More stories

  • in

    Myzorhynchus series of Anopheles mosquitoes as potential vectors of Plasmodium bubalis in Thailand

    Templeton, T. J., Martinsen, E., Kaewthamasorn, M. & Kaneko, O. The rediscovery of malaria parasites of ungulates. Parasitology 143, 1501–1508. https://doi.org/10.1017/S0031182016001141 (2016).Article 
    PubMed 

    Google Scholar 
    Sheather, A. A malaria parasite in the blood of a buffalo. J. Comp. Pathol. Ther. 32, 80026–80027 (1919).Article 

    Google Scholar 
    Templeton, T. J. et al. Ungulate malaria parasites. Sci. Rep. 6, 23230. https://doi.org/10.1038/srep23230 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kandel, R. C. et al. First report of malaria parasites in water buffalo in Nepal. Vet. Parasitol. Reg. Stud. Rep. 18, 100348. https://doi.org/10.1016/j.vprsr.2019.100348 (2019).Article 

    Google Scholar 
    Garnham, P. & Edeson, J. Two new malaria parasites of the Malayan mousedeer. Riv. Malariol. 41, 1–8 (1962).CAS 
    PubMed 

    Google Scholar 
    Hoo, C. & Sandosham, A. The early forms of Hepatocystis fieldi and Plasmodium traguli in the Malayan mouse-deer Tragulus javanicus. Med. J. Malays. 22, 299–301 (1968).
    Google Scholar 
    de Mello, F.d., Paes, S. Sur une plasmodiae du sang des chèvres. Cr. Séanc. Soc. Biol. 88, 829–830 (1923).Kaewthamasorn, M. et al. Genetic homogeneity of goat malaria parasites in Asia and Africa suggests their expansion with domestic goat host. Sci. Rep. 8, 5827. https://doi.org/10.1038/s41598-018-24048-0 (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rattanarithikul, R. H., Bruce, A., Harbach, R. E., Panthusiri, P. & Coleman, R. E. Illustrated keys to the mosquitoes of Thailand IV. Anopheles. Southeast Asian J Trop Med Public Health. 37 (2006).Walter Reed Biosystematics Unit. 2021. Systematic catalogue of Culicidae. http://mosquitocatalog.org. Last accessed on 20/09/2021.Sinka, M. E. et al. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis. Parasit. Vectors. 4, 89. https://doi.org/10.1186/1756-3305-4-89 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Syafruddin, D. et al. Malaria prevalence in Nias District, North Sumatra Province, Indonesia. Malar. J. 6, 116. https://doi.org/10.1186/1475-2875-6-116 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vantaux, A. et al. Anopheles ecology, genetics and malaria transmission in northern Cambodia. Sci. Rep. 11, 6458. https://doi.org/10.1038/s41598-021-85628-1 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Manguin, S., Garros, C., Dusfour, I., Harbach, R. & Coosemans, M. Bionomics, taxonomy, and distribution of the major malaria vector taxa of Anopheles subgenus Cellia in Southeast Asia: An updated review. Infect. Genet. Evol. 8, 489–503. https://doi.org/10.1016/j.meegid.2007.11.004 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Paredes-Esquivel, C., Donnelly, M. J., Harbach, R. E. & Townson, H. A molecular phylogeny of mosquitoes in the Anopheles barbirostris Subgroup reveals cryptic species: implications for identification of disease vectors. Mol. Phylogenet. Evol. 50, 141–151. https://doi.org/10.1016/j.ympev.2008.10.011 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sungvornyothin, S., Garros, C., Chareonviriyaphap, T. & Manguin, S. How reliable is the humeral pale spot for identification of cryptic species of the Minimus Complex?. J. Am. Mosq. Control. Assoc. 22, 185–191. https://doi.org/10.2987/8756-971X(2006)22[185:HRITHP]2.0.CO;2 (2006).Article 
    PubMed 

    Google Scholar 
    Brosseau, L. et al. A multiplex PCR assay for the identification of five species of the Anopheles barbirostris complex in Thailand. Parasite. Vectors. 12, 223. https://doi.org/10.1186/s13071-019-3494-8 (2019).Article 

    Google Scholar 
    Taai, K. & Harbach, R. E. Systematics of the Anopheles barbirostris species complex (Diptera: Culicidae: Anophelinae) in Thailand. Zool. J. Linn. Soc. 174, 244–264. https://doi.org/10.1111/zoj.12236 (2015).Article 

    Google Scholar 
    Dahan-Moss, Y. et al. Member species of the Anopheles gambiae complex can be misidentified as Anopheles leesoni. Malar. J. 19, 1–9. https://doi.org/10.1186/s12936-020-03168-x (2020).CAS 
    Article 

    Google Scholar 
    De Ang, J. X., Yaman, K., Kadir, K. A., Matusop, A. & Singh, B. New vectors that are early feeders for Plasmodium knowlesi and other simian malaria parasites in Sarawak, Malaysian Borneo. Sci. Rep. https://doi.org/10.1038/s41598-021-86107-3 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Bortel, W. et al. Confirmation of Anopheles varuna in Vietnam, previously misidentified and mistargeted as the malaria vector Anopheles minimus. Am. J. Trop. Med. Hyg. 65, 729–732. https://doi.org/10.4269/ajtmh.2001.65.729 (2001).Article 
    PubMed 

    Google Scholar 
    Wharton, R., Eyles, D. E., Warren, M., Moorhouse, D. & Sandosham, A. Investigations leading to the identification of members of the Anopheles umbrosus group as the probable vectors of mouse deer malaria. Bull. World. Health. Organ. 29, 357 (1963).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boundenga, L. et al. Haemosporidian parasites of antelopes and other vertebrates from Gabon, Central Africa. PLoS ONE 11, e0148958. https://doi.org/10.1371/journal.pone.0148958 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martinsen, E. S. et al. Hidden in plain sight: Cryptic and endemic malaria parasites in North American white-tailed deer (Odocoileus virginianus). Sci. Adv. 2, e1501486. https://doi.org/10.1126/sciadv.1501486 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garnham, P. C. C. Malaria Parasites and Other Haemosporidia (Blackwell Sci. Pub, 1966).
    Google Scholar 
    Nguyen, A. H. L., Tiawsirisup, S. & Kaewthamasorn, M. Low level of genetic diversity and high occurrence of vector-borne protozoa in water buffaloes in Thailand based on 18S ribosomal RNA and mitochondrial cytochrome b genes. Infect. Genet. Evol. 82, 104304. https://doi.org/10.1016/j.meegid.2020.104304 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hebert, P. D., Cywinska, A. & Ball, S. L. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B Biol. Sci. 270, 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).CAS 
    Article 

    Google Scholar 
    Cywinska, A., Hunter, F. & Hebert, P. D. Identifying Canadian mosquito species through DNA barcodes. Med. Vet. Entomol. 20, 413–424. https://doi.org/10.1111/j.1365-2915.2006.00653.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ogola, E. O., Chepkorir, E., Sang, R. & Tchouassi, D. P. A previously unreported potential malaria vector in a dry ecology of Kenya. Parasites Vectors 12, 80. https://doi.org/10.1186/s13071-019-3332-z (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maquart, P.-O., Fontenille, D., Rahola, N., Yean, S. & Boyer, S. Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia. Parasite 28, 60. https://doi.org/10.1051/parasite/2021056 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Saeung, A. et al. Geographic distribution and genetic compatibility among six karyotypic forms of Anopheles peditaeniatus (Diptera: Culicidae) in Thailand. Trop. Biomed. 29, 613–625 (2012).CAS 
    PubMed 

    Google Scholar 
    Tainchum, K., Kongmee, M., Manguin, S., Bangs, M. J. & Chareonviriyaphap, T. Anopheles species diversity and distribution of the malaria vectors of Thailand. Trends Parasitol. 31, 109–119. https://doi.org/10.1016/j.pt.2015.01.004 (2015).Article 
    PubMed 

    Google Scholar 
    Chookaew, S. et al. Anopheles species composition in malaria high-risk areas in Ranong Province. Dis. Cont. J. 46, 483–493. https://doi.org/10.14456/dcj.2020.45 (2020).Article 

    Google Scholar 
    Reid, J. A. The Anopheles barbirostris group (Diptera, Culicidae). Bull. Entomol. Res. 53, 1–57 (1962).Article 

    Google Scholar 
    Harrison, B. A. & Scanlon, J. E. Medical entomology studies–II. The subgenus Anopheles in Thailand (Diptera: Culicidae). Contributions of the American Entomological Institute (Ann Arbor) 12 (1): iv + 1–iv 307 (1975).Wang, Y., Xu, J. & Ma, Y. Molecular characterization of cryptic species of Anopheles barbirostris van der Wulp in China. Parasite Vectors 7, 592. https://doi.org/10.1186/s13071-014-0592-5 (2014).CAS 
    Article 

    Google Scholar 
    Wang, G. et al. An evaluation of the suitability of COI and COII gene variation for reconstructing the phylogeny of, and identifying cryptic species in, anopheline mosquitoes (Diptera Culicidae). Mitochondrial DNA Part A. 28, 769–777. https://doi.org/10.1080/24701394.2016.1186665 (2017).CAS 
    Article 

    Google Scholar 
    Davidson, J. R. et al. Molecular analysis reveals a high diversity of Anopheles species in Karama, West Sulawesi, Indonesia. Parasite Vectors https://doi.org/10.1186/s13071-020-04252-6 (2020).Article 

    Google Scholar 
    Beebe, N. W. DNA barcoding mosquitoes: advice for potential prospectors. Parasitology 145(5), 622–633. https://doi.org/10.1017/S0031182018000343 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gunathilaka, N. Illustrated key to the adult female Anopheles (Diptera: Culicidae) mosquitoes of Sri Lanka. Appl. Entomol. Zool. 52, 69–77. https://doi.org/10.1007/s13355-016-0455-y (2017).Article 
    PubMed 

    Google Scholar 
    WHO. Pictorial identification key of important disease vectors in the WHO South-East Asia Region. https://apps.who.int/iris/handle/10665/332202 (accessed 20 August 2021).Rigg, C. A., Hurtado, L. A., Calzada, J. E. & Chaves, L. F. Malaria infection rates in Anopheles albimanus (Diptera: Culicidae) at Ipetí-Guna, a village within a region targeted for malaria elimination in Panamá. Infect. Genet. Evol. 69, 216–223. https://doi.org/10.1016/j.meegid.2019.02.003 (2019).Article 
    PubMed 

    Google Scholar 
    Torres-Cosme, R. et al. Natural malaria infection in anophelines vectors and their incrimination in local malaria transmission in Darién, Panama. PLoS ONE 16, e0250059. https://doi.org/10.1371/journal.pone.0250059 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beebe, N. W. & Saul, A. Discrimination of all Members of the Anopheles punctulatus complex by polymerase chain reaction-restriction fragment length polymorphism analysis. Am. J. Trop. Med. Hyg. 53, 478–481. https://doi.org/10.4269/ajtmh.1995.53.478 (1995).CAS 
    Article 
    PubMed 

    Google Scholar 
    Perkins, S. L. & Schall, J. J. A molecular phylogeny of malaria parasites recovered from cytochrome b gene sequences. J. Parasitol. 88, 972–978. https://doi.org/10.1645/0022-3395(2002)088[0972:AMPOMP]2.0.CO;2 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Snounou, G. et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol. Biochem. Parasitol. 61, 315–320. https://doi.org/10.1016/0166-6851(93)90077-b (1993).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hall, T. A. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic. Acids. Symp. Ser. 41, 95–98 (1999).CAS 

    Google Scholar 
    Schoener, E. et al. Avian Plasmodium in Eastern Austrian mosquitoes. Malar. J. 16, 389. https://doi.org/10.1186/s12936-017-2035-1 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ventim, R. et al. Avian malaria infections in western European mosquitoes. Parasitol. Res. 111, 637–645. https://doi.org/10.1007/s00436-012-2880-3 (2012).Article 
    PubMed 

    Google Scholar 
    Huelsenbeck, J. P. & Ronquist, F. MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17, 754–755 (2001).CAS 
    Article 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Spatial cover and carbon fluxes of urbanized Sonoran Desert biological soil crusts

    Bethany, J., Giraldo-Silva, A., Nelson, C., Barger, N. N. & Garcia-Pichel, F. Optimizing the production of nursery-based biological soil crusts for restoration of arid land soils. Appl. Environ. Microbiol. 85(15), e00735-e819 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Belnap, J. & Gardner, J. S. Soil microstructure in soils of the colorado plateau—The role of the cyanobacterium Microcoleus-vaginatus. Gt. Basin Nat. 53(1), 40–47 (1993).
    Google Scholar 
    Belnap, J. Factors influencing nitrogen fixation and nitrogen release in biological soil crusts. Ecol. Stud. Biol. Soil Crusts Struct. Funct. Manag. 150, 241–261 (2001).
    Google Scholar 
    Cameron, R. E. & Blank, G. B. Desert algae: Soil crusts and diaphanous substrata as algal habitats. Tech. Rep. Jet Propul. Lab. Calif. Technol. 32–971, 1–41 (1966).
    Google Scholar 
    Friedmann EI, Galun M. Desert algae lichens and fungi. in Desert Biology (Brown Jr, G.W. eds). Vol. 2. 165–212. (Illus Academic Press, Inc., 1974).Maier, S., Tamm, A., Wu, D.A.-O., Caesar, J., Grube, M., & Weber, B.A.-O. Photoautotrophic Organisms Control Microbial Abundance, Diversity, and Physiology in Different Types of Biological Soil Crusts. (1751–7370 (electronic)).Cable, J. M. & Huxman, T. E. Precipitation pulse size effects on Sonoran Desert soil microbial crusts. Oecologia 141(2), 317–324 (2004).ADS 
    PubMed 

    Google Scholar 
    Evans, R. D. & Johansen, J. R. Microbiotic crusts and ecosystem processes. Crit. Rev. Plant Sci. 18(2), 183–225 (1999).
    Google Scholar 
    Thompson, J. N. et al. Frontiers of ecology. Bioscience 51(1), 15–24 (2001).
    Google Scholar 
    Warren, S. D., Rosentreter, R. & Pietrasiak, N. Biological soil crusts of the Great Plains: A review. Rangel Ecol. Manag. 1(78), 213–219 (2021).
    Google Scholar 
    Warren, S. D. et al. Biological soil crust response to late season prescribed fire in a Great Basin Juniper Woodland. Rangel. Ecol. Manag. 68(3), 241–247 (2015).
    Google Scholar 
    Thomas, A. D., Hoon, S. R. & Linton, P. E. Carbon dioxide fluxes from cyanobacteria crusted soils in the Kalahari. Appl. Soil Ecol. 39, 254–263 (2008).
    Google Scholar 
    Williams, A. J., Buck, B. J. & Beyene, M. A. Biological soil crusts in the Mojave Desert, USA: Micromorphology and pedogenesis. Soil Sci. Soc. Am. J. 76(5), 1685–1695 (2012).ADS 
    CAS 

    Google Scholar 
    Belnap, J. & Lange, O. L. Ecological studies: Biological soil crusts: Structure, function, and management. Ecol. Stud. Biol. Soil Crusts Struct. Funct. Manag. 150, 1–503 (2001).
    Google Scholar 
    Jordan, W. R. I. Restoration ecology: A synthetic approach to ecological research. Rehabil. Damaged Ecosyst. 2, 373–384 (1995).
    Google Scholar 
    Nash, T. H. et al. Photosynthetic patterns of Sonoran desert lichens.1. Environmental considerations and preliminary field-measurements. Flora 172(4), 335–345 (1982).
    Google Scholar 
    St. Clair, L. L., Johansen, J. R. & Rushforth, S. R. Lichens of soil crust communities in the Intermountain Area of the western United States. Gt Basin Nat. 53(1), 5 (1993).
    Google Scholar 
    Bowker, M. A., Belnap, J. & Miller, M. E. Spatial modeling of biological soil crusts to support rangeland assessment and monitoring. Rangel. Ecol. Manag. 59(5), 519–529 (2006).
    Google Scholar 
    Mayland, H. F., McIntosh, T. H. & Fuller, W. H. Fixation of isotopic nitrogen on a semiarid soil by algal crust organisms. Soil Sci. Soc. Am. Proc. 30(1), 56 (1966).ADS 
    CAS 

    Google Scholar 
    McIlvanie, S. K. Grass seedling establishment, and productivity—Overgrazed vs. protected range soils. Ecology 23(2), 228–231 (1942).
    Google Scholar 
    Webb, R. H. & Wilshire, H. G. Environmental Effects of Off-Road Vehicles : Impacts and Management in Arid Regions (Springer, 1983).
    Google Scholar 
    Zobel, D. & Antos, J. A decade of recovery of understory vegetation buried by volcanic tephra from Mount St. Helens. Ecol. Monogr. 1, 67 (1997).
    Google Scholar 
    Condon, L. & Pyke, D. Resiliency of biological soil crusts and vascular plants varies among morphogroups with disturbance intensity. Plant Soil. 12, 433 (2020).
    Google Scholar 
    Harper, K., & Marble, J. A role for nonvascular plants in management of arid and semiarid rangelands. in Vegetation Science Applications for Rangeland Analysis and Management [Internet] (Tueller, P.T., ed.). Handbook of Vegetation Science. Vol. 14. 135–169. https://doi.org/10.1007/978-94-009-3085-8_7. (Springer, 1988). Evans, R. D. & Belnap, J. Long-term consequences of disturbance on nitrogen dynamics in an arid ecosystem. Ecology 80(1), 150–160 (1999).
    Google Scholar 
    Sheridan, R. P. Impact of emissions from coal-fired electricity generating facilities on N2-fixing lichens. Bryologist 82(1), 54–58 (1979).CAS 

    Google Scholar 
    Henriksson, L. E. & Dasilva, E. J. Effects of some inorganic elements on nitrogen-fixation in blue-green-algae and some ecological aspects of pollution. Z. Allg. Mikrobiol. 18(7), 487–494 (1978).CAS 
    PubMed 

    Google Scholar 
    Freebury, C. Lichens and lichenicolous fungi of Grasslands National Park (Saskatchewan, Canada). Opusc Philolichenum 13, 102–121 (2009).
    Google Scholar 
    Szyja, M. et al. Neglected but potent dry forest players: ecological role and ecosystem service provision of biological soil crusts in the human-modified Caatinga. Front. Ecol. Evol. (Internet). https://doi.org/10.3389/fevo.2019.00482 (2019).Article 

    Google Scholar 
    Rosentreter, R. Biological soil of crusts of North American drylands: Cryptic diversity at risk. in Reference Module in Earth Systems and Environmental Sciences [Internet]. https://www.sciencedirect.com/science/article/pii/B9780128211397000738 (Elsevier, 2021). Kranz, C. N., McLaughlin, R. A., Johnson, A., Miller, G. & Heitman, J. L. The effects of compost incorporation on soil physical properties in urban soils—A concise review. J. Environ. Manag. 261, 110209 (2020).
    Google Scholar 
    Barberán, A. et al. Continental-scale distributions of dust-associated bacteria and fungi. Proc. Natl. Acad. Sci. 112(18), 5756 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaye, J. P., Groffman, P. M., Grimm, N. B., Baker, L. A. & Pouyat, R. V. A distinct urban biogeochemistry?. Trends Ecol. Evol. 21(4), 192–199 (2006).PubMed 

    Google Scholar 
    Pavao-Zuckerman, M. A. The nature of urban soils and their role in ecological restoration in cities. Restor. Ecol. 16(4), 642–649 (2008).
    Google Scholar 
    Pouyat, R., Groffman, P., Yesilonis, I. & Hernandez, L. Soil carbon pools and fluxes in urban ecosystems. Environ. Pollut. 116, S107–S118 (2002).CAS 
    PubMed 

    Google Scholar 
    Behzad, H., Mineta, K., & Gojobori, T. Global Ramifications of Dust and Sandstorm Microbiota. (1759–6653 (electronic)).Warren, S., Clair, L. & Leavitt, S. Aerobiology and passive restoration of biological soil crusts. Aerobiologia 3, 35 (2021).
    Google Scholar 
    Hall, S. J. et al. Urbanization alters soil microbial functioning in the Sonoran Desert. Ecosystems 12(4), 654–671 (2009).CAS 

    Google Scholar 
    Ball, B. A. & Guevara, J. A. The nutrient plasticity of moss-dominated crust in the urbanized Sonoran Desert. Plant Soil. 389(1–2), 225–235 (2015).CAS 

    Google Scholar 
    Allen, C. D. Monitoring environmental impact in the Upper Sonoran lifestyle: A new tool for rapid ecological assessment. Environ. Manag. 43(2), 346–356 (2009).ADS 

    Google Scholar 
    Evans, R. A. & Love, R. M. The step-point method of sampling: A practical tool in range research. J. Range Manag. 10(5), 208–212 (1957).
    Google Scholar 
    Coulloudon, B., & National Applied Resource Sciences C. Sampling Vegetation Attributes Interagency Technical Reference [Internet]. http://www.blm.gov/nstc/library/pdf/samplveg.pdf. (Bureau of Land Management : National Business Center, 1999). Faithfull, N. T. Methods in agricultural chemical analysis: A practical handbook. Methods Agric. Chem. Anal. Pract. Handb. 1–22, 1–266 (2002).
    Google Scholar 
    Kuske, C. R., Yeager, C. M., Johnson, S., Ticknor, L. O. & Belnap, J. Response and resilience of soil biocrust bacterial communities to chronic physical disturbance in arid shrublands. ISME J. 6(4), 886–897 (2012).CAS 
    PubMed 

    Google Scholar 
    Lorenz, K. & Lal, R. Biogeochemical C and N cycles in urban soils. Environ. Int. 35(1), 1–8 (2009).CAS 
    PubMed 

    Google Scholar 
    Chamizo, S., Canton, Y., Lazaro, R., Sole-Benet, A. & Domingo, F. Crust composition and disturbance drive infiltration through biological soil crusts in semiarid ecosystems. Ecosystems 15(1), 148–161 (2012).
    Google Scholar 
    Kidron, G. J. & Gutschick, V. P. Soil moisture correlates with shrub-grass association in the Chihuahuan Desert. CATENA 107, 71–79 (2013).
    Google Scholar 
    Kidron, G. J., Monger, H. C., Vonshak, A. & Conrod, W. Contrasting effects of microbiotic crusts on runoff in desert surfaces. Geomorphology 15(139), 484–494 (2012).ADS 

    Google Scholar 
    Berdugo, M., Soliveres, S. & Maestre, F. T. Vascular plants and biocrusts modulate how abiotic factors affect wetting and drying events in drylands. Ecosystems 17, 1242 (2014).CAS 

    Google Scholar 
    Maestre, F. T. et al. Changes in biocrust cover drive carbon cycle responses to climate change in drylands. Glob Change Biol. 19, 3835 (2013).ADS 

    Google Scholar 
    Valenzuela, A. et al. Aerosol radiative forcing during African desert dust events (2005–2010) over southeastern Spain. Atmos. Chem. Phys. 12(21), 10331–10351 (2012).ADS 
    CAS 

    Google Scholar 
    Kaya, S., Basar, U. G., Karaca, M. & Seker, D. Z. Assessment of urban heat islands using remotely sensed data. Ekoloji 21(84), 107–113 (2012).
    Google Scholar 
    Demmigadams, B. et al. Effect of high light on the efficiency of photochemical energy-conversion in a variety of lichen species with green and blue-green phycobionts. Planta 180(3), 400–409 (1990).CAS 

    Google Scholar 
    Gauslaa, Y. & Rikkinen, J. What’s behind the pretty colours? A study on the photobiology of lichens. Nord. J. Bot. 17(5), 556–556 (1995).
    Google Scholar 
    Garciapichel, F. & Castenholz, R. W. Characterization and biological implications of scytonemin, a cyanobacterial sheath pigment. J. Phycol. 27(3), 395–409 (1991).CAS 

    Google Scholar 
    Garcia-Pichel, F. & Castenholz, R. W. The role of sheath pigments in the adaptation of terrestrial cyanobacteria to near UV radiation. J. Phycol. 27(3 SUPPL), 24–24 (1991).
    Google Scholar 
    McDonnell, M. J. et al. Ecosystem processes along an urban-to-rural gradient. Urban Ecosyst. 1(1), 21–36 (1997).
    Google Scholar 
    Pavao-Zuckerman, M. A. & Byrne, L. B. Scratching the surface and digging deeper: Exploring ecological theories in urban soils. Urban Ecosyst. 12(1), 9–20 (2009).
    Google Scholar 
    Pavao-Zuckerman, M. A. Urban greenscape, soils, and ecosystem functioning in a semi-arid urban ecosystem. J. Nematol. 41(4), 369–370 (2009).
    Google Scholar 
    Collins, S. L. et al. Pulse dynamics and microbial processes in aridland ecosystems. J. Ecol. 96(3), 413–420 (2008).
    Google Scholar 
    Noy-Meir, I. Desert ecosystems environment and producers. In Annual Review on Ecology System (Johnston Richard, F. ed.). Vol. 4. 25–51. (Illus Map Annu Rev Inc, 1973). More

  • in

    The great acceleration of plant phenological shifts

    Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. Quat. Sci. Rev. 28, 3016–3034 (2009).Article 

    Google Scholar 
    Zheng, Z. et al. Proc. Natl Acad. Sci. USA 118, e2022210118 (2021).CAS 
    Article 

    Google Scholar 
    Lewis, S. L. & Maslin, M. A. Nature 519, 171–180 (2015).CAS 
    Article 

    Google Scholar 
    Steffen, W. et al. Anthr. Rev. 2, 81–98 (2015).
    Google Scholar 
    Ripple, W. J. et al. BioScience 70, 8–12 (2020).
    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. Nat. Clim. Change 8, 224–228 (2018).Article 

    Google Scholar 
    Vitasse, Y. et al. Biol. Rev. 96, 1816–1835 (2021).Article 

    Google Scholar 
    Aono, Y. & Kazui, K. Int. J. Climatol. 28, 905–914 (2008).Article 

    Google Scholar 
    Sparks, T. H. & Carey, P. D. J. Ecol. 83, 321–329 (1995).Article 

    Google Scholar 
    Ge, Q. et al. J. Geophys. Res. Biogeosci. 119, 301–311 (2014).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Post, E., Steinman, B. A. & Mann, M. E. Sci. Rep. 8, 3927 (2018).Article 

    Google Scholar 
    Primack, R. B. & Miller-Rushing, A. J. Bioscience 62, 170–181 (2012).Article 

    Google Scholar 
    Kharouba, H. M. et al. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).CAS 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Agric. For. Meteorol. 169, 156–173 (2013).Article 

    Google Scholar 
    Parker, D. E., Legg, T. P. & Folland, C. K. Int. J. Climatol. 12, 317–342 (1992).Article 

    Google Scholar  More

  • in

    Global field observations of tree die-off reveal hotter-drought fingerprint for Earth’s forests

    Earth’s forests imperiled by further warmingWe quantified a global-scale hotter-drought fingerprint, representing a global climate signal for years with documented site-specific tree mortality. Climate-induced tree mortality in recent decades under hotter-drought conditions has been documented across forests from a diverse array of boundary conditions, spanning from the tropics to the boreal, from sea level to 3,500 m, and across a four-meter precipitation gradient and 30 °C of mean annual temperature. One reason that the hotter-drought fingerprint is similarly evident in the year prior to reported mortality onset (Fig. 3), as well as largely echoed in the year after, may be due to the imprecise nature of identifying the “onset” and duration of mortality (e.g., visual indications of mortality may lag significantly behind environmental drivers16). In addition, chronic drought conditions commonly span multiple years, cumulatively predisposing eventual, lagged mortality events13,26,27—consistent with our observed “3-year hotter-drier window,” centered on the nominal mortality year (Fig. 3).Our global-scale hotter-drought fingerprint, focused on acute hotter-drought extremes, represents a cohesive signal for climatic drivers of tree die-off in many of Earth’s forests. Other approaches could consider other temporal dimensions of climate signals (e.g., shorter-term heat-wave stress, longer-term chronic drought, changes in seasonal drought duration or timing), which may further improve our understanding of climatic drivers of tree mortality. Ideally, future efforts to harmonize global forest inventory and monitoring methodologies, including their currently-disparate documentation of tree mortality, will reduce the inherent sampling biases (typically favoring northern hemisphere and/or areas adjacent to well-funded research institutions) and presence-only limitations of our present database11.Additionally, we found that many of Earth’s forests may become increasingly imperiled by further warming and drought, as the frequency of lethal climate conditions observed with recently documented global mortality events will accelerate with further warming (Fig. 6d). Although our approach does not reveal the particular detailed mechanistic ecophysiological responses to the hotter drought that are driving mortality for each specific site, it exemplifies the powerful utility and practical potential of empirical approaches that link direct observations of tree mortality from diverse precisely georeferenced locations to observed climate drivers. While multiple emerging lines of evidence indicate that warming puts trees at greater risk under drought conditions9,14,15,19,24,35, the quantitative hotter-drought fingerprint we identified here suggests that further warming may accelerate global forest die-off across many biomes. The impact of this hotter-drought fingerprint is acting on Earth’s forests already, with nearly half a billion trees having died from hotter-drought events in Texas and California alone since 201036,37. In central Europe, hotter drought starting in 2018 has led to extensive dieback of forests that is ongoing—and of yet undetermined magnitude and extent—which could lead to significant ecological transitions38. Other notable global tree mortality events documented during hotter-drought episodes include three pulses of large-tree mortality since 2005 across Amazon basin tropical moist forests39,40, and historically unprecedented hotter-drought-triggered dieback in Jarrah forests of southwest Australia in 20118,19.Individual trees and forest ecosystems may benefit in various ways (e.g., increased water-use efficiency, stored non-structural carbon, etc.) from productivity gains under elevated atmospheric CO222—when soil nutrients and water are not limiting. However, the net effects of increasing CO2 in combination with a changing climate on the mortality of global forests during hotter drought are uncertain4,9,35. In particular, during hotter-drought events, plant uptake of CO2 is limited by the initial closing of stomata—with CO2 uptake eventually blocked as leaves lose turgor, followed by failure of the coupled plant water-and-carbon transport system which may ultimately result in death16,28. Thus, potential amelioration of tree mortality risk by the ~85 ppm atmospheric CO2 increase during the timeframe in our database (1970–2018) might have been overwhelmed by the concurrent increases in temperature during mortality-event years (Fig. 5). This warming presents a triple threat to tree survival in the form of amplified soil drought, atmospheric drought, and heat stress, and our results are consistent with experimental findings that drought and warming can negate or overcome the effects of elevated CO217,18.Earth’s historical forests are especially vulnerableAs the longest-lived organisms on Earth, trees routinely are imbued with historical and cultural significance by human societies, while also persistently sequestering carbon and amplifying local biodiversity for centuries, sometimes millennia. In contrast, extreme climate stress events occur on the scale of days to months to a few years, and in these relatively brief periods, large old trees—exemplars of Earth’s historical forests6—can be especially susceptible to mortality5,41,42,43,44. Forests will certainly persist and thrive over large areas into Earth’s future, but increasingly they will have to rapidly shift in physiological function, morphology, genetics, species composition, structure, and geographic distribution in response to anticipated climate changes. Where the pace of climate change outruns the adaptive or acclimation capacities of historically-dominant tree individuals and species, additional die-off events are likely to occur and some forests may even cease to exist. In particular, the current tree communities of Earth’s historical old-growth forests—which took centuries, sometimes millennia, to grow to structural dominance under now locally-shifted climate conditions—may continue to often be most negatively affected by continued warming and drying4,43, as novel hotter-drought extremes increasingly exceed their range of survivable climate across diverse forested biomes. The expected near-term outcome is simplified tree communities, where more drought- and heat-tolerant species survive, and less tolerant species diminish or perish. In many cases, this may lead to lasting changes in vegetation composition, stature, and spacing, where surviving woody plants in these communities do not maintain or develop the complex canopy structure typical of historical old-growth forests4,9,35,45.Underestimation of tree mortality from hotter droughtsWhile our projections for an increase by up to 140% in the frequency of climate conditions associated with recent forest die-off under +4 °C may seem severe, they are modest in comparison to some current empirical and mechanistic process-based model predictions for catastrophic forest die-off at continental scales under hotter droughts12,14. Our projections for increasing die-offs under further warming are consistent with projections showing the potential for large increases in mortality under future hotter drought12,14,46, although these projections are often limited to single species or single biomes. Even continental-scale projections for up to 40% increases in the frequency of mortality-inducing hotter droughts under ~+2.5 °C since pre-industrial20 are in general agreement with our global analysis’s 20% under +2 °C (Fig. 6d). Further, our projections of increasingly frequent, historically lethal climate conditions for Earth’s forests may be conservative for several reasons:

    (1)

    Requiring that all six climate variables meet or exceed mortality year conditions, concurrently in the same year, is a strong filter. For example, TMAX, VPD, and PDSI all exceed mortality-year conditions under +4 °C in about 4 out of every 5 years (Supplementary Fig. S3), whereas under the same warming scenario, all six metrics exceeded the hotter-drought fingerprint only half as often.

    (2)

    Tree mortality involves diverse disturbance processes that amplify forest die-off in the presence of global warming and hotter droughts4,24,35 but these were excluded in our analysis, including insects44,47, pathogens48, wind40,49, and lightning50. Additionally, anthropogenic warming promotes greater wildfire activity, particularly fire extent and severity in many forests worldwide7,51, driving further declines in some of Earth’s forests. We also have not considered disturbance interactions among these many amplifying and synergistic agents of tree mortality49,52—but conversely, we also acknowledge that thinning from either climate-triggered mortality or these associated synergistic agents, may partially buffer against future losses35,45.

    (3)

    Our findings indicate that climate anomalies of tree mortality event years are trending towards ever hotter and drier conditions (Fig. 5, Supplementary Fig. S7), concurrent with any potential ongoing forest acclimation to temperature and/or CO2 fertilization15,22. Yet the potential for tree species to acclimate to ongoing climate warming, even with increasing atmospheric CO2 concentrations, is not unlimited—and when exhausted—forest die-off may rapidly accelerate9,35,53. Since projected warmer climate conditions include unprecedented extremes of hotter drought for which there are no observed analogs, the potential for crossing historically unknown tipping-point climatic stress thresholds may increase, further amplifying tree mortality35.

    (4)

    Our analysis of mortality-year frequency uses monthly climate data, yet important drivers can occur on longer (e.g., drought26), and shorter (e.g., heatwave8,19) timescales. For example, the 4-year-prior signal of cooler/wetter climate (Fig. 3) may reflect favorable pre-drought conditions promoting structural overshoot of trees, which could amplify dieback and mortality risk during subsequent years of hotter drought45.

    Roadmap for research enabled by a quantitative ground-based global databaseThe widespread global coherence of our empirically quantified hotter-drought fingerprint may provide immediate opportunities to validate projections of tree mortality in existing models of the Earth system, while also enabling diverse future analyses. Although global in geographic extent, our database is limited by the availability of peer-reviewed, ground-based empirical studies of climate-induced tree mortality, and thus only sparsely covers some regions, particularly large portions of boreal and tropical forests. For example, our hotter-drought fingerprint was consistent across all biomes except the tropical rainforest (Fig. 4)—despite published direct observations of hotter drought as a driver of tree mortality at these tropical rainforest sites39,40. Additionally, this biome may experience pulses of tree mortality in response to different climate fingerprints, particularly involving longer-duration dry seasons—not just intensified single monthly extremes.Despite this and some other limitations, our database represents a globally-distributed dataset with precisely geo-referenced sites where ground-based heat- and drought-induced tree mortality has been documented. Our use of this database to quantify a global hotter-drought fingerprint of tree mortality illustrates the potential for rapid progress in empirical modeling of forest mortality drivers and thresholds at spatial scales from local to global, where direct observations of forest responses to climate stress can help identify and quantify mortality drivers. Toward the goal of fostering further rapid community development of many more such direct observational records of climate-induced forest stress and tree mortality worldwide—with methods ranging from local ground-based sites to synoptic remote-sensing—this database immediately will be served as an open-access resource at the International Tree Mortality Network (https://www.tree-mortality.net), an academic networking initiative associated with the International Union of Forest Research Organizations’ (IUFRO) task force on monitoring global tree mortality patterns and trends (https://www.iufro.org/science/task-forces/tree-mortality-patterns). The complete database—along with an interactive version of Fig. 1 from this paper—will allow users to zoom in on dense plot networks, with direct links to the supporting literature for each point. This online database includes the reference for each plot, its precise coordinates, dominant species, associated biotic agents, and the year of mortality onset. To further update and rapidly increase the quantity and spatial representativeness of global tree mortality observations, ongoing online contributions from diverse observer groups, ranging from practicing foresters and field ecologists to remote-sensing scientists, can be integrated into the website in near-real-time via a user-friendly entry form.As the only global set of ground-truthed observations of drought- and heat-induced tree mortality, this database can immediately aid in validating remote-sensing technologies for eventual synoptic monitoring in near-real-time of tree mortality (which could then feedback into the database). Additional groups to benefit from the database are those interested in climate and physiological mechanisms of tree mortality, including the connected fates of all forest-dependent life5,19, with an aim toward improving the representation of climate-induced tree mortality representations in Earth system models. Related future research opportunities associated with this initial online database include:

    (1)

    Identify additional chronic (e.g., seasonal to decadal) and acute (daily to weekly) climatic signals of tree mortality, including thorough analyses that quantitatively consider antecedent and lagging factors, and duration and seasonality of drought stress;

    (2)

    Synthesize mortality observations from extensive forestry plot inventory networks, to increase spatial representation for the global climate signal of tree mortality, and to identify where during these events trees did not die-off;

    (3)

    Apply remote-sensing approaches to mortality detection using this spatially precise (and in some places plot-dense) database for ground-truthing, to determine the full spatial extent of known mortality events, and aid in ongoing monitoring of forest stress and tree mortality events in near-real-time;

    (4)

    Benchmark state-of-the-art Earth system models via hindcasting, to assess the accuracy of tree mortality event representation—and to do so across spatial resolutions (as in Supplementary Fig. S4) at which these planetary models operate;

    (5)

    Develop approaches to understand potentially unique features and drivers of hotter-drought mortality in tropical rainforests (differing climate signals, e.g., extended dry seasons, where warming/drying of typically moderate shoulder seasons may matter more than intensified single-month extremes), the single biome in which our global approach did not reveal a strong hotter-drought fingerprint;

    (6)

    Investigate how the severity of forest die-off events will respond to further warming; and

    (7)

    Invest in monitoring, documenting, and gathering mortality data for forests under-represented in this initial global database—especially in the extensive critical carbon sinks of boreal forests and tropical rainforests.

    Future challenges for Earth’s forests and societies under hotter droughtIn conclusion, our findings reveal the emergence of a global acceleration of lethal climate conditions, associated with recent forest mortality events, under further warming. Earth’s historical forests in particular face a challenging future, including dramatic changes in the extent, composition, age, and structure of these unique and irreplaceable forests, with planetary-scale consequences for biodiversity and the cycling of water and carbon. Our findings both corroborate earlier studies of hotter-drought driven mortality at local to regional scales8,13,19,20,24,36,38 and extend these findings by quantifying the commonality in climate anomalies across this planetary-scale observation-based database of tree die-off. Although forests often are invoked as an important part of the solution to the present global climate crisis, their role as reliable carbon sinks in mitigating climate change depends upon their ability to survive further warming10,22,52—which our global hotter-drought fingerprint identifies as an imminent threat. Our findings show that limiting warming to +2 °C over pre-industrial levels could reduce the frequency of these climate conditions associated with observed tree mortality events to less than half that predicted at +4 °C. Efforts to protect the world’s climate from excessive warming likely will be decisive in determining the future persistence of many of Earth’s forests. More

  • in

    DarkCideS 1.0, a global database for bats in karsts and caves

    The DarkCideS database was initially conceptualised and developed by KCT, JAG, and ACH as part of the “Global Bat Cave Vulnerability and Conservation Mapping Initiative” in 2014, and later with the “Mapping Karst Biodiversity in Yunnan” and the “Southeast Asian Atlas of Biodiversity” projects. The initiative includes developing tools and methods (e.g., the Bat Cave Vulnerability Index14) and synthesis (e.g., the global bat cave vulnerability assessment11) to identify conservation priorities and important bat caves in the tropics. Since 2019, the initiative has expanded and potential collaborators and contributors were invited through scientific conferences (Association for Tropical Biology and Conservation 2018, International Bat Research Conference 2019), social media platforms, and personal correspondences. At present, the database has 36 collaborators from twenty countries on six continents with expertise and research interests in bat conservation. Four main datasets for all known cave-dwelling bats were built for the DarkCideS database version 1.0.Datasets and compilation for species checklistThe first dataset contains taxonomic checklists for all extant cave-dwelling bats species extracted from the expert-based International Union for the Conservation Union (IUCN) Red List database version 2020-1 (Table 1). We screened and included all bat species that were reported to use, roost in, or aggregate in “Caves”, “Underground”, and “Karsts” habitats in any part of their life histories. We also scanned major publicly available bat cave databases from expeditions such as “Bats in China” (http://www.bio.bris.ac.uk/research/bats/China/) and UNEP-EUROBATS (https://www.eurobats.org/) for European bats24 for additional information and datasets. In addition, the first dataset contains species ecological traits, distribution range, and threatening processes (Table 1).Table 1 DarkCideS 1.0 includes key traits for all living cave-dwelling bat species (N = 679). General metadata for traits included in the current version of the database: habitat preference, ecological status, feeding groups, geographical range, island endemism, geopolitical endemism, distribution range, biogeographical breadth, generation length, body mass, and threatening process.Full size tableInformation per species was pooled from the IUCN Red List versions 2020-125. Species taxonomy was then curated and updated (e.g., synonyms or merged species) using the nomenclature from Simmons and Cirranello12. The “checklist for global cave-dwelling bats” derived from the IUCN Red List includes 679 species. Meanwhile, the DarkCideS 1.0 dataset contains occurrence data for 402 species from 16 families representing 59% of all cave-dwelling species11 (Fig. 2). We found a marginally significant relationship between the species richness and proportion of threatened species between the IUCN-based global cave-dwelling bat and DarkCideS datasets (Kendall’s τ b = 0.60, P = 0.07). The highest completeness of sampled species is in the Neotropics (67.38%) and Indomalayan region (66.08%), and the greatest gaps are in Austral-Oceania (40.28%). Highest endemism was recorded in Austral-Oceania (58.62%) (χ2 = 227.32, df = 5, P  More

  • in

    The genetic architecture underlying body-size traits plasticity over different temperatures and developmental stages in Caenorhabditis elegans

    Andersen EC, Bloom JS, Gerke JP, Kruglyak L (2014) A variant in the neuropeptide receptor npr-1 is a major determinant of Caenorhabditis elegans growth and physiology. PLoS Genet 10(2):e1004156. https://doi.org/10.1371/journal.pgen.1004156Andersen EC, Shimko TC, Crissman JR, Ghosh R, Bloom JS, Seidel HS et al. (2015) A powerful new quantitative genetics platform, combining caenorhabditis elegans high-throughput fitness assays with a large collection of recombinant strains. G3 5(5):911–920. https://doi.org/10.1534/g3.115.017178Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Angilletta MJ, Dunham AE (2003) The temperature-size rule in ectotherms: simple evolutionary explanations may not be general. Am Naturalist 162:3
    Google Scholar 
    Atkinson D (1994) Temperature and organism size–a biological law for ectotherms? Adv Ecol Res 25:1–58Azevedo RBR, French V, Partridge L (2002) Temperature modulates epidermal cell size in Drosophila melanogaster. J Insect Physiol 48:231–237CAS 
    Article 

    Google Scholar 
    Azevedo RBR, James AC, McCabe J, Partridge L (1998) Latitudinal variation of wing: thorax size and wing-aspect ration in Drosophila melanogaster. Evolution 52(5):1353–1362PubMed 

    Google Scholar 
    Bates D, Mächler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48. https://doi.org/10.18637/jss.v067.i01Beldade P, Mateus ARA, Keller RA (2011) Evolution and molecular mechanisms of adaptive developmental plasticity. Mol Ecol 20:1347–1363. https://doi.org/10.1111/j.1365-294X.2011.05016.xArticle 
    PubMed 

    Google Scholar 
    Bochdanovits Z, Van Der Klis H, De Jong G (2003) Covariation of larval gene expression and adult body size in natural populations of Drosophila melanogaster. Mol Biol Evolution 20(11):1760–1766. https://doi.org/10.1093/molbev/msg179CAS 
    Article 

    Google Scholar 
    Brenner S (1974) Genetics of the Caenorhabditis elegans. ChemBioChem 4(8):683–687. https://doi.org/10.1002/cbic.200300625CAS 
    Article 

    Google Scholar 
    Callahan HS, Dhanoolal N, Ungerer MC (2005) Plasticity genes and plasticity costs: a new approach using an Arabidopsis recombinant inbred population. N Phytologist 166(1):129–140. https://doi.org/10.1111/j.1469-8137.2005.01368.xCAS 
    Article 

    Google Scholar 
    Carta D, Villanova L, Costacurta S, Patelli A, Poli I, Vezzù S et al. (2011) Method for optimizing coating properties based on an evolutionary algorithm approach. Anal Chem 83(16):6373–6380. https://doi.org/10.1021/ac201337eCAS 
    Article 
    PubMed 

    Google Scholar 
    Czarnoleski M, Kramarz P, Malek D, Drobniak SM (2017) Genetic components in a thermal developmental plasticity of the beetle Tribolium castaneum. J Therm Biol 68:55–62. https://doi.org/10.1016/j.jtherbio.2017.01.015Article 
    PubMed 

    Google Scholar 
    Dupuis J, Siegmund D (1999) Statistical methods for mapping quantitative trait loci from a dense set of markers. Genetics 151(1):373–386CAS 
    Article 

    Google Scholar 
    Ellers J, Driessen G (2011) Genetic correlation between temperature-induced plasticity of life-history traits in a soil arthropod. Evolut Ecol 25:473–484. https://doi.org/10.1007/s10682-010-9414-1Article 

    Google Scholar 
    Fischer K, Bauerfeind SS, Fiedler K (2006) Temperature-mediated plasticity in egg and body size in egg size-selected lines of a butterfly. J Therm Biol 31:347–354. https://doi.org/10.1016/j.jtherbio.2006.01.006Article 

    Google Scholar 
    Gaertner BE, Phillips PC (2010) Caenorhabditis elegans as a platform for molecular quantitative genetics and the systems biology of natural variation. Genet Res 92(5–6):331–348. https://doi.org/10.1017/S0016672310000601CAS 
    Article 

    Google Scholar 
    Gao AW, Sterken MG, uit de Bos J, van Creij J, Kamble R, Snoek BL et al. (2018) Natural genetic variation in C. elegans identified genomic loci controlling metabolite levels. Genome Res 28(9):1296–1308. https://doi.org/10.1101/gr.232322.117CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ghosh SM, Testa ND, Shingleton AW (2013) Temperature-size rule is mediated by thermal plasticity of critical size in Drosophila melanogaster. Proc Biol Sci 280(1760):20130174. https://doi.org/10.1098/rspb.2013.0174Gutteling EW, Doroszuk A, Riksen JAG, Prokop Z, Reszka J, Kammenga JE (2007a) Environmental influence on the genetic correlations between life-history traits in Caenorhabditis elegans. Heredity 98:206–213. https://doi.org/10.1038/sj.hdy.6800929CAS 
    Article 
    PubMed 

    Google Scholar 
    Gutteling EW, Riksen JAG, Bakker J, Kammenga JE (2007b) Mapping phenotypic plasticity and genotype – environment interactions affecting life-history traits in Caenorhabditis elegans. Heredity 98:28–37. https://doi.org/10.1038/sj.hdy.6800894CAS 
    Article 
    PubMed 

    Google Scholar 
    Jovic K, Sterken MG, Grilli J, Bevers RPJ, Rodriguez M, Riksen JAG, et al. (2017) Temporal dynamics of gene expression in heat-stressed Caenorhabditis elegans. PLoS One 12:e0189445Kammenga JE, Doroszuk A, Riksen JAG, Hazendonk E, Spiridon L, Petrescu AJ et al. (2007) A Caenorhabditis elegans wild type defies the temperature-size rule owing to a single nucleotide polymorphism in tra-3. PLoS Genet 3(3):0358–0366. https://doi.org/10.1371/journal.pgen.0030034CAS 
    Article 

    Google Scholar 
    Kang MH, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ et al. (2008) Efficient control of population structure in model organism association mapping. Genetics 178(3):1709–1723. https://doi.org/10.1534/genetics.107.080101Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Klok CJ, Harrison JF (2013) The temperature size rule in Arthropods: independent of macro-environmental variables but size dependent. Integr Comp Biol 53(4):557–570. https://doi.org/10.1093/icb/ict075Article 
    PubMed 

    Google Scholar 
    Kruijer W, Boer MP, Malosetti M, Flood PJ, Engel B, Kooke R et al. (2014) Marker-based estimation of heritability in immortal populations. Genetics 199(2):379–398. https://doi.org/10.1534/genetics.114.167916Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lafuente E, Beldade P (2019) Genomics of developmental plasticity in animals. Front Genet 10:1–18. https://doi.org/10.3389/fgene.2019.00720CAS 
    Article 

    Google Scholar 
    Lafuente E, Duneau D, Beldade P (2018) Genetic basis of thermal plasticity variation in Drosophila melanogaster body size. PLoS Genet 14(9):1–24. https://doi.org/10.1371/journal.pgen.1007686CAS 
    Article 

    Google Scholar 
    Li Y, Álvarez OA, Gutteling EW, Tijsterman M, Fu J, Riksen JAG et al. (2006) Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLoS Genet 2(12):2155–2161. https://doi.org/10.1371/journal.pgen.0020222CAS 
    Article 

    Google Scholar 
    Nagashima T, Ishiura S, Suo S (2017) Regulation of body size in Caenorhabditis elegans: effects of environmental factors and the nervous system. Int J Developmental Biol 61(6–7):367–374. https://doi.org/10.1387/ijdb.160352ssCAS 
    Article 

    Google Scholar 
    Nakad R, Snoek LB, Yang W, Ellendt S, Schneider F, Mohr TG et al. (2016) Contrasting invertebrate immune defense behaviors caused by a single gene, the Caenorhabditis elegans neuropeptide receptor gene npr-1. BMC Genomics 17(1):1–20. https://doi.org/10.1186/s12864-016-2603-8CAS 
    Article 

    Google Scholar 
    Norry FM, Loeschcke VR (2002) Longevity and resistance to cold stress in cold-stress selected lines and their controls in Drosophila melanogaster. J Evolut Biol 15:775–783Article 

    Google Scholar 
    Paaby AB, Rockman MV (2014) Cryptic genetic variation: evolution’ s hidden substrate. Nat Rev Genet 15(4):247–258. https://doi.org/10.1038/nrg3688CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peng IF, Berke BA, Zhu Y, Lee WH, Chen W, Wu CF (2007) Temperature-dependent developmental plasticity of drosophila neurons: cell-autonomous roles of membrane excitability, Ca2+ influx, and cAMP signaling. J Neurosci 27(46):12611–12622. https://doi.org/10.1523/JNEUROSCI.2179-07.2007CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petersen C, Dirksen P, Schulenburg H (2015) Why we need more ecology for genetic models such as C. elegans. Trends Genet 31(3):120–127. https://doi.org/10.1016/j.tig.2014.12.001CAS 
    Article 
    PubMed 

    Google Scholar 
    R Core Team (2021) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/Reddy KC, Andersen EC, Kruglyak L, Kim DH (2009) A polymorphism in npr-1 is a behavioral determinant of pathogen susceptibility in C. elegans. Science 323(5912):382–384. https://doi.org/10.1126/science.1166527CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rieseberg LH, Archer MA, Wayne RK (1999) Transgressive segregation, adaptation and speciation. Heredity 83:363–372Rockman MV, Skrovanek SM, Kruglyak L (2010) Selection at linked sites shapes. Science 330:372–376. https://doi.org/10.1126/science.1194208Rodriguez M, Snoek LB, Riksen JAG, Bevers RP, Kammenga JE (2012) Genetic variation for stress-response hormesis in C. elegans lifespan. Exp Gerontol 47(8):581–587. https://doi.org/10.1016/j.exger.2012.05.005CAS 
    Article 
    PubMed 

    Google Scholar 
    Saltz JB, Bell AM, Flint J, Gomulkiewicz R, Hughes KA, Keagy J (2018) Why does the magnitude of genotype-by-environment interaction vary? Ecol Evolution 8(12):6342–6353. https://doi.org/10.1002/ece3.4128Article 

    Google Scholar 
    Scheiner S (1993) Plasticity as a selectable trait: reply to via. Am Soc Naturalist 142(2):371–373Article 

    Google Scholar 
    Sgro C, Hoffmann A (2004) Genetic correlations, tradeoffs and environmental variation. Heredity 93:241–248. https://doi.org/10.1038/sj.hdy.6800532Snoek BL, Sterken MG, Bevers RPJ, Volkers RJM, van Hof A, Brenchley R, et al. (2017) Contribution of trans regulatory eQTL to cryptic genetic variation in C. elegans. BMC Genomics 18:500. https://doi.org/10.1186/s12864-017-3899-8Snoek BL, Volkers RJM, Nijveen H, Petersen C, Dirksen P, Sterken MG, et al. (2019) A multi-parent recombinant inbred line population of C. elegans allows identification of novel QTLs for complex life history traits. BMC Biol 17:24Snoek LB, Orbidans HE, Stastna JJ, Aartse A, Rodriguez M, Riksen JAG et al. (2014) Widespread genomic incompatibilities in Caenorhabditis elegans. G3: Genes, Genomes, Genet 4(10):1813–1823. https://doi.org/10.1534/g3.114.013151Article 

    Google Scholar 
    Snoek LB, Sterken MG, Hartanto M, van Zuilichem AJ, Kammenga JE, de Ridder D et al. (2020) WormQTL2: an interactive platform for systems genetics in Caenorhabditis elegans. Database 2020:baz149. https://doi.org/10.1093/database/baz149Steigenga MJ, Zwaan BJ, Brakefield PM, Fischer K (2005) The evolutionary genetics of egg size plasticity in a butterfly. J Evolut Biol 18:281–289. https://doi.org/10.1111/j.1420-9101.2004.00855.xCAS 
    Article 

    Google Scholar 
    Sterken MG, Bevers RPJ, Volkers RJM, Riksen JAG, Kammenga JE, Snoek BL (2020) Dissecting the eQTL micro-architecture in Caenorhabditis elegans. Front Genet 11(Nov):1–15. https://doi.org/10.3389/fgene.2020.501376CAS 
    Article 

    Google Scholar 
    Sterken MG, Plaat LVB, Van Der Riksen JAG, Rodriguez M, Schmid T, Hajnal A, et al. (2017) Ras/MAPK modifier loci revealed by eQTL in Caenorhabditis elegans. G3 (Bethesda) 7:3185–3193. https://doi.org/10.1534/g3.117.1120Sterken MG, Snoek LB, Kammenga JE, Andersen EC (2015) The laboratory domestication of Caenorhabditis elegans. Trends Genet 31(5):224–231. https://doi.org/10.1016/j.tig.2015.02.009CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Têtard-jones C, Kertesz M, Preziosi R (2011) Quantitative trait loci mapping of phenotypic plasticity and genotype-environment interactions in plant and insect performance. Philos Trans R Soc B: Biol Sci 366:1569Article 

    Google Scholar 
    Thompson OA, Snoek LB, Nijveen H, Sterken MG, Volkers RJM, Brenchley R et al. (2015) Remarkably divergent regions punctuate the genome assembly of the Caenorhabditis elegans Hawaiian strain CB4856. Genetics 200(3):975–989. https://doi.org/10.1534/genetics.115.175950CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Voorhies WA (1996) Bergmann size clines: a simple explanation for their occurrence in ectotherms. Evolution 50(3):1259–1264. https://doi.org/10.1111/j.1558-5646.1996.tb02366.xArticle 
    PubMed 

    Google Scholar 
    Via S, Gomulkiewicz R, de Jong G, Scheiner SM, Schlichting CD, van Tienderen PH (1995) Adaptive phenotypic plasticity: consensus and controversy. Trends Ecol Evolution 10:5Article 

    Google Scholar 
    Viñuela A, Snoek LB, Riksen JAG, Kammenga JE (2010) Genome-wide gene expression regulation as a function of genotype and age in C. elegans. Genome Res 20(7):929–937. https://doi.org/10.1101/gr.102160.109CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viñuela A, Snoek LB, Riksen JAG, Kammenga JE (2011) Gene expression modifications by temperature-toxicants interactions in Caenorhabditis elegans. PLoS One 6(9):e24676. https://doi.org/10.1371/journal.pone.0024676Wickham H (2011) Ggplot2. Wiley Interdiscip Rev: Computational Stat 3(2):180–185. https://doi.org/10.1002/wics.147Article 

    Google Scholar 
    Wickham H, Averick M, Bryan J, Chang W, McGowan L, François R et al. (2019) Welcome to the Tidyverse. J Open Source Softw 4(43):1686. https://doi.org/10.21105/joss.01686Article 

    Google Scholar  More

  • in

    Special issue: Fundamentals and applications of carbohydrate polymers

    Isogai A. TEMPO-catalyzed oxidation of polysaccharides. Polym J. https://doi.org/10.1038/s41428-021-00580-1.Kadokawa J-I. Glucan phosphorylase-catalyzed enzymatic synthesis of unnatural oligosaccharides and polysaccharides using nonnative substrates. Polym J. https://doi.org/10.1038/s41428-021-00584-x.Zhong C, Nidetzky B. Precision synthesis of reducing-end thiol-modified cellulose enabled by enzyme selection. Polym J. https://doi.org/10.1038/s41428-021-00599-4.Sakurai Y, Sawada T, Serizawa T. Phosphorylase-catalyzed synthesis and self-assembled structures of cellulose oligomers in the presence of protein denaturants. Polym J. https://doi.org/10.1038/s41428-021-00592-x.Sato T, Yang J, Terao K Micellar structure of hydrophobically modified polysaccharides in aqueous solution. Polym J. https://doi.org/10.1038/s41428-021-00561-4.Chen H, Liu N, He F, Liu Q, Xu X. Specific β-glucans in chain conformations and their biological functions. Polym J. https://doi.org/10.1038/s41428-021-00587-8.Li H, Mumtaz M, Isono T, Satoh T, Chen W-C, Borsali R. Self-assembly of carbohydrate-based block copolymer systems: glyconanoparticles and highly nanostructured thin films. Polym J. https://doi.org/10.1038/s41428-021-00604-w.Kinose Y, Sakakibara K, Tsuji Y. Conformational characteristics of regioselectively PEG/PS-grafted cellulosic bottlebrushes in solution: cross-sectional structure and main-chain stiffness. Polym J. https://doi.org/10.1038/s41428-021-00594-9.Kar H, Sun J, Clewett CFM, Thongsai N, Paoprasert P, Dwyer JH, et al. Uniform amphiphilic cellulose nanocrystal films. Polym J. https://doi.org/10.1038/s41428-021-00611-x.Vadanan SV, Basu A, Lim S. Bacterial cellulose production, functionalization and development of hybrid materials with synthetic biology. Polym J. https://doi.org/10.1038/s41428-021-00606-8.Kitagishi H, Mao Q. Capture of carbon monoxide using a heme protein model: from biomimetic chemistry of heme proteins to physiological and therapeutic applications. Polym J. https://doi.org/10.1038/s41428-021-00591-y.Arai T, Aiki Y, Sato T. Accelerated transgene expression of pDNA/polysaccharide complexes by solid-phase reverse transfection and analysis of the cell transfection mechanism. Polym J. https://doi.org/10.1038/s41428-021-00603-x.Sumiya K, Izumi H, Matsunaga T, Tanaka M, Sakurai K. Delivery of therapeutic oligonucleotides targeting Dectin-1 using quantized complexes. Polym J. https://doi.org/10.1038/s41428-021-00595-8.Takada K, Komuro A, Ali MA, Singh M, Okajima M, Matsumura K, et al. Cell-adhesive gels made of sacran/collagen complexes. Polym J. https://doi.org/10.1038/s41428-021-00593-w.Higaki Y, Takahara A. Structure and properties of polysaccharide/imogolite hybrids. Polym J. https://doi.org/10.1038/s41428-021-00588-7.Tanabe K, Izawa H, Ifuku S. Preparation and recycling property of nanofiber-reinforced polystyrene molded product using the emulsion-forming ability of chitin nanofibers. Polym J. https://doi.org/10.1038/s41428-021-00586-9.Zheng C, Wang J, Jiang H, Ma Y, Shao Z. Green synthesis of polyacrylamide/polyanionic cellulose hydrogels composited with Zr-based coordination polymer and their enhanced mechanical and adsorptive properties. Polym J. https://doi.org/10.1038/s41428-021-00590-z.Sagawa T, Oishi M, Yataka Y, Sato R, Iijima K, Hashizume M. Control of molecular permeability of polysaccharides composite films utilizing molecular imprinting approach. Polym J. https://doi.org/10.1038/s41428-021-00605-9.Khoerunnisa F, Sihombing M, Nurhayati M, Dara F, Triadi HA, Nasir M, et al. Poly(ether sulfone)-based ultrafiltration membranes with enhanced permeability and antifouling properties by employing chitosan/ammonium chloride. Polym J. https://doi.org/10.1038/s41428-021-00607-7.Suzuki S, Togo A, Iwata T. Dry-jet wet spinning of β-1,3-glucan and α-1,3-glucan. Polym J. https://doi.org/10.1038/s41428-021-00573-0.Venanzi M, Kimura S. Special issue: peptide materials. Polym J. 2013;45:467–467.CAS 
    Article 

    Google Scholar 
    Serizawa T. Special issue: biorelated polymers and materials. Polym J. 2014;46:435–435.CAS 
    Article 

    Google Scholar 
    Ikeda M, Kuzuya K, Matsusaki M, Tanaka K. Special issue: biofunctional gels. Polym J. 2020;52:821–821.CAS 
    Article 

    Google Scholar  More

  • in

    Influence of infrastructure, ecology, and underpass-dimensions on multi-year use of Standard Gauge Railway underpasses by mammals in Tsavo, Kenya

    Polyzos, S. & Tsiotas, D. The contribution of transport infrastructures to the economic and regional development: A review of the conceptual framework. Theor. Empir. Res. Urban Manag. 15, 5–23 (2020).
    Google Scholar 
    Ledec, G. & Posas, P. J. Biodiversity conservation in road projects: Lessons from World Bank experience in Latin America. Transp. Res. Rec. 1819, 198–202 (2003).Article 

    Google Scholar 
    Hughes, A. C. Understanding and minimizing environmental impacts of the Belt and Road Initiative. Conserv. Biol. 33, 883–894 (2019).Article 

    Google Scholar 
    Seiler, A. in COST 341—habitat fragmentation due to transportation infrastructure: the European review (eds Trocmé, M. et al.) Ch. 3, 31–50 (Office for Official Publications of the European Communities, 2002).Marcantonio, M., Rocchini, D., Geri, F., Bacaro, G. & Amici, V. Biodiversity, roads, & landscape fragmentation: Two Mediterranean cases. Appl. Geogr. 42, 63–72. https://doi.org/10.1016/j.apgeog.2013.05.001 (2013).Article 

    Google Scholar 
    Plămădeal, V. & Slobodeaniuc, S. Negative impact of railway transport on the ambient environment. J. Eng. Sci. https://doi.org/10.5281/zenodo.2640044 (2019).Lala, F. et al. Wildlife roadkill in the Tsavo Ecosystem, Kenya: Identifying hotspots, potential drivers, and affected species. Heliyon 7, e06364 (2021).Article 

    Google Scholar 
    Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232. https://doi.org/10.1038/nature13717 (2014).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Laurance, W. F., Goosem, M. & Laurance, S. G. W. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol. 24, 659–669. https://doi.org/10.1016/j.tree.2009.06.009 (2009).Article 
    PubMed 

    Google Scholar 
    Clair, C. C. S., Whittington, J., Forshner, A., Gangadharan, A. & Laskin, D. N. Railway mortality for several mammal species increases with train speed, proximity to water, and track curvature. Sci. Rep. 10, 20476. https://doi.org/10.1038/s41598-020-77321-6 (2020).CAS 
    Article 

    Google Scholar 
    Kušta, T., Ježek, M. & Keken, Z. Mortality of large mammals on railway tracks. Sci. Agric. Bohem. 42, 12–18 (2011).
    Google Scholar 
    Dorsey, B. & Olsson, M. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 26, 219–227 (Wiley, 2015).Barrientos, R. & Borda-de-Água, L. Railway Ecology (eds Borda-de-Água, L. et al.) Ch. 4, 43–64 (Springer Open, 2017).Lucas, P. S., de Carvalho, R. G. & Grilo, C. Railway Ecology Ch. Chapter 6, 81–99 (2017).Barrientos, R., Ascensão, F., Beja, P., Pereira, H. M. & Borda-de-Água, L. Railway ecology vs. road ecology: Similarities and differences. Eur. J. Wildl. Res. 65, 1–9. https://doi.org/10.1007/s10344-018-1248-0 (2019).Article 

    Google Scholar 
    Jasińska, K. D. et al. Linking habitat composition, local population densities and traffic characteristics to spatial patterns of ungulate-train collisions. J. Appl. Ecol. 56, 2630–2640. https://doi.org/10.1111/1365-2664.13495 (2019).Article 

    Google Scholar 
    Smith, D. J., Ree, R. v. d. & Rosell, C. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 21, 172–183 (Wiley, 2015).Gilhooly, P. S., Nielsen, S. E., Whittington, J. & Clair, C. C. S. Wildlife mortality on roads and railways following highway mitigation. Ecosphere 10, e02597 (2019).Article 

    Google Scholar 
    Clevenger, A. P., Chruszcz, B. & Gunson, K. E. Highway mitigation fencing reduces wildlife-vehicle collisions. Wildl. Soc. Bull. 29, 646–653 (2001).
    Google Scholar 
    Simpson, N. O. et al. Overpasses and underpasses: Effectiveness of crossing structures for migratory ungulates. J. Wildl. Manag. 80, 1370–1378. https://doi.org/10.1002/jwmg.21132 (2016).Article 

    Google Scholar 
    Seidler, R. G., Green, D. S. & Beckmann, J. P. Highways, crossing structures and risk: Behaviors of Greater Yellowstone pronghorn elucidate efficacy of road mitigation. Glob. Ecol. Conserv. 15, e00416. https://doi.org/10.1016/j.gecco.2018.e00416 (2018).Article 

    Google Scholar 
    Huijser, M. P. et al. Effectiveness of short sections of wildlife fencing and crossing structures along highways in reducing wildlife–vehicle collisions and providing safe crossing opportunities for large mammals. Biol. Conserv. 197, 61–68. https://doi.org/10.1016/j.biocon.2016.02.002 (2016).Article 

    Google Scholar 
    Olsson, M. P. O. & Widen, P. Effects of highway fencing and wildlife crossings on moose Alces alces movements and space use in southwestern Sweden. Wildl. Biol. 14, 111–117 (2008).Article 

    Google Scholar 
    Donaldson, B. Use of highway underpasses by large mammals and other wildlife in Virginia: Factors influencing their effectiveness. Transp. Res. Rec. 157–164, 2007. https://doi.org/10.3141/2011-17 (2011).Article 

    Google Scholar 
    Foster, M. L. & Humphrey, S. R. Use of highway underpasses by Florida panthers and other wildlife. Wildl. Soc. Bull. 23, 95–100 (1995).
    Google Scholar 
    Caldwell, M. R. & Klip, J. M. K. Wildlife interactions within highway underpasses. J. Wildl. Manag. 84, 227–236. https://doi.org/10.1002/jwmg.21801 (2019).Article 

    Google Scholar 
    Clevenger, A. P. & Waltho, N. Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. Biol. Conserv. 121, 453–464. https://doi.org/10.1016/j.biocon.2004.04.025 (2005).Article 

    Google Scholar 
    Mcdonald, W. & Clair, C. C. S. Elements that promote highway crossing structure use by small mammals in Banff National Park. J. Appl. Ecol. 41, 82–93 (2004).Article 

    Google Scholar 
    Mata Estacio, C., Hervás Bengoechea, I., Herranz Barrera, J., Suárez Cardona, F. & Arrazola, J. E. M. International Conference on Ecology and Transportation (ICOET 2003) Federal Highway Administration.Sawyer, H., Lebeau, C. & Hart, T. Mitigating roadway impacts to migratory mule deer—A case study with underpasses and continuous fencing. Wildl. Soc. Bull. 36, 492–498. https://doi.org/10.1002/wsb.166 (2012).Article 

    Google Scholar 
    Rodriguez, A., Crema, G. & Delibes, M. Use of non-wildlife passages across a high speed railway by terrestrial vertebrates. J. Appl. Ecol. 33, 1527–1540 (1996).Article 

    Google Scholar 
    Yanes, M., Velasco, J. M. & Sufirez, F. Permeability of roads and railways to vertebrates: The importance of culverts. Biol. Conserv. 71, 217–222 (1995).Article 

    Google Scholar 
    Rodriguez, A., Crema, G. & Delibes, M. Factors affecting crossing of red foxes and wildcats through non-wildlife passages across a high-speed railway. Ecography 2, 287–294 (1997).Article 

    Google Scholar 
    Weeks, S. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 43, 353–356 (Wiley, 2015).Okita-Ouma, B. et al. Effectiveness of wildlife underpasses and culverts in connecting elephant habitats: A case study of new railway through Kenya’s Tsavo National Parks. Afr. J. Ecol. 59(3), 624–640 (2021).Article 

    Google Scholar 
    Collinson, W., Davies-Mostert, H., Roxburgh, L. & van der Ree, R. Status of road ecology research in Africa: Do we understand the impacts of roads, and how to successfully mitigate them?. Front. Ecol. Evol. 7, 479. https://doi.org/10.3389/fevo.2019.00479 (2019).ADS 
    Article 

    Google Scholar 
    Wang, Y., Guan, L., Chen, J. & Kong, Y. Influences on mammals frequency of use of small bridges and culverts along the Qinghai-Tibet railway, China. Ecol. Res. 33, 879–887. https://doi.org/10.1007/s11284-018-1578-0 (2018).Article 

    Google Scholar 
    Ng, S. J., Dole, J. W., Sauvajot, R. M., Riley, S. P. D. & Valone, T. J. Use of highway undercrossings by wildlife in southern California. Biol. Conserv. 115, 499–507. https://doi.org/10.1016/s0006-3207(03)00166-6 (2004).Article 

    Google Scholar 
    Mata, C., Hervas, I., Herranz, J., Suarez, F. & Malo, J. E. Are motorway wildlife passages worth building? Vertebrate use of road-crossing structures on a Spanish motorway. J. Environ. Manag. 88, 407–415. https://doi.org/10.1016/j.jenvman.2007.03.014 (2008).CAS 
    Article 

    Google Scholar 
    Mata, C., Herranz, J. & Malo, J. E. Attraction and avoidance between predators and prey at wildlife crossings on roads. Diversity 12, 166. https://doi.org/10.3390/d12040166 (2020).Article 

    Google Scholar 
    Stewart, L., Russell, B., Zelig, E., Patel, G. & Whitney, K. S. Wildlife crossing design influences effectiveness for small and large mammals in Banff National Park. Case Stud. Environ. 4, 1231752. https://doi.org/10.1525/cse.2020.1231752 (2020).Article 

    Google Scholar 
    Mysłajek, R. W., Nowak, S., Kurek, K., Tołkacz, K. & Gewartowska, O. Utilisation of a wide underpass by mammals on an expressway in the Western Carpathians, S Poland. Folia Zool. 65, 225–232. https://doi.org/10.25225/fozo.v65.i3.a8.2016 (2016).Article 

    Google Scholar 
    Clevenger, A. P. & Waltho, N. factors influencing the effectiveness of wildlife underpasses in Banff National Park, Alberta, Canada. Conserv. Biol. 14, 47–56 (2000).Article 

    Google Scholar 
    Laurance, W. F., Sloan, S., Weng, L. & Sayer, J. A. Estimating the environmental costs of Africa’s massive “development corridors”. Curr. Biol. 25, 3202–3208. https://doi.org/10.1016/j.cub.2015.10.046 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    van der Ree, R., Gagnon, J. W. & Smith, D. J. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 20, 159–171 (Wiley, 2015).Ascensão, F. & Mira, A. Factors affecting culvert use by vertebrates along two stretches of road in southern Portugal. Ecol. Res. 22, 57–66. https://doi.org/10.1007/s11284-006-0004-1 (2006).Article 

    Google Scholar 
    Hepenstrick, D., Thiel, D., Holderegger, R. & Gugerli, F. Genetic discontinuities in roe deer (Capreolus capreolus) coincide with fenced transportation infrastructure. Basic Appl. Ecol. 13, 631–638. https://doi.org/10.1016/j.baae.2012.08.009 (2012).Article 

    Google Scholar 
    Wilson, R. E., Farley, S. D., McDonough, T. J., Talbot, S. L. & Barboza, P. S. A genetic discontinuity in moose (Alces alces) in Alaska corresponds with fenced transportation infrastructure. Conserv. Genet. 16, 791–800. https://doi.org/10.1007/s10592-015-0700-x (2015).Article 

    Google Scholar 
    Jaeger, J. A. G. & Fahrig, L. Effects of road fencing on population persistence. Conserv. Biol. 18, 1651–1657 (2004).Article 

    Google Scholar 
    Ngene, S., Lala, F., Nzisa, M., Kimitei, K., Mukeka, J., Kiambi, S., Davidson, Z., Bakari, S., Lyimo, E. & Khayale, C. (eds Arusha Kenya Wildlife Service (KWS) and Tanzania Wildlife Research Institute (TAWIRI)) (2017).World Resources Institute, Department of Resource Surveys and Remote Sensing Ministry of Environment and Natural Resources Kenya, Central Bureau of Statistics Ministry of Planning and National Development Kenya & International Livestock Research Institute. Nature’s Benefits in Kenya, An Atlas of Ecosystems and Human Well-Being (World Resources Institute, 2007).Wijngaarden, W. V. Elephants, trees, grass, grazers: relationships between climate, soils, vegetation, and large herbivores in a semi-arid savanna ecosystem (Tsavo, Kenya) Doctor of Philosophy thesis, Landbouwhogeschool te Wageningen (1985).Stuart, C. Field Guide to Tracks & Signs of Southern, Central & East African Wildlife (Penguin Random House South Africa, 2013).
    Google Scholar 
    Murie, O. J. & Elbroch, M. A Field Guide to Animal Tracks Vol. 3 (Houghton Mifflin Harcourt, 2005).
    Google Scholar 
    Kerley, G. I. H., Pressey, R. L., Cowling, R. M., Boshoff, A. F. & Sims-Castley, R. Options for the conservation of large and medium-sized mammals in the Cape Floristic Region hotspot, South Africa. Biol. Conserv. 112, 169–190. https://doi.org/10.1016/S0006-3207(02)00426-3 (2003).Article 

    Google Scholar 
    R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2021).Hayward, M. W., Hayward, G. J., Tambling, C. J. & Kerley, G. I. Do lions Panthera leo actively select prey or do prey preferences simply reflect chance responses via evolutionary adaptations to optimal foraging?. PLoS ONE 6, e23607 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    De Boer, W. F. et al. Spatial distribution of lion kills determined by the water dependency of prey species. J. Mammal. 91, 1280–1286 (2010).Article 

    Google Scholar 
    Hayward, M. W. & Kerley, G. I. H. Prey preferences of the lion (Panthera leo). J. Zool. 267, 309–322. https://doi.org/10.1017/S0952836905007508 (2005).Article 

    Google Scholar 
    Davidson, Z. et al. Seasonal diet and prey preference of the African lion in a waterhole-driven semi-arid Savanna. PLoS ONE 8, e55182. https://doi.org/10.1371/journal.pone.0055182 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, B. D., Kasiki, S. M., Selempo, E. & Kays, R. W. Livestock predation by lions (Panthera leo) and other carnivores on ranches neighboring Tsavo National ParkS, Kenya. Biol. Conserv. 119, 507–516. https://doi.org/10.1016/j.biocon.2004.01.013 (2004).Article 

    Google Scholar 
    Hayward, M. W. et al. Prey preferences of the leopard (Panthera pardus). J. Zool. 270, 298–313. https://doi.org/10.1111/j.1469-7998.2006.00139.x (2006).Article 

    Google Scholar 
    Ogara, W. O. et al. Determination of carnivores prey base by scat analysis in Samburu community group ranches in Kenya. Afr. J. Environ. Sci. Technol. 4, 540–546 (2010).
    Google Scholar 
    Hayward, M. W. Prey preferences of the spotted hyaena (Crocuta crocuta) and degree of dietary overlap with the lion (Panthera leo). J. Zool. 270, 606–614. https://doi.org/10.1111/j.1469-7998.2006.00183.x (2006).Article 

    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 

    Google Scholar 
    Barton, K. & Barton, M. K. Package ‘MuMIn’. Version 1, 18 (2015).
    Google Scholar 
    Williams, E. M. Giraffe stature and neck elongation: Vigilance as an evolutionary mechanism. Biology 5, 35 (2016).Article 

    Google Scholar 
    Shorrocks, B. The Giraffe: Biology, Ecology, Evolution and Behaviour (Wiley, 2016).Book 

    Google Scholar 
    Mata, C., Bencini, R., Chambers, B. K. & Malo, J. E. Handbook of Road Ecology (eds Smith, D. J. & van der Ree, C. G. R.) Ch. 23, 190–197 (Wiley, 2015).Harris, I. M., Mills, H. R. & Bencini, R. Multiple individual southern brown bandicoots (Isoodonobesulus fusciventer) and foxes (Vulpes vulpes) use underpasses installed at a new highway in Perth, Western Australia. Wildl. Res. 37, 127–133 (2010).Article 

    Google Scholar 
    Fehlmann, G. et al. Extreme behavioural shifts by baboons exploiting risky, resource-rich, human-modified environments. Sci. Rep. 7, 1–8 (2017).CAS 
    Article 

    Google Scholar 
    McLennan, M. R., Spagnoletti, N. & Hockings, K. J. The implications of primate behavioral flexibility for sustainable human-primate coexistence in anthropogenic habitats. Int. J. Primatol. 38, 105–121. https://doi.org/10.1007/s10764-017-9962-0 (2017).Article 

    Google Scholar 
    Riley, E. P. Flexibility in diet and activity patterns of Macaca tonkeana in response to anthropogenic habitat alteration. Int. J. Primatol. 28, 107–133. https://doi.org/10.1007/s10764-006-9104-6 (2007).Article 

    Google Scholar 
    Johnson-Ulrich, L., Yirga, G., Strong, R. L. & Holekamp, K. E. The effect of urbanization on innovation in spotted hyenas. Anim. Cogn. 24, 1027–1038. https://doi.org/10.1007/s10071-021-01494-4 (2021).Article 
    PubMed 

    Google Scholar 
    Holekamp, K. E. & Dloniak, S. M. Intraspecific variation in the behavioral ecology of a tropical carnivore, the spotted hyena. Adv. Study Behav. 42, 189–229 (2010).Article 

    Google Scholar 
    Devens, C. H. et al. Estimating leopard density across the highly modified human-dominated landscape of the Western Cape, South Africa. Oryx 55, 34–45. https://doi.org/10.1017/S0030605318001473 (2021).Article 

    Google Scholar 
    Van Cleave, E. K. et al. Diel patterns of movement activity and habitat use by leopards (Panthera pardus pardus) living in a human-dominated landscape in central Kenya. Biol. Conserv. 226, 224–237. https://doi.org/10.1016/j.biocon.2018.08.003 (2018).Article 

    Google Scholar 
    Odden, M., Athreya, V., Rattan, S. & Linnell, J. D. C. Adaptable neighbours: Movement patterns of GPS-collared leopards in human dominated landscapes in India. PLoS ONE 9, e112044. https://doi.org/10.1371/journal.pone.0112044 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Athreya, V., Odden, M., Linnell, J. D. C., Krishnaswamy, J. & Karanth, K. U. A cat among the dogs: Leopard Panthera pardus diet in a human-dominated landscape in western Maharashtra, India. Oryx 50, 156–162. https://doi.org/10.1017/S0030605314000106 (2016).Article 

    Google Scholar 
    Suraci, J. P. et al. Behavior-specific habitat selection by African lions may promote their persistence in a human-dominated landscape. Ecology 100, e02644. https://doi.org/10.1002/ecy.2644 (2019).Article 
    PubMed 

    Google Scholar 
    Daniels, S. E., Fanelli, R. E., Gilbert, A. & Benson-Amram, S. Behavioral flexibility of a generalist carnivore. Anim. Cogn. 22, 387–396 (2019).Article 

    Google Scholar 
    Murray, M. H. & St. Clair, C. C. Individual flexibility in nocturnal activity reduces risk of road mortality for an urban carnivore. Behav. Ecol. 26, 1520–1527. https://doi.org/10.1093/beheco/arv102 (2015).Article 

    Google Scholar 
    Galanti, V., Preatoni, D., Martinoli, A., Wauter, L. A. & Tosi, G. Space and habitat use of the African elephant in the Tarangire-Manyara ecosystem, Tanzania: Implications for conservation. Mamm. Biol. 71, 99–114. https://doi.org/10.1016/j.mambio.2005.10.001 (2006).Article 

    Google Scholar 
    Douglas-Hamilton, I., Krink, T. & Vollrath, F. Movements and corridors of African elephants in relation to protected areas. Naturwissenschaften 92, 158–163. https://doi.org/10.1007/s00114-004-0606-9 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Coe, P. K. et al. Identifying migration corridors of mule deer threatened by highway development. Wildl. Soc. Bull. 39, 256–267. https://doi.org/10.1002/wsb.544 (2015).Article 

    Google Scholar 
    Spinage, C. A. Territoriality and social organization of the Uganda defassa waterbuck Kobus defassa ugandae. J. Zool. Lond. 159, 329–361 (1969).Article 

    Google Scholar 
    Mizutani, F. & Jewell, P. A. Home-range and movements of leopards (Panthera pardus) on a livestock ranch in Kenya. J. Zool. Lond. 244, 269–286 (1998).Article 

    Google Scholar 
    Riley, S. P. et al. A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol. Ecol. 15, 1733–1741. https://doi.org/10.1111/j.1365-294X.2006.02907.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sells, S. N. & Mitchell, M. S. The economics of territory selection. Ecol. Model. 438, 109329. https://doi.org/10.1016/j.ecolmodel.2020.109329 (2020).Article 

    Google Scholar 
    Valls-Fox, H. et al. Water and cattle shape habitat selection by wild herbivores at the edge of a protected area. Anim. Conserv. 21, 365–375. https://doi.org/10.1111/acv.12403 (2018).Article 

    Google Scholar 
    Hibert, F. et al. Spatial avoidance of invading pastoral cattle by wild ungulates: Insights from using point process statistics. Biodivers. Conserv. 19, 2003–2024 (2010).Article 

    Google Scholar 
    Stewart, K. M., Bowyer, R. T., Kie, J. G., Cimon, N. J. & Johnson, B. K. Temporospatial distributions of elk, mule deer, and cattle: Resource partitioning and competitive displacement. J. Mammal. 83, 229–244. https://doi.org/10.1644/1545-1542(2002)083%3c0229:Tdoemd%3e2.0.Co;2 (2002).Article 

    Google Scholar 
    Leeuw, J. D. et al. Distribution and diversity of wildlife in northern Kenya in relation to livestock and permanent water points. Biol. Conserv. 100, 297–306 (2001).Article 

    Google Scholar 
    Donaldson, B. Use of highway underpasses by large mammals and other wildlife in Virginia. Transp. Res. Rec 157–164, 2007. https://doi.org/10.3141/2011-17 (2011).Article 

    Google Scholar 
    Dodd, N. L., Gagnon, J. W., Manzo, A. L. & Schweinsburg, R. E. Video surveillance to assess highway underpass use by elk in Arizona. J. Wildl. Manag. 71, 637–645. https://doi.org/10.2193/2006-340 (2007).Article 

    Google Scholar 
    Gordon, K. M. & Anderson, S. H. International Conference on Ecology and Transportation https://escholarship.org/uc/item/2wv1v6dz.Bond, A. R. & Jones, D. N. Temporal trends in use of fauna-friendly underpasses and overpasses. Wildl. Res. 35, 103–112. https://doi.org/10.1071/WR07027 (2008).Article 

    Google Scholar 
    Altmann, J., Schoeller, D., Altmann, S. A., Muruthi, P. & Sapolsky, R. M. Body size and fatness of free-living baboons reflect food availability and activity levels. Am. J. Primatol. 30, 149–161. https://doi.org/10.1002/ajp.1350300207 (1993).Article 
    PubMed 

    Google Scholar 
    Kiffner, C. et al. Road-based line distance surveys overestimate densities of olive baboons. PLoS ONE 17, e0263314. https://doi.org/10.1371/journal.pone.0263314 (2022).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Strandburg-Peshkin, A., Farine, D. R., Crofoot, M. C. & Couzin, I. D. Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement. Elife 6, e19505. https://doi.org/10.7554/eLife.19505 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bohrer, G., Beck, P. S., Ngene, S. M., Skidmore, A. K. & Douglas-Hamilton, I. Elephant movement closely tracks precipitation driven vegetation dynamics in a Kenyan forest-savanna landscape. Mov. Ecol. 2, 2 (2014).Article 

    Google Scholar 
    Merkle, J. A. et al. Large herbivores surf waves of green-up during spring. Proc. Biol. Sci. 283, 20160456. https://doi.org/10.1098/rspb.2016.0456 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Middleton, A. D. et al. Green-wave surfing increases fat gain in a migratory ungulate. Oikos 127, 1060–1068. https://doi.org/10.1111/oik.05227 (2018).Article 

    Google Scholar 
    Bartlam-Brooks, H. L. A., Beck, P. S. A., Bohrer, G. & Harris, S. In search of greener pastures: Using satellite images to predict the effects of environmental change on zebra migration. J. Geophys. Res. Biogeosci. 118, 1427–1437. https://doi.org/10.1002/jgrg.20096 (2013).Article 

    Google Scholar 
    Bischof, R. et al. A migratory northern ungulate in the pursuit of spring: Jumping or surfing the green wave?. Am. Nat. 180, 407–424. https://doi.org/10.1086/667590 (2012).Article 
    PubMed 

    Google Scholar 
    Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 20, 741–750. https://doi.org/10.1111/ele.12772 (2017).Article 
    PubMed 

    Google Scholar 
    Mandinyenya, B., Monks, N., Mundy, P. J., Sebata, A. & Chirima, A. Habitat choices of African buffalo (Syncerus caffer) and plains zebra (Equus quagga) in a heterogeneous protected area. Wildl. Res. 47, 106–113. https://doi.org/10.1071/WR18201 (2020).Article 

    Google Scholar  More