More stories

  • in

    Machine learning reveals cryptic dialects that explain mate choice in a songbird

    Ethics oversightThis study was carried out within the frame of our housing and breeding permit (311.4-si) granted by the Landratsamt Starnberg, Germany. Attachment of backpacks was approved by the Regierung von Oberbayern, Germany (ROB-55-2-2532. Vet_02-17-211).Study populationsWe used four zebra finch populations that are genetically differentiated due to founder effects and selection (see Supplementary Fig. 1 & Fig. 2): two domesticated populations (D1 and D2) that have been maintained in captivity in Europe for about 150 years and two populations (W1 and W2) that have been taken from the wild about 10–30 years ago (see Supplementary Fig. 1). We ran all experiments in two independent replicates. We used individuals from populations D1 and W1 for replicate 1 and individuals from D2 and W2 for replicate 2.Breeding experiment Generation 1We created four groups of 36 individuals (9 males and 9 females from both a domesticated and a wild-derived population, two groups within each replicate) and put each group separately in an indoor aviary (5 m × 2.0 m × 2.5 m). All individuals had been reared normally by their genetic parents in similar breeding aviaries, were inexperienced (never mated before) and unfamiliar to all opposite-sex individuals. In replicate 1 (W1 – D1, starting December 2016), birds were 142 ± 32 days old at the start of the experiment (range: 101–191 days); in replicate 2 (W2 – D2, starting March 2017), birds were 241 ± 47 days old (range: 151–306 days). In each aviary, we provided nest material and nest boxes to stimulate breeding and observed pair-bonding behaviour for ca. 60 h spread over 14 days. Two observers recorded all instances of allopreening, sitting in bodily contact, and visiting a nest box together, which reflects pair bonding64.In total, we observed 3166 instances of heterosexual association among the 4 × 36 individuals (Supplementary Table 3). We defined a pair-bond between two opposite-sex individuals if they were recorded in pair-bonding behaviour at least five times (mean: 22 ± 14 SD, range: 5 – 73). This cut-off was chosen (blind to the outcome of data analysis) based on the frequency distribution showing a clear deviation from a random, zero-truncated Poisson distribution (Supplementary Fig. 8). Using this definition, we identified a total of 60 pairs (30 in each replicate). Of all females, 48 and 6 had a pair-bond with one and two males, respectively (18 females remained unpaired). Conversely, 34, 10, and 2 males had a pair-bond with one, two, and three females, respectively (26 males remained unpaired).Cross-fostering for Generation 2 experimentsAfter the breeding experiment of Generation 1, in 2017, we established two different cultural lineages within each genetic population by cross-fostering eggs, either within or between populations (Fig. 3). For this purpose, we used 16 aviaries (four per population), each containing 8 males and 8 females of the same population (Generation 1). Individuals were allowed to freely form pairs and breed. We reciprocally exchanged eggs shortly after laying between two aviaries per population (within-population cross-fostering) and between pairs of aviaries from different populations (between-population cross-fostering). This resulted in four cultural lineages per replicate (DD, DW, WD, and WW; Fig. 3). Each lineage was maintained in two separate breeding aviaries to ensure the availability of unfamiliar opposite-sex Generation 2 individuals from the same line. Offspring remained with their foster parents until they reached sexual maturity, when the following experiment started.Social experiment Generation 2Between December 2017 and March 2018, we put four groups of individuals (two groups for each replicate) in indoor aviaries (same as in Generation 1 experiment). Each group consisted of 10 males and 10 females from each of the cross-fostered groups DD, WW, DW and WD, i.e., a total of 80 birds per aviary, except that one aviary of replicate 2 only consisted of 63 individuals (7DD, 8WW, 8DW and 8WD) due to a shortage of birds. In replicate 1 (W1 – D1, starting December 2017), birds were 170 ± 25 days old at the start of the experiment (range: 105–199 days); in replicate 2 (W2 – D2, starting January 2018), birds were 200 ± 29 days old (range: 120–241 days). We recorded the position of individuals using an automated barcode-based tracking system31. We fitted each individual with a unique machine-readable barcode (Supplementary Fig. 4a) and placed eight cameras (8-megapixel Camera Module V2; RS Components Ltd and Allied Electronics Inc.), each connected to a Raspberry Pi (Raspberry Pi 3 Model Bs; Raspberry Pi Foundation) in each aviary. For 30 consecutive days, the cameras recorded individuals at six perches and at two feeders (Supplementary Fig. 4b, c). Between 05:30 and 20:00, when lights were switched on, each camera took a picture every two seconds.Each day, pictures stored on the Raspberry Pis were downloaded to a central server and processed using customised scripts. The customised software used the PinPoint library in Python65 to identify each barcode in each picture, allowing us to simultaneously track the position and orientation of each individual (Supplementary Fig. 4b) for the duration of the experiment. The tracking system generated 118 million observations across all four aviaries (Supplementary Fig. 4c). From these data, we extracted the average distance between the male and the female (in mm) for each male-female dyad, either daily or across the entire 30-day period (for comparison, such distance data were also extracted for all male-male and all female-female dyads). We used this dataset to identify the nearest opposite-sex individual for each of 151 males and females (55% of these 151 associations were reciprocal). Out of 151 nearest males to females, 74 (49%) paired with that female in the following breeding experiment (see below) and this proportion strongly increased as the average distance between partners decreased (Supplementary Fig. 9).Breeding experiment Generation 2Immediately after the social experiment, we moved each group into a separate semi-outdoor aviary (5 m × 2.5 m × 2.5 m) and provided nest material and nest boxes. During the next 2 months, three observers scored heterosexual associations to identify pair bonds as described for ‘breeding experiment Generation 1’ (ca 300 h per replicate). In total, we observed 6072 associations involving 284 individuals (Supplementary Table 3). Consistent with the previous experiment, we defined a pair-bond when a male-female dyad was observed in pair-bonding behaviour at least five times during the entire experiment (mean: 18 ± 13 SD range: 5 – 61; Supplementary Fig. 8). Using this definition, we identified 147 pairs (79 pairs in replicate 1 and 68 in replicate 2). Of all males, 97, 22 and 2 had a pair-bond with 1, 2 and 3 females, respectively (27 males remained unpaired). Conversely, 99, 21 and 2 females had a pair-bond with 1, 2 and 3 males (26 females remained unpaired).Breeding experiment Generation 3Between April and December 2018, we housed the four cultural lineages (DD, WW, DW and WD) separately again. We placed 8 males and 8 females in each of 16 breeding aviaries (four per lineage) and allowed them to freely form pairs and breed. The offspring belong to four lineages (Fig. 3): two lineages with individuals that were raised by parents that had not been cross-fostered between the domestic and wild-derived population (DDD and WWW) and two lineages with individuals from the same genetic background, but where their parents had been cross-fostered and raised by the other population (DDW and WWD).Between December 2018 and February 2019, we put four groups of 36 birds (two per replicate, i.e., 2 with 18 DDD and 18 DDW individuals and 2 with 18 WWW and 18 WWD individuals; 9 males and 9 females per lineage; Supplementary Table 3) in an outdoor aviary (same as above). In replicate 1 (W1 – D1, starting December 2018), birds were 172 ± 44 days old at the start of the experiment (range: 131–195 days); in replicate 2 (W2 – D2, starting January 2019), birds were 191 ± 40 days old (range: 122–230 days). During 14 days, two observers recorded all pair-bond behaviours as described under ‘breeding experiment Generation 1’. In total, we observed 3378 instances of pair-bond behaviour involving 137 individuals (Supplementary Table 3). As above, we defined a pair-bond when a male-female dyad was observed in pair-bonding behaviour at least five times during the entire experiment (mean: 18 ± 11 SD, range: 5 – 47; Supplementary Fig. 8). We identified 82 pair bonds (37 in replicate 1 and 45 in replicate 2). Of all males, 34, 16, 4 and 1 had a pair-bond with 1, 2, 3 and 4 females, respectively (17 males remained unpaired). Conversely, 42, 16, 1 and 1 females had a pair-bond with 1, 2, 3 and 5 males, respectively (12 females remained unpaired).Morphological measurementsAfter birds had reached sexual maturity ( >100 days of age), we measured body mass (to the nearest 0.1 g), tarsus length (to the nearest 0.1 mm), and wing length (to the nearest 0.5 mm) of all individuals (all measured by WF). We included these three variables in a principal component analysis (PCA) and used the first principal component (PC1, 67% of variation explained) as a measure of body size.Song recording and analysis approachWe recorded the songs of the parental males from Generation 1 (16 aviaries x 8 males = 128 males, of which 122 were successfully recorded between November and December in 2017) and of their offspring (Generation 2; 146 out of 152 males were successfully recorded between March and May 2018). To elicit courtship song, each male was placed together with an unfamiliar female in a metal wire cage (50 cm × 30 cm × 40 cm) equipped with three perches and containing food and water. The cage was placed within one of two identical sound-attenuated chambers. We mounted a Behringer condenser microphone (TC20, Earthworks, USA) at a 45° angle between the ceiling and the side wall of the chamber, such that the distance to each perch was approximately 35 cm. The microphone was connected to a PR8E amplifier (SM Pro Audio, Melbourne, Australia) from which we recorded directly through a M-Audio Delta 44 sound card (AVID Technology GmbH, Hallbergmoos, Germany) onto the hard drive of a computer.Previous studies that quantified differentiation of songs between zebra finch populations using specific song parameters (e.g., duration and frequency measures) largely failed to detect prominent differences12,49,50. We, therefore, used the following two approaches (Sound Analysis Pro and Machine Learning) to quantify the extent to which a given male’s song resembled the songs of other males.Song similarity analysis with SAPUsing Sound Analysis Pro (SAP) version 2011.10427, we quantified song similarity (ranging from 0 to 100) by direct pairwise comparison of song motifs (the main part of a male’s song that is stereotypically repeated and about 0.8 s long, excluding introductory syllables). Pair-wise comparisons of two males (based on one representative motif recording per male) revealed higher within-population similarity than between-population similarity (Supplementary Table 2, data from Generation 1). Further, for offspring that were cross-fostered between populations (N = 73 males from Generation 2) song similarity to their foster father was higher than song similarity to their genetic father (80 versus 68, paired t-test: p  More

  • in

    Oldest leaf mine trace fossil from East Asia provides insight into ancient nutritional flow in a plant–herbivore interaction

    Connor, E. F. & Taverner, M. P. The evolution and adaptive significance of the leaf-mining habit. Oikos 79, 6–25. https://doi.org/10.2307/3546085 (1997).Article 

    Google Scholar 
    Hespenheide, H. A. Bionomics of leaf-mining insects. Annu. Rev. Entomol. 36, 535–560. https://doi.org/10.1146/annurev.en.36.010191.002535 (1991).Article 

    Google Scholar 
    Kato, M. Structure, organization, and response of a species-rich parasitoid community to host leafminer population dynamics. Oecologia 97, 17–25 (1994).ADS 
    Article 

    Google Scholar 
    López, R., Carmona, D., Vincini, A. M., Monterubbianesi, G. & Caldiz, D. Population dynamics and damage caused by the leafminer Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae), on seven potato processing varieties grown in temperate environment. Neotrop. Entomol. 39, 108–114. https://doi.org/10.1590/S1519-566X2010000100015 (2010).Article 
    PubMed 

    Google Scholar 
    Lopez-Vaamonde, C., Godfray, H. C. J. & Cook, J. M. Evolutionary dynamics of host-plant use in a genus of leaf-mining moths. Evolution 57, 1804–1821. https://doi.org/10.1111/j.0014-3820.2003.tb00588.x (2003).Article 
    PubMed 

    Google Scholar 
    Lopez-Vaamonde, C. et al. Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. J. Evol. Biol. 19, 1314–1326. https://doi.org/10.1111/j.1420-9101.2005.01070.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Scheffer, S. J., Lewis, M. L., Hébert, J. B. & Jacobsen, F. Diversity and host plant-use in North American Phytomyza Holly Leafminers (Diptera: Agromyzidae): Colonization, divergence, and specificity in a host-associated radiation. Ann. Entomol. Soc. Am. 114, 59–69. https://doi.org/10.1093/aesa/saaa034 (2021).CAS 
    Article 

    Google Scholar 
    Tooker, J. F. & Giron, D. The evolution of endophagy in herbivorous insects. Front. Plant Sci. 11, 581816. https://doi.org/10.3389/fpls.2020.581816 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hawkins, B. A. Pattern and Process in Host-Parasitoid Interactions (Cambridge University Press, 1994).Book 

    Google Scholar 
    Novotny, V. & Basset, Y. Host specificity of insect herbivores in tropical forests. Proc. R. Soc. B Biol. Sci. 272, 1083–1090. https://doi.org/10.1098/rspb.2004.3023 (2005).Article 

    Google Scholar 
    Lewis, O. T. et al. Structure of a diverse tropical forest insect-parasitoid community. J. Anim. Ecol. 71, 855–873. https://doi.org/10.1046/j.1365-2656.2002.00651.x (2002).Article 

    Google Scholar 
    Hirao, T. & Murakami, M. Quantitative food webs of lepidopteran leafminers and their parasitoids in a Japanese deciduous forest. Ecol. Res. 23, 159–168. https://doi.org/10.1007/s11284-007-0351-6 (2008).Article 

    Google Scholar 
    Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977. https://doi.org/10.1126/science.1214915 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Leppänen, S. A., Altenhofer, E., Liston, A. D. & Nyman, T. Phylogenetics and evolution of host-plant use in leaf-mining sawflies (Hymenoptera: Tenthredinidae: Heterarthrinae). Mol. Phylogenet. Evol. 64, 331–341. https://doi.org/10.1016/j.ympev.2012.04.005 (2012).Article 
    PubMed 

    Google Scholar 
    Doorenweerd, C., Van Nieukerken, E. J. & Menken, S. B. J. A global phylogeny of leafmining Ectoedemia moths (Lepidoptera: Nepticulidae): Exploring host plant family shifts and allopatry as drivers of speciation. PLoS ONE 10, 1–20. https://doi.org/10.1371/journal.pone.0119586 (2015).CAS 
    Article 

    Google Scholar 
    Nakadai, R. & Kawakita, A. Phylogenetic test of speciation by host shift in leaf cone moths (Caloptilia) feeding on maples (Acer). Ecol. Evol. 6, 4958–4970. https://doi.org/10.1002/ece3.2266 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Opler, P. A. Fossil lepidopterous leaf mines demonstrate the age of some insect-plant relationships. Science 179, 1321–1323. https://doi.org/10.1126/science.179.4080.1321 (1973).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Labandeira, C. C., Dilcher, D. L., Davis, D. R. & Wagner, D. L. Ninety-seven million years of angiosperm-insect association: Paleobiological insights into the meaning of coevolution. Proc. Natl. Acad. Sci. U. S. A. 91, 12278–12282. https://doi.org/10.1073/pnas.91.25.12278 (1994).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Winkler, I. S., Labandeira, C. C., Wappler, T. & Wilf, P. Distinguishing Agromyzidae (Diptera) leaf mines in the fossil record: New taxa from the Paleogene of North America and Germany and their evolutionary implications. J. Paleontol. 84, 935–954. https://doi.org/10.1666/09-163.1 (2010).Article 

    Google Scholar 
    van Nieukerken, E. J., Doorenweerd, C., Hoare, R. J. B. & Davis, D. R. Revised classification and catalogue of global Nepticulidae and Opostegidae (Lepidoptera, Nepticuloidea). Zookeys 2016, 65–246. https://doi.org/10.3897/zookeys.628.9799 (2016).Article 

    Google Scholar 
    Maccracken, S. A., Sohn, J.-C., Miller, I. M. & Labandeira, C. C. A new Late Cretaceous leaf mine Leucopteropsa spiralae gen. et sp. nov. (Lepidoptera: Lyonetiidae) represents the first confirmed fossil evidence of the Cemiostominae. J. Syst. Palaeontol. 19, 131–144. https://doi.org/10.1080/14772019.2021.1881177 (2021).Article 

    Google Scholar 
    Wilf, P., Labandeira, C. C., Johnson, K. R. & Ellis, B. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 313, 1112–1115. https://doi.org/10.1126/science.1129569 (2006)ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Donovan, M. P., Wilf, P., Labandeira, C. C., Johnson, K. R. & Peppe, D. J. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of Cretaceous leaf miners, Great Plains, USA. PLoS ONE 9, e103542. https://doi.org/10.1371/journal.pone.0103542 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donovan, M. P., Iglesias, A., Wilf, P., Labandeira, C. C. & Cúneo, N. R. Rapid recovery of Patagonian plant–insect associations after the end-Cretaceous extinction. Nat. Ecol. Evol. 1, 0012. https://doi.org/10.1038/s41559-016-0012 (2017).Article 

    Google Scholar 
    Donovan, M. P., Wilf, P., Iglesias, A., Cúneo, N. R. & Labandeira, C. C. Persistent biotic interactions of a Gondwanan conifer from Cretaceous Patagonia to modern Malesia. Commun. Biol. 3, 708. https://doi.org/10.1038/s42003-020-01428-9 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Labandeira, C. C. The four phases of plant-arthropod associations in deep time. Geol. Acta 4, 409–438. https://doi.org/10.1344/105.000000344 (2006).Article 

    Google Scholar 
    Labandeira, C. C. Silurian to Triassic plant and hexapod clades and their associations: new data, a review, and interpretations. Arthropod Syst. Phylogen. 64, 53–94 (2006).
    Google Scholar 
    Wakita, K., Nakagawa, T., Sakata, M., Tanaka, N. & Oyama, N. Phanerozoic accretionary history of Japan and the western Pacific margin. Geol. Mag. https://doi.org/10.1017/s0016756818000742 (2018).Article 

    Google Scholar 
    Katayama, M. Stratigraphical study on the Mine Series. J. Geol. Soc. Jpn. 46, 127–141. https://doi.org/10.5575/geosoc.46.127 (1939).Article 

    Google Scholar 
    Maeda, H. & Oyama, N. Stratigraphy and fossil assemblages of the Triassic Mine Group and Jurassic Toyora Group in western Yamaguchi Prefecture. J. Geol. Soc. Japan 125, 585–594. https://doi.org/10.5575/geosoc.2019.0020 (2019).Article 

    Google Scholar 
    Aizawa, J. Fossil insect-bearing strata of the Triassic Mine Group, Yamaguchi Prefecture. Bull. Kitakyushu Mus. Nat. Hist. Hum. Hist. Ser. A 10, 91–98 (1991).
    Google Scholar 
    Oyama, N. & Maeda, H. Madygella humioi sp. nov. from the Upper Triassic Mine Group, Southwest Japan: The oldest record of a sawfly (Hymenoptera: Symphyta) in East Asia. Paleontol. Res. 24, 64–71 (2020).Article 

    Google Scholar 
    Fujiyama, I. Mesozoic insect fauna of East Asia part 1. Introduction and upper Triassic faunas. Bull. Natl. Sci. Mus. 16, 331–386 (1973).
    Google Scholar 
    Fujiyama, I. Late Triassic insects from Mine, Yamaguchi, Japan, Part 1. Odonata. Bull. Natl. Sci. Mus. Tokyo Ser. C 17, 49–56 (1991).
    Google Scholar 
    Ueda, K. A Triassic fossil of scorpion fly from Mine, Japan. Bull. Kitakyushu Mus. Nat. Hist. Hum. Hist. Ser. Ser. A 10, 99–103 (1991).
    Google Scholar 
    Takahashi, F., Ishida, H., Nohara, M., Doi, E. & Taniguchi, S. Occurrence of insect fossils from the Late Triassic Mine Group. Bull. Mine City Mus. Yamaguchi Prefect. Jpn. 13, 1–27 (1997).CAS 

    Google Scholar 
    Kametaka, M. Provenance of the Upper Triassic mine group Southwest Japan. J. Geol. Soc. Jpn. 105, 651–667 (1999).CAS 
    Article 

    Google Scholar 
    Takahashi, E. & Mikami, T. Triassic. In Geology of Yamaguchi Prefecture (ed. Yamaguchi Museum) 93–108 (Yamaguchi Museum, 1975).Kiminami, K. Atsu Group and Mine Group. In Monograph on Geology of Japan 6, Chugoku Region (ed. Geological Society of Japan) 85–88 (Asakura Publishing Co., Ltd., 2009).Naito, G. Plant Fossils from the Mine Group (Mine City Education Comittee, 2000).
    Google Scholar 
    Kimura, T. Geographical distribution of Palaeozoic and Mesozoic plants in East and Southeast Asia. Hist. Biogeogr. Plate Tecton. Evol. Jpn. East Asia 1982, 135–200 (1987).
    Google Scholar 
    Kimura, T., Naito, G. & Ohana, T. Baiera cf. furcata (Lindley and Hutton) Braun from the Carnic Momonoki Formation, Japan. Bull. Natl. Sci. Mus. 9, 91–114 (1983).
    Google Scholar 
    Katagiri, T. Pallaviciniites oishii (comb. Nov.), a thalloid liverwort from the Late Triassic of Japan. Bryologist 118, 245–251. https://doi.org/10.1639/0007-2745-118.3.245 (2015).Article 

    Google Scholar 
    Kustatscher, E. et al. Flora of the Late Triassic. In The Late Triassic World, Topics in Geobiology, Vol. 46 (ed. Tanner, L. H.) 545–622 (Springer, 2018). https://doi.org/10.1007/978-3-319-68009-5_13.Oyama, N., Yukawa, H. & Maeda, H. Mesozoic insect fossils of Japan: Significance of the Upper Triassic insect fauna of the Mine Group, Yamaguchi Pref. Bull. Mine City Mus. Yamaguchi Prefect. Jpn. 33, 1–13 (2020).
    Google Scholar 
    Shcherbakov, D. E., Lukashevich, E. D. & Blagoderov, V. Triassic Diptera and initial radiation of the order. Int. J. Dipterol. Res. 6, 75–115 (1995).
    Google Scholar 
    Krzemiński, W. & Krzemińska, E. Triassic Diptera: Descriptions, revisions and phylogenetic relations. Acta Zool. Cracov. 46, 153–184 (2003).
    Google Scholar 
    Blagoderov, V., Grimaldi, D. A. & Fraser, N. C. How time flies for flies: Diverse Diptera from the Triassic of Virginia and early radiation of the order. Am. Mus. Novit. 3572, 1–39. https://doi.org/10.1206/0003-0082(2007)509[1:HTFFFD]2.0.CO;2 (2007).Article 

    Google Scholar 
    Lukashevich, E. D., Przhiboro, A. A., Marchal-Papier, F. & Grauvogel-Stamm, L. The oldest occurrence of immature Diptera (Insecta), Middle Triassic France. Ann. la Société Entomol. Fr. 46, 4–22. https://doi.org/10.1080/00379271.2010.10697636 (2010).Article 

    Google Scholar 
    Schmidt, A. R. et al. Arthropods in amber from the Triassic Period. Proc. Natl. Acad. Sci. 109, 14796–14801. https://doi.org/10.1073/pnas.1208464109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lara, M. B. & Lukashevich, E. D. The first Triassic dipteran (Insecta) from South America, with review of Hennigmatidae. Zootaxa 3710, 81–92. https://doi.org/10.11646/zootaxa.3710.1.6 (2013).Article 
    PubMed 

    Google Scholar 
    Kimura, T. & Ohana, T. Some fossil ferns from the Middle Carnic Momonoki Formation, Yamaguchi prefecture, Japan. Bull. Natl. Sci. Mus. Ser. C Geol. Paleontol. 6, 73–92 (1980).
    Google Scholar 
    Hering, E. M. Biology of the Leaf Miners https://doi.org/10.1007/978-94-015-7196-8. (Springer, 1951).Book 

    Google Scholar 
    Kirichenko, N. et al. Systematics of Phyllocnistis leaf-mining moths (Lepidoptera, Gracillariidae) feeding on dogwood (Cornus spp.) in Northeast Asia, with the description of three new species. Zookeys 2018, 79–118. https://doi.org/10.3897/zookeys.736.20739 (2018).Article 

    Google Scholar 
    Cerdeña, J. et al. Phyllocnistis furcata sp. nov.: A new species of leaf-miner associated with Baccharis (Asteraceae) from Southern Peru (Lepidoptera, Gracillariidae). Zookeys 2020, 121–145. https://doi.org/10.3897/zookeys.996.53958 (2020).Article 

    Google Scholar 
    Elb, P. M., Melo-de-Pinna, G. F. & de Menezes, N. L. Morphology and anatomy of leaf miners in two species of Commelinaceae (Commelina diffusa Burm. F. and Floscopa glabrata (Kunth) Hassk). Acta Bot. Brasilica 24, 283–287. https://doi.org/10.1590/S0102-33062010000100030 (2010).Article 

    Google Scholar 
    Vasco, A., Moran, R. C. & Ambrose, B. A. The evolution, morphology, and development of fern leaves. Front. Plant Sci. 4, 1–16. https://doi.org/10.3389/fpls.2013.00345 (2013).Article 

    Google Scholar 
    Eiseman, C. Leafminers of North America. (Charley Eiseman, 2019).Yang, J., Wang, X., Duffy, K. & Dai, X. A preliminary world checklist of fern-mining insects. Biodivers. Data J. 9, e62839. https://doi.org/10.3897/BDJ.9.e62839 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ding, Q., Labandeira, C. C. & Ren, D. Biology of a leaf miner (Coleoptera) on Liaoningocladus boii (Coniferales) from the Early Cretaceous of northeastern China and the leaf-mining biology of possible insect culprit clades. Arthropod Syst. Phylogen. 72, 281–308 (2014).
    Google Scholar 
    Boucher, S. Revision of the Canadian species of Amauromyza Hendel (Diptera: Agromyzidae). Can. Entomol. 144, 733–757. https://doi.org/10.4039/tce.2012.80 (2012).Article 

    Google Scholar 
    Scheirs, J., Vandevyvere, I. & De Bruyn, L. Influence of monocotyl leaf anatomy on the feeding pattern of a grass-mining agromyzid (Diptera). Ann. Entomol. Soc. Am. 90, 646–654 (1997).Article 

    Google Scholar 
    Boucher, S. Leaf-miner flies (Diptera: Agromyzidae). In Encyclopedia of Entomology (ed. Capinera J. L.) 2163–2169 (Springer, 2008). https://doi.org/10.1007/978-1-4020-6359-6.Eiseman, C. S. New rearing records for muscoid leafminers (Diptera: Anthomyiidae, Scathophagidae) in the United States. Proc. Entomol. Soc. Wash. 120, 25–50. https://doi.org/10.4289/0013-8797.120.1.25 (2018).Article 

    Google Scholar 
    Meikle, A. A. The insects associated with bracken. Agric. Prog. 14, 58–61 (1937).
    Google Scholar 
    Lawton, J. H. The structure of the arthropod community on bracken. Bot. J. Linn. Soc. 73, 187–216. https://doi.org/10.1111/j.1095-8339.1976.tb02022.x (1976).Article 

    Google Scholar 
    Lawton, J. H., MacGarvin, M. & Heads, P. A. Effects of altitude on the abundance and species richness of insect herbivores on bracken. J. Anim. Ecol. 56, 147–160. https://doi.org/10.2307/4805 (1987).Article 

    Google Scholar 
    Cooper-Driver, Gi. A. Insect-fern associations. Entomol. Exp. Appl. 24, 310–316. https://doi.org/10.1111/j.1570-7458.1978.tb02787.x (1978).Article 

    Google Scholar 
    Eiseman, C. S. Further Nearctic rearing records for phytophagous muscoid flies (Diptera: Anthomyiidae, Scathophagidae). Proc. Entomol. Soc. Washingt. 122, 595–603. https://doi.org/10.4289/0013-8797.122.3.595 (2020).Article 

    Google Scholar 
    Santos, M. G. & Maia, V. C. A synopsis of fern galls in Brazil. Biota Neotrop. 18, e20180513. https://doi.org/10.1590/1676-0611-BN-2018-0513 (2018).Article 

    Google Scholar 
    Peters, R. S. et al. Evolutionary history of the Hymenoptera. Curr. Biol. 27, 1013–1018. https://doi.org/10.1016/j.cub.2017.01.027 (2017). CAS 
    Article 
    PubMed 

    Google Scholar 
    Ronquist, F. et al. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61, 973–999. https://doi.org/10.1093/sysbio/sys058 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Needham, J. G., Frost, S. W. & Tothill, B. H. Leaf-Mining Insects (Waverly Press, 1928).
    Google Scholar 
    Smith, D. R., Eiseman, C. S., Charney, N. D. & Record, S. A new Nearctic Scolioneura (Hymenoptera, Tenthredinidae) mining leaves of Vaccinium (Ericaceae). J. Hymenopt. Res. 43, 1–8. https://doi.org/10.3897/JHR.43.4546 (2015).Article 

    Google Scholar 
    Zheng, D. et al. Middle-Late Triassic insect radiation revealed by diverse fossils and isotopic ages from China. Sci. Adv. 4, eaat1380. https://doi.org/10.1126/sciadv.aat1380 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, S. Q. et al. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Commun. 9, 1–11. https://doi.org/10.1038/s41467-017-02644-4 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    McKenna, D. D. et al. The evolution and genomic basis of beetle diversity. Proc. Natl. Acad. Sci. 116, 24729–24737. https://doi.org/10.1073/pnas.1909655116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gimmel, M. L. & Ferro, M. L. General overview of saproxylic Coleoptera. In Saproxylic Insects, Zoological Monographs, Vol. 1 (ed. Ulyshen, M. D.) 51–128 (Springer, 2018). https://doi.org/10.1007/978-3-319-75937-1_2.Labandeira, C. C., Anderson, J. M. & Anderson, H. M. Expansion of arthropod herbivory in Late Triassic South Africa: The Molteno Biota, Aasvoëlberg 411 site and developmental biology of a gall. In The Late Triassic World, Topics in Geobiology Vol. 46 (ed. Tanner, L. H.) 623–719 (Springer International Publishing AG, 2018).Chapter 

    Google Scholar 
    Fiebrig, K. Eine Schaum bildende Käferlarve Pachyschelus spec. (Bupr. Sap.) Die Ausscheidung von Kautschuk aus der Nahrung und dessen Verwertung zu Schutzzwecken (auch bei Rhynchoten). Z. f. Wiss. Insektenbiol. 4, 333–339 (1908).
    Google Scholar 
    Bruch, C. Metamórfosis de Pachyschelus undularius (Burm.). Physis 3, 30–36 (1917).
    Google Scholar 
    Hering, E. M. Neotropische Buprestiden-Minen. Arb. Physiol. Angew. Entomol. 9, 241–249 (1942).
    Google Scholar 
    Kogan, M. Contribuição ao conhecimento da sistemática e biologia de buprestídeos minadores do gênero Pachyschelus Solier, 1833: (Coleoptera, Buprestidae). Mem. Inst. Oswaldo Cruz 61, 429–457 (1963).CAS 
    Article 

    Google Scholar 
    Kawahara, A. Y. et al. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc. Natl. Acad. Sci. 116, 22657–22663. https://doi.org/10.1073/pnas.1907847116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Eldijk, T. J. B. et al. A Triassic-Jurassic window into the evolution of lepidoptera. Sci. Adv. 4, e1701568. https://doi.org/10.1126/sciadv.1701568 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sohn, J. C., Labandeira, C. C., Davis, D. & Mitter, C. An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa. https://doi.org/10.11646/zootaxa.3286.1.1 (2012).Doorenweerd, C., Van Nieukerken, E. J., Sohn, J. C. & Labandeira, C. C. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin. Zootaxa 3963, 295–334. https://doi.org/10.11646/zootaxa.3963.3.2 (2015).Article 
    PubMed 

    Google Scholar 
    Kawahara, A. Y. et al. A molecular phylogeny and revised higher-level classification for the leaf-mining moth family Gracillariidae and its implications for larval host-use evolution. Syst. Entomol. 42, 60–81. https://doi.org/10.1111/syen.12210 (2017).Article 

    Google Scholar 
    Mazumdar, J. Phytoliths of pteridophytes. S. Afr. J. Bot. 77, 10–19. https://doi.org/10.1016/j.sajb.2010.07.020 (2011).Article 

    Google Scholar 
    Trembath-Reichert, E., Wilson, J. P., McGlynn, S. E. & Fischer, W. W. Four hundred million years of silica biomineralization in land plants. Proc. Natl. Acad. Sci. U. S. A. 112, 5449–5454 https://doi.org/10.1073/pnas.1500289112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hunt, J. W., Dean, A. P., Webster, R. E., Johnson, G. N. & Ennos, A. R. A novel mechanism by which silica defends grasses against herbivory. Ann. Bot. 102, 653–656. https://doi.org/10.1093/aob/mcn130 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reynolds, O. L., Keeping, M. G. & Meyer, J. H. Silicon-augmented resistance of plants to herbivorous insects: A review. Ann. Appl. Biol. 155, 171–186. https://doi.org/10.1111/j.1744-7348.2009.00348.x (2009).CAS 
    Article 

    Google Scholar 
    Edwards, N. P. et al. Leaf metallome preserved over 50 million years. Metallomics 6, 774–782. https://doi.org/10.1039/C3MT00242J (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Müller, A. H. Über Hyponome fossiler und rezenter Insekten, erster Beitrag. Freib. Forschungsh. C 366, 7–27 (1982).
    Google Scholar 
    Beck, A. L. & Labandeira, C. C. Early Permian insect folivory on a gigantopterid-dominated riparian flora from north-central Texas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 142, 139–173. https://doi.org/10.1016/S0031-0182(98)00060-1 (1998).Article 

    Google Scholar 
    Jarzembowski, E. A. The oldest plant-insect interaction in Croatia: Carboniferous evidence. Geol. Croat. 65(3), 387–392. https://doi.org/10.4154/GC.2012.28 (2002).Article 

    Google Scholar 
    Donovan, M. P. & Lucas, S. G. Insect herbivory on the Late Pennsylvanian Kinney Brick Quarry Flora, New Mexico, USA. Kinney Brick Quarry Lagerstätte. N. M. Mus. Nat. Hist. Sci. Bull. 84, 193–207 (2021).Potonié, R. Ueber das Rothliegende des Thüringer Waldes. Theil II: Die Flora des Rothliegenden von Thüringen. Abh. Preuss. Geol. Landesanst. 9, 1–298 (1893).
    Google Scholar 
    Potonié, R. Mitteilungen über mazerierte kohlige Pflanzenfossilien. Z. Bot. 13, 79–88 (1921).Adami-Rodrigues, K. A., Iannuzzi, R. & Pinto, I. D. Permian plant-insect interactions from a Gondwana flora of southern Brazil. Foss. Strat. 51, 106–126 (2004).
    Google Scholar 
    Krassilov, V. A. & Karasev, E. First evidence of plant–arthropod interaction at the Permian–Triassic boundary in the Volga Basin European Russia. Alavesia 2, 247–252 (2008).
    Google Scholar 
    Labandeira, C. C., Wilf, P., Johnson, K. & Marsh, F. Guide to insect (and other) damage types on compressed plant fossils. Version 3.0. Smithson. Institution, Washington, DC 25 (2007).Scott, A. C., Anderson, J. M. & Anderson, H. M. Evidence of plant-insect interactions in the Upper Triassic Molteno formation of South Africa. J. Geol. Soc. London. 161, 401–410. https://doi.org/10.1144/0016-764903-118 (2004).Article 

    Google Scholar 
    Tillyard, R. J. Mesozoic Insects of Queensland No. 9. Orthoptera, and Additions to the Protorthoptera, Odonata, Hemiptera, and Planipennia. Proc. Linn. Soc. N. S. W. 47, 447–470 (1922).
    Google Scholar 
    Rozefelds, A. C. & Sobbe, I. Problematic insect leaf mines from the Upper Triassic Ipswich Coal Measures of Southeastern Queensland Australia. Alcheringa 11, 51–57 (1987).Article 

    Google Scholar 
    Wappler, T., Kustatscher, E. & Dellantonio, E. Plant-insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, N-Italy)-Initial pattern and response to abiotic environmental pertubations. PeerJ 2015, e921. https://doi.org/10.7717/peerj.921 (2015).Article 

    Google Scholar 
    Meller, B., Ponomarenko, A. G., Vasilenko, D. V., Fischer, T. C. & Aschauer, B. First beetle elytra, abdomen (Coleoptera) and a mine trace from Lunz (Carnian, Late Triassic, Lunz-am-See, Austria) and their taphonomical and evolutionary aspects. Palaeontology 54, 97–110. https://doi.org/10.1111/j.1475-4983.2010.01009.x (2011).Article 

    Google Scholar 
    Vassilenko, D. V. Traces of plant-arthropod interactions from Madygen (Triassic, Kyrgyzstan): Preliminary data. Sovremennaya paleontologia: klassicheskie i noveishie metody 9–16 (2009).Zherikhin, V. V. Insect Trace Fossils. In History of Insects (ed. Rasnitsyn A. P., Quicke, D. L.) 303–324 (Kluwer Academic Publishers, 2010).Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 

    Google Scholar  More

  • in

    Salmon lice in the Pacific Ocean show evidence of evolved resistance to parasiticide treatment

    BioassaysSalmon-louse bioassays were performed by the BC Centre for Aquatic Health Sciences (CAHS) as described in Saksida et al.10. Briefly, motile (i.e., pre-adult and adult) L. salmonis were collected from 11 salmon farms in the Broughton Archipelago (BA) between 2010 and 2021 and transported to CAHS in Campbell River, BC. Within 18 h of collection, healthy lice were separated by sex and randomly placed into petri dishes each containing approximately 10 lice (mean ± SD = 9.6 ± 1.1) and subjected to one of six EMB concentrations (either 0, 31.3, 62.5, 125, 250, and 500 ppb or 0, 62.5, 125, 250, 500, and 1000 ppb, depending on suspected variation in EMB sensitivity11). Each collection corresponded to one bioassay, and each bioassay contained roughly four replicates for each sex (4.0 ± 1.3 for females and 3.6 ± 0.9 for males). After 24 h of EMB exposure, lice were classified as alive if they could swim and attach to the petri dish, or moribund/dead otherwise. Lice were kept at 10 °C throughout the process. In total, 34 bioassays were conducted from 11 farms between October 2010 and November 2021.We analysed the proportion of lice that survived exposure to EMB, using standard statistical descriptions that accounted for within-assay dependencies (generalized linear mixed models (GLMMs) with logit link functions, fitted separately to the data from each bioassay). The models included fixed effects for EMB concentration, sex, and the interaction between the two, as well as a random intercept for petri dish. For each analysis, we centered concentration values and scaled them by one standard deviation. We used the GLMM fits to calculate the effective concentrations at which 50% of the lice survived (EC50) in each bioassay. The GLMM for one bioassay produced a singular fit because there was not enough variation in the female survival data to warrant the random-effects structure. We retained the EC50 values resulting from this singular fit because re-fitting without the random intercept yielded identical EC50 values, and removing the entire bioassay from the overall dataset did not qualitatively affect the subsequent analysis.To assess whether the sensitivity of salmon lice to EMB has decreased over time, we fitted a set of five standard GLMs with gamma error distributions and log link functions to the maximum-likelihood EC50 estimates. Each of these five models included binary effects for sex and for whether the farm’s stock had previously been treated, since both affect EMB sensitivity in lice10. The first model included only these two effects and served as a null model that assumed lice did not evolve EMB resistance over time. The second model added a fixed effect for time (i.e., the number of days since January 1, 2010), while the third model included an interaction between time and sex. The fourth and fifth models were identical to the second and third, but with a quadratic effect for time, to account for possible first-order nonlinearity. We were unable to add an effect for farm due to small sample sizes. We performed model selection using the Akaike Information Criterion penalized for small sample sizes AICc25, treating AICc differences of less than two as being indistinguishable in terms of statistical support and selecting the least complex model when that was the case26. The ΔAICc values for the EC50 models were 48.1, 6.1, 4.9, 0, 1.75, respectively.Field efficacyWe used relative salmon-louse counts after EMB treatment (i.e., the post-treatment count divided by the pre-treatment count) as our measure of EMB field resistance between 2010 and 2021 (higher relative counts imply lower treatment efficacy). We defined “pre-treatment” as one month prior to treatment and “post-treatment” as three months after treatment (roughly when one would expect to find the lowest counts in louse populations previously unexposed to EMB), as in Saksida et al.10. We excluded EMB treatments for which an additional, non-EMB treatment was performed within the following three months. In total, there were 73 EMB treatments for which we were able to calculate relative post-treatment counts.Salmon-louse counts were performed by farm staff as described by Godwin et al.27. In short, salmon-louse counts were usually performed at least one per month by capturing 20 stocked fish in each of three net pens using a box seine net, then placing the fish in an anesthetic bath of tricaine methanesulfonate (TMS, or MS-222) and assessing the fish for motile (i.e., pre-adult and adult) L. salmonis by eye.The treatment dataset included the date and type of every treatment that has been performed on a BA farm (i.e., not just the 11 farms with bioassay data). In total, 88 EMB treatments were conducted between 2010 and 2021, of which we were able to calculate relative post-treatment counts for 73 because some months lacked counts or had a non-EMB treatment performed within the following three months. An additional 22 non-EMB treatments (e.g., freshwater and hydrogen baths) were performed, all since the beginning of 2019, but we excluded these data from our analysis.To determine whether field efficacy of EMB treatments has decreased over time, we used GLM-based “hurdle models”—standard statistical descriptions used to accommodate an over-abundance of zeroes in data being analysed. A hurdle model uses two components—one model for whether a count is nonzero and another for the value of the nonzero count—to predict overall mean count. To this end, we fitted three binomial GLMs paired with three gamma GLMs to the relative-count data, each of the paired models being structurally identical in terms of predictors. All of these submodels included a binary fixed effect for previous treatment, as in the EC50 models. The null pair of submodels included no additional terms, the second pair of submodels included a fixed effect for time (i.e., the number of days since January 1, 2010), and the third pair of submodels included a quadratic effect of time (again, to account for possible first-order deviations nonlinearity). We were unable to add an effect for farm due to small sample sizes. We performed model selection of the hurdle models, again using the Akaike Information Criterion penalized for small sample sizes. The ΔAICc values for the three hurdle models were 39.6, 18.3, and 0, respectively. We performed our analyses in R 3.6.028, using the lme4 package29. More

  • in

    A cyclical wildfire pattern as the outcome of a coupled human natural system

    Base run simulationFigure 6 shows the results of the base run simulation. In this scenario, strong vegetation declines over time, while the empty area and flammable vegetation have increasing trends. As such, more fuel would be available for burning, and the wildfire can burn broader areas. Panel (a) shows an oscillatory trend for the burn rate with an average upward trend (To make sure the oscillatory behavior of the model does not fade, Appendix 4 shows the simulation result for 100 years). The observed pattern in the burn rate can be traced back to the patterns of human ignition (Panel b), and the growing trend of vulnerable properties (Panel c). In addition, the results show the long-term declining trend of strong vegetation in our base line simulation (Panel d); over time, stronger vegetation is replaced by flammable vegetation which can lead to more fire. This change in vegetation composition effectively increases the average burn rate. Over time, with more flammable vegetation and with the expansion of vulnerable properties, the likelihood of human-made ignition increases.Figure 6Base run simulation for a 20-year run of the model.Full size imageCoupling effectsFigure 7 shows how the relation between perceived fire risk and the burn rate influences the system. The black line is the base run simulation for comparison. The blue dashed line depicts the condition in which risk perception changes extremely slowly, and the human system is almost disconnected from the natural system. In this situation, if humans underestimate the fire potential, the system burns down nature, resulting in a catastrophic environmental outcome as depicted in panel (a). Panel (a) shows that the burn rate overshoots in the short term but relatively declines due to less remaining natural resources to burn.Figure 7Coupling effect analysis for 20 years. Human ignition unit is Ignition/year, and vulnerable property unit is a million hectares. Strong vegetation and flammable vegetation are provided as the ratio that each occupied the forest area.Full size imagePanel (b) displays the total burn rate throughout the study time to cast further insight into the burn rate sensitivity to perceived risk. The overall burn rate does not significantly change when the risk perception changes from 0.5 to 2, indicating the difference among burn rates in panel (a) is more about the fluctuation timing, but not the size. However, an additional rise in the sense of risk greatly raises the overall burn rate, as seen in panel (a).In the case of prolonged change in risk perception, human ignition continues to increase (panel c) as the perceived risk changes slowly. Furthermore, vulnerable properties are being built faster than their demolition (panel d). A slighter delay in perception leads to a higher frequency of oscillation as depicted in the graphs by the red dashed lines and a longer delay in a lower frequency oscillation, as shown by the purple graphs. Overall, the results are not much different from the base run. We are losing forests (panel e) and have periodic burn rates of increasing magnitude over time.Policy experimentsHere we examine the impact of implementing four proposed policies introduced in Table 2. To prevent the initial condition and transition periods affecting our comparison of proposed policies, we imposed each policy at the fifth year and compared the total burn rates between 10 and 20 years. Figure 8 shows the effect of these policies on different variables. Figure 8Policy implementation. Note: P1: limits vulnerable property development; P2: prescribed burning; P3: effective firefighting; and P4: Clear cutting. Human ignition unit is Ignition/year, and vulnerable property unit is a million hectares. Strong vegetation and flammable vegetation are provided as the ratio that each occupied the forest area.Full size imagePanels (a) and (b) show the burn rate over time and cumulative, respectively. All four policies reduce the burn-rate magnitude compared to the base run. P3 is more effective in early burning-rate reduction compared to other policies, but they ultimately result in similar behavior. It is worth noticing that P1 has the most effect on long-run fluctuation reduction, although its total effect in the time span is less than P3. It seems that firefighting is more effective in the short run, but it fails to dampen the fluctuation and instead limits its growth. This is partly because of the increase in human ignition and settlement due to the success of firefighting in the short run. As a result, people perceive less fire danger and continue to engage in high-risk activities and expand housing in the WUI. The result is further fluctuation in the burn rate even when P3 is implemented. On the other hand, the WUI expansion limitation policy can effectively reduce the burn-rate fluctuation in a timely manner. Implementing P4 causes a reduction in strong vegetation, which leads to flammable vegetation increase. As flammable vegetation is the main fuel for wildfire, this policy cause increase in fuel availability and an increase in the burning rate.Change in human ignition is provided in panel (c). Different levels of human-made ignition are observable, and the reason is that people adjust their high-risk behavior with burn rate, and not with the number of fires. In the firefighting policy, as for a given level of ignition, the burn rate declines, we observe more risky behavior and more human-made ignition. It is interesting to note that, as panel (c) shows, we end up with more WUI under policies 2, 3, and 4. In fact, the reason is that the firefighting, prescribed burning and clear cutting only affect natural sector of the model, decrease burn rate, which decreases risk perception and in turn result in more WUI development. On the other hand, P1 directly targets WUIs.Panel (e) displays the change in strong vegetation, which shows that P4 causes the most reduction in forest tree cover as it directly removes strong vegetation. P2 also causes a decrease in strong vegetation compared to the base run. The reason is that burning flammable vegetation damages young trees and prevents them from developing into solid vegetation. On the other hand, P3 has the least effect on strong vegetation by slowing the damage to young trees and confining the fire. Panel (f) shows the flammable vegetation dynamic after imposing each policy. P3 and P2 reduce flammable vegetation more than P1. However, there is an important difference in how these policies cause the reduction in flammable vegetation. In comparing panels (a) and (b), we see that while P3 causes further increases in the strong vegetation, P2 causes an increase in the empty area. P4 is the only policy that increases flammable vegetation by removing the strong vegetation and providing an empty area to be filled with young vegetation.Overall, it looks like each policy has some marginal effect on containing wildfire, though the magnitudes of effect are not considerable.Replication of United States dataFor model validation, we investigate its ability to fit a single case, United States’ wildfires from 1996 to 2015. We utilize the United States Department of Agriculture’s wildfire database for the conterminous United States (Short, 2017). The results are shown in Fig. 9. In this figure, simulation of burning rate and human ignition (continuous lines, in black) closely follows the real-world data (dotted lines, in red), and the model fairly replicates the historical trends.Figure 9Burning rate and human ignition per unit of forest area. The black line represents the model result, and the red dotted line represents the historical wildfire activity in the conterminous United States.Full size imageCombination policy implementation analysisTo better understand the impacts of our policies, we run different pairs of policies simultaneously. The results illustrate the nonlinear incremental impacts between policies. Simply put, it appears that the impact of several policies is enforced when combined synergistically. In other words, applying several policies might have a greater overall impact than the sum of the policies’ individual effects and suggests that policymakers should avoid searching for a panacea and adopt a broad range of approaches thoughtfully.The results of multiple policy implementations along with single ones are presented in Fig. 10. For example, P1 and P2 each reduce the total burn rate by 4.9% and 4.5%, respectively. While the summation of these effects is 9.4%, simultaneously implementing P1 and P2 lead to a 13.6% burn-rate reduction—P1 controls the human ignition, and P2 reduces the flammable vegetation stock—together, the burn rate is more affected than if implemented separately. The case is more interesting when P1 and P3 are imposed together. The result is a 38% burn-rate reduction compared to 13.9%, which is the sum of solely implementing each policy. The synergic effect happens because P3 lets the flammable vegetation (mainly young trees) age and become strong vegetation. Furthermore, the P1 also prevents human ignition from growing as fast as a single P3 implementation.Figure 10The nonlinear effect of policies. The benefits of implementing multiple policies differ from the sum of the effect of policies. The figure shows the percent of burn rate reduction. Note: P1: limit vulnerable property development; P2: prescribed burning; P3: effective firefighting; and P4: Clear cutting.Full size imageAn interesting case happens when P2 and P3 are implemented together. The synergic effect is less than the sum of separate implementation, mainly because both policies affect the vegetation dynamic and not the human factor in the wildfire. P2 and P3 both cause a lower initial burn rate, but due to the reduction in perceived risk of wildfire and expansion of WUI, this effect quickly disappears. This is another evidence for the importance of considering the problem as an interconnected natural and human system, where effective policies should address both sides.Finally, an interesting result emerges when all policies impose together. Surprisingly, imposing all policies together does not have the most impact on the total burn rate (32.5%), which is less than the P1 and P3 effect (38.0%). The reason relates mainly to the fact P2 and P4 both cause increase in flammable vegetation after empty area filled, which lead to more burning rate after a delay.Sensitivity analysisWe conducted a series of sensitivity analysis to check the model’s robustness to our assumptions. Specifically, we conducted a Monte-Carlo analysis and changed several parameter values to determine the range of outcomes. The results are reported in Appendix 2. In summary, the focus was on parameters that can take on substantially different values from those assumed in the model, including parameters used for risk perception formulation, its effect on human behavior, such as time to perceive risk and time to change behavior, in addition to fractional burning rate per ignition, average s burning, initial flammable vegetation, initial strong vegetation, human ignition multiplier, and initial vulnerable property. As described in the Appendix, for most of these variables, we changed the corresponding variable up to double its base run value. Moreover, we test different values for initial strong vegetation and initial flammable vegetation changing them between zero and their base run values. Each sensitivity test is the outcome of 2000 simulation runs using a uniformly distributed random distribution of the parameters within the specified intervals. The results are qualitatively robust, and their variability is within reasonable limits (See Figure A1). More

  • in

    Publisher Correction: Heterogeneity within and among co-occurring foundation species increases biodiversity

    Marine Ecology Research Group and Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New ZealandMads S. Thomsen, Luca Mondardini, David R. Schiel & Alfonso SicilianoDepartment of Bioscience, Aarhus University, 4000, Roskilde, DenmarkMads S. ThomsenSmithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of PanamaAndrew H. Altieri, Viktoria M. M. Frühling, Seamus B. Harrison & Gerhard ZotzEnvironmental Engineering Sciences, University of Florida, Gainesville, FL, USAAndrew H. Altieri & Christine AngeliniDepartment of Biological Sciences, Macquarie University, Sydney, NSW, AustraliaMelanie J. Bishop & Semonn OleksynDipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, ItalyFabio Bulleri & Joachim LangeneckMarine Sciences, University of Georgia, Athens, GA, USARoxanne FarhanCentre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, AustraliaPaul E. Gribben & Brendan S. LanhamSydney Institute of Marine Science, Chowder Bay Road, Mosman, 2088, Sydney, NSW, AustraliaPaul E. Gribben & Brendan S. LanhamCoastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, 200438, Shanghai, ChinaQiang HeInstitute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, GermanyMoritz Klinghardt, Tristan Schneider & Gerhard ZotzSchool of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, AustraliaYannick Mulders & Thomas WernbergDepartment of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USAAaron P. RamusNicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC, USABrian R. Silliman & Stacy ZhangMarine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UKDan A. SmaleCawthron Institute, Nelson, New ZealandPaul M. South More

  • in

    Mapping the purple menace: spatiotemporal distribution of purple loosestrife (Lythrum salicaria) along roadsides in northern New York State

    Lázaro-Lobo, A. & Ervin, G. N. A global examination on the differential impacts of roadsides on native versus exotic and weedy plant species. Glob. Ecol. Conserv. 17(e00555), 1–13 (2019).
    Google Scholar 
    Christen, D. C. & Matlack, G. R. The habitat and conduit functions of roads in the spread of three invasive plant species. Biol. Invasions 11(2), 453–465 (2009).Article 

    Google Scholar 
    Mortensen, D. A., Rauschert, E. S., Nord, A. N. & Jones, B. P. Forest roads facilitate the spread of invasive plants. Invasive Plant Sci. Manag. 2(3), 191–199 (2009).Article 

    Google Scholar 
    Lemke, A., Kowarik, I. & von der Lippe, M. How traffic facilitates population expansion of invasive species along roads: The case of common ragweed in Germany. J. Appl. Ecol. 56(2), 413–422 (2019).Article 

    Google Scholar 
    Rauschert, E. S., Mortensen, D. A. & Bloser, S. M. Human-mediated dispersal via rural road maintenance can move invasive propagules. Biol. Invasions 19(7), 2047–2058 (2017).Article 

    Google Scholar 
    Meunier, G. & Lavoie, C. Roads as corridors for invasive plant species: New evidence from smooth bedstraw (Galium mollugo). Invasive Plant Sci. Manag. 5(1), 92–100 (2012).Article 

    Google Scholar 
    Mohit, S., Johnson, T. B. & Arnott, S. E. Recreational watercraft decontamination: Can current recommendations reduce aquatic invasive species spread?. Manag. Biol. Invasions 12(1), 148–164 (2021).Article 

    Google Scholar 
    Ferguson, L., Duncan, C. L., & Snodgrass, K. Backcountry road maintenance and weed management. United States: U.S. Department of Agriculture, Forest Service, Technology & Development Program. 22pp (2003). At https://www.google.com/books/edition/Backcountry_Road_Maintenance_and_Weed_Ma/y2amRwT1rIsC?hl=en&gbpv=0.Lelong, B., Lavoie, C., Jodoin, C. & Belzile, F. Expansion pathways of the exotic common reed (Phragmites australis): A historical and genetic analysis. Divers. Distrib. 13, 430–437 (2007).Article 

    Google Scholar 
    Joly, M. et al. Paving the way for invasive species: Road type and the spread of common ragweed (Ambrosia artemisiifolia). Environ. Manag. 48(3), 514–522 (2011).ADS 
    Article 

    Google Scholar 
    Thompson, D. Q., Stuckey, R. L. & Thompson, E. B. Spread, impact, and control of purple loosestrife (Lythrum salicaria) in North American wetlands. U. S. Fish and Wildlife Service (1987). At http://stoppinginvasives.com/dotAsset/670d2f92-cd0c-41ab-9955-7204f1a9a192.pdf.Stuckey, R. L. Distributional history of Lythrum salicaria (purple loosestrife) in North America. Bartonia 47, 3–20 (1980).
    Google Scholar 
    Blossey, B., Skinner, L. C. & Taylor, J. Impact and management of purple loosestrife (Lythrum salicaria) in North America. Biodivers. Conserv. 10(10), 1787–1807 (2001).Article 

    Google Scholar 
    Wilcox, D. A. Migration and control of purple loosestrife (Lythrum salicaria L.) along highway corridors. Environ. Manag. 13(3), 365–370 (1989).ADS 
    Article 

    Google Scholar 
    St. Louis, E., Stastny, M. & Sargent, R. D. The impacts of biological control on the performance of Lythrum salicaria 20 years post-release. Biol. Control. 140, 104–123 (2020).Article 

    Google Scholar 
    NYSDOT Environmental Science Bureau. Environmental Handbook for Transportation Operations: A Summary of the Environmental Requirements and Best Practices for Maintaining the Constructing Highways and Transportation Systems. Prepared by NYSDOT Environmental Science Bureau, (2011) At https://www.dot.ny.gov/divisions/engineering/environmental-analysis/repository/oprhbook.pdf.Blossey, B., Schroeder, D., Hight, S. D. & Malecki, R. A. Host specificity and environmental impact of two leaf beetles (Galerucella calmariensis and G. pusilla) for biological control of purple loosestrife (Lythrum salicaria). Weed Sci. 42, 134–140 (1994).Article 

    Google Scholar 
    Blossey, B. Before, during and after: The need for long-term monitoring in invasive plant species management. Biol. Invasions 1, 301–311 (1999).Article 

    Google Scholar 
    Blossey, B. & Hunt, T. R. Mass rearing methods for Galerucella calmariensis and G. pusilla (Coleoptera: Chrysomelidae), biological control agents of Lythrum salicaria (Lythraceae). J. Econ. Entomol. 92(2), 325–334 (1999).CAS 
    Article 

    Google Scholar 
    Grevstad, F. S. Ten-year impacts of the biological control agents Galerucella pusilla and G. calmariensis (Coleoptera: Chrysomelidae) on purple loosestrife (Lythrum salicaria) in Central New York State. Biol. Control 39(1), 1–8 (2006).Article 

    Google Scholar 
    Boag, A. E. & Eckert, C. G. The effect of host abundance on the distribution and impact of biocontrol agents on purple loosestrife (Lythrum salicaria, Lythraceae). Écoscience 20(1), 90–99 (2013).Article 

    Google Scholar 
    Lakoba, V. T., Brooks, R. K., Haak, D. C. & Barney, J. N. An Analysis of US State regulated weed lists: A discordance between biology and policy. Bioscience 70(9), 804–813 (2020).Article 

    Google Scholar 
    Welling, C. H. & Becker, R. L. Seed bank dynamics of Lythrum salicaria L.: Implications for control of this species in North America. Aquat. Bot. 38, 303–309 (1990).Article 

    Google Scholar 
    Brown, B. J. & Wickstrom, C. E. Adventitious root production and survival of purple loosestrife (Lythrum salicaria) shoot sections. Ohio J. Sci. 97, 2–4 (1997).
    Google Scholar 
    Farnsworth, E. J. & Ellis, D. R. Is purple loosestrife (Lythrum salicaria) an invasive threat to freshwater wetlands? Conflicting evidence from several ecological metrics. Wetlands 21(2), 199–209 (2001).Article 

    Google Scholar 
    Mahaney, W. M., Smemo, K. A. & Yavitt, J. B. Impacts of Lythrum salicaria invasion on plant community and soil properties in two wetlands in central New York, USA. Botany 84(3), 477–484 (2006).
    Google Scholar 
    Treberg, M. A. & Husband, B. C. Relationship between the abundance of Lythrum salicaria (purple loosestrife) and plant species richness along the Bar River Canada. Wetlands 19(1), 118–125 (1999).Article 

    Google Scholar 
    Hager, H. & Vinebrooke, R. E. Positive relationships between invasive purple loosestrife (Lythrum salicaria) and plant species diversity and abundance in Minnesota wetlands. Can. J. Bot. 82(6), 763–773 (2004).Article 

    Google Scholar 
    Lavoie, C. Should we care about purple loosestrife? The history of an invasive plant in North America. Biol. Invasions 12(7), 1967–1999 (2010).Article 

    Google Scholar 
    Fickbohm, S. S. & Zhu, W. X. Exotic purple loosestrife invasion of native cattail freshwater wetlands: Effects on organic matter distribution and soil nitrogen cycling. Appl. Soil. Ecol. 32(1), 123–131 (2006).Article 

    Google Scholar 
    Ramula, S. Annual mowing has the potential to reduce the invasion of herbaceous Lupinus polyphyllus. Biol. Invasions 22(10), 3163–3173 (2020).Article 

    Google Scholar 
    Milakovic, I., Fiedler, K. & Karrer, G. Management of roadside populations of invasive Ambrosia artemisiifolia by mowing. Weed Res. 54(3), 256–264 (2014).Article 

    Google Scholar 
    Vitalos, M. & Karrer, G. Dispersal of Ambrosia artemisiifolia seeds along roads: The contribution of traffic and mowing machines. Neobiota 8, 53–60 (2009).
    Google Scholar 
    Forman, R. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29(1), 207–231 (1998).Article 

    Google Scholar 
    Milt, A. W. et al. Minimizing opportunity costs to aquatic connectivity restoration while controlling an invasive species. Conserv. Biol. 32(4), 894–904 (2018).Article 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development Environment for R. RStudio, PBC. (2021). URL http://www.rstudio.com/.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2021). https://www.R-project.org/.U. S. Fish and Wildlife Service. National Wetlands Inventory. http://www.fws.gov/wetlands/ (2020).Yakimowski, S. B., Hager, H. A. & Eckert, C. G. Limits and effects of invasion by the nonindigenous wetland plant Lythrum salicaria (purple loosestrife): A seed bank analysis. Biol. Invasions 7, 687–698 (2005).Article 

    Google Scholar 
    Thomas, S. M. & Moloney, K. A. Combining the effects of surrounding land-use and propagule pressure to predict the distribution of an invasive plant. Biol. Invasions 17, 477–495 (2015).Article 

    Google Scholar 
    Barbier, E. B., Knowler, D., Gwatipedza, J., Reichard, S. H. & Hodges, A. R. Implementing policies to control invasive plant species. Bioscience 63(2), 132–138 (2013).Article 

    Google Scholar 
    Blossey, B. Measuring and Evaluating Ecological Outcomes of Biological Control Introductions. In Integrating Biological Control into Conservation Practice (eds Van Driesche, R. et al.) 161–188 (Wiley, 2016).Chapter 

    Google Scholar 
    Rowell, N. Warren County Purple Loosestrife Management Program Final Report. (2015). At https://www.warrenswcd.org/reports.html.Vanneste, T. et al. Plant diversity in hedgerows and road verges across Europe. J. Appl. Ecol. 57(7), 1244–1257 (2020).Article 

    Google Scholar 
    Auffret, A. G. & Lindgren, E. Roadside diversity in relation to age and surrounding source habitat: Evidence for long time lags in valuable green infrastructure. Ecol. Solut. Evid. 1(1), e12005 (2020).Article 

    Google Scholar 
    Mccleery, R. A., Holdorf, A. R., Hubbard, L. L. & Peer, B. D. Maximizing the wildlife conservation value of road right-of-ways in an agriculturally dominated lands. Plos one 10(3), e0120375 (2015).Article 

    Google Scholar 
    New York Invasive Species Information (NYISI). Purple Loosestrife. (2019). at http://nyis.info/invasive_species/purple-loosestrife.Rogers, J. Controlling purple loosestrife (Lythrum Salicaria) along roadsides in St. Lawrence County: Monitoring and biological controls. Adirondack J. Environ. Stud. 23(1), 5 (2019).
    Google Scholar 
    New York State Department of Transportation. Clear Zones. (2021). At https://www.dot.ny.gov/divisions/engineering/environmental-analysis/landscape/trees/rs-lsf-plant-photos.ESRI. ArcGIS Pro: Version 2.9: Environmental System Research Institute. (2021). At https://pro.arcgis.com/en/pro-app/latest/get-started/get-started.htm.IBM Corp. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp. Released 2017. More

  • in

    Spatial ecology, activity patterns, and habitat use by giant pythons (Simalia amethistina) in tropical Australia

    Seigel, R. A. & Ford, N. B. Reproductive ecology in Snakes: Ecology and Evolutionary Biology (eds. Seigel, R. A., Collins, J. T. &. Novak, S. S.). 210–252. (MacMillan Publishing, 1987).Kremen, C., Merenlender, A. M. & Murphy, D. D. Ecological monitoring: A vital need for integrated conservation and development programs in the tropics. Conserv. Biol. 8, 388–397 (1994).
    Google Scholar 
    Shine, R. & Bonnet, X. Snakes: A new ‘model organism’ in ecological research?. Trends Ecol. Evol. 15, 221–222 (2000).CAS 
    PubMed 

    Google Scholar 
    Vilela, B., Villalobos, F., Rodríguez, M. Á. & Terribile, L. C. Body size, extinction risk and knowledge bias in New World snakes. PLoS ONE 9, e113429 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mathies, T. Reproductive cycles of tropical snakes. in Reproductive Biology and Phylogeny of Snakes (eds. Sever, D. & Aldridge, R.). 523–562. (CRC Press, 2016).Shine, R., Harlow, P. S. & Keogh, J. S. The allometry of life-history traits: Insights from a study of giant snakes (Python reticulatus). J. Zool. 244, 405–414 (1998).
    Google Scholar 
    Natusch, D. J., Lyons, J. A., Riyanto, A., Khadiejah, S. & Shine, R. Detailed biological data are informative, but robust trends are needed for informing sustainability of wildlife harvesting: A case study of reptile offtake in Southeast Asia. Biol. Conserv. 233, 83–92 (2019).
    Google Scholar 
    Freeman, A. & Freeman, A. Habitat use in a large rainforest python (Morelia kinghorni) in the wet tropics of north Queensland, Australia. Herpetol. Conserv. Biol. 4, 252–260 (2009).
    Google Scholar 
    Smith, S. N., Jones, M. D., Marshall, B. M. & Strine, C. T. Native Burmese pythons exhibit site fidelity and preference for aquatic habitats in an agricultural mosaic. Sci. Rep. 11, 7014 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kramer, D. L. & Chapman, M. R. Implications of fish home range size and relocation for marine reserve function. Environ. Biol. Fishes 55, 65–79 (1999).
    Google Scholar 
    Spong, G. Space use in lions, Panthera leo, in the Selous Game Reserve: Social and ecological factors. Behav. Ecol. Sociobiol. 52, 303–307 (2002).
    Google Scholar 
    Webb, J. K. & Shine, R. A field study of spatial ecology and movements of a threatened snake species, Hoplocephalus bungaroides. Biol. Conserv. 82, 203–217 (1997).
    Google Scholar 
    Fearn, S. & Sambono, J. A reliable size record for the scrub python Morelia amethistina (Serpentes: Pythonidae) in north east Queensland. Herpetofauna 30, 2–6 (2000).
    Google Scholar 
    Grow, D., Wheeler, S. & Clark, B. Reproduction of the Amethystine python Python amethystinus kinghorni at the Oklahoma City Zoo. Int. Zoo Year. 27, 241–244 (1988).
    Google Scholar 
    Feldman, A. & Meiri, S. Length–mass allometry in snakes. Biol. J. Linn. Soc. 108, 161–172 (2013).
    Google Scholar 
    Harvey, M. B., Barker, D. G., Ammerman, L. K. & Chippindale, P. T. Systematics of pythons of the Morelia amethistina complex (Serpentes: Boidae) with the description of three new species. Herpetol. Monogr. 14, 139–185 (2000).
    Google Scholar 
    Fearn, S., Schwarzkopf, L. & Shine, R. Giant snakes in tropical forests: A field study of the Australian scrub python, Morelia kinghorni. Wildl. Res. 32, 193–201 (2005).
    Google Scholar 
    Natusch, D. J. D., Lyons, J. A. & Shine, R. Rainforest pythons flexibly adjust foraging ecology to exploit seasonal concentrations of prey. J. Zool. 313, 114–123 (2021).
    Google Scholar 
    Martin, R. W. Field observation of predation on Bennett’s tree-kangaroo (Dendrolagus bennettianus) by an amethystine python (Morelia amethistina). Herpetol. Rev. 26, 74–75 (1995).
    Google Scholar 
    Natusch, D., Lyons, J., Mears, L. A. & Shine, R. Biting off more than you can chew: Attempted predation on a human by a giant snake (Simalia amethistina). Austral. Ecol. 46, 159–162 (2021).
    Google Scholar 
    Neldner, V. J. & Clarkson, J. R. Vegetation of Cape York Peninsula. (Department of Environment and Heritage, 1995).Bureau of Meteorology. Climate Data Online. http://www.bom.gov.au/climate/data/. Accessed 17 July 2020 (2020).Whitaker, P. B. & Shine, R. A radiotelemetric study of movements and shelter-site selection by free-ranging brownsnakes (Pseudonaja textilis, Elapidae). Herpetol. Monogr. 17, 130–144 (2003).
    Google Scholar 
    Harris, S. et al. Home-range analysis using radio-tracking data–A review of problems and techniques particularly as applied to the study of mammals. Mamm. Rev. 20, 97–123 (1990).
    Google Scholar 
    Fearn, S. & Sambono, J. Some ambush predation postures of the Scrub Python Morelia amethistina (Serpentes: Pythonidae) in north east Queensland. Herpetofauna 30, 39–44 (2000).
    Google Scholar 
    Caswell, H. Theory and models in ecology: A different perspective. Ecol. Model. 43, 33–44 (1988).
    Google Scholar 
    Silva, I., Crane, M., Marshall, B. M. & Strine, C. T. Reptiles on the wrong track? Moving beyond traditional estimators with dynamic Brownian bridge movement models. Move. Ecol. 8, 43 (2020).
    Google Scholar 
    Row, J. R. & Blouin-Demers, G. Kernels are not accurate estimators of home-range size for herpetofauna. Copeia 2006, 797–802 (2006).
    Google Scholar 
    Newman, P., Dwyer, R. G., Belbin, L. & Campbell, H. A. ZoaTrack—An online tool to analyse and share animal location data: User engagement and future perspectives. Aust. Zool. 41, 12–18. https://zoatrack.org/toolkit/doi (2020).Pearson, D. J. & Shine, R. Expulsion of interperitoneally-implanted radiotransmitters by Australian pythons. Herpetol. Rev. 33, 261–263 (2002).
    Google Scholar 
    Hale, V. L. et al. Radio transmitter implantation and movement in the wild timber rattlesnake (Crotalus horridus). J. Wildl. Dis. 53, 591–595 (2017).PubMed 

    Google Scholar 
    Martin, A. E., Jørgensen, D. & Gates, C. C. Costs and benefits of straight versus tortuous migration paths for Prairie Rattlesnakes (Crotalus viridis viridis) in seminatural and human-dominated landscapes. Can. J. Zool. 95, 921–928 (2017).
    Google Scholar 
    Glaudas, X., Rice, S. E., Clark, R. W. & Alexander, G. J. Male energy reserves, mate-searching activities, and reproductive success: Alternative resource use strategies in a presumed capital breeder. Oecologia 194, 415–425 (2020).ADS 
    PubMed 

    Google Scholar 
    Glaudas, X., Rice, S. E., Clark, R. W. & Alexander, G. J. The intensity of sexual selection, body size and reproductive success in a mating system with male–male combat: is bigger better?. Oikos 129, 998–1011 (2020).
    Google Scholar 
    Gannon, V. P. J. & Secoy, D. M. Seasonal and daily activity patterns in a Canadian population of the prairie rattlesnake, Crotalus viridus viridis. Can. J. Zool. 63, 86–91 (1985).
    Google Scholar 
    Heard, G. W., Black, D. & Robertson, P. Habitat use by the inland carpet python (Morelia spilota metcalfei: Pythonidae): Seasonal relationships with habitat structure and prey distribution in a rural landscape. Austral. Ecol. 29, 446–460 (2004).
    Google Scholar 
    Madsen, T. & Shine, R. Seasonal migration of predators and prey—A study of pythons and rats in tropical Australia. Ecology 77, 149–156 (1996).
    Google Scholar 
    Graves, B. M. & Duvall, D. Reproduction, rookery use, and thermoregulation in free-ranging, pregnant Crotalus v. viridis. J. Herpetol. 27, 33–41 (1993).
    Google Scholar 
    Chiaraviglio, M. The effects of reproductive condition on thermoregulation in the Argentina boa constrictor (Boa constrictor occidentalis) (Boidae). Herpetol. Monogr. 20, 172–177 (2006).
    Google Scholar 
    Smith, C. F., Schuett, G. W., Earley, R. L. & Schwenk, K. The spatial and reproductive ecology of the copperhead (Agkistrodon contortrix) at the northeastern extreme of its range. Herpetol. Monogr. 23, 45–73 (2009).
    Google Scholar 
    Shine, R. & Fitzgerald, M. Large snakes in a mosaic rural landscape: The ecology of carpet pythons Morelia spilota (Serpentes: Pythonidae) in coastal eastern Australia. Biol. Conserv. 76, 113–122 (1996).
    Google Scholar 
    Heard, G. W. et al. Canid predation: A potentially significant threat to relic populations of the Inland Carpet Python ‘Morelia spilota metcalfei’ (Pythonidae) in Victoria. Vic. Nat. 123, 68–74 (2006).
    Google Scholar 
    Downes, S. & Shine, R. Sedentary snakes and gullible geckos: Predator–prey coevolution in nocturnal rock-dwelling reptiles. Anim. Behav. 55, 1373–1385 (1998).CAS 
    PubMed 

    Google Scholar 
    Miller, A. K., Maritz, B., McKay, S., Glaudas, X. & Alexander, G. J. An ambusher’s arsenal: chemical crypsis in the puff adder (Bitis arietans). Proc. R. Soc. B 282, 20152182 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Maritz, B. & Alexander, G. J. Dwarfs on the move: Spatial ecology of the world’s smallest viper, Bitis schneideri. Copeia 2012, 115–120 (2012).
    Google Scholar 
    Stirrat, S. C. Seasonal changes in home-range area and habitat use by the agile wallaby (Macropus agilis). Wildl. Res. 30, 593–600 (2003).
    Google Scholar 
    Ayers, D. Y. & Shine, R. Thermal influences on foraging ability: Body size, posture and cooling rate of an ambush predator, the python Morelia spilota. Funct. Ecol. 11, 342–347 (1997).
    Google Scholar 
    Pearson, D., Shine, R. & Williams, A. Spatial ecology of a threatened python (Morelia spilota imbricata) and the effects of anthropogenic habitat change. Austral. Ecol. 30, 261–274 (2005).
    Google Scholar 
    Freeman, A. A study in power and grace: The amethystine python. Wildl. Aust. 53, 27–29 (2016).
    Google Scholar 
    Silva, I., Crane, M., Suwanwaree, P., Strine, C. & Goode, M. Using dynamic Brownian bridge movement models to identify home range size and movement patterns in king cobras. PLoS ONE 13, e0203449 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, B. M. et al. Space fit for a king: Spatial ecology of king cobras (Ophiophagus hannah) in Sakaerat Biosphere Reserve, Northeastern Thailand. Amphibia-Reptilia 40, 163–178 (2019).
    Google Scholar 
    Udyawer, V., Simpfendorfer, C. A., Heupel, M. R. & Clark, T. D. Temporal and spatial activity-associated energy partitioning in free-swimming sea snakes. Funct. Ecol. 31, 1739–1749 (2017).
    Google Scholar 
    Smaniotto, N. P., Moreira, L. F., Rivas, J. A. & Strüssmann, C. Home range size, movement, and habitat use of yellow anacondas (Eunectes notaeus). Salamandra 56, 159–167 (2020).
    Google Scholar 
    Low, M. R. Rescue, rehabilitation and release of reticulated pythons in Singapore. in Global Reintroduction Perspectives: 2018. Case Studies from Around the Globe (ed. Soorae, P. S.) 78–81 (IUCN/SSC Reintroduction Specialist Group, 2018).Alexander, G. J. & Maritz, B. Sampling interval affects the estimation of movement parameters in four species of African snakes. J. Zool. 297, 309–318 (2015).
    Google Scholar 
    Smith, B. J. et al. Betrayal: Radio-tagged Burmese pythons reveal locations of conspecifics in Everglades National Park. Biol. Invasions 18, 3239–3250 (2016).
    Google Scholar  More

  • in

    Snake-like limb loss in a Carboniferous amniote

    Caldwell, M. W. “Without a leg to stand on”: on the evolution and development of axial elongation and limblessness in tetrapods. Can. J. Earth Sci. 40, 573–588 (2003).
    Google Scholar 
    Bejder, L. & Hall, B. K. Limbs in whales and limblessness in other vertebrates: mechanisms of evolutionary and developmental transformation and loss. Evol. Dev. 4, 445–458 (2002).PubMed 

    Google Scholar 
    Gans, C. Locomotion and burrowing in limbless vertebrates. Nature 242, 414–415 (1973).
    Google Scholar 
    Gans, C. Tetrapod limblessness: evolution and functional corollaries. Am. Zool. 15, 455–467 (1975).
    Google Scholar 
    Camaiti, M., Evans, A. R., Hipsley, C. A. & Chapple, D. G. A farewell to arms and legs: a review of limb reduction in squamates. Biol. Rev. 96, 1035–1050 (2021).PubMed 

    Google Scholar 
    Brandley, M. C., Huelsenbeck, J. P. & Wiens, J. J. Rates and patterns in the evolution of snake‐like body form in squamate reptiles: evidence for repeated re‐evolution of lost digits and long‐term persistence of intermediate body forms. Evol. Int. J. Org. Evol. 62, 2042–2064 (2008).
    Google Scholar 
    Skinner, A., Lee, M. S. & Hutchinson, M. N. Rapid and repeated limb loss in a clade of scincid lizards. BMC Evol. Biol. 8, 310 (2008).Marjanović, D. & Laurin, M. Phylogeny of Paleozoic limbed vertebrates reassessed through revision and expansion of the largest published relevant data matrix. PeerJ 6, e5565 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Woltering, J. M. et al. Axial patterning in snakes and caecilians: evidence for an alternative interpretation of the Hox code. Dev. Biol. 332, 82–89 (2009).CAS 
    PubMed 

    Google Scholar 
    Cohn, M. J. & Tickle, C. Developmental basis of limblessness and axial patterning in snakes. Nature 399, 474–479 (1999).CAS 
    PubMed 

    Google Scholar 
    Jaekel, O. Über die klassen der tetrapoden [About the classes of the tetrapods]. Zool. Anz. 34, 193–212 (1909).
    Google Scholar 
    Anderson J. S. in Major Transitions in Vertebrate Evolution (eds Anderson, J. S. & Sues, H.-D.) 182–227 (Indiana Univ. Press, 2007).Cope, E. D. Synopsis of the extinct Batrachia from the Coal Measures. Ohio Geol. Surv. 2, 349–411 (1875).
    Google Scholar 
    Farrell, Ú. Pyritization of soft tissues in the fossil record: an overview. Paleontol. Soc. Pap. 20, 35–58 (2014).
    Google Scholar 
    Mann, A. Cranial ornamentation of a large Brachydectes newberryi (Recumbirostra: Lysorophia) from Linton, Ohio. Vertebr. Anat. Morphol. Palaeontol. 6, 91–96 (2018).
    Google Scholar 
    Mann, A., Pardo, J. D. & Maddin, H. C. Infernovenator steenae, a new serpentine recumbirostran from the ‘Mazon Creek’ Lagerstätte further clarifies lysorophian origins. Zool. J. Linn. Soc. 187, 506–517 (2019).
    Google Scholar 
    Maisano, J. A. A survey of state of ossification in neonatal squamates. Herpetol. Monogr. 15, 135–157 (2001).Maisano, J. A. Terminal fusions of skeletal elements as indicators of maturity in squamates. J. Vertebr. Paleontol. 22, 268–275 (2002).
    Google Scholar 
    Maisano, J. A. Terminal fusions of skeletal elements as indicators of maturity in squamates. J. Vertebr. Paleontol. 22, 268–275 (2002).
    Google Scholar 
    Pardo, J. D. & Anderson, J. S. Cranial morphology of the Carboniferous–Permian tetrapod Brachydectes newberryi (Lepospondyli, Lysorophia): new data from µCT. PLoS ONE 11, e0161823 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Milner, A. R. Small temnospondyl amphibians from the Middle Pennsylvanian of Illinois. Paleontology 25, 635–664 (1982).
    Google Scholar 
    Godfrey, S. A diminutive temnospondyl amphibian from the Pennsylvanian of Illinois. Can. J. Earth Sci. 40, 507–514 (2003).
    Google Scholar 
    Mann, A. & Maddin, H. C. Diabloroter bolti, a short-bodied recumbirostran ‘microsaur’ from the Francis Creek Shale, Mazon Creek, Illinois. Zool. J. Linn. Soc. 187, 494–505 (2019).
    Google Scholar 
    Mann, A., McDaniel, E. J., McColville, E. R. & Maddin, H. C. Carbonodraco lundi gen et sp. nov., the oldest parareptile, from Linton, Ohio, and new insights into the early radiation of reptiles. R. Soc. Open Sci. 6, 191191 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mann, A. & Gee, B. M. Lissamphibian-like toepads in an exceptionally preserved amphibamiform from Mazon Creek. J. Vertebr. Paleontol. 39, e1727490 (2020).
    Google Scholar 
    Wellstead, C. F. Taxonomic revision of the Lysorophia, Permo-Carboniferous lepospondyl amphibians. Bull. Am. Mus. Nat. Hist. 209, 1–90 (1991).
    Google Scholar 
    Sallan, L. C. & Coates, M. I. The long-rostrumed elasmobranch Bandringa Zangerl, 1969, and taphonomy within a Carboniferous shark nursery. J. Vertebr. Paleontol. 34, 22–33 (2014).
    Google Scholar 
    Allison, P. A. & Briggs, D. E. Exceptional fossil record: distribution of soft-tissue preservation through the Phanerozoic. Geology 21, 527–530 (1993).
    Google Scholar 
    Briggs, D. E. The role of decay and mineralization in the preservation of soft-bodied fossils. Annu. Rev. Earth Planet. Sci. 31, 275–301 (2003).CAS 

    Google Scholar 
    Rieppel, O. Studies on skeleton formation in reptiles. V. Patterns of ossification in the skeleton of Alligator mississippiensis Daudin (Reptilia, Crocodylia). Zool. J. Linn. Soc. 109, 301–325 (1993).
    Google Scholar 
    Sheil, C. A. Skeletal development of Macrochelys temminckii (Reptilia: Testudines: Chelydridae). J. Morphol. 263, 71–106 (2005).PubMed 

    Google Scholar 
    Roscito, J. G. & Rodrigues, M. T. Skeletal development in the fossorial gymnophthalmids Calyptommatus sinebrachiatus and Nothobachia ablephara. Zoology 115, 289–301 (2012).PubMed 

    Google Scholar 
    Boisvert, C. A. Vertebral development of modern salamanders provides insights into a unique event of their evolutionary history. J. Exp. Zool. B 312, 1–29 (2009).
    Google Scholar 
    Klembara, J. & Janiga, M. Variation in Discosauriscus austriacus (Makowsky, 1876) from the Lower Permian of the Boskovice Furrow (Czech Republic). Zool. J. Linn. Soc. 108, 247–270 (1993).
    Google Scholar 
    Pardo, J. D., Szostakiwskyj, M., Ahlberg, P. E. & Anderson, J. S. Hidden morphological diversity among early tetrapods. Nature 546, 642–645 (2017).CAS 
    PubMed 

    Google Scholar 
    Mann, A., Calthorpe, A. S. & Maddin, H. C. Joermungandr bolti, an exceptionally preserved ‘microsaur’ from the Mazon Creek Lagerstätte reveals patterns of integumentary evolution in Recumbirostra. R. Soc. Open Sci. 8, 210319 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Swofford, D. Phylogenetic analysis using parsimony (PAUP) v.4.0b10 (Sinauer Associates, 2002).Cohn, M. J. & Bright, P. E. Molecular control of vertebrate limb development, evolution and congenital malformations. Cell Tissue Res. 296, 3–17 (1999).CAS 
    PubMed 

    Google Scholar 
    Mizuhashi, K. et al. Resting zone of the growth plate houses a unique class of skeletal stem cells. Nature 563, 254–258 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marchini, M. & Rolian, C. Artificial selection sheds light on developmental mechanisms of limb elongation. Evolution 72, 825–837 (2018).PubMed 

    Google Scholar 
    Rolian, C. Endochondral ossification and the evolution of limb proportions. WIREs Dev. Biol. 9, e373 (2020).Weir, E. C. et al. Targeted overexpression of parathyroid hormone-related peptide in chondrocytes causes chondrodysplasia and delayed endochondral bone formation. Proc. Natl Acad. Sci. USA 93, 10240–10245 (1996).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Terpstra, L. et al. Reduced chondrocyte proliferation and chondrodysplasia in mice lacking the integrin-linked kinase in chondrocytes. J. Cell Biol. 162, 139–148 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marchini, M., Hernandez, E. S. & Rolian, C. Morphology and development of a novel murine skeletal dysplasia. PeerJ 7, e7180 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Shapiro, M. D., Hanken, J. & Rosenthal, N. Developmental basis of evolutionary digit loss in the Australian lizard Hemiergis. J. Exp. Zool. B 297, 48–56 (2003).
    Google Scholar 
    Leal, F. & Cohn, M. J. Loss and re-emergence of legs in snakes by modular evolution of Sonic hedgehog and HOXD enhancers. Curr. Biol. 26, 2966–2973 (2016).CAS 
    PubMed 

    Google Scholar 
    Leal, F. & Cohn, M. J. Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes. Genesis 56, e23077 (2018).Lande, R. Evolutionary mechanisms of limb loss in tetrapods. Evolution 32, 73–92 (1978).PubMed 

    Google Scholar 
    Anderson, J. S. Revision of the aïstopod genus Phlegethontia (Tetrapoda: Lepospondyli). J. Paleontol. 76, 1029–1046 (2002).
    Google Scholar 
    Anderson, J. S. A new aïstopod (Tetrapoda: Lepospondyli) from Mazon Creek, Illinois. J. Vertebr. Paleontol. 23, 79–88 (2003).
    Google Scholar 
    Shapiro, M. D. Developmental morphology of limb reduction in Hemiergis (Squamata: Scincidae): chondrogenesis, osteogenesis, and heterochrony. J. Morphol. 254, 211–231 (2002).PubMed 

    Google Scholar 
    Herbst, E. C. & Hutchinson, J. R. New insights into the morphology of the Carboniferous tetrapod Crassigyrinus scoticus from computed tomography. Earth Environ. Sci. Trans. R. Soc. Edinb. 109, 157–175 (2019).CAS 

    Google Scholar 
    Carroll, R. L. & Gaskill, P. The order Microsauria. Mem. Am. Philos. Soc. 126, 1–211 (1978).
    Google Scholar 
    Tchernov, E., Rieppel, O., Zaher, H., Polcyn, M. J. & Jacobs, L. L. A fossil snake with limbs. Science 287, 2010–2012 (2000).CAS 
    PubMed 

    Google Scholar 
    Zaher, H., Apesteguia, S. & Scanferla, C. A. The anatomy of the Upper Cretaceous snake Najash rionegrina Apesteguía & Zaher, 2006, and the evolution of limblessness in snakes. Zool. J. Linn. Soc. 156, 801–826 (2009).
    Google Scholar 
    Jenkins, F. A., Walsh, D. M. & Carroll, R. L. Anatomy of Eocaecilia micropodia, a limbed caecilian of the Early Jurassic. Bull. Mus. Comp. Zool. 158, 285–365 (2007).
    Google Scholar 
    Camp, C. L. Classification of the lizards. Bull. Am. Mus. Nat. Hist. 48, 289–480 (1923).
    Google Scholar 
    Essex, R. Studies in reptilian degeneration. Proc. Zool. Soc. Lond. 97, 879–945 (1927).
    Google Scholar 
    Sewertzoff, A. N. Studien über die reduktion der organe der wirbeltiere. Zool. Jahrb. Abt. Anat. Ontog. Tiere 53, 611–699 (1931).
    Google Scholar  More