More stories

  • in

    Bird populations most exposed to climate change are less sensitive to climatic variation

    Gienapp, P., Reed, T. E. & Visser, M. E. Why climate change will invariably alter selection pressures on phenology. Proc. R. Soc. B 281, 20141611 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parmesan, C. Influences of species, latitudes and methodologies on estimates of phenological response to global warming. Glob. Change Biol. 13, 1860–1872 (2007).ADS 
    Article 

    Google Scholar 
    Root, T. L. et al. Fingerprints of global warming on wild animals and plants. Nature 421, 57–60 (2003).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thackeray, S. J. et al. Phenological sensitivity to climate across taxa and trophic levels. Nature 535, 241–245 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thackeray, S. J. et al. Trophic level asynchrony in rates of phenological change for marine, freshwater and terrestrial environments. Glob. Change Biol. 16, 3304–3313 (2010).ADS 
    Article 

    Google Scholar 
    Blondel, J., Dias, P. C., Perret, P., Maistre, M. & Lambrechts, M. M. Selection-based biodiversity at a small spatial scale in a low-dispersing insular bird. Science 285, 1399–1402 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).ADS 
    Article 

    Google Scholar 
    Inouye, D. W., Barr, B., Armitage, K. B. & Inouye, B. D. Climate change is affecting altitudinal migrants and hibernating species. Proc. Natl Acad. Sci. 97, 1630–1633 (2000).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walther, G.-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Reneerkens, J. et al. Effects of food abundance and early clutch predation on reproductive timing in a high Arctic shorebird exposed to advancements in arthropod abundance. Ecol. Evol. 6, 7375–7386 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonamour, S., Chevin, L.-M., Charmantier, A. & Teplitsky, C. Phenotypic plasticity in response to climate change: the importance of cue variation. Philos. Trans. R. Soc. B Biol. Sci. 374, 20180178 (2019).Article 

    Google Scholar 
    Saalfeld, S. T. & Lanctot, R. B. Multispecies comparisons of adaptability to climate change: a role for life-history characteristics? Ecol. Evol. 7, 10492–10502 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Visser, M. E. et al. Variable responses to large-scale climate change in European Parus populations. Proc. R. Soc. Lond. B Biol. Sci. 270, 367–372 (2003).Article 

    Google Scholar 
    Wolkovich, E. M. et al. Warming experiments underpredict plant phenological responses to climate change. Nature 485, 494–497 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Asch, M. V., Tienderen, P. H. V., Holleman, L. J. M. & Visser, M. E. Predicting adaptation of phenology in response to climate change, an insect herbivore example. Glob. Change Biol. 13, 1596–1604 (2007).ADS 
    Article 

    Google Scholar 
    Silverin, B. et al. Ambient temperature effects on photo induced gonadal cycles and hormonal secretion patterns in Great Tits from three different breeding latitudes. Horm. Behav. 54, 60–68 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).ADS 
    Article 

    Google Scholar 
    Visser, M. E. & Gienapp, P. Evolutionary and demographic consequences of phenological mismatches. Nat. Ecol. Evol. 3, 879–885 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Silverin, B., Massa, R. & Stokkan, K. A. Photoperiodic adaptation to breeding at different latitudes in great tits. Gen. Comp. Endocrinol. 90, 14–22 (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    Phillimore, A. B. et al. Passerines may be sufficiently plastic to track temperature‐mediated shifts in optimum lay date. Glob. Chang Biol. 22, 3259–3272 (2016).ADS 
    Article 
    PubMed 

    Google Scholar 
    Bailey, L. D. & van de Pol, M. climwin: an R toolbox for climate window analysis. PLoS ONE 11, e0167980 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van de Pol, M. et al. Identifying the best climatic predictors in ecology and evolution. Methods Ecol. Evol. 7, 1246–1257 (2016).Article 

    Google Scholar 
    Van de Pol, M. & Bailey, L. D. Quantifying the climatic sensitivity of individuals, populations, and species. Eff. Clim. Change Birds 44; pp. 44–59 (2019).Culina, A. et al. Connecting the data landscape of long‐term ecological studies: the SPI‐Birds data hub. J. Anim. Ecol. https://doi.org/10.1111/1365-2656.13388 (2020).Verhagen, I., Tomotani, B. M., Gienapp, P. & Visser, M. E. Temperature has a causal and plastic effect on timing of breeding in a small songbird. J. Exp. Biol. 223, jeb218784 (2020).Article 
    PubMed 

    Google Scholar 
    Buse, A., Dury, S. J., Woodburn, R. J. W., Perrins, C. M. & Good, J. E. G. Effects of elevated temperature on multi-species interactions: the case of Pedunculate Oak, Winter Moth and Tits. Funct. Ecol. 13, 74–82 (1999).Article 

    Google Scholar 
    Van Noordwijk, A. J., McCleery, R. H. & Perrins, C. M. Selection for the timing of great tit breeding in relation to caterpillar growth and temperature. J. Anim. Ecol. 64, 451–458 (1995).Article 

    Google Scholar 
    Visser, M. E., Holleman, L. J. M. & Gienapp, P. Shifts in caterpillar biomass phenology due to climate change and its impact on the breeding biology of an insectivorous bird. Oecologia 147, 164–172 (2006).ADS 
    Article 
    PubMed 

    Google Scholar 
    Foden, W. B. et al. Identifying the world’s most climate change vulnerable species: a systematic trait-based assessment of all birds, amphibians and corals. PLOS ONE 8, e65427 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).ADS 
    Article 

    Google Scholar 
    Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A. & Langham, G. Towards an integrated framework for assessing the vulnerability of species to climate change. PLOS Biol. 6, e325 (2008).Article 
    CAS 
    PubMed Central 

    Google Scholar 
    Dhondt, A. A., Eyckerman, R., Moermans, R. & Hublé, J. Habitat and laying date of Great and Blue Tit Parus major and P. caeruleus. Ibis 126, 388–397 (1984).Article 

    Google Scholar 
    Bourgault, P., Thomas, D., Perret, P. & Blondel, J. Spring vegetation phenology is a robust predictor of breeding date across broad landscapes: a multi-site approach using the Corsican blue tit (Cyanistes caeruleus). Oecologia 162, 885–892 (2010).ADS 
    Article 
    PubMed 

    Google Scholar 
    Blondel, J., Dias, P. C., Maistre, M. & Perret, P. Habitat Heterogeneity and Life-History Variation of Mediterranean Blue Tits (Parus caeruleus). Auk 110, 511–520 (1993).Article 

    Google Scholar 
    Blondel, J., Dervieux, A., Maistre, M. & Perret, P. Feeding ecology and life history variation of the blue tit in Mediterranean deciduous and sclerophyllous habitats. Oecologia 88, 9–14 (1991).ADS 
    Article 
    PubMed 

    Google Scholar 
    Vatka, E., Orell, M. & Rytkönen, S. Warming climate advances breeding and improves synchrony of food demand and food availability in a boreal passerine. Glob. Change Biol. 17, 3002–3009 (2011).ADS 
    Article 

    Google Scholar 
    Massa, B., Cusimano, C. A., Margagliotta, B. & Galici, R. Reproductive characteristics and differential response to seasonal temperatures of blue and great tits (Cyanistes caeruleus & Parus major) in three neighbouring mediterranean habitats. Rev. Ecol. 66, 157–172 (2011).
    Google Scholar 
    Both, C., van Asch, M., Bijlsma, R. G., van den Burg, A. B. & Visser, M. E. Climate change and unequal phenological changes across four trophic levels: constraints or adaptations? J. Anim. Ecol. 78, 73–83 (2009).Article 
    PubMed 

    Google Scholar 
    Nolet, B. A. et al. Faltering lemming cycles reduce productivity and population size of a migratory Arctic goose species. J. Anim. Ecol. 82, 804–813 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petanidou, T. et al. Variable flowering phenology and pollinator use in a community suggest future phenological mismatch. Acta Oecologica 59, 104–111 (2014).ADS 
    Article 

    Google Scholar 
    McLean, N., van der Jeugd, H. P. & van de. Pol, M. High intra-specific variation in avian body condition responses to climate limits generalisation across species. PLOS ONE 13, e0192401 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van de Pol, M. & Wright, J. A simple method for distinguishing within-versus between-subject effects using mixed models. Anim. Behav. 77, 753–758 (2009).Article 

    Google Scholar 
    Radchuk, V. et al. Adaptive responses of animals to climate change are most likely insufficient. Nat. Commun. 10, 3109 (2019).ADS 
    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Burgess, M. D. et al. Tritrophic phenological match–mismatch in space and time. Nat. Ecol. Evol. 2, 970–975 (2018).Article 
    PubMed 

    Google Scholar 
    Martin, R. O., Cunningham, S. J. & Hockey, P. A. R. Elevated temperatures drive fine-scale patterns of habitat use in a savanna bird community. Ostrich 86, 127–135 (2015).Article 

    Google Scholar 
    Latimer, C. E. & Zuckerberg, B. Forest fragmentation alters winter microclimates and microrefugia in human-modified landscapes. Ecography 40, 158–170 (2017).Article 

    Google Scholar 
    Frey, S. J. K. et al. Spatial models reveal the microclimatic buffering capacity of old-growth forests. Sci. Adv. 2, e1501392 (2016).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Tang, H. et al. Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sens. Environ. 231, 111262 (2019).ADS 
    Article 

    Google Scholar 
    Visser, M. E. & Both, C. Shifts in phenology due to global climate change: the need for a yardstick. Proc. Biol. Sci. 272, 2561–2569 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    Samplonius, J. M. et al. Strengthening the evidence base for temperature-mediated phenological asynchrony and its impacts. Nat. Ecol. Evol. 5, 155–164 (2021).Article 
    PubMed 

    Google Scholar 
    Langmore, N. E., Bailey, L. D., Heinsohn, R. G., Russell, A. F. & Kilner, R. M. Egg size investment in superb fairy-wrens: helper effects are modulated by climate. Proc. Biol. Sci. 283, 20161875 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    del Hoyo, J. et al. Handbook of the Birds of the World and BirdLife International Illustrated Checklist of the Birds of the World (Lynx Edicions/Birdlife International, 2016).Both, C. et al. Large–scale geographical variation confirms that climate change causes birds to lay earlier. Proc. R. Soc. Lond. B Biol. Sci. 271, 1657–1662 (2004).Article 

    Google Scholar 
    Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmospheres 113, D20119 (2008).ADS 
    Article 

    Google Scholar 
    Klok, E. J. & Klein Tank, A. M. G. Updated and extended European dataset of daily climate observations. Int. J. Climatol. 29, 1182–1191 (2009).Article 

    Google Scholar 
    Simmonds, E. G., Cole, E. F. & Sheldon, B. C. Cue identification in phenology: a case study of the predictive performance of current statistical tools. J. Anim. Ecol. 88, 1428–1440 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Samplonius, J. M. et al. Phenological sensitivity to climate change is higher in resident than in migrant bird populations among European cavity breeders. Glob. Change Biol. 24, 3780–3790 (2018).ADS 
    Article 

    Google Scholar 
    Slagsvold, T. Annual and geographical variation in the time of breeding of the great tit Parus major and the Pied Flycatcher Ficedula hypoleuca in relation to environmental phenology and spring temperature. Ornis Scand. Scand. J. Ornithol. 7, 127–145 (1976).Article 

    Google Scholar 
    Haest, B., Hüppop, O. & Bairlein, F. Challenging a 15‐year‐old claim: the North Atlantic Oscillation index as a predictor of spring migration phenology of birds. Glob. Change Biol. 24, 1523–1537 (2018).ADS 
    Article 

    Google Scholar 
    Rosseel, Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).Article 

    Google Scholar 
    Metzger, M. J., Bunce, R. G. H., Jongman, R. H. G., Mücher, C. A. & Watkins, J. W. A climatic stratification of the environment of Europe. Glob. Ecol. Biogeogr. 14, 549–563 (2005).Article 

    Google Scholar 
    Rousset, F. & Ferdy, J.-B. Testing environmental and genetic effects in the presence of spatial autocorrelation. Ecography 37, 781–790 (2014).Article 

    Google Scholar 
    R. Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2018).Bailey, L. D. et al. Bird populations most exposed to climate change are less sensitive to climatic variation, Zenodo, https://doi.org/10.5281/zenodo.5747634 (2022).Bailey, L. D. et al. Bird populations most exposed to climate change are less sensitive to climatic variation, LiamDBailey/baileyetal2021, https://doi.org/10.5281/zenodo.6027546 (2022). More

  • in

    Salt marshes create more extensive channel networks than mangroves

    Fosberg, F. R. & Chapman, V. J. Mangrove Vegetation. Taxon 26, 113 (1977).Article 

    Google Scholar 
    Vo, Q. T., Kuenzer, C., Vo, Q. M., Moder, F. & Oppelt, N. Review of valuation methods for mangrove ecosystem services. Ecol. Indic. 23, 431–446 (2012).Article 

    Google Scholar 
    Costanza, R. et al. The value of the world’s ecosystem services and natural capital. Nature 387, 253–260 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Duke, N. C. et al. A world without mangroves?. Science. 317, 41b–42b (2007).Article 

    Google Scholar 
    Barbier, E. B. et al. The value of estuarine and coastal ecosystem services. Ecol. Monogr. 81, 169–193 (2011).Article 

    Google Scholar 
    Saderne, V. et al. Total alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component. Limnol. Oceanogr. Lett. https://doi.org/10.1002/lol2.10170 (2020).Allen, J. R. L. Morphodynamics of Holocene salt marshes: a review sketch from the Atlantic and Southern North Sea coasts of Europe. Quat. Sci. Rev. 19, 1155–1231 (2000).ADS 
    Article 

    Google Scholar 
    Fagherazzi, S. et al. Tidal networks 1. Automatic network extraction and preliminary scaling features from digital terrain maps. Water Resour. Res. 35, 3891–3904 (1999).ADS 
    Article 

    Google Scholar 
    D’Alpaos, A., Lanzoni, S., Mudd, S. M. & Fagherazzi, S. Modeling the influence of hydroperiod and vegetation on the cross-sectional formation of tidal channels. Estuar. Coast. Shelf Sci. 69, 311–324 (2006).ADS 
    Article 

    Google Scholar 
    D’Alpaos, A. & Marani, M. Reading the signatures of biologic-geomorphic feedbacks in salt-marsh landscapes. Adv. Water Resour. 93, 265–275 (2016).ADS 
    Article 

    Google Scholar 
    Schwarz, C. et al. Self-organization of a biogeomorphic landscape controlled by plant life-history traits. Nat. Geosci. 11, 672–677 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Mariotti, G. & Canestrelli, A. Long-term morphodynamics of muddy backbarrier basins: fill in or empty out? Water Resour. Res. 53, 7029–7054 (2017).ADS 
    Article 

    Google Scholar 
    Stark, J., Van Oyen, T., Meire, P. & Temmerman, S. Observations of tidal and storm surge attenuation in a large tidal marsh. Limnol. Oceanogr. 60, 1371–1381 (2015).ADS 
    Article 

    Google Scholar 
    Montgomery, J., Bryan, K., Horstman, E. & Mullarney, J. Attenuation of tides and surges by mangroves: contrasting case studies from New Zealand. Water 10, 1119 (2018).Article 

    Google Scholar 
    Temmerman, S. et al. Vegetation causes channel erosion in a tidal landscape. Geology 35, 631–634 (2007).ADS 
    Article 

    Google Scholar 
    van Maanen, B., Coco, G. & Bryan, K. R. On the ecogeomorphological feedbacks that control tidal channel network evolution in a sandy mangrove setting. Proc. R. Soc. A Math. Phys. Eng. Sci. 471, 20150115 (2015).
    Google Scholar 
    Bij de Vaate, I., Brückner, M. Z. M., Kleinhans, M. G. & Schwarz, C. On the Impact of Salt Marsh Pioneer Species-Assemblages on the Emergence of Intertidal Channel Networks. Water Resour. Res. 56, (2020).Bouma, T. J. et al. Density-dependent linkage of scale-dependent feedbacks: a flume study on the intertidal macrophyte Spartina anglica. Oikos 118, 260–268 (2009).Article 

    Google Scholar 
    Schwarz, C. et al. Impacts of salt marsh plants on tidal channel initiation and inheritance. J. Geophys. Res. Earth Surf. 119, 385–400 (2014).ADS 
    Article 

    Google Scholar 
    Mcowen, C. J. et al. A global map of saltmarshes. Biodivers. Data J. 5, (2017).Spalding, M. World Atlas of Mangroves. World Atlas of Mangroves https://doi.org/10.4324/9781849776608 (2010).Fromard, F., Vega, C. & Proisy, C. Half a century of dynamic coastal change affecting mangrove shorelines of French Guiana. A case study based on remote sensing data analyses and field surveys. in. Mar. Geol. 208, 265–280 (2004).ADS 
    Article 

    Google Scholar 
    Proisy, C. et al. Mud bank colonization by opportunistic mangroves: a case study from French Guiana using lidar data. Cont. Shelf Res. 29, 632–641 (2009).ADS 
    Article 

    Google Scholar 
    Balke, T. et al. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Mar. Ecol. Prog. Ser. 440, 1–9 (2011).ADS 
    Article 

    Google Scholar 
    Tomlinson, P. B. The botany of mangroves. Bot. Mangroves https://doi.org/10.2307/2996392 (1986).Article 

    Google Scholar 
    Duke, N. C., Ball, M. C. & Ellison, J. C. Factors influencing biodiversity and distributional gradients in mangroves. Glob. Ecol. Biogeogr. Lett. 7, 27–47 (1998).Article 

    Google Scholar 
    Swales, A., Bentley, S. J. & Lovelock, C. E. Mangrove-forest evolution in a sediment-rich estuarine system: Opportunists or agents of geomorphic change? Earth Surf. Process. Landf. 40, 1672–1687 (2015).ADS 
    Article 

    Google Scholar 
    Nardin, W. et al. Dynamics of a fringe mangrove forest detected by Landsat images in the Mekong River Delta, Vietnam. Earth Surf. Process. Landf. 41, 2024–2037 (2016).ADS 
    Article 

    Google Scholar 
    Proffitt, C. E., Travis, S. E. & Edwards, K. R. Genotype and elevation influence Spartina alterniflora colonization and growth in a created salt marsh. Ecol. Appl. 13, 180–192 (2003).Article 

    Google Scholar 
    van Wesenbeeck, B. K. et al. Potential for sudden shifts in transient systems: distinguishing between local and landscape-scale processes. Ecosystems 11, 1133–1141 (2008).Article 

    Google Scholar 
    Ranwell, D. S. Spartina salt marshes in southern England 3. Rates of establishment, succession and nutrient supply at Bridgewater Bay, Somerset. J. Ecol. 52, 95–105 (1964).Article 

    Google Scholar 
    van Wesenbeeck, B. K., van de Koppel, J., Herman, P. M. J. & Bouma, T. J. Does scale dependent feedback explain spatial complexity in salt marsh ecosystems? Oikos 117, 152–159 (2008).Article 

    Google Scholar 
    Taylor, C. M. & Hastings, A. Finding optimal control strategies for invasive species: a density-structured model for Spartina alterniflora. J. Appl. Ecol. 41, 1049–1057 (2004).Article 

    Google Scholar 
    Vandenbruwaene, W. et al. Flow interaction with dynamic vegetation patches: Implications for biogeomorphic evolution of a tidal landscape. J. Geophys. Res. Earth Surf. 116, 1–13 (2011).Article 

    Google Scholar 
    Mobberley, D. G. Taxonomy and distribution of the genus Spartina. (Iowa State University, 1953).Gourgue, O. et al. A Convolution Method to Assess Subgrid-Scale Interactions Between Flow and Patchy Vegetation in Biogeomorphic Models. J. Adv. Model. Earth Syst. 127, 1–25 (2021).Zong, L. & Nepf, H. Spatial distribution of deposition within a patch of vegetation. Water Resour. Res. 47, (2011).Suyadi, Gao, J., Lundquist, C. J. & Schwendenmann, L. Characterizing landscape patterns in changing mangrove ecosystems at high latitudes using spatial metrics. Estuar. Coast. Shelf Sci. 215, 1–10 (2018).ADS 
    Article 

    Google Scholar 
    Best, S. N. et al. Do salt marshes survive sea level rise? Modelling wave action, morphodynamics and vegetation dynamics. Environ. Model. Softw. 109, 152–166 (2018).Article 

    Google Scholar 
    Chen, Y., Li, Y., Cai, T., Thompson, C. & Li, Y. A comparison of biohydrodynamic interaction within mangrove and saltmarsh boundaries. Earth Surf. Process. Landf. 41, 1967–1979 (2016).ADS 
    Article 

    Google Scholar 
    Xie, D. et al. Mangrove diversity loss under sea-level rise triggered by bio-morphodynamic feedbacks and anthropogenic pressures. Environ. Res. Lett. 15, 114033 (2020).ADS 
    Article 

    Google Scholar 
    Steel, T. J. & Pye, K. The development of salt marsh tidal creek networks: evidence from the UK. In Proceedings of the Canadian Coastal Conference 1, 267–280 (1997).Fagherazzi, S. & Sun, T. A stochastic model for the formation of channel networks in tidal marshes. Geophys. Res. Lett. 31, L21503 (2004).ADS 
    Article 

    Google Scholar 
    D’Alpaos, A., Lanzoni, S., Marani, M., Fagherazzi, S. & Rinaldo, A. Tidal network ontogeny: channel initiation and early development. J. Geophys. Res. 110, F02001 (2005).ADS 

    Google Scholar 
    Marani, M. et al. On the drainage density of tidal networks. Water Resour. Res. 39, 1040 (2003).ADS 

    Google Scholar 
    Liu, Z. et al. Efficient tidal channel networks alleviate the drought-induced die-off of salt marshes: Implications for coastal restoration and management. Sci. Total Environ. 749, 141493 (2020).ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kearney, W. S. et al. Salt marsh vegetation promotes efficient tidal channel networks. Nat. Commun. 7, 12287 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Hood, W. G. Applying tidal landform scaling to habitat restoration planning, design, and monitoring. Estuar. Coast. Shelf Sci. 244, 106060 (2020).Article 

    Google Scholar 
    Horstman, E., Dohmen-Janssen, C., Geomorphology, T. B.- & 2015, undefined. Tidal-scale flow routing and sedimentation in mangrove forests: Combining field data and numerical modelling. ElsevierCoco, G. et al. Morphodynamics of tidal networks: Advances and challenges. Mar. Geol. 346, 1–16 (2013).ADS 
    Article 

    Google Scholar 
    Geng, L., Gong, Z., Zhou, Z., Lanzoni, S. & D’Alpaos, A. Assessing the relative contributions of the flood tide and the ebb tide to tidal channel network dynamics. Earth Surf. Process. Landf. 45, 237–250 (2020).ADS 
    Article 

    Google Scholar 
    Andutta, F. P., Wang, X. H., Li, L. & Williams, D. Hydrodynamics and Sediment Transport in a Macro-tidal Estuary: Darwin Harbour, Australia. in 111–129 (Springer, Dordrecht, 2014). https://doi.org/10.1007/978-94-007-7019-5_7Elmqvist, T. & Cox, P. A. The Evolution of Vivipary in Flowering Plants. Oikos 77, 3 (1996).Article 

    Google Scholar 
    Zhang, X., Leonardi, N., Donatelli, C. & Fagherazzi, S. Fate of cohesive sediments in a marsh-dominated estuary. Adv. Water Resour. 125, 32–40 (2019).ADS 
    Article 

    Google Scholar 
    Nardin, W. & Edmonds, D. A. Optimum vegetation height and density for inorganic sedimentation in deltaic marshes. Nat. Geosci. 7, 722–726 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Swales, A., Bentley, S. J., Lovelock, C. & Bell, R. G. Sediment Processes and Mangrove-Habitat Expansion on a Rapidly-Prograding Muddy Coast, New Zealand. In Coastal Sediments ’07 1441–1454 (American Society of Civil Engineers, 2007). https://doi.org/10.1061/40926(239)111Wang, F., Lu, X., Sanders, C. J. & Tang, J. Tidal wetland resilience to sea level rise increases their carbon sequestration capacity in United States. Nat. Commun. 10, 1–11 (2019).ADS 
    Article 
    CAS 

    Google Scholar 
    Kristensen, E., Bouillon, S., Dittmar, T. & Marchand, C. Organic carbon dynamics in mangrove ecosystems: A review. Aquat. Bot. 89, 201–219 (2008).CAS 
    Article 

    Google Scholar 
    Fagherazzi, S. et al. Fluxes of water, sediments, and biogeochemical compounds in salt marshes. Ecol. Process 2, 1–16 (2013).Article 

    Google Scholar 
    Kirchner, J. W. Statistical inevitability of Horton’s laws and the apparent randomness of stream channel networks. Geology 21, 591–594 (1993).ADS 
    Article 

    Google Scholar 
    Vandenbruwaene, W., Meire, P. & Temmerman, S. Formation and evolution of a tidal channel network within a constructed tidal marsh. Geomorphology (2012).Marani, M. et al. Patterns in tidal environments: salt-marsh channel networks and vegetation. in Geoscience and Remote Sensing Symposium. IEEE 5 3269–3271 (2003).Horstman, E. M., Karin R. B., and Julia C. M. “Drag variations, tidal asymmetry and tidal range changes in a mangrove creek system.” Earth Surf. Process. Landf. (2021).R. Core, Team. R: A language and environment for statistical computing. (2013).Lillesand, T. M. & Kiefer, R. W. Remote Sensing and Image Interpretation. John Willey & Sons. Inc, USA. (1994).Vandenbruwaene, W., Bouma, T. J., Meire, P. & Temmerman, S. Bio-geomorphic effects on tidal channel evolution: impact of vegetation establishment and tidal prism change. Earth Surf. Process. Landforms 38, 122–132 (2013).ADS 
    Article 

    Google Scholar 
    Stefanon, L., Carniello, L., D’Alpaos, A. & Lanzoni, S. Experimental analysis of tidal network growth and development. Cont. Shelf Res. 30, 950–962 (2010).ADS 
    Article 

    Google Scholar 
    Braat, L., Leuven, J. R. F. W., Lokhorst, I. R. & Kleinhans, M. G. Effects of estuarine mudflat formation on tidal prism and large-scale morphology in experiments. Earth Surf. Process. Landf. 44, 417–432 (2019).ADS 
    Article 

    Google Scholar 
    Kleinhans, M. G. et al. Turning the tide: Comparison of tidal flow by periodic sea level fluctuation and by periodic bed tilting in scaled landscape experiments of estuaries. Earth Surf. Dyn. 5, 731–756 (2017).ADS 
    Article 

    Google Scholar 
    Paola, C., Straub, K., Mohrig, D. & Reinhardt, L. The ‘unreasonable effectiveness’ of stratigraphic and geomorphic experiments. Earth-Sci. Rev. 97, 1–43 (2009).ADS 
    Article 

    Google Scholar 
    Kleinhans, M. G., Leuven, J. R. F. W., Braat, L. & Baar, A. Scour holes and ripples occur below the hydraulic smooth to rough transition of movable beds. Sedimentology 64, 1381–1401 (2017).Article 

    Google Scholar 
    Lokhorst, I. R., Lange, S. I., Buiten, G., Selaković, S. & Kleinhans, M. G. Species selection and assessment of eco‐engineering effects of seedlings for biogeomorphological landscape experiments. Earth Surf. Process. Landf. 44, 2922–2935 (2019).ADS 
    Article 

    Google Scholar 
    Widdows, J. et al. Inter-comparison between five devices for determining erodability of intertidal sediments. Cont. Shelf Res. 27, 1174–1189 (2007).ADS 
    Article 

    Google Scholar 
    Verney, R., Brun-Cottan, J. C., Lafite, R., Deloffre, J. & Taylor, J. A. Tidally-induced shear stress variability above intertidal mudflats in the macrotidal seine estuary. Estuaries and Coasts 29, 653–664 (2006).Article 

    Google Scholar 
    Wu, W., Perera, C., Smith, J. & Sanchez, A. Critical shear stress for erosion of sand and mud mixtures. J. Hydraul. Res. 56, 96–110 (2018).Article 

    Google Scholar 
    Wolters, M., Garbutt, A., Bekker, R. M., Bakker, J. P. & Carey, P. D. Restoration of salt-marsh vegetation in relation to site suitability, species pool and dispersal traits. J. Appl. Ecol. 45, 904–912 (2007).Article 

    Google Scholar  More

  • in

    Ultracold storage ensures a future for endangered plants

    Here at the Germplasm Bank of Wild Species of China at the Kunming Institute of Botany, we want to preserve the seeds of as many wild plants as possible from across China’s vast land area. I work on developing the best techniques to freeze plant seeds and tissues at ultracold temperatures, to maintain their viability for years. The idea is that if we plant these seeds again in hundreds of years, a plant will grow.The picture shows me taking a sample of embryos from the seeds of a magnolia tree out of a liquid-nitrogen cryopreservation tank to test whether they’ll regrow when thawed. I dress in protective equipment from head to toe to protect me from the nitrogen, which has a temperature of −196 °C.When I came to the institute in 2009 as a PhD student, it had just purchased its first liquid-nitrogen cryopreservation system, but no one knew how to operate it. I was the one to work it out.Over the years, human activities and climate change have had a negative impact on plant biodiversity. The ultimate goal of the plant seed bank is to collect and preserve all wild plant species in China that are endangered, rare or valuable. We want to save these species before they go extinct. We’ve collected seeds from nearly 11,000 plant species, but that’s only one-third of what grows in China.Many wild plants have genes that help them to survive in harsh environments and make them disease- or drought-resistant. In the future, we might need these genetic materials to breed new crops that can better adapt to the changing climate.I am constantly amazed by how diverse and beautiful seeds are. Some of them are brightly coloured and others are star-shaped. I feel proud when I see the unfrozen seeds germinate in test tubes and gradually grow into large plants. We have three plants in the seed-bank lobby that we cultivated from preserved tissues, and they are all now taller than me. More

  • in

    Field-based tree mortality constraint reduces estimates of model-projected forest carbon sinks

    Biogeographic pattern of LOSSThe original forest plot data aggregated at 0.25 degree show large spatial variations (Fig. 1a) across the continents, with the greatest LOSS in Asia & Australia (mean ± 1 SE; 6.5 ± 0.5 Mg ha−1 y−1) > South America (4.9 ± 0.2 Mg ha−1 y−1) and Africa (4.6 ± 0.2 Mg ha−1 y−1) > North America (2.3 ± 0.1 Mg ha−1 y−1 in boreal and 2 ± 0.1 Mg ha−1 y−1 in temperate)36 (Fig. 1b; Supplementary Fig. 5a). This pattern was robust to bootstrapping (1000 iterations) to randomly select 90% of plots for estimating the probability distribution of the mean continental values (Supplementary Fig. 5b). The upscaled gridded LOSS maps generated by our random forest algorithm (see Methods) over the spatial domain of our full datasets shows hotspots of high LOSS in Southern Asia & Australia ( > 6 Mg ha−1 y−1), Northwestern South America (Amazon) ( > 5 Mg ha−1 y−1), and the western coast of North America ( >3 Mg ha−1 y−1)10,36,37,38 (Supplementary Fig. 6a). These patterns were robust to two bootstrapping approaches – based on the sampled biomes of each point feature and also randomly sampling 90% data with replacement (see Methods) (Fig. 2a; Supplementary Fig. 6b). The uncertainty (coefficient of variance – CV; %mean) was generally low ( 10%), despite the larger sample size (n  > 500 at 0.25 degree) (Fig. 2b; Supplementary Fig. 6c), likely because of potential effects of forest recovery or regrowth following past disturbance16 as well as the small plot size (i.e., 0.067 ha in each plot)39.Fig. 1: Map of sample locations and biomass loss to mortality (LOSS) data.a Sampling sites. A total of 2676 samples were collected and aggregated into 814 grids at 0.25 degree that were used for geospatial modeling. b The median and interquartile range of LOSS across continents—North America, South America, Africa, and Asia & Australia.Full size imageFig. 2: Map of biomass loss to mortality (LOSS) and its uncertainty across continents.a, b Ensemble mean of LOSS a and its uncertainty (coefficient of variation, b across continents at 0.25 degree derived from forest plot data using the bootstrapped (10 iterations) approach by randomly sampling 90% plots with replacement. c, d Ensemble mean of LOSS c and its uncertainty (coefficient of variation, d across continents at 0.5 degree derived from six dynamic vegetation models (DGVMs, ORCHIDEE, CABLE-POP, JULES, LPJ-GUESS, LPJmL, and SEIB-DGVM). Coefficient of variation was quantified as the standard deviation divided by the mean predicted value as a measure of prediction accuracy. e The difference of LOSS between ensemble mean of DGVMs and ensemble mean of LOSS derived from forest plots data across continents at 0.5 degree, quantified as difference between c and a, whereby LOSS in Fig. 2a is resampled at 0.5 degree.Full size imageDrivers of LOSSMean annual temperature (MAT), aridity index (the ratio of precipitation to potential evapotranspiration), and precipitation seasonality were identified as the dominant predictors of LOSS across continents (Supplementary Fig. 7a), with positive relationships with LOSS (Fig. 3a)10,36. In contrast to local-scale studies40,41, wood density, forest stand density, and soil conditions were poor predictors of LOSS when all data were used. These relationships were largely driven by the spatial pattern of LOSS and climate gradients, whereby LOSS and MAT, aridity index, and precipitation seasonality were high in tropical forests (Supplementary Fig. 8). This motivated us to examine the drivers of LOSS in tropical vs non-tropical biomes (Supplementary Fig. 7b, c; Fig. 3b–d). With a smaller gradient in climate within wet tropical forests, soil properties such as nutrient content and cation exchange capacity (CEC) were significant predictors of LOSS (Supplementary Fig. 7b; Fig. 3b)42. In wet tropical forests, the relationships between soil nutrient content and CEC and LOSS were positive (Fig. 3b) and thus appeared to support the pattern of higher mortality in more productive tropical forests growing over nutrient rich soils42,43. In non-tropical regions, basal area or a competition index based on the degree of crowding within stocked areas44 (see Methods) were the dominant predictors of LOSS, especially in extra-tropical North America (Supplementary Fig. 7c; Fig. 3c, d). This result highlights the role of stand competition in driving the spatial patterns of LOSS44,45. This pattern also supports the existence of a spatial tradeoff between faster growth and higher mortality because of resource limitations or younger death, whereby competition plays the fundamental role13,45. In contrast to other studies15,46, forest age (available in boreal and temperate forests in North America) was not a good predictor of LOSS (Supplementary Fig. 9), likely because of our focus on mature and old-growth forests (i.e., age > 80 and 100 years in boreal and temperate forests, respectively).Fig. 3: Standardized response coefficients (mean ± 95% CIs) between LOSS and dominant environmental drivers.The scales analyzed were at continents a, tropical regions b vs non-tropical regions c, d. The response coefficients were quantified by linear mixed model which account for each plot as a random effect. Panels c and d used basal area and stand density index (SDI) as competition index, respectively. SDI was defined as the degree of crowding within stocked areas and quantified as a function of tree density and the quadratic mean diameter in centimeters. Basal area is strongly correlated with total biomass and higher LOSS in higher basal area may be merely because of its correlations. Thus, we used another competition metrics – SDI to further confirm the role of competition in LOSS. The error bars denote the 95% confidence interval. *P  130%) in western boreal forests in North America (Fig. 2d).Conventional emergent constraintWe first used the conventional emergent constraint approach27 to constrain the projected (2015–2099) NPP and HR across continents. This approach was conducted by building the statistic (linear) relationship between the historical LOSS averaged at forest-plot scale (derived from original plot data of LOSS) or continental scale (derived from the map of LOSS) and projected NPP and HR summed across continents (see Methods and Supplementary Fig. 4 for details). We found that the emergent constraint approach worked well in North America, where the relationship between historical LOSS and projected NPP and HR was significant (the scenario of using original plot data of LOSS: R2 = 0.68 and P = 0.04 for grid-level NPP; R2 = 0.97 and P = 0.0001 for grid-level HR; the scenario of using map of LOSS at continent scale: R2 = 0.7 and P = 0.04 for grid-level NPP; R2 = 0.95 and P = 0.0008 for grid-level HR) (Supplementary Fig. 11a; Supplementary Fig. 12a). This emergent constraint approach was less effective, however, for other continents, where tropical forests are predominant (all P  > 0.05; Supplementary Fig. 11b, c, d; Supplementary Fig. 12b, c, d). These results suggest a weak linear relationships when observations are lumped or averaged at broad continental scales for tropical continents, thus highlighting the importance of spatial scale and non-linear relationships in emergent constraint25. We interpret the result that this LOSS emergent constraint works better in North America than in the tropical forests, by a better representation of forest plot distribution and couplings of LOSS and NPP and HR across space in North America.Machine learning constraintTo overcome this limitation, we trained a machine learning algorithm34 to reproduce the emerging relationship between historical LOSS and projected NPP and HR at grid level in each DGVM by incorporating all grid values without or with climate predictors, expressed as NPPpro or HRpro = f(LOSShis) or f(LOSShis, MATpro, MAPpro), respectively, where pro refers to projected variables, his refers to historical variables, and MAT and MAP is mean annual temperature precipitation, respectively (see Methods). The results show consistently positive non-linear relationships between LOSShis and NPPpro or HRpro across DGVMs (Supplementary Fig. 3). Our machine learning algorithms can surrogate well the results of process-based models between the historical LOSS and the projected NPP and HR (R  > 0.65 and R  > 0.9 in both scenarios without climate effects and with climate effects, respectively; see Methods) (Supplementary Fig. 13). After including the observed LOSShis (derived from LOSS) in the machine learning algorithm, we were able to generate spatially explicit constrained estimates34 of projected NPP and HR, and then compare them with the scenario without the constraint (Supplementary Fig. 14; Supplementary Fig. 15). These patterns essentially show a lower NPPpro or HRpro in locations of overestimated LOSShis in DGVMs, consistent with the positive relationship between LOSShis and NPPpro or HRpro (Supplementary Fig. 3).Our results show that most DGVMs overestimate tree mortality, particularly in tropical regions (Fig. 2c, e). Thus, if modeled mortality is over-estimated, we expect that NPP is over-estimated as well. Ultimately, we used a bootstrap approach to generate 100 maps of mean value of LOSS with its distribution following the values of the average and 2 times of standard deviation of LOSS maps as a conservative constraint (see Methods). Then the 100 maps of mean value of LOSS were used to constrain the projected NPP or HR as ensemble means in our ML constraint and the uncertainty of the constraint was assessed. Our bootstrapping constraint approach by LOSS reduces this common bias of models and decreases projected NPP down to 7.9, 2.3, 2 Pg C y−1 in South America, Africa and Asia & Australia, compared to original NPP values of 9, 2.4, 2.3 Pg C y−1 (Fig. 4a). The reason for this is that NPP or growth is strongly positively correlated with LOSS across space in both inventory data and DGVMs (Supplementary Figs. 2 and 3; Supplementary Fig. 16). The constant mortality parameter used in most models may be too large if modelers have tuned this parameter to obtain reasonable biomass stocks, thus compensating for an overestimate of NPP in absence of modeled competition between individuals and nutrients (e.g. phosphorus) limitations in tropical forests13. Likewise, HRpro showed similar patterns with NPPpro because of coupling of HR and NPP and LOSS at broad spatial and long term scales20,21, despite the likely decoupling of the instantaneous rate of HR and NPP and LOSS at local and short-term scales22,23. Thus, we also constrained a decrease in projected grid-level HR with values of 6.5, 1.9, 1.7 Pg C y−1 in South America, Africa and Asia & Australia compared to 7, 1.9, 1.8 Pg C y−1 in the original model ensemble (Fig. 4b). Taken together, our results constrain a weaker future tropical forest carbon sink from observation-based LOSS estimates down to 1.4, 0.4, 0.3 Pg C y−1 in South America, Africa and Asia & Australia as compared to 2, 0.5, 0.5 Pg C y−1 in the original models. The projected sink is reduced in particular over the Amazon basin, while North America showed an enhanced future carbon sink (1.1 and 0.8 Pg C y−1 after and before constraint, respectively). The constraint by the machine learning approach significantly reduced the model spread in grid-level NPPpro and HRpro generally in tropical regions and particularly in South America (Fig. 4; Table 1). This was in contrast to the case of constraint at the whole North America scale (Fig. 4; Table 1), presumably because of spatial trade-off or compensation from regions of mortality overestimation (i.e., eastern North America—temperate zones) vs underestimation (i.e., boreal zones). To this end, we further divided the whole North America into temperate and boreal forests and found the significant effects of the ML constraint (Supplementary Fig. 17). These results highlight the importance of spatial scale in the ML constraint approach. We thus recommend accounting for the role of spatial trade-off in our ML constraint approach or using our ML constraint approach at broad spatial scales whereby the effect of spatial trade-off is minimal. We also caution that the bootstrapping (100 times) approach used in our ML constraint increases the sample size and could have increased the significant difference with and without LOSS constraint. Overall, the uncertainty of the ML constraint was low in the bootstrapping approach (Supplementary Fig. 18).Fig. 4: Projected grid-level NPP and grid heterotrophic respiration (HR) across continents.a, b Projected (2015–2099) grid-level NPP a and grid-level HR b across continents quantified by six dynamic vegetation models—DGVMs (ORCHIDEE, CABLE-POP, JULES, LPJ-GUESS, LPJmL, and SEIB-DGVM). The y axes are the minimum, mean, and maximum values in six DGVMs. ‘DGVMs’ refers to the scenario before constraint and ‘DGVMs + Observation’ refers to the scenario after constraint without climate predictors. The constraint was achieved by using the observational maps (n = 100; through a bootstrapping approach; see Methods for details) of LOSS derived from forest plots data to feed into the trained ML (random forest) model. Reported are ensemble means of constraint. The constraint effect was significant when North America were divided into temperate and boreal forests (see results of Supplementary Fig. 17). *P  More

  • in

    Feces DNA analyses track the rehabilitation of a free-ranging beluga whale

    Mann, J. Behavioral sampling methods for cetaceans: A review and critique. Mar. Mammal Sci. 15, 102–122 (1999).Article 

    Google Scholar 
    Pompanon, F. et al. Who is eating what: Diet assessment using next generation sequencing. Mol. Ecol. https://doi.org/10.1111/j.1365-294X.2011.05403.x (2012).Article 

    Google Scholar 
    Deagle, B. E. et al. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data?. Mol. Ecol. 28, 391–406 (2019).Article 

    Google Scholar 
    Berry, T. E. et al. DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea). Ecol. Evol. 7, 5435–5453 (2017).Article 

    Google Scholar 
    Brassea-Pérez, E., Schramm, Y., Heckel, G., Chong-Robles, J. & Lago-Lestón, A. Metabarcoding analysis of the Pacific harbor seal diet in Mexico. Mar. Biol. 166, 1–14 (2019).Article 

    Google Scholar 
    Ford, M. J. et al. Estimation of a killer whale (Orcinus orca) population’s diet using sequencing analysis of DNA from feces. PLoS ONE 11, e0144956 (2016).Article 

    Google Scholar 
    Thomas, A. C., Deagle, B. E., Eveson, J. P., Harsch, C. H. & Trites, A. W. Quantitative DNA metabarcoding: Improved estimates of species proportional biomass using correction factors derived from control material. Mol. Ecol. Resour. 16, 714–726 (2016).CAS 
    Article 

    Google Scholar 
    Deagle, B. E., Chiaradia, A., Mcinnes, J. & Jarman, S. N. Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out? https://doi.org/10.1007/s10592-010-0096-6.Ando, H. et al. Methodological trends and perspectives of animal dietary studies by noninvasive fecal DNA metabarcoding. Environ. DNA 2, 391–406 (2020).Article 

    Google Scholar 
    Günther, B., Fromentin, J., Metral, L. & Arnaud-haond, S. Metabarcoding confirms the opportunistic foraging behaviour of Atlantic bluefin tuna and reveals the importance of gelatinous prey. PeerJ 9, e11757. https://doi.org/10.7717/peerj.11757 (2021).Article 

    Google Scholar 
    Simon, M., Hanson, M. B., Murrey, L., Tougaard, J. & Ugarte, F. From captivity to the wild and back: An attempt to release keiko the killer whale. Mar. Mammal Sci. 25, 693–705 (2009).Article 

    Google Scholar 
    Moore, M. et al. Rehabilitation and release of marine mammals in the United States: Risks and benefits. Mar. Mammal Sci. 23, 731–750 (2007).Article 

    Google Scholar 
    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: Application for characterizing coral reef fish gut contents. Front. Zool. 10, 1–14 (2013).Article 

    Google Scholar 
    Geller, J., Meyer, C. & Parker, M. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13(5), 851–861. https://doi.org/10.1111/1755-0998.12138 (2013).CAS 
    Article 

    Google Scholar 
    Blaxter, M. L. et al. A molecular evolutionary framework for the phylum Nematoda. Nature https://doi.org/10.1038/32160 (1998).Article 

    Google Scholar 
    Sinniger, F. et al. Worldwide analysis of sedimentary DNA reveals major gaps in taxonomic knowledge of deep-sea benthos. Front. Mar. Sci. 3, 1–14 (2016).Article 

    Google Scholar 
    Brandt, M. I. et al. Bioinformatic pipelines combining denoising and clustering tools allow for more comprehensive prokaryotic and eukaryotic metabarcoding. Mol. Ecol. Resour. 21(6), 1904–1921 (2021).Article 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal https://doi.org/10.14806/ej.17.1.200 (2011).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    Article 

    Google Scholar 
    Antich, A., Palacin, C., Wangensteen, O. S. & Turon, X. To denoise or to cluster, that is not the question: Optimizing pipelines for COI metabarcoding and metaphylogeography. BMC Bioinform. 22, 1–25 (2021).Article 

    Google Scholar 
    Mahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarmv2: Highly-scalable and high-resolution amplicon clustering. PeerJ 2015, 1–12 (2015).
    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. https://doi.org/10.1093/nar/gks1219 (2013).Article 

    Google Scholar 
    Machida, R. J., Leray, M., Ho, S.-L. & Knowlton, N. Metazoan mitochondrial gene sequence reference datasets for taxonomic assignment of environmental samples. Sci. Data 4, 170027 (2017).CAS 
    Article 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naıve Bayesian classifier for rapid assignment of rRNA sequences.pdf. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    Article 

    Google Scholar 
    Davis, N. M., Di Proctor, M., Holmes, S. P., Relman, D. A. & Callahan, B. J. Simple statistical identification and removal of contaminant sequences in marker-gene and metagenomics data. Microbiome https://doi.org/10.1186/s40168-018-0605-2 (2018).Article 

    Google Scholar 
    Wangensteen, O. S., Palacín, C., Guardiola, M. & Turon, X. DNA metabarcoding of littoral hardbottom communities: High diversity and database gaps revealed by two molecular markers. PeerJ 2018, 1–30 (2018).
    Google Scholar 
    Schnell, I. B., Bohmann, K. & Gilbert, M. T. P. Tag jumps illuminated – reducing sequence-to-sample misidentifications in metabarcoding studies. Mol. Ecol. Resour. 15, 1289–1303 (2015).CAS 
    Article 

    Google Scholar 
    Song, X. et al. A new deep-sea hydroid (Cnidaria:Hydrozoa ) from the Bering Sea Basin reveals high genetic relevance to Arctic and adjacent shallow-water species. Polar Biol. 39, 461–471 (2016).Article 

    Google Scholar 
    Frøslev, T. G. et al. Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates. Nat. Commun. 8, 1–11 (2017).Article 

    Google Scholar 
    Vacquié-Garcia, J., Lydersen, C., Ims, R. A. & Kovacs, K. M. Habitats and movement patterns of white whales Delphinapterus leucas in Svalbard, Norway in a changing climate. Mov. Ecol. 6, 1–12 (2018).Article 

    Google Scholar 
    Kastelein, R. A., Nieuwstraten, S. H. & Verstegen, M. W. A. Passage time of carmine red dye through the digestion tract . In The Biology of the Harbour Porpoise 235–245 (1997).Lesage, V., Lair, S., Turgeon, S. & Beland, P. Diet of St. Lawrence Estuary Beluga (Delphinapterus leucas) in a changing ecosystem. Can. Field-Nat. 134, 21–35 (2020).Article 

    Google Scholar 
    Bluhm, B. A. & Gradinger, R. Regional variability in food availability for arctic marine mammals. Ecol. Appl. 18, S77–S96 (2008).Article 

    Google Scholar 
    Quakenbush, L. T. et al. Diet of beluga whales, Delphinapterus leucas, in Alaska from stomach contents, March-November. Mar. Fish. Rev. 77, 70–84 (2015).Article 

    Google Scholar 
    Choy, E. S. et al. Variation in the diet of beluga whales in response to changes in prey availability: Insights on changes in the Beaufort Sea ecosystem. Mar. Ecol. Prog. Ser. 647, 195–210 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Mychek-Londer, J. G., Chaganti, S. R. & Heath, D. D. Metabarcoding of native and invasive species in stomach contents of Great Lakes fishes. PLoS ONE 15, 1–22 (2020).Article 

    Google Scholar 
    Nedreaas, K. Food and feeding habits of young saithe, Pollachius virens (L.), on the coast of Western Norway. Fisk. Skr. Ser. Havundersokelser 18, 263–301 (1987).
    Google Scholar 
    Højgaard, D. P. Food and parasitic nematodes of saithe, Pollachius virens (L.), from the Faroe Islands. Sarsia 84, 473–478 (1999).Article 

    Google Scholar 
    Ekbaum, E. Notes on the occurrence of Acanthocephala in Pacific fishes: I. Echinorhynchus gadi (Zoega) Müller in salmon and E. lageniformis sp. nov. and Corynosoma strumosum (Rudolphi) in two species of flounder. Parasitology 30, 267–274 (1938).Article 

    Google Scholar 
    Baptista-Fernandes, T. et al. Human gastric hyperinfection by Anisakis simplex: A severe and unusual presentation and a brief review. Int. J. Infect. Dis. 64, 38–41 (2017).Article 

    Google Scholar 
    Hubert, B., Bacou, J. & Belveze, H. Epidemiology of human anisakiasis: Incidence and sources in France. Am. J. Trop. Med. Hyg. 40, 301–303 (1989).CAS 
    Article 

    Google Scholar 
    Hays, R., Measures, L. N. & Huot, J. Capelin (Mallotus villosus) and herring (Clupea harengus) as paratenic hosts of Anisakis simplex, a parasite of beluga (Delphinapterus leucas) in the St. Lawrence estuary. Can. J. Zool. 78, 1411–1417 (1998).Article 

    Google Scholar 
    Yanong, R. P. E. Nematode (Roundworm) Infections in Fish Vol. 1, 1–9 (2002).Jauniaux, T. et al. Post-mortem findings and causes of death of harbour porpoises (Phocoena phocoena) stranded from 1990 to 2000 along the coastlines of Belgium and Northern France. J. Compar. Pathol. 126, 243–253 (2002).CAS 
    Article 

    Google Scholar  More

  • in

    Punishment institutions selected and sustained through voting and learning

    Henrich, J. et al. Costly punishment across human societies. Science https://doi.org/10.1126/science.1127333 (2006).Ostrom, E. Governing the Commons: The Evolution of Institutions for Collective Action (Cambridge University Press, 1990).Ostrom, E., Walker, J. & Gardner, R. Covenants with and without a sword: self-governance is possible. Am. Polit. Sci. Rev. 86, 404–417 (1992).Article 

    Google Scholar 
    Fehr, E. & Gächter, S. Cooperation and punishment in public goods experiments. Am. Econ. Rev. 90, 980–994 (2000).Article 

    Google Scholar 
    Dreber, A., Rand, D. G., Fudenberg, D. & Nowak, M. A. Winners don’t punish. Nature https://doi.org/10.1038/nature06723 (2008).Rand, D. G., Ohtsuki, H. & Nowak, M. A. Direct reciprocity with costly punishment: generous tit-for-tat prevails. J. Theor. Biol. https://doi.org/10.1016/j.jtbi.2008.09.015 (2009).Ohtsuki, H., Iwasa, Y. & Nowak, M. A. Indirect reciprocity provides only a narrow margin of efficiency for costly punishment. Nature https://doi.org/10.1038/nature07601 (2009).Sethi, R. & Somanathan, E. Understanding reciprocity. J. Econ. Behav. Organ. 50, 1–27 (2003).Article 

    Google Scholar 
    Bowles, S. & Gintis, H. A Cooperative Species (Princeton Univ. Press, 2011).Hauert, C., Traulsen, A., Brandt, H., Nowak, M. A. & Sigmund, K. Via freedom to coercion: the emergence of costly punishment. Science https://doi.org/10.1126/science.1141588 (2007).Brandt, H., Hauert, C. & Sigmund, K. Punishment and reputation in spatial public goods games. Proc. R. Soc. B https://doi.org/10.1098/rspb.2003.2336 (2003).Helbing, D., Szolnoki, A., Perc, M. & Szabó, G. Evolutionary establishment of moral and double moral standards through spatial interactions. PLoS Comput. Biol. https://doi.org/10.1371/journal.pcbi.1000758 (2010).Helbing, D., Szolnoki, A., Perc, M. & Szabó, G. Punish, but not too hard: how costly punishment spreads in the spatial public goods game. New J. Phys. https://doi.org/10.1088/1367-2630/12/8/083005 (2010).Perc, M. & Szolnoki, A. Self-organization of punishment in structured populations. New J. Phys. https://doi.org/10.1088/1367-2630/14/4/043013 (2012).Boyd, R., Gintis, H. & Bowles, S. Coordinated punishment of defectors sustains cooperation and can proliferate when rare. Science https://doi.org/10.1126/science.1183665 (2010).Sigmund, K., De Silva, H., Traulsen, A. & Hauert, C. Social learning promotes institutions for governing the commons. Nature 466, 861–863 (2010).CAS 
    Article 

    Google Scholar 
    Hilbe, C., Traulsen, A., Röhl, T. & Milinski, M. Democratic decisions establish stable authorities that overcome the paradox of second-order punishment. Proc. Natl Acad. Sci. USA 111, 752–756 (2014).CAS 
    Article 

    Google Scholar 
    Murphy, B. The Punisher’s Brain: The Evolution of Judge and Jury. By Hoffman, Morris B. Pp. xi, 359. Cambridge/NY, Cambridge University Press, 2014, £21.99/$30.00. Heythrop J. https://doi.org/10.1111/heyj.12249_81 (2015).Gruter, M. & Masters, R. D. Ostracism as a social and biological phenomenon: an introduction. Ethol. Sociobiolo. https://doi.org/10.1016/0162-3095(86)90043-9 (1986).Molleman, L., Kölle, F., Starmer, C. & Gächter, S. People prefer coordinated punishment in cooperative interactions. Nat. Hum. Behav. https://doi.org/10.1038/s41562-019-0707-2 (2019).Szolnoki, A., Szabó, G. & Perc, M. Phase diagrams for the spatial public goods game with pool punishment. Phys. Rev. E https://doi.org/10.1103/PhysRevE.83.036101 (2011).Ostrom, E. Collective action and the evolution of social norms. J. Econ. Perspect. 14, 137–158 (2000).Article 

    Google Scholar 
    Platteau, J.-P. Institutions, Social Norms, and Economic Development Vol. 1 (Psychology Press, 2000).van den Bergh, J. C. J. M., Ferrer-i-Carbonell, A. & Munda, G. Alternative models of individual behaviour and implications for environmental policy. Ecol. Econ. 32, 43–61 (2000).Article 

    Google Scholar 
    Traulsen, A., Nowak, M. A. & Pacheco, J. M. Stochastic dynamics of invasion and fixation. Phys. Rev. E 74, 11909 (2006).Article 

    Google Scholar 
    Dequech, D. Institutions, social norms, and decision-theoretic norms. J. Econ. Behav. Organ. 72, 70–78 (2009).Article 

    Google Scholar 
    Dunn, S. P. Bounded rationality is not fundamental uncertainty: a post Keynesian perspective. J. Post Keynes. Econ. 23, 567–587 (2001).Article 

    Google Scholar 
    Levin, S. The trouble of discounting tomorrow. Solutions 3, 20–24 (2012).
    Google Scholar 
    Alford, R. P. The proliferation of international courts and tribunals: international adjudication in ascendance. In Proc. Annual Meeting of the American Society of International Law Vol. 94, 160–165 (Cambridge University Press, 2000).Dunn, L. A. Containing Nuclear Proliferation (International Institute for Strategic Studies, 1991).Potoski, M. Green clubs in building block climate change regimes. Climatic Change 144, 53–63 (2017).Article 

    Google Scholar 
    Trzyna, T. C., Margold, E. & Osborn, J. K. World Directory of Environmental Organizations: A Handbook of National and International Organizations and Programs—Governmental and Non-governmental—Concerned with Protecting the Earth’s Resources Vol. 5 (Earthscan, 1996).Dixit, A. & Levin, S. in The Theory of Externalities and Public Goods: Essays in Memory of Richard C. Cornes (eds Buchholz, W. and Rübbelke, D.) 127–143 (Springer, 2017); https://doi.org/10.1007/978-3-319-49442-5_7Vasconcelos, V. V., Santos, F. C. & Pacheco, J. M. A bottom-up institutional approach to cooperative governance of risky commons. Nat. Clim. Change 3, 797–801 (2013).Article 

    Google Scholar 
    Vasconcelos, V. V., Santos, F. C. & Pacheco, J. M. Cooperation dynamics of polycentric climate governance. Math. Model. Methods Appl. Sci. 25, 2503–2517 (2015).Article 

    Google Scholar 
    Ostrom, E. Beyond markets and states: polycentric governance of complex economic systems. Am. Econ. Rev. 100, 641–672 (2010).Article 

    Google Scholar 
    Vasconcelos, V. V., Hannam, P. M., Levin, S. A. & Pacheco, J. M. Coalition-structured governance improves cooperation to provide public goods. Sci. Rep. 10, 9194 (2020).CAS 
    Article 

    Google Scholar 
    Nyborg, K. et al. Social norms as solutions. Science 354, 42–43 (2016).CAS 
    Article 

    Google Scholar 
    Hannam, P. M., Vasconcelos, V. V., Levin, S. A. & Pacheco, J. M. Incomplete cooperation and co-benefits: deepening climate cooperation with a proliferation of small agreements. Climatic Change 144, 65–79 (2017).Article 

    Google Scholar 
    Markussen, T., Putterman, L. & Tyran, J.-R. Self-organization for collective action: an experimental study of voting on sanction regimes. Rev. Econ. Stud. 81, 301–324 (2014).Article 

    Google Scholar 
    Gürerk, Ö., Irlenbusch, B. & Rockenbach, B. The competitive advantage of sanctioning institutions. Science 312, 108–111 (2006).Article 

    Google Scholar 
    Dannenberg, A. & Gallier, C. The choice of institutions to solve cooperation problems: a survey of experimental research. Exp. Econ. https://doi.org/10.1007/s10683-019-09629-8 (2019).Bühren, C. & Dannenberg, A. The demand for punishment to promote cooperation among like-minded people. Eur. Econ. Rev. 138, 103862 (2021).Radzvilavicius, A. L., Kessinger, T. A. & Plotkin, J. B. Adherence to public institutions that foster cooperation. Nat. Commun. 12, 3567 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Sexual morph specialisation in a trioecious nematode balances opposing selective forces

    Darwin, C. The Effects of Cross and Self Fertilisation in the Vegetable Kingdom (D. Appleton and Company, 1877).
    Google Scholar 
    Charlesworth, D. Androdioecy and the evolution of dioecy. Biol. J. Linn Soc. 22, 333–348 (1984).Article 

    Google Scholar 
    Charlesworth, D., Morgan, M. T. & Charlesworth, B. Inbreeding depression, genetic load, and the evolution of outcrossing rates in a multilocus system with no linkage. Evolution 44, 1469–1489 (1990).CAS 
    Article 

    Google Scholar 
    Lande, R. & Schemske, D. W. The evolution of self-fertilization and inbreeding depression in plants. I. Genetic models. Evolution 39, 24–40 (1985).
    Google Scholar 
    Weeks, S. C. When males and hermaphrodites coexist: a review of androdioecy in animals. Integr. Comp. Biol. 46, 449–464 (2006).Article 

    Google Scholar 
    Pannell, J. The maintenance of gynodioecy and androdioecy in a metapopulation. Evolution 51, 10–20 (1997).Article 

    Google Scholar 
    Wolf, D. E. & Takebayashi, N. Pollen limitation and the evolution of androdioecy from dioecy. Am. Nat. 163, 122–137 (2004).Article 

    Google Scholar 
    Charlesworth, D. Theories of the evolution of dioecy. In Gender and Sexual Dimorphism in Flowering Plants (eds Geber, M. A. et al.) 33–60 (Springer, Berlin, 1999). https://doi.org/10.1007/978-3-662-03908-3_2.Chapter 

    Google Scholar 
    Denver, D. R., Clark, K. A. & Raboin, M. J. Reproductive mode evolution in nematodes: insights from molecular phylogenies and recently discovered species. Mol. Phylogenetics Evol. 61, 584–592 (2011).CAS 
    Article 

    Google Scholar 
    Pires-daSilva, A. Evolution of the control of sexual identity in nematodes. Semin. Cell Dev. Biol. 18, 362–370 (2007).Article 

    Google Scholar 
    Kanzaki, N. et al. Description of two three-gendered nematode species in the new genus Auanema (Rhabditina) that are models for reproductive mode evolution. Sci. Rep. 7, 11135 (2017).ADS 
    Article 

    Google Scholar 
    Tandonnet, S. et al. Sex- and gamete-specific patterns of X chromosome segregation in a trioecious nematode. Curr. Biol. 28, 93-99.e3 (2018).CAS 
    Article 

    Google Scholar 
    Chaudhuri, J. et al. Mating dynamics in a nematode with three sexes and its evolutionary implications. Sci. Rep. 5, 17676 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Félix, M.-A. Alternative morphs and plasticity of vulval development in a rhabditid nematode species. Dev. Genes Evol. 214, 55–63 (2004).Article 

    Google Scholar 
    Shakes, D. C., Neva, B. J., Huynh, H., Chaudhuri, J. & Pires-daSilva, A. Asymmetric spermatocyte division as a mechanism for controlling sex ratios. Nat. Commun. 2, 157 (2011).ADS 
    Article 

    Google Scholar 
    Winter, E. S. et al. Cytoskeletal variations in an asymmetric cell division support diversity in nematode sperm size and sex ratios. Development 144, 3253–3263 (2017).CAS 

    Google Scholar 
    Robles, P. et al. Parental energy-sensing pathways control intergenerational offspring sex determination in the nematode Auanema freiburgensis. BMC Biol. 19, 102 (2021).CAS 
    Article 

    Google Scholar 
    Zuco, G. et al. Sensory neurons control heritable adaptation to stress through germline reprogramming. bioRxiv 406033 (2018) https://doi.org/10.1101/406033.Colegrave, N., Kaltz, O. & Bell, G. The ecology and genetics of fitness in chlamydomonas. VIII. The dynamics of adaptation to novel environments after a single episode of sex. Evolution 56, 14–21 (2002).Article 

    Google Scholar 
    Goddard, M. R., Godfray, H. C. J. & Burt, A. Sex increases the efficacy of natural selection in experimental yeast populations. Nature 434, 636–640 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Gray, J. C. & Goddard, M. R. Sex enhances adaptation by unlinking beneficial from detrimental mutations in experimental yeast populations. BMC Evol. Biol. 12, 43 (2012).Article 

    Google Scholar 
    Poon, A. & Chao, L. Drift increases the advantage of sex in RNA bacteriophage ⌽6. Genetics 166, 19 (2004).Article 

    Google Scholar 
    Stewart, A. D. & Phillips, P. C. Selection and maintenance of androdioecy in Caenorhabditis elegans. Genetics 160, 975–982 (2002).Article 

    Google Scholar 
    Stiernagle, T. Maintenance of C. elegans. WormBook: The Online Review of C. elegans Biology (WormBook, 2006).Avery, L. The genetics of feeding in Caenorhabditis elegans. Genetics 133, 897–917 (1993).CAS 
    Article 

    Google Scholar 
    Bargmann, C. I. & Horvitz, H. R. Control of larval development by chemosensory neurons in Caenorhabditis elegans. Science 251, 1243–1246 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    Lenth, R. V. Emmeans: estimated marginal means, aka least-squares means (2021).Lipton, J., Kleemann, G., Ghosh, R., Lints, R. & Emmons, S. W. Mate searching in Caenorhabditis elegans: a genetic model for sex drive in a simple invertebrate. J. Neurosci. 24, 7427–7434 (2004).CAS 
    Article 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Pino, E. C., Webster, C. M., Carr, C. E. & Soukas, A. A. Biochemical and high throughput microscopic assessment of fat mass in Caenorhabditis elegans. J. Vis. Exp. https://doi.org/10.3791/50180 (2013).Article 

    Google Scholar 
    Hakim, A. et al. WorMachine: machine learning-based phenotypic analysis tool for worms. BMC Biol. 16, 8 (2018).Article 

    Google Scholar 
    Motola, D. L. et al. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 124, 1209–1223 (2006).CAS 
    Article 

    Google Scholar 
    Ogawa, A., Streit, A., Antebi, A. & Sommer, R. J. A conserved endocrine mechanism controls the formation of dauer and infective larvae in nematodes. Curr. Biol. 19, 67–71 (2009).CAS 
    Article 

    Google Scholar 
    Wang, Z. et al. Identification of the nuclear receptor DAF-12 as a therapeutic target in parasitic nematodes. Proc. Natl. Acad. Sci. 106, 9138–9143 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Hu, P. Dauer. WormBook: The C. elegans Research Community (2007).Chaudhuri, J., Kache, V. & Pires-daSilva, A. Regulation of sexual plasticity in a nematode that produces males, females, and hermaphrodites. Curr. Biol. 21, 1548–1551 (2011).CAS 
    Article 

    Google Scholar 
    Luciani, G. M. et al. Dafadine inhibits DAF-9 to promote dauer formation and longevity of Caenorhabditis elegans. Nat. Chem. Biol. 7, 891–893 (2011).CAS 
    Article 

    Google Scholar 
    Adams, S., Pathak, P., Shao, H., Lok, J. B. & Pires-daSilva, A. Liposome-based transfection enhances RNAi and CRISPR-mediated mutagenesis in non-model nematode systems. Sci. Rep. 9, 483 (2019).ADS 
    Article 

    Google Scholar 
    Andrews, S. FastQC: A Quality Control Tool for High Throughput Sequence Data [Online]. http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ (2010).Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    Article 

    Google Scholar 
    Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    Article 

    Google Scholar 
    Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-Seq: reference generation and analysis with Trinity. Nat. Protoc. 8, 1494 (2013).CAS 
    Article 

    Google Scholar 
    Schmieder, R. & Edwards, R. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS ONE 6, e17288 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Huang, Y., Niu, B., Gao, Y., Fu, L. & Li, W. CD-HIT Suite: a web server for clustering and comparing biological sequences. Bioinformatics 26, 680–682 (2010).CAS 
    Article 

    Google Scholar 
    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).CAS 
    Article 

    Google Scholar 
    Bendtsen, J. D., Nielsen, H., von Heijne, G. & Brunak, S. Improved prediction of signal peptides: SignalP 3.0. J. Mol. Biol. 340, 783–795 (2004).Article 

    Google Scholar 
    Bryant, D. M. et al. A tissue-mapped axolotl de novo transcriptome enables identification of limb regeneration factors. Cell Rep. 18, 762–776 (2017).CAS 
    Article 

    Google Scholar 
    Finn, R. D., Clements, J. & Eddy, S. R. HMMER web server: interactive sequence similarity searching. Nucl. Acids Res. 39, W29–W37 (2011).CAS 
    Article 

    Google Scholar 
    Andersen, C. L., Jensen, J. L. & Ørntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 64, 5245–5250 (2004).CAS 
    Article 

    Google Scholar 
    McGhee, J. D. The C. elegans intestine. WormBook: The Online Review of C. elegans Biology [Internet] (WormBook, 2007).Mullaney, B. C. & Ashrafi, K. C. elegans fat storage and metabolic regulation. Biochim. Biophys. Acta (BBA) Mol. Cell Biol. Lipids 1791, 474–478 (2009).CAS 

    Google Scholar 
    O’Rourke, E. J., Soukas, A. A., Carr, C. E. & Ruvkun, G. C. elegans major fats are stored in vesicles distinct from lysosome-related organelles. Cell Metab. 10, 430–435 (2009).Article 

    Google Scholar 
    Mak, H. Y. Lipid droplets as fat storage organelles in Caenorhabditis elegans. J. Lipid Res. 53, 28–33 (2012).CAS 
    Article 

    Google Scholar 
    Kroetz, S. M., Srinivasan, J., Yaghoobian, J., Sternberg, P. W. & Hong, R. L. The cGMP signaling pathway affects feeding behavior in the necromenic nematode Pristionchus pacificus. BMC Proc. 6, P27 (2012).Article 

    Google Scholar 
    Edgar, L. G. & McGhee, J. D. Embryonic expression of a gut-specific esterase in Caenorhabditis elegans. Dev. Biol. 114, 109–118 (1986).CAS 
    Article 

    Google Scholar 
    Barr, M. M. & Sternberg, P. W. A polycystic kidney-disease gene homologue required for male mating behaviour in C. elegans. Nature 401, 386 (1999).ADS 
    CAS 

    Google Scholar 
    Bendesky, A., Tsunozaki, M., Rockman, M. V., Kruglyak, L. & Bargmann, C. I. Catecholamine receptor polymorphisms affect decision-making in C. elegans. Nature 472, 313–318 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Garrison, J. L. et al. Oxytocin/vasopressin-related peptides have an ancient role in reproductive behavior. Science 338, 540–543 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Joo, H.-J. et al. Contribution of the peroxisomal acox gene to the dynamic balance of daumone production in Caenorhabditis elegans. J. Biol. Chem. 285, 29319–29325 (2010).CAS 
    Article 

    Google Scholar 
    Yassin, L. et al. Characterization of the DEG-3/DES-2 receptor: a nicotinic acetylcholine receptor that mutates to cause neuronal degeneration. Mol. Cell. Neurosci. 17, 589–599 (2001).CAS 
    Article 

    Google Scholar 
    Zhang, X., Wang, Y., Perez, D. H., Lipinski, R. A. J. & Butcher, R. A. Acyl-CoA oxidases fine-tune the production of ascaroside pheromones with specific side chain lengths. ACS Chem. Biol. https://doi.org/10.1021/acschembio.7b01021 (2018).Article 

    Google Scholar 
    Borne, F., Kasimatis, K. R. & Phillips, P. C. Quantifying male and female pheromone-based mate choice in Caenorhabditis nematodes using a novel microfluidic technique. PLoS ONE 87, 511 (2017).
    Google Scholar 
    Choe, A. et al. Sex-specific mating pheromones in the nematode Panagrellus redivivus. Proc. Natl. Acad. Sci. 109, 20949–20954 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Duggal, C. L. Sex attraction in the free-living nematode panagrellus redivivus. Nematologica 24, 213–221 (1978).Article 

    Google Scholar 
    Andersson, M. Sexual Selection Vol. 72 (Princeton University Press, 1994).Book 

    Google Scholar 
    Bateman, A. J. Intra-sexual selection in Drosophila. Heredity 2, 349–368 (1948).CAS 
    Article 

    Google Scholar 
    Kvarnemo, C. & Simmons, L. W. Polyandry as a mediator of sexual selection before and after mating. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120042 (2013).Article 

    Google Scholar 
    Parker, G. A. & Birkhead, T. R. Polyandry: the history of a revolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368, 20120335 (2013).Article 

    Google Scholar 
    Rhainds, M. Female mating failures in insects. Entomol. Exp. Appl. 136, 211–226 (2010).Article 

    Google Scholar 
    Hammond, K. A. Adaptation of the maternal intestine during lactation. J. Mammary Gland Biol. Neoplasia 2, 243–252 (1997).CAS 
    Article 

    Google Scholar 
    Speakman, J. R. The physiological costs of reproduction in small mammals. Philos. Trans. R. Soc. B Biol. Sci. 363, 375–398 (2008).Article 

    Google Scholar 
    Reiff, T. et al. Endocrine remodelling of the adult intestine sustains reproduction in Drosophila. Elife 4, e06930 (2015).Article 

    Google Scholar 
    Kaliszewicz, A. Interference of asexual and sexual reproduction in the green hydra. Ecol. Res. 26, 147–152 (2011).Article 

    Google Scholar 
    Oyarzún, P. A., Nuñez, J. J., Toro, J. E. & Gardner, J. P. A. Trioecy in the Marine Mussel Semimytilus algosus (Mollusca, Bivalvia): stable sex ratios across 22 degrees of a latitudinal gradient. Front. Mar. Sci. 7, 348 (2020).Article 

    Google Scholar 
    Armoza-Zvuloni, R., Kramarsky-Winter, E., Loya, Y., Schlesinger, A. & Rosenfeld, H. Trioecy, a unique breeding strategy in the sea anemone aiptasia diaphana and its association with sex steroids. Biol. Reprod. 90, 122 (2014).Article 

    Google Scholar 
    Greene, J. S. et al. Balancing selection shapes density-dependent foraging behaviour. Nature. 539(7628), 254–258. https://doi.org/10.1038/nature19848 (2016).ADS 
    CAS 
    Article 

    Google Scholar 
    Kieninger, M. R. et al. The Nuclear Hormone Receptor NHR-40 Acts Downstream of the Sulfatase EUD-1 as Part of a Developmental Plasticity Switch in Pristionchus.Curr Biol 26(16), 2174–2179. https://doi.org/10.1016/j.cub.2016.06.018 (2016).Therrien, M., Rouleau, G. A., Dion, P. A., Parker, J. A. & Dupuy, D. Deletion of C9ORF72 Results in Motor Neuron Degeneration and Stress Sensitivity in C. elegans. PLoS ONE 8(12), e83450. https://doi.org/10.1371/journal.pone.0083450 (2013).Lee, B. H., Liu, J., Wong, D., Srinivasan, S., Ashrafi, K. & Kim, S. K. Hyperactive Neuroendocrine Secretion Causes Size Feeding and Metabolic Defects of C. elegans Bardet-Biedl Syndrome Mutants. PLoS Biol 9(12), e1001219. https://doi.org/10.1371/journal.pbio.1001219 (2011).CAS 
    Article 

    Google Scholar 
    Li, C. & Kim, K. Family of FLP Peptides in Caenorhabditis elegans and Related Nematodes. Front Endocrinol. https://doi.org/10.3389/fendo.2014.00150 (2014). Buntschuh, I. et al. FLP-1 neuropeptides modulate sensory and motor circuits in the nematode Caenorhabditis elegans. PLoS ONE 13(1), e0189320. https://doi.org/10.1371/journal.pone.0189320 (2018).Topalidou, I. et al. The EARP Complex and Its Interactor EIPR-1 Are Required for Cargo Sorting to Dense-Core Vesicles. PLOS Genet 12(5), e1006074. https://doi.org/10.1371/journal.pgen.1006074 (2016).Maman, M. et al. A Neuronal GPCR is Critical for the Induction of the Heat Shock Response in the Nematode C. elegans. J Neurosci 33(14), 6102–6111. https://doi.org/10.1523/JNEUROSCI.4023-12.2013 (2013). More