More stories

  • in

    Components of respiration and their temperature sensitivity in four reconstructed soils

    Wang, C. & Yang, J. Rhizospheric and heterotrophic components of soil respiration in six Chinese temperate forests. Glob. Change Biol. 13, 123–131 (2007).ADS 
    Article 

    Google Scholar 
    Zhao, X., Li, L., Xie, Z. & Li, P. Effects of nitrogen deposition and plant litter alteration on soil respiration in a semiarid grassland. Sci. Total Environ. 740, 1–10 (2020).Article 

    Google Scholar 
    Jia, X., Shao, M. & Wei, X. Responses of soil respiration to N addition, burning and clipping in temperate semiarid grassland in northern China. Agr. For. Meteorol. 166, 32–40 (2012).Article 

    Google Scholar 
    Meyer, N., Meyer, H. & Welp, G. Soil respiration and its temperature sensitivity (Q10): rapid acquisition using mid-infrared spectroscopy. Geoderma 323, 31–40 (2018).ADS 
    Article 

    Google Scholar 
    Gao, Q. et al. Effects of litter manipulation on soil respiration under short-term nitrogen addition in a subtropical evergreen forest. For. Ecol. Manag. 429, 77–83 (2018).Article 

    Google Scholar 
    Wang, Z. et al. Soil respiration response to alterations in precipitation and nitrogen addition in a desert steppe in northern China. Sci. Total Environ. 688, 231–242 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Luo, J. et al. Temporal-spatial variation and controls of soil respiration in different primary succession stages on glacier forehead in Gongga Mountain China. PLoS ONE 7, 1–9 (2012).Article 

    Google Scholar 
    Tong, X. et al. Ecosystem carbon exchange over a warm-temperate mixed plantation in the lithoid hilly area of the North China. Atmos Environ. 49, 257–267 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Hursh, A. et al. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale. Glob. Change Biol. 23, 2090–2103 (2017).ADS 
    Article 

    Google Scholar 
    Huang, S. D. et al. Autotrophic and heterotrophic soil respiration responds asymmetrically to drought in a subtropical forest in the southeast China. Soil Biol. Biochem. 123, 242–249 (2018).CAS 
    Article 

    Google Scholar 
    Zeng, X., Song, Y., Zhang, W. & He, S. Spatio-temporal variation of soil respiration and its driving factors in semi-arid regions of north China. Chin. Geogr. Sci. 28, 12–24 (2018).Article 

    Google Scholar 
    Li, X. et al. Contribution of root respiration to total soil respiration in a semi-arid grassland on the Loess Plateau China. Sci Total Environ. 627, 1209–1217 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Luo, Y. & Zhou, X. Soil Respiration and the Environment. 3–4, (Elsevier, 2006).Bhupinderpal, S. et al. Tree root and soil heterotrophic respiration as revealed by girdling of boreal Scots pine forest: extending observations beyond the first year. Plant Cell Environ. 26, 1287–1296 (2003).Article 

    Google Scholar 
    Lavigne, M. et al. Soil respiration responses to temperature are controlled more by roots than by decomposition in balsam fir ecosystems. Can J Forest Res. 33, 1744–1753 (2003).CAS 
    Article 

    Google Scholar 
    Rey, A. et al. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Glob. Change Biol. 8, 851–866 (2002).ADS 
    Article 

    Google Scholar 
    Hartley, I., Heinemeyer, A., Evans, S. & Ineson, P. The effect of soil warming on bulk soil vs rhizosphere respiration. Glob. Change Biol. 13, 2654–2667 (2007).ADS 
    Article 

    Google Scholar 
    Zheng, Y., Zhang, Z., Hu, Y., Yao, D. & Chen, X. Seasonal variation of soil respiration and its environmental effect factors on refactoring soil in coal mine reclamation area. J. China Coal Soc. 39, 2300–2306 (2014).
    Google Scholar 
    Ren, Z. et al. Effect of weathered coal on soil respiration of reconstructed soils on mining area’s earth disposal sites in Shanxi-Shaanxi-Inner Monglia adjacent area. Trans. CSAE 31, 230–237 (2015).
    Google Scholar 
    Wang, F. Effect of coversoil thickness on reconstruction soil respiration characteristics in coal mining areas-A case from Panji mining area in Huainan China. Huainan Anhui Univ. Sci. Technol. 1, 59–60 (2017).
    Google Scholar 
    Sun, Z. H., Han, J. C. & Wang, H. Y. Soft rock for improving crop yield in sandy soil of Mu Us sandy land China. Arid Land Res Manag. 33, 136–154 (2019).CAS 
    Article 

    Google Scholar 
    Sun, Z. H. & Han, J. C. Effect of soft rock amendment on soil hydraulic parameters and crop performance in Mu Us sandy land China. Field Crop Res. 222, 85–93 (2018).Article 

    Google Scholar 
    Liu, Y. S., Yang, Y. Y., Li, Y. Y. & Li, J. T. Conversion from rural settlements and arable land under rapid urbanization in Beijing during 1985–2010. J. Rural Stud. 51, 141–150 (2017).Article 

    Google Scholar 
    Lei, N. & Han, J. C. Effect of precipitation on soil respiration of different reconstructed soils. SCI REP-UK 10, 7328 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Jin, Z., Qi, Y., Yun, S. & Domroes, M. Seasonal patterns of soil respiration in three types of communities along grass-desert shrub transition in Inner Mongolia, China. Adv atmos Sci. 26, 503–512 (2009).CAS 
    Article 

    Google Scholar 
    Wang, X. et al. Soil respiration under climate warming: differential response of heterotrophic and autotrophic respiration. Glob. Change Biol. 20, 3229–3237 (2014).ADS 
    Article 

    Google Scholar 
    Zhao, C., Zhao, Z., Hong, Z. & Jun, L. Contribution of root and rhizosphere respiration of Haloxylon ammodendron to seasonal variation of soil respiration in the Central Asian desert. Quatern Int. 244, 304–309 (2011).Article 

    Google Scholar 
    Hanson, P., Edwards, N., Garten, C. & Andrews, J. Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48, 115–146 (2000).CAS 
    Article 

    Google Scholar 
    Liu, H. & Li, F. Effects of shoot excision on in situ soil and root respiration of wheat and soybean under drought stress. Plant Growth Regul. 50, 1–9 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Han, X., Zhou, G. & Xu, Z. Research and prospects for soil respiration of farmland ecosystems in China. J Plant Ecol. 32, 719–733 (2008).CAS 

    Google Scholar 
    Tong, D., Xiao, H., Li, Z., Nie, X. & Huang, J. Stand ages adjust fluctuating patterns of soil respiration and decrease temperature sensitivity after revegetation. Soil Sci. Soc. Am. J. 84, 760–774 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Gromova, M., Matvienko, A., Makarov, M., Cheng, C. & Menyailo, O. Temperature Sensitivity (Q10) of soil basal respiration as a function of available carbon substrate, temperature, and moisture. Eurasian Soil ence. 53, 377–382 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Meyer, N., Welp, G. & Amelung, W. The temperature sensitivity (Q10) of soil respiration: controlling factors and spatial prediction at regional scale based on environmental soil classes. Glob. Biogeochem. Cy. 32, 204–210 (2018).Article 

    Google Scholar 
    Tang, X., Shao, H. & Liang, H. Soil respiration and net ecosystem production in relation to intensive management in moso bamboo forests. CATENA 137, 219–228 (2016).Article 

    Google Scholar 
    Zhou, Y., Wang, F., Chen, X., Chen, M. & Liu, B. Effects of ecological restoration patterns on diurnal variation of CO2 flux from rehabilitated soil of coal mining areas in Huainan City. Bull. Soil Water Conserv. 36, 40–46 (2016).
    Google Scholar 
    Lellei, K. et al. Temperature dependence of soil respiration modulated by thresholds in soil water availability across European shrub land ecosystems. Ecosystems 19, 1460–1477 (2016).Article 

    Google Scholar 
    Zhan, X., Yu, G., Zheng, Z. & Wang, Q. Carbon emission andspatial pattern of soil respiration of terrestrial ecosystems in China: based on geostatistic estimation of flux measurement. Adv. Earth Sci. 31, 97–108 (2012).
    Google Scholar  More

  • in

    Water security determines social attitudes about dams and reservoirs in South Europe

    Karr, J.R., & Chu, E.W. Introduction: sustaining living rivers. In Assessing the Ecological Integrity of Running Waters, Developments in Hydrobiology, vol 149 (eds. Jungwirth, M., Muhar, S., & S. Schmutz, S.) 1–14. (Springer: Dordrecht, 2000).Lu, S., Dai, W., Tang, Y. & Guo, M. A review of the impact of hydropower reservoirs on global climate change. Sci. Total Environ. 711, 134996 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Liu, C., Ahn, C. R., An, X. & Lee, S. H. Life-cycle assessment of concrete dam construction: comparison of environmental impact of rock-filled and conventional concrete. J. Constr. Eng. Manage. 20139(12), A4013009. https://doi.org/10.1061/(ASCE)CO.1943-7862.0000752 (2013).Article 

    Google Scholar 
    Maavara, T. et al. River dam impacts on biogeochemical cycling. Nat. Rev. Earth Environ. 1, 103–116 (2020).ADS 
    Article 

    Google Scholar 
    Grigg, N. S. Global water infrastructure: state of the art review. Int. J. Water Resour. Dev. 35(2), 181–205. https://doi.org/10.1080/07900627.2017.1401919 (2019).Article 

    Google Scholar 
    European Environment Agency. European waters: Assessment of status and pressures 2018. https://www.eea.europa.eu/publications/state-of-water (Publications Office of the European Union (2018).Belletti, B. et al. More than one million barriers fragment Europe’s rivers. Nature 588, 436–441 (2020).ADS 
    CAS 
    Article 

    Google Scholar 
    Grill, G. et al. An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ. Res. Lett. 10(1), 015001 (2015).ADS 
    Article 

    Google Scholar 
    Kim, J. & An, K. G. Integrated ecological river health assessments, based on water chemistry, physical habitat quality and biological integrity. Water 7(11), 6378–6403. https://doi.org/10.3390/w7116378 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Vörösmarty, C. J. et al. Global threats to human water security and river biodiversity. Nature 467, 555–561. https://doi.org/10.1038/nature09440 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    McCartney, M. Living with dams: managing the environmental impacts. Water Policy 11(S1), 121–139 (2009).MathSciNet 
    Article 

    Google Scholar 
    Van Cappellen, P. & Maavara, T. Rivers in the Anthropocene: global scale modifications of riverine nutrient fluxes by damming. Ecohydrol. Hydrobiol. 16(2), 106–111 (2016).Article 

    Google Scholar 
    Drouineau, H. et al. Freshwater eels: a symbol of the effects of global change. Fish Fish 19(5), 903–930 (2018).Article 

    Google Scholar 
    Jones, J. et al. A comprehensive assessment of stream fragmentation in Great Britain. Sci. Total Environ. 673, 756–762. https://doi.org/10.1016/j.scitotenv.2019.04.125 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).Article 

    Google Scholar 
    Hermoso, V., Clavero, M., Blanco-Garrido, F. & Prenda, J. Invasive species and habitat degradation in Iberian streams: an analysis of their role in freshwater fish diversity loss. Ecol. Appl. 21(1), 175–188 (2011).Article 

    Google Scholar 
    Maceda-Veiga, A. Towards the conservation of freshwater fish: Iberian Rivers as an example of threats and management practices. Rev. Fish Biol. Fish. 23(1), 1–22 (2013).Article 

    Google Scholar 
    Sánchez-Pérez, A. et al. Seasonal use of fish passes in a modified Mediterranean river: first insights of the LIFE+ Segura-Riverlink. FiSHMED 008, 3. https://doi.org/10.29094/FiSHMED.2016.008 (2016).Article 

    Google Scholar 
    Schiermeir, Q. Dam removal restores rivers. Nature 557, 290–291. https://doi.org/10.1038/d41586-018-05182-1 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Benjankar, R. et al. Dam operations may improve aquatic habitat and offset negative effects of climate change. J. Environ. Manage. 213, 126–134. https://doi.org/10.1016/j.jenvman.2018.02.066 (2018).Article 

    Google Scholar 
    Tupiño Salinas, C. E., Pinto Vidal de Oliveira, V., Brito, L., Ferreira, A. V. & de Araújo, J. C. Social impacts of a large-dam construction: the case of Castanhão, Brazil. Water Int. 44(8), 871–885. https://doi.org/10.1080/02508060.2019.1677303 (2019).Article 

    Google Scholar 
    Opperman, J. J. et al. Valuing Rivers: How the diverse benefits of healthy rivers underpin economies. WWF Global Science (2018).Kellner, E. Social acceptance of a multi-purpose reservoir in a recently deglaciated landscape in the Swiss Alps. Sustainability 11, 3819. https://doi.org/10.3390/su11143819 (2019).Article 

    Google Scholar 
    Boyé, H., & de Vivo, M. The environmental and social acceptability of dams. Field Actions Sci. Rep. http://journals.openedition.org/factsreports/4055 (2016).Wiejaczka, Ł, Piróg, D. & Fidelus-Orzechowska, J. Cost-benefit analysis of dam projects: the perspectives of resettled and non-resettled communities. Water Resour. Manag. 34(1), 343–357 (2020).Article 

    Google Scholar 
    Rodeles, A. A., Galicia, D. & Miranda, R. Recommendations for monitoring freshwater fishes in river restoration plans: a wasted opportunity for assessing impact. Aquat. Conserv. 27(4), 880–885. https://doi.org/10.1002/aqc.2753 (2017).Article 

    Google Scholar 
    Birnie-Gauvin, K., Tummers, J. S., Lucas, M. C. & Aarestrup, K. Adaptive management in the context of barriers in European freshwater ecosystems. J. Environ. Manag. 204, 436–441. https://doi.org/10.1016/j.jenvman.2017.09.023 (2017).Article 

    Google Scholar 
    Yousefi-Sahzabi, A. et al. Turkish challenges for low-carbon society: current status, government policies and social acceptance. Renew. Sustain. Energy Rev. 68, 596–608. https://doi.org/10.1016/j.rser.2016.09.090 (2017).Article 

    Google Scholar 
    Jiang, H., Lin, P. & Qiang, M. Public-opinion sentiment analysis for large hydro projects. J. Construct. Eng. Manage. 142(2), 05015013. https://doi.org/10.1061/(ASCE)CO.1943-7862.0001039 (2016).Article 

    Google Scholar 
    Schulz, C., Martin-Ortega, J. & Glenk, K. Understanding public views on a dam construction boom: the role of values. Water Resour. Manage. 33, 4687–4700. https://doi.org/10.1007/s11269-019-02383-9 (2019).Article 

    Google Scholar 
    Kirchherr, J., Pohlner, H. & Charles, K. J. Cleaning up the big muddy: A meta-synthesis of the research on the social impact of dams. Environ. Impact Assess. Rev. 60, 115–125. https://doi.org/10.1016/j.eiar.2016.02.007 (2016).Article 

    Google Scholar 
    Piróg, D., Fidelus-Orzechowska, J., Wiejaczka, L. & Łajczak, A. Hierarchy of factors affecting the social perception of dam reservoirs. Environ. Impact Assess. Rev. 79, 106301. https://doi.org/10.1016/j.eiar.2019.106301 (2019).Article 

    Google Scholar 
    Arboleya, E., Fernandez, S., Clusa, L., Dopico, E. & Garcia-Vazquez, E. River connectivity is crucial for safeguarding biodiversity but may be socially overlooked. Insights from Spanish University students. Front. Environ. Sci. 9, 643820. https://doi.org/10.3389/fenvs.2021.643820 (2021).Article 

    Google Scholar 
    Gilg, A., & Barr, S. Behavioural attitudes towards water saving? Evidence from a study of environmental actions. Ecol. Econ. 57(3), 400–414. doi:https://doi.org/10.1016/j.ecolecon.2005.04.010 (2006)Schapper, A., Unrau, C., & Killoh, S. Social mobilization against large hydroelectric dams: a comparison of Ethiopia, Brazil, and Panama. Sustain. Develop. 28, 413–423. doi:https://doi.org/10.1002/sd.1995 (2020)Flaminio, S., Piégay, H., & Le Lay, Y-F. To dam or not to dam in an age of anthropocene: insights from a genealogy of media discourses. Anthropocene. 36, 100312, doi:https://doi.org/10.1016/j.ancene.2021.100312 (2021)Bellmore, J. R. et al. Conceptualizing ecological responses to dam removal: If you remove it, what’s to come?. Bioscience 69(1), 26–39. https://doi.org/10.1093/biosci/biy152 (2019).Article 

    Google Scholar 
    Heberlein, T. A. Navigating environmental attitudes. Conserv. Biol. 26(4), 583–585. https://doi.org/10.1111/j.1523-1739.2012.01892.x (2012).Article 

    Google Scholar 
    Lewandowsky, S., Gignac, G. E. & Vaughan, S. The pivotal role of perceived scientific consensus in acceptance of science. Nat. Clim. Change. 3, 399–404. https://doi.org/10.1038/NCLIMATE1720 (2013).ADS 
    Article 

    Google Scholar 
    Schuldt, J. P., Roh, S. & Schwarz, N. Questionnaire design effects in climate change surveys: Implications for the partisan divide. Ann. Am. Acad. Pol. Soc. Sci. 658(1), 67–85. https://doi.org/10.1177/0002716214555066 (2015).Article 

    Google Scholar 
    Bowden, V., Nyberg, D. & Wright, C. Planning for the past: local temporality and the construction of denial in climate change adaptation. Glob. Environ. Change 57, 101939. https://doi.org/10.1016/j.gloenvcha.2019.101939 (2019).Article 

    Google Scholar 
    Venus, T. E., Hinzmann, M., Bakken, T. H., Gerdes, H., Nunes Godinho, F., Hansen, B., Pinheiro, A., & Sauer, J. The public’s perception of run-of-the-river hydropower across Europe. Energy Policy. 140, 111422. doi:https://doi.org/10.1016/j.enpol.2020.111422 (2020)Schober, M. F. The future of face-to-face interviewing. Qual. Assur. Educ. 26(2), 290–302. https://doi.org/10.1108/QAE-06-2017-0033 (2018).MathSciNet 
    Article 

    Google Scholar 
    Couper, M. P. The future of modes of data collection. Public Opin. Q. 75, 889–908. https://doi.org/10.1093/poq/nfr046 (2011).Article 

    Google Scholar 
    Zhang, X., Kuchinke, L., Woud, M. L., Velten, J. & Margraf, J. Survey method matters: Online/offline questionnaires and face-to-face or telephone interviews differ. Comput. Hum. Behav. 71, 172–180. https://doi.org/10.1016/j.chb.2017.02.006 (2017).Article 

    Google Scholar 
    Garcia de Leaniz, C., Berkhuysen, A., & Belletti, B. Beware small dams, they can do damage, too. Nature 570, 164–164; doi:https://doi.org/10.1038/d41586-019-01826-y (2019).Belletti, B., et al. Small isn’t beautiful: the impact of small barriers on longitudinal connectivity of European rivers. Geophys. Res. Abst. 20: EGU2018-PREVIEW (2018).Hophmayer-Tokich, S. & Krozer, Y. Public participation in rural area water management: experiences from the North Sea countries in Europe. Water Int. 33(2), 243–257. https://doi.org/10.1080/02508060802027604 (2008).Article 

    Google Scholar 
    San-Martín, E., Larraz, B. & Gallego, M. S. When the river does not naturally flow: a case study of unsustainable management in the Tagus River (Spain). Water Int. 45(3), 189–221. https://doi.org/10.1080/02508060.2020.1753395 (2020).Article 

    Google Scholar 
    Dunlap, R. E. Environmental concern. The Wiley‐Blackwell Encyclopedia of Globalization. (Wiley, Amsterdam, 2012).European Commission Ethics for researchers. Facilitating Research Excellence in FP7. https://doi.org/10.2777/7491 (Publications Office of the European Union, 2013).Jenner, B. M. & Myers, K. C. Intimacy, rapport, and exceptional disclosure: a comparison of in-person and mediated interview contexts. Int. J. Soc. Res. Methodol. 22(2), 165–177. https://doi.org/10.1080/13645579.2018.1512694 (2019).Article 

    Google Scholar 
    Given, L. M. 100 questions (and answers) about qualitative research (Sage, 2015).
    Google Scholar 
    Saris, W. E. & Gallhofer, I. N. Design, evaluation, and analysis of questionnaires for survey research (Wiley, 2014).Book 

    Google Scholar 
    Avella, J. R. Delphi panels: research design, procedures, advantages, and challenges. IJDS 11(1), 305–321. https://doi.org/10.28945/3561 (2016).Article 

    Google Scholar 
    Vandenplas, C. & Loosveldt, G. Modeling the weekly data collection efficiency of face-to-face surveys: six rounds of the European social survey. J. Surv. Stat. Methodol. 5(2), 212–232. https://doi.org/10.1093/jssam/smw034 (2017).Article 

    Google Scholar 
    Barbero-García, M. I., Vila-Abad, E. & Holgado-Tello, F. P. Tests adaptation in cross-cultural comparative studies. Acción Psicol. 5, 7–16. https://doi.org/10.5944/ap.5.2.454 (2008).Article 

    Google Scholar 
    Flick, U. Triangulation in data collection. The SAGE Handbook of Qualitative Data Collection. (Sage, London, 2018).Heesen, R., Bright, L. K. & Zucker, A. Vindicating methodological triangulation. Synthese 196(8), 3067–3081. https://doi.org/10.1007/s11229-016-1294-7 (2019).MathSciNet 
    Article 

    Google Scholar 
    DeVellis, R. F. Scale development: Theory and applications (Sage, 2012).
    Google Scholar 
    Hammer, Ø., Harper, D.A.T., & Ryan, P.D. PAST: paleontological statistics software package for education and data analysis. Palaeontol. Elect. 4(1), 9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm (2001). More

  • in

    Trajectory to local extinction of an isolated dugong population near Okinawa Island, Japan

    Deterministic logistic modelThe following population dynamics model was applied to reconstruct the initial dugong population size in 1894 from fishery statistics between 1894 and 1914:$$N_{t + 1} = N_{t} left( {1 , + r{-}r , N_{t} /K} right) – C_{t} ,$$where r is the intrinsic rate of population increase, Nt is the population size in year t, K is the carrying capacity, and Ct is the number of individuals removed from the waters near the Ryukyu Islands in year t. The carrying capacity (K) in 1893 was sufficient to sustain the initial population of dugongs at that time (N1894). The intrinsic rate of population increase (r) was given between 1 and 5% within a range of natural one.Approximate Bayesian calculationWe conducted approximate Bayesian calculation (ABC)32 to estimate the number of individuals in 1979 based on bycatch data between 1979 and 2019, and the constraints of the numbers of individuals were 11 in 1997, three in 2007, and almost extinct in 2019. We denoted fecundity as f, the survival rate until 1 year old as s0, the annual survival rate after 1 year old as s, the age at maturity as am, and the physiological longevity as A. We assumed that the sex ratio at birth was 1:1 on average; the age at maturity am was eight years of age33, and the physiological longevity A was 73 years6. We ignored environmental stochasticity because no mass deaths caused by infectious diseases or changes in survival or mortality rates due to environmental fluctuations have not been recorded during this period. We also ignored density effects because the carrying capacity of the location was sufficiently greater than the initial population size, and our goal was to investigate the possibility of population recovery after a decrease in population using a population dynamics model and estimate the natural growth rate during this period. The detailed extinction risk depends on age structure.According to the life history parameters, except the physiological longevity compiled by (ref.33), the annual survival probability of an a year-old individual is s for a = 1, 2, …, 72; s0 for a = 0, and 0 for a = 73; the reproductive probability of an adult female  > 8 years old is 2f. As the number of years for a population to become extinct or recover depends on age composition, age-specific survival, and reproductive rates, we obtain the population growth rate by the maximum eigenvalue of the following Leslie matrix, L = {Lij} (i = 1,…73, j = 1,…,73) as:$$L_{i1} = s_{0} f/2quad {text{for}}quad i ge a_{m} ,L_{i+ 1,i} = squad {text{for}}quad i = 1, ldots ,72,quad {text{and}}quad L_{ij} = 0,{text{otherwise}}{.}$$We used the population growth rate λ, defined by the maximum eigenvalue of L, as an indicator of the population growth rate.We assumed that the sex of each individual in 1979 was randomly sampled by the 1:1 sex ratio, and its age was randomly sampled by the stable age structure that is given by the eigenvector of the Leslie matrix with the maximum eigenvalue. We assumed that the number of individuals at age 1 year in year t + 1, denoted by N1,t+1, is determined by the binomial distribution:$$Prleft[ {N_{1,t + 1} = x} right] = left( {begin{array}{*{20}c} {N_{f} } \ x \ end{array} } right)left( {s_{0} f} right)^{x} left[ {1 – left( {s_{0} f} right)} right]^{{N_{f} – x}} ,$$where Nf represents the number of adult females in year t. We assumed that no twins were born. We assumed that the probability that an individual with age x survived in the next year is s if x = 1 or s0 if x = 0. We also assumed that Ct individuals who died by bycatch were randomly chosen from any sex and age because the age of individuals caught by bycatch is rarely known. We do not know the sex of some individuals.We assumed the following prior distributions for N1997, f, and s: N1979 (in) U(11, 80), f (in) U(1/14, 1/6) if at least one adult male existed in the population, s0 (in) U(0.1, 0.85); and s (in) U(0.8, 0.97), where U(a, b) is the uniform random variable between a and b. These probabilities were constant for each simulation trial from 1997 to 2019. We selected the set of parameters with the population growth rate (λ) obtained when the maximum eigenvalue of the Leslie matrix was between 0.96 and 1.01.We rejected trials that did not satisfy the following summary statistics: N1997 ≥ 11 (intensive survey in 1997), Nt ≥ 3 during 2004–2017 (monitoring), and N2019 ≤ 1 (“local extinction”). We obtained the prior distributions of N1997, f, s0, s, and N2004, and of the  > 130,000 trials in the prior distribution with natural population growth rates λ of 96.1–98.8%, 99.3% were rejected. For 95% of the 1000 adopted trials, N1979 ranged from 14 to 58. If λ  > 98%, N1997 was ≤ 45 for the adopted trials (Extended Data Fig. 7. Even if all the stranding deaths were due to anthropogenic factors, such as the release of dugongs after bycatch or boat strike, the range of N1997 changed to  98%, with only a slight upward shift, but positive natural growth rate (or λ  > 1) was again very unlikely (0.3%) among the adopted trials.Population viability analysis to assess the impact of bycatch on the extinction riskWe re-evaluated the extinction risk with and without bycatch using the 1000 parameter sets of N1979, f, s0, and s that satisfied the summary statistics in the ABC and stochastic individual-based model, beginning from N1979 for the corresponding parameters. For each parameter set, 100 trials were conducted for each scenario to compare the extinction risks. More

  • in

    Direct effects of elevated dissolved CO2 can alter the life history of freshwater zooplankton

    Animal culture and mediumFive different clonal lineages of the water flea Daphnia magna were sampled from two ponds on agricultural land in Belgium (Vleteren: 50°55′06.7″ N, 2°43′27.0″ E and De Haan 51°13′53.8″ N, 3°01′49.2″). They were cultured separately in 210 ml glass jars under optimized laboratory conditions (20 ± 1 °C, 14:10 h light:dark cycle). Seed shrimp and rotifer resting eggs were obtained from a commercial supplier (MicroBioTests Inc., H. incongruens strain MBT/1999/10, product code TB36; B. calyciflorus, product code TK21, Belgium) and represent laboratory cultured, single clonal lineages. More details on animal culture are reported in the online supplementary methods (Appendix 3).Natural pond water was used as medium both in animal cultures and the experiment. It was extracted from a Belgian region (50°59′00.92″ N, 5°19′55.85″ E, Zonhoven) with soft, poorly buffered water (Alkalinity 3–8°d; pH 6.5–8.5) which is likely to be susceptible to acidification under elevated pCO2. More information on medium and mineral composition is reported in the online supplementary information (Appendix 3; Table S3, Appendix 1).Experimental set-upOrganisms were exposed to three pCO2 treatments, an ambient control (C; 1,520 ppm ± 702 SD), an elevated (T1; 25,609 ppm ± 4,541 SD) and an extreme pCO2 level (T2; 83,201 ppm ± 15,533 SD). The control pCO2 level represents the current global mean that is measured in lentic freshwaters considering most ponds and lakes are already supersaturated10,12. The T1 level is currently only observed in more extreme cases11. However, it reflects a pCO2 level that could be encountered more commonly in the field in the future. The T2 treatment represents an extreme test of the tolerance limits of extant species. These treatments are a necessary simplification of reality since pCO2 can experience strong fluctuations in ponds and lakes. An overview of freshwater pCO2 concentrations from literature can be found in Table S1 (Appendix 1).The elevated pCO2 concentrations were manipulated in the water by injecting pure CO2 (99.998% pure, ALPHAGAZ CO2 SFC * B50-N48, Airliquide, Belgium) from gas cylinders into the water (cf.49) at a constant flowrate, using a high-pressure regulator (HBS 200–10.2,5; AirLiquide, Belgium) and a flow controller (Sho-rate model 1350G, Brooks Instruments, USA). In the control treatment, ambient air was supplied at a similar rate as the CO2 to ensure equal perturbation levels across all containers. Water of all experimental containers (including control) were also injected with ambient air to keep the water oxygenated. A relatively constant pCO2 was ensured by continuously monitoring pH and kept between a range of ~ 20,000–30,000 ppm (pH 6.9–6.7) for T1 and ~ 70,000–120,000 ppm (pH 6.4–6.1) for T2 (Figure S2, Appendix 2).Each treatment included 13 replicate 210 mL glass jars per species, resulting in a total of 117 experimental units. Per replicate, one mature water flea (8–11 days old) was inoculated in a jar containing aerated pond water. The five clonal lineages were distributed evenly over the experimental conditions so that each condition had the same number of replicates per clone. Seed shrimp replicates each contained one newly hatched ( More

  • in

    Large-scale forecasting of Heracleum sosnowskyi habitat suitability under the climate change on publicly available data

    From the popular algorithms, we chose the Random forest model as the most suitable for our case. The data required for predictions can be divided into plant occurrence records and environmental features. Bioclimatic variables and soil properties were selected as the main environmental features. All of the data were obtained from open sources.Heracleum Sosnowskiy plant descriptionHeracleum sosnowskyi is a monocarpic perennial plant of the Apiaceae family. The height is up to 3–5 m with a straight stem up to 12 cm in diameter. HS compound steam leaves can reach 150 cm, both long and wide38. The blooming period starts in July and continues until the end of September. Plant reproduction is performed by seeds only. The seeds’ depth of germination is reported as mainly in the upper 5 cm down to 15 cm of soil. One plant can produce 10–20,000 seeds39,40. Seeds germinate in the early spring, while some have reported that a period of cold stratification for the dormancy break is obligatory for germination development. Suitable conditions for HS include a temperate climate with warm humid summers and cold winters, while it is probably not drought resistant. Plants of HS tend to neutral soils with a pH range from 6 to 7, rich in nutrients, and being reported as nitrophilous, so the eutrophication of the environment favours HS development. HS plants do not tolerate shade conditions in the first growing period.HS is mostly spread in artificial and semi-natural habitats, including grasslands, pastures, parks, roadsides, agricultural fields, riverbanks or canal sides, and other distributed habitats. Currently, the main pathways of spread include an involuntary entry with soil on vehicles, machinery, footwear or the use of soil as a commodity (as the growing medium rich in organic matter)39.Study areaThe area for modelling extends from approximately 41(^{circ }) to 70(^{circ }) N and from 27(^{circ }) to 60(^{circ }) E, and Kaliningrad region, it equals to approximately 4 mln km2 (Fig. 4).Figure 4Map of the study area: white colour represents the territory used for prediction, red points correspond to the dataset of HS occurrence, collected from the available sources.Full size imageThe European part of Russia is the most inhabited part of the country, and it is the home of approximately 80% of the total population of Russia. It includes the East European Plain, Caucasus mountains and Ural mountains, with the predominance of the East European Plain. Environmental characteristics across the territory of study vary significantly. The climate is changing from semi-arid in the south to subarctic in the north, including humid continental climate conditions. Natural vegetation is represented by almost all types of biomes with the prevalence of different types of forests: broadleaf and mixed forests, coniferous forests, and boreal forests (taiga), while the area of arable lands is reported to be approximately 650,000 km241,42. The territory is subjected to the constant land-use types and cover changes due to the urbanization and switch of the status of arable lands—i.e. reduction of croplands and development of fallows and forests, and, vice versa, returning of some of them into the cultivation process43. The soil cover is represented by the contrast by their physicochemical properties groups, in the northern part of Luvisols, Podzols, Histosols, while of the southern part—by Chernozems, Kastanozems, Solonetz44.Collection of the input dataPlant occurrence dataPlant occurrence coordinates were collected from several publicly available sources related to citizen science projects: the Global Biodiversity Information Facility database45, iNaturalist database46, and the database of the “Antiborschevik” community47. Records were documented by human observation and collected from 2000 to 2021. The overall number of initial occurrence points from combined sources is 7637.Environmental predictorsClimate data Modelling was performed for current and future climate conditions at its two scenarios, selected year ranges were 2000–2018 and 2040–2060 respectively.Climatic variables were collected from the Worldclim database48, containing the average seasonal information relevant to the physiological characteristics of species and available at different resolutions. We chose 10 arc-minutes spatial resolution taking into account the size of the studied area. Table 1 provides a short description of the used bioclimatic features, and we refer the reader to the Worldclim project for detailed information on the variables’ calculation.For the future climate scenarios, we used two Shared Socioeconomic Pathways (SSPs)49—1-2.6 and 5-8.5, corresponding to the lowest (keeping global mean temperature increase below 2 (^{circ })C) and the highest (at the increase of population without technological change) predicted future greenhouse gases emission scenarios. For these data, we took the same resolution (10 arc-minutes) as discussed above.We used the Equilibrium Climate Sensitivity to select the climate model to model future HS distribution. Equilibrium climate sensitivity (ECS) is defined as the global mean surface air temperature change due to a rapid doubling of carbon dioxide concentrations as soon as the associated ocean-atmosphere-sea ice system reaches equilibrium. As the ECS value increases, the model’s sensitivity to the CO(_2) concentration in the atmosphere increases. We have chosen CanESM5 model (ECS—5.6), CNRM-CM6-1 model (ECS—4.3) and BCC-CSM2-MR model (ECS—3.0)50.Table 1 Description of used bioclimatic variables.Full size tableFor the future climate scenarios we selected three climate models:

    BCC-CSM2-MR Beijing Climate Center climate system model developed in Beijing Climate Center, China Meteorological Administration51. Model has horizontal resolution 1.125(^{circ }) by 1.125(^{circ }).

    CanESM5 Canadian Earth System Model version 5 developed in Canadian Center for Climate Modelling and Analysis, Canada52. Horizontal resolution 2.81(^{circ }) by 2.81(^{circ }).

    CNRM-CM6-1 Climate model developed in National Center of Meteorological Research, France53. Horizontal resolution 1.4(^{circ }) by 1.4(^{circ }).

    Authors of the WorldClim project prepared historical and future climate data to a uniform spatial (10 arc-minutes) and temporal resolution.Soil data Soil data were downloaded from the SoilGrids database54—a system for global digital soil mapping. SoilGrids provides continuous data at several depths of the spatial distribution of soil properties across the globe with selected resolution. It uses a machine learning approach to reconstruct continuous data from 230,000 soil profile observations from the WoSIS (The World Soil Information Service) database and a series of environmental covariates.From the whole set of the data provided by SoilGrids several properties were chosen for the forecasting: relative percentage of silt (Silt, %), sand (Sand, %), a volumetric fraction of coarse fragments (CF, %), cation exchange capacity (CEC, ({text{cmol}}_{c}/{text{kg}})) and soil organic carbon (SOC, g/kg) at the depth 5–15 cm, where the HS seeds are assumed to be located. These variables are expected to be more stable over time than bioclimatic predictors; thus, chosen soil properties could be implemented for the future time the same as in the present.Data pre-processingAll the data were transformed to the ASCII format by R script and using software DIVA-GIS following the tutorial for the preparation of WorldClim files for use in SDM (http://www.lep-net.org/wp-content/uploads/2016/08/WorldClim_to_MaxEnt_Tutorial.pdf) with unified selected resolution 340 sq.km.Optimization of the occurrence points amountThe general problem in using the available data collected from the databases of the citizen science projects is that the points of observation are distributed non-uniformly. For instance, the frequency of the records depends on the density of the population directly. The spatial filtering of the data (reducing the number of points) can be performed to reduce the sampling bias55. We prepared three datasets with a distance between points of 4, 7 and 10 km with 2402, 1846 and 1504 occurrence points correspondingly filtering the initial dataset. For the thinning step thin() function was used within the R package spThin with 100 iterations for each of chosen thinning distances. To understand how much data we could lose, we used the analysis of feature distribution and evaluated the general fairness of the model performance.Pseudo-absence generationDue to the availability only of the presence points, it is important to generate the absence points for further implementation of the selected algorithm. Although the generation of pseudo-absence points in SDM research is a widespread solution, a closer look at the literature reveals several gaps and shortcomings. Since the raw dataset of the HS distribution demonstrates strong sampling bias, the generation of pseudo-absence points using the usual ‘random’ strategy can aggravate the sampling bias problem. Thus, the combination of the ‘disk’ and ‘random’ strategies was applied for the generation of the pseudo-absence points using the biomod R package17.

    The ‘disk’ strategy is established on the geographic distance works as separation from truth presence and possible absence points. The optimal geographic distance for HS was chosen as 25 km. This distance was chosen empirically by trial-and-error. We started with 18 km (because the size of the cell is   9–18 km depending on location) and finished with 50 km. Using distances such as 30–50 km lead to a positive spatial autocorrelation. Thus, we decided to set 25 km which finally provided both optimal model performance and reduced spatial autocorrelation.

    The second part of the generation was based on the ‘random’ strategy with filtration: according to the different range of climate conditions on the territory of Russia, there are several places where HS is not detected, thus not growing. The selection of unsuitable places for HS related to the north of Russia, where it is might be too cold for plant species. From all amount of randomly generated generated points we selected points with condition latitude ( > 64^{circ }), according to tundra board line.

    Features selection procedureTo avoid over-fitting and to choose the most conscientious set of parameters for final modelling, two approaches were combined. We searched features that are not correlated with others by a selected threshold is equal to 0.8 in absolute values56 and estimated variable importance using the Mean Decrease Gini (MDG) and the Mean Decrease Accuracy (MDA) as the result of modelling on enumerated parameters’ combinations. MDG score is related to the homogeneity of the nodes and leaves coefficient. With the rise of the MDG score the importance of the corresponding feature is also increasing. MDA describes how much accuracy decrease by removing the feature. We selected the most important features according to the MDG and MDA scores by the highest values of both metrics using a sequential search from an initial set of variables.Modelling approachRandom forestChoosing the appropriate method for creating the tool for accurate SDM is crucial because the overall performance could vary dramatically, depending on the selected model and particular use case. There is a limited amount of acceptable machine learning methods that can be used in SDM. Several popular methods demonstrated high performance in modelling on large areas: GBM, RF, and GLM. In particular, for modelling and prediction of the potential distribution of invasive species, GLM and RF were used57. We decided to use RF because this model was successfully implemented for solving a variety of tasks such as predictions of animal and plant distributions, and also was used for making predictions on a large territory58. The other important advantage that should be noticed is the straightforward interpretability of RF, which means that it is possible to evaluate the impact of each environmental parameter on the occurrence of the invasive species.Approach to the cross-validation of the modelA unique approach for the model calibration is needed to reduce spatial autocorrelation caused by the absence of a strict sampling design. In our case, the data was split into training and testing folds using the spatial blocks technique in a scheme of 13-fold cross-validation. Random spatial splitting was performed 20 times to calibrate the model, with a distance between blocks set as 100 km. To calibrate the model we used a spatial blocks approach with random type from R package blockCV.Evaluation of the model performanceTo evaluate the performance of the model a classic approach for ecology was used—Area Under Curve (AUC) or Receiver operating characteristic (ROC), related to the independent threshold techniques16. The principle of methods lies in the standard confusion matrix, where rows and columns represent actual and predicted classes. The construction of ROC curves uses all possible thresholds to obtain different confusion matrices which leads to the reproduction of the curve with two-dimensional space: (1) on y-axis is True Positive Rate (sensitivity, recall); (2) on x-axis is False Positive Rate (equal to 1 − specificity). In our case true positive (TP, sensitivity) rate means that predicted places where HS grows correspond to actual. Similarly, true negative rate (TN, specificity) indicates correctly classified locations as absence points. In contrast, the missteps when the model predicted places as presence points for plants that are incorrect are False Positive, FP, and places where HS is absent, according to the model, while this is not true are recognised as False Negative, FN. More

  • in

    Privately protected lands have outsized benefits

    .readcube-buybox { display: none !important;}

    As plant and animal species disappear at breakneck speed owing to human activity, researchers reveal that privately owned protected areas are helping to halt the loss of biodiversity, particularly in overlooked regions1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-022-00984-w

    ReferencesPalfrey, R., Oldekop, J. A. & Holmes, G. Nature Ecol. Evol. https://doi.org/10.1038/s41559-022-01715-0 (2022).Article 

    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    Argentina: wildfires jeopardize rewilding
    Correspondence 12 APR 22

    From the archive: Tutankhanum’s tomb, and a floating fish nest from Bermuda
    News & Views 12 APR 22

    China: protect black soil for biodiversity
    Correspondence 05 APR 22

    Jobs

    Postdoctoral Fellow (PhD)

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Postdoctoral Research Scientist

    UK Research and Innovation (UKRI)
    London, United Kingdom

    Associate or Senior Editor, Nature Human Behavior

    Springer Nature
    London, United Kingdom

    Multiple Faculty Positions in Neuroscience and Neuroengineering

    IDG/McGovern Institute for Brain Research, TH
    Beijin, China More

  • in

    Evaluation of resource and environmental carrying capacity in rare earth mining areas in China

    Balaram, V. Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 10(04), 68–86 (2019).Article 
    CAS 

    Google Scholar 
    Chen, K. F., Hu, J. L., Zhang, Y. B. & Xue, D. F. Current R&D status and future trends of rare earth crystal materials. Inorgan. Chem. Ind. 52, 11–16 (2020).ADS 

    Google Scholar 
    Hong, G. Y. Research progress of rare earth luminescent materials. J. Synth. Cryst. 44, 2641–2651 (2015).CAS 

    Google Scholar 
    Hu, J. L. & Xue, D. F. Research progress on the characteristics of rare earth ions and rare earth functional materials. Chin. J. Appl. Chem. 37, 245–255 (2020).CAS 

    Google Scholar 
    Ji, L. Q., Chen, M. X., Gu, H., Zhao, J. H. & Yang, X. Actuality of light rare earth resources and application in field of new energy vehicles. J. Chin. Soc. Rare Earths 38, 129–138 (2020).
    Google Scholar 
    Liu, L. S. et al. Progress in nanocrystalline materials of rare earths. Chin. Rare Earths 33, 84–89 (2012).ADS 

    Google Scholar 
    Chen, Z. H. Global rare earth resources and scenarios of future rare earth industry. J. Rare Earths 29, 1–6 (2011).Article 

    Google Scholar 
    Mineral Commodity Summaries: 2021. Government Printing Office (2021)Yang, Z. F., Ma, Y. & Wang, Y. Mining (Metallurgical Industry Press, 2018).
    Google Scholar 
    Liu, H. Y. et al. Geochemical signatures of rare earth elements and yttrium exploited by acid solution mining around an ion-adsorption type deposit: Role of source control and potential for recovery. Sci. Total Environ. 804, 150241–150241 (2022).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Su, J. et al. Recovery of thorium and rare earths from leachate of ion-absorbed rare earth radioactive residues with N1923 and Cyanex 572. J. Rare Earths 39(10), 1273–1281 (2020).Article 
    CAS 

    Google Scholar 
    Wang, Z. et al. Spatial distribution, source identification, and risk assessment of heavy metals in the soils from a mining region: A case study of Bayan Obo in northwestern China. Hum. Ecol. Risk Assess. Int. J. 27(5), 1276–1295 (2020).Article 
    CAS 

    Google Scholar 
    Jin, Y., Jin, X. & Chen, L. I. Applying supporting-pressuring coupling curve to the evaluation of urban land carrying capacity: The case study of 32 cities in Zhejiang province. Geogr Res 37(6), 1087–1099 (2018).
    Google Scholar 
    Hadwen, S. & Palmer, L.J. Reindeer in Alaska. US Department of Agriculture (1922).Holling, C. S. Resilience and stability of ecological systems. Annu. Rev. Ecol. Syst. 4(1), 1–23 (1973).Article 

    Google Scholar 
    Chapman, E. J. & Carrie, J. B. The flexible application of carrying capacity in ecology. Glob. Ecol. Conserv. 13, e00365 (2018).Article 

    Google Scholar 
    Arrow, K. et al. Economic growth, carrying capacity, and the environment. Ecol. Econ. 15(2), 91–95 (1995).Article 

    Google Scholar 
    Zhu, M. C. et al. A load-carrier perspective examination on the change of ecological environment carrying capacity during urbanization process in China. Sci. Total Environ. 714, 136843 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, F. et al. Evaluation of resources and environmental carrying capacity of 36 large cities in China based on a support-pressure coupling mechanism. Sci. Total Environ. 688, 838–854 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Wei, X., Shen, L., Liu, Z., Luo, L. & Chen, Y. Comparative analysis on the evolution of ecological carrying capacity between provinces during urbanization process in China. Ecol. Indic. 112, 106179 (2020).Article 

    Google Scholar 
    Wu, X. & Hu, F. Analysis of ecological carrying capacity using a fuzzy comprehensive evaluation method. Ecol. Indic. 113, 106243 (2020).Article 

    Google Scholar 
    Wang, J. Y. et al. A three-dimensional evaluation model for regional carrying capacity of ecological environment to social economic development: Model development and a case study in China. Ecol. Indic. 89, 348–355 (2018).Article 

    Google Scholar 
    Jia, Z., Cai, Y., Chen, Y. & Zeng, W. Regionalization of water environmental carrying capacity for supporting the sustainable water resources management and development in China. Resour. Conserv. Recycl. 134, 282–293 (2018).Article 

    Google Scholar 
    Ma, X. A., Bai, Z. K. & Feng, L. R. Evaluation of the eco-environment quality and resources utilization in opencast coal mine area-A case study of Antaibao Open cast Mine of Pingshuo Shanxi Province. Chin. J. Eco-Agric. 15(5), 197–201 (2007).
    Google Scholar 
    Zhang, Z. Q. Study on ecological capacity and environment evaluation of Qingyang, GanSu. Lanzhou: GanSu Agricultural University Doctoral Thesis (in Chinese) (2010).Li, Y. G. et al. Research on the development of the ecological protection of the Qilian Mountains based on ecological redline. Acta Ecol. Sin. 39(7), 2343–2352 (2019).
    Google Scholar 
    Wang, Y., Hong, X. Y. & Lv, D. Analysis on dynamic ecological security and development capacity of 2005–2009 in Qinhuangdao, China. Proc. Environ. Sci. 10, 607–612 (2011).Article 

    Google Scholar 
    Zeng, C. et al. An integrated approach for assessing aquatic ecological carrying capacity: A case study of Wujin District in the Tai Lake Basin, China. Int. J. Environ. Res. Public Health 8(1), 264–280 (2011).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Zhong, Y. X. & Lu, Y. Q. The coupling relationship between population and economic in Poyang Lake ecological economic zone. Econ. Geogr 31(2), 195–200 (2011).MathSciNet 

    Google Scholar 
    Wang, D., Shi, Y. & Wan, K. Integrated evaluation of the carrying capacities of mineral resource-based cities considering synergy between subsystems. Ecol. Indic. 108, 105701 (2020).Article 

    Google Scholar 
    Zhang, Y., Wang, Q., Wang, Z., Yang, Y. & Li, J. Impact of human activities and climate change on the grassland dynamics under different regime policies in the Mongolian Plateau. Sci. Total Environ. 698, 134304 (2020).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Zhang, M., Liu, Y., Wu, J. & Wang, T. Index system of urban resource and environment carrying capacity based on ecological civilization. Environ. Impact Assess Rev. 68, 90–97 (2018).Article 

    Google Scholar 
    Feng, Z. M. et al. The progress of resources and environment carrying capacity: From single-factor carrying capacity research to comprehensive research. J. Resour. Ecol. 9, 125–134 (2018).
    Google Scholar 
    Xiao, W. et al. Ecological resilience assessment of an arid coal mining area using index of entropy and linear weighted analysis: A case study of Shendong Coalfield, China. Ecol. Indic. 109, 105843 (2020).Article 

    Google Scholar 
    Zhang, Y., Shang, J. C. & Yu, X. Y. Study on the coupling mechanism of urban economy and environment. Acta Sci. Circum. 23(1), 107–112 (2003).ADS 
    CAS 

    Google Scholar 
    China County Statistical Yearbook. National Bureau of Statistics, Department of Rural Social and Economic Survey (in Chinese) (2013).Baotou Statistical Yearbook. Baotou City Bureau of Statistics (in Chinese) (2019).Jiangxi Statistical Yearbook. Jiangxi Bureau of Statistics (in Chinese) (2014).Jining Statistical Yearbook. Jining Bureau of Statistics (in Chinese) (2019).402009 Liangshan Yearbook Atlas. Liangshan Yi Autonomous Prefecture People’s Government (in Chinese) (2010).Liao, X. P. Meizhou yearbook. Yearb. Inf. Res. 2, 53 (1999).
    Google Scholar 
    Chongzuo yearbook. Chongzuo local history compilation committee (in Chinese) (2019).Ma, G. X. et al. Assessment of ecological and environmental costs of rare earth resources development in China from 2001–2013. Journal of Natural Resources (in Chinese) (2017).Bai, L. N. et al. The impact of radioactivity on the surrounding environment in the production of rare earths and steel at the Bayan Obo mine. Rare Earths 75–77 (in Chinese) (2004).Li, X. Y. Monitoring and analysis of the radioactive environmental impact of the mining project of Baogang Bayan Obo Iron Mine (West Mine) (in Chinese) (2016).Shi, H. R. & Zhao, R. Y. Comparison of radioactivity levels of rare earth products from different origins. China Radiat. Health 1, 30 (2000).
    Google Scholar 
    Liu, H. P., Zhong, M. L. & Hu, Y. M. Survey of rare earth natural radionuclides in Ganan, Jiangxi Province. Radiat Prot 34(4), 255–257 (2014).
    Google Scholar 
    Xiao, X. L. Investigation and Treatment of Radioactive Environment in Rare Earth Mining Area of Mianning (Southwest Jiaotong University, 2013).
    Google Scholar 
    Min, D., Xu, Z., Peng, L., Zhu, Y. & Xu, X. Comprehensive evaluation of water resources carrying capacity of jining city. Energy Proc. 5(5), 1654–1659 (2011).Article 

    Google Scholar 
    Yin, J. N. & Song, X. A review of major rare earth element and yttrium deposits in China. Aust. J. Earth Sci. 2, 1–25 (2021).
    Google Scholar 
    Chi, R., Li, Z. J., Peng, C., Zhu, G. C. & Xu, S. M. Partitioning properties of rare earth ores in China. Rare Met. 24, 205–209 (2005).CAS 

    Google Scholar 
    Yang, X. J. et al. China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ. Dev. 8, 131–136 (2013).Article 

    Google Scholar 
    Liu, T. & Chen, J. Extraction and separation of heavy rare earth elements: A review. Sep. Purif. Technol. 276, 119263 (2021).CAS 
    Article 

    Google Scholar 
    Wang, L., Zhong, B., Liang, T., Xing, B. & Zhu, Y. Atmospheric thorium pollution and inhalation exposure in the largest rare earth mining and smelting area in China. Sci. Total Environ. 572, 1–8 (2016).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Gwenzi, W. et al. Sources, behaviour, and environmental and human health risks of high-technology rare earth elements as emerging contaminants. Sci. Total Environ. 636, 299–313 (2018).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Liu, W. S. et al. Water, sediment and agricultural soil contamination from an ion-adsorption rare earth mining area. Chemosphere 216, 75–83 (2019).ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 
    Lee, J. C. & Wen, Z. Rare earths from mines to metals: Comparing environmental impacts from China’s main production pathways. J. Ind. Ecol. 21(5), 1277–1290 (2017).CAS 
    Article 

    Google Scholar 
    Shen, L., Wu, N., Zhong, S. & Gao, L. Overview on China’s rare earth industry restructuring and regulation reforms. J. Resour. Ecol. 8, 213–222 (2017).
    Google Scholar  More

  • in

    From the archive: Tutankhanum’s tomb, and a floating fish nest from Bermuda

    NEWS AND VIEWS
    12 April 2022

    From the archive: Tutankhanum’s tomb, and a floating fish nest from Bermuda

    Snippets from Nature’s past.

    Twitter

    Facebook

    Email

    .readcube-buybox { display: none !important;}

    50 Years Ago

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-022-00974-y

    Subjects

    History

    Archaeology

    Fisheries

    Latest on:

    History

    Russian scientists’ complicity: shame will remain
    Correspondence 05 APR 22

    From the archive: Mary Leakey’s book on excavations in Africa, and physics teaching under scrutiny
    News & Views 05 APR 22

    Together, we must help refugee researchers to thrive
    Correspondence 29 MAR 22

    Archaeology

    From the archive: Mary Leakey’s book on excavations in Africa, and physics teaching under scrutiny
    News & Views 05 APR 22

    Ancient smells reveal secrets of Egyptian tomb
    News 31 MAR 22

    Ancient ‘harbour’ revealed to be part of fertility god’s lavish shrine
    Research Highlight 17 MAR 22

    Fisheries

    River conservation by an Indigenous community
    News & Views 11 DEC 20

    Can aquaculture overcome its sustainability challenges?
    Outlook 09 DEC 20

    The grim truth behind eyewitness accounts of sea serpents
    Research Highlight 30 SEP 20

    Jobs

    Postdoctoral Fellow (PhD)

    Baylor College of Medicine (BCM)
    Houston, TX, United States

    Postdoctoral Research Scientist

    UK Research and Innovation (UKRI)
    London, United Kingdom

    Associate or Senior Editor, Nature Human Behavior

    Springer Nature
    London, United Kingdom

    Multiple Faculty Positions in Neuroscience and Neuroengineering

    IDG/McGovern Institute for Brain Research, TH
    Beijin, China More