More stories

  • in

    Integrated usage of historical geospatial data and modern satellite images reveal long-term land use/cover changes in Bursa/Turkey, 1858–2020

    Data UsedWe used cadastral maps from 1858 to reconstruct the LULC structure of Aksu and Kestel for the mid-nineteenth century. General Staff of the Ottoman Army produced these maps in 1:10,000 scale. These maps were one of the earliest attempts of creating cadastral maps in the Ottoman Empire. The images of historical maps scanned at 1270 dpi resolutions are provided by the Turkish Presidency State Archives of the Republic of Turkey – Department of Ottoman Archives (Map collection, HRT.h, 561–567). Individual tiles of cadastral maps are of a 1:2,000 scale. However, these maps are kept separated from their accompanying cadastral registers or documentation regarding their production process in the archives. There are no studies on the production of these cadastral maps, but few studies used them until now35,36.The LULC structures of Aksu and Kestel for the mid-twentieth century were generated using aerial photographs from June 23, 1955, with a scale of 1:30,000. These aerial photographs were captured by the US Navy Photographic Squadron VJ-62 (established on April 10, 1952, re-designated to VAP-62 on July 1956, and disestablished on October 15, 1969). The squadron conducted mapping and special photographic projects worldwide37. Lastly, the VHR satellite images of WorldView-3 (WV-3) with 0.3 m of spatial resolution, collected on September 6, 2020, were used to show the up-to-date LULC patterns of Aksu and Kestel.MethodologyFigure 2 shows the flowchart of steps followed in this study to detect the LULC changes. The workflow includes three phases: preprocessing, LULC mapping, and statistical analysis of LULC changes.Figure 2Flowchart of the processing steps for the LULC change analysis for Kestel.Full size imageData preprocessingOrthorectification is the first important step in ensuring accurate spatial positioning among the multi-temporal and multi-source images, eliminating geometric distortions, and defining all data sets on a common projection system. To align the multi-modal geospatial datasets, we first performed the orthorectification of the satellite images and then we used the orthorectified satellite images as reference for the georeferencing of the cadastral maps and aerial photographs.Satellite imagery orthorectificationWe first pan-sharpened the WV-3 images by applying the PANSHARP2 algorithm38 to fuse the panchromatic (PAN) image of 0.3 m spatial resolution with four multispectral bands (R, G, B, and near-infrared (NIR)) of 1.2 m. We then geometrically corrected the pan-sharpened (PSP) WV-3 imageries using an ALOS Global Digital Surface Model with a horizontal resolution of approximately 30 m (ALOS World 3D – 30 m), rational polynomial coefficients (RPC) file, and additional five ground control points (GCPs) for the refinement. As a geometric model, we used the RPC model with zero-order polynomial adjustment39, and orthorectified images were registered to the Universal Traverse Mercator (UTM) Zone 35 N as the reference coordinate system.Georeferencing of scanned cadastral maps and aerial photographsWe used orthorectified WV-3 imageries as a reference for the geometric correction of the historical cadastral maps and the aerial photographs. We selected the spline (triangulation) transformation, a rubber sheeting method, useful for local accuracy and requiring a minimum of 10 control points, as the transformation method to determine the correct map coordinate location for each cell in the historical maps and aerial photographs. The spline transformation provides superior accuracies for the geometric correction of the historical geospatial data40,41.The lack of topographic properties of planimetric features in the historical cadastral maps and the inherent distortions of the aerial photographs due to terrain and camera tilts causes difficulties in precise georeferencing of these data sets. It increases the number of required ground control points (GCPs) for optimal image rectification. Adequate and homogenously distributed GCPs, identified from cadastral maps and aerial photographs, can ensure precise spatial alignment among different geospatial data. The best locations for GCPs were border intersections of agricultural fields and roads. As for artificial objects, places of worship and schools, which are highly probable that have remained unchanged, are other optimal locations for GCPs to perform the accurate geometric correction. Figure 3 displays samples of GCPs selected from cadastral maps and aerial photographs. We obtained 2.11 m or better overall RMSE (Root Mean Square Error) values for the geometric correction of the historical maps and aerial photographs.Figure 3Examples of GCPs selection (red crosses in blue circles) on (a), (c) Cadastral maps and their counterparts on (b), (d) Aerial photographs.Full size imageLULC classification schemeWe defined our classification scheme by analyzing the LULC classes distinguished in all three datasets (i.e., cadastral maps, aerial photographs, and WV-3 imageries). We used the classification scheme shown in Table 1. We also present codes and names of the land cover (LC) classes derived from Corine LC nomenclature42.Table 1 Classification scheme of the study.Full size tableThe legends provided on the historical cadastral maps of Aksu and Kestel delineate 15 LULC categories, which are: (1) buildings, (2) home gardens, (3) roads, (4) arable land, (5) gardens, (6) mulberry groves, (7) chestnut groves, (8) olive groves, (9) vegetable gardens, (10) forest, (11) courtyards, (12) vineyards, (13) arable fields, (14) cemeteries, (15) watercourses. Categorizing the land cover types of cadastral maps is limited with the classes available in the map legend. The legend of cadastral maps categorizes the forested area in one class named “forest”. Therefore, it was not possible to use third-level LC sub-categories in our classification schema for forest area which is separating forested areas into three subclasses (3.1.1, 3.1.2, and 3.1.3) according to the type of tree cover. Although some of the third-level LC sub-categories could be extracted from the cadastral map legend, it was not possible to extract all third level agricultural classes from single-band monochromatic aerial photographs. Although the spatial extent of fruit trees as a permanent crop could be determined from aerial photographs, it was not possible to classify these trees into different fruit types (e.g. 2.2.1 Vineyards, 2.2.2 Fruit trees and berry plantations, 2.2.3 Olive groves). Limitation on the number of forest classes is due to the historical cadastral map content; whereas limitation on the number of agricultural classes is mainly offset by the aerial photographs which have only one spectral band and we did not have any field survey or ancillary geographical data that could help the specific identification of fruit trees.Our primary focus is to find out agricultural land abandonment, deforestation/afforestation, urbanization, and rural depopulation within the historical periods. Therefore, most of the second level LULC classes are sufficient for our purpose. LULC changes within the third class level such as the conversion of third level agriculture classes among each other were not aimed to analyze in this research. Our datasets allow us to use Level 3 CORINE classes for the artificial surfaces. These classes are useful to determine residential area implications of rural depopulation or urbanization, one of the focused transformation types for our analysis.We re-organized and categorized the LULC types used in the cadastral maps, with minimum possible manipulation (only for 2.4 and 3.2 LC classes) according to the classification scheme, as shown in Table 2.Table 2 Correspondence between Corine Land Cover and historical cadastral maps nomenclature.Full size tableLULC mappingAfter aligning all geospatial data, we used the georeferenced cadastral maps, aerial photographs, and satellite images for the LULC mapping. We set the spatial extent of the selected regions based on boundaries digitized from the cadastral maps of 1858. Then we detected historical LULC changes within these extents for all geospatial datasets covering 1900 ha and 830 ha of the Aksu and Kestel regions, respectively. Figures 4 and 5 show the selected extents from the historical maps, aerial photographs, and satellite images of the Kestel and Aksu sites, respectively.Figure 4Geospatial dataset for the Kestel study region. (a) 1858 Cadastral map, (b) 1955 aerial photo, and (c) 2020 WV-3 satellite image (finer details shown in the inset images highlighted by Blue boxes).Full size imageFigure 5Geospatial dataset for the Aksu study region. (a) 1858 Cadastral map, (b) 1955 aerial photo, and (c) 2020 WV-3 satellite image (finer details shown in the inset images highlighted by red boxes).Full size imageDigitization of cadastral maps-1858 LULC mapsWe visually interpreted and manually digitized the geographic features on the historical maps and created vector data for each class. The road features in cadastral maps lack topological properties. They also include spatial errors possibly generated in the process of surveying and map production. Therefore, we cross-checked digitized road segments by visual inspection of the road data of the aerial photographs from 1955. We then further modified road polygons to represent accurate road widths. Afterward, we categorized vectorized features of the cadastral maps into the LULC classes defined in Table 1. Finally, we created the vectorized 1858 LULC map. Figure 6 presents the vectorized 1858 cadastral maps of Aksu and Kestel.Figure 6Vectorized cadastral maps of (a) Kestel and (b) Aksu with Red and green lines showing the vector boundaries.Full size imageObject-based image analysis of aerial photographs-1955 LULC mapsAt the second stage of LULC mapping, we performed the segmentation and classification of the aerial photographs using an object-based approach for generating the 1955 LULC map. The object-based image analysis (OBIA) approach in LULC mapping provides advantages over the traditional per-pixel techniques such as higher classification accuracy, depicting more accurate LULC change, and differentiating extra LULC classes33,43,44. We used the eCognition® software (Trimble Germany GmbH, Munich) to implement an object-based image analysis (OBIA). The OBIA approach contains two phases including the segmentation and classification phases that are performed to locate meaningful objects in an image and categorize the created objects, respectively.Multiple ancillary datasets have been used to support different phases of OBIA. The Open Street Map (OSM) vector data, an open-source geospatial dataset (http://www.openstreetmap.org/), has been utilized as ancillary vector data in OBIA to improve the classification of the remotely sensed images. Sertel et al. (2018) used OSM as a thematic layer for road extraction7. Since there are several limitations in extracting the roads from aerial imagery, the OSM road network data could be useful. A majority of unpaved roads in single-band aerial photographs can easily be misclassified as homogeneous areas of arable lands. Precise detection of the roads from monoband aerial photographs without multi-spectral information is difficult. Therefore, we overlaid the OSM road network data with the aerial photographs to extract the revised aerial road vectors through visual interpretation and manual digitization.We segmented the 1955 aerial photographs with the integration of 1858 LULC map produced from cadastral maps. We implemented the multi-resolution segmentation algorithm. In this segmentation method, a parameter called scale determines the size of resulting objects, and the shape and compactness parameters determine the boundaries of objects. The segmentation process of the aerial photographs was performed at multiple stages with various scale, shape, and compactness parameter values. At the initial stage, we segmented the regions according to the 1858 LULC map and we utilized large-scale parameters. The scale parameter was set to 100 and the shape parameter and the compactness were set as 0.7 and 0.3, respectively. At this stage, we focused on interpreting the objects that have not changed between 1858 and 1955. We classified the segments using the thematic layer attribute (LULC classes defined by the cadastral maps) with the highest coverage. Image objects in which the land surface has changed during 1858–1955 period were detected by visual interpretation and unclassified for further segmentation. We followed this approach to reduce the manual effort. We defined unchanged objects between 1858 and 1955 and assigned the same classes of 1858 LULC map to the objects in 1955 aerial photographs. We then segmented the remaining segments, the last time into smaller objects with the scale parameter set as 25, the shape parameter set as 0.2, and the compactness set as 0.8.We classified the remaining unclassified objects through the development of rulesets. An object can be described by several possible features as explanatory variables which are provided by eCognition. In the classification ruleset, different features and parameters can be defined to describe and extract object classes of interest and thresholds for each feature can be defined by the trial-and-error method. We tested sets of variables for the classification of the monoband aerial photographs. Object features such as the mean value of the monoband, texture after Haralick, distance to neighbor objects, shape features (e.g., rectangular fit and asymmetry), and extent features (e.g., area and length/width) were the most useful alternatives. The classification process of the parcels of the aerial photographs with LULC change started with the classification of roads constructed between 1858 and 1955 by utilizing the aerial road map. The watercourse class was the most difficult to classify since shrubs or trees mostly covered the watercourses. These areas were misclassified as forest or agricultural land. Therefore, experts in historical map reading with local geographical information performed the detection and classification of the water course class and interpreted by the cadastral map (1858) and the google map (2020). After roads and watercourses, we classified forest and agricultural lands using the optimal thresholds for the brightness feature. We calculated the thresholds using the single band of the aerial photograph combined with the area and rectangular fit features. The heterogeneous agricultural areas class principally occupied by agriculture with significant areas of natural grass and trees within the same object are separated from the arable lands using the standard deviation of the digital number (DN) values of the aerial photographs. The texture feature helped classify the permanent crops. The brightness, shape, asymmetry, and distance to road class features were the best-performing ones for classifying the remaining artificial surfaces. The manual interpretation was performed for the classification of sub-classes of artificial surface class, including the continuous/discontinuous urban fabric, industrial, commercial, and transport units, mine, dump and construction sites, and artificial, non-agricultural vegetated areas. Since these land use classes contain one or more land cover and land use categories (e.g., artificial non-agriculture land or industrial or commercial units), finding the optimal threshold and exact feature for distinguishing the subclasses of artificial surfaces is difficult. Especially in the case of using the single-band aerial photographs, manual interpretation was required.Object-based image analysis of satellite images-2020 LULC mapsWe segmented WV-3 satellite images using multi-resolution segmentation algorithm and ancillary geographic data. Similar to the aerial road map, the road network of the study region in 2020, named, WV-3 road map, was extracted by overlaying the OSM road data with the WV-3 satellite image. In the segmentation process of the WV-3 image, we used the vector boundaries of the classified aerial photograph (the 1955 LULC map) and the WV-3 road map as ancillary thematic layers. We opted for the same segmentation and classification approach used for the aerial photographs for the WV-3 image.Firstly, we segmented the satellite image into spectrally homogeneous objects using vector data of the 1955 LULC map by applying large-scale parameters. We implemented scale parameter values of 300, 200, 100, and 50 to find the optimal scale to classify objects that have not changed between 1955 and 2020. The best multi-resolution segmentation configuration was the scale of 100 and the shape and compactness parameters of 0.3 and 0.7, respectively. We classified the segments using the thematic layer attribute (LULC classes defined by the aerial maps) with the highest coverage. Segments with LULC change, e.g. the image objects in which the land surface has changed during 1955–2020 period were detected by visual interpretation and unclassified for further segmentation. As a result, we excluded the objects which were remained unchanged during 1955–2020 by assigning the prepared labels which were allocated in the previous step during the classification of 1955 aerial photographs. We then segmented the remaining objects into smaller objects to identify the changed areas in detail. At this step, the scale, shape, and compactness parameters were set as 25, 0.2, and 0.8, respectively.Except for the additional sets of variables utilized to classify the WV-3 images, we applied the rule-set developed for the classification of the aerial photograph for the classification of the remaining objects of 2020 satellite images. The additional sets of variables include the mean of G, B, R, and NIR and two spectral indices, the Normalized Difference Water Index (NDWI), and the Normalized Difference Vegetation Index (NDVI). NDVI was calculated as the normalized difference of reflectance values in the red and NIR bands; whereas , NDWI was determined as the normalized difference of reflectance values of the green and NIR bands. Through the logical conditions, objects having specified values of NDVI and NDWI can be assigned to vegetation and water classes, respectively. The use of NDVI facilitated the delineation of terrains covered by vegetation and the NDWI improved the extraction of water bodies due to its ability to separate water and non-water objects. We separated different sub-classes of agricultural areas and forests by using optimal thresholds for NDVI which were defined by a trial and error method. Also we utilized assigning the optimal threshold to NDWI to separate water bodies from other land covers. In addition, the mean blue band layer was useful in classifying the artificial surfaces. We assessed the accuracy of each classification using error matrices (overall, user’s and producer’s accuracies, and Kappa statistics)45,46.Estimating LULC changes and LULC conversionsAfter the production of LULC maps of Aksu and Kestel for 1858, 1955, and 2020, the vector data of the LULC maps were used to quantify the LULC conversions for two different periods which are 1858–1955 and 1955–2020. To compare the LULC maps of study areas between two different dates of each study period, we provided detailed “from-to” LULC change information by calculating the LULC change transition matrix computed using overlay functions in ArcGIS.We overlaid LULC maps of 1858 and 1955 and intersected the vector boundaries of the 1858 and 1955 LULC maps to determine the conversion types of LULC classes (from which class to which class). Similarly, to quantify the LULC changes between 1955 and 2020, we overlaid the 1955 and 2020 LULC maps. Then we created transition matrices and performed statistical analysis utilizing the matrices. Finally, we discussed the main LULC change types and the driving factors of the changes in the selected study areas. More

  • in

    Experimental transmission of Stony Coral Tissue Loss Disease results in differential microbial responses within coral mucus and tissue

    Harvell CD, Kim K, Burkholder JM, Colwell RR, Epstein PR, Grimes DJ, et al. Emerging marine diseases-climate links and anthropogenic factors. Science. 1999;285:1505–10. http://science.sciencemag.org/content/285/5433/1505.abstract.CAS 
    Article 

    Google Scholar 
    Maynard J, Van Hooidonk R, Eakin CM, Puotinen M, Garren M, Williams G, et al. Projections of climate conditions that increase coral disease susceptibility and pathogen abundance and virulence. Nat Clim Chang. 2015;5:688–94.Article 

    Google Scholar 
    Burge CA, Mark Eakin C, Friedman CS, Froelich B, Hershberger PK, Hofmann EE, et al. Climate change influences on marine infectious diseases: implications for management and society. Ann Rev Mar Sci. 2014;6:249–77.Article 

    Google Scholar 
    Miller J, Muller E, Rogers C, Waara R, Atkinson A, Whelan KRT, et al. Coral disease following massive bleaching in 2005 causes 60% decline in coral cover on reefs in the US Virgin Islands. Coral Reefs. 2009;28:925–37.Article 

    Google Scholar 
    Walton CJ, Hayes NK, Gilliam DS. Impacts of a regional, multi-year, multi-species coral disease outbreak in Southeast Florida. Front Mar Sci. 2018;5:1–14.Article 

    Google Scholar 
    Woodhams DC, Bletz MC, Becker CG, Bender HA, Buitrago-Rosas D, Diebboll H, et al. Host-associated microbiomes are predicted by immune system complexity and climate. Genome Biol. 2020;21:1–20.Article 

    Google Scholar 
    Burek KA, Gulland FMD, Sheffield G, Beckmen KB, Keyes E, Spraker TR, et al. Infectious disease and the decline of Steller sea lions (Eumetopias jubatus) in Alaska, USA: Insights from serologic data. J Wildl Dis. 2005;41:512–24.Article 

    Google Scholar 
    Chaloupka M, Balazs GH, Work TM. Rise and Fall over 26 years of a marine epizootic in Hawaiian green sea turtles milani. J Wildl Dis. 2009;45:1138–42.Article 

    Google Scholar 
    NOAA. Stony coral tissue loss disease case definition. 2018. Available online at: https://floridadep.gov/sites/default/file/Copy%20of%20StonyCoralTissueLossDisease_CaseDefinition%20final%2010022018.pdf (accessed September 15, 2020).Estrada-Saldívar N, Molina-Hernández A, Pérez-Cervantes E, Medellín-Maldonado F, González-Barrios FJ, Alvarez-Filip L. Reef-scale impacts of the stony coral tissue loss disease outbreak. Coral Reefs. 2020;39:861–6.Article 

    Google Scholar 
    Heres MM, Farmer BH, Elmer F, Hertler H. Ecological consequences of stony coral tissue loss disease in the Turks and Caicos Islands. Coral Reefs. 2021;40:609–24. https://doi.org/10.1007/s00338-021-02071-4.Article 

    Google Scholar 
    Combs IR, Studivan MS, Eckert RJ, Voss JD. Quantifying impacts of stony coral tissue loss disease on corals in Southeast Florida through surveys and 3D photogrammetry. PLoS ONE. 2021;16:1–17. https://doi.org/10.1371/journal.pone.0252593.CAS 
    Article 

    Google Scholar 
    Estrada-Saldívar N, Quiroga-García BA, Pérez-Cervantes E, Rivera-Garibay OO, Alvarez-Filip L. Effects of the stony coral tissue loss disease outbreak on coral communities and the benthic composition of cozumel reefs. Front Mar Sci. 2021;8:1–13. https://doi.org/10.3389/fmars.2021.632777.Article 

    Google Scholar 
    Brandt ME, Ennis RS, Meiling SS, Townsend J, Cobleigh K, Glahn A, et al. The emergence and initial impact of stony coral tissue loss disease (SCTLD) in the United States Virgin Islands. Front Mar Sci. 2021;1-15. https://doi.org/10.3389/fmars.2021.715329.Florida Keys National Marine Sanctuary. Case definition: Stony Coral Tissue Loss Disease (SCTLD). Silver Spring, MD: National Oceanic and Atmospheric Administration; 2018.Neely KL, Shea CP, Macaulay KA, Hower EK, Dobler MA. Short-and long-term effectiveness of coral disease treatments. Front Mar Sci. 2021;8:1–18. https://doi.org/10.3389/fmars.2021.675349.Article 

    Google Scholar 
    Muller EM, Sartor C, Alcaraz NI, van Woesik R. Spatial epidemiology of the stonycoral-tissue-loss disease in Florida. Front Mar Sci. 2020;7:1–11. https://doi.org/10.3389/fmars.2020.00163.Article 

    Google Scholar 
    Dobbelaere T, Muller EM, Gramer LJ, Holstein DM, Hanert E. Coupled epidemiohydrodynamic modeling to understand the spread of a deadly coral disease in Florida. Front Mar Sci. 2020;7:1–16. https://doi.org/10.3389/fmars.2020.591881.Article 

    Google Scholar 
    Work TM, Weatherby TM, Landsberg JH, Kiryu Y, Cook SM, Peters EC. Viral-like particles are associated with endosymbiont pathology in Florida corals affected by stony coral tissue loss disease. Front Mar Sci. 2021;8:1–18. https://doi.org/10.3389/fmars.2021.750658.Article 

    Google Scholar 
    Veglia, AJ, Beavers K, Van Buren EW, Meiling SS, Muller EM, Smith TB, et al. Novel alphaflexiviridae genomes associated with stony coral tissue loss disease (SCTLD)-affected, disease-exposed and unexposed coral colonies in the U.S. Virgin Islands. Microbiol Resour Announc. 11:e01199-21.Rosales SM, Clark AS, Huebner LK, Ruzicka RR, Muller EM. Rhodobacterales and rhizobiales are associated with stony coral tissue loss disease and its suspected sources of transmission. Front Microbiol. 2020;681.Becker CC, Brandt M, Miller CA, Apprill A. Microbial bioindicators of Stony Coral Tissue Loss Disease identified in corals and overlying waters using a rapid field‐based sequencing approach. Environ Microbiol. 2022;3:1166–82.Article 

    Google Scholar 
    Meyer JL, Castellanos-Gell J, Aeby GS, Häse CC, Ushijima B, Paul VJ. Microbial community shifts associated with the ongoing stony coral tissue loss disease outbreak on the Florida reef tract. Front Microbiol. 2019;10:1–12. https://doi.org/10.3389/fmicb.2019.02244.CAS 
    Article 

    Google Scholar 
    Apprill A, Weber LG, Santoro AE. Distinguishing between microbial habitats unravels ecological complexity in coral microbiomes. mSystems. 2016;1:1–18. https://doi.org/10.1128/mSystems.00143-16.Article 

    Google Scholar 
    Pollock FJ, McMinds R, Smith S, Bourne DG, Willis BL, Medina M, et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat Commun. 2018;9:1–13. https://doi.org/10.1038/s41467-018-07275-x.CAS 
    Article 

    Google Scholar 
    Brown BE, Bythell JC. Perspectives on mucus secretion in reef corals. Mar Ecol Prog Ser. 2005;296:291–309. https://doi.org/10.3354/meps296291.CAS 
    Article 

    Google Scholar 
    Bourne DG, Morrow KM, Webster NS. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu Rev Microbiol. 2016;70:317–40. https://doi.org/10.1146/annurev-micro-102215-095440.CAS 
    Article 
    PubMed 

    Google Scholar 
    Ritchie KB. Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar Ecol Prog Ser. 2006;322:1–14. https://doi.org/10.3354/meps322001.CAS 
    Article 

    Google Scholar 
    Ainsworth TD, Hoegh-Guldberg O. Bacterial communities closely associated with coral tissues vary under experimental and natural reef conditions and thermal stress. Aquat Biol. 2008;4:289–96. https://doi.org/10.3354/ab00102.Article 

    Google Scholar 
    Work TM, Aeby GS. Microbial aggregates within tissues infect a diversity of corals throughout the Indo-Pacific. Mar Ecol Prog Ser. 2014;500:1–9. https://doi.org/10.3354/meps10698.Article 

    Google Scholar 
    Landsberg JH, Kiryu Y, Peters EC, Wilson PW, Perry N, Waters Y, et al. Stony coral tissue loss disease in Florida is associated with disruption of host–zooxanthellae physiology. Front Mar Sci. 2020;7:1–24. https://doi.org/10.3389/fmars.2020.576013.Article 

    Google Scholar 
    Lima LFO, Weissman M, Reed M, Papudeshi B, Alker AT, Morris MM, et al. Modeling of the coral microbiome: the influence of temperature and microbial network. MBio. 2020;11:e02691-19. https://doi.org/10.1128/mBio.02691-19.Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    MacKnight NJ, Cobleigh K, Lasseigne D, Chaves-Fonnegra A, Gutting A, Dimos B, et al. Microbial dysbiosis reflects disease resistance in diverse coral species. Commun Biol. 2021;4:1–11. https://doi.org/10.1038/s42003-021-02163-5.Article 

    Google Scholar 
    Walker WA. Dysbiosis. The microbiota in gastrointestinal pathophysiology. Else-vier Inc. p. 227-32. https://doi.org/10.1016/B978-0-12-804024-9/00025-2.McDevitt-Irwin JM, Baum JK, Garren M, Vega thurber RL. Responses of coral-associated bacterial communities to local and global stressors. Front Mar Sci. 2017;4:1–16. https://doi.org/10.3389/fmars.2017.00262.Article 

    Google Scholar 
    Zaneveld JR, Burkepile DE, Shantz AA, Pritchard CE, McMinds R, Payet JP, et al. Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nat Commun. 2016;7:1–12. https://doi.org/10.1038/ncomms11833.CAS 
    Article 

    Google Scholar 
    Zaneveld JR, McMinds R, Thurber RV. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol. 2017;2:1–8. https://doi.org/10.1038/nmicrobiol.2017.121.CAS 
    Article 

    Google Scholar 
    Sharp W, Maxwell K. Investigating the ongoing coral disease outbreak in the Florida keys: collecting corals to diagnose the etiological agent (s) and establishing sentinel sites to monitor transmission rates and the spatial progression of the disease. 2018.Meiling SS, Muller EM, Lasseigne D, Rossin A, Veglia AJ, MacKnight N, et al. Variable species responses to experimental stony coral tissue loss disease (SCTLD) exposure. Front Mar Sci. 2021;8:1–12.Article 

    Google Scholar 
    Williams L, Smith TB, Burge CA, Brandt ME. Species-specific susceptibility to white plague disease in three common Caribbean corals. Coral Reefs. 2020;39:27–31. https://doi.org/10.1007/s00338-019-01867-9.Article 

    Google Scholar 
    Ainsworth TD, Krause L, Bridge T, Torda G, Raina J-B, Zakrzewski M, et al. The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J. 2015;9:2261–74.CAS 
    Article 

    Google Scholar 
    Apprill A, Mcnally S, Parsons R, Weber L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat Microb Ecol. 2015;75:129–37.Article 

    Google Scholar 
    Parada AE, Needham DM, Fuhrman JA. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18:1403–14.CAS 
    Article 

    Google Scholar 
    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13:581–3. https://doi.org/10.1038/nmeth.3869.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yilmaz N, Visagie CM, Houbraken J, Frisvad JC, Samson RA. Polyphasic taxonomy of the genus Talaromyces. Stud Mycol. 2014;78:175–341. https://doi.org/10.1016/j.simyco.2014.08.001.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huggett MJ, Apprill A. Coral microbiome database: Integration of sequences reveals high diversity and relatedness of coral-associated microbes. Environ Microbiol Rep. 2019;11:372–85. https://doi.org/10.1111/1758-2229.12686.Article 
    PubMed 

    Google Scholar 
    Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar A, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71. https://doi.org/10.1093/nar/gkh293.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10:1–12. https://doi.org/10.1371/journal.pcbi.1003531.CAS 
    Article 

    Google Scholar 
    Oksanen, J, Blanchet, FG, Friendly, M, Kindt, R,Legendre, P, McGlinn, D, et al. vegan: communityecology package. R package version 25-4. 2019.Clarke, KR, Gorley, RN, Somerfield, PJ, Warwick, RM. Change in marine communities: an approach to statistical analysis and interpretation, 3nd edition. PRIMER-E: Plymouth. 2014.Martin BD, Witten D, Willis AD Modeling microbial abundances and dysbiosis with beta-binomial regression. 2019;1–27. http://arxiv.org/abs/1902.02776.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    Article 

    Google Scholar 
    NOAA. Stony coral tissue loss disease case definition. 2018. p. 1–10.Morrow KM, Moss AG, Chadwick NE, Liles MR. Bacterial associates of two caribbean coral species reveal species-specific distribution and geographic variability. Appl Environ Microbiol. 2012;78:6438–49.CAS 
    Article 

    Google Scholar 
    Glasl B, Herndl GJ, Frade PR. The microbiome of coral surface mucus has a key role in mediating holobiont health and survival upon disturbance. ISME J. 2016;10:2280–92. https://doi.org/10.1038/ismej.2016.9.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gardiner M, Bournazos AM, Maturana-Martinez C, Zhong L, Egan S. Exoproteome analysis of the seaweed pathogen Nautella italica R11 reveals temperature-dependent regulation of RTX-like proteins. Front Microbiol. 2017;8:1–9.Article 

    Google Scholar 
    Fernandes N, Case RJ, Longford SR, Seyedsayamdost MR, Steinberg PD, Kjelleberg S, et al. Genomes and virulence factors of novel bacterial pathogens causing bleaching disease in the marine red alga Delisea pulchra. PLoS ONE. 2011;6:e27387. https://doi.org/10.1371/journal.pone.0027387.CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    De O, Santos E, Alves N, Dias GM, Mazotto AM, Vermelho A, et al. Genomic and proteomic analyses of the coral pathogen Vibrio coralliilyticus reveal a diverse virulence repertoire. ISME J. 2011;5:1471–83.Article 

    Google Scholar 
    Viehman S, Mills DK, Meichel GW, Richardson LL. Culture and identification of Desulfovibrio spp. from corals infected by black band disease on Dominican and Florida Keys reefs. Dis Aquat Organ. 2006;69:119–27.CAS 
    Article 

    Google Scholar 
    Brownell AC, Richardson LL. Sulfate reducing bacteria as secondary and necessary pathogens in black band disease of corals. Rev Biol Trop. 2014;62:1–9.Article 

    Google Scholar  More

  • in

    Metabolic responses of plankton to warming during different productive seasons in coastal Mediterranean waters revealed by in situ mesocosm experiments

    Effect of warming on physical and chemical conditionsThe water temperature in the warmed treatment was increased by 2.87 ± 0.20 °C in spring and 3.04 ± 0.08 °C in fall, compared to the control (Fig. 1a,b, Table 1). The average temperature in the control treatment, throughout the duration of the experiment, was about 4 °C cooler in spring (14.84 ± 0.03 °C) than in fall (19.01 ± 0.02 °C). In spring, the temperature naturally increased by approximately 4.19 °C from day (d) 10, until the end of the experiment, whereas it remained relatively constant in the fall experiment. It displayed higher diurnal variations in spring than in fall: over the course of the experiments, daily temperature variation ranged from 0.87 to 1.98 °C in spring and from 0.23 to 1.12 °C in fall. The average Daily Light Integral (DLI) in the control treatment, was almost twice as high in the spring experiment (7.93 ± 0.61 mol m−2 d−1) than during the fall (4.61 ± 0.52 mol m−2 d−1) (Fig. 1c,d). Warming did not significantly alter the DLI in fall (Table 1); however, the DLI could not be measured in the warm mesocosms in spring, owing to technical problems.Figure 1Time series of physical and chemical variables. Water temperature (a, b), Daily Light Integral (DLI, c, d), ammonium (NH4+, e, f), nitrates (NO3− + NO2−, g, h), orthophosphate (PO43−, i, j), silicate (SiO2, k, l) concentrations, and N/P ratio (m, n) over the course of the spring (a, c,e, g, i, k, m) and fall (b, d, f, h, j, l, n) experiments in the control (black) and the warmed (orange) treatments. Error bars represent range of observation for the two mesocosms per treatment in spring and the standard deviation for the three mesocosms per treatment in fall. Dotted lines represent the missing data on d10 of the fall experiment due to bad weather conditions. Due to technical difficulties, DLI could not be calculated in the warmed mesocosms of the spring experiment.Full size imageTable 1 Summary of the p values obtained by Repeated Measures Analyses Of VAriance (RM-ANOVA, with treatment as fixed factor and time as random factor) comparing physical parameters and nutrient concentrations in the warmed and control mesocosms.Full size tableNutrient concentrations were measured daily in all mesocosms (Fig. 1, Table 1). Ammonium (NH4+) concentrations were higher in spring than in fall in the controls (0.45 ± 0.08 µM, and 0.41 ± 0.05 µM, respectively). Ammonium concentrations were significantly different, between the control and warmed mesocosms, only at the end of the fall experiment (warmed with a mean of 0.58 ± 0.23 µM, between d11–17; and control with a mean of 0.21 ± 0.09 µM, between d11–17). In contrast, ammonium concentrations did not vary between the control and warmed mesocosms in spring (Table 1). Cohen’s effect size (d) was used to evaluate the magnitude of the effect of warming. Regarding ammonium concentrations, the values were ten times larger in spring than in fall.The nitrate + nitrite (NO3− + NO2−) concentrations in the control treatments were higher in the spring, compared to the fall experiment (0.71 ± 0.08 µM and 0.23 ± 0.02 µM, respectively). Moreover, warming had different effects, depending on the experiment. In spring, the nitrate + nitrite concentrations were significantly higher in the warmed mesocosms from d8 until the end of the experiment, with an average difference of 540.5% between the warmed and control mesocosms, corresponding to a very large d. In fall, nitrate + nitrite concentrations were significantly lower in the warmed mesocosms than in the control, with an average difference of 20.4%, and a medium-sized d.Similar to the nitrate + nitrite concentrations, the orthophosphate (PO43−) concentrations in the control treatment were higher in spring (0.55 ± 0.07 µM and 0.17 ± 0.01 µM, respectively) than in fall. The concentrations were negatively affected by warming throughout the spring experiment, with an average decrease of 9.3%. However, the largest negative effect of experimental warming was observed at the end of fall, with an average decrease of 16.7%, between d15 and d17.Contrary to the nitrate + nitrite and orthophosphate concentrations, the silicate (SiO2) concentrations in the control treatments were, on average, lower in spring (3.31 ± 0.18 µM and 10.42 ± 0.15 µM, respectively) than in fall. Warming had a significant positive effect during the second part of the spring experiment (from d10 to d17), with average concentrations being 27.8% higher in the warmed mesocosms, than in the control. In contrast, the strongest effect of warming on silicate concentrations was observed at the end of the fall experiment, when the silicate concentrations were significantly lower in the warmed mesocosms, by an average of 10.8%, between d15 and d17.The N/P ratio, calculated as the sum of nitrate, nitrite and ammonium concentrations divided by orthophosphate concentration, was 1.99 and 2.39 on average in the control treatment of the spring and fall experiments, respectively (Fig. 1m,n). It was significantly higher over the entire experiments in the warmed treatment by on average 191.5% and 58.8% in spring and fall, respectively (Table 1). In fall, the highest difference between treatments was seen during the second half of the experiment, when the ratio was significantly higher by 133.5% from day 11 to 17.Effects of warming on gross primary production and respiration rates derived from oxygen sensor dataIn the spring experiment, daily GPP varied between 0.19 ± 0.01 and 1.72 ± 0.15 gO2 m−3 d−1 in the control mesocosms (Fig. 2A). It increased during the first half of the experiment (d2–d10), then decreased toward the end of the experiment. In the fall experiment, the daily GPP was lower than what was observed in the control mesocosms in spring and varied between 0.12 ± 0.02 and 0.96 ± 0.16 gO2 m−3 d−1 (Fig. 2B). In spring, warming significantly reduced GPP by 50.9% over the entire experiment, while in fall, warming enhanced GPP by 21.1% over the entire experiment, 32.3% from d4 to d7, and 44.1% from d12 to d17 (Table 2). In spring, when GPP was normalized by the chl-a measured by the high-frequency sensors, it was not significantly different between the treatments, over the entire experiment (Fig. 2C, Table 2). However, it was significantly higher (138%) in the warmed treatment, during the second half of the experiment (d10– d17). In fall, GPP normalized by the chl-a was also significantly enhanced (12%) by warming (Fig. 2D, Table 2).Figure 2Plankton oxygen metabolism parameters. Gross Primary Production (GPP, A, B), GPP normalized by the chlorophyll-a fluorescence (C, D), Respiration (R, E, F), R normalized by the chlorophyll-a fluorescence (G, H), and GPP:R ratio (I, J) in the control (black) and warmed (orange) treatments. Error bars represent range of observation for the two mesocosms per treatment in spring and the standard deviation for the three mesocosms per treatment in fall. In the spring experiment, GPP: Chl-a and R: Chl-a could not be estimated on d1 and d2.Full size imageTable 2 Summary table of the p values and the F-values obtained with the RM-ANOVA (with treatment as fixed factor and time as random factor) comparing the chl-a fluorescence, µ, l, the µ:l ratio, and pigment concentrations in the warmed and in the control treatments over the entire spring and fall experiments or over specific periods defined after trends observed in the data.Full size tableDaily R varied between 0.27 ± 0.02 and 1.92 ± 0.20 gO2 m−3 d−1 in the spring control mesocosms (Fig. 2E). Similar to the daily GPP, it increased during the first half of the experiment (d2– d10), with a strong increase between d8 and d10, before decreasing slowly until the end of the experiment. In the fall experiment, the daily R was lower than in spring, varying from 0.19 ± 0.02 and 1.09 ± 0.14 gO2 m−3 d−1, in the control mesocosms (Fig. 2F). Warming significantly reduced the daily R by an average of 47.9% in spring, while no significant differences were found in fall (Table 2). During both experiments, when daily R was normalized by chl-a, it was not significantly different between treatments over the entire experimental period (Figs. 2G,H), but it was significantly enhanced by warming during the second half of the experiments, by 172% and 49.6%, from d10–17 in spring, and d11–17 in fall, respectively (Table 2).The GPP:R ratio was on average 1.01 and 1.08 in the spring and fall control treatments, respectively (Fig. 2I,J). Consequently, because warming decreased GPP and R to a similar extent in spring, it did not significantly change the GPP:R ratio. Warming significantly increased GPP:R, by an average of 32% in fall (Table 2).Effects of warming on phytoplankton biomass (chlorophyll-a), growth, and loss rates derived from the chlorophyll-a sensor dataThe chl-a fluorescence data was measured using high-frequency sensors, which were inter-calibrated before and after the experiments, and were corrected by the chl-a concentration measured daily by HPLC (see “Methods”). It is hereafter referred to as chl-a. In the spring experiment, the daily chl-a was 5.28 ± 0.21 µg L−1 in the control mesocosms (Fig. 3a,c). A phytoplankton bloom dynamic was observed, with increasing concentrations from d2 to d10, reaching a maximum value of 8.62 ± 0.15 µg L−1, and decreasing concentrations from d10 to d17. The average daily chl-a was lower in fall than in the spring experiment (4.30 ± 0.59 µg L−1) (Fig. 3b,d), and displayed a relatively flat dynamic during the entire experiment, with maximum values on d8 (5.53 ± 0.58 µg L−1).Figure 3Phytoplankton chlorophyll-a, growth and loss rates. High-frequency chlorophyll-a data, uncorrected for Non Photochemical Quenching (NPQ) (a, b), daily average chlorophyll-a data corrected for the NPQ(c, d), phytoplankton growth rate (µ, e, f), loss rate (l, g, h), and µ:l ratio (i, j) in the control (black) and warmed (orange) treatments. Error bars represent range of observation for the two mesocosms per treatment in spring and the standard deviation for the three mesocosms per treatment in fall. In the spring experiment, µ and l could not be estimated on d1 and d12 and, for the latter, the missing data are represented as dotted lines.Full size imageWarming significantly reduced chl-a in both experiments (Table 2): an average of 69.5% from d5 to the end of the spring, and 31.7% from d8 to 15, in the fall experiment. Conversely, warming significantly enhanced chl-a concentrations at the beginning of the fall experiment (19.4% between d2 and d6). Generally, the magnitude of the effect was larger in spring than in fall (Table 2).In the control treatment, µ was higher in spring than in fall (0.44 ± 0.04 d−1 and 0.32 ± 0.05 d−1, respectively; Fig. 3e,f). During both seasons, the maximum µ was observed during the first half of the experiment (spring d7, 0.99 ± 0.01 d−1; fall d4, 0.61 ± 0.03 d−1). Warming enhanced µ by an average of 18.3% and 28.1%, over the entire spring and fall experiments, respectively, and by an average of 56.8% and 50.9%, respectively, from d8 until the end of the experiment (Table 2). The effect size was higher in fall than in spring (Table 2). However, contrary to the general trend of the entire experiment, during spring, warming significantly reduced µ during the first part of the experiment (d2–d7), with an 18.8% mean difference between the treatments.In contrast to µ, l was almost similar between the seasons, with average values of 0.39 ± 0.04 d−1 and 0.40 ± 0.07 d−1, in the control treatments for spring and fall, respectively (Fig. 3g,h). In the spring experiment, warming had a positive effect on the mean l across the study period (37.1%), and even more from d8 to d17 (59.1%), which was larger than the positive effect found for µ. The effect size of warming was not as large in fall, and l was significantly higher in the warmed treatment, although only in the middle of the experiment (20.4% from d7 to d11).When comparing µ and l, the results showed that in spring, µ was higher than l in the control treatment, during the first part of the experiment (d2–d9), and lower during the latter half of the experiment (d10–d17). Warming significantly decreased the µ:l ratio by 28.9%, during the first half of the experiment (D 3–8, Fig. 3i, Table 2), whereas no significant effect was observed in the rest of the experiment. In the fall control treatment, the µ:l ratio was generally lower than that of the spring control (Fig. 3j). Contrary to what was observed in the spring warming, this ratio significantly increased by an average of 92.9%, in the second half of the experiment (d11–d17, Table 2).Effects of warming on phytoplankton pigment concentrationsPhytoplankton pigment composition varied between seasons (Fig. 4). In the spring control treatment, the predominant pigments were fucoxanthin and 19′-hexanoyloxyfucoxanthin (19′-HF), which are mostly associated with diatoms (1.14 ± 0.10 µg L−1) and prymnesiophytes (19′-HF, 2.91 ± 0.14 µg L−1)23,24, respectively (Figs. 4A,B,G,H). The other pigments that were present included peridinin (0.18 ± 0.01 µg L−1), Chl-b (0.14 ± 0.01 µg L−1), zeaxanthin (0.08 ± 0.01 µg L−1), and the specific accessory pigment prasinoxanthin (0.06 ± 0.01 µg L−1), which are associated with dinoflagellates, green algae, cyanobacteria, and prasinophytes, respectively (Figs. 4C–F,I,J)23,24,25.Figure 4Phytoplankton pigment concentrations. Daily pigment concentrations (µg L−1) in the control (black) and warmed (orange) treatments for the spring (A–F) and fall (G–J) experiments. Error bars represent range of observation for the two mesocosms per treatment in spring and the standard deviation for the three mesocosms per treatment in fall. Dotted lines represent the missing data on d10 of the fall experiment due to bad weather conditions. (A, G) fucoxanthin; (B, H) 19′-hexanoyloxyfucoxanthin; (C, I) zeaxanthin; (D, J) chlorophyll-b; (E) peridinin, and (F) prasinoxanthin. Corresponding phytoplankton functional groups are indicated in parentheses.Full size imageIn the fall control treatment, the dominant pigments were the cyanobacteria-associated zeaxanthin (1.78 ± 0.22 µg L−1), the diatom-associated fucoxanthin (1.07 ± 0.27 µg L−1), the green algae-associated Chl-b (0.69 ± 0.14 µg L−1), and the prymnesiophyte-associated 19′-HF (0.68 ± 0.16 µg L−1). Among the main pigments that were identified in the spring experiment, peridinin and prasinoxanthin were either not detected or detected at negligible concentrations in the fall experiment, whereas lutein was detected in fall but not in spring (data not shown).Warming had seasonal effects on pigment concentrations (Table 2). In the spring experiment, warming had a large and significant negative effect on 19′-HF and zeaxanthin concentrations, with mean concentrations decreasing by 75.4% and 75.2%, respectively. Conversely, warming had moderately significant positive effects on peridinin concentration, which increased by an average of 101%.In the fall experiment, warming had a significant negative effect on Chl-b concentration, which decreased by 19.5%, and on zeaxanthin concentration, which significantly decreased in the middle of the experiment (43.4% from d11 to d15). In contrast, a significant positive effect was observed on fucoxanthin concentration, which increased by 210.7%, during the second part of the experiment (between d13 and d17).Relationships between plankton processes, pigment concentrations and environmental parametersPrincipal component analyses (PCA) were used to project plankton processes, pigment concentrations and environmental parameters in a multidimensional space in order to illustrate relationships among variables in both experiments (Fig. 5). For both experiments, GPP and R were clustered together along the first PCA axis, although they appeared closer in spring than in fall (Fig. 5A,B). Conversely, µ was close to ammonium for both experiments, to silicate in spring and to nitrate and nitrite in fall; and l was part of this cluster in spring but not in fall. Concerning phytoplankton pigment composition, in spring, zeaxanthin, associated with cyanobacteria, and 19′-HF, associated with prymnesiophytes, were part of a group together with temperature (Fig. 5C). Similarly, prasinoxanthin, associated with prasinophytes, and Chl-b, associated with green algae, were grouped with DLI and orthophosphate. Finally, peridinin, associated with dinoflagellates, and silicate were clustered together and opposed to fucoxanthin, which is associated with diatoms. In fall, zeaxanthin and Chl-b, representing cyanobacteria and green algae, were part of a group opposed to N-nutrients and temperature, while fucoxanthin was opposed to DLI, silicate and orthophosphate (Fig. 5D).Figure 5Principal component analyses (PCA) of logarithm response ratio (LRR) of plankton processes (A, B) and pigment concentrations (C, D) with environmental parameters for the spring (A, C) and fall (B, D) experiments. GPP: Gross Primary Production, R: Respiration, µ: Phytoplankton growth rate, l: Phytoplankton loss rate, Chl-b: Chlorophyll-b, 19′-HF: 19′-Hexanoyloxyfucoxanthin, Fuco: Fucoxanthin, Prasino: Prasinoxanthin, Zea: Zeaxanthin, DLI: Daily Light Integral.Full size imageTo evaluate specific relationships between phytoplankton processes, environmental variables, and phytoplankton community composition, ordinary least squares linear relationships were assessed for the effects of warming (expressed as the logarithmic response ratio) on GPP, R, µ, and l, nutrient concentrations, DLI, and pigment concentrations (Fig. 6). A significant positive relationship was found between the effects of warming on GPP versus R, and µ versus l (Fig. 6A,B). Moreover, the effect of warming on µ was positively and linearly related to the effects of warming on ammonium in both seasons (Fig. 6C), and to nitrate + nitrite concentrations in spring (Fig. 6D). There was no relationship between the effects of µ on pigment concentrations in the spring experiment, but its effects were positively correlated with the diatom-associated pigment fucoxanthin in fall (Fig. 6E). Similarly, R was positively correlated with fucoxanthin in fall (Fig. 6F). In contrast, significant negative relationships were found between the effects of warming on µ, Chl-b, and zeaxanthin, the pigments associated with green algae and cyanobacteria, respectively (Fig. 6G,H). Similarly, the effect of warming on R was negatively correlated to orthophosphate (Fig. 6I), and the effect on GPP to nitrate + nitrite and peridinin concentrations (Fig. 6J,K).Figure 6Linear relationships between the effect of warming on plankton processes, environment variables and pigment concentrations. Ordinary least squares linear relationships between the effect of warming, expressed as the log response ratio, on GPP, R, µ, and l, and the effect of warming on environmental and pigment variables for the spring (blue circles) and fall (green squares) experiments. Relationships were individually assessed for each experiment. Only statistically significant relationships (p  More

  • in

    Author Correction: Associations between carabid beetles and fungi in the light of 200 years of published literature

    These authors contributed equally: Gábor Pozsgai, Ibtissem Ben Fekih.State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou, 350002, ChinaGábor Pozsgai, Ibtissem Ben Fekih, Jie Zhang & Minsheng YouJoint international Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou, 350002, ChinaGábor Pozsgai, Gábor L. Lövei & Minsheng YouCE3C – Centre for Ecology, Evolution and Environmental Changes, Azorean Biodiversity Group and Universidade dos Açores, Angra do Heroísmo, 9700-042, Azores, PortugalGábor PozsgaiInstitute of Environmental Microbiology, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, ChinaIbtissem Ben Fekih & Christopher RensingBasic Forestry and Proteomics Research Center, College of Life Science, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, ChinaMarkus V. KohnenLaboratoire de Biologie et de Physiologie des Organismes, Faculté des Sciences Biologiques, Université des Sciences et de la Technologie Houari Boumediène, BP 32 El Alia, Alger, 16111, AlgeriaSaid AmraniDuna-Ipoly National Park Directorate, Költő u. 21, H-1121, Budapest, HungarySándor BércesJuhász-Nagy Pál Doctoral School, University of Debrecen, Egyetem tér 1, H-4032, Debrecen, HungarySándor BércesDepartment of Zoology, Plant Protection Institute, Centre for Agricultural Research, Nagykovácsi út 26-30, H-1029, Budapest, HungaryDávid FülöpFujian University Key Laboratory for Plant-Microbe Interaction, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, ChinaMohammed Y. M. JaberDepartment of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg C, DenmarkNicolai Vitt MeylingDepartment of Algology and Mycology Faculty of Biology and Environmental Protection, University of Łódź, Banacha 12/16, PL-90-237, Łódź, PolandMalgorzata Ruszkiewicz-MichalskaDepartment of Molecular Biotechnology and Microbiology, University of Debrecen, Egyetem tér 1, Debrecen, H-4032, HungaryWalter P. PflieglerFujian Provincial Key Laboratory of Insect Ecology, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, ChinaFrancisco Javier Sánchez-GarcíaÁrea de Biología Animal, Departamento de Zoología y Antropología Física, Facultad de Veterinaria, Universidad de Murcia, Murcia, 30100, SpainFrancisco Javier Sánchez-GarcíaDepartment of Agroecology, Aarhus University, Flakkebjerg Research Centre, Forsøgsvej 1, DK-4200, Slagelse, DenmarkGábor L. Lövei More

  • in

    Retraction Note: A constraint on historic growth in global photosynthesis due to increasing CO2

    Department of Environmental Science, Policy and Management, UC Berkeley, Berkeley, CA, USAT. F. Keenan, X. Luo, Y. Zhang & S. ZhouClimate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USAT. F. Keenan, X. Luo, Y. Zhang & S. ZhouDepartment of Geography, National University of, Singapore, SingaporeX. LuoARC Centre of Excellence for Climate Extremes, Sydney, New South Wales, AustraliaM. G. De KauweClimate Change Research Centre, University of New South Wales, Sydney, New South Wales, AustraliaM. G. De KauweSchool of Biological Sciences, University of Bristol, Bristol, UKM. G. De KauweHawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, AustraliaB. E. MedlynDepartment of Life Sciences, Imperial College London, Ascot, UKI. C. PrenticeDepartment of Biological Sciences, Macquarie University, North Ryde, New South Wales, AustraliaI. C. PrenticeDepartment of Earth System Science, Tsinghua University, Haidian, Beijing, ChinaI. C. Prentice & H. WangDepartment of Environmental Systems Science, ETH, Zurich, SwitzerlandB. D. StockerSwiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, SwitzerlandB. D. StockerDepartment of Biological Sciences, Texas Tech University, Lubbock, TX, USAN. G. SmithPhysical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA, USAC. TerrerDepartment of Civil and Environmental Engineering, Massachusetts Institute of Technology, Boston, MA, USAC. TerrerSino-French Institute for Earth System Science, College of Urban and Environmental Sciences, Peking University, Beijing, ChinaY. ZhangLamont-Doherty Earth Observatory of Columbia University, Palisades, NY, USAS. ZhouEarth Institute, Columbia University, New York, NY, USAS. ZhouDepartment of Earth and Environmental Engineering, Columbia University, New York, NY, USAS. ZhouState Key Laboratory of Earth Surface Processes and Resources Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, ChinaS. Zhou More

  • in

    Song complexity is maintained during inter-population cultural transmission of humpback whale songs

    Rendell, L. & Whitehead, H. Culture in whales and dolphins. Behav. Brain Sci. 24, 309–324 (2001).CAS 
    Article 

    Google Scholar 
    Krützen, M. et al. Cultural transmission of tool use in bottlenose dolphins. Proc. Natl. Acad. Sci. U.S.A. 102, 8939–8943 (2005).ADS 
    Article 

    Google Scholar 
    Kawai, M. Newly-acquired pre-cultural behavior of the natural troop of Japanese monkeys on Koshima Islet. Primates 6, 1–30 (1965).Article 

    Google Scholar 
    Slater, P. The cultural transmission of bird song. Trends Ecol. Evol. 1, 94–97 (1986).CAS 
    Article 

    Google Scholar 
    Whitehead, H. & Rendell, L. The cultural lives of whales and dolphins. (University of Chicago Press, 2014).Whiten, A. The identification and differentiation of culture in chimpanzees and other animals: from natural history to diffusion experiments. The question of animal culture, 99–124 (2009).Allen, J. A. Community through culture: from insects to whales: How social learning and culture manifest across diverse animal communities. BioEssays 41, 1900060 (2019).Article 

    Google Scholar 
    Allen, J., Weinrich, M., Hoppitt, W. & Rendell, L. Network-based diffusion analysis reveals cultural transmission of lobtail feeding in humpback whales. Science 340, 485–488 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Baker, C. Migratory movement and population structure of humpback whales (Megaptera novaeangliae) in the central and eastern North Pacific. Mar Ecol Prog Ser 31, 105–119 (1986).ADS 
    Article 

    Google Scholar 
    Garrigue, C. et al. Movement of individual humpback whales between wintering grounds of Oceania (South Pacific), 1999 to 2004. J. Cetacean Res. Manage 3, 275–281 (2011).
    Google Scholar 
    Rosenbaum, H. C. et al. First circumglobal assessment of Southern Hemisphere humpback whale mitochondrial genetic variation and implications for management. Endang. Spec. Res. 32, 551–567 (2017).Article 

    Google Scholar 
    Noad, M. J., Cato, D. H., Bryden, M. M., Jenner, M. N. & Jenner, K. C. Cultural revolution in whale songs. Nature 408, 537. https://doi.org/10.1038/35046199 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Payne, R. S. & McVay, S. Songs of humpback whales. Science 173, 585–597 (1971).ADS 
    CAS 
    Article 

    Google Scholar 
    Garland, E. C. et al. Dynamic horizontal cultural transmission of humpback whale song at the ocean basin scale. Curr. Biol. 21, 687–691. https://doi.org/10.1016/j.cub.2011.03.019 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Payne, R. & Guinee, L. N. Humpback whale (Megaptera novaeangliae) songs as an indicator of “stocks”. Communication and behavior of whales, 333–358 (1983).Garrigue, C. et al. Movements of humpback whales in Oceania, South Pacific. J. Cetac. Res. Manage. 4, 255–260 (2002).
    Google Scholar 
    Derville, S., Torres, L. G., Zerbini, A. N., Oremus, M. & Garrigue, C. Horizontal and vertical movements of humpback whales inform the use of critical pelagic habitats in the western South Pacific. Sci. Rep. 10, 1–13 (2020).Article 

    Google Scholar 
    Garrigue, C. et al. First assessment of interchange of humpback whales between Oceania and the East coast of Australia. J. Cetac. Res. Manage. 3, 269–274 (2011).
    Google Scholar 
    Steel, D. et al. Migratory connections between humpback whales from South Pacific breeding grounds and Antarctic feeding areas based on genotype matching. Int. Whal. Comm. (2008).Constantine, R., Russell, K., Gibbs, N., Childerhouse, S. & Baker, C. S. Photo-identification of humpback whales (Megaptera novaeangliae) in New Zealand waters and their migratory connections to breeding grounds of Oceania. Mar. Mam. Sci. 23, 715–720 (2007).Article 

    Google Scholar 
    Garland, E. C. et al. Humpback whale song on the southern ocean feeding grounds: implications for cultural transmission. PLoS ONE 8, e79422 (2013).ADS 
    Article 

    Google Scholar 
    Garland, E. C. et al. Population structure of humpback whales in the western and central South Pacific Ocean as determined by vocal exchange among populations. Conserv. Biol. 29, 1198–1207 (2015).Article 

    Google Scholar 
    Cholewiak, D. M., Sousa-Lima, R. S. & Cerchio, S. Humpback whale song hierarchical structure: Historical context and discussion of current classification issues. Mar. Mam. Sci. 29, E312–E332. https://doi.org/10.1111/mms.12005 (2013).Article 

    Google Scholar 
    Payne, K., Tyack, P. & Payne, R. Progressive changes in the songs of humpback whales (Megaptera novaeangliae): a detailed analysis of two seasons in Hawaii. Communication and behavior of whales, 9–57 (1983).Payne, K. & Payne, R. Large scale changes over 19 years in songs of humpback whales in Bermuda. Ethology 68, 89–114 (1985).
    Google Scholar 
    Allen, J. A., Garland, E. C., Dunlop, R. A. & Noad, M. J. Cultural revolutions reduce complexity in the songs of humpback whales. Proc. R. Soc. B: Biol. Sci. 285, 20182088. https://doi.org/10.1098/rspb.2018.2088 (2018).Article 

    Google Scholar 
    Allen, J. A., Garland, E. C., Murray, A., Noad, M. J. & Dunlop, R. Using self-organizing maps to classify humpback whale song units and quantify their similarity. J. Acoust. Soc. Am. 142, 1943–1952 (2017).ADS 
    Article 

    Google Scholar 
    Murray, A., Dunlop, R. A., Noad, M. J. & Goldizen, A. W. Stereotypic and complex phrase types provide structural evidence for a multi-message display in humpback whales (Megaptera novaeangliae). J Acoust Soc Am. 143, 980–994 (2018).ADS 
    Article 

    Google Scholar 
    Garland, E. C. et al. Redefining western and central South Pacific humpback whale population structure based on vocal cultural exchange. (2013).Rekdahl, M. Humpback whale vocal communication: Use and stability of social calls and revolutions in the songs of east Australian whales. (2012).Templeton, C. N., Laland, K. N. & Boogert, N. J. Does song complexity correlate with problem-solving performance in flocks of zebra finches?. Anim. Behav. 92, 63–71 (2014).Article 

    Google Scholar 
    Boogert, N. J., Giraldeau, L.-A. & Lefebvre, L. Song complexity correlates with learning ability in zebra finch males. Anim. Behav. 76, 1735–1741 (2008).Article 

    Google Scholar 
    Winn, H. & Winn, L. The song of the humpback whale Megaptera novaeangliae in the West Indies. Mar. Biol. 47, 97–114 (1978).Article 

    Google Scholar 
    Girola, E., Noad, M. J., Dunlop, R. A. & Cato, D. H. Source levels of humpback whales decrease with frequency suggesting an air-filled resonator is used in sound production. The Journal of the Acoustical Society of America (In Review).Warren, V. E., Constantine, R., Noad, M., Garrigue, C. & Garland, E. C. Migratory insights from singing humpback whales recorded around central New Zealand. R. Soc. Open Sci. 7, 201084 (2020).ADS 
    Article 

    Google Scholar 
    Garland, E. C. et al. Quantifying humpback whale song sequences to understand the dynamics of song exchange at the ocean basin scale. J. Acoust. Soc. Am. 133, 560–569. https://doi.org/10.1121/1.4770232 (2013).ADS 
    Article 
    PubMed 

    Google Scholar 
    Owen, C. et al. Migratory convergence facilitates cultural transmission of humpback whale song. R. Soc. Open Sci. 6, 190337 (2019).ADS 
    Article 

    Google Scholar 
    Garland, E. C., Rendell, L., Lamoni, L., Poole, M. M. & Noad, M. Song hybridization events during revolutionary song change provide insights into cultural transmission in humpback whales. Proc. Natl. Acad. Sci. 114, 7822–7829 (2017).CAS 
    Article 

    Google Scholar 
    Noad, M. & Cato, D. A combined acoustic and visual survey of humpback whales off southeast Queensland. Mem. Qld. Mus. 47, 507–523 (2001).
    Google Scholar 
    Spierings, M., de Weger, A. & Ten Cate, C. Pauses enhance chunk recognition in song element strings by zebra finches. Anim. Cogn. 18, 867–874 (2015).Article 

    Google Scholar 
    Doupe, A. J. & Kuhl, P. K. Birdsong and human speech: common themes and mechanisms. Annu. Rev. Neurosci. 22, 567–631 (1999).CAS 
    Article 

    Google Scholar 
    Allen, J. A., Garland, E. C., Dunlop, R. A. & Noad, M. J. Network analysis reveals underlying syntactic features in a vocally learnt mammalian display, humpback whale song. Proc. R. Soc. B 286, 20192014 (2019).Article 

    Google Scholar 
    Barón Birchenall, L. Animal communication and human language: An overview. International Journal of Comparative Psychology 29 (2016).Noad, M. J. The use of song by humpback whales (Megaptera novaeangliae) during migration off the east coast of Australia (doctoral dissertation) Doctor of Philosophy thesis, University of Sydney, (2002).Catchpole, C. Song and female choice: good genes and big brains?. Trends Ecol. Evol. 11, 358–360. https://doi.org/10.1016/0169-5347(96)30042-6 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nowicki, S., Hasselquist, D., Bensch, S. & Peters, S. Nestling growth and song repertoire size in great reed warblers: evidence for song learning as an indicator mechanism in mate choice. Proc. R. Soc. London B: Biol. Sci. 267, 2419–2424 (2000).CAS 
    Article 

    Google Scholar 
    NOAA. Vol. 81 (ed National Marine Fisheries Service) 62260–62320 (Department of Commerce, Federal Register, 2016).Noad, M. J., Kniest, E. & Dunlop, R. A. Boom to bust? Implications for the continued rapid growth of the eastern Australian humpback whale population despite recovery. Popul. Ecol. 61(2), 198–209 (2019).Article 

    Google Scholar 
    Garrigue, C., Albertson, R. & Jackson, J. A. An anomalous increase in the New Caledonia humpback whales breeding sub-stock E2. Scientific Committee of the International Whaling Commission, Paper (2012).Garland, E. C. & McGregor, P. K. Cultural transmission, evolution, and revolution in vocal displays: Insights from bird and whale song. Front. Psychol. 11, 2387 (2020).Article 

    Google Scholar 
    Zandberg, L., Lachlan, R. F., Lamoni, L. & Garland, E. C. Global cultural evolutionary model of humpback whale song. Philos. Trans. R. Soc. B 376, 20200242 (2021).Article 

    Google Scholar 
    Crates, R. et al. Loss of vocal culture and fitness costs in a critically endangered songbird. Proc. R. Soc. B 288, 20210225 (2021).Article 

    Google Scholar 
    Garland, E. C., Garrigue, C. & Noad, M. J. When does cultural evolution become cumulative culture? A case study of humpback whale song. Philos. Trans. R. Soc. B 377, 20200313 (2022).Article 

    Google Scholar 
    Garland, E. C. et al. Improved versions of the Levenshtein distance method for comparing sequence information in animals’ vocalisations: tests using humpback whale song. Behaviour 149, 1413–1441 (2012).Article 

    Google Scholar 
    Garland, E. C. et al. The devil is in the detail: quantifying vocal variation in a complex, multileveled, and rapidly evolving display. J. Acoust. Soc. Am. 142, 460–472 (2017).ADS 
    Article 

    Google Scholar 
    Rekdahl, M. L. et al. Culturally transmitted song exchange between humpback whales (Megaptera novaeangliae) in the southeast Atlantic and southwest Indian Ocean basins. R. Soc. Open Sci. 5, 172305 (2018).ADS 
    Article 

    Google Scholar 
    Suzuki, R. & Shimodaira, H. Pvclust: an R package for assessing the uncertainty in hierarchical clustering. Bioinformatics 22, 1540–1542 (2006).CAS 
    Article 

    Google Scholar 
    Sokal, R. R. & Rohlf, F. J. The comparison of dendrograms by objective methods. Taxon 11(2), 33–40 (1962).Article 

    Google Scholar 
    R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2015. URL http (R Core Development Team, 2016). More

  • in

    Future reversal of warming-enhanced vegetation productivity in the Northern Hemisphere

    Friedlingstein, P. et al. Global carbon budget 2020. Earth Syst. Sci. Data 12, 3269–3340 (2020).
    Google Scholar 
    Myneni, R. B. et al. A large carbon sink in the woody biomass of northern forests. Proc. Natl Acad. Sci. USA 98, 14784–14789 (2001).CAS 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).
    Google Scholar 
    Kauppi, P. E. et al. Large impacts of climatic warming on growth of boreal forests since 1960. PLoS ONE 9, e111340 (2014).
    Google Scholar 
    Zhu, Z. C. et al. Greening of the Earth and its drivers. Nat. Clim. Change 6, 791–795 (2016).CAS 

    Google Scholar 
    Piao, S. L. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14–27 (2020).
    Google Scholar 
    IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).Penuelas, J. et al. Shifting from a fertilization-dominated to warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).
    Google Scholar 
    D’Arrigo, R., Wilson, R., Liepert, B. & Cherubini, P. On the ‘divergence problem’ in northern forests: a review of the tree-ring evidence and possible causes. Glob. Planet. Change 60, 289–305 (2008).
    Google Scholar 
    Beck, P. S. A. et al. Changes in forest productivity across Alaska consistent with biome shift. Ecol. Lett. 14, 373–379 (2011).
    Google Scholar 
    Vickers, H. et al. Changes in greening in the High Arctic: insights from a 30-year AVHRR max NDVI dataset for Svalbard. Environ. Res. Lett. 11, 105004 (2016).
    Google Scholar 
    Piao, S. L. et al. Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nat. Commun. 5, 5018 (2014).CAS 

    Google Scholar 
    Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).CAS 

    Google Scholar 
    Liu, Y. W. et al. Seasonal responses of terrestrial carbon cycle to climate variations in CMIP5 models: evaluation and projection. J. Clim. 30, 6481–6503 (2017).
    Google Scholar 
    Huang, M. T. et al. Air temperature optima of vegetation productivity across global biomes. Nat. Ecol. Evol. 3, 772–779 (2019).
    Google Scholar 
    Park, T. et al. Changes in timing of seasonal peak photosynthetic activity in northern ecosystems. Glob. Change Biol. 25, 2382–2395 (2019).
    Google Scholar 
    Keeling, C. D., Chin, J. F. S. & Whorf, T. P. Increased activity of northern vegetation inferred from atmospheric CO2 measurements. Nature 382, 146–149 (1996).CAS 

    Google Scholar 
    Piao, S. L., Friedlingstein, P., Ciais, P., Viovy, N. & Demarty, J. Growing season extension and its impact on terrestrial carbon cycle in the Northern Hemisphere over the past 2 decades. Glob. Biogeochem. Cycles 3, GB3018 (2007).
    Google Scholar 
    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Change 4, 598–604 (2014).CAS 

    Google Scholar 
    Xia, J. Y. et al. Joint control of terrestrial gross primary productivity by plant phenology and physiology. Proc. Natl Acad. Sci. USA 112, 2788–2793 (2015).CAS 

    Google Scholar 
    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
    Google Scholar 
    Meehl, G. A. & Tebaldi, C. More intense, more frequent, and longer lasting heat waves in the 21st century. Science 305, 994–997 (2004).CAS 

    Google Scholar 
    Yamori, W., Hikosaka, K. & Way, D. A. Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation. Photosynth. Res. 119, 101–117 (2014).CAS 

    Google Scholar 
    Berry, J. & Bjorkman, O. Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 31, 491–543 (1980).
    Google Scholar 
    Chen, A., Huang, L., Liu, Q. & Piao, S. L. Optimal temperature of vegetation productivity and its linkage with climate and elevation on the Tibetan Plateau. Glob. Change Biol. 27, 1942–1951 (2021).
    Google Scholar 
    Smith, N. G., Lombardozzi, D., Tawfik, A., Bonan, G. & Dukes, J. S. Biophysical consequences of photosynthetic temperature acclimation for climate. J. Adv. Model. Earth Syst. 9, 536–547 (2017).
    Google Scholar 
    Chen, M. & Zhuang, Q. L. Modelling temperature acclimation effects on the carbon dynamics of forest ecosystems in the conterminous United States. Tellus B 65, 19156 (2013).
    Google Scholar 
    Crous, K. Y. Plant responses to climate warming: physiological adjustments and implications for plant functioning in a future, warmer world. Botany 106, 1049–1051 (2019).
    Google Scholar 
    Conley, M. M. et al. CO2 enrichment increases water-use efficiency in sorghum. New Phytol. 151, 407–412 (2001).
    Google Scholar 
    Norby, R. J. & Zak, D. R. Ecological lessons from free-air CO2 enrichment (FACE) experiments. Annu. Rev. Ecol. Evol. Syst. 42, 181–203 (2011).
    Google Scholar 
    Huang, M. T. et al. Change in terrestrial ecosystem water-use efficiency over the last three decades. Glob. Change Biol. 21, 2366–2378 (2015).
    Google Scholar 
    Gonsamo, A. et al. Greening drylands despite warming consistent with carbon dioxide fertilization effect. Glob. Change Biol. 7, 3336–3349 (2021).
    Google Scholar 
    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).CAS 

    Google Scholar 
    Lemordant, L. et al. Modification of land–atmosphere interactions by CO2 effects: implications for summer dryness and heat wave amplitude. Geophys. Res. Lett. 43, 10240–10248 (2016).CAS 

    Google Scholar 
    Lian, X. et al. Summer soil drying exacerbated by earlier spring greening of northern vegetation. Sci. Adv. 6, eaax0255 (2020).
    Google Scholar 
    Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 4, 232–250 (2021).
    Google Scholar 
    Druel, A., Ciais, P., Krinner, G. & Peylin, P. Modeling the vegetation dynamics of northern shrubs and mosses in the ORCHIDEE land surface model. J. Adv. Model. Earth Syst. 11, 2020–2035 (2019).
    Google Scholar 
    Scheiter, S., Langan, L. & Higgins, S. I. Next-generation dynamic global vegetation models: learning from community ecology. New Phytol. 198, 957–969 (2013).
    Google Scholar 
    Mod, H. K. & Luoto, M. Arctic shrubification mediates the impacts of warming climate on changes to tundra vegetation. Environ. Res. Lett. 12, 124028 (2016).
    Google Scholar 
    Zhang, Y., Commane, R., Zhou, S., Williams, A. P. & Gentine, P. Light limitation regulates the response of autumn terrestrial carbon uptake to warming. Nat. Clim. Change 10, 739–743 (2020).CAS 

    Google Scholar 
    Bauerle, W. L. et al. Photoperiodic regulation of the seasonal pattern of photosynthetic capacity and the implications for carbon cycling. Proc. Natl Acad. Sci. USA 109, 8612–8617 (2012).CAS 

    Google Scholar 
    Zhang, Y., Parazoo, N. C., Williams, A. P., Zhou, S. & Gentine, P. Large and projected strengthening moisture limitation on end-of-season photosynthesis. Proc. Natl Acad. Sci. USA 117, 9216–9222 (2020).CAS 

    Google Scholar 
    Fritz, M. et al. Brief communication: future avenues for permafrost science from the perspective of early career researchers. Cryosphere 9, 1715–1720 (2015).
    Google Scholar 
    Jin, X. Y. et al. Impacts of climate-induced permafrost degradation on vegetation: a review. Adv. Clim. Change Res. 12, 29–47 (2021).
    Google Scholar 
    Tramontana, G. et al. Predicting carbon dioxide and energy fluxes across global FLUXNET sites with regression algorithms. Biogeosciences 13, 4291–4313 (2016).CAS 

    Google Scholar 
    Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S. & Gentine, P. A global spatially contiguous solar-induced fluorescence (CSIF) dataset using neural networks. Biogeosciences 15, 5779–5800 (2018).CAS 

    Google Scholar 
    Navarro-Racines, C., Tarapues, J., Thornton, P., Jarvis, A. & Ramirez-Villegas, J. High-resolution and bias-corrected CMIP5 projections for climate change impact assessments. Sci. Data 7, 7 (2020).
    Google Scholar  More

  • in

    Regional asymmetry in the response of global vegetation growth to springtime compound climate events

    Illustration of the compound event indicesBuilding on earlier studies24,25, we develop two univariate indices to model concurrent climate conditions, i.e., a CWD index that varies from compound cold-wet conditions to CWD conditions, and a CCD index that varies from compound warm-wet conditions to CCD conditions (see “Methods”). The two indices incorporate the dependence between temperature and precipitation and are a measure of how warm/cold and dry a point is relative to the distribution of climate conditions at a given location. We illustrate the two indices on two grid points that have strong but opposite temperature-precipitation correlation. In the case where temperature and precipitation are strongly negatively correlated, the CWD index is well aligned with the primary axis of the bivariate distribution (Fig. 1a). In the case where temperature and precipitation are strongly positively correlated, the same holds for the CCD index (Fig. 1d). As illustrated for several concurrent hot-dry and cold-dry events that occurred around the globe, the two indices well capture these events (Supplementary Figs. 1 and 2).Fig. 1: The relationship between precipitation and temperature and compound indices.a Scatter plot of summer precipitation and temperature anomalies (z-score) with corresponding CWD index in color (see “Methods”). The location is at 97.25°W and 33.75°N from 1901 to 2018. b The same as a but for spring at 84.75°E and 66.75°N. c Same distribution as in a but colored based on the CCD index. d Same distribution as in b but colored based on the CCD index.Full size imageNotably, in the case where precipitation and temperature are strongly positively correlated, the CWD index indicates the relative anomalies of bivariate joint distribution, and some counterintuitive situations might occur relative to the univariate marginals (Fig. 1b). For instance, points might be labeled as strong CWD events (CWD index > 1.5) even though temperature is anomalously cold (temperature anomalies < 0, red dots in lower left quadrant of Fig. 1b). The CCD index exhibits similar behavior (Fig. 1c). This indicates an interesting property of the compound indices to identify strong compound conditions relative to bivariate distribution that are not necessarily extreme from a univariate perspective3,24,26,27.Widespread direct and lagged impacts of springtime compound climate conditionsTo evaluate the lagged summer vegetation responses to spring compound climate conditions, we compute partial correlation between CWD (CCD) spring and subsequent summer vegetation variation by controlling for the influence of summer compound climate conditions on these correlations (see “Methods”). Results show widespread negative associations between CWD spring and subsequent summer vegetation in the mid-latitudes (50°N).a–c The average standardized anomalies (z-score) of GPP during CWD spring but subsequent non-CWD summer (a), non-CWD spring but subsequent CWD summer (b), and consecutive CWD spring and summer (c) for areas in Fig. 2a where summer vegetation responds positively (r ≥ 0.22) to spring CWD climate conditions. d–f The same as a–c, but for soil moisture. g–i The same as a–c, but for runoff. The bar plots with dash lines (without dash line) indicate the average anomalies of multiple observation-based (model-based) products, and the circles indicate the average anomalies of each product. GLASS, LUE, NIRv, Flux-CRU, and Flux-ERA5 are observation-based GPP products, while model simulations are taken from TRENDYv6. GLEAM is observation-based soil moisture. GRUN represents observation-based runoff. GLDAS-VIC, GLDAS-Noah, GLDAS-Catchment, and FLDAS indicate assimilatory soil moisture and runoff that incorporate satellite- and ground-based observational products.Full size imageFig. 4: The responses of vegetation productivity and hydrological variables to CWD events in mid-latitudes (23.5–50°N/S).a–c The average standardized anomalies (z-score) of GPP during CWD spring but subsequent non-CWD summer (a), non-CWD spring but subsequent CWD summer (b), and consecutive CWD spring and summer (c) for areas in Fig. 2a where summer vegetation responds negatively (r ≤ −0.22) to spring CWD climate conditions. d–f The same as a–c, but for soil moisture. g–i The same as a–c, but for runoff. The bar plots with dash lines (without dash line) indicate the average anomalies of multiple observation-based (model-based) products, and the circles indicate the average anomalies of each product. For details on data see Fig. 3.Full size imageFig. 5: The effects of CCD events on vegetation productivity and hydrological variables in mid-to-high latitudes.a–c The average standardized anomalies (z-score) of GPP during CCD spring but subsequent non-CCD summer (a), non-CCD spring but subsequent CCD summer (b), and consecutive CCD spring and summer (c) for areas in Fig. 2b where summer vegetation responds negatively (r ≤ −0.22) to spring CCD climate conditions. d–f The same as a–c, but for soil moisture. g–i The same as a–c, but for runoff. The bar plots with dash lines (without dash line) indicate the average anomalies of multiple observation-based (model-based) products, and the circles indicate the average anomalies of each product. For details on data see Fig. 3.Full size imageCWD events increase vegetation productivity in high latitudesWe first analyze the direct responses of productivity to springtime and summertime CWD events across high latitudes ( >50°N, Fig. 3). Productivity increases during CWD spring and summer (Fig. 3a–c), which is consistent with vegetation responses (Supplementary Fig. 8a–c). Despite elevated spring greenness, spring water overall shows positive anomalies during CWD spring (Fig. 3d, f, g, i). This result indicates that spring greenness during CWD conditions is not associated with dry spring across high latitudes, which is further confirmed by similar anomalies in springtime TWS (Supplementary Fig. 8d, f). In contrast, severe water reduction is found in CWD summer (Fig. 3e, f, h, i). This suggests that despite the beneficial effects of CWD events on productivity in summer, they are associated with summer water deficit.Next, to analyze the lagged effects of springtime CWD events, we investigate the productivity anomalies in summer under three cases, namely CWD spring but non-CWD summer, non-CWD spring but CWD summer, and consecutive CWD spring and summer. Our results indicate that springtime CWD events have positive lagged effects on summer productivity across high latitudes (Fig. 3). Specifically, we find that during non-CWD summer (that is not favorable for summer vegetation growth) preceded by CWD spring, positive anomalies are still found in summer productivity (Fig. 3a). In contrast, during CWD summer (preceded by non-CWD spring), some models and observation-based products exhibit a reduction in summer productivity (Fig. 3b). We further find that summer productivity highly increases during consecutive events (Fig. 3c). Vegetation anomalies show similar behaviors (Supplementary Fig. 8a–c). Regarding the lagged responses of hydrological variables, CWD springs followed by non-CWD summers do not lead to water dryness, despite increased vegetation greenness (Fig. 3d, g). The magnitude of summer water deficit is similar for both cases that include CWD summer (Fig. 3e, f, h, i) and is consistent with summer TWS anomalies (Supplementary Fig. 8e, f). These results imply that in high latitudes, summer water reductions characterized by TWS, soil moisture, and runoff are not associated with increased spring greenness but are primarily caused by summer precipitation deficit.The productivity responses to compound climate conditions may be stronger than that to individual events through the synergistic effects of temperature and precipitation28. To investigate this, we compute the average anomalies in GPP and soil moisture associated with univariate events across the focus areas, which are then compared with the effects of CWD and CCD events in high latitudes (see “Methods”). Warm events can not only directly increase productivity but also show positive lagged effects (Supplementary Fig. 9a, b). In contrast, dry events reduce productivity (Supplementary Fig. 9e, f). This indicates that the direct and lagged positive effects of CWD events across high latitudes are mainly dominated by the warm component, while dry conditions have negative effects. Therefore, the warm-induced increase in productivity slightly exceeds that associated with CWD events (Supplementary Fig. 9b). Soil moisture under warm springs shows positive anomalies (Supplementary Fig. 9c, d), while they slightly decline during dry spring (Supplementary Fig. 9g, h). This suggests that the positive anomalies in soil water during CWD spring are driven by the warm component.CWD events reduce vegetation productivity in mid-latitudesHere, we first investigate the direct effects of springtime and summertime CWD events across mid-latitudes (23.5–50°N/S). Springtime productivity exhibits little changes during CWD spring (Fig. 4a, c), despite dry spring (Fig. 4d, f, g, i). When considering the direct effects of CWD events in summer, the results are similar, whereas the negative magnitude of productivity in summer is larger than that in spring (Fig. 4b, c). This difference suggests CWD conditions in summer show more adverse effects on productivity than that in spring in mid-latitudes. The anomalies in vegetation and TWS are consistent (Supplementary Fig. 10).Next, the lagged effects of springtime CWD events in mid-latitudes are assessed. In cases with CWD spring but non-CWD summer, summer productivity exhibits slight anomalies (Fig. 4a), with slightly decreased summer water (Fig. 4d, g). Summer productivity and water show much higher reductions in case with consecutive events (Fig. 4c, f, i) than for the case with only CWD summer (Fig. 4b, e, h). These results are supported by the responses of vegetation indices and TWS (Supplementary Fig. 10), revealing that springtime CWD events in mid-latitudes have negative lagged effects on summer productivity and water availability.The direct and lagged effects of individual events are finally compared with that of CWD events in mid-latitudes. Dry conditions in spring and summer directly decrease productivity and cause soil water dryness (Supplementary Fig. 11a–d). Moreover, dry spring depletes soil moisture earlier, which, in turn, causes dry summer and reduction in productivity during non-dry summer (Supplementary Fig. 11a, c). This indicates that dry springs have negative lagged effects on summer productivity. In contrast, productivity and soil water show positive anomalies during warm springs, while they show negative anomalies in summer (Supplementary Fig. 11e–h). These results suggest that the direct and lagged negative effects of CWD springs are dominated by the dry component in mid-latitudes, while the warm component mitigates the negative effects of the dry component in spring. Accordingly, the decline in productivity due to dry conditions thus exceeds that triggered by CWD events (Supplementary Fig. 11b).Decreased vegetation productivity due to the negative synergistic effects of CCD eventsHere, we first investigate the direct effects of CCD events across mid-to-high latitudes. Productivity reductions are found during springtime and summertime CCD events (Fig. 5a–c) concurrent with water reductions (Fig. 5). Vegetation and TWS show similar behaviors during CCD spring and summer (Supplementary Fig. 12). These results reveal that CCD events in spring and summer can impose direct adverse impacts on productivity and soil water across mid-to-high latitudes. The productivity reductions in spring and summer are similar in magnitude (Fig. 5a, b), indicating that CCD events between spring and summer can cause similar damage to productivity.We then analyze the lagged effects of springtime CCD events. Our results indicate that springtime CCD events show negative lagged effects on summer productivity and cause summer water reductions in mid-to-high latitudes (Fig. 5). Specifically, we find that in cases with CCD spring but non-CCD summer, summer productivity and water exhibit strongly negative anomalies (Fig. 5a, d, g). Moreover, summer anomalies are higher during consecutive events (Fig. 5c, f, i) than the cases including only CCD summer (Fig. 5b, e, h). Vegetation indices and TWS show similar responses (Supplementary Fig. 12). Our results further indicate that CCD spring has more severe negative lagged effects on productivity than CWD spring. That is, we find that in comparison to cases with preceding CWD spring and consecutive CWD events, summer productivity shows higher reduction in cases with preceding CCD spring and consecutive CCD events (Fig. 4a, c versus Fig. 5a, c). Moreover, in cases with CCD spring but non-CCD summer (Fig. 5a, d, g), summer anomalies are close to those in scenarios with non-CCD spring but CCD summer (Fig. 5b, e, h). The vegetation and TWS anomalies further confirm this situation (Supplementary Fig. 12a, b, d, e). These results suggest that the lagged effects of CCD spring can be of similar magnitude as their direct adverse effects.We finally compare the direct and lagged effects of individual events with that of CCD events in mid-to-high latitudes. Cold conditions in spring and summer directly reduce productivity but show weak effects on soil moisture (Supplementary Fig. 13a–d), and cold spring shows negative lagged effects on summer productivity (Supplementary Fig. 13a). Dry events show direct and lagged negative effects on productivity and soil moisture (Supplementary Fig. 13e–h). These results imply that the negative lagged effects of CCD springs are dominated by both cold and dry components. The effects of CCD events on productivity mostly exceeds the individual dry or cold impacts (Supplementary Fig. 13a, b, e, f). More