Adaptive responses of marine diatoms to zinc scarcity and ecological implications
Identification of two Zn/Co responsive proteins in diatomsZn and Co growth rate experiments in which Zn or Co (omitting the other) were added to the growth media were conducted and harvested for proteomic analysis. Growth rates of the marine diatom species Thalassiosira pseudonana CCMP1335, Phaeodactylum tricornutum CCMP632, Pseudo-nitzschia delicatissima UNC1205 and Chaetoceros sp. RS19 (Chaetoceros RS19 herein) were conducted in a consistent media composition to allow for intercomparison among species (see “Methods”). The onset of growth limitation by Zn and Co was evident by decreased growth rates under low [Zn2+] and [Co2+], and the ability to use Co to restore Zn-limited growth was species-specific and consistent with prior results for the diatoms T. pseudonana, P. tricornutum and P. delicatissima (Fig. 1a, b)9 and for other eukaryotic algae2,8,10. Growth rates of Chaetoceros RS19 were not stimulated by increasing [Co2+] up to 23.5 pM in the absence of added Zn. This inability to substitute Co for Zn in Chaetoceros RS19 was clearly distinct from that of other diatoms, but was consistent with previous observations in Chaetoceros calcitrans10, implying a genus-wide attribute.Fig. 1: Growth responses of diatoms to varying [Zn2+] and [Co2+] and initial detection of ZCRPs in T. pseudonana.Growth rates of four diatoms over a range of a [Zn2+] and b [Co2+]. Data are presented as mean values of biological duplicate cultures. Data is available in Supplementary Table 1. Global proteomic analyses comparing the proteomes of pooled biological duplicate cultures (n = 2) of T. pseudonana in c high vs. low added Zn and d high vs. low added Co. Each point is an identified protein with the mean of technical triplicate abundance scores in one treatment plotted against the mean of abundance scores in another treatment. The solid line denotes 1:1 abundance. Error bars in c are the standard deviation of technical triplicate measurements.Full size imageThe proteome as a function of Zn2+ and Co2+ was explored in the marine diatom T. pseudonana harvested during log phase growth. Global proteomic analysis comparing low (1.1 pM) versus high (10.2 pM) added [Zn2+] and low (2.3 pM) versus high (23.4 pM) added [Co2+] revealed two uncharacterized diatom proteins that greatly increased in abundance at low [Zn2+] or [Co2+] (Fig. 1c, d). These proteins were annotated as a CobW/HypB/UreG, nucleotide binding domain and a bacterial extra-cellular solute binding domain, respectively, within the manually curated JGI Thaps3 T. pseudonana genome17 and were identified in T. pseudonana cultures with high confidence (≥9 exclusive unique peptides, 100% protein probability; Supplementary Fig. 1). BLAST sequence alignments showed these proteins to be homologous with CobW-like proteins (with 31.69% identity relative to Pseudomonas denitrificans CobW) and with the bacterial nickel transport protein NikA (with 30.5% identity relative to E. coli NikA), respectively. Based on their clear response to Zn and Co in the proteomes of multiple diatom species (Fig. 2a–d), the lack of definitive annotations in diatoms, and their genetic distance from bacterial homologs, these proteins are referred to as ZCRP-A and ZCRP-B (Zn/Co Responsive Protein A and B) in this study. Abundance patterns of these proteins were also investigated in P. tricornutum, P. delicatissima and Chaetoceros RS19. ZCRP-A spectral abundance counts were significantly (Kendall correlation, p 10 times. j Topology predictions from five sub-methods (OCTOPUS, Philius, PolyPhobius, SCAMPI, and SPOCTOPUS), consensus prediction (TOPCONS), and predicted ΔG values for P. tricornutum ZCRP-B generated using the TOPCONS webserver (https://topcons.cbr.su.se/)27,28. k Extent of Co uptake after 24 h for wild-type (WT), ZCRPA-knockout (KO), and ZCRPA-overexpression (OE) lines of P. tricornutum normalized to fluorescence units (fsu). Data are presented as mean values ± the standard deviation of biological triplicate cultures (n = 3). Individual data points are overlaid as white circles. The extent of Co uptake was found to be significantly larger in the ZCRPA-OE line compared to the wild-type via one-way ANOVA (f(3) = 23.16, p = 0.000268) and post hoc Dunnett test (p = 0.00048).Full size imageTo date, connections between COG0523 proteins and utilization of Zn and Co have been explored primarily in prokaryotic organisms. For example, the COG0523 protein CobW has a role in vitamin B12 biosynthesis and thus Co use19,21. In contrast, a subgroup of other COG0523 proteins (YjiA, YeiR, ZigA, and ZagA) have been implicated in Zn2+ metabolism8,13,14,15,16, and a client protein to the metallochaperone ZagA in Bacillus subtilis has been identified22.Compared to bacteria, less is known about the function of COG0523 proteins in marine phytoplankton, though COG0523 protein family members are known to occur in all kingdoms8,23. A recent study described the presence of COG0523 domain proteins upregulated under low Zn in the coccolithophore Emiliania huxleyi, but without further functional characterization24, implying a potential Zn-related function of a COG0523 protein in a marine alga distinct from the marine diatoms included in this study.Although various proteins belonging to the COG0523 subgroup share similar conserved domains, they possess different metal binding abilities and thus likely have different functions among the diverse organisms in which they are found. For example, recent work has established that CobW preferentially binds Co2+ as the cognate metal and acts as a Co2+ chaperone ultimately supplying vitamin B12 in bacteria, whereas the closely related putative metal chaperones YeiR and YjiA (homologs of CobW) bind Zn2+19. We can infer from homology and the response to low Zn and low Co in the present study that Zn2+ and Co2+ are likely both cognate metals for diatom ZCRP-A. Further metal binding and affinity assays can confirm and characterize metal binding in this protein.Frustule morphologyPhenotypic plasticity in P. tricornutum is well documented. Two basic cell morphotypes, fusiform and triradiate, are found in natural liquid environments. It is thought that by adopting the triradiate form, a cell increases its surface area and thus the area of membrane available for enzymatic activity or molecular diffusion of dissolved inorganic carbon (DIC) into the cell. The triradiate form is known to be more common under DIC limiting conditions, which supports this hypothesis25. Distinct morphological differences resulted from the knockout (KO) of the ZCRP-A gene. In P. tricornutum, ZCRP-A knockout cells consistently adopted a triradiate shape while wild-type cells were fusiform (Fig. 4i). Normally, triradiate cells of P. tricornutum spontaneously revert to fusiform across generations26, thus it is notable that ZCRP-A knockout cells have consistently maintained their triradiate shape for 4+ years in culture irrespective of media [Zn2+]. As Zn2+ is the predominant metal cofactor used in diatom CAs, the adoption of the triradiate form in knockout P. tricornutum cells may be a response to a disruption of the carbon concentrating mechanism caused by a reduction in Zn acquisition capability due to ZCRP-A knockout. This is consistent with the observed relative increase in Mn2+-utilizing CA (ι-CA) in the knockout line compared to the wild-type (Supplementary Fig. 5).ZCRP-B sequence analysis and cellular localizationUnlike COG0523 proteins, the relationship of ZCRP-B abundance to environmental Zn and Co concentrations does not appear to have been previously described. Topology predictions of P. tricornutum ZCRP-B using TOPCONS27,28 revealed a single predicted transmembrane domain near the N-terminus, with the majority of the protein predicted to be oriented outside the membrane (Fig. 4j). Overexpression and fluorescent tagging of ZCRP-B confirmed localization to the cell membrane (Fig. 4e–h; Supplementary Fig. 3b). A single predicted transmembrane domain contrasts with the Zrt/Irt-like divalent metal transporters (ZIPs) in eukaryotic algae, which have 7+ transmembrane domains and are key Zn transporters in many organisms29,30. It is therefore most likely that ZCRP-B is not a transporter itself, but one part of a multi-protein membrane complex and potentially interacts with the ZIP system. A sequence database similarity search (BLASTp, NCBI) found the ZCRP-B protein to be homologous with NikA, a protein subunit of the bacterial ATP-binding cassette (ABC) type Ni transport system protein Nik (30.5% identity with E. coli NikA, E = 7e−49, Supplementary Fig. 6). This transporter is well characterized in bacteria and is comprised of five subunits NikA-E. NikB and NikC are two pore-forming integral inner membrane proteins, NikD and NikE are two inner membrane-associated proteins with ATPase activity, and NikA is the periplasmic component that functions as the initial metal receptor31. No proteins with homology to NikB nor NikC were detected in the P. tricornutum proteomes generated in this study. Two uncharacterized P. tricornutum proteins were homologous with NikD (28.8% identity, E = 1e−14) and NikE (34.9% identity, E = 1.33e−8), though neither had abundance trends similar to ZCRP-B, implying that their function and regulation are independent of ZCRP-B.The sequence of a functionally similar bacterial ABC transport complex, CntABCDF (cobalt nickel transporter, also known as Opp1) from Staphylococcus aureus was also compared to NikA and ZCRP-B (Supplementary Fig. 6). CntA shares 25.6% identity with ZCRP-B (E = 3e−28), and similar to NikA, is an extra-cytoplasmic solute-binding protein that transports Ni, Zn and Co. CntA functions as a Ni/Co acquisition system in Zn-limited S. aureus32. Although the Nik and Cnt systems serve Ni and Co transport in bacteria, ZCRP-B responds to Zn and Co in marine diatoms, which have a significant Zn demand. This may imply a recruitment and repurposing of this bacterial Ni transporter component as part of the Zn acquisition systems during the evolution of marine diatoms.ZCRP-B as a putative high-affinity ligandSequence similarity to the extracellular transport components NikA and CntA (Supplementary Fig. 6), localization to the plasma membrane (Fig. 4b; Supplementary Fig. 3b), and increased abundance under low Zn and Co conditions (Fig. 2b) of P. tricornutum ZCRP-B suggests a metal-binding role as part of a high-affinity transport complex. The induction of ZCRP-B expression at low [Zn2+] (Fig. 2a–c) fits the description of a high-affinity Zn uptake system observed in marine algae that is known to be induced at low free [Zn2+]33,34, suggesting that this protein is involved in an adaptive response to extremely scarce Zn availability. Furthermore, ZCRP-B could contribute to the pool of high-affinity organic ligands that complex dissolved Zn, either by dissociation from living cells or upon cell death by viral lysis and grazing, in the upper water column12,35.The identification of a membrane-associated Zn-Co responsive protein-containing putative metal-binding sites allows us to reconsider the mechanisms of cellular metal uptake in diatoms. Prior physiological experiments observed Zn uptake in marine diatoms to approach the limits of diffusion33, and predicted kinetic control with fast cell surface metal binding and uptake relative to dissociation and release back to the seawater environment36. To enable this transport capability, it was postulated that transporters might be so abundant that the membrane becomes crowded37. Here, the observation of a putative Zn-binding, membrane-associated protein with only 1 predicted transmembrane domain instead implies a separation of the Zn concentrating function at the cell surface relative to its transport into the cell. In this scenario when Zn is scarce, biosynthesis of ZCRP-B increases and is tethered to the cell surface to compete Zn away from natural dissolved Zn ligands35 and/or chelate Zn atoms that make it through the diffusive boundary layer to the membrane. In this manner, ZCRP-B would increase the surface Zn concentration in the vicinity of Zn transporters, and multiple ZCRP-B proteins could supply nearby surface ZIP transporters or be endocytosed, avoiding the predicted membrane crowding of transporters problem. Aristilde and colleagues have previously demonstrated that weak natural Zn-binding ligands containing cysteine do indeed enhance cellular Zn uptake within the diatom Thalassiosira weissflogii, with heightened effects in Zn-limited compared to Zn-replete cells38. They proposed the formation of a transient tertiary complex between the Zn-bound ligand and Zn transporters (ZIPs and heavy metal P-type ATPases) at the cell surface, which could be mediated by a surface-tethered Zn binding ligand such as ZCRP-B. Future studies could examine the mechanism of Zn exchange between ZCRP-B and Zn/Co transporters such as the ZIPs in eukaryotic algae, which were also detected at lower Zn and Co abundances in P. tricornutum but with relatively lower spectral counts (Supplementary Fig. 7a, b), consistent with this model. Furthermore, the proposed mechanism of ZCRP-B binding is similar to that of the high-affinity Fe3+ binding protein ISIP2a, previously characterized in marine algae as an iron starvation-induced protein39. ISIP2a has been characterized as a phytotransferrin involved in endocytosis-mediated high-affinity Fe uptake in P. tricornutum that acts to concentrate Fe at the cell surface and is an extracellular protein anchored to the membrane with one transmembrane domain39. As the protein sequences of P. tricornutum ZCRP-B and ISIP2a share no significant similarity, it is possible that the uptake mechanism of ZCRP-B is similar to that of ISIP2a, but specific to high-affinity Zn and Co uptake rather than Fe. This suggests a common strategy of using extracellular membrane-anchored metal acquisition proteins in marine algae faced with metal limitation.Co uptake in wild-type and mutant diatom strainsAs ZCRP-A and ZCRP-B abundance is related to media [Co2+] (Fig. 2a–d), we investigated differences in the extent of Co uptake after 24 h among Zn/Co-limited wild-type, ZCRP-A knockout, ZCRP-A overexpression, and ZCRP-B overexpression lines of P. tricornutum via addition of the radiotracer 57Co (see methods). The extent of Co uptake among genetically modified P. tricornutum lines was observed to be significantly different via one-way ANOVA (f(3) = 23.16, p = 0.000268). A Dunnet post hoc test revealed that uptake was significantly greater (2.6× larger) in the ZCRP-A overexpression line compared to wild-type (p = 0.00048, Fig. 4k). We interpret this result as the overexpression of ZCRP-A creating a larger intracellular binding capacity for Co, thus protecting it from intracellular sensor or regulatory systems and/or efflux pumps. In contrast, no significant difference in Co uptake rates was observed when comparing ZCRP-A knockout, ZCRP-B overexpression, and wild-type lines, suggesting that P. tricornutum ZCRP-A knockout cells are capable of compensating for knockout to maintain Co metabolism, perhaps through the use of low-affinity transporters33. This is consistent with these uptake experiments being conducted using seawater media with a relatively abundant concentration of Zn (background of 7.7 pM Co and 4.0 nM Zn in the absence of EDTA), thus the use of low-affinity transporters was likely sufficient to acquire Zn and Co for growth, and neither ZCRP-A knockout nor ZCRP-B overexpression would be expected to add any metabolic benefit (Fig. 4k). Moreover, if ZCRP-B is only one part of a multi-protein acquisition and transport complex as hypothesized, overexpression of the single protein may not result in enhanced functionality.Abundance patterns of CAs in two diatomsCarbonic anhydrase enzymes constitute a major reservoir of Zn and Co within marine diatoms7. Within the stroma, intracellular chloroplastic CAs are essential in supplying CO2 to RUBISCO as they convert HCO3−, the predominant species of inorganic carbon in the pyrenoid, into CO240,41. Seven subclasses of CAs have been identified in marine diatoms to date and are designated as alpha, beta, gamma, delta, zeta, theta, and iota (α, β, γ, δ, ζ, θ, and ι). While Zn2+ is the cofactor most commonly used in algal CAs, utilization of both cadmium (Cd2+) and cobalt (Co2+) in place of Zn2+ at the active site of ζ-CA (CDCA) and a δ-CA, respectively, has been previously documented2,5,42. Overall, Zn-utilizing CAs increased in abundance with increasing Zn, consistent with the need for rapid HCO3− conversion at faster growth rates (Fig. 5; Supplementary Fig. 7). Specifically, spectral abundance counts of two β-type CAs, PtCA1 and PtCA2, became abundant in high [Co2+] (23.4 pM) and [Zn2+] ( > 1.1 pM) and were inversely related to ZCRP-A abundance (Supplementary Fig. 7). Both PtCA1 and PtCA2 are known to localize to the chloroplast pyrenoid41,43. Moreover, the increasing abundance trends of the Zn-utilizing α-CAs (CA-II and CA-VI) and the θ-CA Pt43233, which localize to the periplastidial compartment, chloroplast endoplasmic reticulum, and thylakoid lumen, respectively, at higher and Zn/Co provide further evidence for this strategy of increasing CA use under Zn-replete and higher growth rate conditions (Fig. 5; Supplementary Fig. 7)43,44.Fig. 5: Comparison of α-CA, ι-CA, and ZCRP abundances.Spectral counting abundance scores of a alpha CA, iota CA, and b ZCRP-A and ZCRP-B detected in Zn and Co treatments of P. tricornutum measured by global proteomic analysis. Data are plotted as means ± the standard deviation of technical triplicate measurements of pooled biological duplicate cultures (n = 2). Protein names are shown with their corresponding JGI protein ID.Full size imageIn contrast, abundance trends of the recently discovered ι-CA were inversely related to Zn2+ (Fig. 5). Originally identified in T. pseudonana, ι-CA was found to localize to the inner chloroplast membrane surrounding the stroma and is unusual in that it prefers Mn2+ to Zn2+ as a cofactor45. In the present study, spectral counts of P. tricornutum ι-CA decreased as metal concentrations increased, similar to that observed for ZCRP-A and ZCRP-B (Fig. 5). This ι-CA response was consistent with a Zn sparing strategy under low [Zn2+] and [Co2+] used to prioritize the use of Zn2+ for other metalloenzyme functions.Due to the inverse relationship between the abundances of ZCRP-A and chloroplastic Zn2+-requiring CAs in P. tricornutum (that is, all CAs detected with the exception of ι-CA) and the various types of CAs in T. pseudonana (Supplementary Fig. 7), it seems unlikely ZCRP-A directly interacts with CAs. These results are instead consistent with the hypothesis that ZCRP-A functions as a Zn2+ allocation and prioritization mechanism during Zn limitation. The role of Zn2+ in key transcriptional and translational proteins such as RNA polymerase and ribosomal proteins is well known, and major reservoirs of Zn are associated with these transcription and translation systems in the fast-growing copiotrophic bacterium Pseudoalteromonas6. The availability of Zn in ribosomes and the ER is therefore likely also a cellular priority in diatoms, and could benefit from utilizing the putative chaperone and trafficking capability of ZCRP-A when Zn is scarce. We, therefore, posit that ZCRP-A may serve as a Zn2+ trafficking or storage protein that contributes to the prioritization and movement of Zn2+ to the ER or CER, while the Mn-utilizing Mn ι-CA compensates for the lowered Zn availability in the chloroplast. The increased biosynthesis of ZCRP-A may be an important function to shift Zn homeostasis, competing for intracellular Zn and trafficking it towards the ER or CER.Distribution of putative ZCRP homologs among oceanic taxaPutative ZCRP homologs among eukaryotic oceanic taxa were identified by BLAST searching the P. tricornutum ZCRP-A and ZCRP-B protein sequences against all available transcriptomes in the Marine Microbial Eukaryotic Transcriptome Sequencing Project (MMETSP) database, which includes over 650 assembled and annotated transcriptomes of oceanic microbial eukaryotes46. Phylogenetic analysis revealed the presence of putative ZCRP-A and ZCRP-B homologs in a wide variety of organisms belonging to the Chromista kingdom that could be further categorized into Bacillariophyceae, Dinophyceae, and Prymnesiophyceae classes (Supplementary Figs. 8 and 9). Notably, the Chaetoceros RS-19 ZCRP-A homolog did not phylogenetically cluster with the other diatoms (Bacillariophyceae), but instead appears to be more closely related to E. coli YjiA (Supplementary Fig. 8). Furthermore, the lack of the conserved G2/Switch I region in the Chaetoceros RS-19 homolog (Fig. 3) is anomalous in comparison to other putative homologs identified within the MMETSP database. Overall, ZCRPs are not exclusive to oceanic diatoms, but rather are widely distributed amongst oceanic taxa.Metaproteomic detection of ZCRP-A and ZCRP-BTo investigate the use of ZCRP-A and ZCRP-B in the natural environment, we searched metaproteomic data collected during the KM1128 METZYME (Metals and Enzymes in the Pacific) research expedition on the R/V Kilo Moana October 1–25, 2011 from Oʻahu, Hawaiʻi, to Apia, Samoa (Fig. 6a). dZn followed a nutrient-like distribution as described previously, with an average surface (40 m) dZn concentration of 1.21 nM and average deep water (3000 m) concentration of 10.37 nM47 (Fig. 6b). dCo was highly depleted in the upper photic zone as the result of biological uptake48,49 (Fig. 6c). Eukaryotic homologs of ZCRP-A and ZCRP-B were detected at multiple stations at surface ( More