More stories

  • in

    The great acceleration of plant phenological shifts

    Kaplan, J. O., Krumhardt, K. M. & Zimmermann, N. Quat. Sci. Rev. 28, 3016–3034 (2009).Article 

    Google Scholar 
    Zheng, Z. et al. Proc. Natl Acad. Sci. USA 118, e2022210118 (2021).CAS 
    Article 

    Google Scholar 
    Lewis, S. L. & Maslin, M. A. Nature 519, 171–180 (2015).CAS 
    Article 

    Google Scholar 
    Steffen, W. et al. Anthr. Rev. 2, 81–98 (2015).
    Google Scholar 
    Ripple, W. J. et al. BioScience 70, 8–12 (2020).
    Google Scholar 
    Cohen, J. M., Lajeunesse, M. J. & Rohr, J. R. Nat. Clim. Change 8, 224–228 (2018).Article 

    Google Scholar 
    Vitasse, Y. et al. Biol. Rev. 96, 1816–1835 (2021).Article 

    Google Scholar 
    Aono, Y. & Kazui, K. Int. J. Climatol. 28, 905–914 (2008).Article 

    Google Scholar 
    Sparks, T. H. & Carey, P. D. J. Ecol. 83, 321–329 (1995).Article 

    Google Scholar 
    Ge, Q. et al. J. Geophys. Res. Biogeosci. 119, 301–311 (2014).Article 

    Google Scholar 
    IPCC Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) (Cambridge Univ. Press, 2021).Post, E., Steinman, B. A. & Mann, M. E. Sci. Rep. 8, 3927 (2018).Article 

    Google Scholar 
    Primack, R. B. & Miller-Rushing, A. J. Bioscience 62, 170–181 (2012).Article 

    Google Scholar 
    Kharouba, H. M. et al. Proc. Natl Acad. Sci. USA 115, 5211–5216 (2018).CAS 
    Article 

    Google Scholar 
    Richardson, A. D. et al. Agric. For. Meteorol. 169, 156–173 (2013).Article 

    Google Scholar 
    Parker, D. E., Legg, T. P. & Folland, C. K. Int. J. Climatol. 12, 317–342 (1992).Article 

    Google Scholar  More

  • in

    System dynamics modeling of lake water management under climate change

    System dynamics methodThe SD method applies systemic processing to simulate complex non-linear dynamics and feedback. Systemic processing resorts to various tools to simulate complex system behavior and performance24. Systems evolve through states, which change with flows. An example of a state variable is water storage in the study of lakes. The SD method simulates changes in system states driven by flows and various feedbacks25.This work employs the SD method to simulate storage change in Lake Urmia in one historical period (1957–2005) and two future periods (2021–2050 and 2051–2080). The lake’s water volume is the state variable, which is governed by inflows (precipitation, surface water inflows, and groundwater inflows) and outflows (evaporation, leakage, and surface water outflows). The lake’s mass balance equation is expressed as:$$S_{t + 1} = intlimits_{t}^{t + 1} {[I_{s} – O_{s} ]ds + S_{t} }$$
    (1)
    where St+1 , St, Is, and Os denote the lake’s storage at time t + 1, the lake’s storage at time t, the inflow rate to the lake at time s (units of volume/time), and the outflow rate from the lake at time s (units of volume/time), respectively.The SD method employs the Euler and Runge Kutta methods for the solution of differential equations. The software STELLA, Vensim, Powersim, and Dynamo feature SD solvers26. This work applies the widely-used Vensim software27.Climate changeThe data sets needed for modeling Lake Urmia’s storage over the two future periods were generated after simulating the lake’s water balance during the historical period. HADCM3, a coupled atmosphere–ocean general circulation model’s (AOGCM) climate projections were used to generate precipitation and surface temperature projections over the future periods. The AOGCM data at coarse spatial scales were downscaled to the regional scale suitable for lake storage simulation. The commonly used downscaling methods are statistic and dynamic in nature28,29. This works applies the delta-change downscaling method, in which monthly temperature and precipitation differences between the future and historical are calculated by29:$$Delta T_{t} = overline{T}_{GCM,fut,t} – overline{T}_{GCM,hist,t}$$
    (2)
    $$Delta P_{t} = overline{P}_{GCM,fut,t} – overline{P}_{GCM,hist,t}$$
    (3)
    where ∆Tt denotes the difference in long-term average temperatures simulated by HADCM3 for the future ((overline{T}_{GCM,fut,t})) and historical ((overline{T}_{GCM,hist,t})) periods in month t (°C); ∆Pt represents the difference in long-term average precipitations simulated by HADCM3 for the future ((overline{P}_{GCM,fut,t})) and historical ((overline{P}_{GCM,hist,t})) periods in month t (mm). Then, ∆Tt and ∆Pt are applied to project the future downscaled data as follows29:$$T_{t} = T_{obs,t} + , Delta T_{t}$$
    (4)
    $$P_{t} = P_{obs,t} { + }Delta P_{t}$$
    (5)
    where Tobs,t, and Pobs,t denote respectively the observed temperature (°C) and precipitation (mm) in month t in the baseline period; and Tt and Pt are the downscaled temperature (°C) and precipitation (mm) in month t of the future period, respectively. Delta-change downscaling is a simple yet efficient option when it comes to spatial downscaling of climate change projections (e.g.30,31,32). The gist of this method is to replicate the changing patterns that are projected by the atmospheric ocean general circulation models (AOGCMs) to generate the climate change patterns of hydro-climatic variables on a regional scale. As such, one would simply compute the relative changes in the long-term variations of the variable that is projected by the models within the baseline and future timeframes. These relative changing patterns would be applied to the historical data to project the impact of climate change on a local scale.Rainfall-runoff modelingThe IHACRES (identification of unit hydrographs and component flows from rainfall, evapotranspiration and streamflow) model is herein applied to simulate runoff from precipitation. Ashofteh et al.33 implemented the IHACRES model to investigate the effects of climate change on reservoir performance in agricultural water supply. Ashofteh et al.34 evaluated the probability of flood occurrence in future periods with IHACRES.The IHACRES model includes a non-linear loss module and a linear unit hydrograph module. The non-linear loss module converts the observed rainfall into the effective rainfall, after which the linear unit hydrograph module converts the effective rainfall into the simulated streamflow35. Here, precipitation rk in time step k is converted to effective precipitation uk through the non-linear loss module employing a catchment wetness index sk:$$u_{k} = , s_{k} times , r_{k}$$
    (6)
    The effective precipitation is converted to the surface runoff in time step k with the linear unit hydrograph module. The parameters of this model can be set through a thorough grid numeric search and trial-and-error. Perhaps, one of the major advantages of the IHACRES model over other commonly-used rainfall-runoff models is its minimal input data requirement (i.e., air temperature and precipitation)31,35.The other alternative for hydrologic simulation is to use data-driven models. Here, the multilayer perceptron (MLP), a variety of the artificial neural network (ANN) method, was also used to simulate runoff. This model consists of an inlet layer, one or several middle (hidden) layer(s), and an output layer. All of the neurons of a layer are connected to the ones in the next layer, forming a network with complete connections. The primary parameters in modeling the neural network of MLP are: (1) the number of neurons in each layer, (2) the number of layers in the network, and (3) the forcing functions. A regular MLP neural network has three layers36. The first and the third layers are respectively the system inputs and outputs. The middle layer consists of neurons that perform calculations on the inputs. Choosing the number of layers in a neural network is made by trial and error37. From a hydrological simulation standpoint the main idea behind this model is to create a suitable artificial neural network that is capable of accurately converting a set of hydro-climatic variables such as precipitation and temperature as input data into streamflow values. It should be noted that, like most data-driven models, the process of opting for a proper neural network architecture (i.e., selecting the number of layers, number of neurons, and the forcing function) is, for the most part, a trial-and-error procedure.One must objectively evaluate the performance of the hydrological models in order to opt for the setting of a suitable parameter. The root mean square error (RMSE), coefficient of determination (R2), and mean absolute error (MAE) are herein employed to assess the performance of the rainfall-runoff model. They are respectively calculated as follows:$$RMSE = sqrt {frac{{sumlimits_{t = 1}^{N} {(x_{t} – y_{t} )^{2} } }}{N}}$$
    (7)
    $$R^{2} = left( {frac{{sumnolimits_{t = 1}^{N} {(x_{t} – overline{x} ).(y_{t} – overline{y} )} }}{{sqrt {sumnolimits_{t = 1}^{N} {(x_{t} – overline{x} )^{2} } } .sqrt {sumnolimits_{t = 1}^{N} {(y_{t} – overline{y} )^{2} } } }}} right)^{2}$$
    (8)
    $$MAE = frac{{sumnolimits_{t = 1}^{N} {left| {x_{t} – y_{t} } right|} }}{N}$$
    (9)
    where xt , yt, and N denote the simulated value in time step t; the observed value in time step t; and the number data values, respectively. Large errors have a disproportionately large effect on RMSE or MAE.Performance criteriaVarious quantitative measures can be used to assess the performance of water resources systems under different strategies. When it comes to water resources planning and management, perhaps, some of the most common performance criteria are the probability-based performance criteria (PBPC) (i.e., reliability, vulnerability, and resiliency)31,38. In this context, reliability represents the probability of successful functioning of a system; resiliency measures the probability of successful functioning following a system failure; lastly, vulnerability is the severity of failure during an operation horizon39,40. The basic idea behind a performance evaluation attribute is to provide a quantitative measure to describe and assess the performance of a system. In the context of water resources planning and management, these measures have proven time and again that they can be reliable options to evaluate a set of strategic management options objectively (see, e.g.40,41,42,43, and44, just to name a few).Operating policyAny water resources system requires something called the “rule curve,” which determines how water is allocated in a given situation45. A common and effective rule curve when it comes to operation of water resource systems is the standard operation policy (SOP). SOP is a simple, and perhaps best-known real-time operation policy in water resources planning and management46. The core principle here is to minimize the water shortage at the current time step with no conservation policy (e.g., hedging rules) in place. The SOP, as a standard rule curve, determines how the operator acts to control a system at any given state of a reservoir47,48. This rule curve is established as an attempt to balance various water demands including but not limited to flood control, hydropower, water supply, and recreation49. A SOP operating system attempts to release water to meet a water demand at the current time, with no regard to the future. Thus, according to the SOP’s principle, the decision-makers, first allocate the available water to meet the demand of the stakeholder with the highest priority. After this first water demand is fully satisfied, the available water can be used for the next demand. Such an allocation process continues until no water is available.Ethics approvalAll authors accept all ethical approvals.Consent to participateAll authors consent to participate.Consent to publishAll authors consent to publish. More

  • in

    Understanding urban plant phenology for sustainable cities and planet

    Meng, L. et al. Proc. Natl Acad. Sci. USA 117, 4228 (2020).CAS 
    Article 

    Google Scholar 
    Wohlfahrt, G., Tomelleri, E. & Hammerle, A. Nat. Ecol. Evol. 3, 1668–1674 (2019).Article 

    Google Scholar 
    Wortman, S. E. & Lovell, S. T. J. Environ. Qual. 42, 1283–1294 (2013).CAS 
    Article 

    Google Scholar 
    Su, Y. et al. Agri. For. Meterol. 280, 107765 (2020).Article 

    Google Scholar 
    Smith, I. A., Dearborn, V. K. & Hutyra, L. R. PLoS ONE 14, e0215846 (2019).Article 

    Google Scholar 
    Richardson, A. D. et al. Nature 560, 368–371 (2018).CAS 
    Article 

    Google Scholar 
    Meineke, E. K., Dunn, R. R. & Frank, S. D. Biol. Lett. 10, 20140586 (2014).Article 

    Google Scholar 
    Liu, J. et al. Tour. Manag. 70, 262–272 (2019).Article 

    Google Scholar 
    Li, X. et al. Remote Sens. Environ. 222, 267–274 (2019).CAS 
    Article 

    Google Scholar 
    Wang, S. et al. Nat. Ecol. Evol. 3, 1076–1085 (2019).Article 

    Google Scholar 
    Feeley, K. J. et al. Nat. Clim. Change 10, 965–970 (2020).CAS 
    Article 

    Google Scholar 
    Li, D. et al. Nat. Ecol. Evol. 3, 1661–1667 (2019).Article 

    Google Scholar 
    Li, X. et al. Earth Syst. Sci. Data 11, 881–894 (2019).Article 

    Google Scholar 
    Román, M. O. et al. Remote Sens. Environ. 210, 113–143 (2018).Article 

    Google Scholar 
    Li, X. et al. Remote Sens. Environ. 215, 74–84 (2018).Article 

    Google Scholar  More

  • in

    The citizens who chart changing climate

    Jean Combes’s love of nature as a child led her to note the signs of starting spring. Her long-term records are now part of a vital growing citizen science dataset that starkly shows how climate change is shifting the timing of the natural world.For people living in colder parts of the world, watching for the first signs of spring — from the opening of snowdrops and daffodils, to birds building their nests, to the return of bees and butterflies — is a common winter pastime. Jean Combes has not just been watching out for these signs, but also recording them, ever since she was a child. Taking note of the earliest emergence of leaves in springtime — first as a child of 11 years, and then continuously from the age of 20 years — Jean has now collected one of the longest continuous datasets of spring leaf-out time in the UK (see also Correspondence by Vitasse et al.). These almost 75 years of data show a clear shift that corroborates shifts now acknowledged for diverse species around the world: springtime is coming earlier, and the patterns of advance match the global trends in the changing climate. Jean’s naturalist endeavours have already earned her high honours in the form of an OBE (Order of the British Empire), and recognition of her own work is mirrored in a growing recognition of the vital role of citizen scientists in tracking the signs of our rapidly changing world.
    This is a preview of subscription content More

  • in

    Hair cortisol concentration reflects the life cycle and management of grey wolves across four European populations

    Collection of wolf hair samplesHair samples were collected by researchers from opportunistically found-dead wolves upon standard necropsy (all the Alpine and part of the Iberian samples) or in the field (all the Dinaric-Balkan and most of the Iberian samples), or from legally harvested wolves (only in the Scandinavian population). At the time of sample collection, wolves were legally harvested in Sweden, Slovenia, and Spain, and under total protection in Portugal and Italy. Hair samples were collected from four body regions, when possible: lumbar (n = 133), dorsal cervical (n = 66), tail (n = 33) and ventral thorax (n = 27) (Tables S1 and S2). The hair was cut as close as possible to the skin with scissors to avoid collecting hair follicles, but in some samples, hairs were pulled from the carcass. Samples were stored at room temperature in paper envelopes. Age, sex, date, and cause of death/capture, geographical location, body mass, and total length were obtained for most of the wolves.Age was estimated by the dental eruption and wear or cementum age analysis and classified as ‘juveniles’ ( 2 years)40, or ‘unknown’. Sex was assessed by inspection of genitalia. Causes of death were classified as ‘acute’, likely lasting minutes to hours (vehicle accident and legal or illegal shooting); ‘subacute’, likely lasting hours to days (drowning, poisoning, trapping and intraspecific aggression); ‘chronic’, likely lasting several weeks (infectious diseases—canine distemper, canine parvovirosis, leptospirosis; sarcoptic mange; or neoplastic diseases) or ‘unknown’. Total length was obtained by measuring with metric tape (1 mm precision) the distance from snout to the distal end of the last tail vertebrae. The body mass was measured with 100 g precision with scales.The detailed protocol for the handling of wolves live trapped in the scope of ecological and conservation studies (n = 7, all from the Iberian population) has been previously described5. Traps were monitored twice every day, in the early morning and late afternoon, hence the duration of restraint after capture was unknown for 8 wolves, potentially up to 12 h. Trap-alarms were deployed in the capture of 2 wolves, with 41 and 70 min intervals between activation of the alarm and administration of the drugs. Live trapping was conducted under permits issued by the nature conservation authorities of Portugal (Instituto de Conservação da Natureza e das Florestas: 338/2007/CAPT, 258/2008/CAPT, 286/2008/CAPT, 260/2009/CAPT, 332/2010/MANU, 333/2010/CAPT, 336/2010/MANU, 26/2012/MANU, and 72/2014/CAPT) and Spain (Dirección Xeral de Conservación da Naturaleza, Xunta de Galicia: E-0020/13-PNPE, 095/2013; Consejería de Medio Ambiente, Principado de Asturias: 31/08/2017-BOPA 05/09/17) and according to European Union directives on the protection of animals used for scientific purposes (Directive 2010/63/EU) and international wildlife standards41,42. The study was undertaken in compliance with the ARRIVE guidelines43.Cortisol extractionThe protocol for the extraction of cortisol from the hair was adapted from previously described procedures15,27. Forty mg of guard hairs were separated from the undercoat and placed in 15 ml falcon tubes. Hair follicles were cut whenever found in the sample. For each sample, the length of three intact hairs was recorded. The samples were washed twice with 40 µl of distilled water/mg hair and three times with the same amount of isopropanol. In each washing step, the samples and washing solution were vortexed, the supernatant discarded, and the hair dried using clean paper towels. After the final wash, samples were dried overnight at room temperature and 30 mg of hair cut into a 2 ml polypropylene screw cap plastic tube with five 4 mm steel beads added to each tube.The hair was ground to a fine powder in a FastPrep sample homogenizer (MP Biomedicals, USA) for four times 1 min at 6.0 m/s. 50 µl methanol/mg hair were added to each sample and sonicated for 30 min at 50 Hz at 50 °C. The samples were incubated for 18 h at 50 °C in an orbital shaker at 160 rpm, centrifuged for 15 min at 14,000g at 20 °C, and 1000 µl of supernatant was collected to a screw cap glass chromatography vial and dried at room temperature in a gentle stream of nitrogen gas. Due to restrictions on laboratory use during the SARS-Cov-2 pandemic, some batches of samples were instead evaporated overnight on a suction hood. This unexpected change in the methanol evaporation protocol was recorded and accounted for in the statistical analysis.Cortisol quantificationA commercial competitive ELISA kit (Cortisol free in Saliva ELISA, Demeditec, Germany) was used to quantify the concentration of cortisol, following the manufacturer’s instructions. The kit plate wells are provided coated with polyclonal rabbit antibody against cortisol, and cortisol-horseradish peroxidase was used as conjugate. According to the manufacturer, the cross-reactivity of the test to selected steroids is low (Table S3), the intra-assay variation is 3.8–5.8% and the inter-assay variation is 6.2–6.4%. Samples, standards, and controls were tested in duplicate.The 4-parameter standard curve was calculated from the log-transformed cortisol concentration of the standard solutions and their measured OD45044. Standard curves were estimated using the software GraphPad Prism 6.04 (GraphPad Software, La Jolla, California USA), and yielded an average R2adjusted = 0.991 (range 0.968–0.999). The cortisol concentration of the reconstituted samples was estimated from the standard curve and converted to cortisol concentration as picograms (pg) of cortisol/mg of guard hair.Intra and inter-assay coefficients of variation were estimated for six ELISA assays of 37–40 samples each. The low and high controls included in the kit were used to estimate the inter-assay coefficient of variation and the duplicate runs of each sample were used to estimate the intra-assay coefficient of variation. Linearity was assessed by two-fold dilutions (1:1, 1:2, 1:4 and 1:8) of 4 extracted samples, comparing the expected and observed concentrations. Recovery was assessed by spiking 6 ground hair samples with known concentrations of cortisol (50, 25, 12.5, 6.25 pg/mg, and no spiking), comparing the expected and observed concentrations.The intra-assay coefficient of variation of the ELISA assays ranged from 6.50 to 9.97% (average 7.66%). The inter-assay coefficient of variation was 11.54% for the low concentration controls and 9.08% for the high concentration controls (average 10.31%). Assay linearity was 91% for the 1:2 dilution, 103% for 1:4, and 117% for 1:8 (average 103%). The recovery of cortisol averaged 94%, being 73% for the 50 pg/mg spiked samples, 74% for 25 pg/mg, 95% for 12.5 pg/mg, and 113% for 6.25 pg/mg.Determinants of hair cortisol concentrationThe potential determinants of HCC investigated included wolf intrinsic variables: sex, age, body condition, body structural size, month of death/capture, and wolf population. The scaled mass index was selected as a measure of body condition45 and estimated from the log-transformed body weight (g) and total length (mm). Log-transformed total length was used as an indicator of body structural size46. Samples were assigned to the Iberian, Alpine, Dinaric-Balkan, or Scandinavian wolf populations16 from the geographical location of the death or live-trapping sites (Fig. 1).The relationship between HCC and additional variables related to the sampling procedure or to the work conducted in the laboratory (length of hair used for cortisol extraction, sample storage time, body region, cause of death/capture, and methanol evaporation protocol), herein referred to as methodological variables, was also investigated as potential confounding variables. Sample storage time was the period in months between death/capture and cortisol extraction. In those samples for which only the year of death was available, 30 June was assigned as the date of death, solely to estimate storage time. All continuous variables were standardized to their z-scores.Statistical analysisFirst, the effect of body region was investigated by a linear mixed model with HCC as the dependent variable, and the independent variables body region, as a categorical fixed effect, and individual wolf, as a random effect. The lumbar region was set as the reference class as it was the most represented in our sample (Table S1). Data from 27 wolves for which samples were available from all 4 body regions were used in this analysis. Four outliers in the dataset violated the assumption of normality in the residuals of the model comparing HCC across body regions (Fig. S1A) and were excluded from this model’s dataset (Fig. S1B).Second, the effect of intrinsic and methodological variables on HCC from the lumbar body region was investigated by another linear mixed model with sex, age, body condition, body structural size (standardized log-transformed total length), cause of death/capture, wolf population, hair length, sample storage time, and methanol evaporation protocol as fixed effect independent variables. The month of death/capture was included as a random effect. Reference classes for the categorical variables were set as female, adult, acute death, Iberian population, and methanol evaporation by nitrogen gas stream. Two outliers in the dataset violated the assumption of normality in the residuals of the model (Full model, Table S4) and were excluded from this analysis (Fig. S1C,D).The goal of this analysis was to assess the relationship between HCC and wolf intrinsic variables, controlling for the potential confounding effect of the methodological variables. Starting from the full model (Table S4), models including all possible combinations of variables were ranked by their AICc using the package “MuMIn”47 in R 3.6.148. The most supported model was selected for inference and models with ΔAICc  More

  • in

    Strain-specific transcriptional responses overshadow salinity effects in a marine diatom sampled along the Baltic Sea salinity cline

    Lozupone CA, Knight R. Global patterns in bacterial diversity. Proc Natl Acad Sci USA. 2007;104:11436–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Logares R, Bråte J, Bertilsson S, Clasen JL, Shalchian-Tabrizi K, Rengefors K. Infrequent marine-freshwater transitions in the microbial world. Trends Microbiol. 2009;17:414–22.CAS 
    PubMed 

    Google Scholar 
    Cavalier-Smith T. Megaphylogeny, cell body plans, adaptive zones: causes and timing of eukaryote basal radiations. J Eukaryot Microbiol. 2009;56:26–33.PubMed 

    Google Scholar 
    Nakov T, Beaulieu JM, Alverson AJ. Diatoms diversify and turn over faster in freshwater than marine environments. Evolution. 2019;73:2497–511.PubMed 

    Google Scholar 
    Dittami SM, Heesch S, Olsen JL, Collén J. Transitions between marine and freshwater environments provide new clues about the origins of multicellular plants and algae. J Phycol. 2017;53:731–45.PubMed 

    Google Scholar 
    Dickson B, Yashayaev I, Meincke J, Turrell B, Dye S, Holfort J. Rapid freshening of the deep North Atlantic Ocean over the past four decades. Nature. 2002;416:832–7.CAS 
    PubMed 

    Google Scholar 
    Aretxabaleta AL, Smith KW, Kalra TS. Regime changes in global sea surface salinity trend. J Mar Sci Eng. 2017;5:57.
    Google Scholar 
    López-Maury L, Marguerat S, Bähler J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet. 2008;9:583–93.PubMed 

    Google Scholar 
    Björck S. A review of the history of the Baltic Sea, 13.0-8.0 ka BP. Quat Int. 1995;27:19–40.
    Google Scholar 
    Krauss W. Baltic sea circulation. In: Steele JH, editor. Encyclopedia of ocean sciences. Oxford: Academic Press; 2001. p. 236–44.Telesh I, Schubert H, Skarlato S. Life in the salinity gradient: discovering mechanisms behind a new biodiversity pattern. Estuar Coast Shelf Sci. 2013;135:317–27.
    Google Scholar 
    Johannesson K, Le Moan A, Perini S, André C. A Darwinian laboratory of multiple contact zones. Trends Ecol Evol. 2020;35:1021–36.PubMed 

    Google Scholar 
    Olofsson M, Hagan JG, Karlson B, Gamfeldt L. Large seasonal and spatial variation in nano- and microphytoplankton diversity along a Baltic Sea-North Sea salinity gradient. Sci Rep. 2020;10:17666.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sjöqvist C, Godhe A, Jonsson PR, Sundqvist L, Kremp A. Local adaptation and oceanographic connectivity patterns explain genetic differentiation of a marine diatom across the North Sea-Baltic Sea salinity gradient. Mol Ecol. 2015;24:2871–85.PubMed 
    PubMed Central 

    Google Scholar 
    Jochem F. Distribution and importance of autotrophic ultraplankton in a boreal inshore area (Kiel Bight, Western Baltic). Mar Ecol Prog Ser. 1989;53:153–68.
    Google Scholar 
    Wasmund N, Nausch G, Gerth M, Busch S, Burmeister C, Hansen R, et al. Extension of the growing season of phytoplankton in the western Baltic Sea in response to climate change. Mar Ecol Prog Ser. 2019;622:1–16.CAS 

    Google Scholar 
    van Wirdum F, Andrén E, Wienholz D, Kotthoff U, Moros M, Fanget A-S, et al. Middle to Late Holocene variations in salinity and primary productivity in the Central Baltic Sea: a multiproxy study from the Landsort Deep. Front Mar Sci. 2019;6:51.
    Google Scholar 
    Alverson AJ. Timing marine–freshwater transitions in the diatom order Thalassiosirales. Paleobiology. 2014;40:91–101.
    Google Scholar 
    Nakov T, Beaulieu JM, Alverson AJ. Insights into global planktonic diatom diversity: the importance of comparisons between phylogenetically equivalent units that account for time. ISME J. 2018;12:2807–10.PubMed 
    PubMed Central 

    Google Scholar 
    Kremp A, Godhe A, Egardt J, Dupont S, Suikkanen S, Casabianca S, et al. Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol Evol. 2012;2:1195–207.PubMed 
    PubMed Central 

    Google Scholar 
    Olofsson M, Kourtchenko O, Zetsche E-M, Marchant HK, Whitehouse MJ, Godhe A, et al. High single-cell diversity in carbon and nitrogen assimilations by a chain-forming diatom across a century. Environ Microbiol. 2019;21:142–51.CAS 
    PubMed 

    Google Scholar 
    Olofsson M, Almén A-K, Jaatinen K, Scheinin M. Temporal escape – adaptation to eutrophication by Skeletonema marinoi. FEMS Microbiol Lett. 2022;fnac011. https://pubmed.ncbi.nlm.nih.gov/35137038/.Godhe A, Härnström K. Linking the planktonic and benthic habitat: genetic structure of the marine diatom Skeletonema marinoi. Mol Ecol. 2010;19:4478–90.PubMed 

    Google Scholar 
    Dobin A, Gingeras TR. Mapping RNA-seq reads with STAR. Curr Protoc Bioinform. 2015;51:11.14.1–11.14.19.
    Google Scholar 
    Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-throughput sequencing data. Bioinformatics. 2015;31:166–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics. 2014;30:1236–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36:2251–2.CAS 
    PubMed 

    Google Scholar 
    Emms DM, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20:238.PubMed 
    PubMed Central 

    Google Scholar 
    Almagro Armenteros JJ, Salvatore M, Emanuelsson O, Winther O, von Heijne G, Elofsson A, et al. Detecting sequence signals in targeting peptides using deep learning. Life Sci Alliance. 2019;2:e201900429.PubMed 
    PubMed Central 

    Google Scholar 
    Gruber A, Rocap G, Kroth PG, Armbrust EV, Mock T. Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J. 2015;81:519–28.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bendtsen JD, Nielsen H, von Heijne G, Brunak S. Improved prediction of signal peptides: SignalP 3.0. J Mol Biol. 2004;340:783–95.PubMed 

    Google Scholar 
    Gschloessl B, Guermeur Y, Cock JM. HECTAR: a method to predict subcellular targeting in heterokonts. BMC Bioinforma. 2008;9:393.
    Google Scholar 
    Claros MG. MitoProt, a Macintosh application for studying mitochondrial proteins. Comput Appl Biosci. 1995;11:441–7.CAS 
    PubMed 

    Google Scholar 
    Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.CAS 

    Google Scholar 
    Van den Berge K, Soneson C, Robinson MD, Clement L. stageR: a general stage-wise method for controlling the gene-level false discovery rate in differential expression and differential transcript usage. Genome Biol. 2017;18:151.PubMed 
    PubMed Central 

    Google Scholar 
    Heller R, Manduchi E, Grant GR, Ewens WJ. A flexible two-stage procedure for identifying gene sets that are differentially expressed. Bioinformatics. 2009;25:1019–25.CAS 
    PubMed 

    Google Scholar 
    Alexa A, and Rahnenfuhrer J. topGO: Enrichment Analysis for GeneOntology. R package version 2.44.0. 2021. https://bioconductor.org/packages/release/bioc/html/topGO.html.Wu D, Smyth GK. Camera: a competitive gene set test accounting for inter-gene correlation. Nucleic Acids Res. 2012;40:e133.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Supek F, Bošnjak M, Škunca N, Šmuc T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS ONE. 2011;6:e21800.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bussard A, Corre E, Hubas C, Duvernois-Berthet E, Le Corguillé G, Jourdren L, et al. Physiological adjustments and transcriptome reprogramming are involved in the acclimation to salinity gradients in diatoms. Environ Microbiol. 2017;19:909–25.CAS 
    PubMed 

    Google Scholar 
    Matthijs M, Fabris M, Obata T, Foubert I, Franco-Zorrilla JM, Solano R, et al. The transcription factor bZIP14 regulates the TCA cycle in the diatom Phaeodactylum tricornutum. EMBO J. 2017;36:1559–76.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kong L, Price NM. Transcriptomes of an oceanic diatom reveal the initial and final stages of acclimation to copper deficiency. Environ Microbiol. 2021;24:951–66.Amato A, Sabatino V, Nylund GM, Bergkvist J, Basu S, Andersson MX, et al. Grazer-induced transcriptomic and metabolomic response of the chain-forming diatom Skeletonema marinoi. ISME J. 2018;12:1594–604.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maumus F, Allen AE, Mhiri C, Hu H, Jabbari K, Vardi A, et al. Potential impact of stress activated retrotransposons on genome evolution in a marine diatom. BMC Genomics. 2009;10:624.PubMed 
    PubMed Central 

    Google Scholar 
    Pargana A, Musacchia F, Sanges R, Russo MT, Ferrante MI, Bowler C, et al. Intraspecific diversity in the cold stress response of transposable elements in the diatom Leptocylindrus aporus. Genes. 2019;11:9.PubMed Central 

    Google Scholar 
    Smith SR, Dupont CL, McCarthy JK, Broddrick JT, Oborník M, Horák A, et al. Evolution and regulation of nitrogen flux through compartmentalized metabolic networks in a marine diatom. Nat Commun. 2019;10:4552.PubMed 
    PubMed Central 

    Google Scholar 
    Kageyama H, Tanaka Y, Shibata A, Waditee-Sirisattha R, Takabe T. Dimethylsulfoniopropionate biosynthesis in a diatom Thalassiosira pseudonana: Identification of a gene encoding MTHB-methyltransferase. Arch Biochem Biophys. 2018;645:100–6.CAS 
    PubMed 

    Google Scholar 
    Nakov T, Judy KJ, Downey KM, Ruck EC, Alverson AJ. Transcriptional response of osmolyte synthetic pathways and membrane transporters in a euryhaline diatom during long-term acclimation to a salinity gradient. J Phycol. 2020;56:1712–28.CAS 
    PubMed 

    Google Scholar 
    Kageyama H, Tanaka Y, Takabe T. Biosynthetic pathways of glycinebetaine in Thalassiosira pseudonana; functional characterization of enzyme catalyzing three-step methylation of glycine. Plant Physiol Biochem. 2018;127:248–55.CAS 
    PubMed 

    Google Scholar 
    Krell A, Funck D, Plettner I, John U, Dieckmann G. Regulation of proline metabolism under salt stress in the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). J Phycol. 2007;43:753–62.CAS 

    Google Scholar 
    Latta LC, Weider LJ, Colbourne JK, Pfrender ME. The evolution of salinity tolerance in Daphnia: a functional genomics approach. Ecol Lett. 2012;15:794–802.PubMed 

    Google Scholar 
    Ferrante MI, Entrambasaguas L, Johansson M, Töpel M, Kremp A, Montresor M, et al. Exploring molecular signs of sex in the marine diatom Skeletonema marinoi. Genes. 2019;10:494.Kroth PG. The biodiversity of carbon assimilation. J Plant Physiol. 2015;172:76–81.CAS 
    PubMed 

    Google Scholar 
    Obata T, Fernie AR, Nunes-Nesi A. The central carbon and energy metabolism of marine diatoms. Metabolites. 2013;3:325–46.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith SR, Abbriano RM, Hildebrand M. Comparative analysis of diatom genomes reveals substantial differences in the organization of carbon partitioning pathways. Algal Res. 2012;1:2–16.CAS 

    Google Scholar 
    Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, et al. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLoS ONE. 2008;3:e1426.PubMed 
    PubMed Central 

    Google Scholar 
    Furumoto T, Yamaguchi T, Ohshima-Ichie Y, Nakamura M, Tsuchida-Iwata Y, Shimamura M, et al. A plastidial sodium-dependent pyruvate transporter. Nature. 2011;476:472–5.CAS 
    PubMed 

    Google Scholar 
    Chen G-Q, Jiang Y, Chen F. Salt-induced alterations in lipid composition of diatom Nitzschia laevis (Bacillariophyceae) under heterotrophic culture condition. J Phycol. 2008;44:1309–14.CAS 
    PubMed 

    Google Scholar 
    Sayanova O, Mimouni V, Ulmann L, Morant-Manceau A, Pasquet V, Schoefs B, et al. Modulation of lipid biosynthesis by stress in diatoms. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160407.PubMed 
    PubMed Central 

    Google Scholar 
    Vårum KM, Myklestad S. Effects of light, salinity and nutrient limitation on the production of β-1,3-d-glucan and exo-d-glucanase activity in Skeletonema costatum (Grev.) Cleve. J Exp Mar Bio Ecol. 1984;83:13–25.
    Google Scholar 
    Radchenko IG, Il’yash LV. Growth and photosynthetic activity of diatom Thalassiosira weissflogii at decreasing salinity. Biol Bull. 2006;33:242–7.CAS 

    Google Scholar 
    Adams C, Bugbee B. Enhancing lipid production of the marine diatom Chaetoceros gracilis: synergistic interactions of sodium chloride and silicon. J Appl Phycol. 2014;26:1351–7.CAS 

    Google Scholar 
    Shetty P, Gitau MM, Maróti G. Salinity stress responses and adaptation mechanisms in eukaryotic green microalgae. Cells. 2019;8:1657.Jacob A, Kirst GO, Wiencke C, Lehmann H. Physiological responses of the Antarctic green alga Prasiola crispa ssp. antarctica to salinity stress. J Plant Physiol. 1991;139:57–62.CAS 

    Google Scholar 
    Bazzani E, Lauritano C, Mangoni O, Bolinesi F, Saggiomo M. Chlamydomonas responses to salinity stress and possible biotechnological exploitation. J Mar Sci Eng. 2021;9:1242.
    Google Scholar 
    Cheng R-L, Feng J, Zhang B-X, Huang Y, Cheng J, Zhang C-X. Transcriptome and gene expression analysis of an oleaginous diatom under different salinity conditions. Bioenergy Res. 2014;7:192–205.CAS 

    Google Scholar 
    Stock W, Blommaert L, Daveloose I, Vyverman W, Sabbe K. Assessing the suitability of imaging-PAM fluorometry for monitoring growth of benthic diatoms. J Exp Mar Bio Ecol. 2019;513:35–41.
    Google Scholar 
    Reichmann D, Voth W, Jakob U. Maintaining a healthy proteome during oxidative stress. Mol Cell. 2018;69:203–13.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Latowski D, Kuczyńska P, Strzałka K. Xanthophyll cycle-a mechanism protecting plants against oxidative stress. Redox Rep. 2011;16:78–90.CAS 
    PubMed 

    Google Scholar 
    Chen D, Shao Q, Yin L, Younis A, Zheng B. Polyamine function in plants: metabolism, regulation on development, and roles in abiotic stress responses. Front Plant Sci. 2018;9:1945.PubMed 

    Google Scholar 
    Liu Q, Nishibori N, Imai I, Hollibaugh JT. Response of polyamine pools in marine phytoplankton to nutrient limitation and variation in temperature and salinity. Mar Ecol Prog Ser. 2016;544:93–105.CAS 

    Google Scholar 
    Scoccianti V, Penna A, Penna N, Magnani M. Effect of heat stress on polyamine content and protein pattern in Skeletonema costatum. Mar Biol. 1995;121:549–54.CAS 

    Google Scholar 
    Alscher RG, Erturk N, Heath LS. Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot. 2002;53:1331–41.CAS 
    PubMed 

    Google Scholar 
    Kumar M, Kumari P, Gupta V, Reddy CRK, Jha B. Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress. J Exp Mar Bio Ecol. 2010;391:27–34.CAS 

    Google Scholar 
    von Alvensleben N, Magnusson M, Heimann K. Salinity tolerance of four freshwater microalgal species and the effects of salinity and nutrient limitation on biochemical profiles. J Appl Phycol. 2016;28:861–76.
    Google Scholar 
    Rijstenbil JW, Wijnholds JA, Sinke JJ. Implications of salinity fluctuation for growth and nitrogen metabolism of the marine diatom Ditylum brightwellii in comparison with Skeletonema costatum. Mar Biol. 1989;101:131–41.CAS 

    Google Scholar 
    Mansour MMF. Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant. 2000;43:491–500.CAS 

    Google Scholar 
    Garcia N, Lopez Elias JA, Miranda A, Martinez Porchas M, Huerta N, Garcia A. Effect of salinity on growth and chemical composition of the diatom Thalassiosira weissflogii at three culture phases. Lat Am J Aquat Res. 2012;40:435–40.
    Google Scholar 
    Van den Berge K, Hembach KM, Soneson C, Tiberi S, Clement L, Love MI, et al. RNA sequencing data: Hitchhiker’s guide to expression analysis. Annu Rev Biomed Data Sci. 2019;2:139–73.
    Google Scholar 
    Kremp A. Effects of cyst resuspension on germination and seeding of two bloom-forming dinoflagellates in the Baltic Sea. Mar Ecol Prog Ser. 2001;216:57–66.
    Google Scholar 
    Juneau P, Barnett A, Méléder V, Dupuy C, Lavaud J. Combined effect of high light and high salinity on the regulation of photosynthesis in three diatom species belonging to the main growth forms of intertidal flat inhabiting microphytobenthos. J Exp Mar Bio Ecol. 2015;463:95–104.CAS 

    Google Scholar 
    Vargas C, Argandoña M, Reina-Bueno M, Rodríguez-Moya J, Fernández-Aunión C, Nieto JJ. Unravelling the adaptation responses to osmotic and temperature stress in Chromohalobacter salexigens, a bacterium with broad salinity tolerance. Saline Syst. 2008;4:14.PubMed 
    PubMed Central 

    Google Scholar 
    Khmelenina VN, Sakharovskii VG, Reshetnikov AS, Trotsenko YA. Synthesis of osmoprotectants by halophilic and alkaliphilic methanotrophs. Microbiology. 2000;69:381–6.CAS 

    Google Scholar 
    Fenizia S, Thume K, Wirgenings M, Pohnert G. Ectoine from bacterial and algal origin is a compatible solute in microalgae. Mar Drugs. 2020;18:42.CAS 
    PubMed Central 

    Google Scholar 
    Amin SA, Hmelo LR, van Tol HM, Durham BP, Carlson LT, Heal KR, et al. Interaction and signalling between a cosmopolitan phytoplankton and associated bacteria. Nature. 2015;522:98–101.CAS 
    PubMed 

    Google Scholar 
    Krell A, Beszteri B, Dieckmann G, Glöckner G, Valentin K, Mock T. A new class of ice-binding proteins discovered in a salt-stress-induced cDNA library of the psychrophilic diatom Fragilariopsis cylindrus (Bacillariophyceae). Eur J Phycol. 2008;43:423–33.CAS 

    Google Scholar 
    Helliwell KE, Kleiner FH, Hardstaff H, Chrachri A, Gaikwad T, Salmon D, et al. Spatiotemporal patterns of intracellular Ca2+ signalling govern hypo-osmotic stress resilience in marine diatoms. N Phytol. 2021;230:155–70.CAS 

    Google Scholar 
    Kaczmarska I, Poulíčková A, Sato S, Edlund MB, Idei M, Watanabe T, et al. Proposals for a terminology for diatom sexual reproduction, auxospores and resting stages. Diatom Res. 2013;28:263–94.
    Google Scholar 
    Godhe A, Kremp A, Montresor M. Genetic and microscopic evidence for sexual reproduction in the centric diatom Skeletonema marinoi. Protist. 2014;165:401–16.PubMed 

    Google Scholar 
    Annunziata R, Mele BH, Marotta P, Volpe M, Entrambasaguas L, Mager S, et al. Trade-off between sex and growth in diatoms: Molecular mechanisms and demographic implications. Sci Adv. 2022;8:eabj9466.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ajani PA, Petrou K, Larsson ME, Nielsen DA, Burke J, Murray SA. Phenotypic trait variability as an indication of adaptive capacity in a cosmopolitan marine diatom. Environ Microbiol. 2021;23:207–23.CAS 
    PubMed 

    Google Scholar 
    Sjöqvist CO, Kremp A. Genetic diversity affects ecological performance and stress response of marine diatom populations. ISME J. 2016;10:2755–66.PubMed 
    PubMed Central 

    Google Scholar 
    Godhe A, Rynearson T. The role of intraspecific variation in the ecological and evolutionary success of diatoms in changing environments. Philos Trans R Soc Lond B Biol Sci. 2017;372:20160399.PubMed 
    PubMed Central 

    Google Scholar 
    Bulankova P, Sekulić M, Jallet D, Nef C, van Oosterhout C, Delmont TO, et al. Mitotic recombination between homologous chromosomes drives genomic diversity in diatoms. Curr Biol. 2021;31:3221–32. e9CAS 
    PubMed 

    Google Scholar 
    Pinseel E, Janssens SB, Verleyen E, Vanormelingen P, Kohler TJ, Biersma EM, et al. Global radiation in a rare biosphere soil diatom. Nat Commun. 2020;11:2382.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Savchuk OP. Large-scale nutrient dynamics in the Baltic sea, 1970–2016. Front Mar Sci. 2018;5:95.
    Google Scholar 
    Gomez-Mestre I, Jovani R. A heuristic model on the role of plasticity in adaptive evolution: plasticity increases adaptation, population viability and genetic variation. Proc Biol Sci. 2013;280:20131869.PubMed 
    PubMed Central 

    Google Scholar 
    Lambert BS, Groussman RD, Schatz MJ, Coesel SN, Durham BP, Alverson AJ, et al. The dynamic trophic architecture of open-ocean protist communities revealed through machine-guided metatranscriptomics. Proc Natl Acad Sci USA. 2022;119:e2100916119.Harrison PF, Pattison AD, Powell DR, Beilharz TH. Topconfects: a package for confident effect sizes in differential expression analysis provides a more biologically useful ranked gene list. Genome Biol. 2019;20:67.PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Regreening: green is not always gold

    CORRESPONDENCE
    05 April 2022

    Regreening: green is not always gold

    Michael C. Orr

    0
    &

    Alice C. Hughes

    1

    Michael C. Orr

    Institute of Zoology, Chinese Academy of Sciences, Beijing, China.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Alice C. Hughes

    University of Hong Kong, Hong Kong, China.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    As the upcoming United Nations Biodiversity Conference in Kunming, China, ushers in the UN decade of ecosystem restoration, regreening efforts are sprouting worldwide. Adding vegetation — expedited by new technologies such as EcoFit, which predicts what trees will thrive in a given environment — can salvage highly disturbed habitats, benefiting native species and offsetting climate change. But when aimed at halting desertification, regreening can have a devastating cost for native ecosystems.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 604, 40 (2022)
    doi: https://doi.org/10.1038/d41586-022-00944-4

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Biodiversity

    Conservation biology

    Climate change

    Latest on:

    Biodiversity

    China: protect black soil for biodiversity
    Correspondence 05 APR 22

    Funding battles stymie ambitious plan to protect global biodiversity
    News 31 MAR 22

    Are there limits to economic growth? It’s time to call time on a 50-year argument
    Editorial 16 MAR 22

    Climate change

    The microbiologist working to understand how oceans absorb carbon dioxide
    Spotlight 05 APR 22

    By the numbers: China’s net-zero ambitions
    Spotlight 05 APR 22

    Turning industrial CO2 into battery fuel
    Spotlight 05 APR 22

    Jobs

    Junior group leader position in Human immunology, Pathophysiology and Immunotherapy at Inserm-Université Paris Cité Unit 976

    National Institute for Health and Medical Research (INSERM)
    Paris, France

    Senior Assistant Editor

    Elsevier Inc.
    London, Greater London, United Kingdom

    Dean, Gordon W. Davis College of Agricultural Sciences and Natural Resources

    Texas Tech University (TTU)
    Lubbock, TX, United States

    Postdoctoral fellow positions in cancer stem cells, single cell genomics, and tumor immunology

    Houston Methodist in “ affiliation with Weill- Cornell Medical College
    Houston, United States More

  • in

    Influence of wind and light on the floating and sinking process of Microcystis

    Paerl, H. W. & Huisman, J. Climate. Blooms like it hot. Science 320, 57–58 (2008).CAS 
    Article 

    Google Scholar 
    Yamamoto, Y., Shiah, F. K. & Chen, Y. L. Importance of large colony formation in bloom-forming cyanobacteria to dominate in eutrophic ponds. Ann. Limnol. Int. J Limnol. 47, 167–173 (2011).Article 

    Google Scholar 
    Chen, Y. W., Qin, B. Q., Teubner, K. & Dokulil, M. T. Long-term dynamics of phytoplankton assemblages: Microcystis-domination in Lake Taihu, a large shallow lake in China. J. Plankton Res. 25, 445–453 (2003).Article 

    Google Scholar 
    Walsby, A. E. The nuisance algae: Curiosities in the biology of planktonic blue-green algae. Water Treat. Exam. 19, 359–373 (1970).
    Google Scholar 
    Reynolds, C. S. & Walsby, A. E. Water-blooms. Biol. Rev. 50, 437–481 (1975).CAS 
    Article 

    Google Scholar 
    Yonggang, L., Wei, Z., Ming, L. I., Amp, D. X. & Man, X. Effect of colony size on Microcystis diurnal vertical migration. J. Lake Sci. 25(3), 386–391 (2013).Article 

    Google Scholar 
    Ibelings, B. W., Mur, L. & Walsby, A. Diurnal variations in buoyancy and vertical distribution in populations of Microcystis in two shallow lakes. J. Plankton Res. 13, 419–436 (1991).Article 

    Google Scholar 
    Kromkamp, J. C. & Mur, L. R. Buoyant density variations in the cyanobacterium Microcystis aeruginosa due to variations in the cellular carbohydrate content. FEMS Microbiol. Lett. 1, 105–109 (1984).Article 

    Google Scholar 
    Kromkamp, J. & Walsby, A. E. A computer model of buoyancy and vertical migration in cyanobacteria. J. Plankton Res. 12, 161–183 (1990).Article 

    Google Scholar 
    Visser, P. M., Passarge, J. & Mur, L. R. Modelling vertical migration of the cyanobacterium Microcystis. Hydrobiologia 349(1–3), 99–109 (1997).Article 

    Google Scholar 
    Medrano, E. A., Uittenbogaard, R. E., Pires, L. M. D., van de Wiel, B. J. H. & Clercx, H. J. H. Coupling hydrodynamics and buoyancy regulation in Microcystis aeruginosa for its vertical distribution in lakes. Ecol. Model. 248, 41–56 (2013).Article 

    Google Scholar 
    George, D. G. & Edwards, R. W. The effect of wind on the distribution of chlorophyll A and crustacean plankton in a shallow eutrophic reservoir. J. Appl. Ecol. 13, 667 (1976).CAS 
    Article 

    Google Scholar 
    Hutchinson, P. A. & Webster, I. T. On the distribution of blue-green algae in lakes: Wind-tunnel tank experiments. Limnol. Oceanogr. 9, 374–382 (1994).Article 

    Google Scholar 
    Ha, K., Kim, H. W., Jeong, K. S. & Joo, G. J. Vertical distribution of Microcystis population in the regulated Nakdong River, Korea. J. Limnol. 1, 225–230 (2000).Article 

    Google Scholar 
    Ma, X., Wang, Y., Feng, S. & Wang, S. Vertical migration patterns of different phytoplankton species during a summer bloom in Dianchi Lake, China. Environ. Earth Sci. 74, 3805–3814 (2015).CAS 
    Article 

    Google Scholar 
    Ndong, M. et al. A novel Eulerian approach for modelling cyanobacteria movement: Thin layer formation and recurrent risk to drinking water intakes. Water Res. 127, 191–203 (2017).CAS 
    Article 

    Google Scholar 
    Hozumi, A., Ostrovsky, I. S., Sukenik, A. & Gildor, H. Turbulence regulation of Microcystis surface scum formation and dispersion during a cyanobacteria bloom event. Inland Waters. 10, 51–70 (2020).CAS 
    Article 

    Google Scholar 
    Zhu, W., Chen, H., Xiao, M., Miquel, L. & Li, M. Wind induced turbulence caused colony disaggregation and morphological variations in the cyanobacterium Microcystis. J. Lake Sci. 33, 349 (2021).Article 

    Google Scholar 
    Wu, X. & Kong, F. Effects of light and wind speed on the vertical distribution of Microcystis aeruginosa colonies of different sizes during a summer bloom. Int. Rev. Hydrobiol. 94, 258–266 (2009).Article 

    Google Scholar 
    Xiao, M. et al. The influence of water oscillation on the vertical distribution of Microcystis colonies of different sizes. Fresenius Environ. Bull. 22, 3511–3518 (2013).CAS 

    Google Scholar 
    Zhao, H. et al. Numerical simulation of the vertical migration of Microcystis (cyanobacteria) colonies based on turbulence drag. J. Limnol. 76, 190–198 (2017).
    Google Scholar 
    Li, M., Xiao, M., Zhang, P. & Hamilton, D. P. Morphospecies-dependent disaggregation of colonies of the cyanobacterium Microcystis under high turbulent mixing. Water Res. 141, 340–348 (2018).CAS 
    Article 

    Google Scholar 
    Chien, Y. C., Wu, S. C., Chen, W. C. & Chou, C. C. Model simulation of diurnal vertical migration patterns of different-sized colonies of Microcystis employing a particle trajectory approach. Environ. Eng. Sci. 30, 179–186 (2013).CAS 
    Article 

    Google Scholar 
    Medrano, E. A., van de Wiel, B. J. H., Uittenbogaard, R. E., Pires, L. M. D. & Clercx, H. J. H. Simulations of the diurnal migration of Microcystis aeruginosa based on a scaling model for physical-biological interactions. Ecol. Model. 337, 200–210 (2016).Article 

    Google Scholar 
    Liu, H., Zheng, Z. C., Young, B. & Harris, T. D. Three-dimensional numerical modeling of the cyanobacterium Microcystis transport and its population dynamics in a large freshwater reservoir. Ecol. Model. 398, 20–34 (2019).CAS 
    Article 

    Google Scholar 
    Shih, T. H., Liou, W. W., Shabbir, A., Yang, Z. & Zhu, J. A new k-ε eddy viscosity model for high Reynolds number turbulent flows. Comput. Fluids. 24, 227–238 (1995).Article 

    Google Scholar 
    Geernaert, G. L., Larsen, S. E. & Hansen, F. Measurements of the wind stress, heat flux, and turbulence intensity during storm conditions over the North Sea. J. Geophys. Res. 92, 127–139 (1987).Article 

    Google Scholar 
    Large, W. G. & Pond, S. Open ocean momentum flux measurements in moderate to strong winds. J. Phys. Oceanogr. 11, 324–336 (1981).Article 

    Google Scholar 
    Sellers, H. Development and application of “U.S.E.D.”: A hydroclimate lake stratification model. Ecol. Model. 21, 233–246 (1984).Article 

    Google Scholar 
    Morsi, S. A. & Alexander, A. J. An investigation of particle trajectories in two-phase flow systems. J. Fluid Mech. 55, 193–208 (1972).Article 

    Google Scholar 
    Gosman, A. D. & Loannides, E. Aspects of computer simulation of liquid-fuelled combustor. AIAA J. 81, 482–490 (1981).
    Google Scholar 
    Li, M. et al. To increase size or decrease density? Different Microcystis species has different choice to form blooms. Sci. Rep. 6, 37056 (2016).CAS 
    Article 

    Google Scholar 
    Li, M., Zhu, W. & Gao, L. Analysis of cell concentration, volume concentration, and colony size of Microcystis via laser particle analyzer. Environ. Manag. 53, 947–958 (2014).Article 

    Google Scholar 
    Sun, D., Li, Y., Wang, Q. & Gao, J. Light scattering properties and their relation to the biogeochemical composition of turbid productive waters: A case study of Lake Taihu. Appl. Opt. 48(11), 1979–1989 (2009).CAS 
    Article 

    Google Scholar 
    Li, M., Zhu, W., Gao, L., Huang, J. & Li, L. Seasonal variations of morphospecies composition and colony size of Microcystis in a shallow hypertrophic lake (Lake Taihu, China). Fresenius Environ. Bull. 22, 3474–3483 (2013).CAS 

    Google Scholar 
    Zhu, W. et al. Vertical distribution of Microcystis colony size in Lake Taihu: Its role in algal blooms. J. Great Lakes Res. 40, 949–955 (2014).Article 

    Google Scholar 
    Chen, Y. Y. & Liu, Q. Q. On the horizontal distribution of algal-bloom in Chaohu Lake and its formation process. Acta Mech. Sinica-Prc. 30(005), 656–666 (2014).MathSciNet 
    Article 

    Google Scholar 
    Beletsky, D., Hawley, N., Rao, Y. R., Vanderploeg, H. A. & Ruberg, S. A. Summer thermal structure and anticyclonic circulation of Lake Erie. Geophys. Res. Lett. 39, 6605 (2012).Article 

    Google Scholar 
    Ishikawa, T. & Qian, X. Numerical simulation of wind-induced current and water exchange at the mouth of Takahamairi Bay of the Lake Kasumigaura during the formation of diurnal thermocline. Tohoku Univ. 2, 419–428 (1998).
    Google Scholar 
    Wu, H., Wu, X. & Yang, T. Feedback regulation of surface scum formation and persistence by self-shading of Microcystis colonies: Numerical simulations and laboratory experiments. Water Res. 194(3), 116908 (2021).CAS 
    Article 

    Google Scholar  More