More stories

  • in

    Machine learning-based global maps of ecological variables and the challenge of assessing them

    The quality of global maps can be assessed in different ways. One way is global assessment where a single statistic is chosen to summarize the quality of the entire map: the map accuracy. For a categorical variable, this can be the probability that for a randomly chosen location on the map, the map value corresponds to the true value. For a continuous variable, it can be the RMSE, describing for a randomly chosen location on the map the expected difference between the mapped value and the true value. When a probability sample, such as a completely spatially random sample, is available for the area for which a global assessment is needed, then map accuracy can be estimated model-free (also called design-based, e.g., by using the unweighted sample mean in case of a completely spatially random sample). This circumvents modeling of spatial correlation because observations are independent by design6,9. This approach is called model-free because no model needs to be assumed about the distribution or correlation of the data: the only source of randomness is the random selection of sample units from a target population. If a probability sample is not available this approach cannot be used, and automatically the accuracy assessment approach becomes model-based10, which involves modeling a spatial process by assuming distributions and taking spatial correlations into account, and choosing estimation methods accordingly.Using naive random n-fold or leave-one-out cross-validation methods (or a simple random train-test split) to assess global model quality (usually equated with map accuracy) makes sense when the data are independent and identically distributed. When this is not the case, dependencies between nearby samples, e.g., in a spatial cluster, are ignored and result in biased, overly optimistic model assessment, as shown in, e.g., Ploton et al.5. Alternative cross-validation approaches such as spatial cross-validation5,11 that control for such dependencies are the only way to overcome this bias. Different spatial cross-validation strategies have been developed in the past few years, all aiming at creating independence between cross-validation folds5,11,12,13. Cross-validation creates prediction situations artificially by leaving out data points and predicting their value from the remaining points. If the aim is to assess the accuracy of a global map, the prediction situations created need to resemble those encountered while predicting the global map from the reference data (see Fig. 1 and discussions in Milà et al.14). This occurs naturally when reference data were obtained by (completely spatially random) probability sampling, but in other cases, this has to be forced for instance by controlling spatial distances (spatial cross-validation). Such forcing, however, is only possible when the distances in space that need to be resembled are available in the reference data. In the extreme case where all reference data come from a single cluster, this is impossible. When all reference data come from a small number of clusters, larger distances are available between clusters but do not provide substantial independent information about variation associated with these distances. Lack of information about larger distances means that we cannot assess the quality of predictions associated with such distances and cannot properly estimate global quality measures. Alternative approaches such as experiments with synthetic data15 or a validation using independent data at a higher level of integration16 would then be options to support confidence in the predictions.Another way of accuracy assessment is local assessment: for every location, a quality measure is reported, again as probability or prediction error. Such a local assessment predicts how close the map value is to newly observed values at particular locations. If the measurement error is quantified explicitly, a smoother, measurement-error-free value may be predicted10. If the model accounts for change of support10,17, predictions errors may refer to average values over larger areas such as 1 × 1, 5 × 5, or 10 × 10 km grid cells. Examples of local assessment in the context of global ecological mapping are modeled prediction errors using Quantile Regression Forests18 or mapped variance of predictions made by ensembles1,2. Neither of these examples quantifies spatial correlation or measurement error, or addresses change of support, as it is known from other modeling frameworks19. By omitting to model the spatial process, the local accuracy estimates as presented in the global studies that motivated this comment are disputable.The difference between global and local assessment is striking, in particular for global maps. A global, single number averages out all variability in prediction errors, and obscures any differences, e.g., between continents or climate zones. It is of little value for interpreting the quality of the map for particular regions. More

  • in

    Allelopathic effects of sesame extracts on seed germination of moso bamboo and identification of potential allelochemicals

    Jiang, Z. H. Bamboo and Rattan in the World (China Forest Publishing House, 2007).
    Google Scholar 
    Zhou, B. Z., Fu, M. Y., Xie, J. Z., Yang, X. S. & Li, Z. C. Ecological functions of bamboo forest: Research and application. J. For. Res. 16, 143–147 (2005).Article 

    Google Scholar 
    Su, W., Fan, S., Zhao, J. & Cai, C. Effects of various fertilization placements on the fate of urea-15N in moso bamboo forests. For. Ecol. Manag. 453, 117632 (2019).Article 

    Google Scholar 
    Zhao, J. et al. Ammonia volatilization and nitrogen runoff losses from moso bamboo forests under different fertilization practices. Can. J. For. Res. 49(3), 213–220 (2019).CAS 
    Article 

    Google Scholar 
    Lima, R. A. F., Rother, D. C., Muler, A. E., Lepsch, I. F. & Rodrigues, R. R. Bamboo overabundance alters forest structure and dynamics in the Atlantic Forest hotspot. Biol. Conserv. 147(1), 32–39 (2012).Article 

    Google Scholar 
    Kobayashi, K., Kitayama, K. & Onoda, Y. A. A simple method to estimate the rate of the bamboo expansion based on one-time measurement of spatial distribution of culms. Ecol. Res. 33(6), 1137–1143 (2018).CAS 
    Article 

    Google Scholar 
    Xu, Q. F. et al. Rapid bamboo invasion (expansion) and its effects on biodiversity and soil processes. Glob. Ecol. Conserv. 21, e00787 (2020).Article 

    Google Scholar 
    Isagi, Y. & Torii, A. Range expansion and its mechanisms in a naturalized bamboo species, Phyllostachys pubescens, Japna. J. Sustain. Forest. 6(1–2), 127–141 (1997).Article 

    Google Scholar 
    Dong, C. L. et al. Effect of new rhizome growth on the fringe of the forest of Phyllostachys heterocycla cv. pubescens by different measure. J. Anhui Agric. Univ. 27(2), 150–153 (2000) (In Chinese with English abstract).
    Google Scholar 
    Bai, S. B. et al. Plant species diversity and dynamics in forests invaded by Moso bamboo (Phyllostachys edulis) in Tianmu Mountain Nature Reserve. Biodivers. Sci. 21(3), 288–295 (2013) (In Chinese with English abstract).Article 

    Google Scholar 
    Lin, Q. Q., Wang, B., Ma, Y. D., Wu, C. Y. & Zhao, M. S. Effects of Phyllostachys pubescens forest expansion on biodiversity in Tianmu Mountain Nature Reserve. J. Northeast Forest Univ. 42(9), 43–47 (2014) (In Chinese with English abstract).
    Google Scholar 
    Okutomi, K., Shinoda, S. & Fukuda, H. Causal analysis of the invasion of broad-leaved forest by bamboo in Japan. J. Veg. Sci. 7(5), 723–728 (1996).Article 

    Google Scholar 
    Ouyang, M. et al. Effects of the expansion of Phyllostachys edulis on species composition, structure and diversity of the secondary evergreen broad-leaved forests. Biodivers. Sci. 24(6), 649–657 (2016) (In Chinese with English abstract).Article 

    Google Scholar 
    Larpkern, P., Moe, S. R. & Totland, Ø. The effects of environmental variables and human disturbance on woody species richness and diversity in a bamboo-deciduous forest in northeastern Thailand. Ecol. Res. 24(1), 147–156 (2009).Article 

    Google Scholar 
    Larpkern, P., Moe, S. R. & Totland, Ø. Bamboo dominance reduces tree regeneration in a disturbed tropical forest. Oecologia 165(1), 161–168 (2011).ADS 
    PubMed 
    Article 

    Google Scholar 
    Griscom, B. W. & Ashton, M. S. A self-perpetuating bamboo disturbance cycle in a neotropical forest. J. Trop. Ecol. 22(5), 587–597 (2006).Article 

    Google Scholar 
    Yin, J. et al. Abandonment lead to structural degradation and changes in carbon allocation patterns in Moso bamboo forests. For. Ecol. Manag. 449, 117449 (2019).Article 

    Google Scholar 
    Suzuki, S. & Nakagoshi, N. Expansion of bamboo forests caused by reduced bamboo-shoot harvest under different natural and artificial conditions. Ecol. Res. 23(4), 641–647 (2008).Article 

    Google Scholar 
    Cai, L., Zhang, R. L., Li, C. F. & Ding, Y. A method to inhabit the expansion of Phyllostachys pubescens stands based on the analysis of underground rhizome. J. Northeast Forest Univ. 31(5), 68–70 (2003) (In Chinese with English abstract).
    Google Scholar 
    Rice, E. L. Allelopathy (Academic Press, 1984).
    Google Scholar 
    Huang, W. et al. Allelopathic effects of Cinnamomum septentrionale leaf litter on Eucalyptus grandis saplings. Glob. Ecol. Conserv. 21, e00872 (2020).Article 

    Google Scholar 
    Turk, M. A. & Tawaha, A. M. Allelopathic effect of black mustard (Brassica nigra L.) on germination and growth of wild oat (Avena fatua L.). Crop Prot. 22(4), 673–677 (2003).Article 

    Google Scholar 
    Kong, C. H., Li, H. B., Hu, F., Xu, X. H. & Wang, P. Allelochemicals released by rice roots and residues in soil. Plant Soil 288(1–2), 47–56 (2006).CAS 
    Article 

    Google Scholar 
    Duke, S. O. Weeding with allelochemicals and allelopathy-a commentary. Pest Manag. Sci. 63(4), 307–307 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Braine, J. W., Curcio, G. R., Wachowicz, C. M. & Hansel, F. A. Allelopathic effects of Araucaria angustifolia needle extracts in the growth of Lactuca sativa seeds. J. For. Res. 17(5), 440–445 (2012).CAS 
    Article 

    Google Scholar 
    Soltys, D., Krasuska, U., Bogatek, R. & Gniazdowska, A. Allelochemicals as bioherbicides-present and perspectives. In Herbicides-current research and case studies in use (eds Price, A. J. & Kelton, J. A.) (IntechOpen, 2013).
    Google Scholar 
    Qin, J. H. et al. Allelopathic effects of the different allelochemical pathways of sesame extracts. J. Foshan Univ. 31(4), 1–5 (2013) (In Chinese with English abstract).
    Google Scholar 
    Khasabulli, B. D., Musyimi, D. M., George, O. & Gichuhi, M. N. Allelopathic effect of Bidens Pilosa on seed germination and growth of Amaranthus Dubius. J. Asian Sci. Res. 8(3), 103–112 (2018).
    Google Scholar 
    Boter, M. et al. An integrative approach to analyze seed germination in Brassica napus. Front. Plant Sci. 10, 1342 (2019).ADS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Saha, D., Marble, S. C. & Pearson, B. J. Allelopathic effects of common landscape and nursery mulch materials on weed control. Front. Plant Sci. 9, 733 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bachheti, A., Sharma, A., Bachheti, R. K., Husen, A. & Pandey, D. P. Plant allelochemicals and their various applications. In Co-Evolution of Secondary Metabolites Reference Series in Phytochemistry (eds Mérillon, J. M. & Ramawat, K.) (Springer, 2020).
    Google Scholar 
    Duary, B. Effect of leaf extract of sesame (Sesamum indicum L.) on germination and seedling growth of blackgram (Vigna mungo L.) and rice (Oryza sativa L.). Allelopathy J. 10(2), 153–156 (2002).
    Google Scholar 
    Soleymani, A. & Shahrajabian, M. H. Study of allelopathic effects of sesame (Sesamum indicum) on canola (Brassica napus) growth and germination. Intl. J. Agri. Crop Sci. 4(4), 183–186 (2012).
    Google Scholar 
    Gorai, M., Aloui, W. E., Yang, X. & Neffati, M. Toward understanding the ecological role of mucilage in seed germination of a desert shrub Henophyton desert: Interactive effects of temperature, salinity and osmotic stress. Plant Soil 374(1–2), 727–738 (2014).CAS 
    Article 

    Google Scholar 
    Wang, C., Wu, B. & Jiang, K. Allelopathic effects of Canada goldenrod leaf extracts on the seed germination and seedling growth of lettuce reinforced under salt stress. Ecotoxicology 28, 103–116 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Wang, X. L. et al. Allelopathic effects of exotic mangrove species Laguncularia racemosa on Bruguiera gymnorhiza. J. Xiamen Univ. 56(3), 339–345 (2017) (In Chinese with English abstract).
    Google Scholar 
    Shah, A. N. et al. Allelopathic influence of sesame and green gram intercrops on cotton in a replacement series. Clean: Soil, Air, Water 45(1), 1–10 (2017).
    Google Scholar 
    Amare, T. Allelopathic effect of aqueous extracts of parthenium (Parthenium hysterophorus L.) parts on seed germination and seedling growth of maize (Zea mays L.). J. Agric. Crop 4(12), 157–163 (2018).
    Google Scholar 
    Yan, X. F., Du, Q., Fang, S. & Zhou, L. B. Allelopathic effects of water extraction of Rhus typhina on Zea mays seeds germination. Seed 29(3), 15–18 (2010) (In Chinese with English abstract).
    Google Scholar 
    Yan, X. F., Zhou, Y. F. & Du, Q. Allelopathic effects of water extraction from root and leaf litter of Rhus typhina on the germination of wheat seeds. Seed 30(5), 17–20 (2011) (In Chinese with English abstract).
    Google Scholar 
    Wang, X. et al. Allelopathic effects of aqueous leaf extracts from four shrub specious on seed germination and initial growth of Amygdalus pedunculata Pall. Forests 9, 711 (2018).Article 

    Google Scholar 
    Alencar, N. L. M. et al. Ultrastructural and biochemical changes induced by salt stress in Jatropha curcas seeds during germination and seedling development. Funct. Plant Biol. 42(9), 865–874 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lozano-Isla, F., Campos, M. L. O., Endres, L., Bezerra-Neto, E. & Pompelli, M. F. Effects of seed storage time and salt stress on the germination of Jatropha curcas L. Ind. Crop Prod. 118, 214–224 (2018).CAS 
    Article 

    Google Scholar 
    Wu, J. R., Chen, Z. Q. & Peng, S. L. Allelopathic potential of invasive weeds: Alternanthera philoxeroide, Ipomoea cairica and Spartina alterniflora. Allelopathy J. 17(2), 279–285 (2006).
    Google Scholar 
    Sahu, A. & Devkota, A. Allelopathic effects of aqueous extract of leaves of Mikania micrantha H.B.K. on seed germination and seedling growth of Oryza sativa L. and Raphanus sativus L. Sci. World 11(11), 70–77 (2013).Article 

    Google Scholar 
    Gatti, A. B., Ferreira, A. G., Arduin, M. & Perez, S. C. G. D. A. Allelopathic effects of aqueous extracts of Artistolochia esperanzae O.Kuntze on development of Sesamum indicum L. seedlings. Acta Bot. Bras. 24(2), 454–461 (2010).Article 

    Google Scholar 
    Hou, Y. P. et al. Effects of litter from dominant tree species on seed germination and seedling growth of exotic plant Rhus typhina in hilly areas in Shandong peninsula. Sci. Silvae Sin. 52(6), 28–34 (2016) (In Chinese with English abstract).
    Google Scholar 
    Jiang, Z. et al. Effects of root exudates from Picea asperata seedlings on the seed germination and seedling growth of two herb species. Sci. Silvae Sin. 55(6), 160–166 (2019) (In Chinese with English abstract).
    Google Scholar 
    Hagan, D. L., Jose, S. & Lin, C. Allelopathic exudates of cogongrass (Imperata cylindrical): Implications for the performance of native pine savanna plant species in the Southeastern US. J. Chem. Ecol. 39, 312–322 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cheng, F. & Cheng, Z. Research progress on the use of plant allelopathy in agriculture and the physiological and ecological mechanisms of allelopathy. Front. Plant Sci. 6, 1020 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Bogatek, R., Gniazdowska, A., Zakrzewska, W., Oracz, K. & Gawronski, S. W. Allelopathic effects of sunflower extracts on mustard seed germination and seedling growth. Biol. Plantarum 50(1), 156–158 (2006).Article 

    Google Scholar 
    Politycka, B. Peroxidase activity and lipid peroxidation in roots of cucumber seedlings influenced by derivatives of cinnamic and benzoic acids. Acta Physiol. Plant. 18(4), 365–370 (1996).CAS 

    Google Scholar 
    Williamson, G. B. & Richardson, D. Bioassays for allelopathy: Measuring treatment responses with independent controls. J. Chem. Ecol. 14(1), 181–187 (1988).Article 

    Google Scholar  More

  • in

    Author Correction: Recent expansion of oil palm plantations into carbon-rich forests

    In the version of this article initially published, there were mistakes in affiliations 1, 2 and 6. The corrected affiliations should read as follows: 1. Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, China; 2. Ministry of Education Ecological Field Station for East Asian Migratory Birds, Department of Earth System Science, Tsinghua University, Beijing, China; 6. Department of Geography, Department of Earth Sciences, and Institute for Climate and Carbon Neutrality, The University of Hong Kong, Hong Kong, China. The affiliations have been corrected in the HTML and PDF versions of the article. More

  • in

    Emerging weed resistance increases tillage intensity and greenhouse gas emissions in the US corn–soybean cropping system

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2014).US Inventory of US Greenhouse Gas Emissions and Sinks: 1990–2018 (EPA, 2020).Lu, C. et al. Century‐long changes and drivers of soil nitrous oxide (N2O) emissions across the contiguous United States. Glob. Chang. Biol. https://doi.org/10.1111/gcb.16061 (2022).Article 

    Google Scholar 
    Tian, H. et al. A comprehensive quantification of global nitrous oxide sources and sinks. Nature 586, 248–256 (2020).CAS 
    Article 

    Google Scholar 
    2004 National Crop Residue Management Survey (Conservation Technology Information Center, 2004); www.ctic.purdue.eduClaassen, R., Bowman, M., Wallander, J., David, M. & Steven, S. Tillage Intensity and Conservation Cropping in the United States, EIB-197 (United States Department of Agriculture, Economic Research Service, 2018).Grant, R. F. Changes in soil organic matter under different tillage and rotation: mathematical modeling in ecosystems. Soil Sci. Soc. Am. J. 61, 1159–1175 (1997).CAS 
    Article 

    Google Scholar 
    Claassen, R., Langpap, C. & Wu, J. Impacts of federal crop insurance on land use and environmental quality. Am. J. Agric. Econ. 99, 592–613 (2017).Article 

    Google Scholar 
    Davis, A. S. Cover-crop roller–crimper contributes to weed management in no-till soybean. Weed Sci. 58, 300–309 (2010).CAS 
    Article 

    Google Scholar 
    Pittelkow, C. M. et al. Nitrogen management and methane emissions in direct-seeded rice systems. Agron. J. 106, 968–980 (2014).CAS 
    Article 

    Google Scholar 
    Weber, J. F., Kunz, C., Peteinatos, G. G., Zikeli, S. & Gerhards, R. Weed control using conventional tillage, reduced tillage, no-tillage, and cover crops in organic soybean. Agric 7, 43 (2017).
    Google Scholar 
    Triplett, G. B. & Dick, W. A. No-tillage crop production: a revolution in agriculture!. Agron. J. 100, 153–165 (2008).Article 

    Google Scholar 
    Wade, T., Claassen, R. & Wallander, S. Conservation-Practice Adoption Rates Vary Widely by Crop and Region, EIB-147, 40 (United States Department of Agriculture, Economic Research Service, 2015).Perry, E. D., Ciliberto, F., Hennessy, D. A. & Moschini, G. Genetically engineered crops and pesticide use in US maize and soybeans. Sci. Adv. https://doi.org/10.1126/sciadv.1600850 (2016).Article 

    Google Scholar 
    Heap, I. & Duke, S. O. Overview of glyphosate-resistant weeds worldwide. Pest Manag. Science 74, 1040–1049 (2018).CAS 
    Article 

    Google Scholar 
    Owen, M. D. K. Diverse approaches to herbicide-resistant weed management. Weed Sci. 64, 570–584 (2016).Article 

    Google Scholar 
    Van Deynze, B., Swinton, S. M. & Hennessy, D. A. Are glyphosate-resistant weeds a threat to conservation agriculture? Evidence from tillage practices in soybeans. Am. J. Agric. Econ. https://doi.org/10.1111/ajae.12243 (2021).Eagle, A. et al. Greenhouse Gas Mitigation Potential of Agricultural Land Management in the United States. A Synthesis of the Literature (Technical Working Group on Agricultural Greenhouse Gases, 2010).Parton, W. J. et al. Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000. Proc. Natl. Acad. Sci. USA 112, E4681–E4688 (2015).CAS 
    Article 

    Google Scholar 
    Stevanović, M. et al. Mitigation strategies for greenhouse gas emissions from agriculture and land-use change: consequences for food prices. Environ. Sci. Technol. 51, 365–374 (2017).Article 

    Google Scholar 
    Glenk, K., Eory, V., Colombo, S. & Barnes, A. Adoption of greenhouse gas mitigation in agriculture: an analysis of dairy farmers’ perceptions and adoption behaviour. Ecol. Econ. 108, 49–58 (2014).Article 

    Google Scholar 
    Galik, C., Murray, B. & Parish, M. Near-term pathways for achieving forest and agricultural greenhouse gas mitigation in the US Climate 5, 69 (2017).Article 

    Google Scholar 
    Pape, D. et al. Managing Agricultural Land for Greenhouse Gas Mitigation within the United States (ICF/USDA, 2016); https://www.usda.gov/sites/default/files/documents/White_Paper_WEB71816.pdfCooper, H. V., Sjögersten, S., Lark, R. M. & Mooney, S. J. To till or not to till in a temperate ecosystem? Implications for climate change mitigation. Environ. Res. Lett. 16, 054022 (2021).CAS 
    Article 

    Google Scholar 
    Baker, N. T. Tillage Practices in the Conterminous United States, 1989–2004—Datasets Aggregated by Watershed (No. 573), U.S. Geological Survey, 2011; https://pubs.usgs.gov/ds/ds573/pdf/dataseries573final.pdfPrice, A. et al. Glyphosate-resistant Palmer amaranth: a threat to conservation agriculture. J. Soil Water Conserv. 66, 265–275 (2011).Article 

    Google Scholar 
    Livingston, M., Fernandez-Cornejo, J. & Frisvold, G. B. Economic returns to herbicide resistance management in the short and long run: the role of neighbor effects. Weed Sci. 64, 595–608 (2016).Article 

    Google Scholar 
    Cao, P., Lu, C. & Yu, Z. Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous United States during 1850–2015: application rate, timing, and fertilizer types. Earth Syst. Sci. Data 10, 969–984 (2018).Article 

    Google Scholar 
    US Greenhouse Gas Emissions and Sinks, 1990–2016, Epa 430-R-18-003 (EPA, 2018).Deng, Q. et al. Assessing the impacts of tillage and fertilization management on nitrous oxide emissions in a cornfield using the DNDC model. J. Geophys. Res. Biogeosciences https://doi.org/10.1002/2015JG003239 (2016).Paustian, K. et al. Climate-smart soils. Nature 532, 49–57 (2016).CAS 
    Article 

    Google Scholar 
    Yu, Z., Lu, C., Cao, P. & Tian, H. Long-term terrestrial carbon dynamics in the Midwestern United States during 1850–2015: roles of land use and cover change and agricultural management. Glob. Chang. Biol. 12, 3218–3221 (2018).
    Google Scholar 
    Lu, C. et al. Increasing carbon footprint of grain crop production in the US western Corn Belt. Environ. Res. Lett. 13, 124007 (2018).CAS 
    Article 

    Google Scholar 
    Wimberly, M. C. et al. Cropland expansion and grassland loss in the eastern Dakotas: new insights from a farm-level survey. Land Use Policy 63, 160–173 (2017).Article 

    Google Scholar 
    Adler, P. R., Del Grosso, S. J. & Parton, W. J. Life-cycle assessment of net greenhouse-gas flux for bioenergy cropping systems. Ecol. Appl. 17, 675–691 (2007).Article 

    Google Scholar 
    Halvorson, A. D., Schweissing, F. C., Bartolo, M. E. & Reule, C. A. Corn response to nitrogen fertilization in a soil with high residual nitrogen. Agron. J. 97, 1222–1229 (2005).Article 

    Google Scholar 
    Al-Kaisi, M. M., Archontoulis, S. V., Kwaw-Mensah, D. & Miguez, F. Tillage and crop rotation effects on corn agronomic response and economic return at seven Iowa locations. Agron. J. 107, 1411–1424 (2015).Article 

    Google Scholar 
    Jarecki, M. et al. Long-term trends in corn yields and soil carbon under diversified crop rotations. J. Environ. Qual. 47, 635–643 (2018).CAS 
    Article 

    Google Scholar 
    Gelfand, I. et al. Carbon debt of Conservation Reserve Program (CRP) grasslands converted to bioenergy production. Proc. Natl Acad. Sci. USA 108, 13864–13869 (2011).CAS 
    Article 

    Google Scholar 
    West, T. O. & Post, W. M. Soil organic carbon sequestration rates by tillage and crop rotation. Soil Sci. Soc. Am. J. 66, 1930–1946 (2002).CAS 
    Article 

    Google Scholar 
    Ogle, S. M. et al. Scale and uncertainty in modeled soil organic carbon stock changes for US croplands using a process-based model. Glob. Chang. Biol. 16, 810–822 (2010).Article 

    Google Scholar 
    Al-Kaisi, M. M., Yin, X. & Licht, M. A. Soil carbon and nitrogen changes as influenced by tillage and cropping systems in some Iowa soils. Agric. Ecosyst. Environ. 105, 635–647 (2005).CAS 
    Article 

    Google Scholar 
    Perry, E. D., Moschini, G. C. & Hennessy, D. A. Testing for complementarity: glyphosate tolerant soybeans and conservation tillage. Am. J. Agric. Econ. https://doi.org/10.1093/ajae/aaw001 (2016).Perry, E. D., Hennessy, D. A. & Moschini, G. C. Product concentration and usage: behavioral effects in the glyphosate market. J. Econ. Behav. Organ. 158, 543–559 (2019).Article 

    Google Scholar 
    Yu, Z. & Lu, C. Historical cropland expansion and abandonment in the continental US during 1850 to 2016. Glob. Ecol. Biogeogr. 27, 322–333 (2018).Article 

    Google Scholar 
    Yu, Z., Lu, C., Tian, H. & Canadell, J. G. Largely underestimated carbon emission from land use and land cover change in the conterminous US. Glob. Chang. Biol. https://doi.org/10.1111/gcb.14768 (2019).Yu, Z., Lu, C., Hennessy, D. A., Feng, H. & Tian, H. Impacts of tillage practices on soil carbon stocks in the US corn–soybean cropping system during 1998 to 2016. Environ. Res. Lett. 15, 014008 (2020).CAS 
    Article 

    Google Scholar 
    Liu, M. et al. Long-term trends in evapotranspiration and runoff over the drainage basins of the Gulf of Mexico during 1901–2008. Water Resour. Res. 49, 1988–2012 (2013).Article 

    Google Scholar 
    Lu, C. & Tian, H. Net greenhouse gas balance in response to nitrogen enrichment: perspectives from a coupled biogeochemical model. Glob. Chang. Biol. 19, 571–588 (2013).Article 

    Google Scholar 
    Tian, H. et al. The terrestrial biosphere as a net source of greenhouse gases to the atmosphere. Nature 531, 225–228 (2016).CAS 
    Article 

    Google Scholar 
    Chen, G. et al. Drought in the southern United States over the 20th century: variability and its impacts on terrestrial ecosystem productivity and carbon storage. Clim. Change 114, 379–397 (2012).CAS 
    Article 

    Google Scholar 
    Lu, C. et al. Effect of nitrogen deposition on China’s terrestrial carbon uptake in the context of multifactor environmental changes. Ecol. Appl. 22, 53–75 (2012).Article 

    Google Scholar 
    Ren, W. et al. Spatial and temporal patterns of CO2 and CH4 fluxes in China’s croplands in response to multifactor environmental changes. Tellus 63, 222–240 (2011).CAS 
    Article 

    Google Scholar 
    Tian, H. et al. Net exchanges of CO2, CH4, and N2O between China’s terrestrial ecosystems and the atmosphere and their contributions to global climate warming. J. Geophys. Res. Biogeosci. 116, 1–13 (2011).
    Google Scholar 
    Ren, W., Tian, H., Tao, B., Huang, Y. & Pan, S. China’s crop productivity and soil carbon storage as influenced by multifactor global change. Glob. Chang. Biol. 18, 2945–2957 (2012).Article 

    Google Scholar 
    Residue Management Choices: A Guide to Managing Crop Residues in Corn and Soybeans (USDA Natural Resources Conservation Service and University of Wisconsin, 2019). More

  • in

    Impacts of climate change on reproductive phenology in tropical rainforests of Southeast Asia

    Data collection of flowering and fruiting phenologyMonthly reproductive phenology data recorded over 35 years (from April 1976 to September 2010) were collected from the Bulletin Fenologi Biji Benih dan Anak Benih (Bulletin of Seed and Seedling Phenology), which was deposited at the FRIM library. The bulletin reported seed and seedling availabilities and the flowering and fruiting phenology of trees at several research stations in Malaysia. The present study collected flowering and fruiting records of trees grown in FRIM arboretums located approximately 12 km northwest of Kuala Lumpur, Malaysia (latitude 3°24 ‘N, longitude 101°63 ‘E, elevation 80 m). There are both dipterocarp and non-dipterocarp arboretums in FRIM, both of which were founded in 1929. These arboretums preserve and maintain living trees for research and other purposes. Each month, three research staff members of FRIM with sufficient phenology monitoring training made observations with binoculars to record the presence of flowers and fruits on trees of each species on the forest floor from April 1976 to September 2010. The phenological status of the trees was recorded as flowering during the developmental stages from flower budding to blooming and as fruiting during the developmental stages from the occurrence of immature fruit to fruit ripening. Because only one or two individuals per species are grown at the FRIM arboretums, the flowering and fruiting phenology were monitored using these individuals. The resultant flowering and fruiting phenology data included a time series of binary data (1 for presence and 0 for absence) with a length of 417 months.The original data included 112 dipterocarp and 240 non-dipterocarp species. We excluded 17 dipterocarps and 125 non-dipterocarp species based on the following five criteria for data accuracy.

    1.

    Percentage of missing values is ≤50%: If the monthly flowering or fruiting phenology data of a species included a substantially large number of missing values ( >50%), the species was excluded.

    2.

    Stable flowering period: We considered an observation to be unreliable if the flowering period was significantly different among flowering events (if the coefficient of variation in the flowering period was larger or equal to 1.0).

    3.

    Flowering period is shorter than or equal to 12 months: we considered an observation to be unreliable if the flowering period was longer than 12 months because it was unlikely that the same tree would flower continuously for longer than 1 year.

    4.

    The flowering and fruiting frequencies were not significantly different between the first and second half of the census period: when the flowering frequency was zero for the first half of the observation period but was larger than 0.1 for the second half of the observation period, or when the flowering frequency was zero for the second half of the observation period but was larger than 0.1 for the first half of the observation period, we removed these species because data are not reliable (e.g., physiological conditions may have changed significantly). We adopted the same criteria for the fruiting phenology data.

    5.

    We removed overlapping species, herb species, and specimens with unknown species names.

    After removing unreliable species based on the five criteria explained above, we obtained 95 dipterocarp and 115 non-dipterocarp species (Supplementary Data 1). We used these species for further analyses. It is unlikely that our final data includes trees that were replaced by young trees during the census period because newly planted seedlings do not flower over 20–30 years until they are fully grown to the reproductive stage ( >20–30 cm DBH)45.Detection of seasonality in reproductive phenologyTo compare the flowering and fruiting phenology seasonality among different families, nine families that included at least five species were used. The number of flowering or fruiting events was counted for each month from January to December during a census, and then the frequency distribution was drawn as a histogram. Similarly, we also generated a histogram for the seed dispersal month, which was calculated as the month when fruiting ended (i.e., when the binary fruiting phenology data changed from one to zero).Classification of phenological patternsTo classify the phenological patterns, we performed time-series clustering using the R package TSclust46 with the hierarchical clustering method based on the Dynamic Time Warping distance of the flowering phenology data of each species. For this analysis, time points at which there were missing values for at least one species were excluded. Because of the large number of missing values in non-Dipterocarpaceae species, we performed time-series clustering only for the Dipterocarpaceae species based on 394 time points in total. The number of phenological clusters was estimated based on AIC, as explained below.Climate dataDaily minimum, mean, and maximum temperatures and precipitation data monitored at the FRIM KEPONG (3° 14’ N, 101° 42’ E, elevation 97 m) weather station were provided by the Malaysian Meteorological Department. We used the daily minimum temperature for our analysis because there were fewer missing values compared to the numbers of missing daily mean and daily maximum temperature values. The periods in which climate data were available were from 1 March 1973 to 31 March 1996, and from 23 July 1997 to 20 April 2005. We removed periods in which there were missing values spanning longer than 5 days. When the range of missing values spanned a period shorter than 3 days, we approximated these missing values using the mean minimum temperatures recorded on the adjacent three days. Although solar radiation data were not available for our study, the use of precipitation is sufficient for model fitting because there is a significant negative correlation between solar radiation and precipitation in Southeast Asia47.Climate data generated by GCMsAs the future climate inputs, we used bias-corrected climate input data from 1 January 2050 to 31 December 2099, with a daily temporal resolution and a 0.5° spatial resolution, provided by the ISI-MIP project48; these data are based on the Coupled Model Intercomparison Project Phase 5 outputs from three GCMs: GFDL–ESM2M, IPSL–CM5A-LR, and MIROC5. To compare the flowering phenology between 1976–1996 and 2050–2099, bias-corrected GCM data from 1 May 1976 to 31 March 1996, were also used. This period (1 May 1976–31 March 1996) is consistent with the period used for model fitting. We selected daily minimum temperature and precipitation time series from the 0.5° grid cells corresponding to the study site for phenology monitoring at FRIM. To compare flowering phenology among regions, we also used the same set of data from three other regions in Southeast Asia: Trang Province in Thailand (7° 4’ N, 99° 47’ E), Lambir Hills National Park in Malaysia (4° 2’ N, 113° 50’ E), and central Kalimantan in Indonesia (0° 06’ S, 114° 0’ E). Because the study site in FRIM was not in the center of a 0.5° grid cell, we interpolated the data using four grid cells in the vicinity of the observation site. We used the weighted average according to the distance between each observation site and the center of each corresponding grid cell.Although the climate input data provided by ISI-MIP were already bias-corrected, we conducted additional bias correction at FRIM using a historical scenario for each GCM data set and the observed weather data from 1 January 1976 to 31 December 2004 based on previously presented protocol49. We did not implement any bias correction for the frequency of dry days or precipitation intensity of wet days49 because we only focused on the average precipitation.The variances in the annual fluctuation of the monthly mean precipitation were not the same between the observation data and historical GCM runs at FRIM. For all three GCMs (GFDL–ESM2M, IPSL–CM5A-LR, and MIROC5), the variances in the yearly fluctuation output by the GCMs tended to be larger than that of the observed data at the FRIM KEPONG weather station during winter and spring. On the other hand, during summer and fall, the variances output by the GCMs tended to be smaller than that of the observed data. These biases could not be corrected using the previous method49. Therefore, we conducted the following bias correction for these data:$${p}_{i,m,y}^{{{{{{rm{GCM}}}}}}* }={r}_{i,m,y}^{{{{{{rm{GCM}}}}}}}cdot left[{F}_{Gamma }^{-1}left({F}_{Gamma }left({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}|{k}_{m,y},{theta }_{m,y}right)|{k}_{m,y}^{* },{theta }_{m,y}^{* }right)cdot {rho }_{m,y}^{{{{{{rm{GCM}}}}}}}right],$$
    (1)
    where ({p}_{i,m,y}^{{{{{{rm{GCM}}}}}}* }) is the bias-corrected precipitation value of the target GCM at year y, month m, and date i. In the equation, ({r}_{i,m,y}^{{{{{{rm{GCM}}}}}}}) is the ratio of the precipitation value of the GCM relative to the monthly mean value. Then, the following equation is used:$${r}_{i,m,y}^{{{{{{rm{GCM}}}}}}}=frac{{p}_{i,m,y}^{{{{{{rm{GCM}}}}}}}}{{bar{p}}_{m,y}^{{{{{{rm{GCM}}}}}}}},$$
    (2)
    where ({p}_{i,m,y}^{{{{{{rm{GCM}}}}}}}) is the precipitation value (not bias-corrected) of the GCM at year (y), month (m), and date i and ({bar{p}}_{m,y}^{{{{{{rm{GCM}}}}}}}) is the monthly mean precipitation value of the GCM at year (y) and month (m). In Eq. 1, ({F}_{Gamma }) represents the cumulative distribution function of a gamma distribution, ({F}_{Gamma }^{-1}) represents the inverse function of the cumulative distribution function of the gamma distribution, and ({k}_{m,y}) and ({theta }_{m,y}) are the shape parameters. In Eq. 1, ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) indicates the deviation of the monthly mean from the normal climate value of the corresponding period, and this value is calculated as follows:$${delta }_{m,y}^{{{{{{rm{GCM}}}}}}}=frac{{bar{p}}_{m,y}^{{{{{{rm{GCM}}}}}}}}{{rho }_{m,y}^{{{{{{rm{GCM}}}}}}}},$$
    (3)
    where ({rho }_{m,y}^{{{{{{rm{GCM}}}}}}}) is the normal climate value during the target period. In this method, we defined the normal climate value as the mean of the monthly mean precipitation values over 31 years.$${rho }_{m,y}^{{{{{{rm{GCM}}}}}}}=frac{1}{31}mathop{sum }limits_{j=y-15}^{y+15}{bar{p}}_{m,j}^{{{{{{rm{GCM}}}}}}}.$$
    (4)
    When the mean of a gamma distribution is fixed at one, the shape parameters are represented as follows:$${k}_{m,y}=frac{1}{Vleft({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}right)},$$
    (5)
    $${theta }_{m,y}=frac{1}{{k}_{m,y}},$$
    (6)
    where (Vleft({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}right)) indicates the variance in ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) at month (m) over 31 years.In this method, we assumed that the ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) value follows a gamma distribution and that the ratio of the variance of ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) to the variance of ({delta }_{m,y}^{{{{{{rm{obs}}}}}}}) is maintained even in the future scenario. Here, ({delta }_{m,y}^{{{{{{rm{obs}}}}}}}) represents the deviation of the monthly mean in the observation data from the normal climate value.$${delta }_{m,y}^{{{{{{rm{obs}}}}}}}=frac{{bar{p}}_{m,y}^{{{{{{rm{obs}}}}}}}}{{rho }_{m}^{{{{{{rm{obs}}}}}}}},$$
    (7)
    $${rho }_{m}^{{{{{{rm{obs}}}}}}}=frac{1}{28}mathop{sum }limits_{j=1976}^{2004}{bar{p}}_{m,y}^{{{{{{rm{obs}}}}}}}.$$
    (8)
    In the above equations, ({bar{p}}_{m,y}^{{{{{{rm{obs}}}}}}}) indicates the monthly mean precipitation value in the observed data. As mentioned above, because we assume that the ratio of the variance in ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) to the variance in ({delta }_{m,y}^{{{{{{rm{obs}}}}}}}) is maintained, ({k}_{m,y}^{* }) and ({theta }_{m,y}^{* }) are calculated as follows:$${k}_{m,y}^{* }=frac{{k}_{m,y}}{alpha },$$
    (9)
    $${theta }_{m,y}^{* }=frac{1}{{k}_{m,y}^{* }},$$
    (10)
    where$$alpha =frac{Vleft({delta }_{m,y}^{{{{{{{rm{GCM}}}}}}}^{{{{{{rm{h}}}}}}}}right)}{Vleft({delta }_{m,y}^{{{{{{rm{obs}}}}}}}right)}.$$
    (11)
    In Eq. 11, ({delta }_{m,y}^{{{{{{{rm{GCM}}}}}}}^{{{{{{rm{h}}}}}}}}) is the deviation of the monthly mean of the historical GCM precipitation data from the normal climate value. Here, we defined the normal climate value as the average monthly mean during 1976–2004.The method proposed here is an original bias correction method, but the above equations are easily derived if we assume that the ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) value follows a gamma distribution and that the ratio of the variance in ({delta }_{m,y}^{{{{{{rm{GCM}}}}}}}) to the variance in ({delta }_{m,y}^{{{{{{rm{obs}}}}}}}) is maintained even in the future scenario. Notably, because we combined this method with the bias correction method described previously49, Eq. 2 should be expressed as follows:$${r}_{i,m,y}^{{{{{{rm{GCM}}}}}}}=frac{{widetilde{p}}_{l,m,y}^{{{{{{rm{GCM}}}}}}}}{{bar{p}}_{m,y}^{{{{{{rm{GCM}}}}}}}},$$
    (12)
    where ({widetilde{p}}_{l,m,y}^{{{{{{rm{GCM}}}}}}}) is the precipitation data that are bias-corrected using the method described previously49. Bias-corrected data were compared with the data without bias correction (Supplementary Figs. 8–11).Statistical analyses and reproducibilityWe adopted previously presented models in which environmental triggers for floral induction accumulate for n1 days prior to the onset of floral induction21 (Supplementary Fig. 2). Flowers then develop for n2 days before opening (Supplementary Fig. 2). The model assumption of the time lag between floral induction and anthesis, which is denoted as n2, was validated by a previous finding in which the expression peaks of flowering-time genes, which are used as molecular markers of floral induction, were shown to occur at least one month before anthesis in Shorea curtisii19. S. curtissi is included in our data set. The CU at time t, ({{{{{rm{CU}}}}}}left(t|{theta }^{C}right)), is calculated as follows:$${{{{{rm{CU}}}}}}left(t|{theta }^{C}right)=mathop{sum }limits_{n={n}_{2}}^{{n}_{2}+{n}_{1}-1}{{{{{rm{max }}}}}}{bar{C}-xleft(t-nright),0},$$
    (13)
    where ({theta }^{C}=left{{n}_{1},{n}_{2},bar{C}right}) is the set of parameters and x(t) is the temperature at time t. Here, (bar{C}) indicates the threshold temperature. The term max{x1, x2} is a function that returns a larger value for the two arguments. Similarly, given ({theta }^{D}={{n}_{1},{n}_{2},bar{D}},) the DU at time t, ({{{{{rm{DU}}}}}}left(t|{theta }^{D}right)), is defined as the difference between the mean daily accumulation of rainfall over n1 days and a threshold rainfall level ((bar{D})):$${{{{{rm{DU}}}}}}left(t|{theta }^{D}right)={{{{{rm{max }}}}}}left{bar{D}-mathop{sum }limits_{n={n}_{2}}^{{n}_{2}+{n}_{1}-1}yleft(t-nright)/{n}_{1},0right},$$
    (14)
    where y(t) is the rainfall value at time t. The term max{x1, x2} is defined similarly as in Eq. 13.Logistic regression was performed using only the DU and using the product of CU and DU (CU × DU) as the explanatory variables and using the presence or absence of a first flowering event as the dependent variable for each phenological cluster. Because the number of phenological clusters is unknown, we performed forward selection on the cluster number based on the AIC. Let m be the number of phenological clusters based on the dendrogram drawn from the time-series clustering explained above (Supplementary Fig. 5). Given m phenological clusters, let ({G}_{k}^{m}) be the kth set of clusters in which the DU model is adopted for model fitting. Here, ({G}_{k}^{m}) indicates the set of cluster IDs, and k ranges from 0 to m(m+1)/2. For example, when m = 2 (i.e., there are two clusters, clusters 1 and 2), there are four cluster sets, calculated as follows:$${G}_{0}^{m=2}={},{G}_{1}^{m=2}={1},{G}_{2}^{m=2}={2},{G}_{3}^{m=2}={1,2},$$
    (15)
    where the element in the bracket indicates the ID of the cluster in which the DU model is adopted for model fitting. When k = 0, the DU model is not used; instead, the CU × DU model is adopted for model fitting for both clusters 1 and 2. Let i be the ith element of the vector E, which is defined as follows:$${{{{{bf{E}}}}}}={{t}_{1}^{1},,{t}_{2}^{1},…,,,{t}_{n}^{1},,…,,,{t}_{1}^{m},,{t}_{2}^{m},…,,{t}_{n}^{m}},$$
    (16)
    where n is the length of the time-series data for each cluster. Notably, n = 223 is the same for all species and clusters. The term ({t}_{1}^{m}) in the above equation denotes the first time point of the time series of length n for the species included in cluster m. Given m and k, let ({p}^{(m,k)}(i)) be the flowering probability of element i of vector E. The term ({p}^{(m,k)}(i)) is expressed as follows:$${{log }}left[frac{{p}^{left(m,kright)}left(iright)}{1-{p}^{left(m,kright)}left(iright)}right]= mathop{sum }limits_{j=1}^{m}{alpha }_{m,j}cdot {Z}_{m,j}left(iright)+mathop{sum }limits_{jin {G}_{k}^{left(mright)}}^{m}{beta }_{m,j}cdot {Z}_{m,j}left(iright)cdot {{{{{{rm{DU}}}}}}}_{m,j}left(i|{theta }_{j}^{D}right)\ +mathop{sum }limits_{jnotin {G}_{k}^{left(mright)}}^{m}{beta }_{m,j}cdot {Z}_{m,j}left(iright)cdot {{{{{rm{CU}}}}}}left(i|{theta }_{j}^{C}right)times {{{{{{rm{DU}}}}}}}_{m,j}left(i|{theta }_{j}^{D}right),$$
    (17)
    where ({Z}_{m,j}(i)) is the dummy variable indicating a cluster for i; ({Z}_{m,j}(i)) equals 1 if the ith element of E belongs to the jth cluster, otherwise it is zero, and ({alpha }_{m,j}) and ({beta }_{m,j}) in Eq. (5) are regression coefficients for the jth cluster when the species are grouped into m clusters. We estimate the parameters and the number of clusters based on a finite number of observations. Given the number of clusters m, for each of m clusters, the parameters were estimated by maximizing the loglikelihood value calculated for all combinations of potential parameter values for ({n}_{1},{n}_{2},bar{C},) and (bar{D}) within the ranges of [1 (min), 50 (max)] for n1, [1,50] for n2, [19,25] for (bar{C}), and [1,9] for (bar{D}). We varied the days (n1 and n2) by integers, temperature ((bar{C})) by tenths of a degree C, and daily precipitation ((bar{D})) by tenths of a mm. Regression coefficients (({alpha }_{m,j}), ({beta }_{m,j})) for all j values under a given m value and associated likelihoods were determined using generalized linear models with binomial error structures.With the results of the parameter estimations, we determined the number of clusters in two steps. For the first step, for a given m, we obtained (hat{k}(m)) according to the following equation:$$hat{k}(m)={arg }mathop{{min }}limits_{k}{{{{{{rm{AIC}}}}}}{m,k(m)},,k(m),=,0,,…,{2}^{m}}.$$
    (18)
    For the second step, with the results of (hat{k}) obtained from the first step, we obtained the estimate of the number of clusters according to forward selection by searching for the (hat{m}) value that satisfies the following inequalities:$${{{{{rm{AIC}}}}}}(hat{m},,hat{k}(hat{m})), < ,{{{{{rm{AIC}}}}}}(hat{m}+1,,hat{k}(hat{m}+1))cap {{{{{rm{AIC}}}}}}(hat{m},,hat{k}(hat{m})), < ,{{{{{rm{AIC}}}}}}(hat{m}-1,,hat{k}(hat{m}-1)).$$ (19) For model fitting, the first flowering month was extracted from the flowering phenology data. When flowering lasted more than 1 month, the month after the first flowering month was replaced by a value of zero (absence of flowering). If the month before the first flowering month was a missing value, the first flowering month was treated as a missing value and was not used for further analyses. We assumed that phenology monitoring was performed on the first date of each month.Projections of 21st-century changes in flowering phenologyWe used two scenarios (RCP2.6 and RCP8.5) to forecast future reproductive phenology in dipterocarp species for each of the three GCMs (GFDL–ESM2M, IPSL–CM5A-LR, and MIROC5). We predicted the flowering probability per month for each phenological cluster during the periods from 1 May 1976–31 March 1996 and from 1 January 2050–31 December 2099 based on the best model (Supplementary Table 2). The predicted flowering probability during the 2050–2099 period was normalized to that during the 1976–1996 period for each climate scenario and for each of three GCMs. To compare the seasonal patterns between 1976–1996 and 2050–2099, the predicted flowering probability was averaged for each month from January to December and plotted for each month in Fig. 6. R version 3.6.3 was used for all analyses.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Niche expansion and adaptive divergence in the global radiation of crows and ravens

    Magallón, S., Sánchez-Reyes, L. L. & Gómez-Acevedo, S. L. Thirty clues to the exceptional diversification of flowering plants. Ann. Bot. 123, 491–503 (2019).PubMed 
    Article 

    Google Scholar 
    Shi, J. J. & Rabosky, D. L. Speciation dynamics during the global radiation of extant bats. Evolution 69, 1528–1545 (2015).PubMed 
    Article 

    Google Scholar 
    Nicolai, M. P. J. & Matzke, N. J. Trait-based range expansion aided in the global radiation of Crocodylidae. Glob. Ecol. Biogeogr. 28, 1244–1258 (2019).Article 

    Google Scholar 
    Coyne, J. A. & Orr, H. A. Speciation (Sinauer Associates, 2004).Price, T. & others. Speciation in Birds (Roberts and Co., 2008).Moyle, R. G., Filardi, C. E., Smith, C. E. & Diamond, J. Explosive Pleistocene diversification and hemispheric expansion of a “great speciator”. Proc. Natl Acad. Sci. USA 106, 1863–1868 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Van Bocxlaer, I. et al. Gradual adaptation toward a range-expansion phenotype initiated the global radiation of toads. Science 327, 679–682 (2010).ADS 
    PubMed 
    Article 
    CAS 

    Google Scholar 
    Phillimore, A. B. & Price, T. D. in Speciation and Patterns on Diversity (eds Butlin, R., Bridle, J. & Schluter, D.) Ch. 13 (Cambridge Univ. Press, 2009).Price, T. D. et al. Niche filling slows the diversification of Himalayan songbirds. Nature 509, 222–225 (2014).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Nosil, P. Ecological Speciation (Oxford Univ. Press, 2012).Naciri, Y. & Linder, H. P. The genetics of evolutionary radiations. Biol. Rev. Camb. Philos. Soc. 95, 1055–1072 (2020).Price, T. D. & Sol, D. Introduction: genetics of colonizing species. Am. Nat. 172, S1–S3 (2008).PubMed 
    Article 

    Google Scholar 
    Schluter, D. The Ecology of Adaptive Radiation (Oxford Univ. Press, 2000).Gill, F. & Donsker, D. IOC world bird list (v 8.1). 2018. (2018).Del Hoyo, J., Del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the Birds of the World Vol. 1 (Lynx edicions, 1992).Cassey, P. Are there body size implications for the success of globally introduced land birds? Ecography 24, 413–420 (2001).Article 

    Google Scholar 
    Fristoe, T. S., Iwaniuk, A. N. & Botero, C. A. Big brains stabilize populations and facilitate colonization of variable habitats in birds. Nat. Ecol. Evol. 1, 1706–1715 (2017).PubMed 
    Article 

    Google Scholar 
    Sayol, F. et al. Environmental variation and the evolution of large brains in birds. Nat. Commun. 7, 1–8 (2016).Article 
    CAS 

    Google Scholar 
    Sol, D. Revisiting the cognitive buffer hypothesis for the evolution of large brains. Biol. Lett. 5, 130–133 (2009).PubMed 
    Article 

    Google Scholar 
    Lefebvre, L. & Sol, D. Brains, lifestyles and cognition: are there general trends? Brain. Behav. Evol. 72, 135–144 (2008).PubMed 
    Article 

    Google Scholar 
    Jønsson, K. A. et al. A supermatrix phylogeny of corvoid passerine birds (Aves: Corvides). Mol. Phylogenet. Evol. 94, 87–94 (2016).PubMed 
    Article 

    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448 (2012).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Marki, P. Z. et al. Breeding system evolution influenced the geographic expansion and diversification of the core Corvoidea (Aves: Passeriformes). Evolution 69, 1874–1924 (2015).PubMed 
    Article 

    Google Scholar 
    KessLer, J. E. Evolution of Corvids and their presence in the neogene and the quaternary in the Carpathian Basin. Ornis Hungarica 28, 121–168 (2020).Article 

    Google Scholar 
    Olson, S. L. & Rasmussen, P. C., others. Miocene and Pliocene birds from the Lee Creek Mine, North Carolina. Smithson Contrib. Paleobiol. 90, 233–365 (2001).
    Google Scholar 
    Rabosky, D. L. Automatic detection of key innovations, rate shifts, and diversity-dependence on phylogenetic trees. PLoS ONE 9, e89543 (2014).Alfaro, M. E. et al. Lineage-specific diversification rates and high turnover in the history of jawed vertebrates. Proc. Natl Acad. Sci. USA 106, 13410–13414 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rabosky, D. L., Donnellan, S. C., Grundler, M. & Lovette, I. J. Analysis and visualization of complex macroevolutionary dynamics: an example from Australian scincid lizards. Syst. Biol. 63, 610–627 (2014).PubMed 
    Article 

    Google Scholar 
    Louca, S. & Pennell, M. W. Extant timetrees are consistent with a myriad of diversification histories. Nature 580, 502–505 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Kulemeyer, C., Asbahr, K., Gunz, P., Frahnert, S. & Bairlein, F. Functional morphology and integration of corvid skulls-a 3D geometric morphometric approach. Front. Zool. 6, 2 (2009).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zeffer, A., Johansson, L. C. & Marmebro, Å. Functional correlation between habitat use and leg morphology in birds (Aves). Biol. J. Linn. Soc. 79, 461–484 (2003).Article 

    Google Scholar 
    Wang, X., McGowan, A. J. & Dyke, G. J. Avian wing proportions and flight styles: first step towards predicting the flight modes of Mesozoic birds. PLoS ONE 6, e28672 (2011).Corbin, C. E., Lowenberger, L. K. & Gray, B. L. Linkage and trade-off in trophic morphology and behavioural performance of birds. Funct. Ecol. 29, 808–815 (2015).Article 

    Google Scholar 
    Kennedy, J. D. et al. The influence of wing morphology upon the dispersal, geographical distributions and diversification of the Corvides (Aves; Passeriformes). Proc. R. Soc. B Biol. Sci. 283, 20161922 (2016).Article 

    Google Scholar 
    Pigot, A. L. et al. Macroevolutionary convergence connects morphological form to ecological function in birds. Nat. Ecol. Evol. 4, 230–239 (2020).PubMed 
    Article 

    Google Scholar 
    Clavel, J., Escarguel, G. & Merceron, G. mvMORPH: an R package for fitting multivariate evolutionary models to morphometric data. Methods in Ecology and Evolution 6, 1311–1319 (2015).Uyeda, J. C., Caetano, D. S. & Pennell, M. W. Comparative analysis of principal components can be misleading. Syst. Biol. 64, 677–689 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Leyequién, E., de Boer, W. F. & Cleef, A. Influence of body size on coexistence of bird species. Ecol. Res. 22, 735–741 (2007).Article 

    Google Scholar 
    Grant, P. R. Bill size, body size, and the ecological adaptations of bird species to competitive situations on islands. Syst. Biol. 17, 319–333 (1968).CAS 
    Article 

    Google Scholar 
    Meiri, S. & Dayan, T. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351 (2003).Article 

    Google Scholar 
    Friedman, N. R. et al. Evolution of a multifunctional trait: shared effects of foraging ecology and thermoregulation on beak morphology, with consequences for song evolution. Proc. R. Soc. B 286, 20192474 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Friedman, N. R., Harmáčková, L., Economo, E. P. & Remeš, V. Smaller beaks for colder winters: Thermoregulation drives beak size evolution in Australasian songbirds. Evolution 71, 2120–2129 (2017).PubMed 
    Article 

    Google Scholar 
    Sheard, C. et al. Ecological drivers of global gradients in avian dispersal inferred from wing morphology. Nat. Commun. 11, 1–9 (2020).Article 
    CAS 

    Google Scholar 
    Rabosky, D. L. et al. BAMM tools: an R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).Article 

    Google Scholar 
    Thomas, G. H. & Freckleton, R. P. MOTMOT: models of trait macroevolution on trees. Methods Ecol. Evol. 3, 145–151 (2012).CAS 
    Article 

    Google Scholar 
    O’Meara, B. C., Ané, C., Sanderson, M. J. & Wainwright, P. C. Testing for different rates of continuous trait evolution using likelihood. Evolution 60, 922–933 (2006).PubMed 
    Article 

    Google Scholar 
    Harmon, L. J., Schulte, J. A., Larson, A. & Losos, J. B. Tempo and mode of evolutionary radiation in iguanian lizards. Science 301, 961–964 (2003).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Slater, G. J., Price, S. A., Santini, F. & Alfaro, M. E. Diversity versus disparity and the radiation of modern cetaceans. Proc. R. Soc. B Biol. Sci. 277, 3097–3104 (2010).Article 

    Google Scholar 
    Sullivan, B. L. et al. eBird: A citizen-based bird observation network in the biological sciences. Biol. Conserv. 142, 2282–2292 (2009).Article 

    Google Scholar 
    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497 (2012).Article 

    Google Scholar 
    Heinrich, B. Ravens in Winter (Simon and Schuster, 2014).Taylor, A. H., Hunt, G. R., Medina, F. S. & Gray, R. D. Do new Caledonian crows solve physical problems through causal reasoning? Proc. R. Soc. B Biol. Sci. 276, 247–254 (2009).CAS 
    Article 

    Google Scholar 
    Lefebvre, L., Reader, S. M. & Sol, D. Brains, innovations and evolution in birds and primates. Brain. Behav. Evol. 63, 233–246 (2004).PubMed 
    Article 

    Google Scholar 
    Rensch, B. Increase of learning capability with increase of brain-size. Am. Nat. 90, 81–95 (1956).Article 

    Google Scholar 
    Roth, T. C., LaDage, L. D., Freas, C. A. & Pravosudov, V. V. Variation in memory and the hippocampus across populations from different climates: a common garden approach. Proc. R. Soc. B Biol. Sci. 279, 402–410 (2012).Article 

    Google Scholar 
    Olkowicz, S. et al. Birds have primate-like numbers of neurons in the forebrain. Proc. Natl Acad. Sci. USA 113, 7255–7260 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sayol, F., Lefebvre, L. & Sol, D. Relative brain size and its relation with the associative pallium in birds. Brain. Behav. Evol. 87, 69–77 (2016).PubMed 
    Article 

    Google Scholar 
    Garcia-Porta, J. & Ord, T. J. Key innovations and island colonization as engines of evolutionary diversification: a comparative test with the Australasian diplodactyloid geckos. J. Evol. Biol. 26, 2662–2680 (2013).Losos, J. B. & Ricklefs, R. E. Adaptation and diversification on islands. Nature 457, 830–836 (2009).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Stuart, Y. E. & Losos, J. B. Ecological character displacement: glass half full or half empty? Trends Ecol. Evol. 28, 402–408 (2013).PubMed 
    Article 

    Google Scholar 
    Jenkins, D. G. et al. Does size matter for dispersal distance? Glob. Ecol. Biogeogr. 16, 415–425 (2007).Article 

    Google Scholar 
    Sol, D. et al. Evolutionary divergence in brain size between migratory and resident birds. PLoS ONE 5, e9617 (2010).Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).PubMed 
    Article 

    Google Scholar 
    Sayol, F., Sol, D. & Pigot, A. L. Brain size and life history interact to predict urban tolerance in birds. Front. Ecol. Evol. 8, 58 (2020).Article 

    Google Scholar 
    Baltensperger, A. P. et al. Seasonal observations and machine-learning-based spatial model predictions for the common raven (Corvus corax) in the urban, sub-arctic environment of Fairbanks, Alaska. Polar Biol. 36, 1587–1599 (2013).Article 

    Google Scholar 
    Kövér, L. et al. Recent colonization and nest site selection of the Hooded Crow (Corvus corone cornix L.) in an urban environment. Landsc. Urban Plan. 133, 78–86 (2015).Article 

    Google Scholar 
    Oostra, V., Saastamoinen, M., Zwaan, B. J. & Wheat, C. W. Strong phenotypic plasticity limits potential for evolutionary responses to climate change. Nat. Commun. 9, 1–11 (2018).CAS 
    Article 

    Google Scholar 
    Dukas, R. & Ratcliffe, J. M. Cognitive Ecology II (University of Chicago Press, 2009).Huey, R. B., Hertz, P. E. & Sinervo, B. Behavioral drive versus behavioral inertia in evolution: a null model approach. Am. Nat. 161, 357–366 (2003).PubMed 
    Article 

    Google Scholar 
    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180174 (2019).Aboitiz, F. Behavior, body types and the irreversibility of evolution. Acta Biotheor. 38, 91–101 (1990).Wcislo, W. T. Behavioral environments and evolutionary change. Annu. Rev. Ecol. Syst. 20, 137–169 (1989).Article 

    Google Scholar 
    Sol, D., Stirling, D. G. & Lefebvre, L. Behavioral drive or behavioral inhibition in evolution: subspecific diversification in Holarctic passerines. Evolution 59, 2669–2677 (2005).PubMed 
    Article 

    Google Scholar 
    Mayr, E., Mayr, E., Mayr, E. & Mayr, E. Animal Species and Evolution Vol. 797 (Belknap Press of Harvard University Press, 1963).Mayr, E. The emergence of evolutionary novelties. Evol. Darwin 1, 349–380 (1960).
    Google Scholar 
    Hardy, A. C. The Living Stream: Evolution and Man (Harper & Row, 1967).Wyles, J. S., Kunkel, J. G. & Wilson, A. C. Birds, behavior, and anatomical evolution. Proc. Natl Acad. Sci. USA 80, 4394–4397 (1983).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Plotkin, H. C. The Role of Behavior in Evolution (MIT press, 1988).Lande, R. Models of speciation by sexual selection on polygenic traits. Proc. Natl Acad. Sci. USA 78, 3721–3725 (1981).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    West-Eberhard, M. J. Phenotypic plasticity and the origins of diversity. Annu. Rev. Ecol. Syst. 20, 249–278 (1989).Article 

    Google Scholar 
    Sol, D. & Price, T. D. Brain size and the diversification of body size in birds. Am. Nat. 172, 170–177 (2008).PubMed 
    Article 

    Google Scholar 
    Sayol, F., Lapiedra, O., Ducatez, S. & Sol, D. Larger brains spur species diversification in birds. Evolution 73, 2085–2093 (2019).PubMed 
    Article 

    Google Scholar 
    Abascal, F., Zardoya, R. & Telford, M. J. TranslatorX: multiple alignment of nucleotide sequences guided by amino acid translations. Nucleic Acids Res. 38, W7–W13 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bouckaert, R. et al. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 10, e1003537 (2014).Bouckaert, R., Alvarado-Mora, M. V. & Pinho, J. R., others. Evolutionary rates and HBV: issues of rate estimation with Bayesian molecular methods. Antivir. Ther. 18, 497–503 (2013).PubMed 
    Article 

    Google Scholar 
    Rambaut, A. & Drummond, A. J. Tracer v1. 4. (2007).Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Louca, S. & Louca, M. S. Package ‘castor’. (2017).Rasband, W. S. et al. ImageJ. (1997).Rohlf, F. J. & Slice, D. Extensions of the Procrustes method for the optimal superimposition of landmarks. Syst. Biol. 39, 40–59 (1990).
    Google Scholar 
    Adams, D. C. & Otárola-Castillo, E. geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods Ecol. Evol. 4, 393–399 (2013).Article 

    Google Scholar 
    Adams, D. C., Collyer, M., Kaliontzopoulou, A. & Sherratt, E. Geomorph: software for geometric morphometric analyses. (2016).Chira, A. M. & Thomas, G. H. The impact of rate heterogeneity on inference of phylogenetic models of trait evolution. J. Evol. Biol. 29, 2502–2518 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Rodríguez Casal, A. & Pateiro López, B. Generalizing the convex hull of a sample: the R package alphahull. J. Stat. Softw. 34, 1–28 (2010).Zelditch, M. L., Swiderski, D. L. & Sheets, H. D. Geometric Morphometrics for Biologists: A Primer (Academic Press, 2012).Clavel, J. & Morlon, H. Reliable phylogenetic regressions for multivariate comparative data: illustration with the MANOVA and application to the effect of diet on mandible morphology in Phyllostomid bats. Syst. Biol. 69, 927–943 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Dujardin, J.-P., Le Pont, F. & Baylac, M. Geographical versus interspecific differentiation of sand flies (Diptera: Psychodidae): a landmark data analysis. Bull. Entomol. Res. 93, 87–90 (2003).PubMed 
    Article 

    Google Scholar 
    Sidlauskas, B. Continuous and arrested morphological diversification in sister clades of characiform fishes: a phylomorphospace approach. Evolution 62, 3135–3156 (2008).PubMed 
    Article 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).Article 

    Google Scholar 
    International, B. BirdLife International and handbook of the birds of the world (2017) Bird species distribution maps of the world. (2017).Callaghan, C. T., Nakagawa, S. & Cornwell, W. K. Global abundance estimates for 9,700 bird species. Proc. Natl. Acad. Sci. USA 118, e2023170118 (2021).Hijmans, R. & van Etten, J. raster: raster: geographic data analysis and modeling. R. Packag. version 517, 2 (2014).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).Article 

    Google Scholar 
    Dray, S. & Dufour, A.-B., others. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).Article 

    Google Scholar 
    Ho, L. S. T. et al. Package ‘phylolm’. (2018).Akaike, H. Selected Papers of Hirotugu Akaike (Springer, 1998).Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    Eukaryogenesis and oxygen in Earth history

    Sagan, L. On the origin of mitosing cells. J. Theor. Biol. 14, 255–274 (1967).CAS 
    PubMed 
    Article 

    Google Scholar 
    Taylor, F. J. R. Implications and extensions of the serial endosymbiosis theory of the origin of eukaryotes. Taxon 23, 229–258 (1974).Article 

    Google Scholar 
    Margulis, L. Serial endosymbiotic theory (SET) and composite individuality. Microbiol. Today 31, 172–175 (2004).
    Google Scholar 
    Mereschkowsky, C. Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol. Centralbl. 25, 593–604 (1905).
    Google Scholar 
    Wallin, I. E. On the nature of mitochondria. IX. Demonstration of the bacterial nature of mitochondria. Am. J. Anat. 36, 131–149 (1925).Article 

    Google Scholar 
    Martin, W. F. Physiology, anaerobes, and the origin of mitosing cells 50 years on. J. Theor. Biol. 434, 2–10 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller, M. et al. Biochemistry and evolution of anaerobic energy metabolism in eukaryotes. Microbiol. Mol. Biol. Rev. 76, 444–495 (2012).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Morris, B. E. L., Henneberger, R., Huber, H. & Moissl-Eichinger, C. Microbial syntrophy: interaction for the common good. FEMS Microbiol. Rev. 37, 384–406 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Moreira, D. & Lopez-Garcia, P. Symbiosis between methanogenic archaea and delta-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 16034 (2016).CAS 
    PubMed 
    Article 

    Google Scholar 
    Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    López-García, P. & Moreira, D. The syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. in The Origin and Evolution of Eukaryotes (eds. Keeling, P. J. & Koonin, E. V.) 165–180 (Cold Spring Harbor Perspectives in Biology, 2014).Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Porter, S. M. Insights into eukaryogenesis from the fossil record. Interface Focus 10, 20190105 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Agić, H. in Prebiotic Chemistry and the Origin of Life (eds. Neubeck, A. & McMahon, S.) 255–289 (Springer International, 2021).Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lenton, T. M. & Daines, S. J. Biogeochemical transformations in the history of the ocean. Ann. Rev. Mar. Sci. 9, 31–58 (2017).PubMed 
    Article 

    Google Scholar 
    Lenton, T. M. On the use of models in understanding the rise of complex life. Interface Focus 10, 20200018 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Liu, P. et al. Triple oxygen isotope constraints on atmospheric O2 and biological productivity during the mid-Proterozoic. Proc. Natl Acad. Sci. USA 118, e2105074118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Mentel, M. & Martin, W. Energy metabolism among eukaryotic anaerobes in light of Proterozoic ocean chemistry. Philos. Trans. R. Soc. Lond. B 363, 2717–2729 (2008).Article 

    Google Scholar 
    Zimorski, V., Mentel, M., Tielens, A. G. M. & Martin, W. F. Energy metabolism in anaerobic eukaryotes and Earth’s late oxygenation. Free Radic. Biol. Med. 140, 279–294 (2019).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, W. F., Tielens, A. G. M. & Mentel, M. Mitochondria and Anaerobic Energy Metabolism in Eukaryotes: Biochemistry and Evolution (Walter de Gruyter, 2020).Hall, J. B. The nature of the host in the origin of the eukaryote cell. J. Theor. Biol. 38, 413–418 (1973).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stanier, R. Y. in Organization and Control in Prokaryotic and Eukaryotic Cells (eds. Charles, H. P. & Knight, B. C. J. G.) vol. 20, 1–38 (Cambridge Univ. Press, 1970).De Duve, C. Origin of mitochondria. Science 182, 85 (1973).PubMed 
    Article 

    Google Scholar 
    Andersson, S. G. & Kurland, C. G. Origins of mitochondria and hydrogenosomes. Curr. Opin. Microbiol. 2, 535–541 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297–354 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    de Duve, C. The origin of eukaryotes: a reappraisal. Nat. Rev. Genet. 8, 395–403 (2007).PubMed 
    Article 
    CAS 

    Google Scholar 
    Knoll, A. H. & Nowak, M. A. The timetable of evolution. Sci. Adv. 3, e1603076 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Martin, W. F. & Müller, M. Origin of Mitochondria and Hydrogenosomes (Springer, 2007).Lindmark, D. G. & Müller, M. Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Tritrichomonas foetus, and its role in pyruvate metabolism. J. Biol. Chem. 248, 7724–7728 (1973).CAS 
    PubMed 
    Article 

    Google Scholar 
    Müller, M. in Origin of Mitochondria and Hydrogenosomes (eds. Martin, W. F. & Müller, M.) 1–10 (Springer, 2007).Zillig, W. et al. Did eukaryotes originate by a fusion event? Endocytobiosis Cell Res. 6, 1–25 (1989).
    Google Scholar 
    Embley, T. M. & Martin, W. Eukaryotic evolution, changes and challenges. Nature 440, 623–630 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stairs, C. W., Leger, M. M. & Roger, A. J. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Philos. Trans. R. Soc. Lond. B 370, 20140326 (2015).Article 
    CAS 

    Google Scholar 
    Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Zachar, I. & Szathmáry, E. Breath-giving cooperation: critical review of origin of mitochondria hypotheses. Biol. Direct 12, 19 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2018).Article 
    CAS 

    Google Scholar 
    Stairs, C. W. et al. Microbial eukaryotes have adapted to hypoxia by horizontal acquisitions of a gene involved in rhodoquinone biosynthesis. eLife 7, e34292 (2018).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martin, W. F. Too much eukaryote LGT. Bioessays 39, 1700115 (2017).Article 

    Google Scholar 
    Leger, M. M., Eme, L., Stairs, C. W. & Roger, A. J. Demystifying eukaryote lateral gene transfer (response to Martin 2017 https://doi.org/10.1002/bies.201700115). Bioessays 40, e1700242 (2018).Martin, W. Mosaic bacterial chromosomes: a challenge en route to a tree of genomes. Bioessays 21, 99–104 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Nagies, F. S. P., Brueckner, J., Tria, F. D. K. & Martin, W. F. A spectrum of verticality across genes. PLoS Genet. 16, e1009200 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Guy, L. & Ettema, T. J. G. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011).CAS 
    PubMed 
    Article 

    Google Scholar 
    Williams, T. A., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231–236 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    McInerney, J. O., O’Connell, M. J. & Pisani, D. The hybrid nature of the Eukaryota and a consilient view of life on Earth. Nat. Rev. Microbiol. 12, 449–455 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Williams, T. A., Cox, C. J., Foster, P. G., Szöllősi, G. J. & Embley, T. M. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 4, 138–147 (2020).PubMed 
    Article 

    Google Scholar 
    Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    López-García, P. & Moreira, D. Cultured Asgard archaea shed light on eukaryogenesis. Cell 181, 232–235 (2020).PubMed 
    Article 
    CAS 

    Google Scholar 
    Martin, W. F., Tielens, A. G. M., Mentel, M., Garg, S. G. & Gould, S. B. The physiology of phagocytosis in the context of mitochondrial origin. Microbiol. Mol. Biol. Rev. 81, e00008–17 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berkner, L. V. & Marshall, L. C. History of major atmospheric components. Proc. Natl Acad. Sci. USA 53, 1215–1226 (1965).CAS 
    PubMed Central 
    Article 

    Google Scholar 
    Stolper, D. A., Revsbech, N. P. & Canfield, D. E. Aerobic growth at nanomolar oxygen concentrations. Proc. Natl Acad. Sci. USA 107, 18755–18760 (2010).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Degli Esposti, M., Mentel, M., Martin, W. & Sousa, F. L. Oxygen reductases in alphaproteobacterial genomes: physiological evolution from low to high oxygen environments. Front. Microbiol. 10, 499 (2019).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Berg, J. et al. How low can they go? Aerobic respiration by microorganisms under apparent anoxia. FEMS Microbiol. Rev. https://doi.org/10.1093/femsre/fuac006 (2022).Cloud, P. Cosmos, Earth, and Man: A Short History of the Universe (Yale Univ. Press, 1978).Pichler, H. & Riezman, H. Where sterols are required for endocytosis. Biochim. Biophys. Acta 1666, 51–61 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoshino, Y. & Gaucher, E. A. Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis. Proc. Natl Acad. Sci. USA 118, e2101276118 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Waldbauer, J. R., Newman, D. K. & Summons, R. E. Microaerobic steroid biosynthesis and the molecular fossil record of Archean life. Proc. Natl Acad. Sci. USA 108, 13409–13414 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Valentine, D. L. in Symbiosis: Mechanisms and Model Systems (ed. Seckbach, J.) 147–161 (Springer, 2002).Canfield, D. E. & Thamdrup, B. Towards a consistent classification scheme for geochemical environments, or, why we wish the term ‘suboxic’ would go away. Geobiology 7, 385–392 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    McInerney, M. J., Sieber, J. R. & Gunsalus, R. P. Syntrophy in anaerobic global carbon cycles. Curr. Opin. Biotechnol. 20, 623–632 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Schink, B. Synergistic interactions in the microbial world. Antonie Van Leeuwenhoek 81, 257–261 (2002).CAS 
    PubMed 
    Article 

    Google Scholar 
    Stams, A. J. M. & Plugge, C. M. Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nat. Rev. Microbiol. 7, 568–577 (2009).CAS 
    PubMed 
    Article 

    Google Scholar 
    Embley, T. M., van der Giezen, M., Horner, D. S., Dyal, P. L. & Foster, P. Mitochondria and hydrogenosomes are two forms of the same fundamental organelle. Philos. Trans. R. Soc. Lond. B 358, 191–201 (2003). discussion 201–2.CAS 
    Article 

    Google Scholar 
    Donoghue, P. C. J. & Purnell, M. A. Distinguishing heat from light in debate over controversial fossils. Bioessays 31, 178–189 (2009).PubMed 
    Article 

    Google Scholar 
    Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455, 1101–1104 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    French, K. L. et al. Reappraisal of hydrocarbon biomarkers in Archean rocks. Proc. Natl Acad. Sci. USA 112, 5915–5920 (2015).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Brocks, J. J. et al. The rise of algae in Cryogenian oceans and the emergence of animals. Nature 548, 578–581 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hoshino, Y. et al. Cryogenian evolution of stigmasteroid biosynthesis. Sci. Adv. 3, e1700887 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Bengtson, S. et al. Fungus-like mycelial fossils in 2.4-billion-year-old vesicular basalt. Nat. Ecol. Evol. 1, 141 (2017).PubMed 
    Article 

    Google Scholar 
    Butterfield, N. J. Probable Proterozoic fungi. Paleobiology 31, 165–182 (2005).Article 

    Google Scholar 
    Butterfield, N. J. Early evolution of the Eukaryota. Palaeontology 58, 5–17 (2015).Article 

    Google Scholar 
    Berbee, M. L. et al. Genomic and fossil windows into the secret lives of the most ancient fungi. Nat. Rev. Microbiol. 18, 717–730 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lamb, D. M., Awramik, S. M., Chapman, D. J. & Zhu, S. Evidence for eukaryotic diversification in the 1800 million-year-old Changzhougou Formation, North China. Precambrian Res. 173, 93–104 (2009).CAS 
    Article 

    Google Scholar 
    Javaux, E. J., Knoll, A. H. & Walter, M. R. Morphological and ecological complexity in early eukaryotic ecosystems. Nature 412, 66–69 (2001).CAS 
    PubMed 
    Article 

    Google Scholar 
    Butterfield, N. J. Modes of pre-Ediacaran multicellularity. Precambrian Res. 173, 201–211 (2009).CAS 
    Article 

    Google Scholar 
    Peng, Y., Bao, H. & Yuan, X. New morphological observations for Paleoproterozoic acritarchs from the Chuanlinggou Formation, North China. Precambrian Res. 168, 223–232 (2009).CAS 
    Article 

    Google Scholar 
    Javaux, E. J. in Origins and Evolution of Life: An Astrobiological Perspective (eds Gargaud, M., López-García, P. & Martin, H.) 414–449 (Cambridge Univ. Press, 2011).Stairs, C. W. & Ettema, T. J. G. The archaeal roots of the eukaryotic dynamic actin cytoskeleton. Curr. Biol. 30, R521–R526 (2020).CAS 
    PubMed 
    Article 

    Google Scholar 
    Carlisle, E. M., Jobbins, M., Pankhania, V., Cunningham, J. A. & Donoghue, P. C. J. Experimental taphonomy of organelles and the fossil record of early eukaryote evolution. Sci. Adv. 7, eabe9487 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Han, T. M. & Runnegar, B. Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. Science 257, 232–235 (1992).CAS 
    PubMed 
    Article 

    Google Scholar 
    Javaux, E. J. & Lepot, K. The Paleoproterozoic fossil record: implications for the evolution of the biosphere during Earth’s middle-age. Earth-Sci. Rev. 176, 68–86 (2018).CAS 
    Article 

    Google Scholar 
    Agić, H., Moczydłowska, M. & Yin, L. Diversity of organic-walled microfossils from the early Mesoproterozoic Ruyang Group, North China Craton – A window into the early eukaryote evolution. Precambrian Res. 297, 101–130 (2017).Article 
    CAS 

    Google Scholar 
    Pang, K. et al. The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils. Geobiology 11, 499–510 (2013).CAS 
    PubMed 

    Google Scholar 
    Bengtson, S., Belivanova, V., Rasmussen, B. & Whitehouse, M. The controversial ‘Cambrian’ fossils of the Vindhyan are real but more than a billion years older. Proc. Natl Acad. Sci. USA 106, 7729–7734 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bengtson, S., Sallstedt, T., Belivanova, V. & Whitehouse, M. Three-dimensional preservation of cellular and subcellular structures suggests 1.6 billion-year-old crown-group red algae. PLoS Biol. 15, e2000735 (2017).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Tang, Q., Pang, K., Yuan, X. & Xiao, S. A one-billion-year-old multicellular chlorophyte. Nat. Ecol. Evol. 4, 543–549 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Bykova, N. et al. Seaweeds through time: morphological and ecological analysis of Proterozoic and early Paleozoic benthic macroalgae. Precambrian Res. 350, 105875 (2020).CAS 
    Article 

    Google Scholar 
    Maloney, K. M. et al. New multicellular marine macroalgae from the early Tonian of northwestern Canada. Geology 49, 743–747 (2021).CAS 
    Article 

    Google Scholar 
    Tang, Q. et al. The Proterozoic macrofossil Tawuia as a coenocytic eukaryote and a possible macroalga. Palaeogeogr. Palaeoclimatol. Palaeoecol. 576, 110485 (2021).Article 

    Google Scholar 
    Sforna, M. C. et al. Intracellular bound chlorophyll residues identify 1 Gyr-old fossils as eukaryotic algae. Nat. Commun. 13, 146 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Strother, P. K. et al. A possible billion-year-old holozoan with differentiated multicellularity. Curr. Biol. 31, 2658–2665.e2 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Loron, C. C. et al. Early fungi from the Proterozoic era in Arctic Canada. Nature 570, 232–235 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Bonneville, S. et al. Molecular identification of fungi microfossils in a Neoproterozoic shale rock. Sci. Adv. 6, eaax7599 (2020).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gibson, T. M. et al. Precise age of Bangiomorpha pubescens dates the origin of eukaryotic photosynthesis. Geology 46, 135–138 (2018).CAS 
    Article 

    Google Scholar 
    Butterfield, N. J. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26, 386–404 (2000).Article 

    Google Scholar 
    Husson, J. M. & Peters, S. E. Nature of the sedimentary rock record and its implications for Earth system evolution. Emerg. Top. Life Sci. 2, 125–136 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Donoghue, P. C. J. & Yang, Z. The evolution of methods for establishing evolutionary timescales. Philos. Trans. R. Soc. Lond. B 371, 20160020 (2016).Article 

    Google Scholar 
    Berney, C. & Pawlowski, J. A molecular time-scale for eukaryote evolution recalibrated with the continuous microfossil record. Proc. Biol. Sci. 273, 1867–1872 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chernikova, D., Motamedi, S., Csürös, M., Koonin, E. V. & Rogozin, I. B. A late origin of the extant eukaryotic diversity: divergence time estimates using rare genomic changes. Biol. Direct 6, 26 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Parfrey, L. W., Lahr, D. J. G., Knoll, A. H. & Katz, L. A. Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc. Natl Acad. Sci. USA 108, 13624–13629 (2011).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Shih, P. M. & Matzke, N. J. Primary endosymbiosis events date to the later Proterozoic with cross-calibrated phylogenetic dating of duplicated ATPase proteins. Proc. Natl Acad. Sci. USA 110, 12355–12360 (2013).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Canfield, D. E. The early history of atmospheric oxygen: homage to Robert M. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).CAS 
    Article 

    Google Scholar 
    Kump, L. R. The rise of atmospheric oxygen. Nature 451, 277–278 (2008).CAS 
    PubMed 
    Article 

    Google Scholar 
    Holland, H. D. When did the Earth’s atmosphere become oxic? A reply. Geochem. N. 100, 20–22 (1999).
    Google Scholar 
    Holland, H. D. Volcanic gases, black smokers, and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).CAS 
    Article 

    Google Scholar 
    Farquhar, J., Bao, H. & Thiemens, M. Atmospheric influence of Earth’s earliest sulfur cycle. Science 289, 756–759 (2000).CAS 
    PubMed 
    Article 

    Google Scholar 
    Poulton, S. W. et al. A 200-million-year delay in permanent atmospheric oxygenation. Nature 592, 232–236 (2021).CAS 
    PubMed 
    Article 

    Google Scholar 
    Hodgskiss, M. S. W. & Sperling, E. A. A prolonged, two-step oxygenation of Earth’s early atmosphere: support from confidence intervals. Geology https://doi.org/10.1130/g49385.1 (2021).Article 

    Google Scholar 
    Fischer, W. W., Hemp, J. & Johnson, J. E. Evolution of oxygenic photosynthesis. Annu. Rev. Earth Planet. Sci. 44, 647–683 (2016).CAS 
    Article 

    Google Scholar 
    Sánchez-Baracaldo, P. & Cardona, T. On the origin of oxygenic photosynthesis and Cyanobacteria. N. Phytol. 225, 1440–1446 (2020).Article 

    Google Scholar 
    Fournier, G. P. et al. The Archean origin of oxygenic photosynthesis and extant cyanobacterial lineages. Proc. Biol. Sci. 288, 20210675 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardona, T., Sánchez-Baracaldo, P., Rutherford, A. W. & Larkum, A. W. Early Archean origin of Photosystem II. Geobiology 17, 127–150 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Eigenbrode, J. L. & Freeman, K. H. Late Archean rise of aerobic microbial ecosystems. Proc. Natl Acad. Sci. USA 103, 15759–15764 (2006).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Daines, S. J. & Lenton, T. M. The effect of widespread early aerobic marine ecosystems on methane cycling and the Great Oxidation. Earth Planet. Sci. Lett. 434, 42–51 (2016).CAS 
    Article 

    Google Scholar 
    Crowe, S. A. et al. Atmospheric oxygenation three billion years ago. Nature 501, 535–538 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Planavsky, N. J. et al. Evidence for oxygenic photosynthesis half a billion years before the Great Oxidation Event. Nat. Geosci. 7, 283–286 (2014).CAS 
    Article 

    Google Scholar 
    Daye, M. et al. Light-driven anaerobic microbial oxidation of manganese. Nature 576, 311–314 (2019).PubMed 
    Article 
    CAS 

    Google Scholar 
    Slotznick, S. P. et al. Reexamination of 2.5-Ga ‘whiff’ of oxygen interval points to anoxic ocean before GOE. Sci. Adv. 8, eabj7190 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Soo, R. M., Hemp, J., Parks, D. H., Fischer, W. W. & Hugenholtz, P. On the origins of oxygenic photosynthesis and aerobic respiration in Cyanobacteria. Science 355, 1436–1440 (2017).CAS 
    PubMed 
    Article 

    Google Scholar 
    Jabłońska, J. & Tawfik, D. S. The evolution of oxygen-utilizing enzymes suggests early biosphere oxygenation. Nat. Ecol. Evol. 5, 442–448 (2021).PubMed 
    Article 

    Google Scholar 
    Mentel, M., Röttger, M., Leys, S., Tielens, A. G. M. & Martin, W. F. Of early animals, anaerobic mitochondria, and a modern sponge. Bioessays 36, 924–932 (2014).PubMed 
    Article 

    Google Scholar 
    Lenton, T. M. et al. Earliest land plants created modern levels of atmospheric oxygen. Proc. Natl Acad. Sci. USA 113, 9704–9709 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Krause, A. J. et al. Stepwise oxygenation of the Paleozoic atmosphere. Nat. Commun. 9, 4081 (2018).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Daines, S. J., Mills, B. J. W. & Lenton, T. M. Atmospheric oxygen regulation at low Proterozoic levels by incomplete oxidative weathering of sedimentary organic carbon. Nat. Commun. 8, 14379 (2017).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Canfield, D. E. A new model for Proterozoic ocean chemistry. Nature 396, 450–453 (1998).CAS 
    Article 

    Google Scholar 
    Sperling, E. A. et al. Statistical analysis of iron geochemical data suggests limited late Proterozoic oxygenation. Nature 523, 451–454 (2015).CAS 
    PubMed 
    Article 

    Google Scholar 
    Planavsky, N. J. et al. Low mid-Proterozoic atmospheric oxygen levels and the delayed rise of animals. Science 346, 635–638 (2014).CAS 
    PubMed 
    Article 

    Google Scholar 
    Cole, D. B. et al. A shale-hosted Cr isotope record of low atmospheric oxygen during the Proterozoic. Geology 44, 555–558 (2016).CAS 
    Article 

    Google Scholar 
    Wang, C. et al. Strong evidence for a weakly oxygenated ocean-atmosphere system during the Proterozoic. Proc. Natl Acad. Sci. USA 119, e2116101119 (2022).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Reinhard, C. T., Planavsky, N. J., Olson, S. L., Lyons, T. W. & Erwin, D. H. Earth’s oxygen cycle and the evolution of animal life. Proc. Natl Acad. Sci. USA 113, 8933–8938 (2016).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Poulton, S. W. & Canfield, D. E. Ferruginous conditions: a dominant feature of the ocean through Earth’s history. Elements 7, 107–112 (2011).CAS 
    Article 

    Google Scholar 
    Gilleaudeau, G. J. et al. Uranium isotope evidence for limited euxinia in mid-Proterozoic oceans. Earth Planet. Sci. Lett. 521, 150–157 (2019).CAS 
    Article 

    Google Scholar 
    Cole, D. B. et al. On the co-evolution of surface oxygen levels and animals. Geobiology 319, 55 (2020).
    Google Scholar 
    Friese, A. et al. Organic matter mineralization in modern and ancient ferruginous sediments. Nat. Commun. 12, 2216 (2021).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Sperling, E. A., Knoll, A. H. & Girguis, P. R. The ecological physiology of Earth’s second oxygen revolution. Annu. Rev. Ecol. Evol. Syst. 46, 215–235 (2015).Article 

    Google Scholar 
    Knoll, A. H. Paleobiological perspectives on early eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016121 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cohen, P. A. & Kodner, R. B. The earliest history of eukaryotic life: uncovering an evolutionary story through the integration of biological and geological data. Trends Ecol. Evol. https://doi.org/10.1016/j.tree.2021.11.005 (2021).Szathmáry, E. & Smith, J. M. The major evolutionary transitions. Nature 374, 227–232 (1995).PubMed 
    Article 

    Google Scholar 
    Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).CAS 
    PubMed 
    Article 

    Google Scholar 
    Theissen, U., Hoffmeister, M., Grieshaber, M. & Martin, W. Single eubacterial origin of eukaryotic sulfide: quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times. Mol. Biol. Evol. 20, 1564–1574 (2003).CAS 
    PubMed 
    Article 

    Google Scholar 
    Martin, W. et al. Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUBMB Life 55, 193–204 (2003).Gould, S. B. et al. Adaptation to life on land at high O2 via transition from ferredoxin-to NADH-dependent redox balance. Proc. Biol. Sci. 286, 20191491 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mills, D. B. The origin of phagocytosis in Earth history. Interface Focus 10, 20200019 (2020).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Nguyen, K. et al. Absence of biomarker evidence for early eukaryotic life from the Mesoproterozoic Roper Group: searching across a marine redox gradient in mid-Proterozoic habitability. Geobiology 17, 247–260 (2019).CAS 
    PubMed 
    Article 

    Google Scholar 
    Lyons, T. W., Diamond, C. W., Planavsky, N. J., Reinhard, C. T. & Li, C. Oxygenation, life, and the planetary system during Earth’s middle history: an overview. Astrobiology 21, 906–923 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gray, M. W. & Doolittle, W. F. Has the endosymbiont hypothesis been proven? Microbiol. Rev. 46, 1–42 (1982).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. Science 283, 1476–1481 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J. & Woese, C. R. Mitochondrial origins. Proc. Natl Acad. Sci. USA 82, 4443–4447 (1985).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled alphaproteobacteria. Nature 557, 101–105 (2018).CAS 
    PubMed 
    Article 

    Google Scholar 
    Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evol. 6, 253–262 (2022).Fan, L. et al. Phylogenetic analyses with systematic taxon sampling show that mitochondria branch within Alphaproteobacteria. Nat. Ecol. Evol. 4, 1213–1219 (2020).PubMed 
    Article 

    Google Scholar 
    Richards, T. A. & van der Giezen, M. Evolution of the Isd11–IscS complex reveals a single α-proteobacterial endosymbiosis for all eukaryotes. Mol. Biol. Evol. 23, 1341–1344 (2006).CAS 
    PubMed 
    Article 

    Google Scholar 
    Sapp, J. in Origin of Mitochondria and Hydrogenosomes (eds. Martin, W. F. & Müller, M.) 57–83 (Springer, 2007).Poole, A. M. & Gribaldo, S. Eukaryotic origins: how and when was the mitochondrion acquired? Cold Spring Harb. Perspect. Biol. 6, a015990 (2014).PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 
    Cavalier-Smith, T. in Endocytobiology II (eds Schenk, H. E. A. & Schwemmler, W. S.) 1027–1034 (de Gruyter, 1983).Martijn, J. & Ettema, T. J. G. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans. 41, 451–457 (2013).CAS 
    PubMed 
    Article 

    Google Scholar 
    Canfield, D. E. Oxygen: a Four Billion Year History (Princeton Univ. Press, 2014).Holland, H. D. in Petrologic Studies: a Volume in Honor of A. F. Buddington (eds Engel, A. E. J., James, H. L. & Leonard, B. F.) 447–477 (Geological Society of America, 1962).Cloud, P. E. Jr. Significance of the Gunflint (Precambrian) microflora: photosynthetic oxygen may have had important local effects before becoming a major atmospheric gas. Science 148, 27–35 (1965).PubMed 
    Article 

    Google Scholar 
    Rivera, M. C. & Lake, J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431, 152–155 (2004).CAS 
    PubMed 
    Article 

    Google Scholar 
    Pisani, D., Cotton, J. A. & McInerney, J. O. Supertrees disentangle the chimerical origin of eukaryotic genomes. Mol. Biol. Evol. 24, 1752–1760 (2007).CAS 
    PubMed 
    Article 

    Google Scholar 
    Esser, C., Martin, W. & Dagan, T. The origin of mitochondria in light of a fluid prokaryotic chromosome model. Biol. Lett. 3, 180–184 (2007).CAS 
    PubMed 
    Article 

    Google Scholar  More

  • in

    eDNA-based detection of the invasive crayfish Pacifastacus leniusculus in streams with a LAMP assay using dependent replicates to gain higher sensitivity

    Notomi, T. et al. Loop-mediated isothermal amplification of DNA. Nucleic Acids Res. https://doi.org/10.1093/nar/28.12.e63 (2000).Article 

    Google Scholar 
    Nagamine, K., Hase, T. & Notomi, T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mol. Cell. Probes 16, 223–229. https://doi.org/10.1006/mcpr.2002.0415 (2002).CAS 
    Article 

    Google Scholar 
    Nagamine, K., Watanabe, K., Ohtsuka, K., Hase, T. & Notomi, T. Loop-mediated isothermal amplification reaction using a nondenatured template. Clin. Chem. 47, 1742–1743 (2001).CAS 
    Article 

    Google Scholar 
    Thai, H. T. C. et al. Development and evaluation of a novel loop-mediated isothermal amplification method for rapid detection of severe acute respiratory syndrome coronavirus. J. Clin. Microbiol. 42, 1956–1961. https://doi.org/10.1128/jcm.42.5.1956-1961.2004 (2004).CAS 
    Article 

    Google Scholar 
    Geojith, G., Dhanasekaran, S., Chandran, S. P. & Kenneth, J. Efficacy of loop mediated isothermal amplification (LAMP) assay for the laboratory identification of Mycobacterium tuberculosis isolates in a resource limited setting. J. Microbiol. Methods 84, 71–73. https://doi.org/10.1016/j.mimet.2010.10.015 (2011).CAS 
    Article 

    Google Scholar 
    Saengsawang, N. et al. Development of a fluorescent distance-based paper device using loop-mediated isothermal amplification to detect Escherichia coli in urine. Analyst 145, 8077–8086. https://doi.org/10.1039/d0an01306d (2020).CAS 
    Article 

    Google Scholar 
    Yoshikawa, R. et al. Development and evaluation of a rapid and simple diagnostic assay for COVID-19 based on loop-mediated isothermal amplification. Plos Neglect. Trop. Dis. 14, 14. https://doi.org/10.1371/journal.pntd.000885 (2021).Article 

    Google Scholar 
    Kim, J. et al. Development and evaluation of a multiplex loop-mediated isothermal amplification (LAMP) assay for differentiation of Mycobacterium tuberculosis and non-tuberculosis mycobacterium in clinical samples. PLoS ONE 16, 11. https://doi.org/10.1371/journal.pone.0244753 (2021).CAS 
    Article 

    Google Scholar 
    Hongjaisee, S. et al. Rapid visual detection of hepatitis C virus using a reverse transcription loop-mediated isothermal ampli fi cation assay. Int. J. Infect. Dis. 102, 440–445. https://doi.org/10.1016/j.ijid.2020.10.082 (2021).CAS 
    Article 

    Google Scholar 
    Niessen, L. & Vogel, R. F. Detection of Fusarium graminearum DNA using a loop-mediated isothermal amplification (LAMP) assay. Int. J. Food Microbiol. 140, 183–191. https://doi.org/10.1016/j.ijfoodmicro.2010.03.036 (2010).CAS 
    Article 

    Google Scholar 
    Ren, W. C., Liu, N. & Li, B. H. Development and application of a LAMP method for rapid detection of apple blotch caused by Marssonina coronaria. Crop Prot. 141, 6. https://doi.org/10.1016/j.cropro.2020.105452 (2021).CAS 
    Article 

    Google Scholar 
    Kong, G. H. et al. Detection of Peronophythora litchii on lychee by loop-mediated isothermal amplification assay. Crop Prot. 139, 6. https://doi.org/10.1016/j.cropro.2020.105370 (2021).CAS 
    Article 

    Google Scholar 
    Zhou, Q. J. et al. Simultaneous detection of multiple bacterial and viral aquatic pathogens using a fluorogenic loop-mediated isothermal amplification-based dual-sample microfluidic chip. J. Fish Dis. https://doi.org/10.1111/jfd.13325 (2020).Article 

    Google Scholar 
    Huang, H. L. et al. Molecular method for rapid detection of the red tide dinoflagellate Karenia mikimotoi in the coastal region of Xiangshan Bay, China. J. Microbiol. Methods 168, 7. https://doi.org/10.1016/j.mimet.2019.105801 (2020).CAS 
    Article 

    Google Scholar 
    Sridapan, T. et al. Rapid detection of Clostridium perfringens in food by loop-mediated isothermal amplification combined with a lateral flow biosensor. PLoS ONE 16, 14. https://doi.org/10.1371/journal.pone.0245144 (2021).CAS 
    Article 

    Google Scholar 
    Xiong, X. et al. Using real time fluorescence loop-mediated isothermal amplification for rapid species authentication of Atlantic salmon (Salmo salar). J. Food Compos. Anal. 95, 7. https://doi.org/10.1016/j.jfca.2020.103659 (2021).CAS 
    Article 

    Google Scholar 
    Huang, C. G., Hsu, J. C., Haymer, D. S., Lin, G. C. & Wu, W. J. Rapid identification of the Mediterranean fruit fly (Diptera: Tephritidae) by loop-mediated isothermal amplification. J. Econ. Entomol. 102, 1239–1246 (2009).CAS 
    Article 

    Google Scholar 
    Ide, T., Kanzaki, N., Ohmura, W. & Okabe, K. Molecular identification of an invasive wood-boring insect Lyctus brunneus (Coleoptera: Bostrichidae: Lyctinae) using frass by loop-mediated isothermal amplification and nested PCR assays. J. Econ. Entomol. 109, 1410–1414. https://doi.org/10.1093/jee/tow030 (2016).CAS 
    Article 

    Google Scholar 
    Stainton, K., Hall, J., Budge, G. E., Boonham, N. & Hodgetts, J. Rapid molecular methods for in-field and laboratory identification of the yellow-legged Asian hornet (Vespa velutina nigrithorax). J. Appl. Entomol. 142, 610–616. https://doi.org/10.1111/jen.12506 (2018).CAS 
    Article 

    Google Scholar 
    Agarwal, A., Cunningham, J. P., Valenzuela, I. & Blacket, M. J. A diagnostic LAMP assay for the destructive grapevine insect pest, phylloxera (Daktulosphaira vitifoliae). Sci. Rep. 10, 10. https://doi.org/10.1038/s41598-020-77928-9 (2020).CAS 
    Article 

    Google Scholar 
    Rizzo, D. et al. Molecular identification of Anoplophora glabripennis (Coleoptera: Cerambycidae) from frass by loop-mediated isothermal amplification. J. Econ. Entomol. 113, 2911–2919. https://doi.org/10.1093/jee/toaa206 (2020).CAS 
    Article 

    Google Scholar 
    Hsieh, C. H., Wang, H. Y., Chen, Y. F. & Ko, C. C. Loop-mediated isothermal amplification for rapid identification of biotypes B and Q of the globally invasive pest Bemisia tabaci, and studying population dynamics. Pest Manag. Sci. 68, 1206–1213. https://doi.org/10.1002/ps.3298 (2012).CAS 
    Article 

    Google Scholar 
    Williams, M. R. et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE 12, 18. https://doi.org/10.1371/journal.pone.0186462 (2017).CAS 
    Article 

    Google Scholar 
    Ponting, S., Tomkies, V. & Stainton, K. Rapid identification of the invasive small hive beetle (Aethina tumida) using LAMP. Pest Manag. Sci. 77, 1476–1481. https://doi.org/10.1002/ps.6168 (2020).CAS 
    Article 

    Google Scholar 
    Davis, C. N. et al. Rapid detection of Galba truncatula in water sources on pasture-land using loop-mediated isothermal amplification for control of trematode infections. Parasites Vectors 13, 11. https://doi.org/10.1186/s13071-020-04371-0 (2020).CAS 
    Article 

    Google Scholar 
    Carvalho, J. et al. Faster monitoring of the invasive alien species (IAS) Dreissena polymorpha in river basins through isothermal amplification. Sci. Rep. 11, 10. https://doi.org/10.1038/s41598-021-89574-w (2021).CAS 
    Article 

    Google Scholar 
    Treguier, A. et al. Environmental DNA surveillance for invertebrate species: Advantages and technical limitations to detect invasive crayfish Procambarus clarkii in freshwater ponds. J. Appl. Ecol. 51, 871–879. https://doi.org/10.1111/1365-2664.12262 (2014).CAS 
    Article 

    Google Scholar 
    Cai, W. et al. Using eDNA to detect the distribution and density of invasive crayfish in the Honghe-Hani rice terrace World Heritage site. PLoS ONE https://doi.org/10.1371/journal.pone.0177724 (2017).Article 

    Google Scholar 
    Wilcox, T. M. et al. Understanding environmental DNA detection probabilities: A case study using a stream-dwelling char Salvelinus fontinalis. Biol. Conserv. 194, 209–216. https://doi.org/10.1016/j.biocon.2015.12.023 (2016).Article 

    Google Scholar 
    Hunter, M. E., Ferrante, J. A., Meigs-Friend, G. & Ulmer, A. Improving eDNA yield and inhibitor reduction through increased water volumes and multi-filter isolation techniques. Sci. Rep. https://doi.org/10.1038/s41598-019-40977-w (2019).Article 

    Google Scholar 
    Twardochleb, L. A., Olden, J. D. & Larson, E. R. A global meta-analysis of the ecological impacts of nonnative crayfish. Freshw. Sci. 32, 1367–1382. https://doi.org/10.1899/12-203.1 (2013).Article 

    Google Scholar 
    Andruszkiewicz, A. E., Zhang, W. G. & Govindarajan, A. F. Environmental DNA shedding and decay rates from diverse animal forms and thermal regimes. Environ. DNA 3, 492–514. https://doi.org/10.1002/edn3.141 (2021).Article 

    Google Scholar 
    Stedtfeld, R. D. et al. Static self-directed sample dispensing into a series of reaction wells on a microfluidic card for parallel genetic detection of microbial pathogens. Biomed. Microdev. 17, 89. https://doi.org/10.1007/s10544-015-9994-1 (2015).CAS 
    Article 

    Google Scholar 
    Koloren, Z., Sotiriadou, I. & Karanis, P. Investigations and comparative detection of Cryptosporidium species by microscopy, nested PCR and LAMP in water supplies of Ordu, Middle Black Sea, Turkey. Ann. Trop. Med. Parasitol. 105, 607–615. https://doi.org/10.1179/2047773211y.0000000011 (2011).CAS 
    Article 

    Google Scholar 
    Sabike, I. I. et al. Use of direct LAMP screening of broiler fecal samples for Campylobacter jejuni and Campylobacter coli in the positive flock identification strategy. Front. Microbiol. 7, 1582. https://doi.org/10.3389/fmicb.2016.01582 (2016).Article 

    Google Scholar 
    Gahlawat, S. K., Ellis, A. E. & Collet, B. A sensitive loop-mediated isothermal amplification (LAMP) method for detection of Renibacterium salmoninarum, causative agent of bacterial kidney disease in salmonids. J. Fish Dis. 32, 491–497. https://doi.org/10.1111/j.1365-2761.2009.01005.x (2009).CAS 
    Article 

    Google Scholar 
    Levy, J. et al. Methods for rapid and effective PCR-based detection of ‘Candidatus Liberibacter solanacearum’ from the insect vector Bactericera cockerelli: Streamlining the DNA extraction/purification process. J. Econ. Entomol. 106, 1440–1445. https://doi.org/10.1603/ec12419 (2013).CAS 
    Article 

    Google Scholar 
    Kaneko, H., Kawana, T., Fukushima, E. & Suzutani, T. Tolerance of loop-mediated isothermal amplification to a culture medium and biological substances. J. Biochem. Biophys. Methods 70, 499–501. https://doi.org/10.1016/j.jbbm.2006.08.008 (2007).CAS 
    Article 

    Google Scholar 
    Curtis, A. N., Tiemann, J. S., Douglass, S. A., Davis, M. A. & Larson, E. R. High stream flows dilute environmental DNA (eDNA) concentrations and reduce detectability. Divers. Distrib. 27, 1918–1931. https://doi.org/10.1111/ddi.13196 (2020).Article 

    Google Scholar 
    Mauvisseau, Q. et al. Environmental DNA as an efficient tool for detecting invasive crayfishes in freshwater ponds. Hydrobiologia 805, 163–175. https://doi.org/10.1007/s10750-017-3288-y (2018).CAS 
    Article 

    Google Scholar 
    RStudioTeam. Boston (ed. PBC) (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Book 

    Google Scholar  More