More stories

  • in

    Abiotic selection of microbial genome size in the global ocean

    Non-prokaryotic metagenomic sequences confound average genome size estimationsIn this work, we employed MicrobeCensus22 for de novo estimation of the average genome size (AGS) of microorganisms captured in shotgun metagenome sequences (Fig. 1a; Supplementary Data 1). Briefly, MicrobeCensus optimally aligns metagenomic reads to a set of 30 conserved single-copy gene (CSCG) families found in prokaryotes 22. Based on these mappings, the relative abundance of each CSCG is then computed and used to estimate AGS based on the proportionality principle—that is, the AGS of the community is inversely proportional to the relative abundance of each marker genes22. Finally, a weighted average AGS is calculated that excludes outliers to obtain a robust AGS estimate for a given metagenomic sample22.Fig. 1: Eukaryotic and viral metagenomic reads bias AGS estimates in marine microbial metagenomes.a Schematic workflow of procedures used for estimating AGS in metagenomic samples. AGS is estimated based directly on preprocessed high-quality metagenomic reads (AGS1) and after three iterative steps to remove potential eukaryotic reads (AGS2) and viral reads detected based on the RefSeq viral genome database (AGS3) or de novo (AGS4). See the “Methods” section for more details. b Relationship between depth and proportion of total putative eukaryotic and viral sequences in marine metagenomic collections. The blue line indicates the fitted one-tailed Spearman correlation (r), with the corresponding 95% confidence intervals for the curve indicated by grey bands. The density distribution of the estimated proportion of contaminants is shown in green, with the corresponding median values (µ) highlighted. Values in parenthesis denote the filter size range of sampled metagenomes. c The fraction of ‘contaminating’ reads is highest in the epipelagic ocean relative to other ocean depth layers. EPI Epipelagic (~3–200 m), MES Mesopelagic (200–1000 m), BAT Bathypelagic (1000–4000 m). Values in parenthesis indicate the number of metagenomes. Only the results from the Malaspina Vertical Profiles (MProfile) metagenomes are shown as they cover greater depths of the global ocean (mean 1114 m; Supplementary Data 1). d Eukaryotic and viral metagenomic sequences significantly increase AGS estimates for prokaryotic plankton in marine metagenomes. Values in parenthesis show number of metagenomes for AGS1 and AGS2. e AGS estimates decreased in most metagenomic samples (85%; n = 220) after decontamination compared to predictions directly from preprocessed metagenomes by 1–19% (n = 39). Boxplots (c–e) show the median as middle horizontal (c, d) or vertical (e) lines and interquartile ranges as boxes (whiskers extend no further than 1.5 times the interquartile ranges). Data are shown as circular symbols, while mean values are shown as white colored diamonds. Values at the top (c, d) indicate the adjusted significant P-values of the unpaired (c) and paired (d) two-sided Wilcoxon test with Benjamini-Hochberg correction. Source data are provided as a Source Data file.Full size imageOf note, the AGS of complete prokaryotic genomes increases with the cumulative number of associated phages and other mobile genetic elements37. Similarly, AGS estimates derived from metagenomic sequences of uncultured “free-living” microbes (captured in 0.1–3 µm-size filters) may also be affected by putative phage and eukaryotic microbiomes sequenced concurrently in fractionated seawater samples (see,8,22). To evaluate this possibility in our AGS predictions, we compared AGS estimates obtained directly from quality-controlled metagenomes with estimates from the same metagenomes iteratively subjected to three (de novo) decontamination procedures to filter out potential eukaryotic and viral sequence reads (Fig. 1a; see details in the “Methods” section). Overall, putatively ‘contaminating’ viral and eukaryotic reads accounted for 1% to 20% (average 7.5%) of the high-quality trimmed sequences in the four microbial metagenome collections (Fig. 1b; Supplementary Data 1). As expected, the average proportion of contaminating sequences in metagenomes from large (0.2–3.0 µm) and small (0.1–1.2 µm) size fraction filters were the highest (~11%) and lowest (~5%), respectively (Fig. 1b). In addition, the proportion of contaminating reads was significantly dependent on the depth layer of the ocean (Kruskal-Wallis χ2 = 32.40, df = 2, p  200–1000 m), and bathypelagic (BAT,  > 1000–4000 m). c AGS estimates in the “free-living” (0.2–0.8 µm) and particle-associated (0.8–20 µm) bathypelagic microbiome sampled latitudinally at 4000 m depth during the Malaspina expedition. Boxplots show the median as middle horizontal line and interquartile ranges as boxes (whiskers extend no further than 1.5 times the interquartile ranges). Data are shown as circular symbols, while mean values are shown as white colored diamonds. Values at the top indicate the adjusted significant P-values of the unpaired (b) and paired (c) two-sided Wilcoxon test with Benjamini-Hochberg correction. The number of metagenomes analyzed is indicated in parentheses in all three panels. Source data are provided as a Source Data file.Full size imageThe median AGS estimate range of 2.2 to ~3.0 Mbp in the sampled free-living (0.1–3 µm in size) marine prokaryotic communities (n = 209 metagenomes) is consistent with other large-scale metagenome sequence-based estimates and the sizes of metagenome-assembled prokaryotic genomes (MAGs; in 0.22–3 µm filters) from the photic ocean (surface to mesopelagic) based on the Tara Oceans Expedition (1.5–2.3 Mbp)15,16. Overall, our metagenome sequence-based AGS estimates support the unimodal distribution of prokaryotic genome sizes recently demonstrated in environmental genomes in several biomes38 and on cultured isolates (including marine bacterioplankton)14,39. However, estimates from isolates are likely biased since current cultivation approaches tend to favor copiotrophs (see, ref. 3).We next tested whether the derived AGS estimates depended on microbial cell size by analyzing 25 paired bathypelagic metagenomes (MDeep; Supplementary Data 1) sampled during the global Malaspina Expedition40 in which both prokaryotic life strategies, free-living (0.2–0.8 µm size) and particle-associated (0.8–20 µm size), were sampled simultaneously35. The analyzed metagenomes (MDeep) were from the Atlantic, Pacific, and Indian Ocean provinces and cover a spatial distance of 9437 km with an average depth (± SD) of 3688 ± 526 m at the tropical and subtropical latitudes (–33.55°N to 32.0788°N). These microbial metagenomes were also screened for contaminating eukaryotic and viral sequences as indicated in Fig. 1a (see details in the “Methods” section and Supplementary Data 1). The genomes of bathypelagic prokaryotes associated with marine particles (5.6 ± 0.97 Mbp) were twice as large (paired two-sided Wilcoxon test, p  3 µm) prokaryotes, respectively (Supplementary Data 3). These estimates are also consistent with those of MAGs reconstructed from the same metagenomes in the Challenger Deep (Mariana Trench)43. Overall, this reinforces the patterns of larger AGS in particle-associated compared to free-living bathypelagic prokaryotes, and larger microbial genomes in the deep ocean compared to the upper ocean.AGS patterns are not geographically constrainedExamination of the geographic patterns of AGS estimates showed that AGS distribution was independent of geographic distance in both the regional (Red Sea, Mantel statistic r = 0.01824, p = 0.2971) and global (MProfile, r = –0.01413, p = 0.7924) ocean metagenomes. Furthermore, AGS estimates in the vertically profiled global Malaspina metagenomes (MProfile, n = 81) were significantly independent of the Longhurst biogeochemical province sampled (n = 9; Kruskal-Wallis χ2 = 1.0006, df = 8, p = 0.9982; Supplementary Data 1). The lack of covariance between the patterns of AGS estimates and geographic distance or Longhurst province sampled may reflect the high connectivity of microbial communities throughout the global ocean, particularly the redistributive effects of circulation by ocean currents and other transport processes, as well as the enormous population sizes of plankton that allow dispersal constraints to be overcome44,45. This is consistent with the relatively small differences in microbial assemblages recently found in different ocean basins23,46. Another possible explanation is the effect of seasonality, which can cause selection of different taxa, resulting in the succession of microbial communities and affecting their distribution (see, ref. 47), and thus influence AGS patterns.An assessment of the relationship between AGS and measured environmental variables (Supplementary Fig. S1; Data 1)—separately for the Red Sea metagenomes (regional scale) and Malaspina Vertical Profiles metagenomes (global scale), showed that the cumulative effect of temperature, salinity, dissolved oxygen, and depth on AGS patterns was significant at both the regional scale (n = 45; Mantel statistic r = 0.1944, p = 0.0057) and the global scale (n = 81; Mantel statistic r = 0.1779, p = 1 × 10–4). This result suggests that environmental conditions are a driving force behind predicted AGS patterns in the marine microbiome. While no significant interaction effect was evident between many environmental variables (i.e., salinity, depth, oxygen, nitrate, and phosphate) in controlling AGS patterns (one-way ANOVA, p  More

  • in

    Vitamin B12 is not shared by all marine prototrophic bacteria with their environment

    Vitamin B12 biosynthesis potential of different bacteriaB vitamins play a key role in complex marine microbial interactions as they are obligatory cofactors in various essential metabolic reactions in all living organism [13, 14, 39,40,41]. An exciting fact about B12 is that genes for synthesis of this complex cofactor have never made the transition to the eukaryotic kingdom, although it is required by both prokaryotes and eukaryotes. De novo synthesis is restricted to a minor fraction of bacteria and archaea, thus, suggesting that the ability to synthesise B12 is disproportionate to its demand in nature [1, 4]. This phenomenon can be observed in various habitats, for example in the soil microbiome, where the proportion of B12 producers is less than one tenth [8]. Similar findings have been shown for the microbiome on human skin, where only 1% of the core species are predicted to produce B12 de novo, while 39 % of the species are predicted to use B12 for metabolism [42]. In order to adequately answer this fundamental question regarding the balance between B12 availability and consumption, we should aim to better understand the synthesis potential of individual prototrophic prokaryotes.Here we present intra- and extracellular B12 concentrations of various B12 prototrophic, alphaproteobacterial strains. The concentration of intracellular B12 differs widely between the various heterotrophic bacteria examined. Converted, B12 molecules detected per cell ranged between 664 to 26,619 in the analysed bacterial cultures, including B12-provider and B12-retainer. Such strong variation in intracellular B12 concentrations have already been shown for a number of other prokaryotes, including Archaea, heterotrophic bacteria, and cyanobacteria [11, 34]. Also, in these studies, the detected intracellular B12 values differed up to three orders of magnitude and showed values similar to the ones we detected. Whether factors such as cell size, which we did not consider in our analysis, or the exact growth phase in which we took the samples had an influence on the strong variation cannot be clarified here. It is quite conceivable that different B12 requirements of the individual cells or different regulatory mechanisms of B12 synthesis played a decisive role for the intracellular B12 concentrations. Nevertheless, we can conclude that not only the genetic B12 biosynthetic potential within a microbial community is decisive, but rather which prokaryote is actually present is crucial for the availability of B12.The extracellular concentrations of B12 detected in M. algicola and P. inhibens were about 8 and 256 times lower than respective intracellular levels. For example, M. algicola secreted about 936 B12 molecules per cell, which was roughly 85 times more as detected for P. inhibens. On the basis of the detected B12 demand of T. pseudonana determined by the bioassay, we can calculate that the eukaryote requires roughly 135,000 B12 molecules per cell, if we base the limitation of cell number solely on B12 availability. Thus, it would take about 144 living M. algicola cells that release B12 to cover the requirements for the growth of one T. pseudonana cell. In fact, the bacterial cell numbers in the stationary phase of the B12-provider-diatom co-cultures were at least 110 times higher than the cell numbers of T. pseudonana. These calculations are all based on ideal laboratory conditions, with sufficient supply of inorganic nutrients and organic substrates and may differ in natural environments where viral infections or sloppy feeding can lead to cell disruption and subsequent release of intracellular B12 [43, 44]. Also, B12 requirement of T. pseudonana cells can vary under different growth conditions. For example, it has been shown that growth of T. pseudonana even with 1 pM of B12 can result in a significant change in the metabolite pool of the diatom, which in turn may have implications for the interaction with bacteria [45]. Nevertheless, our data give a first approximate insight into the interplay between B12-producers and -consumers in the world of microorganisms.Bacterial effects on the growth of T. pseudonana
    Growth characteristics of T. pseudonana in co-culture show not only the obligatory provision of B12 by bacteria but also other bacterial factors that influence growth. For example, we observed that Sulfitobacter litoralis, a representative of the Roseobacter group, showed inhibitory behaviour towards the diatom. Other studies have shown that Roseobacter group isolates can produce inhibitory substances, roseobacticides, which can suppress the growth of eukaryotic phototrophs [46]. The provision of B12 leads to a promotion in growth and, at the same time, growth of the diatom is inhibited. One reason for the different growth characteristics of the diatoms observed in co-culture with different bacteria could be the adaptation to different habitats where the bacterial isolates naturally occur.In contrast to these observations, Celeribacter baekdonensis DSM 27375 significantly stimulated the growth of T. pseudonana. Even though C. baekdonensis did not provide B12 despite being synthesized, its presence in co-culture with B12 addition significantly increased the growth rate and growth yield of T. pseudonana compared to the positive control of the corresponding experimental run. In previous bacterial-diatom co-culture experiments, it has been shown that the excretion of cyclic peptides, diketopiperazines, by a bacterium, significantly increased diatom cell numbers [47]. Another plausible scenario is the synthesis and excretion of indoleacetic acid (IAA) by C. baekdonensis, which is a growth-promoting hormone for diatoms [48]. A similar effect is also conceivable for C. baekdonensis and would be exciting to explore in greater depth.A finding that appears to be overlooked in the context of our actual question is the fact that the expected bacterial cell death does not necessarily lead to the release of B12, which would promote the growth of T. pseudonana, and thus promote the interaction. Even after up to six weeks in co-culture, we cannot observe significant growth of T. pseudonana despite the presence of a bacterial B12 prototroph. This fact highlights the importance of cell lysis mechanisms in nature, for example caused by viral infections or sloppy feeding. Already today, these two natural processes are considered to play a significant role in the turnover of dissolved organic matter [44, 49,50,51] and are likely to also have a decisive influence on the release of B-vitamins in marine ecosystems [23]. Additionally, T. pseudonana is known to secret a B12 binding protein under B12 deficient conditions that has an affinity constant of 2 × 1011 M−1. This protein might help them to acquire B12 from the surroundings, when it is released through bacterial cell lysis mechanism [52]. Other phytoplankton might also have a similar strategy to scavenge B12 from the environment. When intracellular B12 is considered as a reservoir for other B12 auxotrophic microorganisms, then, for example, already 19 M. algicola cells would be sufficient to enable the growth of one T. pseudonana cell.The vital cofactor B12 is not shared by all prototrophic bacteriaAbout half of the marine phytoplankton species are B12 auxotrophs and rely on prototrophic prokaryotes to obtain this essential vitamin [1, 53]. Several co-culture experiments have confirmed that individual marine bacterial isolates, mainly Alphaproteobacteria, enable phytoplankton species to overcome their auxotrophy by providing the essential cofactor [13,14,15,16, 27, 28]. In our study we hypothesised that not all B12 prototrophs share B12 with other microorganisms and to prove that we performed individual co-culture experiments between T. pseudonana and 33 B12 prototrophic bacteria. B12 prototrophy of the bacterial isolates was confirmed by their genetic ability to synthesize B12 (Supplementary table S2) and their ability to grow in B12-free medium. The results of our study support this hypothesis, as we were able to identify one group of bacteria that enables growth of T. pseudonana by the supply of the essential cofactor, B12-providers. On the other hand, we also identified a second group of B12 prototrophic bacteria that did not support the growth of the diatom, the B12-retainers. Moreover, while categorizing them into B12-providers and B12-retainers, we observed that there are species within one genus, such as P. inhibens and P. galleciensis, in which one is a B12-provider and the other is a B12-retainer, respectively, although both of them possess the necessary genes for B12 biosynthesis. Yet, the question remains why some bacteria share the cofactor, and others, despite an obligatory interaction enforced in co-culture, do not. In the following, we describe and discuss three scenarios that we consider plausible, whereby not only one scenario has to be correct, but rather all three can take place in the B12-retainer strains that we have identified.First, biosynthesis of metabolites, such as the energetically costly B12 cofactor, are subject to intracellular regulation. Transcriptional regulation of the B12 biosynthesis pathway determines whether, and in what quantity B12 is synthesised in the cell. For example, sigma factors can alter the specificity of an RNA polymerase for a particular promoter, so that gene expression is enhanced or reduced [54]. In the case of the bacterial isolate Propionibacterium strain UF1, the riboswitch cbiMCbl was identified to regulate the gene expression of the cobA operon and thus controls B12 biosynthesis [55]. It is also known that sufficient availability of B12 can repress B12 biosynthesis gene expression in bacteria [56, 57]. In gram-negative proteobacteria as well as in cyanobacteria, for example, cobalamin (pseudocobalamin, in case of some bacteria) biosynthesis and B12 transport genes are regulated by inhibition of translation initiation, whereas in some gram-positive bacteria gene regulation proceeds by transcriptional antitermination [58]. The mechanisms described above are likely to also occur in the bacterial isolates that we tested. The large difference between the detected intracellular B12 concentrations could therefore be due to differences in gene regulation of the different bacteria and may also have had an influence on the release of B12 in the co-culture with T. pseudonana.Second, cobalamin, which we referred to here as B12 for simplicity, belongs to a group of B12-like metabolites, called cobamides. Each cobamide differs in the lower ligand attached. For example, the common cobamide, cobalamin, which is bioavailable to most microorganisms, carries 5,6-dimethylbenzimidazol (DMB) as its lower ligand, whereas pseudocobalamin synthesised by cyanobacteria in high concentrations in the ocean and being less or not bioavailable to most microorganisms, has adenine attached as its lower ligand [11, 41, 59, 60]. In general, the lower ligands of cobamides can be divided into benzimidazoles, purines, and phenols, and more than a dozen cobamides and cobamide-analogs have already been discovered [61]. However, research into the synthesis and actual diversity of cobamides, especially in marine bacteria and archaea, is still in its infancy. In our study, we were unable to detect intracellular B12 in four out of eight bacterial B12-retainer strains, although the cell counts at the time of sampling should have been sufficient for its detection. However, as is generally the case, our LC-MS analysis only targets cobalamin (B12) with its different upper ligands (adenosyl-, cyano-, methyl-, and hydroxy-cobalamin). Therefore, we cannot exclude the possibility that the here studied bacteria synthesise different cobamides, which are possibly not or less bioavailable to T. pseudonana, and not covered by our analytical measurement method. This speculation was supported by the fact that one of these four B12- retainer strains, Sulfitobacter sp. DFL-23, does not possess the DMB synthesis gene bluB and there was no intracellular B12 detected in this strain (Supplementary table S2 and Table 2). Again, it is difficult to explain this phenomenon solely depending on the presence of annotated DMB synthesis gene, as for Loktanella salsilacus DSM 16199 no bluB gene was annotated, still we detected intracellular B12 in this strain using our detection method (Supplementary table S2 and Table 2).Third, the bacteria we have identified as B12-retainer simply may not have actively released the synthesised B12 into their environment. Regardless of the importance of B12 for the vast majority of living organisms on our planet, its excretion mechanisms are to our knowledge still largely unknown. Its size of more than 1,350 Dalton does not allow sufficient diffusion through the cell membrane, which would enable microbial interactions [32]. Thus, it is likely that an unknown mechanism is required for its release. This assumption is further supported by the fact that we were able to detect intracellular B12 in four of the eight B12-retainer strains and at concentrations comparable to those detected in the B12-provider strains. In addition, we could detect intracellular B12 in P. xiamenensis, but none in its exometabolome. On the other hand, presence of extracellular B12 was detected in the exometabolome of both the provider strains examined, M. algicola and P. inhibens. Our findings show that not all bacteria share the pivotal cofactor with their environment, which has an impact on our current understanding of the marine B12 cycle and presumably in other ecosystems as well. The active exchange of B12 and thus microbial interaction plays a much smaller role than previously assumed for a relatively large number of bacteria. Consequently, for some of the B12 prototrophic bacteria within a community, it is likely that the cofactor is only released upon cell lysis.B12 production in the marine ecosystem and ecological implicationsLooking at the original source of B12 in nature, namely prototrophic bacteria and archaea, the bacteria studied here show pronounced differences between the biosynthetic potentials of the cofactors and the ability to share them with their environment. Thus, the natural source of vitamin B12 within a given ecosystem does not primarily depend on the ratio of prototrophic bacteria, but even more crucially on how much of the cofactor is synthesised by the prototrophic prokaryotes within an ecosystem and is actively released. The fact that some bacteria do not voluntarily share B12 with ambient microorganisms, significantly increases the importance of processes, such as sloppy feeding by zooplankton or virus infections [44, 49,50,51], for the release of vitamins in the marine and likely also other ecosystems.Our results also contribute to the controversially discussed question of whether B12 prototrophic bacteria live in symbiosis with phototrophic microorganisms [13, 30]. Despite numerous co-cultivation experiments demonstrating the obligatory provision of B12 by individual bacteria to phototrophic microorganisms, the decisive question of the mechanism of provision has so far been overlooked [13,14,15,16, 27, 28]. In our view, however, this question is crucial when assessing whether a symbiotic interaction is taking place. Our results support the hypothesis that a bacterial mechanism for the active release is likely to exist, as our experiments distinguish between B12-provider and B12-retainer within prototrophic bacteria. Looking at the ecological niches and the isolation sites of the two respective groups, differences can be identified. Most B12-provider strains were isolated from or discovered in association with eukaryotic microorganisms, whereas most B12-retainer strains were isolated as free-living in the ocean (Supplementary table S4). Moreover, six of the tested bacterial strains were isolated from dinoflagellates and five of them were B12-provider. Since we used a diatom as a B12 auxotrophic organism in our study, it would also be interesting to know if these B12-provider strains also provide B12 to other phytoplankton, such as dinoflagellates. Also, in this study we only studied bacteria from the alphaproteobacteria class, since a large share of them are known to be B12 prototrophs and abundant in the marine ecosystem. For future studies, it would be interesting to see if a similar pattern of B12 provisioning can be observed in bacteria from other classes. Our results indicate that the B12 prototrophy of a bacterium does not necessarily indicate a mutualistic interaction with other auxotrophic microorganisms. However, the bacterial group of B12-provider in particular seems to favour living in close proximity to other microorganisms, which is why the exchange of B12 for e.g. organic compounds can establish itself as a distinct symbiotic interaction between individual microorganisms. More

  • in

    Contribution of tree community structure to forest productivity across a thermal gradient in eastern Asia

    Synthetic data for Fig. 1To provide examples of the proposed two hypotheses, i.e., species-response hypothesis and community structure hypothesis, for Fig. 1, we generated synthetic data assuming bivariate lognormal distributions of species relative woody productivity pi and species standing biomass Bi, where i for species identity, with log-log linear, (or power-law) correlations, ln pi = k + b ln Bi, as in left-hand panels of Fig. 1. The slope (scaling exponent) b is common at –0.15, and the constant k = –3.4 and –3.8 for tropical and temperate forests respectively for species response hypothesis (Fig. 1a), whereas k = –3.6 for both ‘tropical’ and ‘temperate’ forests for the community structure hypothesis (Fig. 1b). Mean ln Bi are –0.6 for two forests in Fig. 1a, while they are –1.0 and –0.2 for tropical and temperate forest respectively in Fig. 1b, Standard deviations of ln Bi and ln pi are 2.0 and 0.65 respectively for all forests, except those in tropical forest in Fig. 1b are 1.6 and 0.6, respectively. In the left-hand panels, the Bi axis ranges 0.005–500 (Mg C ha–1), and the pi axis ranges 0.001–0.5 (yr–1). In the right-hand panels, the axis for B = Σi Bi ranges 50–500 (Mg C ha–1) and the axis for P = Σi pi Bi ranges 0.5–20 (Mg C ha–1 yr–1).Forest plot dataWe selected 60 forest plots located in old-growth forests along the climatic gradient of insular eastern Asia, located on Java (3 plots), Kalimantan (5 plots), Peninsular Malaysia (2 plots), Taiwan (6 plots), and the Japanese archipelago (44 plots), ranging from 6.8°S to 44.4°N latitude and from 20 to 1,880 m in elevation (Supplementary Fig. 1, Supplementary Data 1). We collected climate data for all the plots for the period 1981–2010 from CHELSA version 2.139; these are the period-average annual and monthly ground surface mean temperature, precipitation, and potential evapotranspiration. The potential evapotranspiration was estimated by Hargreaves-Samani equation40 based on monthly data of these climatic variables. Supplementary Data 2 presents mean annual temperature (MAT, °C), annual precipitation (AP, mm yr–1), annual potential evapotranspiration (PET, mm yr–1), monthly-data-based Thornthwaite moisture index (TMI) and the climatic types defined by TMI26. The target region is in Asian monsoon climate41,42, and moist forest ecosystems predominate from tropics in Southeast Asia to sub-boreal biomes in northern Japan. Across 60 plots, MAT ranges from 2.0 °C to 26.6 °C, AP-PET ranges from 58.5 to 5049 mm yr–1, and plots are classified as “perhumid” or “humid” by TMI (Supplementary Data 2); the smallest TMI for the plot in cloud forest on Hahajima Island, oceanic Ogasawara Islands, where AP-PET was +217 mm yr–1 (against +58.5 by CHELSA39) based on the weather station records on the island. AP-PET sowed no correlation with MAT or with any forest structural or dynamic variable, in contrast to MAT exhibiting significant correlations to all forest variables (Supplementary Fig. 5). We therefore mainly employ MAT to quantify climatic dependence of the 60 plots. According to bioclimatic classification of the region43,44, we define forest biomes into tropical (MAT ≥ 24 °C), subtropical (20–24 °C), warm-temperate (12–20 °C), cool-temperate (5–12 °C) and sub-boreal or subalpine ( More

  • in

    Higher productivity in forests with mixed mycorrhizal strategies

    Liang, J. et al. Positive biodiversity-productivity relationship predominant in global forests. Science 354, aaf8957 (2016).Article 
    PubMed 

    Google Scholar 
    Huang, Y. et al. Impacts of species richness on productivity in a large-scale subtropical forest experiment. Science 362, 80–83 (2018).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Luo, S. et al. Community‐wide trait means and variations affect biomass in a biodiversity experiment with tree seedlings. Oikos 129, 799–810 (2020).Article 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).Article 

    Google Scholar 
    Bergmann, J. et al. The fungal collaboration gradient dominates the root economics space in plants. Sci. Adv. 6, 1–10 (2020).Article 

    Google Scholar 
    Freschet, G. T. et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. N. Phytol. 232, 1123–1158 (2021).Article 

    Google Scholar 
    Zhong, Y. et al. Arbuscular mycorrhizal trees influence the latitudinal beta-diversity gradient of tree communities in forests worldwide. Nat. Commun. 12, 1–12 (2021).Article 
    ADS 

    Google Scholar 
    Carteron, A., Vellend, M. & Laliberté, E. Mycorrhizal dominance reduces local tree species diversity across US forests. Nat. Ecol. Evol. 6, 370–374 (2022).Article 
    PubMed 

    Google Scholar 
    Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal‐associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. N. Phytol. 199, 41–51 (2013).Article 
    CAS 

    Google Scholar 
    Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Craig, M. E. et al. Tree mycorrhizal type predicts within‐site variability in the storage and distribution of soil organic matter. Glob. Chang. Biol. 24, 3317–3330 (2018).Article 
    ADS 
    PubMed 

    Google Scholar 
    van der Heijden, M. G. A. et al. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396, 69–72 (1998).Article 
    ADS 

    Google Scholar 
    Klironomos, J. N., McCune, J., Hart, M. & Neville, J. The influence of arbuscular mycorrhizae on the relationship between plant diversity and productivity. Ecol. Lett. 3, 137–141 (2000).Article 

    Google Scholar 
    Wagg, C., Jansa, J., Stadler, M., Schmid, B. & Van Der Heijden, M. G. A. Mycorrhizal fungal identity and diversity relaxes plant-plant competition. Ecology 92, 1303–1313 (2011).Article 
    PubMed 

    Google Scholar 
    Luo, S., Schmid, B., De Deyn, G. B. & Yu, S. Soil microbes promote complementarity effects among co‐existing trees through soil nitrogen partitioning. Funct. Ecol. 32, 1879–1889 (2018).Article 

    Google Scholar 
    Ferlian, O. et al. Mycorrhiza in tree diversity–ecosystem function relationships: conceptual framework and experimental implementation. Ecosphere 9, e02226 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tedersoo, L. & Bahram, M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 94, 1857–1880 (2019).Article 
    PubMed 

    Google Scholar 
    Rineau, F. et al. The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ. Microbiol. 14, 1477–1487 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindahl, B. D. & Tunlid, A. Ectomycorrhizal fungi – potential organic matter decomposers, yet not saprotrophs. N. Phytol. 205, 1443–1447 (2015).Article 
    CAS 

    Google Scholar 
    Hodge, A. Arbuscular mycorrhizal fungi influence decomposition of, but not plant nutrient capture from, glycine patches in soil. N. Phytol. 151, 725–734 (2001).Article 
    CAS 

    Google Scholar 
    Read, D. J. & Perez-Moreno, J. Mycorrhizas and nutrient cycling in ecosystems – A journey towards relevance? N. Phytol. 157, 475–492 (2003).Article 
    CAS 

    Google Scholar 
    Toju, H., Kishida, O., Katayama, N. & Takagi, K. Networks depicting the fine-scale co-occurrences of fungi in soil horizons. PLoS ONE 11, 1–18 (2016).Article 

    Google Scholar 
    Taylor, D. L. et al. A first comprehensive census of fungi in soil reveals both hyperdiversity and fine-scale niche partitioning. Ecol. Monogr. 84, 3–20 (2014).Article 

    Google Scholar 
    Chen, W. et al. Root morphology and mycorrhizal symbioses together shape nutrient foraging strategies of temperate trees. Proc. Natl Acad. Sci. USA 113, 8741–8746 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, X. et al. Partitioning of soil phosphorus among arbuscular and ectomycorrhizal trees in tropical and subtropical forests. Ecol. Lett. 21, 713–723 (2018).Article 
    PubMed 

    Google Scholar 
    Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 116, 23163–23168 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dietrich, P. et al. Tree diversity effects on productivity depend on mycorrhizae and life strategies in a temperate forest experiment. Ecology 104, e3896 https://doi.org/10.1002/ecy.3896 (2022).Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Glob. Chang. Biol. 24, 4544–4553 (2018).Article 
    ADS 
    PubMed 

    Google Scholar 
    Jo, I., Fei, S., Oswalt, C. M., Domke, G. M. & Phillips, R. P. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci. Adv. 5, eaav6358, (2019).Fei, S. et al. Impacts of climate on the biodiversity-productivity relationship in natural forests. Nat. Commun. 9, 5436 (2018).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bongers, F. J. et al. Functional diversity effects on productivity increase with age in a forest biodiversity experiment. Nat. Ecol. Evol. 5, 1594–1603 (2021).Article 
    PubMed 

    Google Scholar 
    Schoener, T. W. Resource partitioning in ecological communities. Science 185, 27–39 (1974).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tilman, D., Lehman, C. L. & Thomson, K. T. Plant diversity and ecosystem productivity: theoretical considerations. Proc. Natl Acad. Sci. USA 94, 1857–1861 (1997).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schwilk, D. W. & Ackerly, D. D. Limiting similarity and functional diversity along environmental gradients. Ecol. Lett. 8, 272–281 (2005).Article 

    Google Scholar 
    Wagg, C., Jansa, J., Schmid, B. & van der Heijden, M. G. A. Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol. Lett. 14, 1001–1009 (2011).Article 
    PubMed 

    Google Scholar 
    Agerer, R. Exploration types of ectomycorrhizae: a proposal to classify ectomycorrhizal mycelial systems according to their patterns of differentiation and putative ecological importance. Mycorrhiza 11, 107–114 (2001).Article 

    Google Scholar 
    Cheng, L. et al. Mycorrhizal fungi and roots are complementary in foraging within nutrient patches. Ecology 97, 2815–2823 (2016).Article 
    PubMed 

    Google Scholar 
    Wambsganss, J. et al. Tree species mixing causes a shift in fine-root soil exploitation strategies across European forests. Funct. Ecol. 35, 1886–1902 (2021).Article 
    CAS 

    Google Scholar 
    Gerz, M., Guillermo Bueno, C., Ozinga, W. A., Zobel, M. & Moora, M. Niche differentiation and expansion of plant species are associated with mycorrhizal symbiosis. J. Ecol. 106, 254–264 (2018).Article 
    CAS 

    Google Scholar 
    Niklaus, P. A., Baruffol, M., He, J. S., Ma, K. & Schmid, B. Can niche plasticity promote biodiversity–productivity relationships through increased complementarity? Ecology 98, 1104–1116 (2017).Article 
    PubMed 

    Google Scholar 
    Barry, K. E. et al. The future of complementarity: disentangling causes from consequences. Trends Ecol. Evol. 34, 167–180 (2019).Article 
    PubMed 

    Google Scholar 
    Jacobs, L. M., Sulman, B. N., Brzostek, E. R., Feighery, J. J. & Phillips, R. P. Interactions among decaying leaf litter, root litter and soil organic matter vary with mycorrhizal type. J. Ecol. 106, 502–513 (2018).Article 
    CAS 

    Google Scholar 
    Midgley, M. G., Brzostek, E. & Phillips, R. P. Decay rates of leaf litters from arbuscular mycorrhizal trees are more sensitive to soil effects than litters from ectomycorrhizal trees. J. Ecol. 103, 1454–1463 (2015).Article 

    Google Scholar 
    Kumar, A., Phillips, R. P., Scheibe, A., Klink, S. & Pausch, J. Organic matter priming by invasive plants depends on dominant mycorrhizal association. Soil Biol. Biochem. 140, 107645 (2020).Article 
    CAS 

    Google Scholar 
    Tedersoo, L., Bahram, M. & Zobel, M. How mycorrhizal associations drive plant population and community biology. Science 367, eaba1223 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kitajima, K. & Poorter, L. Functional basis for resource niche partitioning by tropical trees. Trop. For. community Ecol. 1936, 160–181 (2008).MacArthur, R. H. Patterns of species diverstiy. Biol. Rev. 40, 510–533 (1965).Article 

    Google Scholar 
    Pellissier, V., Barnagaud, J. Y., Kissling, W. D., Şekercioğlu, Ç. & Svenning, J. C. Niche packing and expansion account for species richness–productivity relationships in global bird assemblages. Glob. Ecol. Biogeogr. 27, 604–615 (2018).Article 

    Google Scholar 
    Huang, Y. et al. Effects of enemy exclusion on biodiversity–productivity relationships in a subtropical forest experiment. J. Ecol. 110, 2167–2178. https://doi.org/10.1111/1365-2745.13940 (2022).Tilman, D. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology 78, 81–92 (1997).Article 

    Google Scholar 
    Feng, Y. et al. Multispecies forest plantations outyield monocultures across a broad range of conditions. Science 376, 865–868 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Harper, J. L. Population biology of plants. (1977).Ewel, J. J. Designing agricultural ecosystems for the humid tropics. Annu. Rev. Ecol. Syst. 17, 245–271 (1986).Article 

    Google Scholar 
    Grossiord, C. Having the right neighbors: how tree species diversity modulates drought impacts on forests. N. Phytol. 228, 42–49 (2020).Article 

    Google Scholar 
    Allen, M. F. Mycorrhizal fungi: highways for water and nutrients in arid soils. Vadose Zo. J. 6, 291–297 (2007).Article 

    Google Scholar 
    Brzostek, E. R. et al. Chronic water stress reduces tree growth and the carbon sink of deciduous hardwood forests. Glob. Chang. Biol. 20, 2531–2539 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Liese, R., Lübbe, T., Albers, N. W. & Meier, I. C. The mycorrhizal type governs root exudation and nitrogen uptake of temperate tree species. Tree Physiol. 38, 83–95 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Linton, M. J., Sperry, J. S. & Williams, D. G. Limits to water transport in Juniperus osteosperma and Pinus edulis: Implications for drought tolerance and regulation of transpiration. Funct. Ecol. 12, 906–911 (1998).Article 

    Google Scholar 
    Johnson, D. M. et al. Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. Plant. Cell Environ. 41, 576–588 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lin, G. et al. Mycorrhizal associations of tree species influence soil nitrogen dynamics via effects on soil acid–base chemistry. Glob. Ecol. Biogeogr. 31, 168–182 (2022).Article 

    Google Scholar 
    Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).Article 

    Google Scholar 
    Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 30, 357–363 (2015).Article 
    PubMed 

    Google Scholar 
    De Schrijver, A. et al. Tree species traits cause divergence in soil acidification during four decades of postagricultural forest development. Glob. Chang. Biol. 18, 1127–1140 (2012).Article 
    ADS 

    Google Scholar 
    Loreau, M. & Hector, A. Partitioning selection and complementarity in biodiversity experiments. Nature 412, 72–76 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Braghiere, R. K. et al. Modeling global carbon costs of plant nitrogen and phosphorus acquisition. J. Adv. Model. Earth Syst. 14, 1–23 (2022).Article 

    Google Scholar 
    Eisenhauer, N. et al. Biotic interactions as mediators of context-dependent biodiversity-ecosystem functioning relationships. Res. Ideas Outcomes 8, e85873 (2022).Article 

    Google Scholar 
    Fisher, J. B. et al. Tree-mycorrhizal associations detected remotely from canopy spectral properties. Glob. Chang. Biol. 22, 2596–2607 (2016).Article 
    ADS 
    PubMed 

    Google Scholar 
    Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 1–10 (2019).Article 
    CAS 

    Google Scholar 
    Burrill, E. A. et al. The forest inventory and analysis database. USDA . Serv. 2, 1026 (2015).
    Google Scholar 
    Chao, A., Chiu, C.-H. & Jost, L. Unifying species diversity, phylogenetic diversity, functional diversity, and related similarity and differentiation measures through hill numbers. Annu. Rev. Ecol. Evol. Syst. 45, 297–324 (2014).Article 

    Google Scholar 
    Cleland, D. T. et al. Ecological subregions: Sections and subsections for the conterminous United States. Gen. Tech. Rep. WO-76D (2007).Soudzilovskaia, N. A. et al. FungalRoot: global online database of plant mycorrhizal associations. N. Phytol. 227, 955–966 (2020).Article 

    Google Scholar 
    Gallion, J. et al. Indiana DNR State Forest Properties Report of Continuous Forest Inventory (CFI) Summary of years 2015–2019. 1–25 (2020).Dormann, C. F. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).Article 

    Google Scholar 
    Craven, D. et al. A cross-scale assessment of productivity–diversity relationships. Glob. Ecol. Biogeogr. 29, 1940–1955 (2020).Article 

    Google Scholar 
    Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/ (2020).Dowle, M. & Srinivasan, A. data.table: Extension of ‘data.frame‘. R package version 1.14.2 (2021).Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York, 2016.Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0 (2020).Dunnington, D. ggspatial: Spatial Data Framework for ggplot2. R package version 1.1.5 (2021).Robert, J. Hijmans. raster: Geographic Data Analysis and Modeling. R package version 3.5-2 (2021).Wickham, H., François, R., Henry, L. & Müller, K. dplyr: A Grammar of Data Manipulation. R package version 1.0.8 (2022).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: piecewise structural equation modeling in R for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).Article 

    Google Scholar 
    Luo, S. et al. High productivity in forests with mixed mycorrhizal strategies. Figshare https://doi.org/10.6084/m9.figshare.22060238. (2023). More

  • in

    Impact of Pacific Ocean heatwaves on phytoplankton community composition

    Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Change 6, 1042–1047 (2016).Article 

    Google Scholar 
    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).Article 

    Google Scholar 
    Blunden, J. & Arndt, D. S. State of the Climate in 2015. Bull. Am. Meteorol. Soc. 97, s1–s275 (2016).Article 

    Google Scholar 
    Santoso, A., Mcphaden, M. J. & Cai, W. The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño. Rev. Geophys. 55, 1079–1129 (2017).Article 

    Google Scholar 
    Amaya, D. J., Miller, A. J., Xie, S.-P. & Kosaka, Y. Physical drivers of the summer 2019 North Pacific marine heatwave. Nat. Commun. 11. https://doi.org/10.1038/s41467-020-15820-w (2020).Frölicher, T. L., Fischer, E. M. & Gruber, N. Marine heatwaves under global warming. Nature 560, 360–364 (2018).Laufkötter, C., Zscheischler, J. & Frölicher, T. L. High-impact marine heatwaves attributable to human-induced global warming. Science 369, 1621–1625 (2020).Article 
    PubMed 

    Google Scholar 
    Piatt, J. F. et al. Extreme mortality and reproductive failure of common murres resulting from the northeast Pacific marine heatwave of 2014-2016. PLOS ONE 15, 1–32 (2020).Article 

    Google Scholar 
    Savage, K. Alaska and British Columbia large whale unusual mortality event summary report. NOAA Affiliate Protected Resources Division, NOAA Fisheries Juneau, AK. https://repository.library.noaa.gov/view/noaa/17715 (2017).Cavole, L. M. et al. Biological Impacts of the 2013-2015 Warm-Water Anomaly in the Northeast Pacific: Winners, Losers, and the Future. Oceanography 29, 273–285 (2016).Article 

    Google Scholar 
    Barbeaux, S. et al. Chapter 2: assessment of the pacific cod stock in the Gulf of Alaska. North Pacific Fish Manag. Counc. Gulf Alaska Stock Assess. Fish Eval. Rep. 140. https://archive.afsc.noaa.gov/refm/docs/2019/GOApcod.pdf (2019).Arimitsu, M. L. et al. Heatwave-induced synchrony within forage fish portfolio disrupts energy flow to top pelagic predators. Glob. Change Biol. 27, 1859–1878 (2021).Article 
    CAS 

    Google Scholar 
    Leising, A. W. et al. State of the California Current 2014-15: Impacts of the Warm-Water “Blob”. CalCOFI Rep. 56, 31–68 (2015).
    Google Scholar 
    Chandler, P. & Yoo, S. Marine Ecosystems of the North Pacific Ocean 2009-2016: Synthesis Report. PICES Spec. Publ. 7, 1–82 (2021).
    Google Scholar 
    Peterson, W. et al. Ocean Ecosystem Indicators of Salmon Marine Survival in the Northern California Current. NOAA Northwest Fishery Science Center1-94. http://www.nwfsc.noaa.gov/research/divisions/fe/estuarine/oeip/documents/Peterson_etal_2015.pdf (2015).Volk, T. & Hoffert, M. Ocean carbon pumps: analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In Sundquist, E. & Broecker, W. (eds.) The carbon cycle and atmospheric CO2 : natural variations Archean to present. Chapman conference papers, 1984, 99–110 (American Geophysical Union; Geophysical Monograph 32, 1985).Whitney, F. A. Anomalous winter winds decrease 2014 transition zone productivity in the NE Pacific. Geophys. Res. Lett. 42, 428–431 (2015).Article 

    Google Scholar 
    McCabe, R. M. et al. An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys. Res. Lett. 43, 10366–10376 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Du, X., Peterson, W., Fisher, J., Hunter, M. & Peterson, J. Initiation and Development of a Toxic and Persistent Pseudo-nitzschia Bloom off the Oregon Coast in Spring/Summer 2015. PLOS ONE 11, 1–17 (2016).Article 

    Google Scholar 
    Du, X. & Peterson, W. T. Phytoplankton community structure in 2011-2013 compared to the extratropical warming event of 2014-2015. Geophys. Res. Lett. 45, 1534–1540 (2018).Article 

    Google Scholar 
    Peña, M. AandNemcek,NandRobert,M. Phytoplankton responses to the 2014-2016 warming anomaly in the northeast subarctic Pacific Ocean. Limnol. Oceanogr. 64, 515–525 (2019).Article 

    Google Scholar 
    Barth, A., Walter, R. K., Robbins, I. & Pasulka, A. Seasonal and interannual variability of phytoplankton abundance and community composition on the Central Coast of California. Mar. Ecol. Prog. Ser. 637, 29–43 (2020).Article 
    CAS 

    Google Scholar 
    Batten, S. D., Ostle, C., Hélaouët, P. & Walne, A. W. Responses of Gulf of Alaska plankton communities to a marine heat wave. Deep Sea Res. Part II: Topical Stud. Oceanogr. 195, 105002 (2022).Article 

    Google Scholar 
    Johnstone, J. A. & Mantua, N. J. Atmospheric controls on northeast Pacific temperature variability and change, 1900–2012. Proc. Natl Acad. Sci. 111, 14360–14365 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gregg, W. W. & Rousseaux, C. S. Global ocean primary production trends in the modern ocean color satellite record (1998–2015). Environ. Res. Lett. 14, 124011 (2019).Article 
    CAS 

    Google Scholar 
    Hamme, R. C. et al. Volcanic ash fuels anomalous plankton bloom in subarctic northeast Pacific. Geophys. Res. Lett. 37. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2010GL044629. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2010GL044629 (2010).Rousseaux, C. S. & Gregg, W. W. Climate variability and phytoplankton composition in the Pacific Ocean. J. Geophys. Res. Oceans 117. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2012JC008083. https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2012JC008083 (2012).Lewing, J. Silicification. In Lewin, R. (ed.) Physiology and biochemistry of algae, 445 – 455 (Academic Press, New York, 1962).Pančić, M., Torres, R. R., Almeda, R. & Kiørboe, T. Silicified cell walls as a defensive trait in diatoms. Proc. R. Soc. B: Biol. Sci. 286, 20190184 (2019).Article 

    Google Scholar 
    Kröger, N. & Poulsen, N. Diatoms—from cell wall biogenesis to nanotechnology. Annu. Rev. Genet. 42, 83–107 (2008).Article 
    PubMed 

    Google Scholar 
    Miklasz, K. A. & Denny, M. W. Diatom sinkings speeds: Improved predictions and insight from a modified stokes’ law. Limnol. Oceanogr. 55, 2513–2525 (2010).Article 

    Google Scholar 
    Nishioka, J. et al. Subpolar marginal seas fuel the North Pacific through the intermediate water at the termination of the global ocean circulation. Proc. Natl Acad. Sci. 117, 12665–12673 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nishioka, J. et al. A review: iron and nutrient supply in the subarctic Pacific and its impact on phytoplankton production. J. Oceanogr. 77, 561–587 (2021).Article 
    CAS 

    Google Scholar 
    Dave, A. C. & Lozier, M. S. The impact of advection on stratification and chlorophyll variability in the equatorial Pacific. Geophys. Res. Lett. 42, 4523–4531 (2015).Article 

    Google Scholar 
    JA, B. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Rev. 97, 163–172 (1969).Article 

    Google Scholar 
    Martin, J. H. & Fitzwater, S. E. Iron deficiency limits phytoplankton growth in the north-east Pacific subarctic. Nature 331, 341 – 343 (1988).Article 

    Google Scholar 
    Ryther, J. H. Photosynthesis and fish production in the sea. Science 166, 72–76 (1969).Article 
    CAS 
    PubMed 

    Google Scholar 
    Smetacek, V. Diatoms and the ocean carbon cycle. Protist 150, 25–32 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Chavez, F. P., Buck, K. R. & Barber, R. T. Phytoplankton taxa in relation to primary production in the equatorial Pacific. Deep Sea Res. Part A Oceanogr. Res. Pap. 37, 1733–1752 (1990).Article 

    Google Scholar 
    Uitz, J., Claustre, H., Gentili, B. & Stramski, D. Phytoplankton class-specific primary production in the world’s oceans: Seasonal and interannual variability from satellite observations. Glob. Biogeochem. Cycles 24. https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2009GB003680 (2010).Strutton, P. G. & Chavez, F. P. Primary productivity in the equatorial Pacific during the 1997-1998 El Niño. J. Geophys. Res. Oceans 105, 26089–26101 (2000).Article 

    Google Scholar 
    Ondrusek, M. E., Bidigare, R. R., Sweet, S. T., Defreitas, D. A. & Brooks, J. M. Distribution of phytoplankton pigments in the north pacific ocean in relation to physical and optical variability. Deep Sea Res. Part A. Oceanogr. Res. Pap. 38, 243–266 (1991).Article 
    CAS 

    Google Scholar 
    Behrenfeld, M. J., Bale, A. J., Kolber, Z. S., Aiken, J. & Falkowski, P. G. Confirmation of iron limitation of phytoplankton in the equatorial Pacific Ocean. Nature 383, 508–511 (1996).Article 
    CAS 

    Google Scholar 
    Barber, R. T. & Chavez, F. P. Regulation of primary productivity rate in the equatorial Pacific. Limnol. Oceanogr. 36, 1803–1815 (1991).Article 

    Google Scholar 
    Coale, K. H., Fitzwater, S. E., Gordon, R. M., Johnson, K. S. & Barber, R. T. Control of community growth and export production by upwelled iron in the equatorial Pacific Ocean. Nature 379, 621–624 (1996).Article 
    CAS 

    Google Scholar 
    Dugdale, R. C. & Wilkerson, F. P. Silicate regulation of new production in the equatorial Pacific upwelling. Nature 391, 270–273 (1998).Article 
    CAS 

    Google Scholar 
    Le Grix, N., Zscheischler, J., Laufkötter, C., Rousseaux, C. S. & Frölicher, T. L. Compound high-temperature and low-chlorophyll extremes in the ocean over the satellite period. Biogeosciences 18, 2119–2137 (2021).Article 

    Google Scholar 
    Behrenfeld, M. J. & Boss, E. S. Resurrecting the ecological underpinnings of ocean plankton blooms. Annu. Rev. Mar. Sci. 6, 167–194 (2014).Article 

    Google Scholar 
    Gregg, W. W. & Casey, N. W. Modeling coccolithophores in the global oceans. Deep Sea Res. Part II: Topical Stud. Oceanogr. 54, 447–477 (2007). The Role of Marine Organic Carbon and Calcite Fluxes in Driving Global Climate Change, Past and Future.Article 

    Google Scholar 
    Wang, B. et al. Historical change of El Niño properties sheds light on future changes of extreme El Niño. Proc. Natl Acad. Sci. 116, 22512–22517 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cai, W. et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nat. Clim. Change 4, 111–116 (2014).Article 

    Google Scholar 
    Jackson, T., Bouman, H. A., Sathyendranath, S. & Devred, E. Regional-scale changes in diatom distribution in the Humboldt upwelling system as revealed by remote sensing: implications for fisheries. ICES J. Mar. Sci. 68, 729–736 (2011).Article 

    Google Scholar 
    Suryan, R. M. et al. Ecosystem response persists after a prolonged marine heatwave. Sci. Rep. 11, 6235–6252 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Glantz, M. H. Currents of change: impacts of El Ninño and La Ninña on climate and society. (Cambridge University Press, Cambridge, United Kingdom, 2001).
    Google Scholar 
    Arteaga, L. A., Boss, E., Behrenfeld, M. J., Westberry, T. K. & Sarmiento, J. L. Seasonal modulation of phytoplankton biomass in the Southern Ocean. Nat. Commun. 11, 5364 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Behrenfeld, M. J., Doney, S. C., Lima, I., Boss, E. S. & Siegel, D. A. Annual cycles of ecological disturbance and recovery underlying the subarctic Atlantic spring plankton bloom. Glob. Biogeochem. Cycles 27, 526–540 (2013).Article 
    CAS 

    Google Scholar 
    Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419–5454 (2017).Article 

    Google Scholar 
    Schopf, P. S. & Loughe, A. A Reduced-Gravity Isopycnal Ocean Model: Hindcasts of El Niño. Monthly Weather Rev. 123, 2839–2863 (1995).Article 

    Google Scholar 
    Rienecker, M. M. et al. MERRA: NASA’s Modern-Era Retrospective Analysis for Research and Applications. J. Clim. 24, 3624–3648 (2011).Article 

    Google Scholar 
    Gregg, W. W. & Casey, N. W. Skill assessment of a spectral ocean-atmosphere radiative model. J. Mar. Syst. 76, 49–63 (2009). Skill assessment for coupled biological/physical models of marine systems.Article 

    Google Scholar 
    Eppley, R. W. Temperature and phytoplankton growth in the sea. Fish. Bull. 70, 1063–1085 (1972).
    Google Scholar 
    Csanady, G. T. Mass transfer to and from small particles in the sea. Limnol. Oceanogr. 31, 237–248 (1986).Article 
    CAS 

    Google Scholar 
    McGillicuddy, D. J., McCarthy, J. J. & Robinson, A. R. Coupled physical and biological modeling of the spring bloom in the North Atlantic (I): Model formulation and one dimensional bloom processes. Deep-Sea Res. 42, 1313–1357 (1995).Article 
    CAS 

    Google Scholar 
    Greene, C. A. et al. The climate data toolbox for matlab. Geochem. Geophys. Geosyst. 20, 3774–3781 (2019).Article 

    Google Scholar 
    Morel, A. et al. Examining the consistency of products derived from various ocean color sensors in open ocean (case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111, 69 – 88 (2007).Article 

    Google Scholar 
    Gregg, W. W. Assimilation of seawifs ocean chlorophyll data into a three-dimensional global ocean model. J. Mar. Syst. 69, 205–225 (2008). Physical-Biological Interactions in the Upper Ocean.Article 

    Google Scholar 
    Conkright, M. E. et al. World Ocean Atlas 2001. Volume 4, Nutrients. In NOAA atlas NESDIS ; 52, vol. 4, 392 (US Government Printing Office, Washington, DC, 2002). https://repository.library.noaa.gov/view/noaa/1102.Fung, I. Y. et al. Iron supply and demand in the upper ocean. Glob. Biogeochemical Cycles 14, 281–295 (2000).Article 
    CAS 

    Google Scholar 
    Gregg, W. W., Ginoux, P., Schopf, P. S. & Casey, N. W. Phytoplankton and iron: validation of a global three-dimensional ocean biogeochemical model. Deep Sea Res. Part II: Topical Stud. Oceanogr. 50, 3143–3169 (2003). The US JGOFS Synthesis and Modeling Project: Phase II.Article 
    CAS 

    Google Scholar 
    Rousseaux, C. S. & Gregg, W. W. Recent decadal trends in global phytoplankton composition. Glob. Biogeochem. Cycles 29, 1674–1688 (2015).Article 
    CAS 

    Google Scholar  More

  • in

    Mock community as an in situ positive control for amplicon sequencing of microbiotas from the same ecosystem

    Proctor, L. Priorities for the next 10 years of human microbiome research. Nature 569(7758), 623–625 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bahl, M. I., Bergström, A. & Licht, T. R. Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis. FEMS Microbiol. Lett. 329, 193–197 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wu, X. et al. Metagenomic insights into nitrogen and phosphorus cycling at the soil aggregate scale driven by organic material amendments. Sci. Total Environ. 785, 147329 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Singh, B. K., Millard, P., Whiteley, A. S. & Murrell, J. C. Unravelling rhizosphere-microbial interactions: Opportunities and limitations. Trends Microbiol. 12, 386–393 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Methé, B. A. et al. A framework for human microbiome research. Nature 486, 215–221 (2012).Article 
    ADS 
    PubMed Central 

    Google Scholar 
    Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: An overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilbert, J. A., Jansson, J. K. & Knight, R. Earth microbiome project and global systems biology. mSystems 3, e00217-17 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Trivedi, P., Leach, J. E., Tringe, S. G., Sa, T. & Singh, B. K. Plant–microbiome interactions: from community assembly to plant health. Nat. Rev. Microbiol. 18(11), 607–621 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569(7758), 655–662 (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, T. et al. A plant genetic network for preventing dysbiosis in the phyllosphere. Nature 580(7805), 653–657 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holman, D. B. & Gzyl, K. E. A meta-analysis of the bovine gastrointestinal tract microbiota. FEMS Microbiol. Ecol. 95, 72 (2019).Article 

    Google Scholar 
    Chen, L. et al. Plant growth–promoting bacteria improve maize growth through reshaping the rhizobacterial community in low-nitrogen and low-phosphorus soil. Biol. Fertil. Soils 57, 1075–1088. https://doi.org/10.1007/S00374-021-01598-6 (2021).Article 
    CAS 

    Google Scholar 
    Sommer, F. et al. The gut microbiota modulates energy metabolism in the hibernating brown bear Ursus arctos. Cell Rep. 14, 1655–1661 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hauffe, H. C. & Barelli, C. Conserve the germs: The gut microbiota and adaptive potential. Conserv. Genet. 20(1), 19–27 (2019).Article 

    Google Scholar 
    Pollock, J., Glendinning, L., Wisedchanwet, T. & Watson, M. The madness of microbiome: Attempting to find consensus ‘best practice’ for 16S microbiome studies. Appl. Environ. Microbiol. 84(7), e02627-17 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551(7681), 457–463 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costea, P. I. et al. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol. 35, 1069–1076 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: And this is not optional. Front. Microbiol. 8, 2224 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tourlousse, D. M. et al. Synthetic spike-in standards for high-throughput 16S rRNA gene Amplicon sequencing. Nucleic Acids Res. 45, e23–e23 (2017).PubMed 

    Google Scholar 
    Thissen, J. B. et al. Axiom Microbiome Array, the next generation microarray for high-throughput pathogen and microbiome analysis. PLoS ONE 14, e0212045 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ducarmon, Q. R., Hornung, B. V. H., Geelen, A. R., Kuijper, E. J. & Zwittink, R. D. Toward standards in clinical microbiota studies: Comparison of three DNA extraction methods and two bioinformatic pipelines. mSystems 5, e00547-19 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ray, T. et al. The microbiome of common bedding materials before and after use on commercial dairy farms. Anim. Microbiome 4(1), 1–21 (2022).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Akhremchuk, K. V. et al. Gut microbiome of healthy people and patients with hematological malignancies in Belarus. Microbiol. Indep. Res. J. (MIR J.) 9, 18–30 (2022).Article 

    Google Scholar 
    Smets, W. et al. A method for simultaneous measurement of soil bacterial abundances and community composition via 16S rRNA gene sequencing. Soil Biol. Biochem. 96, 145–151 (2016).Article 
    CAS 

    Google Scholar 
    Palmer, J. M., Jusino, M. A., Banik, M. T. & Lindner, D. L. Non-biological synthetic spike-in controls and the AMPtk software pipeline improve mycobiome data. PeerJ 6, e4925 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alteio, L. V. et al. A critical perspective on interpreting amplicon sequencing data in soil ecological research. Soil Biol. Biochem. 160, 108357 (2021).Article 
    CAS 

    Google Scholar 
    Stämmler, F. et al. Adjusting microbiome profiles for differences in microbial load by spike-in bacteria. Microbiome 4, 1–13 (2016).Article 

    Google Scholar 
    Risely, A., Wilhelm, K., Clutton-Brock, T., Manser, M. B. & Sommer, S. Diurnal oscillations in gut bacterial load and composition eclipse seasonal and lifetime dynamics in wild meerkats. Nat. Commun. 12(1), 1–12 (2021).Article 

    Google Scholar 
    Risely, A., et al. Gut microbiota repeatability is contingent on temporal scale and age in wild meerkats. ecoevorxiv (2022). https://doi.org/10.32942/OSF.IO/DSQFRSzóstak, N. et al. The standardisation of the approach to metagenomic human gut analysis: From sample collection to microbiome profiling. Sci. Rep. 12(1), 1–21 (2022).Article 

    Google Scholar 
    Tourlousse, D. M. et al. Synthetic spike-in standards for high-throughput 16S rRNA gene amplicon sequencing. Nucleic Acids Res. 45, e23 (2017).PubMed 

    Google Scholar 
    Sheu, S. Y., Arun, A. B., Jiang, S. R., Young, C. C. & Chen, W. M. Allobacillus halotolerans gen. nov., sp. Nov. isolated from shrimp paste. Int. J. Syst. Evol. Microbiol. 61, 1023–1027 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Surendra, V., Bhawana, P., Suresh, K., Srinivas, T. N. R. & Anil Kumar, P. Imtechella halotolerans gen. nov., sp. nov., a member of the family Flavobacteriaceae isolated from estuarine water. Int. J. Syst. Evol. Microbiol. 62, 2624–2630 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Praeg, N. et al. The role of land management and elevation in shaping soil microbial communities: Insights from the Central European Alps. Soil Biol. Biochem. 150, 107951 (2020).Article 
    CAS 

    Google Scholar 
    Albonico, F. et al. Raw milk and fecal microbiota of commercial Alpine dairy cows varies with herd, fat content and diet. PLoS ONE 15, e0237262 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Watson, S. E. et al. Global change-driven use of onshore habitat impacts polar bear faecal microbiota. ISME J. https://doi.org/10.1038/s41396-019-0480-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huebner, K. L. et al. Effects of a Saccharomyces cerevisiae fermentation product on liver abscesses, fecal microbiome, and resistome in feedlot cattle raised without antibiotics. Sci. Rep. 9(1), 1–11 (2019).Article 

    Google Scholar 
    Fan, P. et al. Host genetic effects upon the early gut microbiota in a bovine model with graduated spectrum of genetic variation. ISME J. 14(1), 302–317 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mtshali, K., Khumalo, Z. T. H., Kwenda, S., Arshad, I. & Thekisoe, O. M. M. Exploration and comparison of bacterial communities present in bovine faeces, milk and blood using 16S rRNA metagenomic sequencing. PLoS ONE 17, e0273799 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, J. S. et al. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun. 10(1), 5029 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pei, A. Y. et al. Diversity of 16S rRNA genes within individual prokaryotic genomes. Appl. Environ. Microbiol. 76, 3886 (2010).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stoler, N. & Nekrutenko, A. Sequencing error profiles of Illumina sequencing instruments. NAR Genomics Bioinforma. 3, lqab019 (2021).Article 

    Google Scholar 
    Schirmer, M. et al. Insight into biases and sequencing errors for amplicon sequencing with the Illumina MiSeq platform. Nucleic Acids Res. 43, e37–e37 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McLaren, M. R., Willis, A. D. & Callahan, B. J. Consistent and correctable bias in metagenomic sequencing experiments. Elife 8, e46923 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gonzalez, J. M., Portillo, M. C., Belda-Ferre, P. & Mira, A. Amplification by PCR artificially reduces the proportion of the rare biosphere in microbial communities. PLoS ONE 7, e29973 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilbert, J. A., Jansson, J. K. & Knight, R. The earth microbiome project: Successes and aspirations. BMC Biol. 12, 1–4 (2014).Article 

    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U.S.A. 108, 4516–4522 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Caporaso, J. G. et al. Moving pictures of the human microbiome. Genome Biol. 12, 1–8 (2011).Article 

    Google Scholar 
    McDonald, D. et al. American gut: An open platform for citizen science microbiome research. mSystems 3, e00031-18 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Illumina. IMPORTANT NOTICE This document provides information for an application for 16S Metagenomic Sequencing Library Preparation Preparing 16S Ribosomal RNA Gene Amplicons for the Illumina MiSeq System.Teng, F. et al. Impact of DNA extraction method and targeted 16S-rRNA hypervariable region on oral microbiota profiling. Sci. Rep. 8(1), 1–12 (2018).Article 
    ADS 

    Google Scholar 
    Willis, C., Desai, D. & Laroche, J. Influence of 16S rRNA variable region on perceived diversity of marine microbial communities of the Northern North Atlantic. FEMS Microbiol. Lett. 366, fnz152 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, Z. et al. Impact of preservation method and 16S rRNA hypervariable region on gut microbiota profiling. mSystems 4, e00271-18 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sanada, T. J. et al. Gut microbiota modification suppresses the development of pulmonary arterial hypertension in an SU5416/hypoxia rat model. Pulm. Circ. 10(3), 1–3. https://doi.org/10.1177/2045894020929147 (2020).Article 
    MathSciNet 
    CAS 

    Google Scholar 
    Praeg, N., Schwinghammer, L. & Illmer, P. Larix decidua and additional light affect the methane balance of forest soil and the abundance of methanogenic and methanotrophic microorganisms. FEMS Microbiol. Lett. 366, 259 (2019).Article 

    Google Scholar 
    Vandeputte, D. et al. Quantitative microbiome profiling links gut community variation to microbial load. Nature 551(7681), 507–511 (2017).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sanders, H. L. Marine benthic diversity: A comparative study. Am. Nat. 102, 243–282. https://doi.org/10.1086/282541 (2015).Article 

    Google Scholar 
    Aitchison, J. The statistical analysis of compositional data. J. R. Stat. Soc. Ser. B 44, 139–160 (1982).MathSciNet 
    MATH 

    Google Scholar 
    Stanaway, I. B. et al. Human oral buccal microbiomes are associated with farmworker status and azinphos-methyl agricultural pesticide exposure. Appl. Environ. Microbiol. 83, e02149-16 (2017).Article 
    PubMed 

    Google Scholar 
    Grice, E. A. et al. A diversity profile of the human skin microbiota. Genome Res. 18, 1043–1050 (2008).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Payne, M. A. et al. Horizontal and vertical transfer of oral microbial dysbiosis and periodontal disease. J. Dent. Res. 98, 1503–1510 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Karasov, T. L. et al. The relationship between microbial population size and disease in the Arabidopsis thaliana phyllosphere. bioRxiv https://doi.org/10.1101/828814 (2020).Article 

    Google Scholar 
    Caporaso, J. G. et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 6(8), 1621–1624 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).Article 

    Google Scholar 
    Albanese, D., Fontana, P., De Filippo, C., Cavalieri, D. & Donati, C. MICCA: A complete and accurate software for taxonomic profiling of metagenomic data. Sci. Rep. 5(1), 1–7 (2015).Article 

    Google Scholar 
    Edgar, R. C. UNOISE2: improved error-correction for Illumina 16S and ITS amplicon sequencing. bioRxiv https://doi.org/10.1101/081257 (2016).Article 

    Google Scholar 
    Team, R. C. R: A Language and Environment for Statistical Computing. (2019).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    De Mendiburu, F. Agricolae: statistical procedures for agricultural research. R package version, 1(1). https://scholar.google.com/scholar?hl=it&as_sdt=0%2C5&q=Agricolae%3A+Statistical+Procedures+for+Agricultural+Research&btnG (2014).Mortazavi, A., Williams, B. A., McCue, K., Schaeffer, L. & Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 5(7), 621–628 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Metsalu, T. & Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 43, W566–W570 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gloor, G. B. & Reid, G. Compositional analysis: A valid approach to analyze microbiome high-throughput sequencing data. Can. J. Microbiol. https://doi.org/10.1139/cjm-2015-082162,692-703 (2016).Article 
    PubMed 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J., Blanchet, F. G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens M. H. H., Szöcs, E. & Wagner, H. vegan: Community Ecology Package. R package version 2.5-7. 2020 (2022).Wickham H (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag, New York. More

  • in

    Interannual variability in early life phenology is driven by climate and oceanic processes in two NE Atlantic flatfishes

    Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3, 1–5 (2012).
    Google Scholar 
    Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 11, 3486 (2010).Article 
    ADS 

    Google Scholar 
    Ong, J. J. L. et al. Contrasting environmental drivers of adult and Juvenile growth in a marine fish: Implications for the effects of climate change. Sci. Rep. 5, 10859 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rijnsdorp, A. D., Peck, M. A., Engelhard, G. H., Moellmann, C. & Pinnegar, J. K. Resolving the effect of climate change on fish populations. ICES J. Mar. Sci. 66(7), 1570–1583 (2009).Article 

    Google Scholar 
    Pankhurst, N. W. & Munday, P. L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62(9), 1015 (2011).Article 
    CAS 

    Google Scholar 
    Ainsworth, C. H. et al. Potential impacts of climate change on Northeast Pacific marine foodwebs and fisheries. ICES J. Mar. Sci. 68, 1217–1229 (2011).Article 

    Google Scholar 
    Morrongiello, J. R., Horn, P. L., Ó Maolagáin, C. & Sutton, P. J. H. Synergistic effects of harvest and climate drive synchronous somatic growth within key New Zealand fisheries. Glob. Change Biol. 27(7), 1470–1484 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Ottersen, G., Hjermann, D. O. & Stensenth, N. C. Changes in spawning stocks structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fish. Oceanogr. 15(3), 230–243 (2006).Article 

    Google Scholar 
    Cheung, W. W. L. & Oyinlola, M. A. Vulnerability of flatfish and their fisheries to climate change. J. Sea Res. 140, 1–10 (2018).Article 
    ADS 

    Google Scholar 
    Fedewa, E. J., Miller, J. A. & Hurst, T. P. Pre-settlement process of northern rock sole (Lepidopsetta polyxystra) in relation to interannual variability in the Gulf of Alaska. J. Sea Res. 111, 25–36 (2016).Article 
    ADS 

    Google Scholar 
    Cabral, H. N. et al. Relative importance of estuarine flatfish nurseries along the Portuguese coast. J. Sea Res. 57, 209–217 (2007).Article 
    ADS 

    Google Scholar 
    Martinho, F., van der Veer, H. W., Cabral, H. N. & Pardal, M. A. Juvenile nursery colonization patterns for the European flounder (Platichthys flesus): A latitudinal approach. J. Sea Res. 84, 61–69 (2013).Article 
    ADS 

    Google Scholar 
    Primo, A. L. et al. Contrasting links between growth and survival in the early life stages of two flatfish species. Estuar. Coast. Shelf Sci. 254, 107314 (2021).Article 

    Google Scholar 
    Vaz, A., Scarcella, G., Pardal, M. A. & Martinho, F. Water temperature gradients drive early life-history patterns of the common sole (Solea solea L.) in the Northeast Atlantic and Mediterranean. Aquat. Ecol. 53(5) (2019).Geffen, A., van der Veer, H. W. & Nash, R. The cost of metamorphosis in flatfishes. J. Sea Res. 58(1), 35–45 (2007).Article 
    ADS 

    Google Scholar 
    Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity in marine populations: Open or closed?. Science 287, 857–859 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gillanders, B. M., Black, B. A., Meekan, M. G. & Morrison, M. A. Climatic effects on the growth of a temperate reef fish from the Southern Hemisphere: a biochronological approach. Mar. Biol. 159, 1327–1333 (2012).Article 

    Google Scholar 
    Treml, E. A., Ford, J. R., Black, K. P. & Swearer, S. E. Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in the sea. Mov. Ecol. 3(1), 345 (2015).Article 

    Google Scholar 
    Gibson, R. N. Behaviour and the distribution of flatfishes. J. Sea Res. 37(1997), 241–256 (1997).Article 
    ADS 

    Google Scholar 
    Mellado-Cano, J., Barriopedro, D., García-Herrera, R., Trigo, R. M. & Hernández, A. Examining the North Atlantic Oscillation, East Atlantic Pattern, and jet variability since 1685. J. Clim. 32, 6285–6298 (2019).Article 
    ADS 

    Google Scholar 
    Tanner, S. E. et al. Marine regime shifts impact synchrony of deep-sea fish growth in the northeast Atlantic. Oikos 129(12), 1781–1794 (2020).Article 

    Google Scholar 
    Trigo, R. M., Osborn, T. J. & Corte-Real, J. M. The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms. Clim. Res. 20, 9–17 (2002).Article 

    Google Scholar 
    Leis, J. M. et al. Does fish larval dispersal differ between high and low latitudes?. Proc. R. Soc. B Biol. Sci. 280(1759), 20130327 (2013).Article 

    Google Scholar 
    Raventos, N., Torrado, H., Arthur, R., Alcoverro, T. & Macpherson, E. Temperature reduces fish dispersal as larvae grow faster to their settlement size. J. Anim. Ecol. 90(6), 1419–1432 (2021).Article 
    PubMed 

    Google Scholar 
    Santos, A. M. P. et al. Physical-biological interactions in the life history of small Pelagic Fish in the Western Iberia upwelling ecosystem. Prog. Oceanogr. 74(2), 192–209 (2007).Article 
    ADS 

    Google Scholar 
    Le Pape, O. & Bonhommeau, S. The food limitation hypothesis for juvenile marine fish. Fish Fish. 16(3), 373–398 (2015).Article 

    Google Scholar 
    Fox, C. et al. Birth-date selection in early life stage of plaice Pleuronectes platessa in the eastern Irish Sea (British Isles). Mar. Ecol. Prog. Ser. 345, 255–269 (2007).Article 
    ADS 

    Google Scholar 
    Joh, M. & Wada, A. Inter-annual and spatial difference in hatch date and settlement date distribution and planktonic larval duration in yellow striped flounder Pseudopleuronectes Herzensteini. J. Sea Res. 137, 26–34 (2018).Article 
    ADS 

    Google Scholar 
    Pinto, M. et al. Influence of oceanic and climate conditions on the early life history of European seabass Dicentrarchus labrax. Mar. Environ. Res. 169, 105362 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Morais, P., Dias, E., Babaluk, J. & Antunes, C. The migration patterns of the European flounder Platichthys flesus (Linnaeus, 1758) (Pleuronectidae, Pisces) at the southern limit of its distribution range: Ecological implications and fishery management. J. Sea Res. 65, 235–246 (2011).Article 
    ADS 

    Google Scholar 
    Lacroix, G., Maes, G. E., Bolle, L. J. & Volckaert, F. Modelling dispersal dynamics of the early life stages of a marine flatfish (Solea Solea L.). J. Sea Res. 84(C), 13–25 (2013).Article 
    ADS 

    Google Scholar 
    Tanner, S. E., Teles-Machado, A., Martinho, F., Peliz, A. & Cabral, H. N. Modelling larval dispersal Dynamics of common sole (Solea solea) along the western Iberian coast. Prog. Oceanogr. 156, 78–90 (2017).Article 
    ADS 

    Google Scholar 
    Amorim, E., Ramos, S., Elliott, M. & Bordalo, A. A. Immigration and early life stages recruitment of the European flounder (Platichthys flesus) to an estuarine nursery: The influence of environmental factors. J. Sea Res. 107(Part 1), 56–66 (2016).Article 
    ADS 

    Google Scholar 
    Vasconcelos, R. P., Reis-Santos, P., Costa, M. J. & Cabral, H. N. Connectivity between estuaries and marine environment: Integrating metrics to assess estuarine nursery function. Ecol. Indic. 11(5), 1123–1133 (2011).Article 

    Google Scholar 
    Orio, A. et al. Spatial contraction of demersal fish populations in a large marine ecosystem. J. Biogeogr. 46(3), 633–645 (2019).Article 

    Google Scholar 
    Peliz, A., Rosa, T. L., Santos, A. M. P. & Pissarra, J. L. Fronts, jets, and counter-flows in the Western Iberian upwelling system. J. Mar. Syst. 35, 61–77 (2002).Article 

    Google Scholar 
    Teles-Machado, A., Peliz, A., McWilliams, J. C., Dubert, J. & Le Cann, B. Circulation on the Northwestern Iberian Margin: Swoddies. Prog. Oceanogr 140, 116–133 (2016).Article 
    ADS 

    Google Scholar 
    Primo, A. L. et al. Colonization and nursery habitat use patterns of larval and juvenile flatfish species in a small temperate estuary. J. Sea. Res. 76(C), 126–134 (2013).Article 
    ADS 

    Google Scholar 
    Vasconcelos, R. P. et al. Evidence of estuarine nursery origin of five coastal fish species along the Portuguese coast through otolith elemental fingerprints. Estuar. Coast. Shelf Sci. 79, 317–327 (2008).Article 
    ADS 

    Google Scholar 
    du Sert, N. P. et al. The ARRIVAGE guidelines 2.0: updated guidelines for reporting animal research. J. Physiol. Lond. 598(18), 3793–3801 (2020).Article 

    Google Scholar 
    Trigo, R. M. et al. The impact of north atlantic wind and cyclone trends on European precipitation and significant wave height in the Atlantic. Ann. N. Y. Acad. Sci. 1146(1), 212–234 (2008).Article 
    ADS 
    PubMed 

    Google Scholar 
    Murase, H., Nagashima, H., Yonezaki, S., Matsukura, R. & Kitakado, T. Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of Pelagic Fish and Krill: a Case Study in Senday Bay, Japan. ICES J. Mar. Sci. 66(6), 1417–1424 (2009).Article 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73(1), 3–36 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Tanner, S. E. et al. Regional climate, primary productivity and fish biomass drive growth cariation and population resilience in a small pelagic fish. Ecol. Indic. 103, 530–541 (2019).Article 

    Google Scholar 
    Almeida, J. R., Gravato, C. & Guilermino, L. Effects of temperature in juvenile Seabass (Dicentrarchus labrax L.) biomarker responses and behaviour: implications for environmental monitoring. Estuaries Coasts 38, 45–55 (2015).Article 
    CAS 

    Google Scholar 
    Sims, D. W., Wearmouth, V. J., Genner, M. J., Southward, A. J. & Hawkins, S. J. Low-temperature-driven early spawning migration of a temperate marine fish. J. Anim. Ecol. 73(2), 333–341 (2004).Article 

    Google Scholar 
    Faria, A. M., Muha, T., Morote, R. & Chicharro, M. A. Influence of starvation on the critical swimming behaviour of the Senegalensis sole (Solea senegalensis) and its relationship with RNA/DNA ratios during ontogeny. Sci. Mar. 75(1), 87–94 (2011).Article 
    CAS 

    Google Scholar 
    Downie, A. T., Illing, B., Faria, A. M. & Rummer, J. L. Swimming performance of marine fish larvae: review of a universal trait under ecological and environmental pressure. Rev. Fish Biol. Fish. 30, 93–108 (2020).Article 

    Google Scholar 
    Durant, J. M. et al. Contrasting effects of rising temperatures on trophic interactions in marine ecosystems. Na. Sci. Rep. 9(1), 15213 (2019).Article 
    ADS 

    Google Scholar 
    Stenseth, N. C. et al. Ecological effects of climate fluctuations. Science 297(5585), 1292–1296 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Harrington, A. M., Clark, K. F. & Hamlin, H. J. Expected ocean warming conditions significantly alter the transcriptone of developing postlarval American lobsters (Homarus americanus): Implications for energetic trade-offs. Comp. Biochem. Physiol. D Genom. Proteom. 36, 100716 (2020).CAS 

    Google Scholar 
    Pörtner, H. O. & Farrell, A. P. Ecology. Physiol. Clim. Change. Sci. 322(5902), 690–692 (2008).
    Google Scholar 
    Drinkwater, K. F. et al. On the processes linking climate to ecosystem changes. J. Mar. Syst. 79, 374–388 (2010).Article 

    Google Scholar 
    Alix, M., Kjesbu, O. S. & Anderson, K. C. From Gametogenesis to spawning: How climate-driven warming affects teleost reproductive biology. J. Fish Biol. 97(3), 607–632 (2020).Article 
    PubMed 

    Google Scholar 
    Conover, D. O. & Present, T. M. C. Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes. Oceanologia 83, 316–324 (1990).ADS 

    Google Scholar 
    van de Wolfshaar, K. E., Barbut, L. & Lacroix, G. From spawning to first-year recruitment: the fate of Juvenile Sole Growth and survival under future climate conditions in the North Sea. ICES J. Mar. Sci. (2021).Cabral, H. et al. Contrasting impacts of climate change on connectivity and larval recruitment to estuarine nursery areas. Prog. Oceanogr. 196, 102608 (2011).Article 

    Google Scholar 
    Iglesias, I., Lorenzo, M. N. & Taboada, J. J. Seasonal predictability of the East Atlantic Pattern from sea surface temperatures. PLoS ONE 9(1), 86439–86448 (2014).Article 
    ADS 

    Google Scholar 
    Rodríguez-Puebla, C., Encinas, A. H., García-Casado, L. A. & Nieto, S. Trends in warm days and cold nights over the Iberian Peninsula: relationships to large-scale variables. Clim. Change 100(3), 667–684 (2010).Article 
    ADS 

    Google Scholar 
    Hurrell, J. W. & Van Loon, H. Decadal variations in climate associated with the North Atlantic oscillation. Clim. Change 36, 301–326 (1997).Article 

    Google Scholar 
    Henderson, P. A. & Seaby, R. M. The role of climate in determining the temporal variation in abundance, recruitment and growth of sole Solea solea in the Bristol Channel. JMBA 85, 197–204 (2005).
    Google Scholar 
    Rodwell, M. J., Rowell, D. P. & Folland, C. K. Oceanic forcing of the wintertime North Atlantic Oscillation and European Climate. Letters to Nature 398, 320–323 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Hurrell, J. W. Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Sci. 269, 676–679 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Avalos, M. R. et al. Comparing the foraging strategies of a seabird predator when recovering from drastic climatic event. Mar. Biol. 164, 48 (2017).Article 

    Google Scholar 
    Wang, C., Liu, H. & Lee, S. K. The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere. Atmos. Sci. Lett. 11(3), 161–168 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodrigo, F. S. Exploring combined influences of Seasonal East Atlantic (EA) and North Atlantic Oscillation (NAO) on the temperature-precipitation relationship in the Iberian Peninsula. Geosciences 11(5), 211 (2021).Article 
    ADS 

    Google Scholar 
    Alvarez, I., Gommez-Gesteira, M., Decastro, M. & Dias, J. M. Spatiotemporal evolution of upwelling regime along the western coast of the Iberian Peninsula. J. Geophys. Res. Oceans 113(C7), C07020 (2008).Article 
    ADS 

    Google Scholar 
    Demarcq, H. Trends in primary production, Sea surface temperature and wind in upwelling systems (1998–2007). Prog. Oceanogr. 83(1), 376–385 (2009).Article 
    ADS 

    Google Scholar 
    Thorrold, S. R., Latkoczy, C., Swart, P. K. & Jones, C. M. Natal homing in a marine fish metapopulation. Science 291, 297–299 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Pan-Arctic marine biodiversity and species co-occurrence patterns under recent climate

    Randelhoff, A. et al. Pan-Arctic ocean primary production constrained by turbulent nitrate fluxes. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00150 (2020).Article 

    Google Scholar 
    Wegner, C. et al. Variability in transport of terrigenous material on the shelves and the deep Arctic Ocean during the Holocene. Polar Res. https://doi.org/10.3402/polar.v%v.24964 (2015).Article 

    Google Scholar 
    Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70. https://doi.org/10.1016/j.pocean.2015.05.002 (2015).Article 
    ADS 

    Google Scholar 
    Lewis, K. M., van Dijken, G. L. & Arrigo, K. R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science 369, 198–202. https://doi.org/10.1126/science.aay8380 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mueter, F. J. et al. Possible future scenarios in the gateways to the Arctic for Subarctic and Arctic marine systems: II. Prey resources, food webs, fish, and fisheries. ICES J. Mar. Sci. 78, 3017–3045. https://doi.org/10.1093/icesjms/fsab122 (2021).Article 

    Google Scholar 
    Alabia, I. D. et al. Multiple facets of marine biodiversity in the Pacific Arctic under future climate. Sci. Total Environ. 744, 140913. https://doi.org/10.1016/j.scitotenv.2020.140913 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    CAFF. Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. (Conservation of Arctic Flora and Fauna, Akureyri, Iceland, 2013).Stafford, K. M., Farley, E. V., Ferguson, M., Kuletz, K. J. & Levine, R. Northward range expansion of subarctic upper trophic level animals into the Pacific Arctic Region. Oceanography. 35, 158–166. https://doi.org/10.5670/oceanog.2022.101 (2022).Csapó, H. K., Grabowski, M. & Węsławski, J. M. Coming home—Boreal ecosystem claims Atlantic sector of the Arctic. Sci. Total Environ. 771, 144817. https://doi.org/10.1016/j.scitotenv.2020.144817 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl. Acad. Sci. 114, 12202–12207. https://doi.org/10.1073/pnas.1706080114 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gordó-Vilaseca, C., Stephenson, F., Coll, M., Lavin, C. & Costello, M. J. Three decades of increasing fish biodiversity across the northeast Atlantic and the Arctic Ocean. Proc. Natl. Acad. Sci. 120, e2120869120. https://doi.org/10.1073/pnas.2120869120 (2023).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kalenitchenko, D., Joli, N., Potvin, M., Tremblay, J. -É. & Lovejoy, C. Biodiversity and species change in the arctic ocean: A view through the lens of nares strait. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00479 (2019).Article 

    Google Scholar 
    Michel, C. et al. Arctic Ocean outflow shelves in the changing Arctic: A review and perspectives. Prog. Oceanogr. 139, 66–88. https://doi.org/10.1016/j.pocean.2015.08.007 (2015).Article 
    ADS 

    Google Scholar 
    Ribeiro, S. et al. Vulnerability of the North Water ecosystem to climate change. Nat. Commun. 12, 4475. https://doi.org/10.1038/s41467-021-24742-0 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: Why ecological interaction networks vary through space and time. Oikos 124, 243–251. https://doi.org/10.1111/oik.01719 (2015).Article 

    Google Scholar 
    Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evolut. 4, 376–383. https://doi.org/10.1038/s41559-020-1099-4 (2020).Article 

    Google Scholar 
    Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063. https://doi.org/10.1111/ele.13525 (2020).Article 
    PubMed 

    Google Scholar 
    Michael, E. L. Marine ecology and the coefficient of association: A plea in behalf of quantitative biology. J. Ecol. 8, 54–59. https://doi.org/10.2307/2255213 (1920).Article 

    Google Scholar 
    Gotelli, N. J., Graves, G. R. & Rahbek, C. Macroecological signals of species interactions in the Danish avifauna. Proc. Natl. Acad. Sci. 107, 5030–5035. https://doi.org/10.1073/pnas.0914089107 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gotelli, N. J. & McCabe, D. J. Species co-occurrence: A meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83, 2091–2096. https://doi.org/10.1890/0012-9658(2002)083[2091:SCOAMA]2.0.CO;2 (2002).Article 

    Google Scholar 
    Ulrich, W. Species co-occurrences and neutral models: Reassessing J. M. Diamond’s Assembly Rules. Oikos 107, 603–609 (2004).Article 

    Google Scholar 
    Kraan, C., Thrush, S. F. & Dormann, C. F. Co-occurrence patterns and the large-scale spatial structure of benthic communities in seagrass meadows and bare sand. BMC Ecol. 20, 37. https://doi.org/10.1186/s12898-020-00308-4 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tulloch, A. I. T., Chadès, I. & Lindenmayer, D. B. Species co-occurrence analysis predicts management outcomes for multiple threats. Nat. Ecol. Evolut. 2, 465–474. https://doi.org/10.1038/s41559-017-0457-3 (2018).Article 

    Google Scholar 
    Drinkwater, K. F. et al. Possible future scenarios for two major Arctic Gateways connecting Subarctic and Arctic marine systems: I. Climate and physical–chemical oceanography. ICES J. Mar. Sci. 78, 3046–3065. https://doi.org/10.1093/icesjms/fsab182 (2021).Article 

    Google Scholar 
    Pilfold, N. W., McCall, A., Derocher, A. E., Lunn, N. J. & Richardson, E. Migratory response of polar bears to sea ice loss: To swim or not to swim. Ecography 40, 189–199. https://doi.org/10.1111/ecog.02109 (2017).Article 

    Google Scholar 
    Chambault, P. et al. The impact of rising sea temperatures on an Arctic top predator, the narwhal. Sci. Rep. 10, 18678. https://doi.org/10.1038/s41598-020-75658-6 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perovich, D. et al. Arctic Report Card 2020: Sea Ice. https://doi.org/10.25923/n170-9h57 (2020).Post, E. et al. Ecological dynamics across the arctic associated with recent climate change. Science 325, 1355–1358. https://doi.org/10.1126/science.1173113 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Post, E. et al. Ecological consequences of sea-ice decline. Science 341, 519–524. https://doi.org/10.1126/science.1235225 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bienhold, C. et al. Effects of sea ice retreat and ocean warming on the Laptev Sea continental slope ecosystem (1993 vs 2012). Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.1004959 (2022).Article 

    Google Scholar 
    Olafsdottir, A. H. et al. Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep Sea Res. Part II 159, 152–168. https://doi.org/10.1016/j.dsr2.2018.05.023 (2019).Article 

    Google Scholar 
    MacKenzie, B. R., Payne, M. R., Boje, J., Høyer, J. L. & Siegstad, H. A cascade of warming impacts brings bluefin tuna to Greenland waters. Glob. Change Biol. 20, 2484–2491. https://doi.org/10.1111/gcb.12597 (2014).Article 
    ADS 

    Google Scholar 
    Alabia, I. D. et al. Distribution shifts of marine taxa in the Pacific Arctic under contemporary climate changes. Divers. Distrib. 24, 1583–1597. https://doi.org/10.1111/ddi.12788 (2018).Article 

    Google Scholar 
    Stewart, D. B. & Barber, D. G. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 1–38 (Springer Netherlands, 2010).Ferland, J., Gosselin, M. & Starr, M. Environmental control of summer primary production in the Hudson Bay system: The role of stratification. J. Mar. Syst. 88, 385–400. https://doi.org/10.1016/j.jmarsys.2011.03.015 (2011).Article 

    Google Scholar 
    Peacock, E., Derocher, A. E., Lunn, N. J. & Obbard, M. E. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 93–116 (Springer Netherlands, 2010).Chambellant, M. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 137–158 (Springer Netherlands, 2010).Mallory, M. L., Gaston, A. J., Gilchrist, H. G., Robertson, G. J. & Braune, B. M. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 179–195 (Springer Netherlands, 2010).Lone, K., Hamilton, C. D., Aars, J., Lydersen, C. & Kovacs, K. M. Summer habitat selection by ringed seals (Pusa hispida) in the drifting sea ice of the northern Barents Sea. Polar Res. https://doi.org/10.33265/polar.v38.3483 (2019).Article 

    Google Scholar 
    Jackson, R. et al. Holocene polynya dynamics and their interaction with oceanic heat transport in northernmost Baffin Bay. Sci. Rep. 11, 10095. https://doi.org/10.1038/s41598-021-88517-9 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stafford, K. M. et al. Beluga whales in the western Beaufort Sea: Current state of knowledge on timing, distribution, habitat use and environmental drivers. Deep Sea Res. Part II 152, 182–194. https://doi.org/10.1016/j.dsr2.2016.11.017 (2018).Article 

    Google Scholar 
    Kuletz, K. J. et al. Seasonal spatial patterns in seabird and marine mammal distribution in the eastern Chukchi and western Beaufort seas: Identifying biologically important pelagic areas. Prog. Oceanogr. 136, 175–200. https://doi.org/10.1016/j.pocean.2015.05.012 (2015).Article 
    ADS 

    Google Scholar 
    Polyakov, I. V. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-arctic seas. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00491 (2020).Article 

    Google Scholar 
    Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677. https://doi.org/10.1038/nclimate2647 (2015).Article 
    ADS 

    Google Scholar 
    Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212. https://doi.org/10.1002/2014GL061047 (2014).Article 
    ADS 

    Google Scholar 
    Randelhoff, A. & Sundfjord, A. Short commentary on marine productivity at Arctic shelf breaks: Upwelling, advection and vertical mixing. Ocean Sci. 14, 293–300. https://doi.org/10.5194/os-14-293-2018 (2018).Article 
    ADS 

    Google Scholar 
    Bluhm, B. A. et al. The Pan-Arctic continental slope: sharp gradients of physical processes affect pelagic and benthic ecosystems. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.544386 (2020).Article 

    Google Scholar 
    Daase, M., Berge, J., Søreide, J. E. & Falk-Petersen, S. in Arctic Ecology (ed David N. Thomas) Ch. 9, 219–259 (Wiley, 2021).McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002 (2006).Article 
    PubMed 

    Google Scholar 
    Young, K. A. Asymmetric competition, habitat selection, and niche overlap in Juvenile Salmonids. Ecology 85, 134–149 (2004).Article 

    Google Scholar 
    Aguilera, M. A., Valdivia, N., Broitman, B. R., Jenkins, S. R. & Navarrete, S. A. Novel co-occurrence of functionally redundant consumers induced by range expansion alters community structure. Ecology 101, e03150. https://doi.org/10.1002/ecy.3150 (2020).Article 
    PubMed 

    Google Scholar 
    Usinowicz, J. & Levine, J. M. Species persistence under climate change: A geographical scale coexistence problem. Ecol. Lett. 21, 1589–1603. https://doi.org/10.1111/ele.13108 (2018).Article 
    PubMed 

    Google Scholar 
    Durant, J. M. et al. Contrasting effects of rising temperatures on trophic interactions in marine ecosystems. Sci. Rep. 9, 15213. https://doi.org/10.1038/s41598-019-51607-w (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Baquero, G. & Crujeiras, R. M. Can environmental constraints determine random patterns of plant species co-occurrence?. Ecol. Evol. 5, 1088–1099. https://doi.org/10.1002/ece3.1349 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bar-Massada, A. Complex relationships between species niches and environmental heterogeneity affect species co-occurrence patterns in modelled and real communities. Proc. R. Soc. B Biol. Sci. 282, 20150927. https://doi.org/10.1098/rspb.2015.0927 (2015).Article 

    Google Scholar 
    Overland, J. E., Wang, M., Walsh, J. E. & Stroeve, J. C. Future Arctic climate changes: Adaptation and mitigation time scales. Earth’s Future 2, 68–74. https://doi.org/10.1002/2013EF000162 (2014).Article 
    ADS 

    Google Scholar 
    Hirawake, T. et al. Response and biodiversity of Arctic ecosystems to environmental change: Findings from the ArCS project. Polar Sci. https://doi.org/10.1016/j.polar.2020.100533 (2020).Article 

    Google Scholar 
    Solan, M., Archambault, P., Renaud, P. E. & März, C. The changing Arctic Ocean: Consequences for biological communities, biogeochemical processes and ecosystem functioning. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378, 20200266. https://doi.org/10.1098/rsta.2020.0266 (2020).Article 
    ADS 

    Google Scholar 
    Timmermans, M.-L. & Marshall, J. Understanding Arctic Ocean circulation: A review of ocean dynamics in a changing climate. J. Geophys. Res. Oceans. 125, e2018JC014378. https://doi.org/10.1029/2018JC014378 (2020).Article 
    ADS 

    Google Scholar 
    Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1 (2007).Article 
    ADS 

    Google Scholar 
    Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M (2009).Lehodey, P., Murtugudde, R. & Senina, I. Bridging the gap from ocean models to population dynamics of large marine predators: A model of mid-trophic functional groups. Prog. Oceanogr. 84, 69–84. https://doi.org/10.1016/j.pocean.2009.09.008 (2010).Article 
    ADS 

    Google Scholar 
    Green, D. B. et al. Modelled mid-trophic pelagic prey fields improve understanding of marine predator foraging behaviour. Ecography 43, 1014–1026. https://doi.org/10.1111/ecog.04939 (2020).Article 

    Google Scholar 
    Pérez-Jorge, S. et al. Environmental drivers of large-scale movements of baleen whales in the mid-North Atlantic Ocean. Divers. Distrib. 26, 683–698. https://doi.org/10.1111/ddi.13038 (2020).Article 

    Google Scholar 
    Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545. https://doi.org/10.1111/ecog.01132 (2015).Article 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x (2012).Article 

    Google Scholar 
    Thuiller, W., Georges D., Gueguen, M., Engler, R., & Breiner, F. biomod2: Ensemble Platform for species Distribution Modeling. R package version 3.5.1. http://CRAN.R-project.org/package=biomod2 (2021). Accessed on 15 January 2022.
    Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x (2012).Article 

    Google Scholar 
    Griffith, D. M., Veech, J. A. & Marsh, C. J. cooccur: Probabilistic species co-occurrence analysis in R. J. Stat. Softw. Code Snippets 69, 1–17. https://doi.org/10.18637/jss.v069.c02 (2016).Article 

    Google Scholar 
    Veech, J. A. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260. https://doi.org/10.1111/j.1466-8238.2012.00789.x (2013).Article 

    Google Scholar 
    Abdi, A. M. et al. First assessment of the plant phenology index (PPI) for estimating gross primary productivity in African semi-arid ecosystems. Int. J. Appl. Earth Obs. Geoinf. 78, 249–260. https://doi.org/10.1016/j.jag.2019.01.018 (2019).Article 
    ADS 

    Google Scholar 
    Ban, S. S., Alidina, H. M., Okey, T. A., Gregg, R. M. & Ban, N. C. Identifying potential marine climate change Refugia: A case study in Canada’s Pacific marine ecosystems. Glob. Ecol. Conserv. 8, 41–54. https://doi.org/10.1016/j.gecco.2016.07.004 (2016).Article 

    Google Scholar 
    Alabia, I. D. et al. Marine biodiversity Refugia in a climate-sensitive subarctic shelf. Glob. Change Biol. 27, 3299–3311. https://doi.org/10.1111/gcb.15632 (2021).Article 

    Google Scholar 
    Alabia, I. D., Saitoh, S.-I., Igarashi, H., Ishikawa, Y. & Imamura, Y. Spatial habitat shifts of oceanic cephalopod (Ommastrephes bartramii) in oscillating climate. Remote Sensing. https://doi.org/10.3390/rs12030521 (2020).Article 

    Google Scholar  More