More stories

  • in

    A longer wood growing season does not lead to higher carbon sequestration

    Verkerk, P., et al. Forest products in the global bioeconomy. The role of forest products in the global bioeconomy—Enabling substitution by wood-based products and contributing to the Sustainable Development Goals (2022). https://doi.org/10.4060/cb7274enChen, J., Ter-Mikaelian, M. T., Ng, P. Q. & Colombo, S. J. Ontario’s managed forests and harvested wood products contribute to greenhouse gas mitigation from 2020 to 2100. For. Chron. 43, 269–282 (2018).
    Google Scholar 
    Howard, C., Dymond, C. C., Griess, V. C., Tolkien-Spurr, D. & van Kooten, G. C. Wood product carbon substitution benefits: A critical review of assumptions. Carbon Balance Manag. 16, 1–11 (2021).Article 

    Google Scholar 
    Eriksson, L. O. et al. Climate change mitigation through increased wood use in the European construction sector-towards an integrated modelling framework. Eur. J. For. Res. 131, 131–144 (2012).Article 

    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science (80-.) 333, 988–993 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Chuine, I. Why does phenology drive species distribution?. Philos. Trans. R. Soc. B Biol. Sci. 365, 3149–3160 (2010).Article 

    Google Scholar 
    Silvestro, R. et al. From phenology to forest management: Ecotypes selection can avoid early or late frosts, but not both. For. Ecol. Manag. 436, 21–26 (2019).Article 

    Google Scholar 
    Buttò, V., Rossi, S., Deslauriers, A. & Morin, H. Is size an issue of time? Relationship between the duration of xylem development and cell traits. Ann. Bot. 123, 1257–1265 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cartenì, F. et al. The physiological mechanisms behind the earlywood-to-latewood transition: A process-based modeling approach. Front. Plant Sci. 9, 1053 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buttò, V., Rozenberg, P., Deslauriers, A., Rossi, S. & Morin, H. Environmental and developmental factors driving xylem anatomy and micro-density in black spruce. New Phytol. 230, 957–971 (2021).Article 
    PubMed 

    Google Scholar 
    Buttó, V. et al. Regionwide temporal gradients of carbon allocation allow for shoot growth and latewood formation in boreal black spruce. Glob. Ecol. Biogeogr. 30, 1657–1670 (2021).Article 

    Google Scholar 
    Rathgeber, C. B. K. et al. Anatomical, developmental and physiological bases of tree-ring formation in relation to environmental factors. In Stable Isotopes in Tree Rings Vol. 8 (eds Siegwolf, R. T. W. et al.) 61–99 (Springer, Cham, 2022).Chapter 

    Google Scholar 
    Dória, L. C., Sonsin-Oliveira, J., Rossi, S. & Marcati, C. R. Functional trade-offs in volume allocation to xylem cell types in 75 species from the Brazilian savanna Cerrado. Ann. Bot. 130, 445–456 (2022).Article 
    PubMed 

    Google Scholar 
    Rossi, S., Cairo, E., Krause, C. & Deslauriers, A. Growth and basic wood properties of black spruce along an alti-latitudinal gradient in Quebec, Canada. Ann. For. Sci. 72, 77–87 (2015).Article 

    Google Scholar 
    Shi, J. L., Riedl, B., Deng, J., Cloutier, A. & Zhang, S. Y. Impact of log position in the tree on mechanical and physical properties of black spruce medium-density fibreboard panels. Can. J. For. Res. 37, 866–873 (2007).Article 

    Google Scholar 
    Rathgeber, C. B. K., Decoux, V. & Leban, J. M. Linking intra-tree-ring wood density variations and tracheid anatomical characteristics in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Ann. For. Sci. 63, 699–706 (2006).Article 

    Google Scholar 
    Cuny, H. E., Rathgeber, C. B. K., Frank, D., Fonti, P. & Fournier, M. Kinetics of tracheid development explain conifer tree-ring structure. New Phytol. 203, 1231–1241 (2014).Article 
    PubMed 

    Google Scholar 
    Wodzicki, T. J. & Zajaczkowski, S. Methodical problems in studies on seasonal production of cambial xylem derivatives. Acta Soc. Bot. Pol. 39, 519–520 (1970).
    Google Scholar 
    Silvestro, R. et al. Upscaling xylem phenology: Sample size matters. Ann. Bot. https://doi.org/10.1093/aob/mcac110 (2022).Article 
    PubMed 

    Google Scholar 
    Rossi, S., Girard, M. J. & Morin, H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob. Chang. Biol. 20, 2261–2271 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Gonsamo, A., Chen, J. M. & Ooi, Y. W. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. Glob. Change Biol. 24, 2117–2128 (2018).Article 
    ADS 

    Google Scholar 
    Dow, C. et al. Warm springs alter timing but not total growth of temperate deciduous trees. Nature 608, 552–557 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Oribe, Y., Funada, R. & Kubo, T. Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees Struct. Funct. 17, 185–192 (2003).Article 

    Google Scholar 
    Schrader, J. et al. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc. Natl. Acad. Sci. USA 100, 10096–10101 (2003).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deslauriers, A., Huang, J. G., Balducci, L., Beaulieu, M. & Rossi, S. The contribution of carbon and water in modulating wood formation in black spruce saplings. Plant Physiol. 170, 2072–2084 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Silvestro, R., Brasseur, S., Klisz, M., Mencuccini, M. & Rossi, S. Bioclimatic distance and performance of apical shoot extension: Disentangling the role of growth rate and duration in ecotypic differentiation. For. Ecol. Manag. 477, 118483 (2020).Article 

    Google Scholar 
    Perrin, M., Rossi, S. & Isabel, N. Synchronisms between bud and cambium phenology in black spruce: Early-flushing provenances exhibit early xylem formation. Tree Physiol. 37, 593–603 (2017).Article 
    PubMed 

    Google Scholar 
    Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y. & Funada, R. Regulation of cambial activity in relation to environmental conditions: Understanding the role of temperature in wood formation of trees. Physiol. Plant. 147, 46–54 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kagawa, A., Sugimoto, A. & Maximov, T. C. 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell Environ. 29, 1571–1584 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, J. & Beck, E. The fate and path of assimilation products in the stem of 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees 4, 16–21 (1990).Article 

    Google Scholar 
    Fu, P. L., Grießinger, J., Gebrekirstos, A., Fan, Z. X. & Bräuning, A. Earlywood and latewood stable carbon and oxygen isotope variations in two pine species in Southwestern China during the recent decades. Front. Plant Sci. 7, 2050 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anfodillo, T. et al. Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. J. Exp. Bot. 63, 837–845 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Linares, J. C., Camarero, J. J. & Carreira, J. A. Plastic responses of Abies pinsapo xylogenesis to drought and competition. Tree Physiol. 29, 1525–1536 (2009).Article 
    PubMed 

    Google Scholar 
    Rossi, S., Morin, H. & Deslauriers, A. Causes and correlations in cambium phenology: Towards an integrated framework of xylogenesis. J. Exp. Bot. 63, 2117–2126 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, X. et al. Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiol. 33, 48–56 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rathgeber, C. B. K., Rossi, S. & Bontemps, J. D. Cambial activity related to tree size in a mature silver-fir plantation. Ann. Bot. 108, 429–438 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buttò, V. et al. Comparing the cell dynamics of tree-ring formation observed in microcores and as predicted by the Vaganov-Shashkin model. Front. Plant Sci. 11, 1268 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koga, S. & Zhang, S. Y. Relationships between wood density and annual growth rate components in balsam fir (Abies balsamea). Wood Fiber Sci. 34, 146–157 (2002).CAS 

    Google Scholar 
    Messier, C. et al. Functional ecology of advance regeneration in relation to light in boreal forests. Can. J. For. Res. 29, 812–823 (1999).Article 

    Google Scholar 
    Pothier, D., Elie, J. G., Auger, I., Mailly, D. & Gaudreault, M. Spruce budworm-caused mortality to balsam fir and black spruce in pure and mixed conifer stands. For. Sci. 58, 24–33 (2012).Article 

    Google Scholar 
    Paixao, C., Krause, C., Morin, H. & Achim, A. Wood quality of black spruce and balsam fir trees defoliated by spruce budworm: A case study in the boreal forest of Quebec, Canada. For. Ecol. Manag. 437, 201–210 (2019).Article 

    Google Scholar 
    Pretzsch, H., Biber, P., Schütze, G., Kemmerer, J. & Uhl, E. Wood density reduced while wood volume growth accelerated in Central European forests since 1870. For. Ecol. Manag. 429, 589–616 (2018).Article 

    Google Scholar 
    Reyer, C. et al. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann. For. Sci. 71, 211–225 (2014).Article 

    Google Scholar 
    Fang, J. et al. Evidence for environmentally enhanced forest growth. Proc. Natl. Acad. Sci. USA 111, 9527–9532 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 1–10 (2014).Article 

    Google Scholar 
    Gao, S. et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01668-4 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soil Classification Working Group. The Canadian System of Soil Classification. (1998).Rossi, S., Anfodillo, T. & Menardi, R. Trephor: A new tool for sampling microcores from tree stems. IAWA J. 27, 89–97 (2006).Article 

    Google Scholar 
    Deslauriers, A., Morin, H. & Begin, Y. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can. J. For. Res. 33, 190–200 (2003).Article 

    Google Scholar 
    Rossi, S., Deslauriers, A. & Anfodillo, T. Assessment of cambial activity and xylogenesis by microsampling tree species: An example at the Alpine timberline. IAWA J. 27, 383–394 (2006).Article 

    Google Scholar 
    Filion, L. & Cournoyer, L. Variation in wood structure of eastern larch defoliated by the larch sawfly in subarctic Quebec, Canada. Can. J. For. Res. 25, 1263–1268 (1995).Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. (2015). More

  • in

    Larval rockfish growth and survival in response to anomalous ocean conditions

    Bindoff, N. L. et al. Changing ocean, marine ecosystems, and dependent communities. in IPCC special report on the ocean and cryosphere in a changing climate (eds. Pörtner, H.-O. et al.) (2019).Johnson, G. C. & Lyman, J. M. Warming trends increasingly dominate global ocean. Nat. Clim. Chang. 10, 757–761 (2020).ADS 

    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).PubMed 

    Google Scholar 
    Pinsky, M. L. & Mantua, N. J. Emerging adaptation approaches for climate- ready fisheries management. Oceanography 27, 146–159 (2014).
    Google Scholar 
    Bailey, K. M. & Houde, E. D. Predation on eggs and larvae of marine fishes and the recruitment problem. Adv. Mar. Biol. 25, 1–83 (1989).
    Google Scholar 
    Houde, E. D. Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fish. Bull. 87, 471–495 (1989).
    Google Scholar 
    Wang, H., Shen, S., Chen, Y.-S., Kiang, Y.-K. & Heino, M. Life histories determine divergent population trends for fishes under climate warming. Nat. Commun. 11, 1–9 (2020).
    Google Scholar 
    Llopiz, J. K. et al. Early life history and fisheries oceanography: New questions in a changing world. Oceanography 27, 26–41 (2014).
    Google Scholar 
    Lasker, R. Field criteria for survival of anchovy larvae: The relation between inshore chlorophyll maximum layers and successful first feeding. Fish. Bull. 73, 453–462 (1975).
    Google Scholar 
    Cury, P. & Roy, C. Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can. J. Fish. Aquat. Sci. 46, 670–680 (1989).
    Google Scholar 
    Iles, T. D. & Sinclair, M. Atlantic herring: Stock discreteness and abundance. Science 215, 627–633 (1982).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Houde, E. D. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17–29 (1987).ADS 

    Google Scholar 
    Searcy, S. P. & Sponaugle, S. Selective mortality during the larval – juvenile transition in two coral reef fishes. Ecology 82, 2452–2470 (2001).
    Google Scholar 
    Shima, J. S. & Findlay, A. M. Pelagic larval growth rate impacts benthic settlement and survival of a temperate reef fish. Mar. Ecol. Prog. Ser. 235, 303–309 (2002).ADS 

    Google Scholar 
    Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247(198), 201 (1990).ADS 

    Google Scholar 
    Snyder, M. A., Sloan, L., Diffenbaugh, N. & Bell, J. Future climate change and upwelling in the California Current. Geophys. Res. Lett. 30, 1823 (2003).ADS 

    Google Scholar 
    Bakun, A., Field, D. B., Redondo-Rodriguez, A. & Weeks, S. J. Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. Glob. Chang. Biol. 16, 1213–1228 (2010).ADS 

    Google Scholar 
    Bakun, A. & Nelson, C. The seasonal cycle of wind-stress curl in subtropical eastern boundary current regions. J. Phys. Oceanogr. 21, 1815–1834 (1991).ADS 

    Google Scholar 
    Shanks, A. L. & Eckert, G. L. Population persistence of California Current fishes and benthic crustaceans: A marine drift paradox. Ecol. Monogr. 75, 505–524 (2005).
    Google Scholar 
    Cushing, D. H. Plankton production and year-class strength in fish populations: An update of the match/mismatch hypothesis. Adv. Mar. Biol. 26, 249–293 (1990).
    Google Scholar 
    Carr, M. H. Habitat selection and recruitment of an assemblage of temperate zone reef fishes. J. Exp. Mar. Bio. Ecol. 146, 113–137 (1991).
    Google Scholar 
    Asch, R. G. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. Proc. Natl. Acad. Sci. U. S. A. 112, E4065–E4074 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Auth, T. D., Daly, E. A., Brodeur, R. D. & Fisher, J. L. Phenological and distributional shifts in ichthyoplankton associated with recent warming in the northeast Pacific Ocean. Glob. Chang. Biol. 24, 259–272 (2018).ADS 
    PubMed 

    Google Scholar 
    Sydeman, W. J. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science 345, 77–80 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).ADS 

    Google Scholar 
    Cavole, A. et al. Biological impacts of the 2013–2015 warm water anomaly in the Northeast Pacific: Winner, losers, and the future. Oceanography 29, 273–285 (2016).
    Google Scholar 
    Lenarz, W. H. A history of California rockfish fisheries. In Proceeding of the International Rockfish Symposium. Anchorage, Alaska, Univ. of Alaska (1987).Brodeur, R. D., Buchanan, J. C. & Emmett, R. L. Pelagic and demersal fish predators on juvenile and adult forage fishes in the northern California Current: Spatial and temporal variations. CalCOFI Rep. 55, 96–116 (2014).
    Google Scholar 
    Mills, K. L., Laidig, T., Ralston, S. & Sydeman, W. J. Diets of top predators indicate pelagic juvenile rockfish (Sebastes spp.) abundance in the California Current System. Fish. Oceanogr. 16, 273–283 (2007).
    Google Scholar 
    Santora, J. A., Schroeder, I. D., Field, J. C., Wells, B. K. & Sydeman, W. J. Spatio-temporal dynamics of ocean conditions and forage taxa reveal regional structuring of seabird-prey relationships. Ecol. Appl. 24, 1730–1747 (2014).PubMed 

    Google Scholar 
    McClatchie, S. et al. Food limitation of sea lion pups and the decline of forage off central and southern California. R. Soc. Open Sci. 3, 150628 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Love, B. M. S., Yoklavich, M. & Thorsteinson, L. The Rockfishes of the Northeast Pacific (Univ of California Press, 2002).
    Google Scholar 
    Ralston, S. & Howard, D. F. On the development of year-class stength and cohort variability in two northern California rockfishes. Fish. Bull. 93, 710–720 (1995).
    Google Scholar 
    Wells, B. K. et al. Untangling the relationships among climate, prey, and top predators in an ocean ecosystem. Mar. Ecol. Prog. Ser. 364, 15–29 (2008).ADS 

    Google Scholar 
    Zabel, R. W., Levin, P. S., Tolimieri, N. & Mantua, N. J. Interactions between climate and population density in the episodic recruitment of bocaccio, Sebastes paucispinis, a Pacific rockfish. Fish. Oceanogr. 20, 294–304 (2011).
    Google Scholar 
    Peterson, W. T. et al. Applied fisheries oceanography: Ecosystem indicators of ocean conditions inform fisheries management in the California Current. Oceanography 27, 80–89 (2014).
    Google Scholar 
    Wheeler, S. G., Anderson, T. W., Bell, T. W., Morgan, S. G. & Hobbs, J. A. Regional productivity predicts individual growth and recruitment of rockfishes in a northern California upwelling system. Limnol. Oceanogr. 62, 754–767 (2016).ADS 

    Google Scholar 
    Ralston, S., Sakuma, K. M. & Field, J. C. Interannual variation in pelagic juvenile rockfish (Sebastes spp.) abundance – going with the flow. Fish. Oceanogr. 22, 288–308 (2013).
    Google Scholar 
    Schroeder, I. D. et al. Source water variability as a driver of rockfish recruitment in the california current ecosystem: Implications for climate change and fisheries management. Can. J. Fish. Aquat. Sci. 76, 950–960 (2019).CAS 

    Google Scholar 
    Ottmann, D., Grorud-Colvert, K., Huntington, B. & Sponaugle, S. Interannual and regional variability in settlement of groundfishes to protected and fished nearshore waters of Oregon, USA. Mar. Ecol. Prog. Ser. 598, 131–145 (2018).ADS 

    Google Scholar 
    Haggarty, D. R., Lotterhos, K. E. & Shurin, J. B. Young-of-the-year recruitment does not predict the abundance of older age classes in black rockfish in Barkley Sound, British Columbia. Canada. Mar. Ecol. Prog. Ser. 574, 113–126 (2017).ADS 

    Google Scholar 
    Checkley, D. M. & Barth, J. A. Patterns and processes in the California Current System. Prog. Oceanogr. 83, 49–64 (2009).ADS 

    Google Scholar 
    Jacox, M. G. et al. Forcing of multiyear extreme ocean temperatures that impacted California Current living marine resources in 2016. Bull. Am. Meteorol. Soc. 99, S27–S33 (2018).
    Google Scholar 
    Thompson, A. R. et al. Indicators of pelagic forage community shifts in the California Current Large Marine Ecosystem, 1998–2016. Ecol. Indic. 105, 215–228 (2019).
    Google Scholar 
    Du, X. & Peterson, W. T. Phytoplankton community structure in 2011–2013 compared to the extratropical warming event of 2014–2015. Geophys. Res. Lett. 45, 1534–1540 (2018).ADS 

    Google Scholar 
    Peterson, W. T. et al. The pelagic ecosystem in the Northern California Current off Oregon during the 2014–2016 warm anomalies within the context of the past 20 years. J. Geophys. Res. Ocean. 122, 7267–7290 (2017).ADS 

    Google Scholar 
    Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 1–15 (2019).
    Google Scholar 
    Sutherland, K. R., Sorensen, H. L., Blondheim, O. N., Brodeur, R. D. & Galloway, A. W. E. Range expansion of tropical pyrosomes in the northeast Pacific Ocean. Ecology 99, 2397–2399 (2018).PubMed 

    Google Scholar 
    Brodeur, R. D., Hunsicker, M. E., Hann, A. & Miller, T. W. Effects of warming ocean conditions on feeding ecology of small pelagic fishes in a coastal upwelling ecosystem: A shift to gelatinous food sources. Mar. Ecol. Prog. Ser. 617–618, 149–163 (2019).ADS 

    Google Scholar 
    Bosley, K. L. et al. Feeding ecology of juvenile rockfishes off Oregon and Washington based on stomach content and stable isotope analyses. Mar. Biol. 161, 2381–2393 (2014).CAS 

    Google Scholar 
    Reilly, C. A., Echeverria, T. W. & Ralston, S. Interannual variation and overlap in the diets of pelagic juvenile rockfish (Genus: Sebastes) off central California. Fish. Bull. 90, 505–515 (1992).
    Google Scholar 
    Sumida, B. Y. & Moser, H. G. Food and feeding of bocaccio (Sebastes paucispinis) and comparison with Pacific hake (Merluccius productus) larvae in the California Current. Calif. Coop. Ocean. Fish. Investig. Reports 25, 112–118 (1984).
    Google Scholar 
    Auth, T. D., Brodeur, R. D., Soulen, H. L., Ciannelli, L. & Peterson, W. T. The response of fish larvae to decadal changes in environmental forcing factors off the Oregon coast. Fish. Oceanogr. 20, 314–328 (2011).
    Google Scholar 
    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 1–4 (2018).
    Google Scholar 
    Campana, S. E. Year-class strength and growth rate in young Atlantic cod Gadus morhua. Mar. Ecol. Prog. Ser. 135, 21–26 (1996).ADS 

    Google Scholar 
    Brander, K. Effects of environmental variability on growth and recruitment in cod (Gadus morhua) using a comparative approach. Oceanol. Acta 23, 485–496 (2000).
    Google Scholar 
    Sponaugle, S., Grorud-Colvert, K. & Pinkard, D. Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Mar. Ecol. Prog. Ser. 308, 1–15 (2006).ADS 

    Google Scholar 
    Grorud-Colvert, K. & Sponaugle, S. Variability in water temperature affects trait-mediated survival of a newly settled coral reef fish. Oecologia 165, 675–686 (2011).ADS 
    PubMed 

    Google Scholar 
    Boehlert, G. W. & Yoklavich, M. M. Effects of temperature, ration, and fish size on the growth of juvenile black rockfish, Sebastes melanops. Environ. Biol. Fishes 8, 17–28 (1983).
    Google Scholar 
    Chin, B., Nakagawa, M. & Yamashita, Y. Effects of feeding and temperature on survival and growth of larval black rockfish Sebastes schlegeli in rearing conditions. Aquac. Sci. 55, 619–627 (2007).
    Google Scholar 
    Woodbury, D. & Ralston, S. Interannual variation in growth rates and back-calculated birthdate distributions of pelagic juvenile rockfishes (Sebastes spp.) off the central California coast. Fish. Bull. 89, 523–533 (1991).
    Google Scholar 
    Fennie, H., Sponaugle, S., Daly, E. & Brodeur, R. Prey tell: what quillback rockfish early life history traits reveal about their survival in encounters with juvenile coho salmon. Mar. Ecol. Prog. Ser. 650, 7–18 (2020).ADS 

    Google Scholar 
    Laidig, T. E., Chess, J. R. & Howard, D. F. Relationship between abundance of juvenile rockfishes (Sebastes spp.) and environmental variables documented off northern California and potential mechanisms for the covariation. Fish. Bull. 105, 39–48 (2007).
    Google Scholar 
    Robert, D., Castonguay, M. & Fortier, L. Early growth and recruitment in Atlantic mackerel Scomber scombrus: discriminating the effects of fast growth and selection for fast growth. Mar. Ecol. Prog. Ser. 337, 209–219 (2007).ADS 

    Google Scholar 
    Hare, J. A. & Cowen, R. K. Size, growth, development, and survival of the planktonic larvae of Pomatomus saltatrix (Pisces: Pomatomidae). Ecology 78, 2415–2431 (1997).
    Google Scholar 
    Takasuka, A., Aoki, I. & Mitani, I. Evidence of growth-selective predation on larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar. Ecol. Prog. Ser. 252, 223–238 (2003).ADS 

    Google Scholar 
    Anderson, J. T. A review of size dependent survival during pre-recruit stages of fishes in relation to recruitment. J. Northwest Atl. Fish. Sci. 8, 55–66 (1988).
    Google Scholar 
    Miller, T., Crowder, L. B., Rice, J. A. & Marschall, E. A. Larval size and recruitment mechanisms in fishes: toward a conceptual framework. Can. J. Fish. Aquat. Sci. 45, 1657–1670 (1988).
    Google Scholar 
    Chambers, R. C. & Leggett, W. C. Size and age at metamorphosis in marine fishes: analysis of laboratory-reared winter flounder (Pseudopieuronectes americanus) with a review of variation in other species. Can. J. Fish. Aquat. Sci. 44, 1936–1947 (1987).
    Google Scholar 
    Kashef, N., Sogard, S., Fisher, R. & Largier, J. Ontogeny of critical swimming speeds for larval and pelagic juvenile rockfishes (Sebastes spp., family Scorpaenidae). Mar. Ecol. Prog. Ser. 500, 231–243 (2014).ADS 

    Google Scholar 
    Paradis, A. R., Pepin, P. & Brown, J. A. Vulnerability of fish eggs and larvae to predation: review of the influence of the relative size of prey and predator. Can. J. Fish. Aquat. Sci. 53, 1226–1235 (1996).
    Google Scholar 
    Purcell, J. E. Predation on fish larvae and eggs by the hydromedusa Aequorea victoria at a herring spawning ground in British Columbia. Can. J. Fish. Aquat. Sci. 46, 1415–1427 (1989).
    Google Scholar 
    McLeod, I. M. & Clark, T. D. Limited capacity for faster digestion in larval coral reef fish at an elevated temperature. PLoS ONE 11, 1–13 (2016).
    Google Scholar 
    Takahashi, M., Checkley, D. M., Litz, M. N. C., Brodeur, R. D. & Peterson, W. T. Responses in growth rate of larval northern anchovy (Engraulis mordax) to anomalous upwelling in the northern California Current. Fish. Oceanogr. 21, 393–404 (2012).
    Google Scholar 
    Team, R. C. R: A language and environment for statistical computing. (2013).Brady, R. X., Alexander, M. A., Lovenduski, N. S. & Rykaczewski, R. R. Emergent anthropogenic trends in California Current upwelling. Geophys. Res. Lett. 44, 5044–5052 (2017).ADS 

    Google Scholar 
    Peterson, W. T. & Keister, J. E. Interannual variability in copepod community composition at a coastal station in the northern California Current: A multivariate approach. Deep Res. Part II Top. Stud. Oceanogr. 50, 2499–2517 (2003).ADS 

    Google Scholar 
    Ammann, A. J. SMURFs: Standard monitoring units for the recruitment of temperate reef fishes. J. Exp. Mar. Bio. Ecol. 299, 135–154 (2004).
    Google Scholar 
    Anderson, T. W. & Carr, M. H. BINCKE: A highly efficient net for collecting reef fishes. Environ. Biol. Fishes 51, 111–115 (1998).
    Google Scholar 
    Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M. & Altman, D. G. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 160, 1577–1579 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laidig, T. E. & Adams, P. B. Methods used to identify pelagic juvenile rockfish (Genus Sebastes) occuring along the coast of central California. NOAA Technical Memorandum NMFS (1991).Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Chang. 6, 1042–1047 (2016).ADS 

    Google Scholar 
    Yoklavich, M. M. & Boehlert, G. W. Daily growth increments in otoliths of juvenile black rockfish, Sebastes melanops: An evaluation of autoradiography as a new method of validation. Fish. Bull. 85, 826–832 (1987).
    Google Scholar 
    Miller, J. A. & Shanks, A. L. Evidence for limited larval dispersal in black rockfish (Sebastes melanops): Implications for population structure and marine-reserve design. Can. J. Fish. Aquat. Sci. 61, 1723–1735 (2004).
    Google Scholar 
    Sponaugle, S. Daily otolith increments in the early stages of tropical fish. In Tropical Fish Otoliths: Information for Assessment, Management and Ecology (eds Green, B. et al.) 93–132 (Springer, 2009).
    Google Scholar 
    Laidig, T., Ralston, S. & Bence, J. R. Dynamics of growth in the early life history of shortbelly rockfish Sebastes jordani. Fish. Bull. 89, 611–621 (1991).
    Google Scholar 
    Thorrold, S. R. & Hare, J. A. Otolith applications in reef fish ecology. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed. Sale, P. F.) 243–264 (Academic Press, 2002).
    Google Scholar 
    Field, J. C., MacCall, A. D., Ralston, S., Love, M. S. & Miller, E. F. Bocaccionomics: The effectiveness of pre-recruit indices for assessment and management of bocaccio. Calif. Coop. Ocean. Fish. Investig. Reports 51, 77–90 (2010).
    Google Scholar 
    Carrascal, L. M., Galván, I. & Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).
    Google Scholar  More

  • in

    Prediction of the visit and occupy of the sika deer (Cervus nippon) during the summer season using a virtual ecological approach

    Study area and camera trapping systemThe study area included the northern region of Tochigi Prefecture, Japan (Fig. 2). In Tochigi Prefecture, 54.4% of the land was covered by forest, 19.1% was covered by agricultural land in 2019 (Tochigi Prefecture 2021, https://www.pref.tochigi.lg.jp/a03/documents/keikakusho2267.pdf, accessed on Feb. 10, 2023). The northern region of Tochigi Prefecture has a relatively large area of forest. This area was the home range of the highest density of sika deer in Tochigi Prefecture in 2021. The camera trapping system consisted of 14 cameras (model no. 6210; Ltl-Acorn, Des Moines, IA, USA) that were placed in late April 2018 at 12 sites within the forest interior with two camera sets, namely ID 10–11, and ID 12–13 in neighboring areas (Fig. 2). The 12 sites spanned 84 km from west to east and 39 km from north to south (Fig. 2). The elevation of the sites ranged from 349 to 1033 m. The cameras were set horizontally at 50 cm above the ground and were operated until late November 2018. The cameras were checked every 1 or 2 months and the batteries and memory cards were replaced when necessary. Movements of the sika deer were reordered monthly from May to November. The month of April was excluded because the cameras were placed in late April. The virtual ecological model required the presence/absence of records for validation (described below), thus the number of deer captured in the photos was not considered. Finally, the visit and occupy of sika deer were recorded at 14 sites each month.Figure 2Study area, analytical units, and locations of the camera traps.Full size imageA grid size of approximately 1 km (termed “1-km mesh” hereafter) was used a as the study unit (Fig. 2). The 1-km mesh grid system is a standard Japanese unit used for several types of statistics (https://www.stat.go.jp/english/data/mesh/02.html, accessed on Feb. 10, 2023). To determine the appropriate number of 1-km mesh grids for the simulation study, a 10-km mesh grid, which is the high-order standard Japanese unit (i.e., one 10-km mesh includes 100 1-km meshes), was divided into the minimum number of areas to cover all 14 camera sites as the simulation target area to avoid arbitrary (Fig. 2). Finally, 4200 1-km mesh areas were included for the simulation (Fig. 2).Virtual ecological modelA simple cellular automaton (CA) model can predict the visit and occupy of a target species based on candidate habitats in consideration of the proximity to food resources32. The grid was set to the same size as the unit of the predicted ranges. The model yields a theoretical number of visits (described below) to each cell, which serves as an area preference of the target species. Each cell has two parameters: cell identification (ID) and movement path vector (Fig. 3a). The cell ID indicates the spatial location of the cell within the study area. The movement path involves four variables representing the four directional vectors into adjacent cells (i.e., top, left, bottom, and right) (Fig. 3b). Each variable is a probability value (i.e., 0 to 1) independent of the other three variables that indicates the probability of movement success to the adjacent cells. In this study, the probability value was based on the proximity to availability food resources.Figure 3Basic structure of the cellular automaton model. (a) Two values are associated with each cell: the cell ID “x,” a unique ID for each cell, and the movement probability “mx” indicating four directional vectors into adjacent cells. (b) Values m1, m2, m3, and m4 indicate the probability of movement along a path of the top, left, bottom, and right cells, respectively. If all movement probability values are 0, the virtual population in this cell cannot move to any other cell. If all movement probability values are 1, the virtual population in the cell can move to all adjacent cells.Full size imageA group of sika deer was used as the unit for analysis. The model simulates the capability of movement within the target area. Thus, if a virtual population visited a neighboring cell, the number of visits to the cell is increased without disappearance of the starting cell. The virtual population moves in accordance with the movement probability values.Movement probability between cellsThe term “movement probability” is defined as the probability of movement success into an adjacent cell to the top, left, bottom, or right (Fig. 3b) with four probability values:$$ {text{Movement probability x}} = {text{mx}};({text{m}}1,;{text{m}}2,;{text{m}}3,;{text{m}}4), $$
    (1)
    where m1, m2, m3, and m4 indicate the probability of movement success into the top, left, bottom, and right cells, respectively (Fig. 3b). Since these values are independent of one another, the maximum and minimum sums of m1, m2, m3, and m4 are theoretically 4 and 0, respectively. If all probability of movement success values are 0, the sika deer population in this cell cannot move to any other cell. Moreover, if all probability of movement success values are 1, the population in the cell can move to all adjacent cells.The amount of food resources of deer was acquired from remote sensing measurements35,36. Thus, two variables were used to represent food resource availability: the kernel normalized difference vegetation index (kNDVI)41 and landscape structure (Supplementary Fig. 1).The kNDVI uses remote sensing measurements to assess the components of green vegetation41. As compared to the ordinal NDVI, which is the most widely used index of the condition of vegetation on terrestrial surfaces, the kNDVI has greater resistance to saturation, bias, and complex phenological cycles, and exhibits enhanced robustness to noise and stability across spatial and temporal scales41. The kNDVI appropriately represents the condition of vegetation to reflect the food resource availability for sika deer. The kNDVI was analyzed from the atmospherically corrected surface reflectance observed with the Landsat 8 Operational Land Imager and Thermal Infrared Sensor instruments at approximately 16-day intervals with a spatial resolution of 30 m (data collected in 2018). The mean kNDVI was calculated monthly for each 1-km mesh within the study area. The probability values (m1, m2, m3, and m4) were defined as the proximity to available food resources in a destination cell divided by the maximum value of the target area as relative values throughout the study area. These values reflect the spatial positions of the available food resources in the study area. If the food resources are continuously available, then the sika deer population tend to visit and occupy linearly.The landscape structure is defined as a mixture of forests and grasslands because previous studies suggest that the forest edge has high availability of food resources for sika deer37,38,42,43. The dataset was generated from a current vegetation map that classified the dominant plant species provided by the Biodiversity Center of Japan (Ministry of the Environment, https://www.biodic.go.jp/index_e.html, accessed on Feb. 10, 2023). The types of vegetation of the forests and grasslands were retrieved from the literature, then the original vegetation classes were re-classified44 and overlayed on the 1-km mesh map. In this study, agricultural land types were classified as grassland. For a mesh with both forests and grasslands, the probability of movement was assigned a value of 1, while a mesh with either a forest or grassland was assigned a value of 0.5, because to treat these 2 components fairly. Every mesh of the study area included either a forest or grassland.Movement simulationFirst, simulations were conducted using two independent variables: kNDVI and landscape structure. Each simulation was initiated from one cell with the month, which is referred to as a “trial.” One step is defined as one day, thus the trial conducted in May consisted of 31 steps. A previous study reported that sika deer can travel about 50 km every 2 weeks34. Thus, one step (movement of 1 km) in one day was considered a reasonable distance. Each trial was repeated for all cells i.e., all cells was used as the starting cell of “trial”. The sum of all trials is termed a “run.” Thus, each “run” consisted of n trials, where n is the number of cells in the CA field. In this study, there were 4200 cells. At each step, each attempt to visit a neighboring cell (top, left, bottom, and right) was based on movement probabilities. For each successful movement, the presence/absence value assigned to the cell was increased from 0 to 1, i.e., change from absence to presence. The next step was then initiated from any newly visited cell and the previously visited cells. Cells with high values indicated the possibility of visitation by a virtual population from several other cells. The assigned value was used as a metric of the preference of the visited cell. In this study, 100 runs were conducted each month from May to November.Second, simulations were conducted using a combination of movement-related variables with two types of combination models: kNDVI AND landscape structure and kNDVI OR landscape structure. With both the logical AND and OR models, each step has two processes: probability approach with the kNDVI and landscape structure. With the AND model, if the virtual population passes the probability of the kNDVI to move to a neighboring cell, then the probability of movement to a neighboring cell is based on the landscape structure. In the logical AND model, we used kNDVI first because that could reflect a seasonal change in the availability of food resources. With the OR model, if the virtual population passes the probability of the kNDVI, or passes that of the landscape structure, the virtual population can move to any neighboring cell.Additionally, equivalence model simulation was conducted with all probability values (m1, m2, m3, and m4) set to 0.5.Validation of the simulation results using the camera trap dataThe results of the CA model simulation were validated by the presence/absence of the monthly records of sika deer collected with the cameras. The occurrence of a visit to a camera was determined using a generalized linear model with a binomial distribution (log link) and model selection based on Akaike’s information criterion (AIC). The explanatory variable was the theoretical number of simulated visits to a 1-km cell with a camera trap. If the AIC value of the model was  > 2 points lower than that of the null model45 (i.e., with no explanatory variable), the run was considered “correct”. The data from the kNDVI, landscape structure, AND/OR, and null/equivalence models were used. The number of “correct” runs of every 100 runs with each model was calculated. Therefore, all values could theoretically be 100.Then, the predictive ability of the model was evaluated using the results considered as “correct” with the AIC. The AIC values of all runs were compared, where one simulation set used four variables. If the four models (i.e., kNDVI, landscape, AND, and OR models) were all “correct” in one run, the AIC values were compared and the lowest AIC value of the model was recorded. Notably, differences among the AIC values were not considered because the effectiveness of the model was already evaluated in the first validation procedure. Calculations for all months were conducted. Therefore, the maximum value among the four models was 100, assuming that the run was “correct” with the lowest AIC.Finally, a map was generated of the theoretical number of visits by sika deer in each month based on the best performance among the four simulations. The map included the average number of theoretical visits over 100 runs. The results considered incorrect were not excluded because in real-world applications, simulated results are not evaluated.All statistical analyses were performed using R software (ver. 4.0.2; https://www.r-project.org/, accessed on Feb. 10, 2023). More

  • in

    Land-use diversity predicts regional bird taxonomic and functional richness worldwide

    Gámez-Virués, S. et al. Landscape simplification filters species traits and drives biotic homogenization. Nat. Commun. 6, 1–8 (2015). 2015 61.Article 

    Google Scholar 
    Smart, S. M. et al. Biotic homogenization and changes in species diversity across human-modified ecosystems. Proc. R. Soc. B Biol. Sci. 273, 2659–2665 (2006).Article 

    Google Scholar 
    McKinney, M. L. & Lockwood, J. L. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450–453 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pigot, A. L., Jetz, W., Sheard, C. & Tobias, J. A. The macroecological dynamics of species coexistence in birds. Nat. Ecol. Evol. 2, 1112–1119 (2018). 2018 27.Article 
    PubMed 

    Google Scholar 
    Reidsma, P., Tekelenburg, T., Van Den Berg, M. & Alkemade, R. Impacts of land-use change on biodiversity: An assessment of agricultural biodiversity in the European Union. Agric. Ecosyst. Environ. 114, 86–102 (2006).Article 

    Google Scholar 
    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353, 291–288 (2016).Article 
    ADS 

    Google Scholar 
    Meier, E. S., Lüscher, G. & Knop, E. Disentangling direct and indirect drivers of farmland biodiversity at landscape scale. Ecol. Lett. 00, 1–13 (2022).
    Google Scholar 
    Martínez-Núñez, C. et al. Temporal and spatial heterogeneity of semi-natural habitat, but not crop diversity, is correlated with landscape pollinator richness. J. Appl. Ecol. 59, 1258–1267 (2022).Article 

    Google Scholar 
    Benton, T. G., Vickery, J. A. & Wilson, J. D. Farmland biodiversity: is habitat heterogeneity the key? Trends Ecol. Evol. 18, 182–188 (2003).Article 

    Google Scholar 
    Sparrow, A. D. A heterogeneity of heterogeneities. Trends Ecol. Evol. 14, 422–423 (1999).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tscharntke, T., Grass, I., Wanger, T. C., Westphal, C. & Batáry, P. Spatiotemporal land-use diversification for biodiversity. Trends Ecol. Evol. 37, 734–735 (2022).Article 
    PubMed 

    Google Scholar 
    Quintero, C., Morales, C. L. & Aizen, M. A. Effects of anthropogenic habitat disturbance on local pollinator diversity and species turnover across a precipitation gradient. Biodivers. Conserv. 19, 257–274 (2010).Article 

    Google Scholar 
    Allen, D. C. et al. Long-term effects of land-use change on bird communities depend on spatial scale and land-use type. Ecosphere 10, e02952 (2019).Article 

    Google Scholar 
    MacArthur, R. H. Patterns of species diversity. Biol. Rev. 40, 510–533 (1965).Article 

    Google Scholar 
    Kinlock, N. L. et al. Explaining global variation in the latitudinal diversity gradient: Meta-analysis confirms known patterns and uncovers new ones. Glob. Ecol. Biogeogr. 27, 125–141 (2018).Article 

    Google Scholar 
    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).Article 
    PubMed 

    Google Scholar 
    Jarzyna, M. A., Quintero, I. & Jetz, W. Global functional and phylogenetic structure of avian assemblages across elevation and latitude. Ecol. Lett. 24, 196–207 (2021).Article 
    PubMed 

    Google Scholar 
    Guo, Q. et al. Global variation in elevational diversity patterns. Sci. Rep. 3, 1–7 (2013). 2013 31.Article 
    CAS 

    Google Scholar 
    McCain, C. M. Elevational gradients in diversity of small mammals. Ecology 86, 366–372 (2005).Article 

    Google Scholar 
    Rahbek, C. The elevational gradient of species richness: a uniform pattern? Ecography 18, 200–205 (1995).Article 

    Google Scholar 
    Gillman, L. N. et al. Latitude, productivity and species richness. Glob. Ecol. Biogeogr. 24, 107–117 (2015).Article 

    Google Scholar 
    Cusens, J., Wright, S. D., McBride, P. D. & Gillman, L. N. What is the form of the productivity–animal-species-richness relationship? A critical review and meta-analysis. Ecology 93, 2241–2252 (2012).Article 
    PubMed 

    Google Scholar 
    Currie, D. J. et al. Predictions and tests of climate-based hypotheses of broad-scale variation in taxonomic richness. Ecol. Lett. 7, 1121–1134 (2004).Article 

    Google Scholar 
    Gaston, K. J. Global patterns in biodiversity. Nature 405, 220–227 (2000).Article 
    CAS 
    PubMed 

    Google Scholar 
    Burrell, A. L., Evans, J. P. & De Kauwe, M. G. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 11, 1–11 (2020). 2020 111.Article 

    Google Scholar 
    Simkin, R. D., Seto, K. C., McDonald, R. I. & Jetz, W. Biodiversity impacts and conservation implications of urban land expansion projected to 2050. Proc. Natl Acad. Sci. U. S. A. 119, e2117297119 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes, E. C. et al. Global biogeographic patterns of avian morphological diversity. Ecol. Lett. 25, 598–610 (2022).Article 
    PubMed 

    Google Scholar 
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).Article 

    Google Scholar 
    McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).Article 
    PubMed 

    Google Scholar 
    Brun, P. et al. The productivity-biodiversity relationship varies across diversity dimensions. Nat. Commun. 10, 1–11 (2019).Article 

    Google Scholar 
    Santillán, V. et al. Different responses of taxonomic and functional bird diversity to forest fragmentation across an elevational gradient. Oecologia 189, 863–873 (2018).Article 
    ADS 
    PubMed 

    Google Scholar 
    Chesson, P. Mechanisms of maintenance of species diversity. Annu. Rev. Ecol. Syst. 31, 343–366 (2000).Article 

    Google Scholar 
    Finke, D. L. & Snyder, W. E. Niche partitioning increases resource exploitation by diverse communities. Science 321, 1488–1490 (2008).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stein, A., Gerstner, K. & Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes, and spatial scales. Ecol. Lett. 17, 866–880 (2014).Article 
    PubMed 

    Google Scholar 
    Chisholm, R. A. et al. Species–area relationships and biodiversity loss in fragmented landscapes. Ecol. Lett. 21, 804–813 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grinnell, J. The Niche-relationships of the California Thrasher. Auk 34, 427–433 (1917).Article 

    Google Scholar 
    Soberón, J. Grinnellian and Eltonian niches and geographic distributions of species. Ecol. Lett. 10, 1115–1123 (2007).Article 
    PubMed 

    Google Scholar 
    Kraft, N. J. B. et al. Community assembly, coexistence, and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).Article 

    Google Scholar 
    Tarifa, R. et al. Agricultural intensification erodes taxonomic and functional diversity in Mediterranean olive groves by filtering out rare species. J. Appl. Ecol. 58, 2266–2276 (2021).Article 

    Google Scholar 
    Noble, I. R. & Slatyer, R. O. The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43, 5–21 (1980).Article 

    Google Scholar 
    Morelli, F. et al. Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Glob. Ecol. Biogeogr. 25, 1284–1293 (2016).Article 

    Google Scholar 
    Veech, J. A. & Crist, T. O. Habitat and climate heterogeneity maintain beta-diversity of birds among landscapes within ecoregions. Glob. Ecol. Biogeogr. 16, 650–656 (2007).Article 

    Google Scholar 
    García-Navas, V. et al. Partitioning beta diversity to untangle mechanisms underlying the assembly of bird communities in Mediterranean olive groves. Divers. Distrib. 28, 112–127 (2022).Article 

    Google Scholar 
    Haddad, N. M. et al. Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci. Adv. 1, e1500052 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Slatyer, R. A., Hirst, M. & Sexton, J. P. Niche breadth predicts geographical range size: a general ecological pattern. Ecol. Lett. 16, 1104–1114 (2013).Article 
    PubMed 

    Google Scholar 
    Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 1–10 (2021).Article 

    Google Scholar 
    Reynolds, J. F. et al. Global desertification: building a science for dryland development. Science. 316, 847–851 (2007).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Meyfroidt, P. & Lambin, E. F. Global forest transition: prospects for an end to deforestation. 36, 343–371 https://doi.org/10.1146/annurev-environ-090710-143732 (2011).McKinney, M. L. Urbanization as a major cause of biotic homogenization. Biol. Conserv. 127, 247–260 (2006).Article 

    Google Scholar 
    Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).Article 
    PubMed 

    Google Scholar 
    Tobias, J. A. et al. AVONET: morphological, ecological and geographical data for all birds. Ecol. Lett. 25, 581–597 (2022).Article 
    PubMed 

    Google Scholar 
    Dray, S. & Dufour, A. B. The ade4 Package: Implementing the duality diagram for ecologists. J. Stat. Softw. 22, 1–20 (2007).Article 

    Google Scholar 
    Gruson, H. & Grenié, M. Fundiversity: Easy computation of functional diversity Indices. https://doi.org/10.5281/ZENODO.7360757 (2022).Mammola, S., Carmona, C. P., Guillerme, T. & Cardoso, P. Concepts and applications in functional diversity. Funct. Ecol. 35, 1869–1885 (2021).Article 
    CAS 

    Google Scholar 
    Kohli, B. A. & Jarzyna, M. A. Pitfalls of ignoring trait resolution when drawing conclusions about ecological processes. Glob. Ecol. Biogeogr. 30, 1139–1152 (2021).Article 

    Google Scholar 
    Buchhorn, M. et al. Copernicus global land cover layers—Collection 2. Remote Sens. 12, 1044 (2020). 2020, Vol. 12, Page 1044.Article 
    ADS 

    Google Scholar 
    Gorelick, N. et al. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).Article 
    ADS 

    Google Scholar 
    Mu, H. et al. A global record of annual terrestrial Human Footprint dataset from 2000 to 2018. Sci. Data 9, 1–9 (2022). 2022 91.Article 

    Google Scholar 
    Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366, eaax3100 (2019).Article 
    PubMed 

    Google Scholar 
    Stewart, P. S. et al. Global impacts of climate change on avian functional diversity. Ecol. Lett. 25, 673–685 (2022).Article 
    PubMed 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73, 3–36 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Wickham, H. ggplot2. (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-24277-4.Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Breheny, P. & Burchett, W. Visualization of regression models using Visreg. R. J. 9, 56–71 (2017).Article 

    Google Scholar 
    Met Office. Cartopy: a cartographic python library with matplotlib support. (2013).Martinez-Nuñez, C., Martinez-Prentice, R. & García-Navas, V. Dataset: Environmental as well as bird taxonomic and functional richness data for ca. 18,000 grid cells in the world. Figshare https://doi.org/10.6084/m9.figshare.21747257.v1 (2023). More

  • in

    Population genomics and conservation management of the threatened black-footed tree-rat (Mesembriomys gouldii) in northern Australia

    Abicair K, Manning AD, Ford F, Newport J, Banks SC (2020) Habitat selection and genetic diversity of a reintroduced ‘refugee species’. Anim Conserv 23:330–341Article 

    Google Scholar 
    Adamack AT, Gruber B (2014) PopGenReport: Simplifying basic population genetic analyses in R. Methods Ecol Evol 5:384–387Article 

    Google Scholar 
    Amori G, Gippoliti S (2003) A higher-taxon approach to rodent conservation priorities for the 21st century. Anim Biodivers Conserv 26.2:1–18
    Google Scholar 
    Andersen LW, Fog K, Damgaard C (2004) Habitat fragmentation causes bottlenecks and inbreeding in the European tree frog (Hyla arborea). Proc Biol Sci 271:1293–1302Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ball IR, Possingham H, Watts M (2009) Marxan and relatives: Software for spatial conservation prioritization. In: Moilanen A, Wilson KA, Possingham H (eds) Spatial Conservation Prioritisation: Quantitative Methods and Computational Tools. Oxford University Press, Oxford, U.K., p 320
    Google Scholar 
    Barbato M, Orozco-terWengel P, Tapio M, Bruford MW (2015). SNeP: a tool to estimate trends in recent effective population size trajectories using genome-wide SNP data. Front Genet 6:109Barbosa S, Mestre F, White TA, Paupério J, Alves PC, Searle JB (2018) Integrative approaches to guide conservation decisions: Using genomics to define conservation units and functional corridors. Mol Ecol 27:3452–3465Article 
    PubMed 

    Google Scholar 
    Bowman DMJS, Brown GK, Braby MF, Brown JR, Cook LG, Crisp MD et al. (2010) Biogeography of the Australian monsoon tropics. J Biogeogr 37:201–216Article 

    Google Scholar 
    Caballero A, García-Dorado A (2013) Allelic diversity and its implications for the rate of adaptation. Genetics 195:1373–1384Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardillo M, Mace GM, Gittleman JL, Jones KE, Bielby J, Purvis A (2008) The predictability of extinction: biological and external correlates of decline in mammals. Proc R Soc B: Biol Sci 275:1441–1448Article 

    Google Scholar 
    Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Catullo RA, Lanfear R, Doughty P, Keogh JS (2014) The biogeographical boundaries of northern Australia: evidence from ecological niche models and a multi-locus phylogeny of Uperoleia toadlets (Anura: Myobatrachidae). J Biogeogr 41:659–672Article 

    Google Scholar 
    Caye K, Deist TM, Martins H, Michel O, François O (2016) TESS3: fast inference of spatial population structure and genome scans for selection. Mol Ecol Resour 16:540–548Article 
    CAS 
    PubMed 

    Google Scholar 
    Caye K, Jay F, Michel O, François O (2018) Fast inference of individual admixture coefficients using geographic data. Ann Appl Stat 12:586–608Article 

    Google Scholar 
    CBD (2021) First draft of the post-2020 global biodiversity framework. UN Convention on Biological DiversityCeballos G, Ehrlich PR, Barnosky AD, García A, Pringle RM, Palmer TM (2015) Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci Adv 1:e1400253Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corbin LJ, Liu AYH, Bishop SC, Woolliams JA (2012) Estimation of historical effective population size using linkage disequilibria with marker data. J Anim Breed Genet 129:257–270Article 
    CAS 
    PubMed 

    Google Scholar 
    Crichton EG (1969) Reproduction in the pseudomyine rodent Mesembriomys gouldii (Gray) (Muridae). Aust J Zool 17:785–797Article 

    Google Scholar 
    Davies HF, McCarthy MA, Firth RSC, Woinarski JCZ, Gillespie GR, Andersen AN et al. (2017) Top-down control of species distributions: feral cats driving the regional extinction of a threatened rodent in northern Australia (N Roura-Pascual, Ed.). Divers Distrib 23:272–283Article 

    Google Scholar 
    Davies HF, McCarthy MA, Firth RSC, Woinarski JCZ, Gillespie GR, Andersen AN et al. (2018) Declining populations in one of the last refuges for threatened mammal species in northern Australia. Austral Ecol 43:602–612Article 

    Google Scholar 
    Díaz S, Settele J, Brondízio ES, Ngo HT, Agard J, Arneth A et al. (2019) Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366:6471Dyer R (2016) gstudio: tools related to the spatial analysis of genetic marker data. R package version 152Edwards RD, Crisp MD, Cook DH, Cook LG (2017) Congruent biogeographical disjunctions at a continent-wide scale: Quantifying and clarifying the role of biogeographic barriers in the Australian tropics. PLoS One 12:e0174812Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eldridge MDB, Potter S, Cooper SJB, Eldridge MDB, Potter S, Cooper SJB (2012) Biogeographic barriers in north-western Australia: an overview and standardisation of nomenclature. Aust J Zool 59:270–272Article 

    Google Scholar 
    Fitak RR (2021) OptM: estimating the optimal number of migration edges on population trees using Treemix. Biol Methods Protoc 6:bpab017Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frichot E, François O (2015) LEA: An R package for landscape and ecological association studies. Methods Ecol Evol 6:925–929Article 

    Google Scholar 
    Friend GR (1987) Population ecology of Mesembriomys gouldii (Rodentia, Muridae) in the wet-dry tropics of the Northern Territory. Wildl Res 14:293–303Article 

    Google Scholar 
    Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goudet J (2005) hierfstat, a package for r to compute and test hierarchical F‐statistics. Mol Ecol Notes 5:184–186Article 

    Google Scholar 
    Goudet J, Kay T, Weir BS (2018) How to estimate kinship. Mol Ecol 27:4121–4135Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greenbaum G, Templeton AR, Zarmi Y, Bar-David S (2014) Allelic richness following population founding events – a stochastic modeling framework incorporating gene flow and genetic drift. PLoS One 9:e115203Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hanson JO, Schuster R, Morrell N, Strimas-Mackey M, Watts ME, Arcese P et al. (2020) prioritizr: systematic conservation prioritization in R. R package version 415Hoban S, Bruford M, D’Urban Jackson J, Lopes-Fernandes M, Heuertz M, Hohenlohe PA et al. (2020) Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol Conserv 248:108654Article 

    Google Scholar 
    Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. PeerJ 2:e281Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kim SY, Lohmueller KE, Albrechtsen A, Li Y, Korneliussen T, Tian G et al. (2011) Estimation of allele frequency and association mapping using next-generation sequencing data. BMC Bioinforma 12:231Article 

    Google Scholar 
    Korneliussen TS, Albrechtsen A, Nielsen R (2014) Open Access ANGSD: Analysis of Next Generation Sequencing Data. BMC Bioinforma 15:1–13Article 

    Google Scholar 
    Lambert C, Power V, Gaikhorst G (2016) Captive breeding of the Shark Bay mouse Pseudomys fieldi to facilitate species recovery in the wild. J Zoo Aquar Res 4:164–168
    Google Scholar 
    Laurie CC, Nickerson DA, Anderson AD, Weir BS, Livingston RJ, Dean MD et al. (2007) Linkage disequilibrium in wild mice. PLOS Genet 3:e144Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leakey RE, Lewin R (1995) The sixth extinction: patterns of life and the future of humankind, 1st ed. Doubleday, New York
    Google Scholar 
    Li H (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv:13033997Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25:2078–2079Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martins H, Caye K, Luu K, Blum MGB, François O (2016) Identifying outlier loci in admixed and in continuous populations using ancestral population differentiation statistics. Mol Ecol 25:5029–5042Article 
    PubMed 

    Google Scholar 
    Melville J, Ritchie EG, Chapple SNJ, Glor RE, Schulte JA (2011) Evolutionary origins and diversification of dragon lizards in Australia’s tropical savannas. Mol Phylogenetics Evol 58:257–270Article 
    CAS 

    Google Scholar 
    Morton CM (1992) Diets of three species of tree-rat: Mesembriomys gouldii (Gray), M. macrurus (Peters) and Conilurus Pencillatus (Gould) from the Mitchell Plateau, Western Australia. University of Canberra, Canberra, ACT
    Google Scholar 
    Ottewell KM, Bickerton DC, Byrne M, Lowe AJ (2016) Bridging the gap: a genetic assessment framework for population-level threatened plant conservation prioritization and decision-making. Divers Distrib 22:174–188Article 

    Google Scholar 
    Ottewell K, Dunlop J, Thomas N, Morris K, Coates D, Byrne M (2014) Evaluating success of translocations in maintaining genetic diversity in a threatened mammal. Biol Conserv 171:209–219Article 

    Google Scholar 
    Pacifici M, Santini L, Marco MD, Baisero D, Francucci L, Marasini GG et al. (2013) Generation length for mammals. Nat Conserv 5:89–94Article 

    Google Scholar 
    Palsbøll PJ, Bérubé M, Allendorf FW (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16Article 
    PubMed 

    Google Scholar 
    Pembleton LW, Cogan NOI, Forster JW (2013) StAMPP: an R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol Ecol Resour 13:946–952Article 
    CAS 
    PubMed 

    Google Scholar 
    Penton CE, Davies HF, Radford IJ, Woolley L-A, Rangers TL, Murphy BP (2021) A hollow argument: understory vegetation and disturbance determine abundance of hollow-dependent mammals in an Australian tropical savanna. Front Ecol Evol 9:778Article 

    Google Scholar 
    Penton CE, Radford IJ, Woolley L-A, von Takach B, Murphy BP (2021) Unexpected overlapping use of tree hollows by birds, reptiles and declining mammals in an Australian tropical savanna. Biodivers Conserv 30:2977–3001Article 

    Google Scholar 
    Penton CE, Woolley L-A, Radford IJ, Murphy BP (2020) Overlapping den tree selection by three declining arboreal mammal species in an Australian tropical savanna. J Mammal 101:1165–1176Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petit RJ, Mousadik AE, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855Article 

    Google Scholar 
    Pickrell JK, Pritchard JK (2012) Inference of population splits and mixtures from genome-wide allele frequency data. PLOS Genet 8:e1002967Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Potter S, Close RL, Taggart DA, Cooper SJB, Eldridge MDB, Potter S et al. (2014) Taxonomy of rock-wallabies, Petrogale (Marsupialia: Macropodidae). IV. Multifaceted study of the brachyotis group identifies additional taxa. Aust J Zool 62:401–414Article 

    Google Scholar 
    Price O, Rankmore B, Milne D, Brock C, Tynan C, Kean L et al. (2005) Regional patterns of mammal abundance and their relationship to landscape variables in eucalypt woodlands near Darwin, northern Australia. Wildl Res 32:435–446Article 

    Google Scholar 
    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al. (2007) PLINK: A tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team (2021). R: A language and environment for statistical computingRadford IJ, Corey B, Carnes K, Shedley E, McCaw L, Woolley L-A (2021). Landscape-scale effects of fire, cats, and feral livestock on threatened savanna mammals: unburnt habitat matters more than pyrodiversity. Front Ecol Evol 9: 739817Rankmore BR, Friend GR (2008). Black-footed tree-rat, Mesembriomys gouldii. In: The mammals of Australia, Reed New Holland: Sydney, Australia, pp 591–593Rick K, Ottewell K, Lohr C, Thavornkanlapachai R, Byrne M, Kennington WJ (2019) Population genomics of Bettongia lesueur: admixing increases genetic diversity with no evidence of outbreeding depression. Genes 10:851Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robledo-Ruiz DA, Pavlova A, Clarke RH, Magrath MJL, Quin B, Harrisson KA et al. (2022) A novel framework for evaluating in situ breeding management strategies in endangered populations. Mol Ecol Resour 22:239–253Article 
    PubMed 

    Google Scholar 
    Rowe KC, Reno ML, Richmond DM, Adkins RM, Steppan SJ (2008) Pliocene colonization and adaptive radiations in Australia and New Guinea (Sahul): Multilocus systematics of the old endemic rodents (Muroidea: Murinae). Mol Phylogenetics Evol 47:84–101Article 
    CAS 

    Google Scholar 
    Roycroft E, MacDonald AJ, Moritz C, Moussalli A, Miguez RP, Rowe KC (2021) Museum genomics reveals the rapid decline and extinction of Australian rodents since European settlement. PNAS 118:e2021390118Roycroft EJ, Moussalli A, Rowe KC (2020) Phylogenomics uncovers confidence and conflict in the rapid radiation of Australo-Papuan rodents. Syst Biol. 69:431–444Sandoval-Castillo J, Robinson NA, Hart AM, Strain LWS, Beheregaray LB (2018) Seascape genomics reveals adaptive divergence in a connected and commercially important mollusc, the greenlip abalone (Haliotis laevigata), along a longitudinal environmental gradient. Mol Ecol 27:1603–1620Article 
    PubMed 

    Google Scholar 
    Scheele BC, Foster CN, Banks SC, Lindenmayer DB (2017) Niche contractions in declining species: mechanisms and consequences. Trends Ecol Evol 32:346–355Article 
    PubMed 

    Google Scholar 
    Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V et al. (2008) The status of the world’s land and marine mammals: diversity, threat, and knowledge. Science 322:225–230Article 
    CAS 
    PubMed 

    Google Scholar 
    Schmidt TL, Jasper M-E, Weeks AR, Hoffmann AA (2021) Unbiased population heterozygosity estimates from genome-wide sequence data. Methods Ecol Evol 12:1888–1898Article 

    Google Scholar 
    Smith AP, Quin DG (1996) Patterns and causes of extinction and decline in Australian conilurine rodents. Biol Conserv 77:243–267Article 

    Google Scholar 
    Stobo-Wilson AM, Stokeld D, Einoder LD, Davies HF, Fisher A, Hill BM et al. (2020) Bottom-up and top-down processes influence contemporary patterns of mammal species richness in Australia’s monsoonal tropics. Biol Conserv 247:108638Article 

    Google Scholar 
    Sved JA, Feldman MW (1973) Correlation and probability methods for one and two loci. Theor Popul Biol 4:129–132Article 
    CAS 
    PubMed 

    Google Scholar 
    von Takach Dukai B, Peakall R, Lindenmayer DB, Banks SC (2020a) The influence of fire and silvicultural practices on the landscape-scale genetic structure of an Australian foundation tree species. Conserv Genet 21:231–246Article 

    Google Scholar 
    von Takach B, Ahrens CW, Lindenmayer DB, Banks SC (2021) Scale-dependent signatures of local adaptation in a foundation tree species. Mol Ecol 30:2248–2261Article 

    Google Scholar 
    von Takach B, Jolly CJ, Dixon KM, Penton CE, Doherty TS, Banks SC (2022) Long-unburnt habitat is critical for the conservation of threatened vertebrates across Australia. Landsc Ecol 37:1469–1482Article 

    Google Scholar 
    von Takach B, Penton CE, Murphy BP, Radford IJ, Davies HF, Hill BM et al. (2021) Population genomics and conservation management of a declining tropical rodent. Heredity 126:763–775Article 

    Google Scholar 
    von Takach B, Ranjard L, Burridge CP, Cameron SF, Cremona T, Eldridge MDB et al. (2022) Population genomics of a predatory mammal reveals patterns of decline and impacts of exposure to toxic toads. Mol Ecol 31:5468–5486Article 

    Google Scholar 
    von Takach B, Scheele BC, Moore H, Murphy BP, Banks SC (2020b) Patterns of niche contraction identify vital refuge areas for declining mammals. Divers Distrib 26:1467–1482Article 

    Google Scholar 
    Troughton E (1967) Furred animals of Australia, 9th edn. Angus and Robertson, Sydney, Australia
    Google Scholar 
    Van Dyck S, Gynther I, Baker A (Eds.) (2013) Field Companion to the Mammals of Australia. New Holland Publishers, London, Sydney
    Google Scholar 
    Van Dyck S, Strahan R (2008) The Mammals of Australia, 3rd edn. Reed New Holland, Chatswood, NSW, Australia
    Google Scholar 
    Vladislav K (2018) lpsymphony: Symphony integer linear programming solver in R. R package version 1180Watts ME, Ball IR, Stewart RS, Klein CJ, Wilson K, Steinback C et al. (2009) Marxan with Zones: Software for optimal conservation based land- and sea-use zoning. Environ Model Softw 24:1513–1521Article 

    Google Scholar 
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CAS 
    PubMed 

    Google Scholar 
    Weir BS, Goudet J (2017) A unified characterization of population structure and relatedness. Genetics 206:2085–2103Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wheeler J (1982) Notes on the black-footed tree-rat in a modified environment. North Territ Nat 5:8–9
    Google Scholar 
    White LC, Thomson VA, West R, Ruykys L, Ottewell K, Kanowski J et al. (2020) Genetic monitoring of the greater stick-nest rat meta-population for strategic supplementation planning. Conserv Genet 21:941–956Article 

    Google Scholar 
    Whitlock MC, Lotterhos KE (2015) Reliable detection of loci responsible for local adaptation: inference of a null model through trimming the distribution of FST. Am Nat 186:S24–S36Article 
    PubMed 

    Google Scholar 
    Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New YorkBook 

    Google Scholar 
    Wintle BA, Cadenhead NCR, Morgain RA, Legge SM, Bekessy SA, Cantele M et al. (2019) Spending to save: What will it cost to halt Australia’s extinction crisis? Conserv Lett 12:e12682Article 

    Google Scholar 
    Woinarski JCZ, Armstrong M, Brennan K, Fisher A, Griffiths AD, Hill B et al. (2010) Monitoring indicates rapid and severe decline of native small mammals in Kakadu National Park, northern Australia. Wildl Res 37:116Article 

    Google Scholar 
    Woinarski JCZ, Braby MF, Burbidge AA, Coates D, Garnett ST, Fensham RJ et al. (2019) Reading the black book: The number, timing, distribution and causes of listed extinctions in Australia. Biol Conserv 239:108261Article 

    Google Scholar 
    Woinarski JCZ, Burbidge AA (2016) Mesembriomys gouldii. The IUCN Red List of Threatened Species 2016:eT13211A22448856Woinarski JC, Burbidge AA, Harrison P (2014) The action plan for Australian mammals 2012. CSIRO Publishing, Collingwood, AustraliaBook 

    Google Scholar 
    Woinarski JCZ, Legge S, Fitzsimons JA, Traill BJ, Burbidge AA, Fisher A et al. (2011) The disappearing mammal fauna of northern Australia: context, cause, and response. Conserv Lett 4:192–201Article 

    Google Scholar 
    Woinarski JCZ, Milne DJ, Wanganeen G (2001) Changes in mammal populations in relatively intact landscapes of Kakadu National Park, Northern Territory, Australia. Austral Ecol 26:360–370Article 

    Google Scholar 
    Zheng X, Levine D, Shen J, Gogarten SM, Laurie C, Weir BS (2012) A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28:3326–3328Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Five essentials for area-based biodiversity protection

    Devillers, R. et al. Aquat. Conserv. 25, 480–504 (2015).Article 

    Google Scholar 
    Silvestro, D., Goria, S., Sterner, T. & Antonelli, A. Nat. Sustain. 5, 415–424 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cowell, C. R. et al. Biodivers. Conserv. 32, 119–137 (2023).Article 

    Google Scholar 
    Joly, C. A., Metzger, J. P. & Tabarelli, M. New Phytol. 204, 459–473 (2014).Article 
    PubMed 

    Google Scholar 
    Darbyshire, I. et al. Biodivers. Conserv. 26, 1767–1800 (2017).Article 

    Google Scholar 
    Antonelli, A. et al. Science 378, eabf0869 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Farooq, H., Antonelli, A. & Faurby, S. Perspect. Ecol. Conserv. https://doi.org/10.1016/j.pecon.2023.02.002 (2023).Geldmann, J., Manica, A., Burgess, N. D., Coad, L. & Balmford, A. Proc. Natl Acad. Sci. USA 116, 23209–23215 (2019).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jetz, W. et al. Nat. Ecol. Evol. 6, 123–126 (2022).Article 
    PubMed 

    Google Scholar 
    Hockings, M., Dudley, N., Stolton, S., Pasha, M. K. S. & van Nimwegen, P. Oryx 55, 333 (2021).Article 

    Google Scholar 
    Ralimanana, H. et al. Science 378, eadf1466 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Maxwell, S. L. et al. Nature 586, 217–227 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Milner-Gulland, E. J. Nat. Ecol. Evol. 6, 1243–1244 (2022).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wilson, E. O. Half-Earth: Our Planet’s Fight for Life (W. W. Norton & Co., 2016).Leclère, D. et al. Nature 585, 551–556 (2020).Article 
    PubMed 

    Google Scholar  More

  • in

    A biome-dependent distribution gradient of tree species range edges is strongly dictated by climate spatial heterogeneity

    Soule, M. The epistasis cycle: a theory of marginal populations. Annu. Rev. Ecol. Syst. 4, 165–187 (1973).Article 

    Google Scholar 
    Brown, J. H. On the relationship between abundance and distribution of species. Am. Nat. 124, 255–279 (1984).Article 

    Google Scholar 
    Gaston, K. J. The Structure and Dynamics of Geographic Ranges (Oxford Univ. Press, 2003).Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).Article 

    Google Scholar 
    Gaston, K. J. Geographic range limits: achieving synthesis. Proc. R. Soc. B 276, 1395–1406 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zizka, A. et al. No one-size-fits-all solution to clean GBIF. PeerJ 8, e9916 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goldberg, E. E. & Lande, R. Species’ borders and dispersal barriers. Am. Nat. 170, 297–304 (2007).Article 
    PubMed 

    Google Scholar 
    Bachmann, J. C., Rensburg, A. J. V., Cortazar-Chinarro, M., Laurila, A. & Buskirk, J. V. Gene flow limits adaptation along steep environmental gradients. Am. Nat. 195, E67–E86 (2020).Article 
    PubMed 

    Google Scholar 
    Hargreaves, A. L., Samis, K. E. & Eckert, C. G. Are species’ range limits simply niche limits writ large? A review of transplant experiments beyond the range. Am. Nat. 183, 157–173 (2014).Article 
    PubMed 

    Google Scholar 
    Henry, R. C., Bartoń, K. A. & Travis, J. M. J. Mutation accumulation and the formation of range limits. Biol. Lett. 11, 20140871 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perrier, A., Sánchez-Castro, D. & Willi, Y. Environment dependence of the expression of mutational load and species’ range limits. J. Evol. Biol. 35, 731–741 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bontrager, M. et al. Adaptation across geographic ranges is consistent with strong selection in marginal climates and legacies of range expansion. Evolution 75, 1316–1333 (2021).Article 
    PubMed 

    Google Scholar 
    Santini, L., Pironon, S., Maiorano, L. & Thuiller, W. Addressing common pitfalls does not provide more support to geographical and ecological abundant-centre hypotheses. Ecography 42, 696–705 (2019).Article 

    Google Scholar 
    Oldfather, M. F., Kling, M. M., Sheth, S. N., Emery, N. C. & Ackerly, D. D. Range edges in heterogeneous landscapes: integrating geographic scale and climate complexity into range dynamics. Glob. Chang. Biol. 26, 1055–1067 (2020).Article 
    PubMed 

    Google Scholar 
    Janzen, D. H. Why mountain passes are higher in the tropics. Am. Nat. 101, 233–249 (1967).Article 

    Google Scholar 
    Maxwell, M. F., Leprieur, F., Quimbayo, J. P., Floeter, S. R. & Bender, M. G. Global patterns and drivers of beta diversity facets of reef fish faunas. J. Biogeogr. 49, 954–967 (2022).Article 

    Google Scholar 
    Roy, K., Hunt, G., Jablonski, D., Krug, A. Z. & Valentine, J. W. A macroevolutionary perspective on species range limits. Proc. R. Soc. B 276, 1485–1493 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loiseau, N. et al. Global distribution and conservation status of ecologically rare mammal and bird species. Nat. Commun. 11, 5071 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kerkhoff, A. J., Moriarty, P. E. & Weiser, M. D. The latitudinal species richness gradient in New World woody angiosperms is consistent with the tropical conservatism hypothesis. Proc. Natl Acad. Sci. USA 111, 8125–8130 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donoghue, M. J. & Edwards, E. J. Biome shifts and niche evolution in plants. Annu. Rev. Ecol. Evol. Syst. 45, 547–572 (2014).Article 

    Google Scholar 
    Ringelberg, J. J., Zimmermann, N. E., Weeks, A., Lavin, M. & Hughes, C. E. Biomes as evolutionary arenas: convergence and conservatism in the trans-continental succulent biome. Glob. Ecol. Biogeogr. 29, 1100–1113 (2020).Article 

    Google Scholar 
    Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).Article 
    PubMed 

    Google Scholar 
    Paquette, A. & Messier, C. The effect of biodiversity on tree productivity: from temperate to boreal forests. Glob. Ecol. Biogeogr. 20, 170–180 (2011).Article 

    Google Scholar 
    Pichancourt, J. B., Firn, J., Chadès, I. & Martin, T. G. Growing biodiverse carbon-rich forests. Glob. Chang. Biol. 20, 382–393 (2014).Article 
    PubMed 

    Google Scholar 
    Pennington, R. T., Lavin, M. & Oliveira-Filho, A. Woody plant diversity, evolution, and ecology in the tropics: perspectives from seasonally dry tropical forests. Annu. Rev. Ecol. Evol. Syst. 40, 437–457 (2009).Article 

    Google Scholar 
    Zhu, K., Woodall, C. W. & Clark, J. S. Failure to migrate: lack of tree range expansion in response to climate change. Glob. Chang. Biol. 18, 1042–1052 (2012).Article 

    Google Scholar 
    Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change? Trends Ecol. Evol. 28, 482–488 (2013).Article 
    PubMed 

    Google Scholar 
    la Sorte, F. A., Butchart, S. H. M., Jetz, W. & Böhning-Gaese, K. Range-wide latitudinal and elevational temperature gradients for the world’s terrestrial birds: implications under global climate change. PLoS One 9, e98361 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Title, P. O. & Bemmels, J. B. ENVIREM: an expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 41, 291–307 (2018).Article 

    Google Scholar 
    Veresoglou, S. D. & Peñuelas, J. Variance in biomass-allocation fractions is explained by distribution in European trees. New Phytol. 222, 1352–1363 (2019).Article 
    PubMed 

    Google Scholar 
    Grantham, H. S. et al. Anthropogenic modification of forests means only 40% of remaining forests have high ecosystem integrity. Nat. Commun. 11, 5978 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Holdridge, L. R. Determination of world plant formations from simple climatic data. Science 105, 367–368 (1947).Article 
    CAS 
    PubMed 

    Google Scholar 
    Whittaker, R. H. Classification of natural communities. Bot. Rev. 28, 1–239 (1962).Article 

    Google Scholar 
    McDonald, R. et al. Species compositional similarity and ecoregions: do ecoregion boundaries represent zones of high species turnover? Biol. Conserv. 126, 24–40 (2005).Article 

    Google Scholar 
    von Humboldt, A. & Bonpland, A. Essay on the Geography of Plants (Univ. Chicago Press, 2013).Cardillo, M. Latitude and rates of diversifcation in birds and butterfies. Proc. R. Soc. Lond. B 266, 1221–1225 (1999).Article 

    Google Scholar 
    Hillebrand, H. On the generality of the latitudinal diversity gradient. Am. Nat. 163, 192–211 (2004).Article 
    PubMed 

    Google Scholar 
    Mittelbach, G. G. et al. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol. Lett. 10, 315–331 (2007).Article 
    PubMed 

    Google Scholar 
    Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. R. Soc. Lond. B 359, 183–195 (2004).Article 
    CAS 

    Google Scholar 
    Crane, P. & Scott, L. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246, 675–678 (1989).Article 
    CAS 
    PubMed 

    Google Scholar 
    Jablonski, D. The tropics as a source of evolutionary novelty through geological time. Nature 364, 142–144 (1993).Article 

    Google Scholar 
    Jablonski, D. et al. Out of the tropics, but how? Fossils, bridge species, and thermal ranges in the dynamics of the marine latitudinal diversity gradient. Proc. Natl Acad. Sci. USA 110, 10487–10494 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Antonelli, A. et al. An engine for global plant diversity: highest evolutionary turnover and emigration in the American tropics. Front. Genet. 6, 130 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jump, A. S. & Peñuelas, J. Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8, 1010–1020 (2005).Article 
    PubMed 

    Google Scholar 
    Morreale, L. L., Thompson, J. R., Tang, X., Reinmann, A. B. & Hutyra, L. R. Elevated growth and biomass along temperate forest edges. Nat. Commun. 12, 7181 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilkinson, S., Clephan, A. L. & Davies, W. J. Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis but not in cold-sensitive tobacco leaves, via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol. 126, 1566–1578 (2001).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brodribb, T. J. & Holbrook, N. M. Stomatal protection against hydraulic failure: a comparison of coexisting ferns and angiosperms. New Phytol. 162, 663–670 (2004).Article 
    PubMed 

    Google Scholar 
    Davis, B. A. S. & Brewer, S. Orbital forcing and role of the latitudinal insolation/temperature gradient. Clim. Dyn. 32, 143–165 (2009).Article 

    Google Scholar 
    Seager, R. et al. Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nat. Clim. Change 9, 517–522 (2019).Article 

    Google Scholar 
    Xu, Y. & Ramanathan, V. Latitudinally asymmetric response of global surface temperature: implications for regional climate change. Geophys. Res. Lett. 39, L13706 (2012).Article 

    Google Scholar 
    Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C. & Longino, J. T. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322, 258–261 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Basso, B., Martinez-Feria, R. A., Rill, L. & Ritchie, J. T. Contrasting long-term temperature trends reveal minor changes in projected potential evapotranspiration in the US Midwest. Nat. Commun. 12, 1476 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zizka, A. et al. CoordinateCleaner: standardized cleaning of occurrence records from biological collection databases. Methods Ecol. Evol. 10, 744–751 (2019).Article 

    Google Scholar 
    Serra-Diaz, J. M., Enquist, B. J., Maitner, B., Merow, C. & Svenning, J. Big data of tree species distributions: how big and how good? For. Ecosyst. 4, 30 (2017).Article 

    Google Scholar 
    Getis, A. & Ord, J. K. The analysis of spatial association by use of distance statistics. Geogr. Anal. 24, 189–206 (1992).Article 

    Google Scholar 
    Mendez, C. Spatial autocorrelation analysis in R. R Studio/RPubs. https://rpubs.com/quarcs-lab/spatial-autocorrelation (2020).Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R (Springer, 2013).Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Heath, J. P. Quantifying temporal variability in population abundances. Oikos 115, 573–581 (2006).Article 

    Google Scholar 
    Fernández-Martínez, M. et al. The consecutive disparity index, D: a measure of temporal variability in ecological studies. Ecosphere 9, e02527 (2018).Article 

    Google Scholar 
    Bartoń, K. MuMIn: multi-model inference. R package v.1.10.1. (2013).F. Dormann, C. et al. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30, 609–628 (2007).Article 

    Google Scholar  More

  • in

    A hydrogenotrophic Sulfurimonas is globally abundant in deep-sea oxygen-saturated hydrothermal plumes

    Inagaki, F., Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing e-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int. J. Syst. Evol. Microbiol. 53, 1801–1805 (2003).Article 
    CAS 
    PubMed 

    Google Scholar 
    Timmer-Ten Hoor, A. A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov. Neth. J. Sea Res. 9, 344–350 (1975).Article 
    CAS 

    Google Scholar 
    Cai, L., Shao, M. & Zhang, T. Non-contiguous finished genome sequence and description of Sulfurimonas hongkongensis sp. nov., a strictly anaerobic denitrifying, hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from marine sediment. Stand. Genom. Sci. 9, 1302–1310 (2014).Article 

    Google Scholar 
    Wang, S., Jiang, L., Liu, X., Yang, S. & Shao, Z. Sulfurimonas xiamenensis sp. nov. and Sulfurimonas lithotrophica sp. nov., hydrogen- and sulfur-oxidizing chemolithoautotrophs within the Epsilonproteobacteria isolated from coastal sediments, and an emended description of the genus Sulfurimonas. Int. J. Syst. Evol. Microbiol. 70, 2657–2663 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Takai, K. et al. Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int. J. Syst. Evol. Microbiol. 56, 1725–1733 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hu, Q., Wang, S., Lai, Q., Shao, Z. & Jiang, L. Sulfurimonas indica sp. nov., a hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a hydrothermal sulfide chimney in the Northwest Indian Ocean. Int. J. Syst. Evol. Microbiol. 71, 1466–5034 (2021).Article 

    Google Scholar 
    Wang, S. et al. Sulfurimonas sediminis sp. nov., a novel hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a hydrothermal vent at the Longqi system, southwestern Indian ocean. Antonie Van Leeuwenhoek 114, 813–822 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Wang, S. et al. Characterization of Sulfurimonas hydrogeniphila sp. nov., a novel bacterium predominant in deep-sea hydrothermal vents and comparative genomic analyses of the genus Sulfurimonas. Front. Microbiol. 12, 626705 (2021).Labrenz, M. et al. Sulfurimonas gotlandica sp. nov., a chemoautotrophic and psychrotolerant epsilonproteobacterium isolated from a pelagic redoxcline, and an emended description of the genus Sulfurimonas. Int. J. Syst. Evol. Microbiol. 63, 4141–4148 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Henkel, J. V. et al. Candidatus Sulfurimonas marisnigri sp. nov. and Candidatus Sulfurimonas baltica sp. nov., thiotrophic manganese oxide reducing chemolithoautotrophs of the class Campylobacteria isolated from the pelagic redoxclines of the Black Sea and the Baltic Sea. Syst. Appl. Microbiol. 44, 126155 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Ratnikova, N. M. et al. Sulfurimonas crateris sp. nov., a facultative anaerobic sulfur-oxidizing chemolithoautotrophic bacterium isolated from a terrestrial mud volcano. Int. J. Syst. Evol. Microbiol. 70, 487–492 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Han, Y. & Perner, M. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front. Microbiol. 6, 989 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    López-garcía, P. et al. Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ. Microbiol. 5, 961–976 (2003).Article 
    PubMed 

    Google Scholar 
    Nakagawa, S. et al. Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ. Microbiol. 7, 1619–1632 (2005).Article 
    CAS 
    PubMed 

    Google Scholar 
    Huber, J. A. et al. Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts. FEMS Microbiol. Ecol. 73, 538–549 (2010).CAS 
    PubMed 

    Google Scholar 
    Meier, D. V. et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J. 11, 1545–1558 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mino, S. et al. Endemicity of the cosmopolitan mesophilic chemolithoautotroph Sulfurimonas at deep-sea hydrothermal vents. ISME J. 11, 909–919 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Akerman, N. H., Butterfield, D. A., Huber, J. A., Huber, J. A. & Paul, J. B. Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Front. Microbiol. 4, 185 (2013).Rogge, A., Vogts, A., Voss, M. & Labrenz, M. Success of chemolithoautotrophic SUP05 and Sulfurimonas GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as K- and r -strategists. Environ. Microbiol. 19, 2495–2506 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    German, C. R. et al. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. Proc. Natl Acad. Sci. USA 107, 14020–14025 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sylvan, J. B., Pyenson, B. C., Rouxel, O., German, C. R. & Edwards, K. J. Time-series analysis of two hydrothermal plumes at 9°50’ N East Pacific Rise reveals distinct, heterogeneous bacterial populations. Geobiology 10, 178–192 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Perner, M. et al. In situ chemistry and microbial community compositions in five deep-sea hydrothermal fluid samples from Irina II in the Logatchev field. Environ. Microbiol. 15, 1551–1560 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Haalboom, S. et al. Patterns of (trace) metals and microorganisms in the Rainbow hydrothermal vent plume at the Mid-Atlantic Ridge. Biogeosciences 17, 2499–2519 (2020).Article 
    CAS 

    Google Scholar 
    Li, J. et al. Distribution and succession of microbial communities along the dispersal pathway of hydrothermal plumes on the Southwest Indian Ridge. Front. Mar. Sci. 7, 581381 (2020).Article 

    Google Scholar 
    Dick, G. J. et al. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Front. Microbiol. 4, 124 (2013).Dick, G. J. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat. Rev. Microbiol. 17, 271–283 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    German, C. R. & Seyfried, W. E. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.), 8, 191–233 (Elsevier, 2014).Kadko, D., Baross, J. & Alt, J. The magnitude and global implications of hydrothermal flux. Geophys. Monogr. Ser. 91, 446–466 (1995).
    Google Scholar 
    German, C. R. et al. Volcanically hosted venting with indications of ultramafic influence at Aurora hydrothermal field on Gakkel Ridge. Nat. Commun. 13, 6517 (2022).Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Konstantinidis, K. T., Rosselló-móra, R. & Amann, R. Uncultivated microbes in need of their own taxonomy. ISME J. 11, 2399–2406 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Murray, A. E. et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat. Microbiol. 5, 987–994 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eren, A. M. et al. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 9, 968–979 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dick, G. J. & Tebo, B. M. Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume. Environ. Microbiol. 12, 1334–1347 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lesniewski, R. A., Jain, S., Anantharaman, K., Schloss, P. D. & Dick, G. J. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J. 6, 2257–2268 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sheik, C. S. et al. Spatially resolved sampling reveals dynamic microbial communities in rising hydrothermal plumes across a back-arc basin. ISME J. 9, 1434–1445 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reed, D. C. et al. Predicting the response of the deep-ocean microbiome to geochemical perturbations by hydrothermal vents. ISME J. 9, 1857–1869 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Han, Y. & Perner, M. The role of hydrogen for Sulfurimonas denitrificans’ metabolism. PLoS ONE 9, 8–14 (2014).
    Google Scholar 
    Ilbert, M. & Bonnefoy, V. Insight into the evolution of the iron oxidation pathways. Biochim. Biophys. Acta 1827, 161–175 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yu, H. & Leadbetter, J. R. Bacterial chemolithoautotrophy via manganese oxidation. Nature 583, 453–458 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrews, S. C. Iron storage in bacteria. Adv. Microb. Physiol. 40, 281–351 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pitcher, R. S. & Watmough, N. J. The bacterial cytochrome cbb 3 oxidases. Biochim. Biophys. Acta 1655, 388–399 (2004).Article 
    CAS 
    PubMed 

    Google Scholar 
    Sousa, F. L. et al. The superfamily of heme–copper oxygen reductases: types and evolutionary considerations. Biochim. Biophys. Acta 1817, 629–637 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Park, B. et al. Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl. Environ. Microbiol. 76, 7575–7587 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuchs, G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu. Rev. Microbiol. 65, 631–658 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Bayer, B. et al. Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditions. ISME J. 15, 1025–1039 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yamamoto, M., Arai, H., Ishii, M. & Igarashi, Y. Role of two 2-oxoglutarate: ferredoxin oxidoreductases in Hydrogenobacter thermophilus under aerobic and anaerobic conditions. FEMS Microbiol. Lett. 263, 189–193 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Yamamoto, M., Ikeda, T., Arai, H., Ishii, M. & Igarashi, Y. Carboxylation reaction catalyzed by 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus. Extremophiles 14, 79–85 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925–1936 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    French, C. E., Bell, J. M. L. & Ward, F. B. Diversity and distribution of hemerythrin-like proteins in prokaryotes. FEMS Microbiol. Lett. 279, 131–145 (2008).Article 
    CAS 
    PubMed 

    Google Scholar 
    Isaza, C. E., Silaghi-dumitrescu, R., Iyer, R. B., Kurtz, D. M. & Chan, M. K. Structural basis for O2 sensing by the hemerythrin-like domain of a bacterial chemotaxis protein: substrate tunnel and fluxional n terminus. Biogeochemistry 45, 9023–9031 (2006).Article 
    CAS 

    Google Scholar 
    Kendall, J. J., Barrero-tobon, A. M., Hendrixson, D. R. & Kelly, D. J. Hemerythrins in the microaerophilic bacterium Campylobacter jejuni help protect key iron–sulphur cluster enzymes from oxidative damage. Environ. Microbiol. 16, 1105–1121 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nariya, S. & Kalyuzhnaya, M. G. Hemerythrins enhance aerobic respiration in Methylomicrobium alcaliphilum 20Z R, a methane-consuming bacterium. FEMS Microbiol. Lett. 367, fnaa003 (2020).Sheng, Y. et al. Superoxide dismutases and superoxide reductases. Chem. Rev. 114, 3854–3918 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anantharaman, K., Breier, J. A., Sheik, C. S. & Dick, G. J. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc. Natl Acad. Sci. USA 110, 330–335 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Dede, B. et al. Niche differentiation of sulfur-oxidizing bacteria (SUP05) in submarine hydrothermal plumes. ISME J. 16, 1479–1490 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schlindwein, V. (ed.) The Expedition of the Research Vessel ‘Polarstern’ to the Antarctic in 2013 (ANT-XXIX/8). Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 672, 111 (2014); https://doi.org/10.2312/BzPM_0672_2014Boetius, A. The Expedition PS86 of the Research Vessel POLARSTERN to the Arctic Ocean in 2014. Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 685, 133 (2015); https://doi.org/10.2312/BzPM_0685_2015Boetius, A. & Purser, A. The Expedition PS101 of the Research Vessel POLARSTERN to the Arctic Ocean in 2016. Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 706, 230 (2017); https://doi.org/10.2312/BzPM_0706_2017Varliero, G., Bienhold, C., Schmid, F., Boetius, A. & Molari, M. Microbial diversity and connectivity in deep-sea sediments of the South Atlantic Polar Front. Front. Microbiol. 10, 665 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alm, E. W., Oerther, D. B., Larsen, N., Stahl, D. A. & Raskin, L. The oligonucleotide probe database. Appl. Environ. Microbiol. 62, 3557–3559 (1996).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919–1925 (1990).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371 (2004).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596 (2013).Article 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).Hassenrück, C., Quast, C., Rapp, J. & Buttigieg, P. Amplicon (GitHub, accessed 15 April 2019); https://github.com/chassenr/NGS/tree/master/AMPLICONMahé, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2, e593 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. United States (2014). https://www.osti.gov/servlets/purl/1241166Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kopylova, E., Noe, L. & Touzet, H. Sequence analysis SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Gruber-vodicka, H. R., Seah, B. K. & Pruesse, E. phyloFlash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. mSystems 5, e00920 (2020).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. https://doi.org/10.14806/ej.17.1.200 (2011).Zhang, J., Kobert, K., Fluori, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614–620 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pruesse, E., Peplies, J. & Glöckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, D., Liu, C., Luo, R., Sadakane, K. & Lam, T. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674–1676 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824–834 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varghese, N. J. et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 43, 6761–6771 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eren, A. M. et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ 3, e1319 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wheeler, T. J. & Eddy, S. R. nhmmer: DNA homology search with profile HMMs. Bioinformatics 29, 2487–2489 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).Article 
    CAS 
    PubMed 

    Google Scholar 
    Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 (2007).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Preprint at bioRxiv https://doi.org/10.1101/2022.07.11.499243 (2022).Manni, M., Berkeley, M. R., Seppey, M. & Zdobnov, E. M. BUSCO: assessing genomic data quality and beyond. Curr. Protoc. 1, e323 (2021).Article 
    PubMed 

    Google Scholar 
    Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11–16 (2004).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427–D432 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Haft, D. H. et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 29, 41–43 (2001).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 248, 726–731 (2015).
    Google Scholar 
    Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kristensen, D. M. et al. A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches. Bioinformatics 26, 1481–1487 (2010).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305, 567–580 (2001).Article 
    CAS 
    PubMed 

    Google Scholar 
    Søndergaard, D., Pedersen, C. N. S. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 34212 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garber, A. I. et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front. Microbiol. 11, 37 (2020).Passardi, F. et al. PeroxiBase: the peroxidase database. Phytochemistry 68, 1605–1611 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Lucchetti-miganeh, C., Goudenège, D., Thybert, D., Salbert, G. & Barloy-hubler, F. SORGOdb: superoxide reductase gene ontology curated database. BMC Microbiol. 11, 105 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 4–8 (2016).
    Google Scholar 
    Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457–D462 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412–D419 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Tu, Q., Lin, L., Cheng, L., Deng, Y. & He, Z. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics 35, 1040–1048 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, H. et al. A cross-species alignment tool (CAT). BMC Bioinformatics 8, 349 (2007).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 314–324, doi: 10.1109/IPDPS.2019.00041 (2019); https://ieeexplore.ieee.org/document/8820962Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 38, 2943–2945 (2022).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jalili, V. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Res. 48, 395–402 (2020).Article 

    Google Scholar 
    Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232–W235 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berger, S. A., Krompass, D. & Stamatakis, A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst. Biol. 60, 291–302 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2, W256–W259 (2019).Article 

    Google Scholar 
    Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Dongen, S. & Abreu-goodger, C. in Bacterial Molecular Networks: Methods and Protocols, Methods in Molecular Biology (eds van Helden, J. et al.) 281–295 (Springer, 2012).Altschup, S. F., Gish, W., Pennsylvania, T. & Park, U. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).Article 

    Google Scholar 
    Nguyen, L., Schmidt, H. A., Haeseler, A., Von & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997–1008 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delmont, T. O. & Eren, A. M. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ 6, e4320 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jensen, L. J. et al. eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res. 36, 250–254 (2008).Article 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–360 (2012).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan (2022).Robinson, M. D., Mccarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Reiner-Benaim, A. FDR control by the BH procedure for two-sided correlated tests with implications to gene expression data analysis. Biom. J. 49, 107–126 (2007).Article 
    PubMed 

    Google Scholar 
    Villanueva, R. A. M. & Chen, Z. J. ggplot2: elegant graphics for data analysis (2nd ed.). Meas. Interdiscip. Res. Perspect. 17, 160–167 (2019).Diepenbroek, M. et al. Towards an integrated biodiversity and ecological research data management and archiving platform: the German Federation for the Curation of Biological Data (GFBio). In Informatik 2014 – Big Data Komplexität meistern Proc. 232 (eds Plödereder, E. et al.) 1711–1725 (Gesellschaft für Informatik, 2014).Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., de Carvalho, L. M. & Seifert, R. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: temporal and spatial investigation. Chem. Geol. 242, 1–21 (2007).Article 
    CAS 

    Google Scholar 
    Perner, M. et al. The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15 degrees N on the Mid-Atlantic Ridge. FEMS Microbiol. Ecol. 61, 97–109 (2007).Article 
    CAS 
    PubMed 

    Google Scholar 
    Douville, E. et al. The rainbow vent fluids (36°14’N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem. Geol. 184, 37–48 (2002).Article 
    CAS 

    Google Scholar 
    Ji, F. et al. Geochemistry of hydrothermal vent fluids and its implications for subsurface processes at the active Longqi hydrothermal field, Southwest Indian Ridge. Deep Sea Res. I 122, 41–47 (2017).Article 
    CAS 

    Google Scholar  More