS Microbiol. Rev. 37, 462–476 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Califano, G., Kwantes, M., Abreu, M. H., Costa, R. & Wichard, T. Cultivating the macroalgal holobiont: effects of integrated multi-trophic aquaculture on the microbiome of Ulva rigida (Chlorophyta)Front. Mar. Sci. 7, 52 (2020).Article 

    Google Scholar 
    Selvarajan, R. et al. Distribution, interaction and functional profiles of epiphytic bacterial communities from the rocky intertidal seaweeds, South Africa. Sci. Rep. 9, 19835 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bonthond, G. et al. The role of host promiscuity in the invasion process of a seaweed holobiont. ISME J. 15, 1668–1679 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Wang, M. et al. The great Atlantic Sargassum belt. Science 365, 83–87 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Johns, E. M. et al. The establishment of a pelagic Sargassum population in the tropical Atlantic: biological consequences of a basin-scale long distance dispersal event. Prog. Oceanogr. 182, 102269 (2020).Article 

    Google Scholar 
    Martiny, A. C. et al. Biogeochemical controls of surface ocean phosphate. Sci. Adv. 5, eaax0341 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zehr, J. P. & Capone, D. G. Changing perspectives in marine nitrogen fixation. Science 368, eaay9514 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Harrison, P. J., Druehl, L. D., Lloyd, K. E. & Thompson, P. A. Nitrogen uptake kinetics in three year-classes of Laminaria groenlandica (Laminariales: Phaeophyta). Mar. Biol. 93, 29–35 (1986).CAS 
    Article 

    Google Scholar 
    Hurd, C. L. & Dring, M. L. Phosphate uptake by intertidal algae in relation to zonation and season. Mar. Biol. 107, 281–289 (1990).Article 

    Google Scholar 
    Ohtake, M. et al. Growth and nutrient uptake characteristics of Sargassum macrocarpum cultivated with phosphorus-replete wastewater. Aquat. Bot. 163, 103208 (2020).Article 

    Google Scholar 
    MacFarlane, J. J. & Raven, J. A. C, N and P nutrition of Lemanea mamillosa Kütz. (Batrachospermales, Rhodophyta) in the Dighty Burn, Angus, U.K. Plant Cell Environ. 13, 1–13 (1990).CAS 
    Article 

    Google Scholar 
    Wu, J., Keller, D. P. & Oschlies, A. Carbon dioxide removal via macroalgae open-ocean mariculture and sinking: an Earth system modeling study. Preprint at Earth System Dynamics Discuss https://doi.org/10.5194/esd-2021-104 (2022).Kwiatkowski, L. et al. Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections. Biogeosciences 17, 3439–3470 (2020).CAS 
    Article 

    Google Scholar 
    Chapman, A. R. O. & Craigie, J. S. Seasonal growth in Laminaria longicruris: relations with dissolved inorganic nutrients and internal reserves of nitrogen. Mar. Biol. 40, 197–205 (1977).CAS 
    Article 

    Google Scholar 
    Dutkiewicz, S., Scott, J. R. & Follows, M. J. Winners and losers: ecological and biogeochemical changes in a warming ocean. Glob. Biogeochem. Cycles 27, 463–477 (2013).CAS 
    Article 

    Google Scholar 
    Thomas, M. K. et al. Temperature–nutrient interactions exacerbate sensitivity to warming in phytoplankton. Glob. Change Biol. 2, 3269–3280 (2017).Article 

    Google Scholar 
    Lapointe, B. E. et al. Nutrient content and stoichiometry of pelagic Sargassum reflects increasing nitrogen availability in the Atlantic Basin. Nat. Commun. 12, 3060 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Fan, W. et al. A sea trial of enhancing carbon removal from Chinese coastal waters by stimulating seaweed cultivation through artificial upwelling. Appl. Ocean Res. 101, 102260 (2020).Article 

    Google Scholar 
    Karl, D. M. & Letelier, R. M. Nitrogen fixation-enhanced carbon sequestration in low nitrate, low chlorophyll seascapes. Mar. Ecol. Prog. Ser. 364, 257–268 (2008).CAS 
    Article 

    Google Scholar 
    Oschlies, A. S., Pahlow, M., Yool, A. & Matear, R. Climate engineering by artificial ocean upwelling: channelling the sorcerer’s apprentice. Geophys. Res. Lett. 37, L04701 (2010).Article 
    CAS 

    Google Scholar 
    Thornton, D. C. O. Dissolved organic matter (DOM) release by phytoplankton in the contemporary and future ocean. Eur. J. Phycol. 49, 20–46 (2014).CAS 
    Article 

    Google Scholar 
    Morán, X. A. G., Sebastián, M., Pedrós-Alió, C. & Estrada, M. Response of Southern Ocean phytoplankton and bacterioplankton production to short-term experimental warming. Limnol. Oceanogr. 51, 1791–1800 (2006).Article 

    Google Scholar 
    Marañón, E., Cermeño, P., Fernández, E., Rodríguez, J. & Zabala, L. Significance and mechanisms of photosynthetic production of dissolved organic carbon in a coastal eutrophic ecosystem. Limnol. Oceanogr. 49, 1652–1666 (2004).Article 

    Google Scholar 
    Paine, E. R., Schmid, M., Boyd, P. W., Diaz-Pulido, G. & Hurd, C. L. Rate and fate of dissolved organic carbon release by seaweeds: a missing link in the coastal ocean carbon cycle. J. Phycol. 57, 1375–1391 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brylinsky, M. Release of dissolved organic matter by some marine macrophytes. Mar. Biol. 39, 213–220 (1977).Article 

    Google Scholar 
    Sieburth, J. M. Studies on algal substances in the sea. III. The production of extracellular organic matter by littoral marine algae. J. Exp. Mar. Biol. Ecol. 3, 290–309 (1969).CAS 
    Article 

    Google Scholar 
    Hanson, R. B. Pelagic Sargassum community metabolism: carbon and nitrogen. J. Exp. Mar. Biol. Ecol. 29, 107–118 (1977).CAS 
    Article 

    Google Scholar 
    Zark, M., Riebesell, U. & Dittmar, T. Effects of ocean acidification on marine dissolved organic matter are not detectable over the succession of phytoplankton blooms. Sci. Adv. 1, e1500531 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhang, Y., Liu, X., Wang, M. & Qin, B. Compositional differences of chromophoric dissolved organic matter derived from phytoplankton and macrophytes. Org. Geochem. 55, 26–37 (2013).Article 
    CAS 

    Google Scholar 
    Hulatt, C. J., Thomas, D. N., Bowers, D. G., Norman, L. & Zhang, C. Exudation and decomposition of chromophoric dissolved organic matter (CDOM) from some temperate macroalgae. Estuar. Coast. Shelf Sci. 84, 147–153 (2009).CAS 
    Article 

    Google Scholar 
    Liu, S., Trevathan-Tackett, S. M., Ewers Lewis, C. J., Huang, X. & Macreadie, P. I. Macroalgal blooms trigger the breakdown of seagrass blue carbon. Environ. Sci. Technol. 54, 14750–14760 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vieira, H. C. et al. Ocean warming may enhance biochemical alterations induced by an invasive seaweed exudate in the mussel Mytilus galloprovincialis. Toxics 9, 121 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brooks, S. D. & Thornton, D. C. O. Marine aerosols and clouds. Ann. Rev. Mar. Sci. 10, 289–313 (2018).PubMed 
    Article 

    Google Scholar 
    Lewis, M. R., Carr, M.-E., Feldman, G. C., Esaias, W. & McClain, C. Influence of penetrating solar radiation on the heat budget of the equatorial Pacific Ocean. Nature 347, 543–545 (1990).Article 

    Google Scholar 
    Morel, A. Optical modeling of the upper ocean in relation to its biogenous matter content (case-I waters). J. Geophys. Res. 93, 10749–10768 (1988).Article 

    Google Scholar 
    Park, J.-Y., Kug, J.-S., Bader, J., Rolph, R. & Kwon, M. Amplified Arctic warming by phytoplankton under greenhouse warming. Proc. Natl Acad. Sci. USA 112, 5921–5926 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Denaro, G. et al. Dynamics of two picophytoplankton groups in Mediterranean Sea: analysis of the deep chlorophyll maximum by a stochastic advection-reaction-diffusion model. PLoS ONE 8, e66765 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kavanaugh, M. T. et al. Experimental assessment of the effects of shade on an intertidal kelp: do phytoplankton blooms inhibit growth of open-coast macroalgae? Limnol. Oceanogr. 54, 276–288 (2009).Article 

    Google Scholar 
    Omand, M. M., Steinberg, D. K. & Stamies, K. Cloud shadows drive vertical migrations of deep-dwelling marine life. Proc. Natl Acad. Sci. USA 118, e2022977118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bach, L. T. & Boyd, P. W. Seeking natural analogs to fast-forward the assessment of marine CO2 removal. Proc. Natl Acad. Sci. USA 118, e2106147118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van Donk, E. & van de Bund, W. J. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquat. Bot. 72, 261–274 (2002).Article 

    Google Scholar 
    Jin, Q., Dong, S. & Wang, C. Allelopathic growth inhibition of Prorocentrum micans (Dinophyta) by Ulva pertusa and Ulva linza (Chlorophyta) in laboratory cultures. Eur. J. Phycol. 40, 31–37 (2005).Article 

    Google Scholar 
    Wallace, R. B. & Gobler, C. J.Factors controlling blooms of microalgae and macroalgae (Ulva rigida) in a eutrophic, urban estuary: Jamaica Bay, NY, USA. Estuaries Coast 38, 519–533 (2015).CAS 
    Article 

    Google Scholar 
    Tang, Y. Z. & Gobler, C. J. The green macroalga, Ulva lactuca, inhibits the growth of seven common harmful algal bloom species via allelopathy. Harmful Algae 10, 480–488 (2011).Article 

    Google Scholar 
    Cagle, S. E., Roelke, D. L. & Muhl, R. W. Allelopathy and micropredation paradigms reconcile with system stoichiometry. Ecosphere 12, e03372 (2021).Article 

    Google Scholar 
    Hein, M., Pedersen, M. F. & Sand-Jensen, K. Size-dependent nitrogen uptake in micro- and macroalgae. Mar. Ecol. Prog. Ser. 118, 247–253 (1995).Article 

    Google Scholar 
    Stevens, C. L., Hurd, C. L. & Smith, M. J. Water motion relative to subtidal kelp fronds. Limnol. Oceanogr. 46, 668–678 (2001).Article 

    Google Scholar 
    Raut, Y., Morando, M. & Capone, D. G. Diazotrophic macroalgal associations with living and decomposing Sargassum. Front. Microbiol. 9, 3127 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Villareal, T. A., Woods, S., Moore, J. K. & CulverRymsza, K. Vertical migration of Rhizosolenia mats and their significance to NO3− fluxes in the central North Pacific gyre. J. Plankton Res. 18, 1103–1121 (1996).Article 

    Google Scholar 
    Gachon, C. M. M., Sime-Ngando, T., Strittmatter, M., Chambouvet, A. & Kim, G. H. Algal diseases: spotlight on a black box. Trends Plant Sci. 15, 633–640 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sánchez-Baracaldo, P., Bianchini, G., Wilson, J. D. & Knoll, A. H. Cyanobacteria and biogeochemical cycles through Earth history. Trends Microbiol. 30, 143–157 (2022).PubMed 
    Article 
    CAS 

    Google Scholar 
    Thiel, M. & Gutow, L. in Oceanography and Marine Biology: an Annual Review Vol. 43 (eds Gibson, R. et al.) 279–418 (Taylor & Francis, 2005).Rech, S., Borrell Pichs, Y. J. & García-Vazquez, E. Anthropogenic marine litter composition in coastal areas may be a predictor of potentially invasive rafting fauna. PLoS ONE 13, e0191859 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Food and Agriculture Organization (FAO) of the United Nations. The State of World Fisheries and Aquaculture 2020: Sustainability in Action (FAO, 2020).Schell, J. M., Goodwin, D. S. & Siuda, A. N. S. Recent Sargassum inundation events in the Caribbean: shipboard observations reveal dominance of a previously rare form. Oceanography 28, 8–10 (2015).Article 

    Google Scholar 
    Rodríguez-Martínez, R. E. et al. Element concentrations in pelagic Sargassum along the Mexican Caribbean coast in 2018–2019. Peer J. 8, e8667 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Flannery, T. How farming giant seaweed can feed fish and fix the climate. The Conversation Trust https://theconversation.com/how-farming-giant-seaweed-can-feed-fish-and-fix-the-climate-81761 (2017).GESAMP. Methodology for the Evaluation of Ballast Water Management Systems Using Active Substances. GESAMP No. 101 (eds Linders, J. & Dock, A.) (International Maritime Organization, 2019).Lenton, A., Boyd, P. W., Thatcher, M. & Emmerson, K. M. Foresight must guide geoengineering research and development. Nat. Clim. Change 9, 342 (2019).Article 

    Google Scholar 
    Sumaila, U. R. Financing a sustainable ocean economy. Nat. Commun. 12, 3259 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rockström, J. et al. Planetary boundaries: exploring the safe operating space for humanity. Ecol. Soc. 14, 32 (2009).Article 

    Google Scholar 
    Rech, S., Salmina, S., Borrell Pichs, Y. J. & García-Vazquez, E. Dispersal of alien invasive species on anthropogenic litter from European mariculture areas. Mar. Pollut. Bull. 131, 10–16 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Therriault, T. W. et al. The invasion risk of species associated with Japanese tsunami marine debris in Pacific North America and Hawaii. Mar. Pollut. Bull. 132, 82–89 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Miller, J. A., Carlton, J. T., Chapman, J. W., Geller, J. B. & Ruiz, G. M. Transoceanic dispersal of the mussel Mytilus galloprovincialis on Japanese tsunami marine debris: an approach for evaluating rafting of a coastal species at sea. Mar. Pollut. Bull. 132, 60–69 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlton, J. T. et al. Tsunami-driven rafting: transoceanic species dispersal and implications for marine biogeography. Science 357, 1402–1406 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hunt, G. L. Jr et al. Advection in polar and sub-polar environments: impacts on high latitude marine ecosystems. Prog. Oceanogr. 149, 40–81 (2016).Article 

    Google Scholar 
    Hallegraeff, G. M. & Bolch, C. J. Transport of dinoflagellate cysts in ship’s ballast water: implications for plankton biogeography and aquaculture. J. Plankton Res. 14, 1067–1084 (1992).Article 

    Google Scholar 
    Russell, L. K., Hepburn, C. D., Hurd, C. L. & Stuart, M. D. The expanding range of Undaria pinnatifida in southern New Zealand: distribution, dispersal mechanisms and the invasion of wave-exposed environments. Biol. Invasions 10, 103–115 (2008).Article 

    Google Scholar 
    Uwai, S. et al. Genetic diversity in Undaria pinnatifida (Laminariales, Phaeophyceae) deduced from mitochondria genes—origins and succession of introduced populations. Phycologia 45, 687–695 (2006).Article 

    Google Scholar  More

  • in

    Evaluation of hair cortisol as an indicator of long-term stress responses in dogs in an animal shelter and after subsequent adoption

    Beerda, B., Schilder, M. B. H., Van Hooff, J. A., De Vries, H. W. & Mol, J. A. Chronic stress in dogs subjected to social and spatial restriction I. Behavioral responses. Physiol. Behav. 66, 233–242 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rooney, N. J., Gaines, S. A. & Bradshaw, J. W. Behavioural and glucocorticoid responses of dogs (Canis familiaris) to kennelling: investigating mitigation of stress by prior habituation. Physiol. Behav. 92, 847–854. https://doi.org/10.1016/j.physbeh.2007.06.011 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stephen, J. M. & Ledger, R. A. A longitudinal evaluation of urinary cortisol in kennelled dogs Canis familiaris. Physiol. Behav. 87, 911–916. https://doi.org/10.1016/j.physbeh.2006.02.015 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mills, D., Karagiannis, C., Zulch, H. Stress its effects on health and behavior. Vet. Clin. North Am. Small Anim. Pract. 44, 525–541 (2014).Mormède, P. et al. Exploration of the hypothalamic–pituitary–adrenal function as a tool to evaluate animal welfare. Physiol. Behav. 92, 317–339 (2007).PubMed 
    Article 

    Google Scholar 
    Hennessy, M. B. Using hypothalamic–pituitary–adrenal measures for assessing and reducing the stress of dogs in shelters: A review. Appl. Anim. Behav. Sci. 149, 1–12 (2013).Article 

    Google Scholar 
    Cobb, M. L., Iskandarani, K., Chinchilli, V. M. & Dreschel, N. A. A systematic review and meta-analysis of salivary cortisol measurement in domestic canines. Domest. Anim. Endocrinol. 57, 31–42 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wester, V. L. & van Rossum, E. F. Clinical applications of cortisol measurements in hair. Eur. J. Endocrinol. 173, M1–M10 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Heimbürge, S., Kanitz, E. & Otten, W. The use of hair cortisol for the assessment of stress in animals. Gen. Comp. Endocrinol. 270, 10–17 (2019).PubMed 
    Article 

    Google Scholar 
    Meyer, J. S. & Novak, M. A. Minireview: hair cortisol: A novel biomarker of hypothalamic-pituitary-adrenocortical activity. Endocrinology 153, 4120–4127 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Khoury, J. E., Bosquet Enlow, M., Plamondon, A. & Lyons-Ruth, K. The association between adversity and hair cortisol levels in humans: A meta-analysis. Psychoneuroendocrinology 103, 104–117 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Davenport, M. D., Tiefenbacher, S., Lutz, C. K., Novak, M. A. & Meyer, J. S. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen. Comp. Endocrinol. 147, 255–261 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Greff, M. J. E. et al. Hair cortisol analysis: An update on methodological considerations and clinical applications. Clin. Biochem. 63, 1–9 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    del Rosario, G. et al. Effects of adrenocorticotropic hormone challenge and age on hair cortisol concentrations in dairy cattle. Can. J. Vet. Res. 75, 216–221 (2011).
    Google Scholar 
    Macbeth, B. J., Cattet, M., Stenhouse, G. B., Gibeau, M. L. & Janz, D. M. Hair cortisol concentration as a noninvasive measure of long-term stress in free-ranging grizzly bears (Ursus arctos): considerations with implications for other wildlife. Can. J. Zool. 88, 935–949 (2010).CAS 
    Article 

    Google Scholar 
    Accorsi, P. A. et al. Cortisol determination in hair and faeces from domestic cats and dogs. Gen. Comp. Endocrinol. 155, 398–402 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bennett, A. & Hayssen, V. Measuring cortisol in hair and saliva from dogs: coat color and pigment differences. Domest. Anim. Endocrinol. 39, 171–180 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bryan, H. M., Adams, A. G., Invik, R. M., Wynne-Edwards, K. E. & Smits, J. E. Hair as a meaningful measure of baseline cortisol levels over time in dogs. J. Am. Assoc. Lab. Anim. Sci. 52, 189–196 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siniscalchi, M., McFarlane, J. R., Kauter, K. G., Quaranta, A. & Rogers, L. J. Cortisol levels in hair reflect behavioural reactivity of dogs to acoustic stimuli. Res. Vet. Sci. 94, 49–54 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stella, J., Shreyer, T., Ha, J. & Croney, C. Improving canine welfare in commercial breeding (CB) operations: Evaluating rehoming candidates. Appl. Anim. Behav. Sci. 220, 104861. https://doi.org/10.1016/j.applanim.2019.104861 (2019).Article 

    Google Scholar 
    Nicholson, S. L. & Meredith, J. E. Should stress management be part of the clinical care provided to chronically ill dogs?. J. Vet. Behav. 10, 489–495 (2015).Article 

    Google Scholar 
    Maxwell, N., Buchanan, C. & Evans, N. Hair cortisol concentrations, as a measure of chronic activity within the hypothalamic-pituitary-adrenal axis, is elevated in dogs farmed for meat, relative to pet dogs South Korea. Anim. Welf. 28, 389–395 (2019).Article 

    Google Scholar 
    Roth, L. S., Faresjö, Å, Theodorsson, E., Jensen, P. Hair cortisol varies with season and lifestyle and relates to human interactions in German shepherd dogs. Sci. Rep. 6, 19631; https://doi.org/10.1038/srep19631 (2016).Packer, R. M. et al. What can we learn from the hair of the dog? Complex effects of endogenous and exogenous stressors on canine hair cortisol. PLoS ONE 14, e0216000. https://doi.org/10.1371/journal.pone.0216000 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sundman, A. et al. Long-term stress levels are synchronized in dogs and their owners. Sci. Rep. 9, 7391; https://doi.org/10.1038/s41598-019-43851-x (2019).Höglin, A. et al. Long-term stress in dogs is related to the human-dog relationship and personality traits. Sci. Rep. 11, 8612; https://doi.org/10.1038/s41598-021-88201-y (2021).Bowland, G. B. et al. Fur color and nutritional status predict hair cortisol concentrations of dogs in Nicaragua. Front. Vet. Sci. 7, 565346. https://doi.org/10.3389/fvets.2020.565346 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Veronesi, M. C. et al. Coat and claws as new matrices for noninvasive long-term cortisol assessment in dogs from birth up to 30 days of age. Theriogenology 84, 791–796 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Davenport, M. D., Lutz, C. K., Tiefenbacher, S., Novak, M. A. & Meyer, J. S. A rhesus monkey model of self-injury: Effects of relocation stress on behavior and neuroendocrine function. Biol. Psychiatry 63, 990–996 (2008).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    van der Laan, J. E., Vinke, C. M., van der Borg, J. A. M. & Arndt, S. S. Restless nights? Nocturnal activity as a useful indicator of adaptability of shelter housed dogs. Appl. Anim. Behav. Sci. 241, 105377. https://doi.org/10.1016/j.applanim.2021.105377 (2021).Article 

    Google Scholar 
    Pollinger, J. P. et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464, 898–902 (2010).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Voith, V. L., Ingram, E., Mitsouras, K. & Irizarry, K. Comparison of adoption agency breed identification and DNA breed identification of dogs. J. Appl. Anim. Welf. Sci. 12, 253–262 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gunter, L. M., Barber, R. T. & Wynne, C. D. L. A canine identity crisis: Genetic breed heritage testing of shelter dogs. PLoS ONE 13, e0202633. https://doi.org/10.1371/journal.pone.0202633 (2018).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Pinheiro, J., Bates, D., DebRoy, S. & Sarkar, D., R Core Team. Nlme: linear and nonlinear mixed effects models. R package version 3. 1–148 (2020).Protopopova, A. & Gunter, L. Adoption and relinquishment interventions at the animal shelter: a review. Anim. Welf. 26, 35–48 (2017).Article 

    Google Scholar 
    Müntener, T., Doherr, M. G., Guscetti, F., Suter, M. M. & Welle, M. M. The canine hair cycle – a guide for the assessment of morphological and immunohistochemical criteria. Vet. Dermatol. 22, 383–395 (2011).PubMed 
    Article 

    Google Scholar 
    Wennig, R. Potential problems with the interpretation of hair analysis results. Forensic Sci. Int. 107, 5–12 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Heimbürge, S., Kanitz, E., Tuchscherer, A. & Otten, W. Within a hair’s breadth – Factors influencing hair cortisol levels in pigs and cattle. Gen. Comp. Endocrinol. 288, 113359. https://doi.org/10.1016/j.ygcen.2019.113359 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Diaz, S. F., Torres, S. M., Dunstan, R. W. & Lekcharoensuk, C. An analysis of canine hair re-growth after clipping for a surgical procedure. Vet. Dermatol. 15, 25–30 (2004).PubMed 
    Article 

    Google Scholar 
    Zeugswetter, F., Bydzovsky, N., Kampner, D. & Schwendenwein, I. Tailored reference limits for urine corticoid:creatinine ratio in dogs to answer distinct clinical questions. Vet. Rec. 167, 997–1001 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jones, S. et al. Use of accelerometers to measure stress levels in shelter dogs. J. Appl. Anim. Welf. Sci. 17, 18–28 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Gunter, L. M., Feuerbacher, E. N., Gilchrist, R. J. & Wynne, C. D. Evaluating the effects of a temporary fostering program on shelter dog welfare. PeerJ 7, e6620. https://doi.org/10.7717/peerj.6620 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van den Brom, W. E. & Biewenga, W. J. Assessment of glomerular filtration rate in normal dogs: analysis of the 51Cr-EDTA clearance and its relation to several endogenous parameters of glomerular filtration. Res. Vet. Sci. 30, 152–157 (1981).PubMed 
    Article 

    Google Scholar 
    Sandri, M., Colussi, A., Perrotta, M. G. & Stefanon, B. Salivary cortisol concentration in healthy dogs is affected by size, sex, and housing context. J. Vet. Behav. 10, 302–306 (2015).Article 

    Google Scholar 
    Haase, C. G., Long, A. K. & Gillooly, J. F. Energetics of stress: linking plasma cortisol levels to metabolic rate in mammals. Biol. Lett. 12, 20150867. https://doi.org/10.1098/rsbl.2015.0867 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Garnier, F., Benoit, E., Virat, M., Ochoa, R. & Delatour, P. Adrenal cortical response in clinically normal dogs before and after adaptation to a housing environment. Lab. Anim. 24, 40–43 (1990).CAS 
    PubMed 
    Article 

    Google Scholar 
    Beerda, B. et al. Chronic stress in dogs subjected to social and spatial restriction. II. Hormonal and immunological responses. Physiol. Behav. 66, 243–254 (1999).Rincón-Cortés, M., Herman, J. P., Lupien, S., Maguire, J. & Shansky, R. M. Stress: Influence of sex, reproductive status and gender. Neurobiol. Stress 10, 100155. https://doi.org/10.1016/j.ynstr.2019.100155 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Oyola, M. G. & Handa, R. J. Hypothalamic–pituitary–adrenal and hypothalamic–pituitary–gonadal axes: sex differences in regulation of stress responsivity. Stress 20, 476–494 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Willen, R. M., Mutwill, A., MacDonald, L. J., Schiml, P. A. & Hennessy, M. B. Factors determining the effects of human interaction on the cortisol levels of shelter dogs. Appl. Anim. Behav. Sci. 186, 41–48 (2017).Article 

    Google Scholar 
    Protopopova, A. Effects of sheltering on physiology, immune function, behavior, and the welfare of dogs. Physiol. Behav. 159, 95–103 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mesarcova, L., Kottferova, J., Skurkova, L., Leskova, L. & Kmecova, N. Analysis of cortisol in dog hair-a potential biomarker of chronic stress: a review. Vet. Med. (Praha) 62, 363–376 (2017).CAS 
    Article 

    Google Scholar 
    Neumann, A. et al. Predicting hair cortisol levels with hair pigmentation genes: a possible hair pigmentation bias. Sci. Rep. 7, 8529 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Romero, L. M. & Beattie, U. K. Common myths of glucocorticoid function in ecology and conservation. J. Exp. Zool. A. Ecol. Integr. Physiol. https://doi.org/10.1002/jez.2459 (2021).PubMed 
    Article 

    Google Scholar 
    Heimbürge, S., Kanitz, E., Tuchscherer, A. & Otten, W. Is it getting in the hair? – Cortisol concentrations in native, regrown and segmented hairs of cattle and pigs after repeated ACTH administrations. Gen. Comp. Endocrinol. 295, 113534. https://doi.org/10.1016/j.ygcen.2020.113534 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Van Ockenburg, S. L. et al. The relationship between 63 days of 24-h urinary free cortisol and hair cortisol levels in 10 healthy individuals. Psychoneuroendocrinology 73, 142–147 (2016).PubMed 
    Article 

    Google Scholar 
    Short, S. J. et al. Correspondence between hair cortisol concentrations and 30-day integrated daily salivary and weekly urinary cortisol measures. Psychoneuroendocrinology 71, 12–18 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mack, Z. & Fokidis, H. B. A novel method for assessing chronic cortisol concentrations in dogs using the nail as a source. Domest. Anim. Endocrinol. 59, 53–57 (2017).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Heterogeneous effects of climatic conditions on Andean bean landraces and cowpeas highlight alternatives for crop management and conservation

    A summary describing all plant architecture, flower, fruit, and yield, and phenological traits for each of the thirteen Phaseolus sp. and Vigna sp. landraces in the open field and the greenhouse conditions is provided in Supporting Tables S3, S4 and S5. Main effects Kruskal–Wallis tests are summarised in Table 1, and the interactions between treatment conditions (open field and greenhouse) and species, and landrace and climatic background are summarised in Table 2.Table 1 Main effects Kruskal–Wallis H tests for treatment (open field vs greenhouse conditions), species, landrace, and climatic background of the landraces.Full size tableTable 2 Kruskal–Wallis H tests for the interactions between treatment (open field and greenhouse) and species, landrace, or the climatic background.Full size tableI. Plant architecturePlants under high temperatures and low humidity in the greenhouse exhibited significant higher overall mean rank values than field plants for stem diameter, the degree of branch orientation, composite sheet length and width, and the terminal leaflet length. The size of the angle of the base of the terminal leaflet, however, was bigger in the field (Supporting Tables S3 and Table 1). There were overall significant differences for species and landrace for all studied characters (Table 1). The Kruskal–Wallis analyses of the interactions between treatment (open field vs greenhouse conditions) and species, climatic background, and landrace were significant for all the traits (p-value  More

  • in

    The distribution of manta rays in the western North Atlantic Ocean off the eastern United States

    Couturier, L. et al. Biology, ecology and conservation of the Mobulidae. J. Fish Biol. 80, 1075–1119 (2012).CAS 

    Google Scholar 
    Herman, J., Hovestadt-Euler, M., Hovestadt, D. & Stehmann, M. Contributions to the study of the comparative morphology of teeth and other relevant ichthyodorulites in living supraspecific taxa of Chondrichthyan fishes. Part B: Batomorphii 4c: Order Rajiformes-Suborder Myliobatoidei-Superfamily Dasyatoidea-Family Dasyatidae-Subfamily Dasyatinae-Genus: Urobatis, Subfamily Potamotrygoninae-Genus: Paratrygon, Superfamily Plesiobatoidea-Family Plesiobatidae-Genus: Plesiobatis, Superfamily Myliobatoidea-Family Myliobatidae-Subfamily Myliobatinae-Genera: Aetobatus, Aetomylaeus, Myliobatis and Pteromylaeus, Subfamily Rhinopterinae-Genus: Rhinoptera and Subfamily Mobulinae-Genera: Manta and Mobula. Addendum 1 to 4a: erratum to Genus Pteroplatytrygon. Bull. Koninlijk Belgisch Inst Natuurwetenschappen-Biol. (2000).Adnet, S., Cappetta, H., Guinot, G. & NOTARBARTOLO DI SCIARA, G. Evolutionary history of the devilrays (Chondrichthyes: Myliobatiformes) from fossil and morphological inference. Zool. J. Linnean Soc. 166, 132–159 (2012).
    Google Scholar 
    Naylor, G. J. et al. A DNA sequence–based approach to the identification of shark and ray species and its implications for global elasmobranch diversity and parasitology. Bull. Am. Mus. Nat. Hist. 2012, 1–262 (2012).
    Google Scholar 
    Kitchen-Wheeler, A.-M. The Behaviour and Ecology of Alfred mantas (Manta alfredi) in the Maldives (Newcastle University, 2013).
    Google Scholar 
    Paig-Tran, E. M., Kleinteich, T. & Summers, A. P. The filter pads and filtration mechanisms of the devil rays: Variation at macro and microscopic scales. J. Morphol. 274, 1026–1043 (2013).
    Google Scholar 
    Aschliman, N. C., Claeson, K. M. & McEachran, J. D. Phylogeny of batoidea. Biol. Sharks Relat. 2, 57–96 (2012).
    Google Scholar 
    Poortvliet, M. et al. A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences. Mol. Phylogenet. Evol. 83, 72–85 (2015).CAS 

    Google Scholar 
    Marshall, A. D., Compagno, L. J. & Bennett, M. B. Redescription of the genus Manta with resurrection of Manta alfredi (Krefft, 1868)(Chondrichthyes; Myliobatoidei; Mobulidae). Zootaxa 2301, 1–28 (2009).
    Google Scholar 
    White, W. T. et al. Phylogeny of the manta and devilrays (Chondrichthyes: Mobulidae), with an updated taxonomic arrangement for the family. Zool. J. Linn. Soc. 182, 50–75 (2018).
    Google Scholar 
    Service, N. O. a. A. A. F. Vol. 83 (ed U.S. Department of Commerce) 2916–2931 (U.S. Department of Commerce, Federal Register, 2018).Service, N. O. a. A. A. F. Vol. 84 (ed U.S. Department of Commerce) 66652–66664 (U.S. Department of Commerce, Federal Register, 2019).Clark, T. B. Abundance, home range, and movement patterns of manta rays (Manta alfredi, M. birostris) in Hawaiʻi, [Honolulu]:[University of Hawaii at Manoa],[December 2010], (2010).Burgess, K. Feeding ecology and habitat use of the giant manta ray Manta birostris at a key aggregation site off mainland Ecuador (2017).Beale, C. S., Stewart, J. D., Setyawan, E., Sianipar, A. B. & Erdmann, M. V. Population dynamics of oceanic manta rays (Mobula birostris) in the Raja Ampat Archipelago, West Papua, Indonesia, and the impacts of the El Niño-Southern Oscillation on their movement ecology. Divers. Distrib. 25, 1472–1487 (2019).
    Google Scholar 
    Bertolini, F. Dentatura dei Selaci in rapporto con la nutrizione. (editore non identificato, 1933).Bigelow, H. B. Sawfishes, guitarfishes, skates and rays. Sawfishes, guitarfishes, skates and rays, and chimaeroids, 1–514 (1953).Rohner, C. A. et al. Mobulid rays feed on euphausiids in the Bohol Sea. R. Soc. Open Sci. 4, 161060 (2017).ADS 

    Google Scholar 
    Stewart, J. D. et al. Trophic overlap in mobulid rays: insights from stable isotope analysis. Mar. Ecol. Prog. Ser. 580, 131–151 (2017).ADS 

    Google Scholar 
    De Boer, M., Saulino, J., Lewis, T. & Notarbartolo-Di-Sciara, G. New records of whale shark (Rhincodon typus), giant manta ray (Manta birostris) and Chilean devil ray (Mobula tarapacana) for Suriname. Mar. Biodivers. Rec. 8 (2015).Hacohen-Domené, A., Martínez-Rincón, R. O., Galván-Magaña, F., Cárdenas-Palomo, N. & Herrera-Silveira, J. Environmental factors influencing aggregation of manta rays (Manta birostris) off the northeastern coast of the Yucatan Peninsula. Mar. Ecol. 38, e12432 (2017).ADS 

    Google Scholar 
    Service, N. O. a. A. A. N. O. What is the Loop Current? https://oceanservice.noaa.gov/facts/loopcurrent.html (2021).Service, N. O. a. A. A. N. O. How fast is the Gulf Stream? https://oceanservice.noaa.gov/facts/gulfstreamspeed.html (2021).Childs, J. N. The Occurrence, Habitat Use and Behavior of Sharks and Rays Associating with Topographic Highs in the Gulf of Mexico. M.S. Thesis, Texas A&M University (2001).Stewart, J. D., Nuttall, M., Hickerson, E. L. & Johnston, M. A. Important juvenile manta ray habitat at Flower Garden Banks National Marine Sanctuary in the northwestern Gulf of Mexico. Mar. Biol. 165, 1–8 (2018).CAS 

    Google Scholar 
    Pate, J. H. & Marshall, A. D. Urban manta rays: Potential manta ray nursery habitat along a highly developed Florida coastline. Endanger. Spec. Res. 43, 51–64 (2020).
    Google Scholar 
    Hosegood, J. et al. Phylogenomics and species delimitation for effective conservation of manta and devil rays. Mol. Ecol. 29, 4783–4796 (2020).
    Google Scholar 
    Hinojosa-Alvarez, S., Walter, R. P., Diaz-Jaimes, P., Galván-Magaña, F. & Paig-Tran, E. M. A potential third manta ray species near the Yucatán Peninsula? Evidence for a recently diverged and novel genetic Manta group from the Gulf of Mexico. PeerJ 4, e2586 (2016).
    Google Scholar 
    Bucair, N., Venables, S. K., Balboni, A. P. & Marshall, A. D. Sightings trends and behaviour of manta rays in Fernando de Noronha Archipelago, Brazil. Mar. Biodivers. Rec. 14, 1–11 (2021).
    Google Scholar 
    Garzon, F., Graham, R., Witt, M. & Hawkes, L. Ecological niche modeling reveals manta ray distribution and conservation priority areas in the Western Central Atlantic. Anim. Conserv. 24, 322–334 (2021).
    Google Scholar 
    Stewart, J. D. et al. Research priorities to support effective manta and devil ray conservation. Front. Mar. Sci. 5, 314 (2018).
    Google Scholar 
    Garrison, L. P. Abundance of coastal and continental shelf stocks of bottlenose dolphins in the northern Gulf of Mexico: 2011–2012. (National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, Florida, 2017).Garrison, L. P., Ortega-Ortiz, J. & Rappucci, G. Abundance of coastal and continental shelf stocks of bottlenose dolphins in the northern Gulf of Mexico: 2017–2018. (National Marine Fisheries Service, Southeast Fisheries Science Center, Miami, Florida, 2021).Palka, D. L. et al. Atlantic Marine Assessment Program for Protected Species: 2010–2014. (US Dept. of the Interior, Bureau of Ocean Energy Management, Atlantic OCS Region, Washington, DC, 2017).Palka, D. et al. Atlantic Marine Assessment Program for Protected Species: FY15 – FY19. (US Dept. of the Interior, Bureau of Ocean Energy Management, Atlantic OCS Region, Washington, DC, 2021).Laake, J. L. & Borchers, D. L. in Advanced distance sampling (eds S.T. Buckland et al.) 108–189 (Oxford University Press, 2004).mrds: Mark-Recapture Distance Sampling v. 2.2.2 (https://CRAN.R-project.org/package=mrds, 2020).Akaike, H. Maximum likelihood identification of Gaussian autoregressive moving average models. Biometrika 60, 255–265 (1973).MathSciNet 
    MATH 

    Google Scholar 
    Consortium, N. A. R. W. (2018).Miller, D. L., Rexstad, E., Thomas, L., Marshall, L. & Laake, J. L. Distance sampling in R. J. Stat. Softw. 89, 1–28 (2019).
    Google Scholar 
    Pante, E. & Simon-Bouhet, B. marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE https://doi.org/10.1371/journal.pone.0073051 (2013).Article 

    Google Scholar 
    rerddap: General Purpose Client for ‘ERDDAP’ Servers v. 0.7.4 (https://cran.r-project.org/package=rerddap, 2021).Belkin, I. M. & O’Reilly, J. E. An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. J. Mar. Syst. 78, 319–326 (2009).
    Google Scholar 
    grec: GRadient-Based RECognition of Spatial Patterns in Environmental Data v. 1.3.1 (https://github.com/LuisLauM/grec, 2020).Del Castillo, C. E. et al. Multispectral in situ measurements of organic matter and chlorophyll fluorescence in seawater: Documenting the intrusion of the Mississippi River plume in the West Florida Shelf. Limnol. Oceanogr. 46, 1836–1843 (2001).ADS 

    Google Scholar 
    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).ADS 
    CAS 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 73, 3–36 (2011).MathSciNet 
    MATH 

    Google Scholar 
    Brodie, S. et al. Integrating dynamic subsurface habitat metrics into species distribution models. Front. Mar. Sci. 5, 219 (2018).
    Google Scholar 
    Hazen, E. L. et al. WhaleWatch: A dynamic management tool for predicting blue whale density in the California Current. J. Appl. Ecol. 54, 1415–1428 (2017).
    Google Scholar 
    Robin, X. et al. pROC: An open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinform. 12, 1–8 (2011).
    Google Scholar 
    Farmer, N. A. et al. Timing and locations of reef fish spawning off the southeastern United States. PLoS ONE 12, e0172968 (2017).
    Google Scholar 
    Heyman, W. D. et al. Cooperative monitoring, assessment, and management of fish spawning aggregations and associated fisheries in the US Gulf of Mexico. Mar. Policy 109, 103689 (2019).
    Google Scholar 
    Shumway, R. H. & Stoffer, D. S. (Springer, 2017).astsa: Applied Statistical Time Series Analysis v. 1.12 (https://CRAN.R-project.org/package=astsa, 2020).Hosmer, D. W. Jr., Lemeshow, S. & Sturdivant, R. X. Applied logistic regression Vol. 398 (Wiley, New York, 2013).MATH 

    Google Scholar 
    Service, N. O. a. A. A. F. Giant manta ray recovery outline, https://www.fisheries.noaa.gov/resource/document/giant-manta-ray-recovery-outline (2020).Kashiwagi, T., Marshall, A. D., Bennett, M. B. & Ovenden, J. R. Habitat segregation and mosaic sympatry of the two species of manta ray in the Indian and Pacific Oceans: Manta alfredi and M. birostris. Mar. Biodivers. Rec. 4 (2011).Adams, D. H. & Amesbury, E. Occurrence of the manta ray, Manta birostris, in the Indian River Lagoon, Florida. Florida Sci., 7–9 (1998).Milessi, A. C. & Oddone, M. C. Primer registro de Manta birostris (Donndorff 1798)(Batoidea: Mobulidae) en el Rio de La Plata, Uruguay. Gayana (Concepción) 67, 126–129 (2003).
    Google Scholar 
    Medeiros, A., Luiz, O. & Domit, C. Occurrence and use of an estuarine habitat by giant manta ray Manta birostris. J. Fish Biol. 86, 1830–1838 (2015).CAS 

    Google Scholar 
    Shropshire, T. A. et al. Quantifying spatiotemporal variability in zooplankton dynamics in the Gulf of Mexico with a physical–biogeochemical model. Biogeosciences 17, 3385–3407 (2020).ADS 

    Google Scholar 
    Strömberg, K. P., Smyth, T. J., Allen, J. I., Pitois, S. & O’Brien, T. D. Estimation of global zooplankton biomass from satellite ocean colour. J. Mar. Syst. 78, 18–27 (2009).
    Google Scholar 
    Yoder, J. Environmental control of phytoplankton production on the southeastern US continental shelf. Oceanogr. Southeast. US Cont. Shelf 2, 93–103 (1985).
    Google Scholar 
    Yoder, J. A., Atkinson, L. P., Lee, T. N., Kim, H. H. & McClain, C. R. Role of gulf stream frontal eddies in forming phytoplankton patches on the outer southeastern shelf 1. Limnol. Oceanogr. 26, 1103–1110 (1981).ADS 

    Google Scholar 
    Cloern, J. E. Tidal stirring and phytoplankton bloom dynamics in an estuary. J. Mar. Res. 49, 203–221 (1991).
    Google Scholar 
    Blauw, A. N., Beninca, E., Laane, R. W., Greenwood, N. & Huisman, J. Dancing with the tides: fluctuations of coastal phytoplankton orchestrated by different oscillatory modes of the tidal cycle. PLoS ONE 7, e49319 (2012).ADS 
    CAS 

    Google Scholar 
    Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl. Acad. Sci. 105, 6668–6672 (2008).ADS 
    CAS 

    Google Scholar 
    Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).CAS 

    Google Scholar 
    Schulte, P. M., Healy, T. M. & Fangue, N. A. Thermal performance curves, phenotypic plasticity, and the time scales of temperature exposure. Integr. Comp. Biol. 51, 691–702 (2011).
    Google Scholar 
    Huey, R. B. & Stevenson, R. Integrating thermal physiology and ecology of ectotherms: A discussion of approaches. Am. Zool. 19, 357–366 (1979).
    Google Scholar 
    Angilletta, M. J. Jr. Estimating and comparing thermal performance curves. J. Therm. Biol 31, 541–545 (2006).
    Google Scholar 
    Angilletta, M. J. Jr., Niewiarowski, P. H. & Navas, C. A. The evolution of thermal physiology in ectotherms. J. Therm. Biol 27, 249–268 (2002).
    Google Scholar 
    Lear, K. O. et al. Thermal performance responses in free-ranging elasmobranchs depend on habitat use and body size. Oecologia 191, 829–842 (2019).ADS 

    Google Scholar 
    Thorrold, S. R. et al. Extreme diving behaviour in devil rays links surface waters and the deep ocean. Nat. Commun. 5, 1–7 (2014).
    Google Scholar 
    Freedman, R. & Roy, S. S. Spatial patterning of Manta birostris in United States east coast offshore habitat. Appl. Geogr. 32, 652–659 (2012).
    Google Scholar 
    Graham, R. T. et al. Satellite tracking of manta rays highlights challenges to their conservation. PLoS ONE 7, e36834 (2012).ADS 
    CAS 

    Google Scholar 
    Duffy, C. & Abbott, D. Sightings of mobulid rays from northern New Zealand, with confirmation of the occurrence of Manta birostris in New Zealand waters. (2003).Dewar, H. et al. Movements and site fidelity of the giant manta ray, Manta birostris, in the Komodo Marine Park, Indonesia. Mar. Biol. 155, 121–133 (2008).
    Google Scholar 
    Johnston, M. A. et al. Long-term monitoring at east and west Flower Garden Banks: 2017 annual report. (Flower Garden Banks National Marine Sanctuary, Galveston, Texas, 2018).Morita, K., Fukuwaka, M. A., Tanimata, N. & Yamamura, O. Size-dependent thermal preferences in a pelagic fish. Oikos 119, 1265–1272 (2010).
    Google Scholar 
    Gilchrist, G. W. Specialists and generalists in changing environments. I. Fitness landscapes of thermal sensitivity. Am. Nat. 146, 252–270 (1995).
    Google Scholar 
    Kingsolver, J. G. The Well-temperatured biologist: (American Society of Naturalists Presidential Address). Am. Nat. 174, 755–768 (2009).
    Google Scholar 
    Stevenson, R. Body size and limits to the daily range of body temperature in terrestrial ectotherms. Am. Nat. 125, 102–117 (1985).
    Google Scholar 
    Blanton, J., Atkinson, L., Pietrafesa, L. & Lee, T. The intrusion of Gulf Stream water across the continental shelf due to topographically-induced upwelling. Deep Sea Res. Part A Oceanogr. Res. Pap. 28, 393–405 (1981).ADS 

    Google Scholar 
    Savidge, G. A preliminary study of the distribution of chlorophyll a in the vicinity of fronts in the Celtic and western Irish Seas. Estuar. Coast. Mar. Sci. 4, 617–625 (1976).ADS 
    CAS 

    Google Scholar 
    Pingree, R. & Griffiths, D. Tidal fronts on the shelf seas around the British Isles. J. Geophys. Res. Oceans 83, 4615–4622 (1978).ADS 

    Google Scholar 
    Tett, P. Modelling phytoplankton production at shelf-sea fronts. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 302, 605–615 (1981).ADS 

    Google Scholar 
    Bumpus, D. F. & Wehe, T. Hydrography of the Western Atlantic: coastal water circulation off the east coast of the United States between Cape Hatteras and Florida. (Woods Hole Oceanographic Institution, 1949).Clark, T. B. Population structure of Manta birostris (Chondrichthyes: Mobulidae) from the Pacific and Atlantic Oceans. Texas A&M University (2002).Kashiwagi, T. et al. in The Joint Meeting of Ichthyologists & Herpetologist. Austin: American Elasmobranch Society Conference. 254–255.Notarbartolo-di-Sciara, G. Natural history of the rays of the genus Mobula in the Gulf of California. Fish. Bull. 86, 45–66 (1988).
    Google Scholar 
    Notarbartolo-di-Sciara, G. A revisionary study of the genus Mobula Rafinesque, 1810 (Chondrichthyes: Mobulidae) with the description of a new species. Zool. J. Linn. Soc. 91, 1–91 (1987).
    Google Scholar 
    Canese, S. et al. Diving behavior of the giant devil ray in the Mediterranean Sea. Endangered Species Research 14, 171–176 (2011).
    Google Scholar 
    Stewart, J. D. et al. Spatial ecology and conservation of Manta birostris in the Indo-Pacific. Biol. Cons. 200, 178–183 (2016).
    Google Scholar 
    Farmer, N. A. et al. Population consequences of disturbance by offshore oil and gas activity for endangered sperm whales (Physeter macrocephalus). Biol. Cons. 227, 189–204 (2018).
    Google Scholar 
    Farmer, N. A., Gowan, T. A., Powell, J. R. & Zoodsma, B. J. Evaluation of alternatives to winter closure of black sea bass pot gear: Projected impacts on catch and risk of entanglement with North Atlantic right whales Eubalaena glacialis. Mar. Coast. Fish. 8, 202–221 (2016).
    Google Scholar 
    Miller, M. & Klimovich, C. Endangered Species Act status review report: Giant manta ray (Manta birostris) and reef manta ray (Manta alfredi). Report to National Marine Fisheries Service, Office of Protected Resources. Silver Spring, MD (2016).Croll, D. A. et al. Vulnerabilities and fisheries impacts: the uncertain future of manta and devil rays. Aquat. Conserv. Mar. Freshw. Ecosyst. 26, 562–575 (2016).
    Google Scholar 
    Carlson, J. K. Estimated incidental take of smalltooth sawfish (Pristis pectinata) and giant manta ray (Manta birostris) in the South Atlantic and Gulf of Mexico shrimp trawl fishery. 16 (National Marine Fisheries Service, Southeast Fisheries Science Center, Panama City Laboratory, Panama City, Florida, 2020).Essumang, D. First determination of the levels of platinum group metals in Manta birostris (Manta Ray) caught along the Ghanaian coastline. Bull. Environ. Contam. Toxicol. 84, 720–725 (2010).CAS 

    Google Scholar 
    Hajbane, S. & Pattiaratchi, C. B. Plastic pollution patterns in offshore, nearshore and estuarine waters: A case study from Perth Western Australia. Front. Mar. Sci. 4, 63 (2017).
    Google Scholar 
    Germanov, E. S. et al. Microplastics on the menu: Plastics pollute Indonesian manta ray and whale shark feeding grounds. Front. Mar. Sci. 6, 679 (2019).
    Google Scholar 
    McCauley, D. J. et al. Reliance of mobile species on sensitive habitats: A case study of manta rays (Manta alfredi) and lagoons. Mar. Biol. 161, 1987–1998 (2014).
    Google Scholar 
    Guard, U. S. C. 2019 recreational boating statistics. 83 (U.S. Department of Homeland Security, U.S. Coast Guard, Office of Auxiliary and Boating Safety, Washington, DC, 2019).Roberts, B. in Florida Sportsman (2020).Pate, J. H., Macdonald, C. & Wester, J. Surveys of recreational anglers reveal knowledge gaps and positive attitudes towards manta ray conservation in Florida. Aquat. Conserv. Mar. Freshw. Ecosyst. 31, 1410–1419 (2021).
    Google Scholar 
    Currier, R., Kirkpatrick, B., Simoniello, C., Lowerre-Barbieri, S. & Bickford, J. in OCEANS 2015-MTS/IEEE Washington. 1–3 (IEEE).Young, J. M. et al. The FACT Network: Philosophy, evolution, and management of a collaborative coastal tracking network. Mar. Coast. Fish. 12, 258–271 (2020).
    Google Scholar  More

  • in

    Microscale carbon distribution around pores and particulate organic matter varies with soil moisture regime

    Minasny, B. et al. Soil carbon 4 per mille. Geoderma 292, 59–86 (2017).ADS 
    Article 

    Google Scholar 
    Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623–1627 (2004).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lehmann, J., Bossio, D. A., Kögel-Knabner, I. & Rillig, M. C. The concept and future prospects of soil health. Nat. Rev. Earth Environ. 1, 544–553 (2020).ADS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Lavallee, J. M., Soong, J. L. & Cotrufo, M. F. Conceptualizing soil organic matter into particulate and mineral-associated forms to address global change in the 21st century. Glob. Change Biol. 26, 261–273 (2020).ADS 
    Article 

    Google Scholar 
    Kravchenko, A. N. et al. Microbial spatial footprint as a driver of soil carbon stabilization. Nat. Commun. 10, 3121 (2019).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Witzgall, K. et al. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat. Commun. 12, 4115 (2021).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Dungait, J. A. J., Hopkins, D. W., Gregory, A. S. & Whitmore, A. P. Soil organic matter turnover is governed by accessibility not recalcitrance. Glob. Change Biol. 18, 1781–1796 (2012).ADS 
    Article 

    Google Scholar 
    Lehmann, J. & Kleber, M. The contentious nature of soil organic matter. Nature 528, 60 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Keiluweit, M., Nico, P. S., Kleber, M. & Fendorf, S. Are oxygen limitations under recognized regulators of organic carbon turnover in upland soils? Biogeochemistry 127, 157–171 (2016).CAS 
    Article 

    Google Scholar 
    Rohe, L. et al. Denitrification in soil as a function of oxygen availability at the microscale. Biogeosciences 18, 1185–1201 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Hall, S. J. & Silver, W. L. Reducing conditions, reactive metals, and their interactions can explain spatial patterns of surface soil carbon in a humid tropical forest. Biogeochemistry 125, 149–165 (2015).CAS 
    Article 

    Google Scholar 
    Hagedorn, F., Bruderhofer, N., Ferrari, A. & Niklaus, P. A. Tracking litter-derived dissolved organic matter along a soil chronosequence using 14C imaging: Biodegradation, physico-chemical retention or preferential flow? Soil Biol. Biochem. 88, 333–343 (2015).CAS 
    Article 

    Google Scholar 
    Védère, C., Vieublé Gonod, L., Pouteau, V., Girardin, C. & Chenu, C. Spatial and temporal evolution of detritusphere hotspots at different soil moistures. Soil Biol. Biochem. 150, 107975 (2020).Article 
    CAS 

    Google Scholar 
    Silver, W. L., Lugo, A. E. & Keller, M. Soil oxygen availability and biogeochemistry along rainfall and topographic gradients in upland wet tropical forest soils. Biogeochemistry 44, 301–328 (1999).
    Google Scholar 
    Schuur, E. A. G., Chadwick, O. A. & Matson, P. A. Carbon cycling and soil carbon storage in mesic to wet hawaiian montane forests. Ecology 82, 3182–3196 (2001).Article 

    Google Scholar 
    Tiemeyer, B. et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob. Change Biol. 22, 4134–4149 (2016).ADS 
    Article 

    Google Scholar 
    Hooijer, A. et al. Subsidence and carbon loss in drained tropical peatlands. Biogeosciences 9, 1053–1071 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Cleveland, C. C., Wieder, W. R., Reed, S. C. & Townsend, A. R. Experimental drought in a tropical rain forest increases soil carbon dioxide losses to the atmosphere. Ecology 91, 2313–2323 (2010).PubMed 
    Article 

    Google Scholar 
    Moyano, F. E., Manzoni, S. & Chenu, C. Responses of soil heterotrophic respiration to moisture availability: an exploration of processes and models. Soil Biol. Biochem. 59, 72–85 (2013).CAS 
    Article 

    Google Scholar 
    Franzluebbers, A. J. Microbial activity in response to water-filled pore space of variably eroded southern Piedmont soils. Appl. Soil Ecol. 11, 91–101 (1999).Article 

    Google Scholar 
    Thomsen, I. K., Schjønning, P., Jensen, B., Kristensen, K. & Christensen, B. T. Turnover of organic matter in differently textured soils: II. Microbial activity as influenced by soil water regimes. Geoderma 89, 199–218 (1999).ADS 
    Article 

    Google Scholar 
    Nunan, N., Leloup, J., Ruamps, L. S., Pouteau, V. & Chenu, C. Effects of habitat constraints on soil microbial community function. Sci. Rep. 7, 4280 (2017).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Ruamps, L. S., Nunan, N. & Chenu, C. Microbial biogeography at the soil pore scale. Soil Biol. Biochem. 43, 280–286 (2011).CAS 
    Article 

    Google Scholar 
    Strong, D. T., Wever, H. D., Merckx, R. & Recous, S. Spatial location of carbon decomposition in the soil pore system. Eur. J. Soil Sci. 55, 739–750 (2004).Article 

    Google Scholar 
    Vogel, H.-J. et al. A holistic perspective on soil architecture is needed as a key to soil functions. Eur. J. Soil Sci. 73, e13152 (2022).Article 

    Google Scholar 
    Lehmann, J. et al. Spatial complexity of soil organic matter forms at nanometre scales. Nat. Geosci. 1, 238–242 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Steffens, M. et al. Identification of distinct functional microstructural domains controlling C storage in soil. Environ. Sci. Technol. 51, 12182–12189 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Elyeznasni, N. et al. Exploration of soil micromorphology to identify coarse-sized OM assemblages in X-ray CT images of undisturbed cultivated soil cores. Geoderma 179-180, 38–45 (2012).ADS 
    Article 

    Google Scholar 
    Hayes, T. L., Lindgren, F. T. & Gofman, J. W. A quantitative determination of the Osmium tetroxide-lipoprotein interaction. J. Cell Biol. 19, 251–255 (1963).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Belazi, D., Solé-Domènech, S., Johansson, B., Schalling, M. & Sjövall, P. Chemical analysis of osmium tetroxide staining in adipose tissue using imaging ToF-SIMS. Histochem. Cell Biol. 132, 105–115 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schulz M., et al. Structured heterogeneity in a marine terrace chronosequence: upland mottling. Vadose Zone J. 15, vzj2015.07.0102 (2016).Fimmen et al. Fe–C redox cycling: a hypothetical biogeochemical mechanism that drives crustal weathering in upland soils. Biogeochemistry 87, 127–141 (2008).CAS 
    Article 

    Google Scholar 
    Zheng, H., Kim, K., Kravchenko, A., Rivers, M. & Guber, A. Testing Os staining approach for visualizing soil organic matter patterns in intact samples via X-ray dual-energy tomography scanning. Environ. Sci. Technol. 54, 8980–8989 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Périé, C. & Ouimet, R. Organic carbon, organic matter and bulk density relationships in boreal forest soils. Can. J. Soil Sci. 88, 315–325 (2008).Article 

    Google Scholar 
    Rawls, W. J., Pachepsky, Y. A., Ritchie, J. C., Sobecki, T. M. & Bloodworth, H. Effect of soil organic carbon on soil water retention. Geoderma 116, 61–76 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Quigley M. Y., Rivers M. L. & Kravchenko A. N. Patterns and sources of spatial heterogeneity in soil matrix from contrasting long term management practices. Front. Environ. Sci. 6 (2018).Arai, M. et al. An improved method to identify osmium-stained organic matter within soil aggregate structure by electron microscopy and synchrotron X-ray micro-computed tomography. Soil Tillage Res. 191, 275–281 (2019).Article 

    Google Scholar 
    Peth, S. et al. Localization of soil organic matter in soil aggregates using synchrotron-based X-ray microtomography. Soil Biol. Biochem. 78, 189–194 (2014).CAS 
    Article 

    Google Scholar 
    Rawlins, B. G. et al. Three-dimensional soil organic matter distribution, accessibility and microbial respiration in macroaggregates using osmium staining and synchrotron X-ray computed tomography. Soil 2, 659–671 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Plattner H. & Zingsheim H. P. Electron Microscopic Methods in Cellular and Molecular Biology. In: Subcellular Biochemistry (ed. Roodyn D. B.). (Plenum Press, 1983).Litman, R. B. & Barrnett, R. J. The mechanism of the fixation of tissue components by osmium tetroxide via hydrogen bonding. J. Ultrastruct. Res. 38, 63–86 (1972).CAS 
    PubMed 
    Article 

    Google Scholar 
    Vepraskas M. & Lindbo D. Redoximorphic features as related to soil hydrology and hydric soils. In: Hydropedology: Synergistic Integration of Soil Science and Hydrology (ed. Lin H.). Academic Press (2012).See C. R., et al. Hyphae move matter and microbes to mineral microsites: integrating the hyphosphere into conceptual models of soil organic matter stabilization. Glob. Change Biol. 28, 2527–2540 (2022).Vidal, A. et al. Visualizing the transfer of organic matter from decaying plant residues to soil mineral surfaces controlled by microorganisms. Soil Biol. Biochem. 160, 108347 (2021).CAS 
    Article 

    Google Scholar 
    Hagedorn, F., Kaiser, K., Feyen, H. & Schleppi, P. Effects of redox conditions and flow processes on the mobility of dissolved organic carbon and nitrogen in a forest soil. J. Environ. Qual. 29, 288–297 (2000).CAS 
    Article 

    Google Scholar 
    Grybos, M., Davranche, M., Gruau, G., Petitjean, P. & Pédrot, M. Increasing pH drives organic matter solubilization from wetland soils under reducing conditions. Geoderma 154, 13–19 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Keiluweit, M., Wanzek, T., Kleber, M., Nico, P. & Fendorf, S. Anaerobic microsites have an unaccounted role in soil carbon stabilization. Nat. Commun. 8, 1771 (2017).ADS 
    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Eusterhues, K., Rumpel, C. & Kögel-Knabner, I. Stabilization of soil organic matter isolated via oxidative degradation. Org. Geochem. 36, 1567–1575 (2005).CAS 
    Article 

    Google Scholar 
    Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M. & Hendricks, D. M. Mineral control of soil organic carbon storage and turnover. Nature 389, 170–173 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Lucas, M., Schlüter, S., Vogel, H.-J. & Vetterlein, D. Soil structure formation along an agricultural chronosequence. Geoderma 350, 61–72 (2019).ADS 
    Article 

    Google Scholar 
    Sokol, N. W., Sanderman, J. & Bradford, M. A. Pathways of mineral-associated soil organic matter formation: Integrating the role of plant carbon source, chemistry, and point of entry. Glob. Change Biol. 25, 12–24 (2019).ADS 
    Article 

    Google Scholar 
    Marschner, B. & Kalbitz, K. Controls of bioavailability and biodegradability of dissolved organic matter in soils. Geoderma 113, 211–235 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Stirling, E., Smernik, R. J., Macdonald, L. M. & Cavagnaro, T. R. The effect of fire affected Pinus radiata litter and char addition on soil nitrogen cycling. Sci. Total Environ. 664, 276–282 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kravchenko, A. N. et al. Hotspots of soil N2O emission enhanced through water absorption by plant residue. Nat. Geosci. 10, 496 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Kim, K., Guber, A., Rivers, M. & Kravchenko, A. Contribution of decomposing plant roots to N2O emissions by water absorption. Geoderma 375, 114506 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Goebel, M. O., Bachmann, J., Reichstein, M., Janssens, I. A. & Guggenberger, G. Soil water repellency and its implications for organic matter decomposition – is there a link to extreme climatic events? Glob. Change Biol. 17, 2640–2656 (2011).ADS 
    Article 

    Google Scholar 
    Brodowski, S., Amelung, W., Haumaier, L., Abetz, C. & Zech, W. Morphological and chemical properties of black carbon in physical soil fractions as revealed by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Geoderma 128, 116–129 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Diel, J., Vogel, H.-J. & Schlüter, S. Impact of wetting and drying cycles on soil structure dynamics. Geoderma 345, 63–71 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Surey R., et al. Contribution of particulate and mineral-associated organic matter to potential denitrification of agricultural soils. Front. Environ. Sci. 9 (2021).Kaiser, M., Ellerbrock, R. H. & Sommer, M. Separation of coarse organic particles from bulk surface soil samples by electrostatic attraction. Soil Sci. Soc. Am. J. 73, 2118–2130 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Atkinson, R., Posner, A. & Quirk, J. P. Adsorption of potential-determining ions at the ferric oxide-aqueous electrolyte interface. J. Phys. Chem. 71, 550–558 (1967).CAS 
    Article 

    Google Scholar 
    Mueller, C. W. et al. Submicron scale imaging of soil organic matter dynamics using NanoSIMS – from single particles to intact aggregates. Org. Geochem. 42, 1476–1488 (2012).Article 
    CAS 

    Google Scholar 
    Herrmann, A. M. et al. Nano-scale secondary ion mass spectrometry—a new analytical tool in biogeochemistry and soil ecology: A review article. Soil Biol. Biochem. 39, 1835–1850 (2007).CAS 
    Article 

    Google Scholar 
    Schlüter, S., Eickhorst, T. & Mueller, C. W. Correlative imaging reveals holistic view of soil microenvironments. Environ. Sci. Technol. 53, 829–837 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Klein, S., Staring, M., Murphy, K., Viergever, M. A. & Pluim, J. P. W. elastix: a toolbox for intensity-based medical image registration. Med. Imaging, IEEE Trans. 29, 196–205 (2010).Article 

    Google Scholar 
    Otsu, N. A threshold selection method from gray-level histograms. Automatica 11, 23–27 (1975).
    Google Scholar 
    Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. methods 9, 676–682 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlüter, S., Leuther, F., Vogler, S. & Vogel, H.-J. X-ray microtomography analysis of soil structure deformation caused by centrifugation. Solid Earth 7, 129–140 (2016).ADS 
    Article 

    Google Scholar 
    Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Nat. Methods 16, 1226–1232 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schlüter, S., Sheppard, A., Brown, K. & Wildenschild, D. Image processing of multiphase images obtained via X-ray microtomography: a review. Water Resour. Res. 50, 3615–3639 (2014).ADS 
    Article 

    Google Scholar 
    Legland, D., Arganda-Carreras, I. & Andrey, P. MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32, 3532–3534 (2016).CAS 
    PubMed 

    Google Scholar 
    Liaw, A. & Wiener, M. Classification and regression by randomForest. R. N. 2, 18–22 (2002).
    Google Scholar 
    Surey, R. et al. Differences in labile soil organic matter explain potential denitrification and denitrifying communities in a long-term fertilization experiment. Appl. Soil Ecol. 153, 103630 (2020).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing (2020). More

  • in

    Greenhouse gas emissions rise due to tillage

    Globally, agriculture represents a substantial contributor to net greenhouse gas (GHG) emissions (c. 25%)1, and accounts for at least 10% of all GHG emissions in the United States2. To address the current climate emergency, agriculture remains a key player, with substantial potential to contribute to the solution. Reduced tillage as part of a ‘conservation agriculture’ approach is considered an important way of achieving this and is gaining popularity globally. Leaving the soil uncultivated, also referred to as zero or no tillage (that is, not ploughing), has been shown to offer considerable benefits for the ‘health’ of soil, including improved soil structure, a thriving soil faunal community (for example, earthworms) and, potentially, sequestration of carbon3. It has recently been shown, for temperate arable systems, that there is potential for a substantial (up to 30%) reduction in GHG emissions by simply moving to direct drilling, as the resulting changes in the soil structure help reduce GHG emissions4. Minimizing tillage also dramatically cuts the diesel consumption linked to crop production. However, there are negatives associated with this reductionist approach, most notably the proliferation of weed plant species that have traditionally been controlled via the implementation of tillage. More