Cooperation by necessity: condition- and density-dependent reproductive tactics of female house mice
Gross, M. R. Alternative reproductive strategies and tactics: diversity within sexes. Trend. Ecol. Evol. 11, 92–98 (1996).CAS
Google Scholar
Oliveira, R. F., Taborsky, M., and Brockmann, H. J. Alternative reproductive tactics: An integrative approach. (Cambridge University Press, 2008).Schradin, C. & Lindholm, A. K. Relative fitness of alternative male reproductive tactics in a mammal varies between years. J. Anim. Ecol. 80, 908–917 (2011).PubMed
Google Scholar
Riehl, C. & Strong, M. J. Social parasitism as an alternative reproductive tactic in a cooperatively breeding cuckoo. Nature 567, 96–99 (2019).CAS
PubMed
Google Scholar
Ferrari, M., Lindholm, A. K. & König, B. Fitness consequences of female alternative reproductive tactics in house mice (Mus musculus domesticus). Am. Natural. 193, 106–124 (2019).
Google Scholar
Eggert, A.-K. & Müller, J. K. Joint breeding in female burying beetles. Behav. Ecol. Sociobiol. 31, 237–242 (1992).
Google Scholar
Komdeur, J. Importance of habitat saturation and territory quality for evolution of cooperative breeding in the seychelles warbler. Nature 358, 493–495 (1992).
Google Scholar
Hayes, D. L. et al. Fitness consequences of group living in the degu Octodon degus, a plural breeder rodent with communal care. Anim. Behav. 78, 131–139 (2009).
Google Scholar
Scott, M. P. & Williams, S. M. Comparative reproductive success of communally breeding burying beetles as assessed by PCR with randomly amplified polymorphic DNA. Proc. Natl. Acad. Sci. USA 90, 2242–2245 (1993).CAS
PubMed
PubMed Central
Google Scholar
Chantrey, D. F. & Jenkins, B. Sensory processes in the discrimination of pups by female mice (Mus musculus). Anim. Behav.30, 881–885 (1982).
Google Scholar
König, B. Kin recognition and maternal care under restricted feeding in house mice (Mus domesticus). Ethology 82, 328–343 (1989).
Google Scholar
Ferrari, M. & Lindholm, A. K. The risk of exploitation during communal nursing in house mice, Mus musculus domesticus. Anim. Behav. 110, 133–143 (2015).
Google Scholar
Sayler, A. & Salmon, M. An ethological analysis of communal nursing by the house mouse (Mus musculus). Behaviour 40, 62–85 (1971).
Google Scholar
Manning, C. J., Dewsbury, D. A., Wakeland, E. K. & Potts, W. K. Communal nesting and communal nursing in house mice, Mus musculus domesticus. Anim. Behav. 50, 741–751 (1995).
Google Scholar
König, B. Non-offspring nursing in mammals: General implications from a case study on house mice. In Peter M. Kappeler & Carel P. van Schaik, editor, Cooperation in Primates and Humans. Mechanisms and Evolution, pages 191–205. Springer Verlag, Berlin Heidelberg, 2006.Mumme, R. L., Koenig, W. D., & Pitelka, F. A. Costs and benefits of joint nesting in the Acorn Woodpecker. Am. Natural. 131, 654–677 (1988).Packer, C., Lewis, S. & Pusey, A. A comparative analysis of non-offspring nursing. Anim. Behav. 43, 265–281 (1992).
Google Scholar
Bourke, A. F. & Heinze, J. The ecology of communal breeding: the case of multiple-queen leptothoracine ants. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 345, 359–372 (1994).
Google Scholar
Marin, G. & Pilastro, A. Communally breeding dormice, glis glis, are close kin. Anim. Behav. 47, 1485–1487 (1994).
Google Scholar
Hayes, D. L. To nest communally or not to nest communally: a review of rodent communal nesting and nursing. Anim. Behav.59, 677–688 (2000).CAS
PubMed
Google Scholar
König, B. Components of lifetime reproductive success in communally and solitarily nursing house mice: A laboratory study. Behav. Ecol. Sociobiol. 34, 275–283 (1994).
Google Scholar
Auclair, Y., König, B. & Lindholm, A. K. Socially mediated polyandry: a new benefit of communal nesting in mammals. Behav. Ecol. 25, 1476–1473 (2014).
Google Scholar
Palanza, P., Della Seta, D., Ferrari, P. F. & Parmigiani, S. Female competition in wild house mice depends upon timing of female/male settlement and kinship between females. Anim. Behav. 69, 1259–1271 (2005).
Google Scholar
Schmidt, J. et al. Reproductive asynchrony and infanticide in house mice breeding communally. Anim. Behav. 101, 201–211 (2015).
Google Scholar
Dobson, F. S., Jacquot, C. & Baudoin, C. An experimental test of kin association in the house mouse. Can. J. Zool. 78, 1806–1812 (2000).
Google Scholar
König, B. et al. A system for automatic recording of social behavior in a free-living wild house mouse population. Anim. Biotelemetry 3, 1–15 (2015).
Google Scholar
Mathot, K. J. & Giraldeau, L.-A. Within-group relatedness can lead to higher levels of exploitation: a model and empirical test. Behav. Ecol. 21, 843–850 (2010).
Google Scholar
Harrison, N., Lindholm, A. K., Dobay, A., Halloran, O., Manser, A., & König, B. Female nursing partner choice in a population of wild house mice (Musmusculusdomesticus). Front. Zool. 15, 4 (2018).König, B., Riester, J. & Markl, H. Maternal care in house mice (Mus musculus): II. The energy cost of lactation as a function of litter size. J. Zool. 216, 195–210 (1988).
Google Scholar
Hurst, J. L. Behavioural variation in wild house mice mus domesticus rutty: A quantitative assessment of female social organization. Anim. Behav. 35, 1846–1857 (1987).Weidt, A., Lindholm, A. K. & König, B. Communal nursing in wild house mice is not a by-product of group living: Females choose. Naturwissenschaften 101, 73–76 (2014).CAS
PubMed
PubMed Central
Google Scholar
Lidicker, W. Z. Social behaviour and density regulation in house mice living in large enclosures. J. Anim. Ecol. 45, 677–697 (1976).
Google Scholar
Southwick, C. H. The population dynamics of confined house mice supplied with unlimited food. Ecology 36, 212–225 (1955).
Google Scholar
König, B. & Lindholm, A. K. The complex social environment of female house mice (Mus domesticus). In Macholàn, M., Baird, S. J. E., Mundlinger, P., and Piàlek, J., editors, Evolution of the House Mouse, pages 114–134. Cambridge University Press, Cambridge, UK, 2012.Hestbeck, J. B., Nichols, J. D. & Malecki, R. A. Estimates of movement and site fidelity using mark-resight data of wintering canada geese. Ecology 72, 523–533 (1991).
Google Scholar
Lebreton, J.-D., Burnham, K. P., Clobert, J. & Anderson, D. R. Modeling survival and testing biological hypotheses using marked animals: A unified approach with case studies. Ecol. Monogr. 62, 67–118 (1992).
Google Scholar
Lebreton, J., Nichols, J. D., Barker, R. J., Pradel, R., & Spendelow, J. A. Chapter 3 modeling individual animal histories with multistate capture–recapture models. In Caswell, H., editor, Advances in Ecological Research, volume 41, pages 87–173. Academic Press, 2009.Caswell, H. Matrix Population Models: Construction, Analysis, and Interpretation. Matrix Population Models: Construction, Analysis, and Interpretation. Sinauer Associates, 2001.Runge, J.-N. & Lindholm, A. K. Carrying a selfish genetic element predicts increased migration propensity in free-living wild house mice. Proc. R. Soc. B: Biol. Sci. 285, 20181333 (2018).
Google Scholar
Oli, M. K., Slade, N. A. & Dobson, F. S. Effect of density reduction on Uinta ground squirrels: analysis of life table response experiments. Ecology 82, 1921–1929 (2001).
Google Scholar
Descamps, S., Boutin, S., Berteaux, D., McAdam, A. G. & Gaillard, J.-M. Cohort effects in red squirrels: the influence of density, food abundance and temperature on future survival and reproductive success. J. Anim. Ecol. 77, 305–314 (2008).PubMed
Google Scholar
Gaines, M. S. & McClenaghan Jr, L. R. Dispersal in small mammals. Ann. Rev. Ecol. Sys. 11, 163–196 (1980).
Google Scholar
Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography 28, 403–416 (2005).
Google Scholar
Wolff, J. O. Population regulation in mammals: an evolutionary perspective. J. Anim. Ecol. 66, 1–13 (1997).
Google Scholar
Pocock, M. J. O., Hauffe, H. C. & Searle, J. B. Dispersal in house mice. Biol. J. Linnean Soc. 84, 565–583 (2005).
Google Scholar
Clutton-Brock, T., Major, M., Albon, S. & Guinness, F. Early development and population dynamics in red deer. i. density-dependent effects on juvenile survival. J. Anim. Ecol. 56, 53–67 (1987).
Google Scholar
Gerlach, G. & Bartmann, S. Reproductive skew, costs, and benefits of cooperative breeding in female wood mice (Apodemus sylvaticus). Behav. Ecol. 13, 408–418 (2002).
Google Scholar
Festa-Bianchet, M., Gaillard, J. & Jorgenson, J. T. Mass- and density-dependent reproductive success and reproductive costs in a capital breeder. Am. Natural. 152, 367–379 (1998).CAS
Google Scholar
Tavecchia, G. et al. Predictors of reproductive cost in female soay sheep. J. Anim. Ecol. 74, 201–213 (2005).
Google Scholar
McNamara, J. M. & Houston, A. I. State-dependent life histories. Nature 380, 215 (1996).CAS
PubMed
Google Scholar
Taborsky, M., Oliveira, R. F., & Brockmann, H. J. The evolution of alternative reproductive tactics: concepts and questions. In Oliveira, R. F., Brockmann, H. J., and Taborsky, M., editors, Alternative Reproductive Tactics: An Integrative Approach. Cambridge University Press, Cambridge, UK, 2008.Stearns, S. C. Life-history tactics: a review of the ideas. Q. Rev. Biol 51, 3–47 (1976).CAS
PubMed
Google Scholar
McShea, W. J. & Madison, D. M. Communal nesting between reproductively active females in a spring population of Microtus pennsylvanicus. Can. J. Zool. 62, 344–346 (1984).
Google Scholar
Hill, D. L., Pillay, N. & Schradin, C. Alternative reproductive tactics in female striped mice: heavier females are more likely to breed solitarily than communally. J. Anim. Ecol. 84, 1497–1508 (2015).PubMed
Google Scholar
Krebs, C. J., Chitty, D., Singleton, G. & Boonstra, R. Can changes in social behaviour help to explain house mouse plagues in Australia? Oikos 73, 429–434 (1995).
Google Scholar
Bult, C. J., Eppig, J. T., Kadin, J. A., Richardson, J. E. & Blake, J. A. The mouse genome database (MGD): mouse biology and model systems. Nucleic Acids Res. 36, D724–D728 (2007).PubMed
PubMed Central
Google Scholar
Teschke, M., Mukabayire, O., Wiehe, T. & Tautz, D. Identification of selective sweeps in closely related populations of the house mouse based on microsatellite scans. Genetics 180, 1537–1545 (2008).CAS
PubMed
PubMed Central
Google Scholar
Kalinowski, S. T., Taper, M. L. & Marshall, T. C. Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Mol. Ecol. 16, 1099–1106 (2007).PubMed
Google Scholar
Arnason, A. N. Parameter estimates from mark-recapture experiments on two populations subject to migration and death. Res Popul. Ecol. 13, 97–113 (1972).
Google Scholar
Arnason, A. N. The estimation of population size, migration rates and survival in a stratified population. Res. Popul. Ecol. 15, 1–8 (1973).
Google Scholar
White, G. C. & Burnham, K. P. Program mark: survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).
Google Scholar
Laake, J. RMark: An r interface for analysis of capture-recapture data with MARK. AFSC Processed Rep. 2013-01, Alaska Fish. Sci. Cent., NOAA, Natl. Mar. Fish. Serv., (Seattle, WA, 2013).Burnham, K. P. and Anderson, D. R. Model Selection and Multimodel Inference. (Springer, 1998).Stubben, C. J. and Milligan, B. G. Estimating and analyzing demographic models using the popbio package in r. J. Stat. Soft. 22, 1–23 (2007).Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. J. Stat. Soft. 67, 1–48 (2014).
Google Scholar
R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2015. More