More stories

  • in

    Insight into impact of sewage discharge on microbial dynamics and pathogenicity in river ecosystem

    Zhang, Y., Wu, J. & Xu, B. Human health risk assessment of groundwater nitrogen pollution in Jinghui canal irrigation area of the loess region, northwest China. Environ. Earth Sci. 77, 273 (2018).Article 
    CAS 

    Google Scholar 
    Zhang, D. et al. Potential spreading risks and disinfection challenges of medical wastewater by the presence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral RNA in septic tanks of Fangcang Hospital. Sci. Total Environ. 741, 140445 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Ahmed, W. et al. First confirmed detection of SARS-CoV-2 in untreated wastewater in Australia: A proof of concept for the wastewater surveillance of COVID-19 in the community. Sci. Total Environ. 728, 138764 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Haramoto, E., Malla, B., Thakali, O. & Kitajima, M. First environmental surveillance for the presence of SARS-CoV-2 RNA in wastewater and river water in Japan. Sci. Total Environ. 737, 140405 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Naddeo, V. & Liu, H. Editorial Perspectives: 2019 novel coronavirus (SARS-CoV-2): What is its fate in urban water cycle and how can the water research community respond?. Environ. Sci. Water Res. Technol. 6, 1213–1216 (2020).CAS 
    Article 

    Google Scholar 
    Cornelisen, C. D., Gillespie, P. A., Kirs, M., Young, R. G. & Harwood, V. J. Motueka River plume facilitates transport of ruminant faecal contaminants into shellfish growing waters, Tasman Bay, New Zealand. N. Z. J. Mar. Freshw. Res. 45, 477–495 (2011).Article 

    Google Scholar 
    Devane, M. L., Moriarty, E. M., Wood, D., Webster-Brown, J. & Gilpin, B. J. The impact of major earthquakes and subsequent sewage discharges on the microbial quality of water and sediments in an urban river. Sci. Total Environ. 485–486, 666–680 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Duttagupta, S. et al. Achieving sustainable development goal for clean water in India: Influence of natural and anthropogenic factors on groundwater microbial pollution. Environ. Manag. 66, 42–755 (2020).Article 

    Google Scholar 
    Huelsen, T. et al. Domestic wastewater treatment with purple phototrophic bacteria using a novel continuous photo anaerobic membrane bioreactor. Water Res. 100, 486–495 (2016).Article 
    CAS 

    Google Scholar 
    Johnson, D. R. et al. The functional and taxonomic richness of wastewater treatment plant microbial communities are associated with each other and with ambient nitrogen and carbon availability. Environ. Microbiol. 17(12), 4851–4860 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lei, Z. J. M. Effects of phosphorus addition on soil microbial biomass and community composition in three forest types in tropical China. Soil Biol. Biochem. 44(1), 31–38 (2012).Article 
    CAS 

    Google Scholar 
    Jian, L. Effects of nitrogen and phosphorus addition on soil microbial community in a secondary tropical forest of China. Biol. Fertil. Soils 51, 207–215 (2015).Article 
    CAS 

    Google Scholar 
    Yu, S. X., Pang, Y. L., Wang, Y. C., Li, J. L. & Qin, S. Spatial variation of microbial communities in sediments along the environmental gradients from Xiaoqing River to Laizhou Bay. Mar. Pollut. Bull. 76, 1048–1056 (2017).
    Google Scholar 
    Reidl, J. & Klose, K. E. Vibrio cholerae and cholera: Out of the water and into the host. FEMS Microbiol. Rev. 26(2), 125–139 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chin, C.-S. et al. The origin of the Haitian cholera outbreak strain. N. Engl. J. Med. 364, 33–42 (2010).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Minoru, K., Miho, F., Mao, T., Yoko, S. & Kanae, M. KEGG: New perspectives on genomes, pathways, diseases and drugs. Nucl. Acids Res. 45, D353–D361 (2017).Article 
    CAS 

    Google Scholar 
    Zieliński, W. et al. The prevalence of drug-resistant and virulent Staphylococcus spp. in a municipal wastewater treatment plant and their spread in the environment. Environ. Int. 143, 105914 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Dietrich, J. E. S. & Doherty, T. M. Interaction of Mycobacterium tuberculosis with the host: Consequences for vaccine development. APMIS 117, 440–457 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Velayati, A. A. et al. Identification and genotyping of Mycobacterium tuberculosis isolated from water and soil samples of a metropolitan city. Chest 147, 1094–1102 (2015).PubMed 
    Article 

    Google Scholar 
    Pereira, M. I. & Medeiros, J. A. Role of Helicobacter pylori in gastric mucosa-associated lymphoid tissue lymphomas. World J. Gastroenterol. 20, 684–698 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    West, A. P., Millar, M. R. & Tompkins, D. S. Effect of physical environment on survival of Helicobacter pylori. J. Clin. Pathol. 45, 228–231 (1992).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Miller, W. A. et al. Salmonella spp., Vibrio spp., Clostridium perfringens, and Plesiomonas shigelloides in marine and freshwater invertebrates from coastal California ecosystems. Microb. Ecol. 52, 198–206 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    McCarthy, S. A. Effects of temperature and salinity on survival of toxigenic Vibrio cholerae O1 in seawater. Microb Ecol 31, 167–175 (1996).CAS 
    PubMed 
    Article 

    Google Scholar 
    Heaney, N. et al. Effects of softwood biochar on the status of nitrogen species and elements of potential toxicity in soils. Ecotoxicol. Environ. Saf. 166, 383–389 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, Z. B., Miao, M. S., Kong, Q. & Ni, S. Q. Evaluation of microbial diversity of activated sludge in a municipal wastewater treatment plant of northern China by high-throughput sequencing technology. Desalin. Water Treat. 57, 1–6 (2016).Article 
    CAS 

    Google Scholar 
    Wang, Z. et al. Weak magnetic field: A powerful strategy to enhance partial nitrification. Water Res. 120, 190–198 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, X. et al. Reduction of nitrous oxide emissions from partial nitrification process by using innovative carbon source (mannitol). Bioresour. Technol. 218, 789–795 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, X. et al. N2O emission and bacterial community dynamics during realization of the partial nitrification process. RSC Adv. 8, 24305–24311 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Lv, L., Ren, L. F., Ni, S. Q., Gao, B. Y. & Wang, Y. N. The effect of magnetite on the start-up and N2O emission reduction of the anammox process. RSC Adv. 6, 99989–99996 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Yang, S., Liebner, S., Alawi, M., Ebenhöh, O. & Wagner, D. Taxonomic database and cut-off value for processing mcrA gene 454 pyrosequencing data by MOTHUR. J. Microbiol. Methods 103, 3–5 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Xu, F. et al. Electricity production and evolution of microbial community in the constructed wetland-microbial fuel cell. Chem. Eng. J. 339, 479–486 (2018).CAS 
    Article 

    Google Scholar 
    Bu, C. et al. Dissimilatory nitrate reduction to ammonium in the yellow river estuary: Rates, abundance, and community diversity. Sci. Rep. 7, 6830 (2017).ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Zhou, J., Fries, M. R., Cheesanford, J. C. & Tiedje, J. M. Phylogenetic analyses of a new group of denitrifiers capable of anaerobic growth of toluene and description of Azoarcus tolulyticus sp. nov.. Int. J. Syst. Bacteriol. 194, 500–506 (1995).Article 

    Google Scholar 
    Casanova, L., Rutala, W. A., Weber, D. J. & Sobsey, M. D. Survival of surrogate coronaviruses in water. Water Res. 43, 1893–1898 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Elreedy, A. et al. Unraveling the capability of graphene nanosheets and γ-Fe2O3 nanoparticles to stimulate anammox granular sludge. J. Environ. Manag. 277, 111495 (2021).CAS 
    Article 

    Google Scholar 
    Ismail, S. et al. Response of anammox bacteria to short-term exposure of 1,4-dioxane: Bacterial activity and community dynamics. Sep. Purif. Technol. 266, 118539 (2021).CAS 
    Article 

    Google Scholar 
    Shen, X., Xu, M., Li, M., Zhao, Y. & Shao, X. Response of sediment bacterial communities to the drainage of wastewater from aquaculture ponds in different seasons. Sci. Total Environ. 717, 137180 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ismail, S. et al. Fatigue of anammox consortia under long-term 1,4-dioxane exposure and recovery potential: N-kinetics and microbial dynamics. J. Hazard. Mater. 414, 125533 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Li, H. F., Li, B. Z., Wang, E. T., Yang, J. S. & Yuan, H. L. Removal of low concentration of phosphorus from solution by free and immobilized cells of Pseudomonas stutzeri YG-24. Desalination 286, 242–247 (2012).CAS 
    Article 

    Google Scholar 
    Xia, J., Ye, L., Ren, H. & Zhang, X. X. Microbial community structure and function in aerobic granular sludge. Appl. Microbiol. Biotechnol. 102(9), 3967–3979 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Akizuki, S. et al. Effects of substrate COD/NO2-N ratio on simultaneous methanogenesis and short-cut denitrification in the treatment of blue mussel using acclimated sludge. Biochem. Eng. J. 99, 16–23 (2015).CAS 
    Article 

    Google Scholar 
    Liao, K. et al. Use of convertible flow cells to simulate the impacts of anthropogenic activities on river biofilm bacterial communities. Sci. Total Environ. 653, 148–156 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Marassi, R. J. et al. Performance and toxicity assessment of an up-flow tubular microbial fuel cell during long-term operation with high-strength dairy wastewater. J. Clean. Prod. 259, 120882 (2020).CAS 
    Article 

    Google Scholar 
    Langille, M. G. I. et al. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Medema, G. J., Schets, F. M., Teunis, P. F. M. & Havelaar, A. H. Sedimentation of free and attached Cryptosporidium oocysts and Giardia cysts in water. Appl. Environ. Microbiol. 64, 4460–4466 (1998).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Igbinosa, E. O., Obi, L. C. & Okoh, A. I. Occurrence of potentially pathogenic vibrios in final effluents of a wastewater treatment facility in a rural community of the Eastern Cape Province of South Africa. Res. Microbiol. 160, 531–537 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Goh, S. G., Bayen, S., Burger, D., Kelly, B. C. & Gin, Y. H. Occurrence and distribution of bacteria indicators, chemical tracers and pathogenic vibrios in Singapore coastal waters. Mar. Pollut. Bull. 114, 627–634 (2016).PubMed 
    Article 
    CAS 

    Google Scholar 
    Cui, Q., Huang, Y., Wang, H. & Fang, T. Diversity and abundance of bacterial pathogens in urban rivers impacted by domestic sewage. Environ. Pollut. 249, 24–35 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Suzuki, Y. et al. Growth and antibiotic resistance acquisition of Escherichia coli in a river that receives treated sewage effluent. Sci. Total Environ. 690, 696–704 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Silva, D. C. V. R. et al. Predicting zebrafish spatial avoidance triggered by discharges of dairy wastewater: An experimental approach based on self-purification in a model river. Environ. Pollut. 266, 115325 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wagner, I. & Zalewski, M. Temporal changes in the abiotic/biotic drivers of selfpurification in a temperate river. Ecol. Eng. 94, 275–285 (2016).Article 

    Google Scholar 
    Clements, W. H. & Rohr, J. R. Community responses to contaminants: Using basic ecological principles to predict ecotoxicological effects. Environ. Toxicol. Chem. 28, 1789–1800 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ismail, S. & Tawfik, A. Comprehensive study for Anammox process via multistage anaerobic baffled reactors. E3S Web Conf. 22, 4–11 (2017).Article 
    CAS 

    Google Scholar  More

  • in

    Spatial epidemiology of hemorrhagic disease in Illinois wild white-tailed deer

    Shope, R. E., MacNamara, L. G. & Mangold, R. Report on the deer mortality, epizootic hemorrhagic disease of deer. NJ Outdoors 6, 17–21 (1955).
    Google Scholar 
    Trainer, D. O. Epizootic hemorrhagic disease of deer. J. Wildl. Dis. 28, 377–381 (1964).
    Google Scholar 
    Shope, R. E., MacNamara, L. G. & Mangold, R. A virus-induced epizootic hemorrhagic disease of the Virginia white-tailed deer (Odocoileus virginianus). J. Exp. Med. 111, 155–170 (1960).CAS 
    PubMed 

    Google Scholar 
    Chalmers, G. A., Vance, H. N. & Mitchell, G. J. An outbreak of epizootic hemorrhagic disease in wild ungulates in Alberta. Wildl. Dis. 4, 1–6 (1964).
    Google Scholar 
    Stallknecht, D. E. et al. Apparent increase of reported hemorrhagic disease in the midwestern and northeastern USA. J. Wildl. Dis. 51, 348–361 (2015).PubMed 

    Google Scholar 
    Ruder, M. G. et al. The first 10 years (2006–2015) of epizootic hemorrhagic disease virus serotype 6 in the USA. J. Wildl. Dis. 53, 901–905 (2017).PubMed 

    Google Scholar 
    Pybus, M. J., Ravi, M. & Pollock, C. Epizootic hemorrhagic disease in Alberta, Canada. J. Wildl. Dis. 50, 720–722 (2014).PubMed 

    Google Scholar 
    Ruder, M. G. et al. Transmission and epidemiology of bluetongue and epizootic hemorrhagic disease in North America: current perspectives, research gaps, and future directions. Vector-Borne Zoonotic Dis. 15, 348–363 (2015).PubMed 

    Google Scholar 
    Rivera, N. A. et al. Bluetongue and epizootic hemorrhagic disease in the United States of America at the wildlife: livestock interface. Pathogens 10, 915 (2021).PubMed 

    Google Scholar 
    Mellor, P. S., Boorman, J. & Baylis, M. Culicoides biting midges: their role as arbovirus vectors. Annu. Rev. Entomol. 45, 307–340 (2000).CAS 
    PubMed 

    Google Scholar 
    Pfannenstiel, R. S. et al. Management of North American Culicoides biting midges: current knowledge and research needs. Vector-Borne Zoonotic Dis. 15, 374–384 (2015).PubMed 

    Google Scholar 
    Mcgregor, B. L. et al. Vector competence of Florida Culicoides insignis (Diptera: Ceratopogonidae) for epizootic hemorrhagic disease virus serotype-2. (2021). https://doi.org/10.3390/v13030410.Vigil, S. L. et al. Apparent range expansion of Culicoides (Hoffmania) insignis (Diptera: Ceratopogonidae) in the Southeastern United States. https://doi.org/10.1093/jme/tjy036.Mullen, G. R. & Murphree, C. S. Chapter 13-biting midges (Ceratopogonidae). in (eds. Mullen, G. R. & Durden, L. A. B. T.-M. and V. E. (Third E.) 213–236 (Academic Press, 2019). https://doi.org/10.1016/B978-0-12-814043-7.00013-3.Werner, D., Groschupp, S., Bauer, C. & Kampen, H. Breeding Habitat Preferences of major Culicoides Species (Diptera: Ceratopogonidae) in Germany. Int. J. Environ. Res. Public Health 17, 5000 (2020).
    Google Scholar 
    Tabachnick, W. J., Smartt, C. T. & Rutledge-Connelly, C. R. Bluetongue: ENY-743/IN768, 4/2008. EDIS 2008, (2008).Schmidtmann, E. T., Bobian, R. J. & Belden, R. P. Soil chemistries define aquatic habitats with immature populations of the Culicoides variipennis complex (Diptera: Ceratopogonidae). J. Med. Entomol. 37, 58–64 (2000).CAS 
    PubMed 

    Google Scholar 
    Schmidtmann, E. T. et al. Distribution of Culicoides sonorensis (Diptera: Ceratopogonidae) in Nebraska, South Dakota, and North Dakota: clarifying the epidemiology of bluetongue disease in the Northern great plains region of the United States. J. Med. Entomol. 48, 634–643 (2011).CAS 
    PubMed 

    Google Scholar 
    Mullens, B. A. & Holbrook, F. R. Temperature effects on the gonotrophic cycle of Culicoides variipennis (Diptera: Ceratopogonidae). J. Am. Mosq. Control Assoc. 7, 588–591 (1991).CAS 
    PubMed 

    Google Scholar 
    Lysyk, T. J. & Dergousoff, S. J. Distribution of Culicoides sonorensis (Diptera: Ceratopogonidae) in Alberta, Canada. J. Med. Entomol. 51, 560–571 (2014).CAS 
    PubMed 

    Google Scholar 
    Christensen, S. A., Ruder, M. G., Williams, D. M., Porter, W. F. & Stallknecht, D. E. The role of drought as a determinant of hemorrhagic disease in the eastern United States. Glob. Chang. Biol. 26, 3799–3808 (2020).ADS 
    PubMed 

    Google Scholar 
    Lysyk, T. J. & Danyk, T. Effect of temperature on life history parameters of adult Culicoides sonorensis (Diptera: Ceratopogonidae) in relation to geographic origin and vectorial capacity for bluetongue virus. J. Med. Entomol. 44, 741–751 (2007).CAS 
    PubMed 

    Google Scholar 
    Wittmann, E. J., Mellor, P. S. & Baylis, M. Effect of temperature on the transmission of orbiviruses by the biting midge, Culicoides sonorensis. Med. Vet. Entomol. 16, 147–156 (2002).CAS 
    PubMed 

    Google Scholar 
    Brand, S. P. C. & Keeling, M. J. The impact of temperature changes on vector-borne disease transmission: Culicoides midges and bluetongue virus. J. R. Soc. Interface 14, 20160481 (2017).PubMed 

    Google Scholar 
    Couvillion, C. E., Nettles, V. F., Davidson, W. R., Pearson, J. E. & Gustafson, G. A. Hemorrhagic disease among white-tailed deer in the Southeast from 1971 through 1980. Proc. US Anim. Hlth. Assoc. 85, 522–537 (1981).
    Google Scholar 
    Zarnke, R. L. Serologic survey for selected microbial pathogens in Alaskan wildlife. J. Wildl. Dis. 19, 324–329 (1983).CAS 
    PubMed 

    Google Scholar 
    Howerth, E. W., Stallknecht, D. E. & Kirkland, P. D. Bluetongue, epizootic hemorrhagic disease, and other orbivirus-related diseases. Infect. Dis. Wild Mammals https://doi.org/10.1002/9780470344880.ch3 (2001).Article 

    Google Scholar 
    Stevens, G., McCluskey, B., King, A., O’Hearn, E. & Mayr, G. Review of the 2012 epizootic hemorrhagic disease outbreak in domestic ruminants in the United States. PLoS ONE 10, 1–11 (2015).
    Google Scholar 
    Fischer, J. R. et al. An epizootic of hemorrhagic disease in white-tailed deer (Odocoileus virginianus) in Missouri: necropsy findings and population impact. J. Wildl. Dis. 31, 30–36 (1995).CAS 
    PubMed 

    Google Scholar 
    Pierce, B. EHD outbreak takes toll on white-tailed deer population. Bozeman Daily Chronicle (2011).Gaydos, J. K., Davidson, W. R., Mead, D. G., Howerth, E. W. & Stallknecht, D. E. Innate resistance to epizootic hemorrhagic disease in white-tailed deer. J. Wildl. Dis. 38, 713–719 (2002).PubMed 

    Google Scholar 
    Stallknecht, D. E. & Howerth, E. W. Epidemiology of bluetongue and epizootic haemorrhagic disease in wildlife: surveillance methods. Vet. Ital. 40, 203–207 (2004).CAS 
    PubMed 

    Google Scholar 
    Hedman, H. D. et al. Spatial analysis of chronic wasting disease in free-ranging white-tailed deer (Odocoileus virginianus) in Illinois, 2008–2019. Transbound. Emerg. Dis. 68, 2376–2383 (2020).PubMed 

    Google Scholar 
    Baygents, G. & Bani-Yaghoub, M. Cluster analysis of hemorrhagic disease in Missouri’s white-tailed deer population: 1980–2013. BMC Ecol. 18, 35 (2018).PubMed 

    Google Scholar 
    French, S. K., Pearl, D. L., Peregrine, A. S. & Jardine, C. M. Spatio-temporal clustering of Baylisascaris procyonis, a zoonotic parasite, in raccoons across different landscapes in southern Ontario. Spat. Spatiotemporal. Epidemiol. 35, 100371 (2020).PubMed 

    Google Scholar 
    Kulldorff, M., Heffernan, R., Hartman, J., Assunção, R. & Mostashari, F. A space-time permutation scan statistic for disease outbreak detection. PLoS Med. 2, 0216–0224 (2005).
    Google Scholar 
    Allison, A. B. et al. Detection of a novel reassortant epizootic hemorrhagic disease virus (EHDV) in the USA containing RNA segments derived from both exotic (EHDV-6) and endemic (EHDV-2) serotypes. J. Gen. Virol. 91, 430–439 (2010).CAS 
    PubMed 

    Google Scholar 
    Allen, S. E. et al. Epizootic hemorrhagic disease in white-tailed deer, Canada. Emerg. Infect. Dis. 25, 832–834 (2019).PubMed 

    Google Scholar 
    Boyer, T. C., Ward, M. P., Wallace, R. L. & Singer, R. S. Regional seroprevalence of bluetongue virus in cattle in Illinois and western Indiana. Am. J. Vet. Res. 68, 1212–1219 (2007).PubMed 

    Google Scholar 
    Pedersen, K. et al. Serologic Evidence of various arboviruses detected in white-tailed deer (Odocoileus virginianus) in the United States. Am. J. Trop. Med. Hyg. 97, 319–323 (2017).PubMed 

    Google Scholar 
    Garrett, E. F. et al. Clinical disease associated with epizootic hemorrhagic disease virus in cattle in Illinois. J. Am. Vet. Med. Assoc. 247, 190–195 (2015).PubMed 

    Google Scholar 
    Boyer, T. C., Ward, M. P. & Singer, R. S. Climate, landscape, and the risk of orbivirus exposure in cattle in Illinois and western Indiana. Am. J. Trop. Med. Hyg. 83, 789–794 (2010).PubMed 

    Google Scholar 
    Cauvin, A. et al. Antibodies to epizootic hemorrhagic disease virus (EHDV) in farmed and wild Florida white-tailed deer (Odocoileus virginianus). J. Wildl. Dis. 56, 208–213 (2020).CAS 
    PubMed 

    Google Scholar 
    McGregor, B. L. et al. Host use patterns of Culicoides spp. biting midges at a big game preserve in Florida, USA, and implications for the transmission of orbiviruses. Med. Vet. Entomol. 33, 110–120 (2019).CAS 
    PubMed 

    Google Scholar 
    Berke, O. Exploratory disease mapping: kriging the spatial risk function from regional count data. 11, 1–11 (2004).Svoboda, M. et al. The drought monitor. Bull. Am. Meterol. Soc. 83, 1181–1190 (2002).ADS 

    Google Scholar 
    NOAA National Centers for Environmental Information. State of the Climate: National Climate Report for Annual 2012. https://www.ncdc.noaa.gov/sotc/national/201213. (Accessed: 5th February 2022)Calzolari, M. & Albieri, A. Could drought conditions trigger Schmallenberg virus and other arboviruses circulation?. Int. J. Health Geogr. 12, 6–10 (2013).
    Google Scholar 
    Zuliani, A. et al. Modelling the northward expansion of Culicoides sonorensis (Diptera: Ceratopogonidae) under future climate scenarios. PLoS ONE 10, 1–23 (2015).
    Google Scholar 
    Burns, D. Diseases caused by arthropods and other noxious animals. in Rook’s Textbook of Dermatology 1555–1618 (Blackwell Publishing, 2004).Mullens, B. A. A quantitative survey of Culicoides variipennis (Diptera: Ceratopogonidae) in dairy waste water ponds in Southern California. J. Med. Entomol. 26, 559–565 (1989).CAS 
    PubMed 

    Google Scholar 
    Wang, D., Hejazi, M., Cai, X. & Valocchi, A. J. Climate change impact on meteorological, agricultural, and hydrological drought in central Illinois. Water Resour. Res. 47, 9527 (2011).ADS 

    Google Scholar 
    Tomasek, B. J., Williams, M. M. II. & Davis, A. S. Changes in field workability and drought risk from projected climate change drive spatially variable risks in Illinois cropping systems. PLoS ONE 12, e0172301 (2017).PubMed 

    Google Scholar 
    Casey, C. L., Rathbun, S. L., Stallknecht, D. E. & Ruder, M. G. Spatial analysis of the 2017 outbreak of hemorrhagic disease and physiographic region in the eastern United States. Viruses 13, 550 (2021).CAS 
    PubMed 

    Google Scholar 
    Berry, B. S., Magori, K., Perofsky, A. C., Stallknecht, D. E. & Park, A. W. Wetland cover dynamics drive hemorrhagic disease patterns in white-tailed deer in the United States. J. Wildl. Dis. 49, 501–509 (2013).PubMed 

    Google Scholar 
    Uslu, U. & Dik, B. Chemical characteristics of breeding sites of Culicoides species (Diptera: Ceratopogonidae). Vet. Parasitol. 169, 178–184 (2010).CAS 
    PubMed 

    Google Scholar 
    Lysyk, T. J. Abundance and species composition of Culicoides (Diptera : Ceratopogonidae) at cattle facilities in southern Alberta, Canada. (2006).Erram, D., Blosser, E. M. & Cadena, N. B. Habitat associations of Culicoides species (Diptera : Ceratopogonidae) abundant on a commercial cervid farm in Florida, USA. Parasit. Vectors https://doi.org/10.1186/s13071-019-3626-1 (2019).Article 
    PubMed 

    Google Scholar 
    Jones, R. H. Observations on the larval habitats of some North American species of Culicoides (Diptera: Ceratopogonidae). Ann. Entomol. Soc. Am. 54, 702–710 (1961).
    Google Scholar 
    Schmidtmann, E. T., Jones, C. J. & Gollands, B. Comparative host-seeking activity of Culicoides (Diptera: Ceratopogonidae) attracted to pastured livestock in central New York State, USA. J. Med. Entomol. 17, 221–231 (1980).
    Google Scholar 
    Schlichting, P. E. Summary of 2019–2020 Illinois deer seasons. Illinois Dep. Nat. Resour. 1–12 (2020).Orange, J. P. et al. Evidence of epizootic hemorrhagic disease virus and bluetongue virus exposure in nonnative ruminant species in northern Florida. J. Zoo Wildl. Med. 51, 745–751 (2021).PubMed 

    Google Scholar 
    Purse, B. V. et al. Impacts of climate, host and landscape factors on Culicoides species in Scotland. Med. Vet. Entomol. 26, 168–177 (2012).CAS 
    PubMed 

    Google Scholar 
    Searle, K. R. et al. Identifying environmental drivers of insect phenology across space and time: Culicoides in Scotland as a case study. Bull. Entomol. Res. 103, 155–170 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Shimizu, S., Toyota, I., Arishima, T. & Goto, Y. Frequency of serological cross-reactions between Ibaraki and bluetongue viruses using the agar gel immunodiffusion test. Vet. Ital. 40, 583–586 (2004).CAS 
    PubMed 

    Google Scholar 
    Alkhamis, M. A. et al. Global emergence and evolutionary dynamics of bluetongue virus. Sci. Rep. 10, 21677 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cottingham, S. L., White, Z. S., Wisely, S. M. & Campos-Krauer, J. M. A Mortality-based description of EHDV and BTV prevalence in farmed white-tailed deer (Odocoileus virginianus) in Florida, USA. Viruses 13, 1443 (2021).CAS 
    PubMed 

    Google Scholar 
    Nettles, V. F., Davidson, W. R. & Stallknecht, D. E. Surveillance for hemorrhagic disease in white-tailed deer and other wild ruminants, 1980-1989. In Proceeding of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies. 46, 138–146 (1992).Maclachlan, N. J., Zientara, S., Wilson, W. C., Richt, J. A. & Savini, G. Bluetongue and epizootic hemorrhagic disease viruses: recent developments with these globally re-emerging arboviral infections of ruminants. Curr. Opin. Virol. 34, 56–62 (2019).PubMed 

    Google Scholar 
    Savini, G. et al. Epizootic haemorragic disease. Res. Vet. Sci. 91, 1–17 (2011).CAS 
    PubMed 

    Google Scholar 
    Kedmi, M. et al. The association of winds with the spread of EHDV in dairy cattle in Israel during an outbreak in 2006. Prev. Vet. Med. 96, 152–160 (2010).PubMed 

    Google Scholar 
    Mayo, C. E. et al. Seasonal and interseasonal dynamics of bluetongue virus infection of dairy cattle and Culicoides sonorensis Midges in Northern California: implications for virus overwintering in temperate zones. PLoS ONE 9, e106975 (2014).ADS 
    PubMed 

    Google Scholar 
    USGS National Wildlife Health Center. Wildlife Health Information Sharing Partnership-event reporting system (WHISPers). https://www.nwhc.usgs.gov/whispers/.Lenoch, J. & Nguyen, N. WHISPers, the USGS-NWHC Wildlife Health event reporting system. Proc. Wildl. Dis. Assoc. 8, 2579 (2016).
    Google Scholar 
    Brooks, J. W. Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet. Pathol. 53, 929–940 (2016).CAS 
    PubMed 

    Google Scholar 
    Pilz, J. & Spöck, G. Why do we need and how should we implement Bayesian Kriging methods. Stoch. Environ. Res. Risk Assess. 22, 621–632 (2007).MathSciNet 

    Google Scholar 
    Krivoruchko, K. Empirical Bayesian Kriging. ArcUser Fall 6, (2012).Ord, J. K. & Getis, A. Local spatial autocorrelation statistics: distributional issues and an application. Geogr. Anal. 27, 286–306 (1995).
    Google Scholar 
    Kulldorff, M. & Information Management Services Inc. SaTScanTM v 9.6: Software for the spatial and space-time scan statistics. (2018).Kulldorff, M., Athas, W. F., Feuer, E. J., Miller, B. A. & Key, C. R. Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. Am. J. Public Health 88, 1377–1380 (1998).CAS 
    PubMed 

    Google Scholar  More

  • in

    Role of trade agreements in the global cereal market and implications for virtual water flows

    Link activationContingency tables corresponding to the three cases described in the “Methods” section are shown in Table 1. This Table is quite revealing in several ways. The most interesting aspect is that the highest probability of link establishment occurs when an agreement is activated (Operational Activation in t).Table 1 Contingency tables.Full size tableIn this case, the probability of activation of a new link is 8.8%—namely, the ratio of new activation 7.3% to the total number of links that were not active at year t-1 (82.6%)—which is significantly higher than in the case of links not covered by a commercial agreement (No Trade Agreement), amounting to 1.4%.Therefore, the findings show that operational activation is associated with creating new trade relations between two particular countries. The third set, which considers links where a trade agreement exists in both years (t-1) and t (Trade Agreement in t-1 and t), also shows a consistent activation probability of 6%. This result confirms the assumption that the coverage of a commercial agreement, and not only its implementation, encourages the genesis of new links.Moreover, Table 1 suggests some interesting considerations on trade persistence. To establish these probabilities, we focus on the row totals in which a trade relationship is present at year (t-1), i.e., 28.8% in the case Trade Agreement in t-1 and t. The presence of an agreement influences in a positive way the probability of maintaining a trade relationship. In fact, when a trade agreement is present in both years, (t-1) and t, the probability of preserving the trade relationship is 87.1% ((frac{25.1}{28.8}times {100})), while when a trade agreement is activated at year t, the probability slightly decreases to 81.6%. In cases where trade agreements are missing (No Trade Agreement in t) we observe the probability of retaining a relationship decreases to 77.3%.Another interesting aspect concerns the probability of link deactivation. Once more, the coverage of a trade agreement favors a lower likelihood of deactivation of existing links. The ratio of the percentage of links that were active at year (t-1) and are no more active at year t to the total is 22.7% ((frac{1}{4.4}times {100})) in the case of a lack of agreement. This probability decreases to 18.4% ((frac{3.2}{17.4}times {100})) if we consider only the year of activation of the agreement (Operational Activation), and drops to 12.8% ((frac{3.7}{28.8}times {100})) when looking at agreements present in both years.Together, these results provide insights into the role of trade agreements in the network topology of cereal trade. While the establishment of a trade agreement promotes the potential for new trade links, the presence of the agreement in two consecutive years allows both to maintain an existing relationship and reduce the likelihood of link shutdowns.Flow variationsIn this second part, we study the impact of trade agreements on existing trade flows, analyzing the relationship between the flows at time t and the flows at time (t-1) in each of the three cases described in the “Methods” section—i.e., No trade agreements, Operational Activation in t, and Trade agreement in t-1 and t—measured in US$, Kcal and m(^3) of virtual water.Figure 3Kernel Density scatterplot between trade flows of cereals at time t (on the y-axis) and time (t-1) (on the x-axis) for the three different sets: No trade agreements (column a), Operational Activation in t (b), and Trade agreement in (t-1) and t (c). Panels in the first, second and third row refer to flows in US$, Kcal, and virtual water (m(^3)), respectively. Flow values are shown on a logarithmic scale. The color bar indicates probability densities, and the bisector is highlighted. Notice (i) the higher volumes in the case of flows covered by trade agreement and (ii) a a less relevant increase in volume when the flows are seen in the virtual water lens.Full size imageFigure 3 shows three different scatterplots for each unit of measure (US$ and Kcal and m(^3)). The scatterplots are colored by Kernel Density Estimation (KDE), a non-parametric technique for probability density functions. KDE aims to take a finite sample of data and infer the underlying probability density function. Figure 3 relates the flows at time (t-1) with the flows at time t, both reported on a logarithmic scale since the quantities span several orders of magnitude. Let’s start focusing on flows in terms of dollars and kilocalories. What stands out from the figure is the displacement of the flows toward higher values when they are covered by trade agreements (Trade Agreement in t-1 and t), compared to the case where flows have no trade agreement.We have quantitative evidence of this result by looking at Table 2 where the average flows in both years are shown. The average values of flows in both US$ and Kcal are much higher when there is a trade agreement over time (Trade agreement in t-1 and t). Flows have an average value of (6.13times 10^{7})$, larger than the mean of (3.05times 10^{7})$ achieved by flows not covered by a trade agreement. By comparing the distributions of the two distinct sets with different dimensions by applying the non-parametric Mann-Whitney test, we stand to evaluate this result as extremely significant (p-value approximately 0).Table 2 Average values of trade flows and flow variation index (rho _{ij}) for each of the three sets, in US$ (a), Kcal (b), and Virtual water (VW, m(^3)). The bar indicates the average operator.Full size tableAlso, while operational activation plays a crucial role in creating new links in the global cereal trade, it does not appear to hold central importance in driving flow increases. The average value of flows in both years (t-1) and t are, in fact, smaller than those not covered by trade agreements.The view appears slightly different when we look at the values in terms of virtual water (VW, m(^3)), i.e., the sum of the blue and green components. Flows with a commercial agreement show higher averages values than those not covered by agreements (see panel (c) of Table 2), but the increase is significantly lower than the one recorded in the other two units (US$ and Kcal). The increase recorded in dollars is about 100%, while in terms of virtual water this increase is less than 30%. In the next subsection, we will focus on this peculiar behavior, which reveals a different water content of the goods traded along links covered or not by agreements.Another significant result that emerges from Fig. 3 is the smaller amplitude (around the bisector) of the cloud in the case of link covered by agreements in both years (t-1) and t. This is confirmed by comparing the weighted average of the absolute value of the inter-annual flow variation index (overline{rho _{ij}}_{w}) (weights are the flows traded in the year (t-1)). The index (rho _{ij}) is used to highlight cases where the activation or the presence of the agreement generates a significant flow increase.Larger (rho _{ij}) values correspond to larger average variations from year (t-1) to year t. Accordingly, we observe that in the presence of trade agreement at time (t-1) and t a smaller (rho _{ij}) value of 24.79 percentage points (p.p) is found (see panel (a) of Table 2).Considering all the units (US$, Kcal, and m(^3)), this value is about half of the average inter-annual variation that occurs when there is no trade agreement. Hence, the presence of a commercial agreement over time reduces large fluctuations, stabilizing the year-to-year variations.To shed light on the response of water flows to the occurrence of the agreement, we refer to water productivity (WP)34, both in economic and nutritional terms. Table 3 shows that the Nutritional WP for the total virtual water is, on average, 35% higher in the flows under a trade agreement than in flows that are not under any treaty, while the Economic WP is 62% higher. We also analyze the two virtual water components, blue and green, separately.Interestingly, for blue water in the presence of a trade agreement, the Nutritional WP and the Economic WP for the flows covered by trade agreement are, on average, 68% and 93% higher than for the flows not covered by agreements. In other words, for one cubic meter of water used for grain production, more kilo-calories and dollars are exchanged when an agreement is in place, and this difference is even more significant in terms of blue water.Table 3 Average of nutritional ((mathrm {kcal/m^3})) and economic ((mathrm {US$/m^3})) water productivity (WP) for the total, blue and green virtual water.Full size tableWe also investigate in detail which products contribute most to the imbalance between flows in terms of kcal or water. To this aim, Fig. 4 reports the nutritional WP for each grain item distinguishing whether or not there is a commercial agreement (similar results occur if the economic WP is considered).The figure highlights that the nutritional WP is generally higher in the case where flows are covered by trade agreements (green bars). The most noticeable cases are Maize and Wheat, which are also the most traded products: the value of nutritional WP increases from 1978 (mathrm {kcal/m^3}) (No trade agreement) to 2851 (mathrm {kcal/m^3}) in case of a trade agreement for Wheat, and from 4471 (mathrm {kcal/m^3}) to 5026 for Maize.Figure 4The bar chart shows the nutritional WP for each cereal product in the two sets of Trade agreement in t-1 and t (in green) and No trade agreement (in red). The number over the bars represents the percentage of kcal traded for each product compared to the total kcal of all cereals. Note that green bars are higher than the red ones in 80% of cases.Full size imageA few products have a higher nutritional WP value when the flows are not involved in any treaty, e.g., Rye. This behavior can be traced back to a few flows that dominate the market between countries not linked by trade agreements. For example, trade in Rye in 2014 is attributable to just two major flows in terms of caloric intake relative to water quantity (notably, one between Germany and Japan, the other between Russia and Turkey).Figure 4 clearly shows that grains characterized by greater water efficiency generally move along the links covered by agreements.Performance of trade agreements in increasing flowOur results show that links covered by agreements exhibit larger flows than links not covered by treaties. We also intend to obtain information about the possible flow increase under a specific agreement.As mentioned in the “Methods” section, we selected only those operating links when the agreement came into force to evaluate the variation index ((rho _a)) under a specific treaty. Consequently, since there are trade agreements that came into force before the time interval considered, these are excluded from this analysis. As a result, the total number of agreements selected for this analysis is 99, 61 of which show an increase (positive (rho _{a}) values), while the remaining 38 exhibits a decrease in the flux intensities compared to the overall global trend. We present in Table 5 the results for positive (rho _{a}) variations, while trade agreements with negative (rho _{a}) values are reported in Supplementary Material (5). We provide this analysis in terms of economic flows (US$), but very similar results are obtained if calories (kcal) or virtual water (m(^3)) are chosen as the unit of measure.Table 4 Flow values in millions of dollars in year t and percent changes (rho _{a}) from (t-1) to t for each trade agreement.Full size tableWhat stands out in Table 4 is that most of the positive percentage changes occur in Europe and Central Asia regions. This may be due to long-term commercial activities in Europe, which are supported by the geographical proximity of the countries, as well as the wide variety of political and economic treaties among them. Europe, in fact, is characterized by a fourfold increase in cereal production since the 1960s due to the adoption of the Common Agricultural Policy, which has intensified trade in Europe and towards external markets30.A closer inspection of Table 4 shows that among the agreements with the most significant flows that showed the greatest increases, we find EEA (European Economic Area) in Europe and Central Asia, Japan-ASEAN in East Asia and Pacific, and COMESA in Sub-Saharan Africa.With lower flow values but large increases ((rho _{a})) due to the entry into force of trade agreements, the India-Sri Lanka agreement in South Asia stands out above all others. Also, the treaty signed in 2013 between EU-Colombia and Peru shows significant variations in terms of the percentage of flow increase, but the volume of the corresponding flow is inferior when compared with other trade agreements. On the other hand, the North American Free Trade Agreement (NAFTA), which became effective in 1994, has a lower (rho _{a}) value, but the flows on which the variation is calculated are significantly higher. More

  • in

    Photophysiological response of Symbiodiniaceae single cells to temperature stress

    Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL. Projecting coral reef futures under global warming and ocean acidification. Science. 2011;333:418–22.CAS 
    Article 

    Google Scholar 
    Baird AH, Marshall PA. Mortality, growth and reproduction in scleractinian corals following bleaching on the Great Barrier Reef. Mar Ecol Prog Ser. 2002;237:133–41.Article 

    Google Scholar 
    Lewis CL, Coffroth MA. The acquisition of exogenous algal symbionts by an octocoral after bleaching. Science. 2004;304:1490–2.CAS 
    Article 

    Google Scholar 
    Matsuda SB, Chakravarti LJ, Cunning R, Huffmyer AS, Nelson CE, Gates RD, et al. Temperature mediated acquisition of rare heterologous symbionts promotes survival of coral larvae under ocean warming. Glob Chang Biol. 2022;28:2006–25.Article 

    Google Scholar 
    Thornhill DJ, Howells EJ, Wham DC, Steury TD, Santos SR. Population genetics of reef coral endosymbionts (Symbiodinium, Dinophyceae). Mol Ecol 2017;26:2640–59.CAS 
    Article 

    Google Scholar 
    Diaz-Almeyda EM, Prada C, Ohdera AH, Moran H, Civitello DJ, Iglesias-Prieto R, et al. Intraspecific and interspecific variation in thermotolerance and photoacclimation in Symbiodinium dinoflagellates. Proc R Soc B. 2017;284:20171767.Article 

    Google Scholar 
    Howells EJ, Beltran VH, Larsen NW, Bay LK, Willis BL, van Oppen MJH. Coral thermal tolerance shaped by local adaptation of photosymbionts. Nat Clim Change. 2012;2:116–20.Article 

    Google Scholar 
    Voolstra CR, Buitrago-Lopez C, Perna G, Cardenas A, Hume BCC, Radecker N, et al. Standardized short-term acute heat stress assays resolve historical differences in coral thermotolerance across microhabitat reef sites. Glob Change Biol. 2020;26:4328–43.Article 

    Google Scholar 
    Behrendt L, Salek MM, Trampe EL, Fernandez VI, Lee KS, Kuhl M, et al. Phenochip: a single-cell phenomic platform for high-throughput photophysiological analyses of microalgae. Sci Adv. 2020;6:eabb2754.CAS 
    Article 

    Google Scholar 
    Torda G, Donelson JM, Aranda M, Barshis DJ, Bay L, Berumen ML, et al. Rapid adaptive responses to climate change in corals. Nat Clim Change. 2017;7:627–36.Article 

    Google Scholar 
    Buerger P, Alvarez-Roa C, Coppin CW, Pearce SL, Chakravarti LJ, Oakeshott JG, et al. Heat-evolved microalgal symbionts increase coral bleaching tolerance. Sci Adv. 2020;6:eaba2498.CAS 
    Article 

    Google Scholar 
    Kavousi J, Denis V, Sharp V, Reimer JD, Nakamura T, Parkinson JE. Unique combinations of coral host and algal symbiont genotypes reflect intraspecific variation in heat stress responses among colonies of the reef-building coral, Montipora digitata. Mar Biol. 2020;167:23.CAS 
    Article 

    Google Scholar 
    Parkinson JE, Baums IB. The extended phenotypes of marine symbioses: ecological and evolutionary consequences of intraspecific genetic diversity in coral–algal associations. Front Microbiol. 2014;5:445.Article 

    Google Scholar 
    Andersson M, Johansson S, Bergman H, Xiao L, Behrendt L, Tenje M. A microscopy-compatible temperature regulation system for single-cell phenotype analysis— demonstrated by thermoresponse mapping of microalgae. Lab Chip. 2021;21:1694–705.CAS 
    Article 

    Google Scholar 
    Hume B, D’Angelo C, Burt J, Baker AC, Riegl B, Wiedenmann J. Corals from the Persian/Arabian Gulf as models for thermotolerant reef-builders: prevalence of clade C3 Symbiodinium, host fluorescence and ex situ temperature tolerance. Mar Pollut Bull. 2013;72:313–22.CAS 
    Article 

    Google Scholar 
    Karim W, Nakaema S, Hidaka M. Temperature effects on the growth rates and photosynthetic activities of Symbiodinium cells. J Mar Sci Eng. 2015;3:368–81.Article 

    Google Scholar 
    Takahashi S, Yoshioka-Nishimura M, Nanba D, Badger MR. Thermal acclimation of the symbiotic alga Symbiodinium spp. alleviates photobleaching under heat stress. Plant Physiol. 2013;161:477–85.CAS 
    Article 

    Google Scholar 
    Robison JD, Warner ME. Differential impacts of photoacclimation and thermal stress on the photobiology of four different phylotypes of Symbiodinium (Pyrrhophyta). J Phycol. 2006;42:568–79.CAS 
    Article 

    Google Scholar 
    Calabrese F, Voloshynoyska I, Musat F, Thullner M, Schlomann M, Richnow HH, et al. Quantitation and comparison of phenotypic heterogeneity among single cells of monoclonal microbial populations. Front Microbiol. 2019;10:2814.Article 

    Google Scholar 
    Martins BMC, Locke JOW. Microbial individuality: How single-cell heterogeneity enables population level strategies. Curr Opin Microbiol. 2015;24:104–12.CAS 
    Article 

    Google Scholar  More

  • in

    The EU needs a nutrient directive

    Sutton, M. A. et al. The European Nitrogen Assessment: Sources, Effects and Policy Perspectives (Cambridge Univ. Press, 2011).Withers, P. J. A. & Haygarth, P. M. Agriculture, phosphorus and eutrophication: A European perspective. Soil Use Manag. 23, 1–4 (2007).Article 

    Google Scholar 
    Heffer, P. Assessment of Fertilizer Use by Crop at the Global Level (IFA, 2008).Wassen, M. J., Schrader, J., van Dijk, J. & Eppinga, M. B. Phosphorus fertilization is eradicating the niche of northern Eurasia’s threatened plant species. Nat. Ecol. Evol. 5, 67–73 (2021).Article 

    Google Scholar 
    Penuelas, J., Janssens, I. A., Ciais, P., Obersteiner, M. & Sardans, J. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Glob. Change Biol. 26, 1962–1985 (2020).Article 

    Google Scholar 
    Stokstad, E. Nitrogen crisis threatens Dutch environment — and economy. Science 366, 1180–1181 (2019).Article 

    Google Scholar 
    Dentener, F. et al. Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation. Global Biogeochem. Cycles 20, GB4003 (2006).Article 

    Google Scholar 
    Garske, B., Stubenrauch, J. & Ekardt, F. Sustainable phosphorus management in European agricultural and environmental law. RECIEL 29, 107–117 (2020).Article 

    Google Scholar 
    A Farm to Fork Strategy for a Fair, Healthy and Environmentally-friendly Food System (COM(2020) 381 final: European Commission, 2020); https://knowledge4policy.ec.europa.eu/publication/communication-com2020381-farm-fork-strategy-fair-healthy-environmentally-friendly-food_en More

  • in

    Synergistic use of siderophores and weak organic ligands during zinc transport in the rhizosphere controlled by pH and ion strength gradients

    Speciation models, conditional and intrinsic stability constants and EDH model parametersThe complete set of analytical results for the Zn(II)/ligand systems, including conditional stability constants (logβ) for the formation of hydrolysed Zn(II)–ligand complexes, of zinc hydroxide complexes and of Zn(II)–ligand complexes as well as acidity constants for citrate and DFOB at different ionic strength in NaCl and T = 298.1 K are reported in Table 1 and SI Table 2. Also shown are the values for the optimised parameter C and the intrinsic association constants (logβ0). SI Table 1 lists all the reactions included in the speciation models used to fit the potentiometric titrations and SI Fig. 2 shows single crystal X-ray structures for some of the proposed structures including ZnH2Cit2, Zn2Cit2(H2O)2 and ZnCit22− taken from the Cambridge Crystallographic Data Base. Figure 3 displays the experimentally determined conditional Zn(II)–ligand stability constants and the corresponding EDH model from this study. Also shown are logb values from the literature for [Zn(HCit)] and [Zn(Cit)]− for the Zn(II)/Cit system and [Zn(H2DFOB)]+, [Zn(HDFOB)] and [Zn(DFOB)]− for the Zn(II)/DFOB system. Examples of titration curves and manually fitted models along with the speciation model considered and the experimental conditions are included in the supporting information (see SI Figs. 3 and 4). Only models that fitted the experimental data with sigma values below 5 were considered. Examples of Hyperquad files showing titrations and model fits for Zn(II)/Cit and Zn(II)/DFOB systems and of Excel calculation files for the application of the EDH model to the Zn(II)/DFOB experimental data set, including error calculation for C and logβ0 are uploaded to the Zenodo repository (https://doi.org/10.5281/zenodo.4548162). Errors reported for measured logβ and calculated (modelled) logβ0 and C values have no detectable effect on subsequent speciation calculations. The errors reported on C are slightly larger than in comparable studies22, however, a sensitivity analysis on the two Zn(II)–ligand species with the largest relative error on C found that logβ0 remains within its error range even when logβ0 was recalculated for the maximum and minimum possible C values. The stability constant we report for specific Zn(II)–L complexes at specific ion strengths are in line with literature reports (Fig. 3). For example, the logβ for the formation of [Zn(Cit)]− in 0.15 mol dm−3 NaCl shows good agreement with the value reported by Cigala and co-workers in 0.15 mol dm−3 NaCl; 4.79 vs. 4.7126. We note, however, also significant variations within reported conditional logβ values as seen Fig. 3, with published values for the formation of [Zn(HCit)] and [Zn(Cit)]− in different 1:1 electrolytes differing over two orders of magnitudes. This highlights the analytical challenges associated with accurate and precise logβ determinations of low affinity metal–ligand complexes, in low ion strength solutions33.Figure 3Experimental Zn(II)–ligand conditional stability constants (logβ) for (a) citrate and (b) DFOB at 0.05, 0.15, 0.3, 0.5 and 1 mol dm−3 in NaCl solution (open circles) determined using potentiometric titrations. For each species, the Extended Debye-Hückel (EDH) model has been parameterised using the experimental data (see Table 1 for C and logβ0) and the corresponding model is shown as a solid line. Literature data is included in the figure for comparison (closed circles) from Cigala et al. (2015, NaNO3 and NaCl), Capone et al. (1986, KNO3), Daniele et al. (1988, KNO3), Field et al. (1975, KNO3), Matsushima et al. (1963, NaCl) and Li et al. 1959, NaCl) for the Zn–H–Cit system and from Schijf et al. (2015, NaClO4), Farkas et al. (1997, KCl) and Hernlem et al. (1996, KNO3) for the Zn-H-DFOB system. Note the large variability reported for the Zn–Cit system at 0.1 and 0.15 mol dm−3. We find good agreement with the data published by Sammartano and co-workers26,69.Full size imageThe final speciation scheme with the best statistical fits and with chemically sensible species are given in Table 1. From the eight Zn-Cit species initially considered (SI Table 1), the inclusion of five species resulted in model fits with sigma values below 5. For the Zn(II)/Cit system, the dominant species are [Zn(Cit)]−, [Zn(HCit)], and [Zn2(Cit)2(OH)2]4−. We report also the presence of a [Zn(Cit)(OH)3]4− complex above pH 9 in significant amounts ( > 20%) and we confirm the presence of [Zn(Cit)2]4− if citrate is present in large excess26,31. The presence of [Zn(Cit)]−, [Zn(HCit)] and [Zn(Cit)2]4− were confirmed in pH 6 solutions by mass spectrometry. To confirm the presence of [Zn(Cit)(OH)3]4−, further investigations are warranted. SI Fig. 5 shows the species distributions in the Zn(II)–Cit system with different Zn:L molar ratios (1:1, 1:2 and 1:10) and different concentrations (between 10–6 and 10–3 for Zn and 10–5 and 10–3 for citrate). We find that [Zn(Cit)]− dominates (i.e., formation relative to total Zn is above 50%) between pH 5 and 7.5, [Zn2(Cit)2(OH)2]4− dominates between pH 7.5 and 10 and [Zn(Cit)(OH)3]4− dominates at pH values above 10. We find the formation of [Zn(Cit)2]4− only at Zn:Cit molar ratio of 1:10 and [Zn] and [L] concentrations of 10–4 and 10–3 mol dm−3, respectively. The species [Zn(Cit)(OH)]2− and Zn(Cit)(OH))2]3− possibly form at higher pH but were excluded from the final model. We noted that for titrations of solutions with Zn:Cit molar ratios below 1:3, it was not possible to refine the stepwise stability constant (logK) for [Zn(Cit)2]4− to within ± 0.09 log units, indicating that it is an unstable species that forms at negligible concentrations. The stability constants for zinc complexation with citrate decrease with increasing ionic strength. Table 1 shows that the most significant change is seen between 0.05 and 0.15 mol dm−3 NaCl, where there is approximately a 0.5 to 1.5 log unit change. In dilute solutions, stability constants are sensitive to small increases in ionic strength because changes in the effective concentration (activity) of ions are large.For the Zn(II)–DFOB system, all the stability constants measured during this study are in good agreement with those reported in the literature50,51,53. For example, the stability constant we report for [Zn(HDFOB)] in 0.5 mol dm−3 NaCl is 19.34. This is within ~ 0.5 log units of the stability constant reported by Schijf and co-workers in 0.7 mol dm−3 NaClO4 solutions53. The speciation scheme we report differs slightly from that predicted by Schijf based on a three-step model. Our model does not include the bidentate species [Zn(H3DFOB)]2+, the weakest and least stable Zn(II)–DFOB species. In Table 1, we report stability constants for hexadentate [Zn(DFOB)]− and [Zn(HDFOB)] and tetradentate [Zn(H2DFOB)]+. We observe that as the denticity of the complex increases, so does the strength of the stability constant. The stepwise stability constant (K) differs by approximately 2 log units between the formation of the three different DFOB:Zn:H species (7.75, 9.88, 11.67, see Table 1). DFOB complexation of Zn(II) shows the same pattern of ionic strength dependence as citrate, with the greatest decrease of logβ occurring between 0.05 and 0.15 mol dm−3 NaCl, the region of most importance to the rhizosphere.The absolute decrease in [ZnL] and [Zn(HL)] stability constants between 0.05 and 0.15 mol dm−3 is approximately equal for citrate and DFOB species, average 1.58 vs. 1.73, respectively. This is explained by the effect of ionic strength primarily depending on the charge of the ions involved and free citrate and DFOB having the same electrostatic charge (−3). The ionic strength dependent parameter C shows no systematic change for neither citrate nor DFOB species. The good agreement between literature50,51,52,54,68,69,70 and our speciation models as well as the conditional logβ and pKa values validates the use of a single analytical method for the determination of the LEP. We note that the proposed formation of the trihydroxy Zn(II) citrate complex at pH above 10, needs to be investigated in greater detail using supplementary techniques. However, the formation of this species is not relevant for the pH range of interest in our study. As discussed below the main prevailing species in solution are those of 1:1:0 and 2:2:−2 stoichiometry for Zn:Cit:H.Figure 4 shows intrinsic stability constants for the formation of [Zn(Cit)]− and [Zn(HCit)] determined (i) using the Davies equation and the conditional association constants determined at different ionic strengths and (ii) fitting the parameterised EDH equation to the full ionic strength dataset. We find statistically significant (p  More

  • in

    Association of zoonotic protozoan parasites with microplastics in seawater and implications for human and wildlife health

    Jambeck, J. R. et al. Plastic waste inputs from land into the ocean. Science 347, 768–771 (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Andrady, A. L. Microplastics in the marine environment. Mar. Pollut. Bull. 62, 1596–1605 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Avio, C. G., Gorbi, S. & Regoli, F. Plastics and microplastics in the oceans: From emerging pollutants to emerged threat. Mar. Environ. Res. 128, 2–11 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barboza, L. G. A., Dick Vethaak, A., Lavorante, B. R. B. O., Lundebye, A.-K. & Guilhermino, L. Marine microplastic debris: An emerging issue for food security, food safety and human health. Mar. Pollut. Bull. 133, 336–348 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Van Cauwenberghe, L. & Janssen, C. R. Microplastics in bivalves cultured for human consumption. Environ. Pollut. 193, 65–70 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bucci, K., Tulio, M. & Rochman, C. M. What is known and unknown about the effects of plastic pollution: A meta-analysis and systematic review. Ecol. Appl. 30, e02044 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Worm, B., Lotze, H. K., Jubinville, I., Wilcox, C. & Jambeck, J. Plastic as a Persistent Marine Pollutant. Annu. Rev. Environ. Resour. 42, 1–26 (2017).Article 

    Google Scholar 
    GESAMP. Sources, Fate and Effects of Microplastics in the Marine Environment (Part 2) (2016). http://www.gesamp.org/publications/microplastics-in-the-marine-environment-part-2.Donohue, M. J. et al. Evaluating exposure of northern fur seals, Callorhinus ursinus, to microplastic pollution through fecal analysis. Mar. Pollut. Bull. 138, 213–221 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Duncan, E. M. et al. Microplastic ingestion ubiquitous in marine turtles. Glob. Change Biol. 25, 744–752 (2019).ADS 
    Article 

    Google Scholar 
    Moore, R. C. et al. Microplastics in beluga whales (Delphinapterus leucas) from the Eastern Beaufort Sea. Mar. Pollut. Bull. 150, 110723 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bessa, F. et al. Microplastics in gentoo penguins from the Antarctic region. Sci. Rep. 9, 14191 (2019).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Provencher, J. F., Ammendolia, J., Rochman, C. M. & Mallory, M. L. Assessing plastic debris in aquatic food webs: what we know and don’t know about uptake and trophic transfer. Environ. Rev. 27, 304–317 (2019).Article 

    Google Scholar 
    Bucci, K., Bikker, J., Stevack, K., Watson-Leung, T. & Rochman, C. Impacts to larval fathead minnows vary between preconsumer and environmental microplastics. Environ. Toxicol. Chem. 41, 4 (2021).
    Google Scholar 
    Nelms, S. E., Galloway, T. S., Godley, B. J., Jarvis, D. S. & Lindeque, P. K. Investigating microplastic trophic transfer in marine top predators. Environ. Pollut. 238, 999–1007 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    De-la-Torre, G. E. Microplastics: an emerging threat to food security and human health. J. Food Sci. Technol. 57, 1601–1608 (2020).Article 
    PubMed 

    Google Scholar 
    Teuten, E. L. et al. Transport and release of chemicals from plastics to the environment and to wildlife. Philos. Trans. R. Soc. B 364, 2027–2045 (2009).CAS 
    Article 

    Google Scholar 
    Zettler, E. R., Mincer, T. J. & Amaral-Zettler, L. A. Life in the “plastisphere”: Microbial communities on plastic marine debris. Environ. Sci. Technol. 47, 7137–7146 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    He, S. et al. Biofilm on microplastics in aqueous environment: Physicochemical properties and environmental implications. J. Hazard. Mater. 1, 127286. https://doi.org/10.1016/j.jhazmat.2021.127286 (2021).CAS 
    Article 

    Google Scholar 
    Kirstein, I. V. et al. Dangerous hitchhikers? Evidence for potentially pathogenic Vibrio spp. on microplastic particles. Mar. Environ. Res. 120, 1–8 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    World Health Organization. Safe Management of Shellfish and Harvest Waters (WHO, 2010).
    Google Scholar 
    Lindsay, D. S. & Dubey, J. P. Long-term survival of Toxoplasma gondii sporulated oocysts in seawater. J. Parasitol. 95, 1019–1020 (2009).Article 
    PubMed 

    Google Scholar 
    Tamburrini, A. & Pozio, E. Long-term survival of Cryptosporidium parvum oocysts in seawater and in experimentally infected mussels (Mytilus galloprovincialis). Int. J. Parasitol. 29, 711–715 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jones, J. L. et al. Risk factors for Toxoplasma gondii infection in the United States. Clin. Infect. Dis. 49, 878–884 (2009).Article 
    PubMed 

    Google Scholar 
    Robertson, L. J. The potential for marine bivalve shellfish to act as transmission vehicles for outbreaks of protozoan infections in humans: A review. Int. J. Food Microbiol. 120, 201–216 (2007).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro, K. et al. Environmental transmission of Toxoplasma gondii: Oocysts in water, soil and food. Food Waterb. Parasitol. 15, e00049 (2019).Article 

    Google Scholar 
    Miller, M. A., Shapiro, K., Murray, M. J., Haulena, M. J. & Raverty, S. Protozoan parasites of marine mammals. in CRC Handbook of Marine Mammal Medicine (2018).Ward, J. E. & Kach, D. J. Marine aggregates facilitate ingestion of nanoparticles by suspension-feeding bivalves. Mar. Environ. Res. 68, 137–142 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rose, J. B. Environmental ecology of cryptosporidium and public health implications. Annu. Rev. Public Health 18, 135–161 (1997).CAS 
    Article 
    PubMed 

    Google Scholar 
    Robert-Gangneux, F. & Dardé, M.-L. Epidemiology of and diagnostic strategies for toxoplasmosis. Clin. Microbiol. Rev. 25, 264–296 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bahia-Oliveira, L., Gomez-Marin, J. & Shapiro, K. Toxoplasma gondii. Global Water Pathogen Project. https://www.waterpathogens.org/book/toxoplasma-gondii (2015).Kreuder, C. et al. Patterns of mortality in southern sea otters (Enhydra lutris nereis) from 1998–2001. J. Wildl. Dis. 39, 495–509 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro, K. et al. Dual congenital transmission of Toxoplasma gondii and Sarcocystis neurona in a late-term aborted pup from a chronically infected southern sea otter (Enhydra lutris nereis). Parasitology 143, 276–288 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barbieri, M. M. et al. Protozoal-related mortalities in endangered Hawaiian monk seals Neomonachus schauinslandi. Dis. Aquat. Org. 121, 85–95 (2016).Article 

    Google Scholar 
    Roe, W. D., Howe, L., Baker, E. J., Burrows, L. & Hunter, S. A. An atypical genotype of Toxoplasma gondii as a cause of mortality in Hector’s dolphins (Cephalorhynchus hectori). Vet. Parasitol. 192, 67–74 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hernandez, E., Nowack, B. & Mitrano, D. M. Polyester textiles as a source of microplastics from households: A mechanistic study to understand microfiber release during washing. Environ. Sci. Technol. 51, 7036–7046 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Mason, S. A. et al. Microplastic pollution is widely detected in US municipal wastewater treatment plant effluent. Environ. Pollut. 218, 1045–1054 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sutton, R. et al. Microplastic contamination in the San Francisco Bay, California, USA. Mar. Pollut. Bull. 109, 230–235 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Desforges, J.-P.W., Galbraith, M., Dangerfield, N. & Ross, P. S. Widespread distribution of microplastics in subsurface seawater in the NE Pacific Ocean. Mar. Pollut. Bull. 79, 94–99 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Horn, D., Miller, M., Anderson, S. & Steele, C. Microplastics are ubiquitous on California beaches and enter the coastal food web through consumption by Pacific mole crabs. Mar. Pollut. Bull. 139, 231–237 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yu, X. et al. Occurrence and distribution of microplastics at selected coastal sites along the southeastern United States. Sci. Total Environ. 613–614, 298–305 (2018).ADS 
    Article 
    CAS 
    PubMed 

    Google Scholar 
    Collicutt, B., Juanes, F. & Dudas, S. E. Microplastics in juvenile Chinook salmon and their nearshore environments on the east coast of Vancouver Island. Environ. Pollut. 244, 135–142 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Davidson, K. & Dudas, S. E. Microplastic ingestion by wild and cultured manila clams (Venerupis philippinarum) from Baynes Sound, British Columbia. Arch. Environ. Contam. Toxicol. 71, 147–156 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Waite, H. R., Donnelly, M. J. & Walters, L. J. Quantity and types of microplastics in the organic tissues of the eastern oyster Crassostrea virginica and Atlantic mud crab Panopeus herbstii from a Florida estuary. Mar. Pollut. Bull. 129, 179–185 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wootton, N., Reis-Santos, P. & Gillanders, B. M. Microplastic in fish: A global synthesis. Rev. Fish. Biol. Fish. 31, 753–771 (2021).Article 

    Google Scholar 
    De-la-Pinta, I. et al. Effect of biomaterials hydrophobicity and roughness on biofilm development. J. Mater. Sci. 30, 77 (2019).
    Google Scholar 
    Rochman, C. M., Hoh, E., Hentschel, B. T. & Kaye, S. Long-term field measurement of sorption of organic contaminants to five types of plastic pellets: implications for plastic marine debris. Environ. Sci. Technol. 47, 1646–1654 (2013).CAS 
    PubMed 

    Google Scholar 
    Lindquist, H. D. A. et al. Autofluorescence of Toxoplasma gondii and related coccidian oocysts. J. Parasitol. 89, 865–867 (2003).Article 
    PubMed 

    Google Scholar 
    Alldredge, A. L., Passow, U. & Logan, B. E. The abundance and significance of a class of large, transparent organic particles in the ocean. Deep Sea Res. Part I 40, 1131–1140 (1993).CAS 
    Article 

    Google Scholar 
    Shapiro, K. et al. Aquatic polymers can drive pathogen transmission in coastal ecosystems. Proc. R. Soc. B 281, 20141287 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bowley, J., Baker-Austin, C., Porter, A., Hartnell, R. & Lewis, C. Oceanic hitchhikers: Assessing pathogen risks from marine microplastic. Trends Microbiol. 29, 107–116 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nasser, F. & Lynch, I. Secreted protein eco-corona mediates uptake and impacts of polystyrene nanoparticles on Daphnia magna. J. Proteom. 137, 45–51 (2016).CAS 
    Article 

    Google Scholar 
    Savoca, M. S., Wohlfeil, M. E., Ebeler, S. E. & Nevitt, G. A. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Sci. Adv. 2, e1600395 (2016).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ramsperger, A. F. R. M. et al. Environmental exposure enhances the internalization of microplastic particles into cells. Sci. Adv. 6, 1211 (2020).ADS 
    Article 
    CAS 

    Google Scholar 
    Lusher, A., Hollman, P. C. H. & Mendoza-Hill, J. Microplastics in fisheries and aquaculture: status of knowledge on their occurrence and implications for aquatic organisms and food safety (Food and Agriculture Organization of the United Nations, 2017).
    Google Scholar 
    Tamburri, M. N. & Zimmer-Faust, R. K. Suspension feeding: Basic mechanisms controlling recognition and ingestion of larvae. Limnol. Oceanogr. 41, 1188–1197 (1996).ADS 
    Article 

    Google Scholar 
    Shapiro, K. et al. Simultaneous detection of four protozoan parasites on leafy greens using a novel multiplex PCR assay. Food Microbiol. 84, 103252 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Choy, C. A. et al. The vertical distribution and biological transport of marine microplastics across the epipelagic and mesopelagic water column. Sci. Rep. 9, 7843 (2019).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saley, A. M. et al. Microplastic accumulation and biomagnification in a coastal marine reserve situated in a sparsely populated area. Mar. Pollut. Bull. 146, 54–59 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shapiro, K. et al. Detection of Toxoplasma gondii oocysts and surrogate microspheres in water using ultrafiltration and capsule filtration. Water Res. 44, 893–903 (2010).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Wastewater effluent affects behaviour and metabolomic endpoints in damselfly larvae

    Ternes, T. A. Occurrence of drugs in German sewage treatment plants and rivers. Water Res. 32, 3245–3260 (1998).CAS 
    Article 

    Google Scholar 
    Heberer, T. Occurrence, fate, and removal of pharmaceutical residues in the aquatic environment: A review of recent research data. Toxicol. Lett. 131, 5–17 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Luo, Y. et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 473–474, 619–641 (2014).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Ternes, T., Joss, A. & Oehlmann, J. Occurrence, fate, removal and assessment of emerging contaminants in water in the water cycle (from wastewater to drinking water). Water Res. 72, 1–2 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zorita, S., Mårtensson, L. & Mathiasson, L. Occurrence and removal of pharmaceuticals in a municipal sewage treatment system in the south of Sweden. Sci. Total Environ. 407, 2760–2770 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, Y., Ok, Y. S., Kim, K.-H., Kwon, E. E. & Tsang, Y. F. Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Sci. Total Environ. 596–597, 303–320 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Eggen, R. I. L., Hollender, J., Joss, A., Schärer, M. & Stamm, C. Reducing the discharge of micropollutants in the aquatic environment: The benefits of upgrading wastewater treatment plants. Environ. Sci. Technol. 48, 7683–7689 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kümmerer, K., Dionysiou, D. D., Olsson, O. & Fatta-Kassinos, D. Reducing aquatic micropollutants: Increasing the focus on input prevention and integrated emission management. Sci. Total Environ. 652, 836–850 (2019).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Love, A. C., Crooks, N. & Ford, A. T. The effects of wastewater effluent on multiple behaviours in the amphipod. Gammarus pulex. Environ. Pollut. 267, 115386 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodrigues, C., Guimarães, L. & Vieira, N. Combining biomarker and community approaches using benthic macroinvertebrates can improve the assessment of the ecological status of rivers. Hydrobiolgia 839, 1–24 (2019).CAS 
    Article 

    Google Scholar 
    Previšić, A. et al. Aquatic macroinvertebrates under stress: Bioaccumulation of emerging contaminants and metabolomics implications. Sci. Total Environ. 704, 135333 (2020).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    De Castro-Català, N., Muñoz, I., Riera, J. L. & Ford, A. T. Evidence of low dose effects of the antidepressant fluoxetine and the fungicide prochloraz on the behavior of the keystone freshwater invertebrate Gammarus pulex. Environ. Pollut. 231, 406–414 (2017).PubMed 
    Article 
    CAS 

    Google Scholar 
    Pisa, L. W. et al. Effects of neonicotinoids and fipronil on non-target invertebrates. Environ. Sci. Pollut. Res. 22, 68–102 (2015).CAS 
    Article 

    Google Scholar 
    Jonsson, M., Fick, J., Klaminder, J. & Brodin, T. Antihistamines and aquatic insects: Bioconcentration and impacts on behavior in damselfly larvae (Zygoptera). Sci. Total Environ. 472, 108–111 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Stoks, R. & Córdoba-Aguilar, A. Evolutionary ecology of odonata: A complex life cycle perspective. Annu. Rev. Entomol. 57, 249–265 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Janssens, L. & Stoks, R. Stronger effects of Roundup than its active ingredient glyphosate in damselfly larvae. Aquat. Toxicol. 193, 210–216 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brodin, T. & Johansson, F. Conflicting selection pressures on the growth/predation-risk trade-off in a damselfly. Ecology 85, 2927–2932 (2004).Article 

    Google Scholar 
    Smith, B. R. & Blumstein, D. T. Fitness consequences of personality: A meta-analysis. Behav. Ecol. 19, 448–455 (2008).Article 

    Google Scholar 
    Monserrat, J. M. et al. Pollution biomarkers in estuarine animals: Critical review and new perspectives. Comp. Biochem. Physiol. Part C 146, 221–234 (2007).
    Google Scholar 
    Ågerstrand, M. et al. Emerging investigator series: Use of behavioural endpoints in the regulation of chemicals. Environ. Sci. Process. Impacts 22, 49–65 (2020).PubMed 
    Article 

    Google Scholar 
    Sardo, A. M. & Soares, A. M. V. M. Assessment of the effects of the pesticide imidacloprid on the behaviour of the aquatic oligochaete Lumbriculus variegatus. Arch. Environ. Contam. Toxicol. 58, 648–656 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bossus, M. C., Guler, Y. Z., Short, S. J., Morrison, E. R. & Ford, A. T. Behavioural and transcriptional changes in the amphipod Echinogammarus marinus exposed to two antidepressants, fluoxetine and sertraline. Aquat. Toxicol. 151, 46–56 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodrigues, A. C. M. et al. Behavioural responses of freshwater planarians after short-term exposure to the insecticide chlorantraniliprole. Aquat. Toxicol. 170, 371–376 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nielsen, M. E. & Roslev, P. Behavioral responses and starvation survival of Daphnia magna exposed to fluoxetine and propranolol. Chemosphere 211, 978–985 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Al-Badran, A. A., Fujiwara, M. & Mora, M. A. Effects of insecticides, fipronil and imidacloprid, on the growth, survival, and behavior of brown shrimp Farfantepenaeus aztecus. PLoS ONE 14, e0223641 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Leonard, J. A., Cope, W. G., Barnhart, M. C. & Bringolf, R. B. Metabolomic, behavioral, and reproductive effects of the synthetic estrogen 17 α-ethinylestradiol on the unionid mussel Lampsilis fasciola. Aquat. Toxicol. 150, 103–116 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Robert Michaud, M. et al. Metabolomics reveals unique and shared metabolic changes in response to heat shock, freezing and desiccation in the Antarctic midge, Belgica antarctica. J. Insect Physiol. 54, 645–655 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chou, H., Pathmasiri, W., Deese-Spruill, J., Sumner, S. & Buchwalter, D. B. Metabolomics reveal physiological changes in mayfly larvae (Neocloeon triangulifer) at ecological upper thermal limits. J. Insect Physiol. 101, 107–112 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hidalgo, K., Beaugeard, E., Renault, D., Dedeine, F. & Lécureuil, C. Physiological and biochemical responses to thermal stress vary among genotypes in the parasitic wasp Nasonia vitripennis. J. Insect Physiol. 117, 103909 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Hines, A., Oladiran, G. S., Bignell, J. P., Stentiford, G. D. & Viant, M. R. Direct sampling of organisms from the field and knowledge of their phenotype: Key recommendations for environmental metabolomics. Environ. Sci. Technol. 41, 3375–3381 (2007).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Agbo, S. O. et al. Changes in Lumbriculus variegatus metabolites under hypoxic exposure to benzo(a)pyrene, chlorpyrifos and pentachlorophenol: Consequences on biotransformation. Chemosphere 93, 302–310 (2013).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Venter, L. et al. Uncovering the metabolic response of abalone (Haliotis midae) to environmental hypoxia through metabolomics. Metabolomics 14, 49 (2018).PubMed 
    Article 
    CAS 

    Google Scholar 
    Melvin, S. D. Short-term exposure to municipal wastewater influences energy, growth, and swimming performance in juvenile Empire Gudgeons (Hypseleotris compressa). Aquat. Toxicol. Amst. Neth. 170, 271–278 (2016).CAS 
    Article 

    Google Scholar 
    Du, S. N. N. et al. Metabolic costs of exposure to wastewater effluent lead to compensatory adjustments in respiratory physiology in bluegill sunfish. Environ. Sci. Technol. 52, 801–811 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Mehdi, H., Dickson, F. H., Bragg, L. M., Servos, M. R. & Craig, P. M. Impacts of wastewater treatment plant effluent on energetics and stress response of rainbow darter (Etheostoma caeruleum) in the Grand River watershed. Comp. Biochem. Physiol. B 224, 270–279 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Simmons, D. B. D. et al. Altered expression of metabolites and proteins in wild and caged fish exposed to wastewater effluents in situ. Sci. Rep. 7, 17000 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    McCallum, E. S. et al. Exposure to wastewater effluent affects fish behaviour and tissue-specific uptake of pharmaceuticals. Sci. Total Environ. 605–606, 578–588 (2017).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Simmons, D. B. D. et al. Reduced anxiety is associated with the accumulation of six serotonin reuptake inhibitors in wastewater treatment effluent exposed goldfish Carassius auratus. Sci. Rep. 7, 17001 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gauthier, P. T. & Vijayan, M. M. Municipal wastewater effluent exposure disrupts early development, larval behavior, and stress response in zebrafish. Environ. Pollut. 259, 113757 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Finotello, S., Feckler, A., Bundschuh, M. & Johansson, F. Repeated pulse exposures to lambda-cyhalothrin affect the behavior, physiology, and survival of the damselfly larvae Ischnura graellsii (Insecta; Odonata). Ecotoxicol. Environ. Saf. 144, 107–114 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Späth, J. et al. Novel metabolomic method to assess the effect-based removal efficiency of advanced wastewater treatment techniques. Environ. Chem. https://doi.org/10.1071/EN19270 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Späth, J. et al. Oxylipins at intermediate larval stages of damselfly Coenagrion hastulatum as biochemical biomarkers for anthropogenic pollution. Environ. Sci. Pollut. Res. https://doi.org/10.1007/s11356-021-12503-x (2021).Article 

    Google Scholar 
    Späth, J. et al. Metabolomics reveals changes in metabolite profiles due to growth and metamorphosis during the on. J. Insect Physiol. 136, 104341 (2022).PubMed 
    Article 
    CAS 

    Google Scholar 
    Rodriguez, A. et al. ToxTrac: A fast and robust software for tracking organisms. Methods Ecol. Evol. 9, 460–464 (2018).Article 

    Google Scholar 
    Treit, D. & Fundytus, M. Thigmotaxis as a test for anxiolytic activity in rats. Pharmacol. Biochem. Behav. 31, 959–962 (1988).CAS 
    PubMed 
    Article 

    Google Scholar 
    Brodin, T. Behavioral syndrome over the boundaries of life—carryovers from larvae to adult damselfly. Behav. Ecol. 20, 30–37 (2009).Article 

    Google Scholar 
    Jonsson, M. et al. High-speed imaging reveals how antihistamine exposure affects escape behaviours in aquatic insect prey. Sci. Total Environ. 648, 1257–1262 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gullberg, J., Jonsson, P., Nordström, A., Sjöström, M. & Moritz, T. Design of experiments: An efficient strategy to identify factors influencing extraction and derivatization of Arabidopsis thaliana samples in metabolomic studies with gas chromatography/mass spectrometry. Anal. Biochem. 331, 283–295 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Teixeira, P. F. et al. A multi-step peptidolytic cascade for amino acid recovery in chloroplasts. Nat. Chem. Biol. 13, 15–17 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rohart, F., Gautier, B., Singh, A. & Cao, K.-A.L. mixOmics: An R package for ‘omics feature selection and multiple data integration. PLOS Comput. Biol. 13, e1005752 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Gorrochategui, E., Jaumot, J., Lacorte, S. & Tauler, R. Data analysis strategies for targeted and untargeted LC-MS metabolomic studies: Overview and workflow. TrAC Trends Anal. Chem. 82, 425–442 (2016).CAS 
    Article 

    Google Scholar 
    Chong, J., Wishart, D. S. & Xia, J. Using MetaboAnalyst 40 for comprehensive and integrative metabolomics data analysis. Curr. Protoc. Bioinform. 68, e86 (2019).Article 

    Google Scholar 
    Van Gossum, H. et al. Behaviour of damselfly larvae (Enallagma cyathigerum) (Insecta, Odonata) after long-term exposure to PFOS. Environ. Pollut. 157, 1332–1336 (2009).PubMed 
    Article 
    CAS 

    Google Scholar 
    Bownik, A., Ślaska, B., Bochra, J., Gumieniak, K. & Gałek, K. Procaine penicillin alters swimming behaviour and physiological parameters of Daphnia magna. Environ. Sci. Pollut. Res. 26, 18662–18673 (2019).CAS 
    Article 

    Google Scholar 
    Di Cicco, M. et al. Effects of diclofenac on the swimming behavior and antioxidant enzyme activities of the freshwater interstitial crustacean Bryocamptus pygmaeus (Crustacea, Harpacticoida). Sci. Total Environ. 799, 149461 (2021).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Di Nica, V., González, A. B. M., Lencioni, V. & Villa, S. Behavioural and biochemical alterations by chlorpyrifos in aquatic insects: An emerging environmental concern for pristine Alpine habitats. Environ. Sci. Pollut. Res. 27, 30918–30926 (2020).Article 
    CAS 

    Google Scholar 
    Cappello, T. et al. Sex steroids and metabolic responses in mussels Mytilus galloprovincialis exposed to drospirenone. Ecotoxicol. Environ. Saf. 143, 166–172 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rodrigues, A. C. M. et al. Energetic costs and biochemical biomarkers associated with esfenvalerate exposure in Sericostoma vittatum. Chemosphere 189, 445–453 (2017).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Ji, C. et al. Proteomic and metabolomic analysis of earthworm Eisenia fetida exposed to different concentrations of 2,2′,4,4′-tetrabromodiphenyl ether. J. Proteom. 91, 405–416 (2013).CAS 
    Article 

    Google Scholar 
    Felten, V. et al. Physiological and behavioural responses of Gammarus pulex (Crustacea: Amphipoda) exposed to cadmium. Aquat. Toxicol. 86, 413–425 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    De Lange, H. J., Peeters, E. T. H. M. & Lürling, M. Changes in ventilation and locomotion of Gammarus pulex (Crustacea, Amphipoda) in response to low concentrations of pharmaceuticals. Hum. Ecol. Risk Assess. Int. J. 15, 111–120 (2009).Article 
    CAS 

    Google Scholar 
    Ashauer, R., Caravatti, I., Hintermeister, A. & Escher, B. I. Bioaccumulation kinetics of organic xenobiotic pollutants in the freshwater invertebrate Gammarus pulex modeled with prediction intervals. Environ. Toxicol. Chem. 29, 1625–1636 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Schroeder-Spain, K., Fisher, L. L. & Smee, D. L. Uncoordinated: Effects of sublethal malathion and carbaryl exposures on juvenile and adult blue crabs (Callinectes sapidus). J. Exp. Mar. Biol. Ecol. 504, 1–9 (2018).CAS 
    Article 

    Google Scholar 
    Janssens, L. & Stoks, R. Synergistic effects between pesticide stress and predator cues: Conflicting results from life history and physiology in the damselfly Enallagma cyathigerum. Aquat. Toxicol. 132–133, 92–99 (2013).PubMed 
    Article 
    CAS 

    Google Scholar 
    Ernest, S. K. M. Homeostasis. In Encyclopedia of Ecology (eds Jørgensen, S. E. & Fath, B. D.) 1879–1884 (Academic Press, 2008).Chapter 

    Google Scholar 
    Karanova, M. V. & Andreev, A. A. Free amino acids and reducing sugars in the freshwater shrimp Gammarus lacustris (Crustacea, Amphipoda) at the initial stage of preparation to winter season. J. Evol. Biochem. Physiol. 46, 335–340 (2010).CAS 
    Article 

    Google Scholar 
    Maity, S. et al. Starvation causes disturbance in amino acid and fatty acid metabolism in Diporeia. Comp. Biochem. Physiol. B 161, 348–355 (2012).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cappello, T. et al. Impact of environmental pollution on caged mussels Mytilus galloprovincialis using NMR-based metabolomics. Mar. Pollut. Bull. 77, 132–139 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jiang, Y., Jiao, H., Sun, P., Yin, F. & Tang, B. Metabolic response of Scapharca subcrenata to heat stress using GC/MS-based metabolomics. PeerJ 8, e8445 (2020).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Roznere, I., Watters, G. T., Wolfe, B. A. & Daly, M. Effects of relocation on metabolic profiles of freshwater mussels: Metabolomics as a tool for improving conservation techniques. Aquat. Conserv. Mar. Freshw. Ecosyst. 27, 919–926 (2017).Article 

    Google Scholar 
    Cappello, T., Maisano, M., Mauceri, A. & Fasulo, S. 1H NMR-based metabolomics investigation on the effects of petrochemical contamination in posterior adductor muscles of caged mussel Mytilus galloprovincialis. Ecotoxicol. Environ. Saf. 142, 417–422 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cao, C. & Wang, W.-X. Chronic effects of copper in oysters Crassostrea hongkongensis under different exposure regimes as shown by NMR-based metabolomics. Environ. Toxicol. Chem. 36, 2428–2435 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Aru, V., Sarais, G., Savorani, F., Engelsen, S. B. & Cesare Marincola, F. Metabolic responses of clams, Ruditapes decussatus and Ruditapes philippinarum, to short-term exposure to lead and zinc. Mar. Pollut. Bull. 107, 292–299 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Tufi, S., Stel, J. M., de Boer, J., Lamoree, M. H. & Leonards, P. E. G. Metabolomics to explore imidacloprid-induced toxicity in the central nervous system of the freshwater snail Lymnaea stagnalis. Environ. Sci. Technol. 49, 14529–14536 (2015).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tanguy, A., Boutet, I. & Moraga, D. Molecular characterization of the glutamine synthetase gene in the Pacific oyster Crassostrea gigas: Expression study in response to xenobiotic exposure and developmental stage. Biochim. Biophys. Acta BBA 1681, 116–125 (2005).CAS 
    PubMed 
    Article 

    Google Scholar 
    Chen, X., Shi, X., Gan, F., Huang, D. & Huang, K. Glutamine starvation enhances PCV2 replication via the phosphorylation of p38 MAPK, as promoted by reducing glutathione levels. Vet. Res. 46, 32 (2015).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Leroy, D., Haubruge, E., De Pauw, E., Thomé, J. P. & Francis, F. Development of ecotoxicoproteomics on the freshwater amphipod Gammarus pulex: Identification of PCB biomarkers in glycolysis and glutamate pathways. Ecotoxicol. Environ. Saf. 73, 343–352 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Ch, R., Singh, A. K., Pandey, P., Saxena, P. N. & Mudiam, M. K. R. Identifying the metabolic perturbations in earthworm induced by cypermethrin using gas chromatography-mass spectrometry based metabolomics. Sci. Rep. 5, 15674 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Simpson, J. W., Allen, K. & Awapara, J. Free amino acids in some aquatic invertebrates. Biol. Bull. 117, 371–381 (1959).CAS 
    Article 

    Google Scholar 
    Fu, Q., Scheidegger, A., Laczko, E. & Hollender, J. Metabolomic profiling and toxicokinetics modeling to assess the effects of the pharmaceutical diclofenac in the aquatic invertebrate Hyalella azteca. Environ. Sci. Technol. 55, 7920–7929 (2021).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Tikunov, A. P., Johnson, C. B., Lee, H., Stoskopf, M. K. & Macdonald, J. M. Metabolomic investigations of american oysters using 1H-NMR spectroscopy. Mar. Drugs 8, 2578–2596 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gülçin, İ. Antioxidant and antiradical activities of l-carnitine. Life Sci. 78, 803–811 (2006).PubMed 
    Article 
    CAS 

    Google Scholar 
    Yuan, D. et al. Ancestral genetic complexity of arachidonic acid metabolism in Metazoa. Biochim. Biophys. Acta 1841, 1272–1284 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Garreta-Lara, E. et al. Effect of psychiatric drugs on Daphnia magna oxylipin profiles. Sci. Total Environ. 644, 1101–1109 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Dwyer, G. K., Stoffels, R. J., Rees, G. N., Shackleton, M. E. & Silvester, E. A predicted change in the amino acid landscapes available to freshwater carnivores. Freshw. Sci. 37, 108–120 (2017).Article 

    Google Scholar  More