More stories

  • in

    The role of epiphytes in seagrass productivity under ocean acidification

    Cullen-Unsworth, L. C. et al. Seagrass meadows globally as a coupled social-ecological system: Implications for human wellbeing. Mar. Pollut. Bull. 83, 387–397 (2014).CAS 
    Article 

    Google Scholar 
    Ondiviela, B. et al. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 87, 158–168 (2014).Article 

    Google Scholar 
    Campagne, C. S., Salles, J.-M., Boissery, P. & Deter, J. The seagrass Posidonia oceanica: ecosystem services identification and economic evaluation of goods and benefits. Mar. Pollut. Bull. 97, 391–400 (2015).CAS 
    Article 

    Google Scholar 
    Boudouresque, C. F., Mayot, N. & Pergent, G. The outstanding traits of the functioning of the Posidonia oceanica seagrass ecosystem. Biol. Mar. Medit. 13, 109–113 (2006).
    Google Scholar 
    Duarte, C. M., Kennedy, H., Marbà, N. & Hendriks, I. Assessing the capacity of seagrass meadows for carbon burial: Current limitations and future strategies. Ocean Coast. Manag. 83, 32–38 (2013).Article 

    Google Scholar 
    Barrón, C., Duarte, C. M., Frankignoulle, M. & Borges, A. V. Organic carbon metabolism and carbonate dynamics in a mediterranean seagrass (Posidonia oceanica) Meadow. Estuar. Coasts 29, 417–426 (2006).Article 

    Google Scholar 
    Marbà, N., Díaz-Almela, E. & Duarte, C. M. Mediterranean seagrass (Posidonia oceanica) loss between 1842 and 2009. Biol. Conserv. 176, 183–190 (2014).Article 

    Google Scholar 
    Chefaoui, R. M., Duarte, C. M. & Serrão, E. A. Dramatic loss of seagrass habitat under projected climate change in the Mediterranean Sea. Glob. Chang. Biol. 24, 4919–4928 (2018).ADS 
    Article 

    Google Scholar 
    Marbà, N. & Duarte, C. M. Mediterranean warming triggers seagrass (Posidonia oceanica) shoot mortality. Glob. Chang. Biol. 16, 2366–2375 (2010).ADS 
    Article 

    Google Scholar 
    Lovelock, C. E. et al. Assessing the risk of carbon dioxide emissions from blue carbon ecosystems. Front Ecol Env. 15, 257–265 (2017).Article 

    Google Scholar 
    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 1884–1896 (2013).ADS 
    Article 

    Google Scholar 
    Zunino, S., Libralato, S., Canu, D. M., Prato, G. & Solidoro, C. Impact of ocean acidification on ecosystem functioning and services in habitat-forming species and marine ecosystems. Ecosystems https://doi.org/10.1007/s10021-021-0060 (2021).Article 

    Google Scholar 
    Riebesell, U. et al. Reduced calcification of marine plankton in response to increased atmospheric CO2. Nature 407, 364–367 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Doney, S. C., Fabry, V. J., Feely, R. A. & Kleypas, J. A. Ocean acidification: the other CO2 problem. Annu. Rev. Mar. Sci. 1, 169–192 (2009).ADS 
    Article 

    Google Scholar 
    Koch, M., Bowes, G., Ross, C. & Zhang, X.-H. Climate change and ocean acidification effects on seagrasses and marine macroalgae. Glob. Chang. Biol. 19, 103–132 (2013).ADS 
    Article 

    Google Scholar 
    Zimmerman, R. C. et al. Experimental impacts of climate warming and ocean carbonation on eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 566, 1–15 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Egea, L. G., Jimé Nez-Ramos, R., Herná Ndez, I., Bouma, T. J. & Brun, F. G. Effects of ocean acidification and hydrodynamic conditions on carbon metabolism and dissolved organic carbon (DOC) fluxes in seagrass populations. PLoS ONE https://doi.org/10.1371/journal.pone.0192402 (2018).Article 

    Google Scholar 
    Jiang, Z. J., Huang, X.-P. & Zhang, J.-P. Effects of CO 2 enrichment on photosynthesis, growth, and biochemical composition of seagrass thalassia hemprichii (ehrenb.) aschers. J. Integr. Plant Biol. 52, 904–913 (2010).CAS 
    Article 

    Google Scholar 
    Apostolaki, E. T., Vizzini, S., Hendriks, I. E. & Olsen, Y. S. Seagrass ecosystem response to long-term high CO2 in a Mediterranean volcanic vent. Mar. Environ. Res. 99, 9–15 (2014).CAS 
    Article 

    Google Scholar 
    Hendriks, I. E. et al. Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11, 333–346 (2014).ADS 
    Article 

    Google Scholar 
    Bergstrom, E., Silva, J., Martins, C. & Horta, P. Seagrass can mitigate negative ocean acidification effects on calcifying algae. Sci. Rep. 9(1), 1–11 (2019).CAS 
    Article 

    Google Scholar 
    Hernán, G. et al. Seagrass (Posidonia oceanica) seedlings in a high-CO 2 world: from physiology to herbivory. Sci. Rep. 6(1), 1–12 (2016).MathSciNet 
    Article 

    Google Scholar 
    Cox, T. E. et al. Effects of ocean acidification on Posidonia oceanica epiphytic community and shoot productivity. J. Ecol. 103, 1594–1609 (2015).CAS 
    Article 

    Google Scholar 
    Cox, T. E. et al. Effects of in situ CO2 enrichment on structural characteristics, photosynthesis, and growth of the Mediterranean seagrass Posidonia oceanica. Biogeosciences 13, 2179–2194 (2016).ADS 
    Article 

    Google Scholar 
    Hall-Spencer, J. M. et al. Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454(7200), 96–99 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Mecca, S., Casoli, E., Ardizzone, G. & Gambi, M. C. Effects of ocean acidification on phenology and epiphytes of the seagrass Posidonia oceanica at two CO2 vent systems of Ischia (Italy). Mediterr. Mar. Sci. 21, 70–83 (2020).Article 

    Google Scholar 
    Ugarelli, K., Chakrabarti, S., Laas, P. & Stingl, U. The seagrass holobiont and its microbiome. Microorganisms 5(4), 81 (2017).Article 

    Google Scholar 
    Tarquinio, F., Hyndes, G. A., Laverock, B., Koenders, A. & Säwström, C. The seagrass holobiont: understanding seagrass-bacteria interactions and their role in seagrass ecosystem functioning. FEMS Microbiol. Lett. 366, 1–15 (2019).Article 

    Google Scholar 
    Brodersen, K. E. & Kühl, M. Effects of Epiphytes on the Seagrass Phyllosphere. Front. Mar. Sci. 9, 1–10 (2022).Article 

    Google Scholar 
    Seymour, J. R., Laverock, B., Nielsen, D. A., M., T.-T. S. & Macreadie, P. I. The Microbiology of Seagrasses. in Seagrasses of Australia 343–392 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-71354-0Ruocco, N. et al. First evidence of Halomicronema metazoicum (Cyanobacteria) free-living on Posidonia oceanica leaves. PLoS ONE 13(10), e0204954 (2018).Article 

    Google Scholar 
    Kohn, T. et al. The microbiome of posidonia oceanica seagrass leaves can be dominated by planctomycetes. Front. Microbiol 11, 1458 (2020).Article 

    Google Scholar 
    Casola, E., Scardi, M., Mazzella, L. & Fresi, E. Structure of the epiphytic community of posidonia oceanica leaves in a shallow meadow. Mar. Ecol. 8, 285–296 (1987).ADS 
    Article 

    Google Scholar 
    Martin, S. et al. Effects of naturally acidified seawater on seagrass calcareous epibionts. Biol. Lett 4, 689–692 (2008).Article 

    Google Scholar 
    Foo, S. A., Byrne, M., Ricevuto, E. & Gambi, M. C. The carbon dioxide vents of Ischia, Italy, a natural system to assess impacts of ocean acidification on marine ecosystems: an overview of research and comparisons with other vent systems. Oceanogr. Mar. Biol. 56, 237–310 (2018).
    Google Scholar 
    Olivé, I., Silva, J., Costa, M. M. & Santos, R. Estimating seagrass community metabolism using benthic chambers: the effect of incubation time. Estuaries Coasts 39, 138–144 (2016).Article 

    Google Scholar 
    Barrón, C. & Duarte, C. M. Dissolved organic matter release in a Posidonia oceanica meadow. Mar. Ecol. Prog. Ser. 374, 75–84 (2009).ADS 
    Article 

    Google Scholar 
    Langsrud, Ø. ANOVA for unbalanced data: Use Type II instead of Type III sums of squares. Stat. Comput. 13, 163–167 (2003).MathSciNet 
    Article 

    Google Scholar 
    RStudio Team. RStudio. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. (2021).Donnarumma, L., Lombardi, C., Cocito, S. & Gambi, M. C. Settlement pattern of Posidonia oceanica epibionts along a gradient of ocean acidification: an approach with mimics. Mediterr. Mar. Sci. 15, 498–509 (2014).Article 

    Google Scholar 
    Gravili, C., Cozzoli, F. & Gambi, M. C. Epiphytic hydroids on Posidonia oceanica seagrass meadows are winner organisms under future ocean acidification conditions: evidence from a CO2 vent system (Ischia Island, Italy). Eur. Zool. J. 88, 472–486 (2021).CAS 
    Article 

    Google Scholar 
    Rodolfo-Metalpa, R., Lombardi, C., Cocito, S., Hall-Spencer, J. M. & Gambi, M. C. Effects of ocean acidification and high temperatures on the bryozoan Myriapora truncata at natural CO2 vents. Mar. Ecol. 31, 447–456 (2010).CAS 

    Google Scholar 
    Wear, D. J., Sullivan, M. J., Moore, A. D. & Millie, D. F. Effects of water-column enrichment on the production dynamics of three seagrass species and their epiphytic algae. Mar. Ecol. Prog. Ser. 179, 201–213 (1999).ADS 
    Article 

    Google Scholar 
    Hasegawa, N., Hori, M. & Mukai, H. Seasonal shifts in seagrass bed primary producers in a cold-temperate estuary: Dynamics of eelgrass Zostera marina and associated epiphytic algae. Aquat. Bot. 86, 337–345 (2007).Article 

    Google Scholar 
    Piazzi, L., Balata, D. & Ceccherelli, G. Epiphyte assemblages of the Mediterranean seagrass Posidonia oceanica: an overview. Mar. Ecol. 37, 3–41 (2016).ADS 
    Article 

    Google Scholar 
    Celdrán, D., Espinosa, E., Sánchez-Amat, A. & Marín, A. Effects of epibiotic bacteria on leaf growth and epiphytes of the seagrass Posidonia oceanica. Mar. Ecol. Prog. Ser. 456, 21–27 (2012).ADS 
    Article 

    Google Scholar 
    Brodersen, K. E., Koren, K., Revsbech, N. P. & Kühl, M. Strong leaf surface basification and CO2 limitation of seagrass induced by epiphytic biofilm microenvironments. Plant Cell Environ. 43, 174–187 (2020).CAS 
    Article 

    Google Scholar 
    Noisette, F., Depetris, A., Kühl, M. & Brodersen, K. E. Flow and epiphyte growth effects on the thermal, optical and chemical microenvironment in the leaf phyllosphere of seagrass (Zostera marina). J. R. Soc. Interface 17(171), 20200485 (2020).Article 

    Google Scholar 
    Costa, M. M. et al. Epiphytes modulate posidonia oceanica photosynthetic production, energetic balance, antioxidant mechanisms, and oxidative damage. Front. Mar. Sci. 2, 111 (2015).Article 

    Google Scholar 
    Guilini, K. et al. Response of Posidonia oceanica seagrass and its epibiont communities to ocean acidification. PLoS ONE 12(8), e0181531 (2017).Article 

    Google Scholar 
    Palacios, S. L. & Zimmerman, R. C. Response of eelgrass Zostera marina to CO2 enrichment: possible impacts of climate change and potential for remediation of coastal habitats. Mar. Ecol. Prog. Ser. 344, 1–13 (2007).ADS 
    Article 

    Google Scholar 
    Scartazza, A. et al. Carbon and nitrogen allocation strategy in Posidonia oceanica is altered by seawater acidification. Sci. Total Environ. 607, 954–964 (2017).ADS 
    Article 

    Google Scholar 
    Hansen, A. B., Pedersen, A. S., Kühl, M. & Brodersen, K. E. Temperature Effects on Leaf and Epiphyte Photosynthesis, Bicarbonate Use and Diel O 2 Budgets of the Seagrass Zostera marina L. Front. Mar. Sci. 9, (2022).Burnell, O. W., Russell, B. D., Irving, A. D. & Connell, S. D. Seagrass response to CO2 contingent on epiphytic algae: indirect effects can overwhelm direct effects. Oecologia 1, 871–882 (2014).ADS 
    Article 

    Google Scholar 
    Mabrouk, L., Hamza, A., Brahim, B. & Bradai, M.-N. Variability in the structure of epiphyte assemblages on leaves and rhizomes of Posidonia oceanica in relation to human disturbances in a seagrass meadow off Tunisia. Aquat. Bot. 108, 33–40 (2013).Article 

    Google Scholar 
    Garrard, S. L. et al. Indirect effects may buffer negative responses of seagrass invertebrate communities to ocean acidification. J. Exp. Mar. Bio. Ecol. 461, 31–38 (2014).Article 

    Google Scholar 
    Touchette, B. W. & Burkholder, J. A. M. Review of nitrogen and phosphorus metabolism in seagrasses. J. Exp. Mar. Bio. Ecol. 250, 133–167 (2000).CAS 
    Article 

    Google Scholar 
    Borg, J. A., Rowden, A. A., Attrill, M. J., Schembri, P. J. & Jones, M. B. Wanted dead or alive: high diversity of macroinvertebrates associated with living and ‘dead’ Posidonia oceanica matte. Mar. Biol. 149, 667–677 (2006).Article 

    Google Scholar 
    Teixidó, N. et al. Functional biodiversity loss along natural CO 2 gradients. Nat. Commun. 9(1), 1–9 (2018).Article 

    Google Scholar  More

  • in

    Oogenesis and lipid metabolism in the deep-sea sponge Phakellia ventilabrum (Linnaeus, 1767)

    Bergé, J.-P. & Barnathan, G. Fatty acids from lipids of marine organisms: Molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Adv. Biochem. Eng. Biotechnol. 96, 49–125 (2005).
    Google Scholar 
    Parzanini, C., Parrish, C., Hamel, J. & Mercier, A. Functional diversity and nutritional content in a deep-sea faunal assemblage through total lipid, lipid class, and fatty acid analyses. PLoS ONE 13, e0207395 (2018).Article 

    Google Scholar 
    Parrish, C. C. Lipids in marine ecosystems. ISRN Oceanogr. 2013, 1–16 (2013).Article 

    Google Scholar 
    Parrish, C. et al. Lipid and phenolic biomarkers in marine ecosystems: analysis and applications. In Marine Chemistry. The Handbook of Environmental Chemistry (Vol. 5 Series: Water Pollution) Vol. 5 (ed. Wangersky, P. J.) (Springer, 2000).
    Google Scholar 
    Laender, F. D., Oevelen, D. V., Frantzen, S., Middelburg, J. J. & Soetaert, K. Seasonal PCB bioaccumulation in an arctic marine ecosystem: a model analysis incorporating lipid dynamics, food-web productivity and migration. Environ. Sci. Technol. 44, 356–361 (2010).Article 

    Google Scholar 
    Bianchi, T. & Canuel, E. Chemical Biomarkers in Aquatic Ecosystems (Princeton University Press, 2011).Book 

    Google Scholar 
    Signa, G. et al. Lipid and fatty acid biomarkers as proxies for environmental contamination in caged mussels Mytilus galloprovincialis. Ecol. Indic. 57, 384–394 (2015).CAS 
    Article 

    Google Scholar 
    Brett, M., Mueller-Navarra, D. & Persson, J. Crustacean zooplankton fatty acid composition. In Lipids in Aquatic Ecosystems (eds Kainz, M. et al.) 115–146 (Springer, 2009).Chapter 

    Google Scholar 
    Martin-Creuzburg, D. & Elert, E. Ecological significance of sterols in aquatic food webs. In Lipids in Aquatic Ecosystems (eds Kainz, M. et al.) 43–64 (Springer, 2009).Chapter 

    Google Scholar 
    Parrish, C. Essential fatty acids in aquatic food webs. In Lipids in Aquatic Ecosystem (eds Kainz, M. et al.) 309–326 (Springer, 2009).Chapter 

    Google Scholar 
    Maier, S. R., Bannister, R. J., van Oevelen, D. & Kutti, T. Seasonal controls on the diet, metabolic activity, tissue reserves and growth of the cold-water coral Lophelia pertusa. Coral Reefs 39, 173–187 (2020).Article 

    Google Scholar 
    Phleger, C. F. Buoyancy in marine fishes: Direct and indirect role of lipids. Am. Zool. 38, 321–330 (1998).CAS 
    Article 

    Google Scholar 
    Pond, D. W. & Tarling, G. A. Phase transitions of wax esters adjust buoyancy in diapausing Calanoides acutus. Limnol. Oceanogr. 56, 1310–1318 (2011).CAS 
    Article 

    Google Scholar 
    Giese, A. C. Lipids in the economy of marine invertebrates. Physiol. Rev. 46, 244–298 (1966).CAS 
    Article 

    Google Scholar 
    Joseph, J. D. Distribution and composition of lipids in marine invertebrates. In Marine Biogenic Lipids, Fats and Oils (ed. Ackman, R. G.) 49–143 (CRC Press, 1989).
    Google Scholar 
    Lee, R. F. Lipoproteins from the hemolymph and ovaries of marine invertebrates. In Advances in Comparative and Environmental Physiology (eds Houlihan, D. F. et al.) 187–207 (Springer, 1991).Chapter 

    Google Scholar 
    Kattner, G. & Hagen, W. Lipid metabolism of the Antarctic euphausiid Euphausia crystallorophias and its ecological implications. Mar. Ecol. Prog. Ser. 170, 203–213 (1998).CAS 
    Article 

    Google Scholar 
    Heras, H., Pollero, R. J., Gonzalez-Baró, M. R. & Pollero, R. J. Lipid and fatty acid composition and energy partitioning during embryo development in the shrimp Macrobrachium borellii. Lipids 35, 645–651 (2000).CAS 
    Article 

    Google Scholar 
    Viladrich, N. et al. Variation in lipid and free fatty acid content during spawning in two temperate octocorals with different reproductive strategies: surface versus internal brooder. Coral Reefs 35, 1033–1045 (2016).Article 

    Google Scholar 
    Hansen, M., Flatt, T. & Aguilaniu, H. Reproduction, fat metabolism, and lifespan—What is the connection?. Cell Metab. 17, 10–19 (2013).CAS 
    Article 

    Google Scholar 
    Strathmann, R. R. Egg size, larval development, and juvenile size in benthic marine invertebrates. Am. Nat. 111, 373–376 (1977).Article 

    Google Scholar 
    Pechenik, J. Delayed metamorphosis by larvae of benthic marine-invertebrates—Does it occur? Is there a price to pay?. Ophelia 32, 63–94 (1990).Article 

    Google Scholar 
    Harms, J. Larval development and delayed metamorphosis in the hermit crab Clibanarius erythropus (Latreille) (Crustacea, Diogenidae). J. Exp. Mar. Bio. Ecol. 156, 151–160 (1992).Article 

    Google Scholar 
    Harii, S., Kayanne, H., Takigawa, H. T., Hayashibara, T. H. & Yamamoto, M. Larval survivorship, competency periods and settlement of two brooding corals, Heliopora coerulea and Pocillopora damicornis. Mar. Biol. 141, 39–46 (2002).Article 

    Google Scholar 
    Doughty, P. & Shine, R. Detecting life history trade-offs: measuring energy stores in “capital” breeders reveals costs of reproduction. Oecologia 110, 508–513 (1997).Article 

    Google Scholar 
    Coma, R., Ribes, M., Gili, J.-M. & Zabala, M. An energetic approach to the study of life-history traits of two modular colonial benthic invertebrates. Mar. Ecol. Prog. Ser. 162, 89–103 (1998).Article 

    Google Scholar 
    Rossi, S. et al. Temporal variation in protein, carbohydrate, and lipid concentrations in Paramuricea clavata (Anthozoa, Octocorallia): Evidence for summer–autumn feeding constraints. Mar. Biol. 149, 643–651 (2006).CAS 
    Article 

    Google Scholar 
    Kattner, G., Graeve, M. & Hagen, W. Ontogenetic and seasonal changes in lipid and fatty acid/alcohol compositions of the dominant Antarctic copepods Calanus propinquus, Calanoides acutus and Rhincalanus gigas. Mar. Biol. 644, 18119 (1994).
    Google Scholar 
    Lee, R. F., Hagen, W. & Kattner, G. Lipid storage in marine zooplankton. Mar. Ecol. Prog. Ser. 307, 273–306 (2006).CAS 
    Article 

    Google Scholar 
    Mourente, G., Medina, A., González, S. & Rodríguez, A. Variations in lipid content and nutritional status during larval development of the marine shrimp Penaeus kerathurus. Aquaculture 130, 187–199 (1995).CAS 
    Article 

    Google Scholar 
    Marshall, C. T., Yaragina, N. A., Lambert, Y. & Kjesbu, O. S. Total lipid energy as a proxy for total egg production by fish stocks. Nature 402, 288–290 (1999).CAS 
    Article 

    Google Scholar 
    Marshall, C. T., Yaragina, N. A., Ådlandsvik, B. & Dolgov, A. V. Reconstructing the stock-recruit relationship for Northeast Arctic cod using a bioenergetic index of reproductive potential. Can. J. Fish. Aquat. Sci. 57, 2433–2442 (2000).Article 

    Google Scholar 
    Dalsgaard, J., St. John, M., Kattner, G., Müller-Navarra, D. & Hagen, W. B. Fatty acid trophic markers in the pelagic marine environment. Adv. Mar. Biol. 46, 225–340 (2003).Article 

    Google Scholar 
    Bergquist, P. R., Lawson, M. P., Lavis, A. & Cambie, R. C. Fatty acid composition and the classification of the Porifera. Biochem. Syst. Ecol. 12, 63–84 (1984).CAS 
    Article 

    Google Scholar 
    Djerassi, C. & Lam, W. K. Sponge phospholipids. Acc. Chem. Res. 24, 69–75 (1991).CAS 
    Article 

    Google Scholar 
    Thiel, V. et al. A chemical view of the most ancient metazoa – Biomarker chemotaxonomy of hexactinellid sponges. Naturwissenschaften 89, 60–66 (2002).CAS 
    Article 

    Google Scholar 
    Velosaotsy, N. et al. Phospholipid distribution and phospholipid fatty acids in four Saudi red sea sponges. Boll. Mus. Ist. Biol. Univ. Genova 68, 639–645 (2004).
    Google Scholar 
    Rod’kina, S. A. Fatty acids and other lipids of marine sponges. Russ. J. Mar. Biol. 31, S49–S60 (2005).Article 

    Google Scholar 
    Blumenberg, M. & Michaelis, W. High occurrences of brominated lipid fatty acids in boreal sponges of the order Halichondrida. Mar. Biol. 150, 1153–1160 (2007).CAS 
    Article 

    Google Scholar 
    Genin, E. et al. New trends in phospholipid class composition of marine sponges. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 150, 427–431 (2008).Article 

    Google Scholar 
    Müller, W. et al. Role of the aggregation factor in the regulation of phosphoinositide metabolism in sponges. Possible consequences on calcium efflux and on mitogenesis. J. Biol. Chem. 262, 9850–9858 (1987).Article 

    Google Scholar 
    Weissmann, G., Riesen, W., Davidson, S. & Waite, M. Stimulus-response coupling in marine sponge cell aggregation: Lipid metabolism and the function of exogenously added arachidonic and docosahexaenoic acids. Biochim. Biophys. Acta 960, 351–364 (1988).CAS 
    Article 

    Google Scholar 
    Zivanovic, A., Pastro, N. J., Fromont, J., Thomson, M. & Skropeta, D. Kinase inhibitory, haemolytic and cytotoxic activity of three deep-water sponges from North Western Australia and their fatty acid composition. Nat. Prod. Commun. 6, 1921–1924 (2011).CAS 

    Google Scholar 
    Shaaban, M., Abd-Alla, H. I., Hassan, A. Z., Aly, H. F. & Ghani, M. A. Chemical characterization, antioxidant and inhibitory effects of some marine sponges against carbohydrate metabolizing enzymes. Org. Med. Chem. Lett. 2, 30 (2012).Article 

    Google Scholar 
    Botić, T. et al. Fatty acid composition and antioxidant activity of Antarctic marine sponges of the genus Latrunculia. Polar Biol. 38, 1605–1612 (2015).Article 

    Google Scholar 
    Bennett, H., Bell, J. J., Davy, S. K., Webster, N. S. & Francis, D. S. Elucidating the sponge stress response; lipids and fatty acids can facilitate survival under future climate scenarios. Glob. Chang. Biol. 24, 3130–3144 (2018).Article 

    Google Scholar 
    Carballeira, N. M. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Prog. Lipid Res. 47, 50–61 (2008).CAS 
    Article 

    Google Scholar 
    Kikuchi, H. et al. Marine natural products. X. Pharmacologically active glycolipids from the Okinawan marine sponge Phyllospongia foliascens (Pallas). Chem. Pharm. Bull. (Tokyo) 30, 3544–3547 (1982).CAS 
    Article 

    Google Scholar 
    Natori, T., Morita, M., Akimoto, K. & Koezuka, Y. Agelasphins, novel antitumor and immunostimulatory cerebrosides from the marine sponge Agelas mauritianus. Tetrahedron 50, 2771–2784 (1994).CAS 
    Article 

    Google Scholar 
    Costantino, V., Fattorusso, E., Mangoni, A., Di Rosa, M. & Ianaro, A. Glycolipids from Sponges. 6. Plakoside A and B, two unique prenylated glycosphingolipids with Immunosuppressive activity from the marine sponge Plakortis simplex. J. Am. Chem. Soc. 119, 12465–12470 (1997).CAS 
    Article 

    Google Scholar 
    Costantino, V., Fattorusso, E., Imperatore, C. & Mangoni, A. Glycolipids from sponges. 11. Isocrasserides, novel glycolipids with a five-membered cyclitol widely distributed in marine sponges. J. Nat. Prod. 65, 883–886 (2002).CAS 
    Article 

    Google Scholar 
    Maldonado, M. & Riesgo, A. Reproduction in Porifera: a synoptic overview. Treballs la Soc. Catalana Biol. 59, 29–49 (2008).
    Google Scholar 
    Sciscioli, M., Lepore, E., Scalera-Liaci, L. & Gherardi, M. Indagine ultrastrutturale sugli ovociti di Erylus discophorus (Schmidt) (Porifera, Tetractinellida). Oebalia 15, 939–941 (1989).
    Google Scholar 
    Sciscioli, M., Liaci, L. S., Lepore, E., Gherardi, M. & Simpson, T. L. Ultrastructural study of the mature egg of the marine sponge Stelletta grubii (porifera demospongiae). Mol. Reprod. Dev. 28, 346–350 (1991).CAS 
    Article 

    Google Scholar 
    Riesgo, A. et al. Some like it fat: comparative ultrastructure of the embryo in two demosponges of the genus Mycale (order Poecilosclerida) from Antarctica and the Caribbean. PLoS ONE 10, e0118805 (2015).Article 

    Google Scholar 
    Watanabe, Y. The development of two species of Tetilla (Demosponge). NSR. O. U. 29, 71–106 (1978).
    Google Scholar 
    Gaino, E. & Sarà, M. An ultrastructural comparative study of the eggs of two species of Tethya (Porifera, Demospongiae). Invertebr. Reprod. Dev. 26, 99–106 (1994).Article 

    Google Scholar 
    Maldonado, M. & Riesgo, A. Gametogenesis, embryogenesis, and larval features of the oviparous sponge Petrosia ficiformis (Haplosclerida, Demospongiae). Mar. Biol. 156, 2181–2197 (2009).Article 

    Google Scholar 
    Lanna, E. & Klautau, M. Oogenesis and spermatogenesis in Paraleucilla magna (Porifera, Calcarea). Zoomorphology 129, 249–261 (2010).Article 

    Google Scholar 
    Koutsouveli, V. et al. Insights into the reproduction of some Antarctic dendroceratid, poecilosclerid, and haplosclerid demosponges. PLoS ONE 13, 1–24 (2018).Article 

    Google Scholar 
    Fell, P. E. The involvement of nurse cells in oogenesis and embryonic development in the marine sponge, Haliclona ecbasis. J. Morphol. 127, 133–149 (1969).Article 

    Google Scholar 
    Simpson, T. The Cell Biology of Sponges (Springer, 1984).Book 

    Google Scholar 
    Bellairs, R. The structure of the yolk of the hen’s egg as studied by electron microscopy : i. The yolk of the unincubated egg. J. Biophys. Biochem. Cytol. 11, 207–225 (1961).CAS 
    Article 

    Google Scholar 
    Ereskovsky, A. The Comparative Embryology of Sponges (Springer, 2010).Book 

    Google Scholar 
    Sarà, A., Cerrano, C. & Sarà, M. Viviparous development in the Antarctic sponge Stylocordyla borealis Loven, 1868. Polar Biol. 25, 425–431 (2002).Article 

    Google Scholar 
    Busch, K. et al. Chloroflexi dominate the deep-sea golf ball sponges Craniella zetlandica and Craniella infrequens throughout different life stages. Front. Mar. Sci. 7, 674 (2020).Article 

    Google Scholar 
    Koopmans, M. et al. Seasonal variation of fatty acids and stable carbon isotopes in sponges as indicators for nutrition: Biomarkers in sponges identified. Mar. Biotechnol. 17, 43–54 (2015).CAS 
    Article 

    Google Scholar 
    Lüskow, F. et al. Seasonality in lipid content of the demosponges Halichondria panicea and H. bowerbanki at two study sites in temperate Danish waters. Front. Mar. Sci. 6, 1–7 (2019).Article 

    Google Scholar 
    Reiswig, H. Population dynamics of three Jamaican demospongiae. Bull. Mar. Sci. 23, 191–226 (1973).
    Google Scholar 
    Elvin, D. W. Seasonal growth and reproduction of an intertidal sponge, Haliclona permollis (Bowerbank). Univ. Chicago Press 151, 108–125 (1976).
    Google Scholar 
    Elvin, D. W. The relationship of seasonal changes in the biochemical components to the reproductive behavior of the intertidal sponge, Haliclona permollis. Biol Bull. 156, 47–61 (1979).CAS 
    Article 

    Google Scholar 
    Barthel, D. On the ecophysiology of the sponge Halichondria panicea in Kiel Bight. I. Substrate specificity, growth and reproduction. Mar. Ecol. Prog. Ser. 32, 291–298 (1986).Article 

    Google Scholar 
    Ivanisevic, J., Pérez, T., Ereskovsky, A. V., Barnathan, G. & Thomas, O. P. Lysophospholipids in the Mediterranean sponge Oscarella tuberculata: Seasonal variability and putative biological role. J. Chem. Ecol. 37, 537 (2011).CAS 
    Article 

    Google Scholar 
    Klitgaard, A. B. The fauna associated with outer shelf and upper slope sponges (Porifera, demospongiae) at the Faroe islands, North-eastern Atlantic. Sarsia 80, 1–22 (1995).Article 

    Google Scholar 
    Klitgaard, A. B. & Tendal, O. Distribution and species composition of mass occurrences of large-sized sponges in the northeast Atlantic. Prog. Oceanogr. 61, 57–98 (2004).Article 

    Google Scholar 
    Kutti, T., Bannister, R. J. & Fosså, J. H. Community structure and ecological function of deep-water sponge grounds in the Traenadypet MPA—Northern Norwegian continental shelf. Cont. Shelf Res. 69, 21–30 (2013).Article 

    Google Scholar 
    Pile, A. & Young, C. The natural diet of a hexactinellid sponge: Benthic–pelagic coupling in a deep-sea microbial food web. Deep Sea Res. Part I Oceanogr. Res. Pap. 53, 1148–1156 (2006).Article 

    Google Scholar 
    Yahel, G., Whitney, F., Reiswig, H. M., Eerkes-Medrano, D. I. & Leys, S. P. In situ feeding and metabolism of glass sponges (Hexactinellida, Porifera) studied in a deep temperate fjord with a remotely operated submersible. Limnol. Oceanogr. 52, 428–440 (2007).CAS 
    Article 

    Google Scholar 
    Hoffmann, F. et al. Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11, 2228–2243 (2009).CAS 
    Article 

    Google Scholar 
    Cathalot, C. et al. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. Front. Mar. Sci. 2, 1–12 (2015).Article 

    Google Scholar 
    Kahn, A., Yahel, G., Chu, J., Tunnicliffe, V. & Leys, S. Benthic grazing and carbon sequestration by deep-water glass sponge reefs. Limnol. Oceanogr. 60, 78–88 (2015).Article 

    Google Scholar 
    Rooks, C. et al. Deep-sea sponge grounds as nutrient sinks: denitrification is common in boreo-Arctic sponges. Biogeosciences 17, 1231–1245 (2020).CAS 
    Article 

    Google Scholar 
    Koutsouveli, V., Cárdenas, P., Conejero, M., Rapp, H. T. & Riesgo, A. Reproductive biology of Geodia species (Porifera, Tetractinellida) from Boreo-Arctic North-Atlantic Deep-Sea Sponge Grounds. Front. Mar. Sci. 7, 1–22 (2020).Article 

    Google Scholar 
    Reynolds, E. S. The use of lead citrate at high PH as an electron-opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963).CAS 
    Article 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    Article 

    Google Scholar 
    Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37, 911–917 (1959).CAS 
    Article 

    Google Scholar 
    Balgoma, D. et al. Anabolic androgenic steroids exert a selective remodeling of the plasma lipidome that mirrors the decrease of the de novo lipogenesis in the liver. Metabolomics 16, 12 (2020).CAS 
    Article 

    Google Scholar 
    Kolmert, J. et al. Prominent release of lipoxygenase generated mediators in a murine house dust mite-induced asthma model. Prostaglandins Other Lipid Mediat. 137, 20–29 (2018).CAS 
    Article 

    Google Scholar 
    Balgoma, D. et al. Linoleic acid-derived lipid mediators increase in a female-dominated subphenotype of COPD. Eur. Respir. J. 47, 1645–1656 (2016).CAS 
    Article 

    Google Scholar 
    Smith, C. A., Want, E. J., O’Maille, G., Abagyan, R. & Siuzdak, G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal. Chem. 78, 779–787 (2006).CAS 
    Article 

    Google Scholar 
    Tautenhahn, R., Böttcher, C. & Neumann, S. Highly sensitive feature detection for high resolution LC/MS. BMC Bioinform. 9, 504 (2008).Article 

    Google Scholar 
    Fahy, E., Sud, M., Cotter, D. & Subramaniam, S. LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35, W606–W612 (2007).Article 

    Google Scholar 
    Böcker, S., Letzel, M. C., Lipták, Z. & Pervukhin, A. SIRIUS: decomposing isotope patterns for metabolite identification. Bioinformatics 25, 218–224 (2008).Article 

    Google Scholar 
    Koutsouveli, V. et al. The molecular machinery of gametogenesis in Geodia demosponges (Porifera): Evolutionary origins of a conserved toolkit across animals. Mol. Biol. Evol. 37, 3485–3506 (2020).CAS 
    Article 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    Article 

    Google Scholar 
    Grabherr, M. G. et al. Trinity: reconstructing a full-length transcriptome without a genome assembly from RNA-Seq data. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    Article 

    Google Scholar 
    Simão, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: Assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    Article 

    Google Scholar 
    Li, B. & Dewey, C. N. RSEM: Accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinform. 12, 323 (2011).CAS 
    Article 

    Google Scholar 
    Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).Article 

    Google Scholar 
    McCarthy, D. J., Chen, Y. & Smyth, G. K. Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res. 40, 4288–4297 (2012).CAS 
    Article 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).CAS 
    Article 

    Google Scholar 
    Boeckmann, B. et al. The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic Acids Res. 31, 365–370 (2003).CAS 
    Article 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59 (2014).Article 

    Google Scholar 
    Conesa, A. et al. Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21, 3674–3676 (2005).CAS 
    Article 

    Google Scholar 
    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30 (2000).CAS 
    Article 

    Google Scholar 
    Busch, K. et al. Population connectivity of fan-shaped sponge holobionts in the deep Cantabrian Sea. Deep Sea Res. Part I Oceanogr. Res. Pap. 167, 103427 (2020).Article 

    Google Scholar 
    Southwood, T. R. Habitat, the templet for ecological strategies. J. Anim. Ecol. 46, 336–365 (1977).Article 

    Google Scholar 
    Clarke, A. A reappraisal of the concept of metabolic cold adaptation in polar marine invertebrates. Biol. J. Linn. Soc. 14, 77–92 (1980).Article 

    Google Scholar 
    Witte, U. Seasonal reproduction in deep-sea sponges—Triggered by vertical particle flux?. Mar. Biol. 124, 571–581 (1996).Article 

    Google Scholar 
    Spetland, F., Rapp, H. T., Hoffmann, F. & Tendal, O. S. Sexual reproduction of Geodia barretti Bowerbank, 1858 (Porifera, Astrophorida) in two Scandinavian fjords. In Porifera Research: Biodiversity, Innovation, Sustainability Vol. 1858 (eds Custódio, M. et al.) 613–620 (Série Livros. Museu Nacional, 2007).
    Google Scholar 
    Wassmann, P. Dynamics of primary production and sedimentation in shallow fjords and polls of western Norway. Oceanogr. Mar. Biol. Annu. Rev. 29, 87–154 (1991).
    Google Scholar 
    Wassmann, P., Svendsen, H., Keck, A. & Reigstad, M. Selected aspects of the physical oceanography and particle fluxes in fjords of northern Norway. J. Mar. Syst. 8, 53–71 (1996).Article 

    Google Scholar 
    Bamstedt, U. Life cycle, seasonal vertical distribution and feeding of Calanus finmarchicus in Skagerrak coastal water. Mar. Biol. 137, 279–289 (2000).Article 

    Google Scholar 
    Eckelbarger, K. J. & Watling, L. Role of phylogenetic constraints in determining reproductive patterns in deep-sea invertebrates. Invertebr. Biol. 114, 256–269 (1995).Article 

    Google Scholar 
    Riesgo, A. & Maldonado, M. Ultrastructure of oogenesis of two oviparous demosponges: Axinella damicornis and Raspaciona aculeata (Porifera). Tissue Cell 41, 51–65 (2009).Article 

    Google Scholar 
    Whiteley, N. M., Taylor, E. W. & el Haj, A. J. A comparison of the metabolic cost of protein synthesis in stenothermal and eurythermal isopod crustaceans. Am. J. Physiol. 271, R1295–R1303 (1996).CAS 
    Article 

    Google Scholar 
    Pace, D. A. & Manahan, D. T. Cost of protein synthesis and energy allocation during development of Antarctic sea urchin embryos and larvae. Biol. Bull. 212, 115–129 (2007).CAS 
    Article 

    Google Scholar 
    Sciscioli, M., Lepore, E., Gherardi, M. & Liaci, L. S. Transfer of symbiotic bacteria in the mature oocyte of Geodia cydonium (Porifera, Demosponsgiae): An ultrastructural study. Cah. Biol. Mar. 35, 471–478 (1994).
    Google Scholar 
    McWilliams, S. R., Guglielmo, C., Pierce, B. & Klaassen, M. Flying, fasting, and feeding in birds during migration: A nutritional and physiological ecology perspective. J. Avian Biol. 35, 377–393 (2004).Article 

    Google Scholar 
    Derickson, W. K. Lipid storage and utilization in reptiles. Am. Zool. 16, 711–723 (1976).CAS 
    Article 

    Google Scholar 
    Fraser, A. J. Triacylglycerol content as a condition index for fish, bivalve, and crustacean larvae. Can. J. Fish. Aquat. Sci. 46, 1868–1873 (1989).CAS 
    Article 

    Google Scholar 
    Bonnet, X., Naulleau, G. & Mauget, R. The influence of body condition on 17-beta estradiol levels in relation to vitellogenesis in female Vipera aspis (Reptilia, Viperidae). Gen. Comp. Endocrinol. 93, 424–437 (1994).CAS 
    Article 

    Google Scholar 
    Duggan, A. et al. Seasonal variation in plasma lipids, lipoproteins, apolipoprotein A-I and vitellogenin in the freshwater turtle, Chrysemys picta. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 130, 253–269 (2001).CAS 
    Article 

    Google Scholar 
    Lance, V. A., Place, A. R., Grumbles, J. S. & Rostal, D. C. Variation in plasma lipids during the reproductive cycle of male and female desert tortoises, Gopherus agassizii. J. Exp. Zool. 293, 703–711 (2002).CAS 
    Article 

    Google Scholar 
    Kawazu, I. et al. Signals of vitellogenesis and estrus in female hawksbill turtles. Zoolog. Sci. 32, 114–118 (2015).Article 

    Google Scholar 
    Teshima, S. & Kanazawa, A. Variation in lipid compositions during the ovarian maturation of the prawn. Nippon Suisan Gakkaishi 49, 957–962 (1983).CAS 
    Article 

    Google Scholar 
    Clarke, A., Brown, J. H. & Holmes, L. J. The biochemical composition of eggs from Macrobrachium rosenbergii in relation to embryonic development. Comp. Biochem. Physiol. Part B Comp. Biochem. 96, 505–511 (1990).Article 

    Google Scholar 
    Allen, W. Amino acid and fatty acid composition of tissues of the dungeness crab (Cancer magister). J. Fish. Res. Board Canada 28, 1191–1195 (1971).CAS 
    Article 

    Google Scholar 
    Rosa, R. & Nunes, M. L. Tissue biochemical composition in relation to the reproductive cycle of deep-sea decapod Aristeus antennatus in the Portuguese south coast. J. Mar. Biol. Assoc. U. K. 83, 963–970 (2003).CAS 
    Article 

    Google Scholar 
    Balgoma, D., Pettersson, C. & Hedeland, M. Common fatty markers in diseases with dysregulated lipogenesis. Trends Endocrinol. Metab. 30, 283–285 (2019).CAS 
    Article 

    Google Scholar 
    Kent, C. Eukaryotic phospholipid biosynthesis. Annu. Rev. Biochem. 64, 315–343 (1995).CAS 
    Article 

    Google Scholar 
    Coleman, R. A. & Lee, D. P. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43, 134–176 (2004).CAS 
    Article 

    Google Scholar 
    Bell, R. M. & Coleman, R. A. Enzymes of glycerolipid synthesis in eukaryotes. Annu. Rev. Biochem. 49, 459–487 (1980).CAS 
    Article 

    Google Scholar 
    Mathews, C., van Holde, K., Appling, D. & Anthony-Cahill, S. Biochemistry (Pearson, 2019).
    Google Scholar 
    Gavaud, J. Histochemical identification of ovarian lipids during vitellogenesis in the lizard Lacerta vivipara. Can. J. Zool. 69, 1389–1392 (1991).Article 

    Google Scholar 
    Chapman, M. J. Animal lipoproteins: Chemistry, structure, and comparative aspects. J. Lipid Res. 21, 789–853 (1980).CAS 
    Article 

    Google Scholar 
    Lebouvier, M., Miramón-Puértolas, P. & Steinmetz, P.R. Evolutionary conserved aspects of animal nutrient uptake and transport in sea anemone vitellogenesis. bioRxiv (2022).Dolphin, P. J., Ansari, A. Q., Lazier, C. B., Munday, K. A. & Akhtar, M. Studies on the induction and biosynthesis of vitellogenin, an oestrogen-induced glycolipophosphoprotein. Biochem. J. 124, 751–758 (1971).CAS 
    Article 

    Google Scholar 
    Riesgo, A., Farrar, N., Windsor, P. J., Giribet, G. & Leys, S. P. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol. Biol. Evol. 31, 1102–1120 (2014).CAS 
    Article 

    Google Scholar 
    Wanders, R. J. A. Peroxisomes, lipid metabolism, and peroxisomal disorders. Mol. Genet. Metab. 83, 16–27 (2004).CAS 
    Article 

    Google Scholar 
    Wanders, R. J. A., Waterham, H. R. & Ferdinandusse, S. Metabolic interplay between peroxisomes and other subcellular organelles including mitochondria and the endoplasmic reticulum. Front. Cell Dev. Biol. 3, 83 (2016).Article 

    Google Scholar 
    Talley, J. & Mohiuddin, S. Biochemstry, Fatty Acid Oxidation (StatPearls, 2020).
    Google Scholar 
    Reiswig, H. M. Particle feeding in natural populations of three marine demosponges. Biol. Bull. 141, 568–591 (1971).Article 

    Google Scholar 
    Sugimoto, Y., Inazumi, T. & Tsuchiya, S. Roles of prostaglandin receptors in female reproduction. J. Biochem. 157, 73–80 (2015).CAS 
    Article 

    Google Scholar 
    Niringiyumukiza, J. D., Cai, H. & Xiang, W. Prostaglandin E2 involvement in mammalian female fertility: ovulation, fertilization, embryo development and early implantation. Reprod. Biol. Endocrinol. 16, 43 (2018).Article 

    Google Scholar 
    Kaczynski, P., Baryla, M., Goryszewska, E., Bauersachs, S. & Waclawik, A. Prostaglandin F2α promotes embryo implantation and development in the pig. Reproduction 156, 405–419 (2018).CAS 

    Google Scholar 
    De Petrocellis, L. & Di Marzo, V. Aquatic invertebrates open up new perspectives in eicosanoid research: Biosynthesis and bioactivity. Prostaglandins Leukot. Essent. Fat. Acids 51, 215–229 (1994).Article 

    Google Scholar 
    Destephano, D. B. & Brady, U. E. Prostaglandin and prostaglandin synthetase in the cricket, Acheta domesticus. J. Insect Physiol. 23, 905–911 (1977).CAS 
    Article 

    Google Scholar 
    Rich, A. M. et al. Calcium dependent aggregation of marine sponge cells is provoked by leukotriene B4 and inhibited by inhibitors of arachidonic acid oxidation. Biochem. Biophys. Res. Commun. 121, 863–870 (1984).CAS 
    Article 

    Google Scholar 
    Gramzow, M. et al. Role of phospholipase A2 in the stimulation of sponge cell proliferation by homologous lectin. Cell 59, 939–948 (1989).CAS 
    Article 

    Google Scholar 
    Nomura, T. & Ogata, H. Distribution of prostagladins in the animal kingdom. Biochim. Biophys. Acta 431, 127–131 (1976).CAS 
    Article 

    Google Scholar  More

  • in

    Habitat preferences, estimated abundance and behavior of tree hyrax (Dendrohyrax sp.) in fragmented montane forests of Taita Hills, Kenya

    Fischer, R. et al. Accelerated forest fragmentation leads to critical increase in tropical forest edge area. Sci. Adv. 7, eabg7012 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Newmark, W. D. & McNeally, P. B. Impact of habitat fragmentation on the spatial structure of the Eastern Arc forests in East Africa: Implications for biodiversity conservation. Biodivers. Conserv. 27, 1387–1402 (2018).Article 

    Google Scholar 
    Hall, J., Burgess, N. D., Lovett, J., Mbilinyi, B. & Gereau, R. E. Conservation implications of deforestation across an elevational gradient in the Eastern Arc Mountains, Tanzania. Biol. Conserv. 142, 2510–2521 (2009).Article 

    Google Scholar 
    Kuussaari, M. et al. Extinction debt: A challenge for biodiversity conservation. Trends Ecol. Evol. 24, 564–571 (2009).Article 

    Google Scholar 
    Gibson, L. et al. Near-complete extinction of native small mammal fauna 25 years after forest fragmentation. Science 341, 1508–1510 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Burgess, N. D. et al. The biological importance of the Eastern Arc Mountains of Tanzania and Kenya. Biol. Conserv. 134, 209–231 (2007).Article 

    Google Scholar 
    Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Oates, J. F. et al. A new species of tree hyrax (Procaviidae: Dendrohyrax) from West Africa and the significance of the Niger-Volta interfluvium in mammalian biogeography. Zool. J. Linn. Soc. 194, 527–552 (2022).Article 

    Google Scholar 
    Bloomer, P. Extant hyrax diversity is vastly underestimated. Afrotherian. Conserv. 7, 11–16 (2009).
    Google Scholar 
    Roberts, D., Topp-Jørgensen, E. & Moyer, D. C. Dendrohyrax validus Eastern Tree Hyrax. In Mammals of Africa Vol. I (eds Kingdon, J. et al.) 158–161 (Bloomsbury, 2013).
    Google Scholar 
    Hoeck, H. Some thoughts on the distribution of the tree hyraxes (genus Dendrohyrax) in northern Tanzania. Afrotherian Conserv. 13, 47–49 (2017).
    Google Scholar 
    Rosti, H., Pihlström, H., Bearder, S., Pellikka, P. & Rikkinen, J. Vocalization analyses of nocturnal arboreal mammals of the Taita Hills, Kenya. Diversity 12, 473 (2020).Article 

    Google Scholar 
    Roberts, D. Geographic variation in the loud calls of tree hyrax – Dendrohyrax validus (True 1890) In the Eastern Arc Mountains, East Africa: taxonomic and conservation implications. (MSc thesis, University of Reading, 2001).True, F. W. Description of two new species of mammals from Mt. Kilima-Njaro, East Africa. Proc. US Nat. Mus. 13, 227–229 (1890).Article 

    Google Scholar 
    True, F. W. An annotated catalogue of the mammals collected by Dr. W. L. Abbott in the Kilma-Njaro region, East Africa. Proc. U. S. Nat. Mus. 15, 445–480 (1892).Article 

    Google Scholar 
    Kundaeli, J. N. Distribution of tree hyrax (Dendrohyrax validus validus True) on Mt Kilimanjaro, Tanzania. Afr. J. Ecol. 14, 253–264 (1976).Article 

    Google Scholar 
    Gaylard, A. & Kerley, G. I. H. Diet of tree hyraxes Dendrohyrax arboreus (Hyracoidea: Procaviidae) in the Eastern Cape, South Africa. J. Mammal. 78, 213–221 (1997).Article 

    Google Scholar 
    Milner, J. Relationships between the forest dwelling people of south-west Mau and tree hyrax, Dendrohyrax arboreus. J. East Afr. Nat. Hist. 83, 17–29 (1994).Article 

    Google Scholar 
    Milner, J. M. & Harris, S. Habitat use and ranging behaviour of tree hyrax, Dendrohyrax arboreus, in the Virunga Volcanoes, Rwanda. Afr. J. Ecol. 37, 281–294 (1999).Article 

    Google Scholar 
    Gaylard, A. & Kerley, G. I. H. Habitat assessment for a rare, arboreal forest mammal, the tree hyrax (Dendrohyrax arboreus). Afr. J. Ecol. 39, 205–212 (2001).Article 

    Google Scholar 
    Djossa, B., Zachee, B. & Sinzin, B. Activity patterns and habitat use of the western tree hyrax (Dendrohyrax dorsalis), within forest patches and implications for conservation. Ecotropica 18, 65–72 (2012).
    Google Scholar 
    Opperman, E. J., Cherry, M. I. & Makunga, N. P. Community harvesting of trees used as dens and for food by the tree hyrax (Dendrohyrax arboreus) in the Pirie forest, South Africa. Koedoe 60, a1481 (2018).
    Cordeiro, N. J. et al. Notes on the ecology and status of some forest mammals in four Eastern Arc Mountains, Tanzania. J. East Afr. Nat. Hist. 94, 175–189 (2005).Article 

    Google Scholar 
    Koren, L. Vocalization as an indicator of individual quality in the rock hyrax. (PhD thesis, Tel-Aviv University, 2006).Koren, L., Mokady, O. & Geffen, E. Social status and cortisol levels in singing rock hyraxes. Horm. Behav. 54, 212–216 (2008).CAS 
    Article 

    Google Scholar 
    Koren, L. & Geffen, E. Complex call in male rock hyrax (Procavia capensis): A multi-information distributing channel. Behav. Ecol. Sociobiol. 63, 581–590 (2009).Article 

    Google Scholar 
    Lawes, M. J., Mealin, P. E. & Piper, S. E. Patch occupancy and potential metapopulation dynamics of three forest mammals in fragmented Afromontane forest in South Africa. Conserv. Biol. 14, 1088–1098 (2000).Article 

    Google Scholar 
    Topp-Jørgensen, J. E., Marshal, A. R., Brink, H. & Pedersen, U. B. Quantifying the response of tree hyraxes (Dendrohyrax validus) to human disturbance in the Udzungwa Mountains, Tanzania. Trop. Conserv. Sci. 1, 63–74 (2008).Article 

    Google Scholar 
    Hill, A. P. et al. AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods Ecol. Evol. 9, 1199–1211 (2018).Article 

    Google Scholar 
    Marques, T. A. et al. Estimating animal population density using passive acoustics. Biol. Rev. 88, 287–309 (2013).Article 

    Google Scholar 
    Pérez-Granados, C. & Traba, J. Estimating bird density using passive acoustic monitoring: A review of methods and suggestions for further research. Ibis 163, 765–783 (2021).Article 

    Google Scholar 
    Campos-Cerqueira, M. & Aide, T. M. Improving distribution data of threatened species by combining acoustic monitoring and occupancy modelling. Methods Ecol. Evol. 7, 1340–1348 (2016).Article 

    Google Scholar 
    McLean, K. A. et al. Movement patterns of three arboreal primates in a Neotropical moist forest explained by LiDAR-estimated canopy structure. Landsc. Ecol. 31, 1849–1862 (2016).Article 

    Google Scholar 
    Davies, A. B., Ancrenaz, M., Oram, F. & Asner, G. P. Canopy structure drives orangutan habitat selection in disturbed Bornean forests. Proc. Natl. Acad. Sci. USA 114, 8307–8312 (2017).CAS 
    Article 

    Google Scholar 
    Singh, M., Cheyne, S. M. & Ehlers Smith, D. A. How conspecific primates use their habitats: Surviving in an anthropogenically-disturbed forest in Central Kalimantan, Indonesia. Ecol. Indic. 87, 167–177 (2018).Article 

    Google Scholar 
    Simonson, W. D., Allen, H. D. & Coomes, D. A. Applications of airborne lidar for the assessment of animal species diversity. Methods Ecol. Evol. 5, 719–729 (2014).Article 

    Google Scholar 
    Aerts, R. et al. Woody plant communities of isolated Afromontane cloud forests in Taita Hills, Kenya. Plant Ecol. 212, 639–649 (2011).Article 

    Google Scholar 
    Lovett, J. C., Wasser, S. K., Cambridge University Press. Biogeography and Ecology of the Rain Forests of Eastern Africa (Cambridge University Press, 2008).
    Google Scholar 
    Pellikka, P. K. E., Lötjönen, M., Siljander, M. & Lens, L. Airborne remote sensing of spatiotemporal change (1955–2004) in indigenous and exotic forest cover in the Taita Hills, Kenya. Int. J. Appl. Earth Obs. Geoinf. 11, 221–232 (2009).ADS 
    Article 

    Google Scholar 
    Rovero, F. et al. Targeted vertebrate surveys enhance the faunal importance and improve explanatory models within the Eastern Arc Mountains of Kenya and Tanzania. Diversity Distrib. 20, 1438–1449 (2014).Article 

    Google Scholar 
    Rosti, H., Rikkinen, J., Pellikka, P., Bearder, S. & Mwamodenyi, J. M. Taita Mountain dwarf galago is extant in the Taita Hills of Kenya. Oryx 54, 152–153 (2020).Article 

    Google Scholar 
    Pihlström, H., Rosti, H., Lombo, B. & Pellikka, P. Domestic dog predation on white-tailed small-eared galago (Otolemur garnettii lasiotis) in the Taita Hills, Kenya. Afr. Primates 15, 31–38 (2021).
    Google Scholar 
    Etana, B. et al. Traditional shade coffee forest systems act as refuges for medium- and large-sized mammals as natural forest dwindles in Ethiopia. Biol. Conserv. 260, 109219 (2021).Article 

    Google Scholar 
    Hoeck, H., Rovero, F., Cordeiro, N., Butynski, T., Perkin, A. & Jones, T. Dendrohyrax validus. The IUCN Red List of Threatened Species (2015: e.T136599A21288090).Himberg, N. Traditionally protected forests’ role within transforming natural resource management regimes in Taita Hills, Kenya. (PhD thesis, University of Helsinki, 2011).Thijs, K. W., Roelen, I. & Musila, W. M. Field guide to the woody plants of Taita Hills, Kenya. J. East Afr. Nat. Hist. 102, 1–272 (2014).Article 

    Google Scholar 
    Yéboué, K. Y. et al. Genetic typing and in silico assignment of smoked and fresh bushmeat sold on markets and restaurants in west-central Côte d’Ivoire. Int. J. Genet. Mol. Biol. 13, 1–8 (2021).Article 

    Google Scholar 
    Brown, K. J. & Downs, C. T. Seasonal behavioural patterns of free-living rock hyrax (Procavia capensis). J. Zool. 265, 311–326 (2005).Article 

    Google Scholar 
    Brown, K. J. & Downs, C. T. Seasonal patterns in body temperature of free-living rock hyrax (Procavia capensis). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 143, 42–49 (2006).Article 

    Google Scholar 
    Ilany, A., Barocas, A., Kam, M., Ilany, T. & Geffen, E. The energy cost of singing in wild rock hyrax males: Evidence for an index signal. Anim. Behav. 85, 995–1001 (2013).Article 

    Google Scholar 
    Demartsev, V. et al. Male hyraxes increase song complexity and duration in the presence of alert individuals. Behav. Ecol. 25, 1451–1458 (2014).Article 

    Google Scholar 
    Gaynor, K. M., Hojnowski, C. E., Carter, N. H. & Brashares, J. S. The influence of human disturbance on wildlife nocturnality. Science 360, 1232–1235 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Adhikari, H. et al. Determinants of aboveground biomass across an Afromontane landscape mosaic in Kenya. Remote Sens. 9, 827 (2017).ADS 
    Article 

    Google Scholar 
    Heiskanen, J., Korhonen, L., Hietanen, J. & Pellikka, P. K. E. Use of airborne lidar for estimating canopy gap fraction and leaf area index of tropical montane forests. Int. J. Remote Sens. 36, 2569–2583 (2015).Article 

    Google Scholar 
    Roussel, J.-R. et al. lidR: An R package for analysis of Airborne Laser Scanning (ALS) data. Remote Sens. Environ. 251, 112061 (2020).ADS 
    Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).
    Google Scholar 
    Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378 (2017).Article 

    Google Scholar 
    Lüdecke, D., Ben-Shachar, M., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. JOSS 6, 3139 (2021).ADS 
    Article 

    Google Scholar 
    Wickham, H. Ggplot2: Elegant Graphics for Data Analysis (Springer, 2009).MATH 
    Book 

    Google Scholar 
    Zuur, A. F., Savelʹev, A. A. & Ieno, E. N. Zero Inflated Models and Generalized Linear Mixed Models with R (Highland Statistics, 2012).
    Google Scholar 
    Campbell, H. The consequences of checking for zero-inflation and overdispersion in the analysis of count data. Methods Ecol. Evol. 12, 665–680 (2021).Article 

    Google Scholar 
    Zuur, A. F. & Ieno, E. N. A protocol for conducting and presenting results of regression-type analyses. Methods Ecol. Evol. 7, 636–645 (2016).Article 

    Google Scholar 
    Aho, K., Derryberry, D. & Peterson, T. Model selection for ecologists: The worldviews of AIC and BIC. Ecology 95, 631–636 (2014).Article 

    Google Scholar  More

  • in

    Thicker eggshells are not predicted by host egg ejection behaviour in four species of Australian cuckoo

    Rothstein, S. I. A model system for coevolution: Avian brood parasitism. Annu. Rev. Ecol. Syst. 21, 481–508 (1990).Article 

    Google Scholar 
    Feeney, W. E. et al. Brood parasitism and the evolution of cooperative breeding in birds. Science 342, 1506–1508 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Brooke, M. de L. & Davies, N. B. Egg mimicry by cuckoos Cuculus canorus in relation to discrimination by hosts. Nature 335, 630–632 (1988).ADS 
    Article 

    Google Scholar 
    Medina, I. & Langmore, N. E. The costs of avian brood parasitism explain variation in egg rejection behaviour in hosts. Biol. Let. 11, 20150296 (2015).Article 

    Google Scholar 
    Langmore, N. E., Hunt, S. & Kilner, R. M. Escalation of a coevolutionary arms race through host rejection of brood parasitic young. Nature 422, 157–160 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Grim, T. Experimental evidence for chick discrimination without recognition in a brood parasite host. Proc. R. Soc. B: Biol. Sci. 274, 373–381 (2007).Article 

    Google Scholar 
    Sato, N. J., Tokue, K., Noske, R. A., Mikami, O. K. & Ueda, K. Evicting cuckoo nestlings from the nest: A new anti-parasitism behaviour. Biol. Let. 6, 67–69. https://doi.org/10.1098/rsbl.2009.0540 (2010).Article 

    Google Scholar 
    Davies, N. & Brooke, M. de L. Cuckoos versus reed warblers: Adaptations and counteradaptations. Anim. Behav. 36, 262–284 (1988).Article 

    Google Scholar 
    Langmore, N. E. et al. Visual mimicry of host nestlings by cuckoos. Proc. R. Soc. B: Biol. Sci. 278, 2455–2463 (2011).Article 

    Google Scholar 
    Noh, H.-J., Gloag, R. & Langmore, N. E. True recognition of nestlings by hosts selects for mimetic cuckoo chicks. Proc. R. Soc. B: Bio. Sci. 285, 20180726 (2018).Article 

    Google Scholar 
    Spottiswoode, C. N. & Stevens, M. Host-parasite arms races and rapid changes in bird egg appearance. Am. Nat. 179, 633–648. https://doi.org/10.1086/665031 (2012).Article 

    Google Scholar 
    Taylor, C. J. & Langmore, N. E. How do brood-parasitic cuckoos reconcile conflicting environmental and host selection pressures on egg size investment?. Anim. Behav. 168, 89–96. https://doi.org/10.1016/j.anbehav.2020.08.003 (2020).Article 

    Google Scholar 
    Langmore, N. E., Maurer, G., Adcock, G. J. & Kilner, R. M. Socially acquired host-specific mimicry and the evolution of host races in Horsfield’s bronze-cuckoo Chalcites basalis. Evolution 62, 1689–1699 (2008).Article 

    Google Scholar 
    Noh, H. J., Jacomb, F., Gloag, R. & Langmore, N. E. Frontline defences against cuckoo parasitism in the large-billed gerygones. Anim. Behav. 174, 51–61. https://doi.org/10.1016/j.anbehav.2021.01.021 (2021).Article 

    Google Scholar 
    Langmore, N. E. & Kilner, R. M. Why do Horsfield’s bronze-cuckoo Chalcites basalis eggs mimic those of their hosts?. Behav. Ecol. Sociobiol. 63, 1127–1131. https://doi.org/10.1007/s00265-009-0759-9 (2009).Article 

    Google Scholar 
    Spottiswoode, C. N. & Stevens, M. How to evade a coevolving brood parasite: Egg discrimination versus egg variability as host defences. Proc. R. Soc. B: Biol. Sci. 278, 3566–3573. https://doi.org/10.1098/rspb.2011.0401 (2011).Article 

    Google Scholar 
    Yang, C., Wang, L., Liang, W. & Møller, A. P. Egg recognition as antiparasitism defence in hosts does not select for laying of matching eggs in parasitic cuckoos. Anim. Behav. 122, 177–181. https://doi.org/10.1016/j.anbehav.2016.10.018 (2016).Article 

    Google Scholar 
    Stevens, M. Bird brood parasitism. Curr. Biol. 23, R909–R913. https://doi.org/10.1016/j.cub.2013.08.025 (2013).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Feeney, W. E., Troscianko, J., Langmore, N. E. & Spottiswoode, C. N. Evidence for aggressive mimicry in an adult brood parasitic bird, and generalized defences in its host. Proc. R. Soc. B: Biol. Sci. 282, 20150795 (2015).Article 

    Google Scholar 
    Davies, N. B. & Welbergen, J. A. Cuckoo–hawk mimicry? An experimental test. Proc. R. Soc. B: Biol. Sci. 275, 1817–1822 (2008).CAS 
    Article 

    Google Scholar 
    Brooker, L. C. & Brooker, M. G. Why are cuckoos host specific?. Oikos 57, 301–309. https://doi.org/10.2307/3565958 (1990).Article 

    Google Scholar 
    Langmore, N. E., Stevens, M., Maurer, G. & Kilner, R. M. Are dark cuckoo eggs cryptic in host nests?. Anim. Behav. 78, 461–468 (2009).Article 

    Google Scholar 
    Lack, D. L. Ecological Adaptations for Breeding in Birds (Methuen & Co., Ltd., 1968).
    Google Scholar 
    Spaw, C. D. & Rohwer, S. A comparative study of eggshell thickness in cowbirds and other passerines. The Condor 89, 307–318. https://doi.org/10.2307/1368483 (1987).Article 

    Google Scholar 
    Igic, B. et al. Alternative mechanisms of increased eggshell hardness of avian brood parasites relative to host species. J. R. Soc. Interface 8, 1654–1664. https://doi.org/10.1098/rsif.2011.0207 (2011).Article 

    Google Scholar 
    Brooker, M. G. & Brooker, L. C. Eggshell strength in cuckoos and cowbirds. Ibis 133, 406–413. https://doi.org/10.1111/j.1474-919X.1991.tb04589.x (1991).Article 

    Google Scholar 
    Maurer, G. et al. First light for avian embryos: eggshell thickness and pigmentation mediate variation in development and UV exposure in wild bird eggs. Funct. Ecol. 29, 209–218 (2015).Article 

    Google Scholar 
    Amos, A. & Rahn, H. Pores in avian eggshells: Gas conductance, gas exchange and embryonic growth rate. Respir. Physiol. 61, 1–20 (1985).Article 

    Google Scholar 
    Ar, A., Rahn, H. & Paganelli, C. V. The avian egg: Mass and strength. Condor 81, 331–337 (1979).Article 

    Google Scholar 
    Rahn, H. & Ar, A. Gas-exchange of the avian egg: Time, structure, and function. Am. Zool. 20, 477–484 (1980).Article 

    Google Scholar 
    Swynnerton, C. Rejections by birds of eggs unlike their own: With remarks on some of the cuckoo problems. Ibis 60, 127–154 (1918).Article 

    Google Scholar 
    López, A. V., Fiorini, V. D., Ellison, K. & Peer, B. D. Thick eggshells of brood parasitic cowbirds protect their eggs and damage host eggs during laying. Behav. Ecol. 29, 965–973 (2018).Article 

    Google Scholar 
    Wyllie, I. The Cuckoo (Batsford, 1981).
    Google Scholar 
    Yang, C. et al. Keeping eggs warm: Thermal and developmental advantages for parasitic cuckoos of laying unusually thick-shelled eggs. Sci. Nat. 105, 10 (2018).Article 

    Google Scholar 
    Davies, N. B. Cuckoos Cowbirds and other Cheats (T & A D Poyser, 2000).
    Google Scholar 
    Spottiswoode, C. N. The evolution of host-specific variation in cuckoo eggshell strength. J. Evol. Biol. 23, 1792–1799. https://doi.org/10.1111/j.1420-9101.2010.02010.x (2010).CAS 
    Article 

    Google Scholar 
    Langmore, N. E. et al. The evolution of egg rejection by cuckoo hosts in Australia and Europe. Behav. Ecol. 16, 686–692. https://doi.org/10.1093/beheco/ari041 (2005).Article 

    Google Scholar 
    Rohwer, S., Spaw, C. D. & Røskaft, E. Costs to northern orioles of puncture-ejecting parasitic cowbird eggs from their nests. The Auk 106, 734–738 (1989).
    Google Scholar 
    Brooker, M. G., Brooker, L. C. & Rowley, I. Egg deposition by the bronze-cuckoos Chrysococcyx basalis and Chrysococcyx lucidus. Emu 88, 107–109. https://doi.org/10.1071/Mu9880107 (1988).Article 

    Google Scholar 
    McClelland, S. C. et al. Embryo movement is more frequent in avian brood parasites than birds with parental reproductive strategies. Proc. R. Soc B-Biol. Sci. https://doi.org/10.1098/rspb.2021.1137 (2021).Article 

    Google Scholar 
    Gosler, A. G. & Wilkin, T. A. Eggshell speckling in a passerine bird reveals chronic long-term decline in soil calcium. Bird Study 64, 195–204. https://doi.org/10.1080/00063657.2017.1314448 (2017).Article 

    Google Scholar 
    Lundholm, C. E. Inhibition of prostaglandin synthesis in eggshell gland mucosa as a mechanism for P, P’-DDE-induced eggshell thinning in birds: A comparison of ducks and domestic-fowls. Comp. Biochem. Phys. C 106, 389–394. https://doi.org/10.1016/0742-8413(93)90151-A (1993).Article 

    Google Scholar 
    Bitman, J., Cecil, H. C. & Fries, G. F. DDT-Induced inhibition of avian shell gland carbonic anhydrase: A mechanism for thin eggshells. Science 168, 594–596. https://doi.org/10.1126/science.168.3931.594 (1970).ADS 
    CAS 
    Article 

    Google Scholar 
    Ratcliffe, D. A. Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some British birds. J. Appl. Ecol. 7, 67-+. https://doi.org/10.2307/2401613 (1970).Article 

    Google Scholar 
    Bouwman, H., Govender, D., Underhill, L. & Polder, A. Chlorinated, brominated and fluorinated organic pollutants in African Penguin eggs: 30 years since the previous assessment. Chemosphere 126, 1–10. https://doi.org/10.1016/j.chemosphere.2014.12.071 (2015).ADS 
    CAS 
    Article 

    Google Scholar 
    Bleu, J., Agostini, S., Angelier, F. & Biard, C. Experimental increase in temperature affects eggshell thickness, and not egg mass, eggshell spottiness or egg composition in the great tit (Parus major). Gen. Comp. Endocr. 275, 73–81. https://doi.org/10.1016/j.ygcen.2019.02.004 (2019).CAS 
    Article 

    Google Scholar 
    Picman, J. & Pribil, S. Is greater eggshell density an alternative mechanism by which parasitic cuckoos increase the strength of their eggs?. J. Ornithol. 138, 531–541. https://doi.org/10.1007/bf01651384 (1997).Article 

    Google Scholar 
    Lopez, A. V. et al. How to build a puncture- and breakage-resistant eggshell? Mechanical and structural analyses of avian brood parasites and their hosts. J. Exp. Biol. 224, jeb243016. https://doi.org/10.1242/jeb.243016 (2021).Article 

    Google Scholar 
    Soler, M., Rodriguez-Navarro, A. B., Perez-Contreras, T., Garcia-Ruiz, J. M. & Soler, J. J. Great spotted cuckoo eggshell microstructure characteristics can make eggs stronger. J. Avian Biol. 50, e02252. https://doi.org/10.1111/jav.02252 (2019).Article 

    Google Scholar 
    D’Alba, L. et al. Evolution of eggshell structure in relation to nesting ecology in non-avian reptiles. J. Morphol. 282, 1066–1079. https://doi.org/10.1002/jmor.21347 (2021).CAS 
    Article 

    Google Scholar 
    Legendre, L. J. & Clarke, J. A. Shifts in eggshell thickness are related to changes in locomotor ecology in dinosaurs. Evolution 75, 1415–1430. https://doi.org/10.1111/evo.14245 (2021).Article 

    Google Scholar 
    Le Roy, N., Stapane, L., Gautron, J. & Hincke, M. T. Evolution of the avian eggshell biomineralization protein toolkit: New insights from multi-omics. Front. Genet. 12, 672433. https://doi.org/10.3389/fgene.2021.672433 (2021).CAS 
    Article 

    Google Scholar 
    Medina, I. & Langmore, N. E. Batten down the thatches: Front-line defences in an apparently defenceless cuckoo host. Anim. Behav. 112, 195–201. https://doi.org/10.1016/j.anbehav.2015.12.006 (2016).Article 

    Google Scholar 
    Starling, M., Heinsohn, R., Cockburn, A. & Langmore, N. E. Cryptic gentes revealed in pallid cuckoos Cuculus pallidus using reflectance spectrophotometry. Proc. R. Soc. Lond. B 273, 1929–1934 (2006).CAS 

    Google Scholar 
    Abernathy, V. E., Troscianko, J. & Langmore, N. E. Egg mimicry by the Pacific koel: Mimicry of one host facilitates exploitation of other hosts with similar egg types. J. Avian Biol. 48, 1414–1424. https://doi.org/10.1111/jav.01530 (2017).Article 

    Google Scholar 
    Green, R. E. An evaluation of three indices of eggshell thickness. Ibis 142, 676–679. https://doi.org/10.1111/j.1474-919X.2000.tb04468.x (2000).Article 

    Google Scholar 
    Green, R. E. Long-term decline in the thickness of eggshells of thrushes, Turdus spp., in Britain. Proc. R. Soc. London. Ser. B: Biol. Sci. 265, 679–684. https://doi.org/10.1098/rspb.1998.0347 (1998).Article 

    Google Scholar 
    Igic, B. et al. Comparison of micrometer-and scanning electron microscope-based measurements of avian eggshell thickness. J. Field Ornithol. 81, 402–410 (2010).Article 

    Google Scholar 
    Maurer, G., Portugal, S. J. & Cassey, P. A comparison of indices and measured values of eggshell thickness of different shell regions using museum eggs of 230 European bird species. Ibis 154, 714–724 (2012).Article 

    Google Scholar 
    Becking, J. The ultrastructure of the avian eggshell. Ibis 117, 143–151 (1975).Article 

    Google Scholar 
    Birkhead, T. et al. New insights from old eggs–the shape and thickness of Great Auk Pinguinus impennis eggs. Ibis 162(4), 1345–1354 (2020).Article 

    Google Scholar 
    Riley, A., Sturrock, C., Mooney, S. & Luck, M. Quantification of eggshell microstructure using X-ray micro computed tomography. Br. Poult. Sci. 55, 311–320 (2014).CAS 
    Article 

    Google Scholar 
    Kibala, L., Rozempolska-Rucinska, I., Kasperek, K., Zieba, G. & Lukaszewicz, M. Ultrasonic eggshell thickness measurement for selection of layers. Poult. Sci. 94, 2360–2363. https://doi.org/10.3382/ps/pev254 (2015).Article 

    Google Scholar 
    Khaliduzzaman, A. et al. A nondestructive eggshell thickness measurement technique using terahertz waves. Sci. Rep. 10, 1–5 (2020).Article 

    Google Scholar 
    Santolo, G. M. A new nondestructive method for measuring eggshell thickness using a non-ferrous material thickness gauge. Wilson J. Ornithol. 130, 502–509. https://doi.org/10.1676/17-035.1 (2018).Article 

    Google Scholar 
    Marini, M. A. et al. The five million bird eggs in the world’s museum collections are an invaluable and underused resource. Auk 137, ukaa036. https://doi.org/10.1093/auk/ukaa036 (2020).Article 

    Google Scholar 
    Brooker, M. G. & Brooker, L. C. Cuckoo hosts in Australia. Aust. Zool. Rev. 2, 1–67 (1989).
    Google Scholar 
    Higgins, P. J. Vol. Volume 4: Parrots to Dollarbird (Oxford University Press, 1999).
    Google Scholar 
    Higgins, P. J. & Peter, J. M. Vol. 6: Pardalotes to Shrike-Thrushes (Oxford University Press, 2002).
    Google Scholar 
    Higgins, P. J., Peter, J. M. & Cowling, S. J. Vol. 4: Parrots to Dollarbird (Oxford University Press, 2006).
    Google Scholar 
    Higgins, P. J., Peter, J. M. & Steele, W. K. Vol. 5: Tyrant-flycatchers to Chats (Oxford University Press, 2001).
    Google Scholar 
    Landstrom, M., Heinsohn, R. & Langmore, N. E. Clutch variation and egg rejection in three hosts of the pallid cuckoo Cuculus pallidus. Behaviour 147, 19–36. https://doi.org/10.1163/000579509X12483520922043 (2010).Article 

    Google Scholar 
    Abernathy, V. E., Johnson, L. E. & Langmore, N. E. An experimental test of defenses against avian brood parasitism in a recent host. Front. Ecol. Evol. 9, 244. https://doi.org/10.3389/fevo.2021.651733 (2021).Article 

    Google Scholar 
    Landstrom, M. T., Heinsohn, R. & Langmore, N. E. Does clutch variability differ between populations of cuckoo hosts in relation to the rate of parasitism?. Anim. Behav. 81, 307–312 (2011).Article 

    Google Scholar 
    Peterson, S. H. et al. Avian eggshell thickness in relation to egg morphometrics, embryonic development, and mercury contamination. Ecol. Evol. 10, 8715–8740. https://doi.org/10.1002/ece3.6570 (2020).Article 

    Google Scholar 
    Attard, M., Medina, I., Langmore, N. E. & Sherratt, E. Egg shape mimicry in parasitic cuckoos. J. Evol. Biol. 30, 2079–2084 (2017).CAS 
    Article 

    Google Scholar 
    Birchard, G. F. & Deeming, D. C. Avian eggshell thickness: Scaling and maximum body mass in birds. J. Zool. 279, 95–101. https://doi.org/10.1111/j.1469-7998.2009.00596.x (2009).Article 

    Google Scholar 
    Orme, D. et al. The caper package: Comparative analysis of phylogenetics and evolution in R. R Packag. Vers. 5, 549–593 (2013).
    Google Scholar 
    Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K. & Mooers, A. O. The global diversity of birds in space and time. Nature 491, 444–448. https://doi.org/10.1038/nature11631 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Schliep, K. P. Phangorn: Phylogenetic analysis in R. Bioinformatics 27, 592–593. https://doi.org/10.1093/bioinformatics/btq706 (2011).CAS 
    Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing, (2013). More

  • in

    Decreased thermal niche breadth as a trade-off of antibiotic resistance

    Obtaining bacterial strains with varied resistance levelsWe experimentally evolved 24 replicate lineages of E. coli to tolerate increasing concentrations of chloramphenicol. By serially passaging bacterial cultures through 14 increasing chloramphenicol levels, we obtained 336 (24 lineages × 14 concentrations) populations of E. coli across a gradient of resistance levels (Fig. 2). The 24 replicate lineages enabled us to study the variability arising from the stochastic nature of mutation acquisition. We refer to these populations as “cultures” rather than “strains” due to the possible coexistence of multiple genotypes.Resistance incurs costs in both thermal tolerance and maximum growth rateWe measured growth rates of experimentally evolved E. coli cultures at three different temperatures: their historic temperature of 37 °C, and the novel temperatures of 32 °C and 42 °C. We hypothesized that growth rate costs of resistance would be larger in the novel temperatures, consistent with reduced thermal niche breadth.Overall, we found the growth rates decreased strongly with increasing antibiotic resistance (Fig. 3A). We then calculated relative growth rates for each lineage by dividing the growth rate at each timepoint by the growth rate of the culture at timepoint 1 (T1) at the appropriate temperature (e.g., all cultures at 32 °C were standardized by the ancestral growth rate at 32 °C). Analysis of these relative growth rates showed that there was both a fitness cost in maximum growth rate and a fitness cost in thermal niche breadth; the linear model showed a strong negative effect of increasing resistance on growth rate at 37 °C (F1, 974 = 988.2, p  More

  • in

    Elevated extinction risk of cacti under climate change

    Boyle, T. H. & Anderson, E. in Cacti: Biology and Uses (ed. Nobel, P. S.) 125–141 (Univ. California Press, 2002).Gibson, A. C. & Nobel, P. S. The Cactus Primer (Harvard Univ. Press, 1986).Bravo Hollis, H. & Sánchez Mejorada, H. Las Cactáceas de México (Univ. Nacional Autónoma de México, 1978).Goettsch, B. et al. High proportion of cactus species threatened with extinction. Nat. Plants 1, 15142 (2015).CAS 
    PubMed 

    Google Scholar 
    Benavides, E., Breceda, A. & Anadón, J. D. Winners and losers in the predicted impact of climate change on cacti species in Baja California. Plant Ecol. 222, 29–44 (2021).
    Google Scholar 
    Nobel, P. S. Responses of some North American CAM plants to freezing temperatures and doubled CO2 concentrations: implications of global climate change for extending cultivation. J. Arid. Environ. 34, 187–196 (1996).
    Google Scholar 
    Reyes-García, C. & Andrade, J. L. Crassulacean acid metabolism under global climate change. N. Phytol. 181, 754–757 (2009).
    Google Scholar 
    Smith, S. D., Didden-Zopfy, B. & Nobel, P. S. High-temperature responses of North American cacti. Ecology 65, 643–651 (1984).
    Google Scholar 
    Larios, E., González, E. J., Rosen, P. C., Pate, A. & Holm, P. Population projections of an endangered cactus suggest little impact of climate change. Oecologia 192, 439–448 (2020).PubMed 

    Google Scholar 
    Esparza-Olguı́n, L., Valverde, T. & Vilchis-Anaya, E. Demographic analysis of a rare columnar cactus (Neobuxbaumia macrocephala) in the Tehuacan Valley, Mexico. Biol. Conserv. 103, 349–359 (2002).
    Google Scholar 
    Seal, C. E. et al. Thermal buffering capacity of the germination phenotype across the environmental envelope of the Cactaceae. Glob. Change Biol. 23, 5309–5317 (2017).
    Google Scholar 
    Huang, J., Yu, H., Guan, X., Wang, G. & Guo, R. Accelerated dryland expansion under climate change. Nat. Clim. Change 6, 166–171 (2016).
    Google Scholar 
    Gurvich, D. E. et al. Combined effect of water potential and temperature on seed germination and seedling development of cacti from a mesic Argentine ecosystem. Flora 227, 18–24 (2017).
    Google Scholar 
    Nuzhyna, N., Baglay, K., Golubenko, A. & Lushchak, O. Anatomically distinct representatives of Cactaceae Juss. family have different response to acute heat shock stress. Flora 242, 137–145 (2018).
    Google Scholar 
    Andrade, J. L. & Nobel, P. S. Microhabitats and water relations of epiphytic cacti and ferns in a lowland neotropical forest. Biotropica 29, 261–270 (1997).
    Google Scholar 
    Williams, D. G., Hultine, K. R. & Dettman, D. L. Functional trade-offs in succulent stems predict responses to climate change in columnar cacti. J. Exp. Bot. 65, 3405–3413 (2014).PubMed 

    Google Scholar 
    Aragón-Gastélum, J. L. et al. Induced climate change impairs photosynthetic performance in Echinocactus platyacanthus, an especially protected Mexican cactus species. Flora Morphol. Distrib. Funct. Ecol. Plants 209, 499–503 (2014).
    Google Scholar 
    Martorell, C., Montañana, D. M., Ureta, C. & Mandujano, M. C. Assessing the importance of multiple threats to an endangered globose cactus in Mexico: cattle grazing, looting and climate change. Biol. Conserv. 181, 73–81 (2015).
    Google Scholar 
    Dávila, P., Téllez, O. & Lira, R. Impact of climate change on the distribution of populations of an endemic Mexican columnar cactus in the Tehuacán-Cuicatlán Valley, Mexico. Plant Biosyst. 147, 376–386 (2013).
    Google Scholar 
    Conver, J. L., Foley, T., Winkler, D. E. & Swann, D. E. Demographic changes over >70 yr in a population of saguaro cacti (Carnegiea gigantea) in the northern Sonoran Desert. J. Arid. Environ. 139, 41–48 (2017).
    Google Scholar 
    Carrillo-Angeles, I. G., Suzán-Azpiri, H., Mandujano, M. C., Golubov, J. & Martínez-Ávalos, J. G. Niche breadth and the implications of climate change in the conservation of the genus Astrophytum (Cactaceae). J. Arid. Environ. 124, 310–317 (2016).
    Google Scholar 
    de Cavalcante, A. M. B. & de Duarte, A. S. Modeling the distribution of three cactus species of the Caatinga biome in future climate scenarios. Int. J. Ecol. Environ. Sci. 45, 191–203 (2019).
    Google Scholar 
    de Cavalcante, A. M. B., de Duarte, A. S. & Ometto, J. P. H. B. Modeling the potential distribution of Epiphyllum phyllanthus (L.) Haw. under future climate scenarios in the Caatinga biome. An. Acad. Bras. Cienc. 92, 351–358 (2020).
    Google Scholar 
    Tellez-Valdes, O. & DiVila-Aranda, P. Protected areas and climate change: a case study of the cacti in the Tehuacan-Cuicatlan biosphere reserve, Mexico. Conserv. Biol. 17, 846–853 (2003).
    Google Scholar 
    dos Santos Simões, S., Zappi, D., da Costa, G. M., de Oliveira, G. & Aona, L. Y. S. Spatial niche modelling of five endemic cacti from the Brazilian Caatinga: past, present and future. Austral Ecol. 45, 1–13 (2019).
    Google Scholar 
    Gorostiague, P., Sajama, J. & Ortega-Baes, P. Will climate change cause spatial mismatch between plants and their pollinators? A test using Andean cactus species. Biol. Conserv. 226, 247–255 (2018).
    Google Scholar 
    Butler, C. J., Wheeler, E. A. & Stabler, L. B. Distribution of the threatened lace hedgehog cactus (Echinocereus reichenbachii) under various climate change scenarios. J. Torre. Bot. Soc. 139, 46–55 (2012).
    Google Scholar 
    Johnson, C. N. Species extinction and the relationship between distribution and abundance. Nature 394, 272–274 (1998).CAS 

    Google Scholar 
    Thuiller, W., Lavorel, S. & Araújo, M. B. Niche properties and geographical extent as predictors of species sensitivity to climate change. Glob. Ecol. Biogeogr. 14, 347–357 (2005).
    Google Scholar 
    Enquist, B. J. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. Preprint at PeerJ https://doi.org/10.7287/peerj.preprints.2615v2 (2016).Buisson, L., Thuiller, W., Casajus, N., Lek, S. & Grenouillet, G. Uncertainty in ensemble forecasting of species distribution. Glob. Change Biol. 16, 1145–1157 (2010).
    Google Scholar 
    Thuiller, W., Guéguen, M., Renaud, J., Karger, D. N. & Zimmermann, N. E. Uncertainty in ensembles of global biodiversity scenarios. Nat. Commun. 10, 1446 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Goettsch, B., Durán, A. P. & Gaston, K. J. Global gap analysis of cactus species and priority sites for their conservation. Conserv. Biol. 33, 369–376 (2018).PubMed 

    Google Scholar 
    Maitner, B. S. et al. The bien R package: A tool to access the Botanical Information and Ecology Network (BIEN) database. Methods Ecol. Evol. 9, 373–379 (2018).
    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Sanderson, B. M., Knutti, R. & Caldwell, P. A representative democracy to reduce interdependency in a multimodel ensemble. J. Clim. 28, 5171–5194 (2015).
    Google Scholar 
    Brodzik, M. J., Billingsley, B., Haran, T., Raup, B. & Savoie, M. H. EASE-Grid 2.0: Incremental but significant improvements for Earth-gridded data sets. ISPRS Int. J. Geo-Inf. 1, 32–45 (2012).
    Google Scholar 
    Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, S. maxnet: Fitting ‘maxent’ species distribution models with ‘glmnet’. R package version 0.1.4. https://CRAN.R-project.org/package=maxnet (2017).Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Google Scholar 
    Franklin, S. B., Gibson, D. J., Robertson, P. A., Pohlmann, J. T. & Fralish, J. S. Parallel analysis: a method for determining significant principal components. J. Veg. Sci. 6, 99–106 (1995).
    Google Scholar 
    Roberts, D. R. et al. Cross-validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography 40, 913–929 (2017).
    Google Scholar 
    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069 (2013).
    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).
    Google Scholar 
    Calabrese, J. M., Certain, G., Kraan, C. & Dormann, C. F. Stacking species distribution models and adjusting bias by linking them to macroecological models. Glob. Ecol. Biogeogr. 23, 99–112 (2014).
    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing Version 3.6.0 (R Foundation for Statistical Computing, 2019). https://www.R-project.org/ More

  • in

    A Mississippian (early Carboniferous) tetrapod showing early diversification of the hindlimbs

    Systematic palaeontology
    Tetrapoda Jaekel, 1909 fide Sues20
    Family undesignated
    Termonerpeton makrydactylus gen. et sp. nov. (Fig. 1)Fig. 1: Termonerpeton makrydactylus gen. et sp. nov. holotype UMZC 2019.1.a Specimen photograph. b Interpretive drawing. Scale bars 10 mm. Abbreviations: acet acetabulum, fem femur, fib fibula, ha haemal arch, ic intercentrum, l left, na neural arch, phal phalanx, piliac p post-iliac process, plc pleurocentrum, r right, sac rib sacral rib, tib tibia.Full size image

    EtymologyGenus: from τέρμωυ (térmon) meaning boundary and ερπετό (erpetó) meaning ‘crawler’, referring to the field boundary walls near the East Kirkton quarry where the late Stan Wood initially discovered fossils from the East Kirkton Limestone and from where the type specimen may have been collected; species: from μακρύς (makrýs) meaning ‘elongate’ and δάχτυλο (dáchtylo; more precisely, δάχτυλο ποδιού, dáchtylo podioú) meaning ‘toe’, referring to the very long pedal digit IV.HolotypeUniversity of Cambridge Museum of Zoology (UMZC) 2019.1. A partial tetrapod postcranium, preserving both pelves, a femur, fibula, tibia, and an almost complete but disarticulated pes. Closely associated with the appendicular elements are dorsally open hoop-shaped centra, a few neural and haemal arches, curved ribs, and a section of articulated gastralia.Locality and horizonEast Kirkton quarry, near Bathgate, Scotland, UK. East Kirkton Limestone, Bathgate Hills Volcanic Formation. Exact horizon is unknown. Brigantian, Viséan, early Carboniferous (=Mississippian)21.Differential diagnosisPossible autapomorphies: ilium with drawn-out, flat, blade-like dorsal process; very large, stout, and elongate metatarsal IV, greatly exceeding the length of metatarsals III and V (~30% or more). Possible tetrapod synapomorphies among post-Devonian taxa: distinct interepipodial space between tibia and fibula; well-ossified tarsus comprising tibiale, fibulare, intermedium, four centralia, and five distal tarsals. Possible amniote synapomorphies, but often showing reversed polarity in several stem- and crown amniote taxa: presumed pedal phalangeal formula 23454; robust and long pedal digit IV; enlarged intermedium and fibulare, together occupying more than half of proximal moiety of tarsus; curved ribs. Characters of uncertain polarity (also present in Caerorhachis): elongate, slender, and posterodorsally oblique post-iliac process; short puboischiadic plate with almost vertical anterior margin; stout femur with poorly pronounced waisting along the shaft, longer than puboischiadic plate; hoop-shaped centra.Attributed specimenNational Museums Scotland (NMS) G.1992.22.1. An articulated, partially complete, large tetrapod pes, preserving a nearly complete array of tarsals, all metatarsals, and the proximal phalanges of digits I–III. Unit 82, East Kirkton Limestone, East Kirkton quarry, near Bathgate, Scotland, UK.
    Specimen description
    Appendicular skeletonMost of the description is based upon the holotype. Both pelves are preserved, one mainly as a natural mould. The puboichiadic plates are short and deep, with an almost vertical anterior margin to the pubis (Fig. 1). In one, the surface of the puboischiadic plate is strongly convex, in the other it is strongly concave. The concave plate may belong to the left pelvis, with the concavity indicating the acetabulum. Both iliac processes of the presumed right ilium are overlain by a neural arch and part of the femur and cannot be seen. The presumed left ilium shows a long, posteriorly pointing post-iliac process that extends as far backward as the posterior edge of the ischium. It retains the proximal, stump-like portion of a dorsal iliac process, continued distally in natural mould as a mediolaterally flattened and blade-like structure. Both processes sit above a short iliac neck. The dorsal iliac process is proportionally longer than in other tetrapods and its knife-like appearance is unique. The angle between the two processes is much more acute than in most other tetrapods, and the nearest comparison is with the divided iliac process of the microsaurs Tuditanus and Ricnodon22 which, however, could merely represent a bifid post-iliac process. Two gaps in ossification are taken as evidence of an ilio-ischiadic suture half-way down the posterior margin on the left pelvis and an ilio-pubic suture halfway down the anterior margin of the right pelvis (Fig. 1). There is no evidence of a puboischiadic suture, although a shallow depression along the ventral margin of the left puboischiadic plate probably marks the junction between pubis and ischium. The complete left puboischiadic plate is 20 mm deep behind the ilium and 30 mm long, with the pubis contributing about one-third of its length and the ischium the remaining two thirds. The anterior margin of the pubis is almost vertical. The dorsal margin of the ischium is shallowly convex for half its length before extending posteroventrally to meet the upturned posterior extremity of the ischium’s ventral margin. There is no evidence as to the angle at which the two pelvic plates met at the symphysis, which would affect the position of the acetabulum relative to the substrate, and thus the effective resting posture of the hindlimb.The left femur is at least 39 mm in length, and longer than the puboischiadic plate. The entire bone is crushed, and its distal end lies partly beneath one of the pelvic halves and a neural arch so that its features cannot easily be made out. A possible intercondylar groove may be present distally, and the extensor surface of its proximal extremity appears to show a subcentral depression. The femur itself is robust with little waisting at mid-shaft. A small internal trochanter lies near its proximal end. The left fibula is approximately 26 mm long along its lateral margin. Its proximal end is narrow and grooved. Its broad and strongly flared distal end suggests a broad contact with the tarsus. The medial turn of the distal end indicates a large interepipodial space. The left tibia is about 20 mm long, slender, and shallowly waisted at mid-shaft. It is not clear which end is proximal and which distal, although probably the proximal is the broader. The tibia is probably more than half the length of the femur. Based upon the femur and tibia lengths, and omitting the ankle and pes, the above figures indicate a total stylopod-zeugopod length of about 65 mm, assuming a fully extended limb.Most of the morphology of the left pes is preserved, showing many well-ossified tarsal bones (Fig. 2). Several of these, including possible distal tarsals II and III lie more or less in anatomical continuity relative to metatarsals II and III, respectively. Other tarsal elements, including possible fibulare, tibiale, centralia, and distal tarsals, are illustrated in Fig. 2. Metatarsal IV lies in anatomical position relative to metatarsals II and III and, at 7 mm in length, it is significantly larger than the latter. The presumed first phalanx of pedal digit IV lies close to metatarsal IV, at an angle of nearly 90° to the latter. It is long and slender, indicating an unusually elongate fourth pedal digit.Fig. 2: Termonerpeton makrydactylus gen. et sp. nov. left hindlimb of UMZC 2019.1.a Specimen photograph, showing close-up view of hindlimb skeleton, b Interpretive drawing, with centralia, distal tarsals, and metatarsals indicated by red, blue, and black Roman numerals, respectively, c Interpretive drawing with dashed lines connecting elements of individual digits, d Reconstruction of left tibia, fibula and pes. Scale bars 10 mm. Abbreviations: interm intermedium, tib tibialia.Full size imageAn array of about 12 phalanges is preserved. They are all disrupted but occur in proximity to one another and, like the first phalanx of pedal digit IV, also mainly lie at right angles to metatarsals III and IV. An additional, acutely angled pointed ungual phalanx, possibly associated with digit II, is also visible. A further two phalanges have been displaced and rest along the anterior edge of the left pelvis. In total, we were, therefore, able to identify 15 elements. The preservation of the pes suggests it was strongly flexed either at death or from tissue shrinkage thereafter. An isolated metatarsal, presumably from the other, missing foot, lies some distance away near the edge of the block. Together, the pedal elements suggest a relatively large foot.A second specimen, NMS G.1992.22.1 (Fig. 3), is represented by an isolated pes. It may belong to Termonerpeton, although it is from a much larger individual. It shows five metatarsals of which the fourth is much longer and more robust than the other four and about twice as long as that of the holotype, while metatarsal V is the smallest. There are three phalanges, plus five distal tarsals. A D-shaped element closely associated with three centralia could be either a fibulare, a displaced intermedium, or centrale IV.Fig. 3: Termonerpeton makrydactylus gen. et sp. nov partial pes, attributed specimen NMS G.1992.22.1.a Specimen photograph, b with centralia, distal tarsals, and metatarsals indicated by red, blue, and black Roman numerals, respectively. Scale bars 10 mm.Full size imageAxial skeletonWhere visible, neural arches have short neural spines and prominent zygapophyses, but their shape is hard to assess as none is well preserved. The element overlying part of the right pelvis and the femur is 7 mm high in total. Numerous dorsally open, hoop-shaped centra about 5 mm in diameter are visible, as well as a few small, oval, shallowly curved elements (Fig. 1). Without further evidence, it is uncertain which of these elements are intercentra and which pleurocentra, though we assume that the larger elements are pleurocentra. The preserved ribs are slender and curved, and include trunk ribs, a possible presacral rib, a possible sacral rib, and a possible postsacral rib. This is long but more or less straight. A bone situated among a cluster of centra, somewhat distant from the other tarsal bones, was originally interpreted by us as a possible fibulare, similar to the fibulare in Proterogyrinus23. However, it might also be interpreted as a sacral rib. If so, its morphology is unique. It is short and widens distally into a fan-shaped structure but does not appear to have a bifid proximal end, unlike the sacral rib in Proterogyrinus23. Three haemal arches are present, one still attached to its half-hoop centrum, a second slightly longer, and a third very short and presumably from a more posterior region of the tail.ComparisonsThe exceptional preservation of tetrapods from the East Kirkton Limestone provides a unique opportunity to study portions of the skeletal anatomy that are otherwise poorly preserved or absent among Mississippian tetrapods. In particular, hindlimbs with a complete or near-complete array of tarsal elements and digits are notably rare. The unusual construction of the pes of Termonerpeton prompted us to examine the hindlimb morphology of six other East Kirkton tetrapods (Fig. 4a–g) alongside a selection of additional, mostly Carboniferous taxa (Fig. 4h–n). We focus on epipodials, tarsi, phalangeal formulae and digit length and proportions. To facilitate visual inspection of these elements, all hindlimbs are drawn to a common tibial length, except for the stem diapsid Petrolacosaurus, in which the epipodials are greatly elongate.Fig. 4: Comparison of the left tibia, fibula, tarsus, and digits of early tetrapods.a Balanerpeton after 2, b Eucritta after 12, c Eldeceeon after 6, d Silvanerpeton after 4, e Westlothiana after 7, f Kirktonecta original, see 15 (the grey area marks the estimated position and extent of the tarsus), g Termonerpeton, h Pederpes after 24, i, Greererpeton after 27, j Caerorhachis after 31, k Archeria after 30, l Hylonomus after 28, m Tuditanus after 22, n Petrolacosaurus after 29. Drawn to the same tibial length apart from n. Scale bars 10 mm.Full size imageIn terms of pes size relative to the tibia, the East Kirkton taxa Balanerpeton, Eucritta, and Silvanerpeton (Fig. 4a, b, d) are similarly proportioned. In contrast, Eldeceeon and Westlothiana (Fig. 4c, e) exhibit somewhat larger pedes. Kirktonecta has proportionally the largest pedes of all (Fig. 4f). Termonerpeton (Fig. 4g) has a pes of similar size to the first three taxa except that digit IV is relatively much longer than in any of the others, with an exceptionally large metatarsal IV. In all those taxa in which digit IV is fully preserved, it is the longest, especially in Eldeceeon and Kirktonecta, but in none does it approach in size and proportions that of Termonerpeton. The illustrated limbs also differ from one another in the degree of ossification of the tarsal bones. Most taxa except Eucritta have some indication of ossified tarsal elements, and some of them, including Balanerpeton and Silvanerpeton, show a complete or almost complete tarsal set. Kirktonecta does have an ossified tarsus, but specimen preservation does not allow us to identify individual elements. The phalangeal count, where known, also varies: 22343 in Balanerpeton2; 223?? in Eucritta12; 23455 in Silvanerpeton4; 23454 in Eldeceeon6, Kirktonecta15, Termonerpeton, and Westlothiana7.In addition, we compared the pedes of East Kirkton tetrapods with those of seven other taxa (Fig. 4h–n): one earlier, Pederpes24; one almost contemporary, Caerorhachis25; four later Carboniferous, Greererpeton26, Hylonomus27, Tuditanus22, and Petrolacosaurus28; and one early Permian, Archeria29. Of these, Greererpeton has relatively the smallest pes. In most, digit IV is the longest, though in Pederpes and Caerorhachis it is incomplete. The pes of Caerorhachis was originally restored with only three phalanges in digit IV30. This is probably incorrect and would be unusual in Carboniferous tetrapods. The pes of the anthracosaur Archeria was originally reconstructed with digit V as the longest29, but again this is unusual among later Carboniferous and early Permian tetrapods and we suspect that digits IV and V have been transposed, and Romer himself expressed doubt about this reconstruction29. In either case, the phalangeal formula of Archeria is similar to that of the East Kirkton anthracosaur Silvanerpeton, as 23455.Among Carboniferous tetrapods, temnospondyls such as Balanerpeton and colosteids such as Greererpeton show a digit IV that is somewhat longer than the others, but metatarsal IV is very similar in length and breadth to the adjacent metatarsals. In anthracosaurs, digit IV is the longest, but again metatarsal IV is not significantly broader than adjacent metatarsals. This is also the case in the early amniote Hylonomus and the microsaur Tuditanus. Among the taxa illustrated here, Termonerpeton shows a strikingly similar pes to that of the Late Pennsylvanian araeoscelidian diapsid Petrolacosaurus (Fig. 4n). In both, metatarsal IV is significantly longer and stouter than others and forms part of a similarly long digit IV. In early amniotes, an elongate digit IV coupled with an elongate metatarsal IV is a common occurrence in other taxa, such as protothyridids (e.g. Anthracodromeus31), basal araeoscelidians (e.g. Spinoaequalis32), younginids (e.g. Youngina33), saurians33, and basal synapsids (e.g. Heleosaurus34,35,36), among others.Based upon available evidence, an elongate digit IV is likely to be the plesiomorphic condition for crown amniotes, being present in Hylonomus, Paleothyris, and Petrolacosaurus (Fig. 4l, n), and shortening of this digit certainly represents a derived feature. In later crown amniotes, the conditions vary, with larger, heavier-bodied tetrapods such as dicynodonts and diadectids having generally shorter toes and adopting a more clearly plantigrade posture. An elongate metatarsal IV and associated digit, however, are not universal among Palaeozoic amniotes, and modifications of these conditions occur repeatedly across clades. For instance, in the eureptile captorhinid Eocaptorhinus, digit IV is also the longest, but the length of metatarsal IV does not greatly exceed that of other metatarsals37. The same is true of some early Permian clades, including seymouriamorphs (e.g. Seymouria38; Discosauriscus39), and diadectids (e.g. Diadectes40), although in the diadectomorph Orobates digit III is a little longer than digit IV41. Among synapsids, dicynodonts such as Diictodon42 and caseids43, to name a few, have five pedal digits of approximately uniform length.We further point out that, while digit IV attains a certain degree of elongation in other early tetrapod groups, such as temnospondyls, in none of them do the relative proportions of this digit (where known) compare to those of several stem and crown amniotes (Fig. 4).Phylogenetic relationshipsThe results of various phylogenetic analyses lend some support to the interpretation of Termonerpeton as a stem amniote, despite its uncertain placement in the unweighted character parsimony analysis (Fig. 5a). In the latter analysis, Termonerpeton appears in a polytomous node alongside baphetids (Eucritta; Baphetes; Megalocephalus), temnospondyls (Balanerpeton; Dendrysekos), the anthracosauroids Eldeceeon and Silvanerpeton, and the problematic Caerorhachis. In all other analyses—implied weights, reweighted characters, and Bayesian—Termonerpeton is placed on the amniote stem group, albeit in different positions, among a diverse array of ‘reptiliomorph’ clades and grades. In the implied weights analysis (Fig. 5b), Termonerpeton, Silvanerpeton, and Eldeceeon form a monophyletic group branching crownward of chroniosaurs plus anthracosaurs and anti-crownward of paraphyletic gephyrostegids. In the reweighted analysis (Fig. 5c), Termonerpeton and Caerorhachis appear as successive sister taxa, in that order, to monophyletic anthracosaurs. In the Bayesian analysis (Fig. 5d), the amniote total group receives moderate support with a credibility value (c.v.) of 76 with Caerorhachis as the most plesiomorphic stem amniote. Crownward of Caerorhachis is a polytomy with low support (c.v. = 59) that subtends Termonerpeton, a clade consisting of Eldeceeon plus Silvanerpeton, a clade of anthracosaurs, and a clade that includes all remaining taxa. In crownward succession, these taxa include chroniosaurs, gephyrostegids, seymouriamorphs, Solenodonsaurus, and Westlothiana as successive sister groups to a strongly supported (c.v. = 100) clade containing diadectomorphs, synapsids, and eureptiles. Although eureptile monophyly is not retrieved, strong support (c.v. = 100) is given to the branch subtending diadectomorphs plus synapsids44.Fig. 5: Results of phylogenetic analyses.a Strict consensus of 120 shortest trees from unweighted analysis (tree length = 1286 steps, ensemble consistency index C.I. = 0.2738 without uninformative characters, ensemble retention index R.I. = 0.5768), b Single tree from implied weights analysis (tree length = 1298 steps, Goloboff fit = −202.59266, C.I. = 0.2712, R.I. = 0.5713), c Single tree from reweighted analysis (tree length = 212,68965 steps, C.I. = 0.4755, R.I. = 0.774), d Bayesian topology with branches reporting credibility values.Full size image More

  • in

    Experimental evidence for snails dispersing tardigrades based on Milnesium inceptum and Cepaea nemoralis species

    Species used in the experimentsMilnesium inceptum32 (Fig. 1A, a picture taken using Olympus BX41 Phase Contrast light Microscope associated with Olympus SC50 digital camera) is an obligatory predatory species with the body length ranging from 326 to 848 μm. It feeds on rotifers, nematodes and other tardigrades and lays smooth eggs in exuviae. To stay active, M. inceptum needs a thin water film around its body14. The species inhabits places exposed to shorter and longer periods of drying i.e. frequently drying mosses growing on cement walls32. Till now it was reported in Poland, Germany, Japan, Switzerland and Bulgaria32. At the same time, it is a perfect organism for our research because (1) it is large and easy to observe, (2) it tolerates frequent periods of entering and leaving anhydrobiosis, (3) it easily creates a tun stage. Milnesium inceptum for experimental purposes were acquired from a moss sample from a cement wall in Poznań, Poland (52°24′15″N, 16°53′18″E). The extraction of tardigrades was conducted under stereomicroscope (Olympus SZ51) using standard methods33. Then specimens, further used in our experiments, have been cultured based on protocol proposed by Roszkowska et al.34. Only fully active, adult specimens were selected for the experiments.Figure 1Model animals used in experiments: (A) Milnesium inceptum; insert shows tardigrade in the tun state; (B) Cepaea nemoralis in its natural environment; (C) a tardigrade that appeared on moss surface during in vivo observation of rehydrated moss cushion (red arrow). Figures were assembled in Corel Photo-Paint 2017 (http://www.corel.com).Full size imageCepaea nemoralis35 (Fig. 1B, a picture taken using Motorola g(9), Camera version 7.3.63.53-whitney) is a stylommatophoran European land snail species, which is widespread and common throughout the continent36. The average maximum shell diameter is 20 to 22 mm37. It feeds on plant materials available, yet has a strong preference for dead and senescent herbs38. C. nemoralis occurs in variable habitats (frequently in synanthropic ones) such as forests, meadows, gardens, near shrubs or dunes36.The period of its activity falls on the growing season; it usually comes out of the shell and crawls when the air humidity reaches 70% or more, independently from solar radiation and air temperature28. The species is a good model for our study due to its: (1) large size compared to tardigrades, and (2) co-occurrence with M. inceptum in natural environments. Individuals of C. nemoralis were harvested from anthropogenic environment: gardens adjacent to detached houses (52°25′28″N, 16°46′52″E). Snails were collected from plants, cement walls and ground surfaces. After collection, all C. nemoralis specimens were washed-up and placed in 30 L (480 × 360 × 252 mm) transparent plastic box with mesh covering for ventilation. Soil and rocks were placed in the box allowing to maintain a moist shelter for snails, and a sepia was used as a source of a calcium. Animals were fed with lettuce, cabbage and nettle twice a week and sprinkled with water to stimulate their activity. Box containing snails was kept in a rearing room, at 17 °C in 12:12 photoperiod. Snails were kept in the box for 1.5 months prior to the experiments. For the experiments we used only adult animals. The snails were checked under Olympus SZX7 stereomicroscope prior to the experiment to ensure they were free of tardigrades.Pilot studiesDoes the tardigrades’ distribution within a moss cushion enable tardigrade-snail contact?To check whether tardigrades may come into a close encounter with the snail in the natural environment (which would be impossible if the tardigrades were only present in the lower layers of the moss), we investigated the distribution of water bears within moss cushions. The observations were performed for 6 samples of dried moss cushions (ca. 1 cm high and 3 cm in diameter). The moss containing M. inceptum specimens, was collected from a concrete wall in Poznań, Poland (52°24′15″N, 16°53′18″E), the same from which tardigrades were initially collected for the culturing purposes. Three moss cushions were rehydrated, and left for 3 h followed by further observation to check whether tardigrades may actively move across the moss cushion. On the remaining three moss samples, a horizontal cut was made through the center of the moss cushion to check in which layer tardigrade tuns are present while the moss remains dry. The extraction of tardigrades from separated layers was conducted under stereomicroscope (Olympus SZ51) using standard methods33.Within the dry moss cushions tardigrades were present in both the upper and lower moss layers. We did not observe any difference in the number of individuals of M. inceptum that would be dependent on the moss layer. A total of 353 tardigrades were extracted from one moss cushion (dry weight of moss = 0.332 g), what gives the density of tardigrades per 1 g of dry moss sample equal to 1063 specimens. The observation of rehydrated moss cushions conducted in vivo using Olympus SZX16 stereomicroscope associated with Olympus DP74 digital camera and cellSens software revealed that single active tardigrades may also appear on the moss surface (Fig. 1C, red arrow). Therefore, observed in the pilot studies tardigrades distribution within the moss cushion enables tardigrade-snail contact.Is it possible for a tardigrade to take a snail ride?The initial observations were carried out for snails and tardigrades to check whenever a tardigrade may be transferred by a snail. In total, 10 snails and 20 active tardigrades were used. Two variants of Petri dishes (ø 90 mm) were prepared: (1) with smooth and (2) scratched bottom, to avoid and allow tardigrade attachment to the bottom of the dish, respectively. We repeated the observation five times per option. For each single observation we used one snail and two tardigrades.Snails and tardigrades were split equally between the pilot’s experimental options (in total 5 snails and 10 tardigrades per option). We checked whether tardigrades may be transferred by snails by putting tardigrades in the drop of water in the center of a Petri dish and releasing an active snail to crawl through the drop. In total, in the case of the smooth-bottom option, three tardigrades glued to the snail’s body within which two were moved to a distance up to a few centimeters. The third one fixed to a snail’s leg and had a potential to be transferred to a greater distance. In the case of the dishes with the scratched bottom, we did not notice any transfer. Tardigrades were attached tightly to the dishes’ bottom and remained unmoved after the snail had passed through them. Therefore, the observation in the pilot study confirmed that tardigrades may stick to snails’ body and be transferred by a gastropod at least when the substratum (bottom of the dish) is smooth.Experimental design
    Experiment 1. Do snails have a significant effect on tardigrade dispersion that depends on the substrate type?As the laboratory environment offers limited possibilities to reflect natural conditions, we aimed to create an environment similar to the natural one by eliminating as many artificial elements as possible and, at the same time, enabling observation and data collection. To imitate a natural microhabitat of water bears we used a piece of moss as a substrate. Moss is a natural shelter and a hunting space for these animals, and a gripping surface that prevents them from being easily carried away by a stream of water or wind. The moss Vesicularia dubyana39 used in the experiment was purchased in an aquarium shop and was derived from an in vitro culture. It was checked under Olympus SZX7 stereomicroscope prior to the experiment to ensure it was free of tardigrades. For experimental purposes we used plastic ventilated boxes with dimensions 950 mm × 950 mm × 600 mm, tightly closed with a plastic lid. The bottom of each box was scratched with sandpaper in order to (1) imitate a rough surface of a concrete wall to which mosses are attached in the natural environment; (2) allow tardigrade locomotion. At the same time, moss and (unfortunately) plastic elements are quite common surroundings of C. nemoralis frequently found in anthropogenic habitats36.Using transparent, non-toxic aquarium silicone, a square with a side length of 3 cm and a height of 0.5 cm was mounted on the bottom of the box. Before starting the experiment, the tightness of the square silicone barrier was checked by pouring 2.5 ml of water inside and leaving the boxes for observation for 24 h. After this time, all silicone squares turned out to be impermeable to water.Boxes for each of the experimental option, namely: (A) control (further in the text referred as C), (B) tardigrades + snail (referred as TS), and (C) tardigrades + snail + moss (referred as TSM, see Fig. 2), were prepared in a following way: 2.5 ml of water was added to the scratched bottom of the box inside the silicone square and 7.5 ml to the area outside of the silicone square to enable survival and active locomotion of tardigrades on both sides of the silicone barrier. Then, 10 active individuals of M. inceptum taken from the culture were transferred to the center of the silicone square. It was repeated for 90 boxes (30 boxes per each C, TS and TSM option). Therefore we used 300 tardigrades per each experimental option which gives 900 tardigrades in total for all experimental options. In case of 30 boxes with TSM option, a piece of moss (ca. 2.5 cm in diameter) was added. It was situated in the center of the silicone square, just after the tardigrades were placed at the boxes in order to isolate tardigrades from the snail during the experiment.Figure 2Graphical representation of three designed experimental options of the experiment 1. (A) 10 tardigrades in the silicone square (control (C)); (B) 10 tardigrades in the silicone square and one snail placed in the box (tardigrades + snail (TS)); (C) 10 tardigrades in the silicone square, one snail placed in the box and additional piece of the moss added as a barrier between tardigrades and snail (tardigrades + snail + moss (TSM)). Figures were assembled in Corel Photo-Paint 2017 (http://www.corel.com).Full size imageFinally, in the boxes targeted for TS and TSM experimental options, one adult and active individual of C. nemoralis snail was placed in each box outside the silicone square. In total, 60 snails were used (30 individuals per experimental option).The boxes were then placed in the rearing room (17 °C, 80% of humidity, photoperiod 12:12) for 72 h. After this time, the number of tardigrades inside and outside the silicone square was counted (both: live and dead) separately for each box, using Olympus SZX7 stereomicroscope.Experiment 2. Effect of the snail’s mucus on tardigrade recovery to active life after anhydrobiosis
    Milnesium inceptum anhydrobiosis protocolOnly fully active, adult specimens of medium body length were selected for the experiment. The animals were transferred to ø 3.5 cm vented Petri-dishes with bottom scratched by sandpaper to allow tardigrade locomotion. Five tardigrade individuals were placed to each Petri dish together with 450 µl of water and then dehydrated. In total, 16 Petri dishes with 5 tardigrades on each were prepared. Dehydration process lasted 72 h and was performed in the Q-Cell incubator (40–50% RH, 20 °C, darkness). After that time tardigrade tuns were kept under the abovementioned conditions for 7 days.Impact of the snail’s mucus on tardigrade tunsAfter 7 days of anhydrobiosis, one individual of C. nemoralis was transferred to each dish with tardigrade tuns and was left there for 1 min allowing the snail to actively crawl over the tuns. 30 min after the snail was removed from the dish, tardigrade tuns were observed under the Olympus SZX7 stereomicroscope for any animal movements. Then, all covered and vented dishes were left in the Q-Cell incubator overnight. After 24 h, the dried tuns were rehydrated by adding 3 ml of water to each Petri dish to check whether snail’s mucus affected mortality rates of tardigrades. After 3 and 24 h following rehydration tardigrade tuns were observed for any animal movements. Pictures of tuns were taken using Olympus SZ61 stereomicroscope associated with Olympus UC30 camera (Fig. 3). As reference data on the rehydration of the M. inceptum tuns free of the snail’s mucus, we used the data from Roszkowska et al.20 who tested anhydrobiosis survivability of above-mentioned species. Individuals used for the tuns preparation in the control option were collected from the same laboratory breeding stock, and prepared at the same laboratory conditions as those used in our experiments20.Figure 3Milnesium inceptum tuns: (A,B) before contact with snail mucus; (C,D) coated with wet snail mucus; (E,F) coated with dry snail mucus. Figures were assembled in Corel Photo-Paint 2017 (http://www.corel.com).Full size imageStatistical analysesThe number of tardigrades relocated in each experimental option (C, TS and TSM) was compared with a one-way ANOVA randomized version using RundomPro 3.14 software40. We used non-parametric methods because of the lack of normality. Differences were considered significant at p  More