More stories

  • in

    Functional trade-offs in fish communities

    Eddy, T. D. et al. One Earth 4, 1278–1285 (2021).Article 

    Google Scholar 
    Mumby, P. J. et al. Science 311, 98–101 (2006).CAS 
    Article 

    Google Scholar 
    Maire, E. et al. Proc. R. Soc. Lond. B 285, 20181167 (2018).
    Google Scholar 
    Schiettekatte, N. M. D. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-0-01710-5 (2022).Article 

    Google Scholar 
    Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Funct. Ecol. 33, 1023–1034 (2019).
    Google Scholar 
    Naeem, S., Bunker, D. E., Hector, A., Loreau, M. & Perrings, C. Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (Oxford Univ. Press, 2009).Villéger, S., Brosse, S., Mouchet, M., Mouillot, D. & Vanni, M. J. Aquat. Sci. 79, 783–801 (2017).Article 

    Google Scholar 
    Bascompte, J., Melián, C. J. & Sala, E. Proc. Natl Acad. Sci. USA 102, 5443–5447 (2005).CAS 
    Article 

    Google Scholar 
    Houk, P. & Musburger, C. Mar. Ecol. Prog. Ser. 488, 23–34 (2013).Article 

    Google Scholar 
    Allgeier, J. E., Burkepile, D. E. & Layman, C. A. Glob. Change Biol. 23, 2166–2178 (2017).Article 

    Google Scholar 
    Meyer, J. L., Schultz, E. T. & Helfman, G. S. Science 220, 1047–1049 (1983).CAS 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Science 364, 1189–1192 (2019).CAS 
    Article 

    Google Scholar 
    Morais, R. A., Siqueira, A. C., Smallhorn-West, P. F. & Bellwood, D. R. PLoS Biol. 19, e3001435 (2021).CAS 
    Article 

    Google Scholar 
    Larned, S. T. Mar. Biol. 132, 409–421 (1998).Article 

    Google Scholar 
    McClanahan, T. R., Carreiro-Silva, M. & DiLorenzo, M. Mar. Pollut. Bull. 54, 1947–1957 (2007).CAS 
    Article 

    Google Scholar 
    McLean, M. et al. Proc. Natl Acad. Sci. USA 118, e2012318118 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Development and validation of an eDNA protocol for monitoring endemic Asian spiny frogs in the Himalayan region of Pakistan

    Lindenmayer, D. et al. A checklist of attributes for effective monitoring of threatened species and threatened ecosystems. J. Environ. Manage. 262, 110312 (2020).PubMed 

    Google Scholar 
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).PubMed 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2019-3. http://www.iucnredlist.org (2021).Adams, M. J. et al. Trends in amphibian occupancy in the United States. PLoS ONE 8, e64347 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corn, P. S. Climate change and amphibians. Anim. Biodivers. Conserv. 28, 59–67 (2005).
    Google Scholar 
    Kiesecker, J. M., Blaustein, A. R. & Belden, L. K. Complex causes of amphibian population declines. Nature 410, 681–684 (2001).ADS 
    CAS 

    Google Scholar 
    Baldwin, R. F. & deMaynadier, P. G. Assessing threats to pool-breeding amphibian habitat in an urbanizing landscape. Biol. Conserv. 142, 1628–1638 (2009).Borzée, A., Kyong, C. N., Kil, H. K. & Jang, Y. Impact of water quality on the occurrence of two endangered Korean anurans: Dryophytes suweonensis and Pelophylax chosenicus. Herpetologica 74, 1–7 (2018).
    Google Scholar 
    Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786 (2004).ADS 
    CAS 

    Google Scholar 
    Caro, T., Rowe, Z., Berger, J., Wholey, P. & Dobson, A. An inconvenient misconception: climate change is not the principal driver of biodiversity loss. Conserv. Lett. e12868 (2022).Daszak, P. et al. Emerging infectious diseases and amphibian population declines. Emerg. Infect. 5, 735–748 (1999).CAS 

    Google Scholar 
    Fellers, G., Green, D. E. & Longcore, J. Oral chytridiomycosis in the mountain yellow-legged frog (Rana muscosa). Copeia 2001, 945–953Blaustein, A. R. et al. Effects of ultraviolet radiation on amphibians: field experiments. Am. Zool. 38, 799–812 (1999).
    Google Scholar 
    Langhelle, A., Lindell, M. J. & Nyström, P. Effects of ultraviolet radiation on amphibian embryonic and larval development. J. Herpetol. 33, 449–456 (1999).
    Google Scholar 
    Beebee, T. J. C. Amphibians breeding and climate. Nature 374, 219–220 (1995).ADS 
    CAS 

    Google Scholar 
    Donnelly, M. A. & Crump, M. L. Potential effects of climate change on two neotropical amphibian assemblages. In Potential Impacts of Climate Change on Tropical Forest Ecosystems (ed. Markham, A.) 401–421 (Springer Netherlands, 1998).Carey, C. & Alexander, M. A. Climate change and amphibian declines: is there a link? Divers. Distrib. 9, 111–121 (2003).
    Google Scholar 
    Fisher, R. N. & Shaffer, H. B. The decline of amphibians in California’s Great Central Valley. Conserv. Biol. 10, 1387–1397 (1996).
    Google Scholar 
    Sparling, D. W., Donald, W., Linder, G. & Bishop, C. A. Ecotoxicology of Amphibians and Reptiles. (SETAC Press, 2000).Rouse, M. J. & Daellenbach, U. S. Rethinking research methods for the resource-based perspective: isolating sources of sustainable competitive advantage. Strat. Manag. J. 20, 487–494 (1999).
    Google Scholar 
    Bridges, C. M. & Boone, M. D. The interactive effects of UV-B and insecticide exposure on tadpole survival, growth and development. Biol. Conserv. 113, 49–54 (2003).
    Google Scholar 
    Schmeller, D. S. et al. National responsibilities in European species conservation: a methodological review. Conserv. Biol. 22, 593–601 (2008).PubMed 

    Google Scholar 
    Anderson, S. Area and endemism. Q. Rev. Biol. 69, 451–471 (1994).
    Google Scholar 
    Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: recent progress and future challenges. J. N. Am. Benthol. Soc. 29, 344–358 (2010).
    Google Scholar 
    Gorman, C. E., Potts, B. M., Schweitzer, J. A. & Bailey, J. K. Shifts in species interactions due to the evolution of functional differences between endemics and non-endemics: an endemic syndrome hypothesis. PLoS ONE 9, e111190 (2014).Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).PubMed 

    Google Scholar 
    Fontaine, B. et al. The European Union’s 2010 target: putting rare species in focus. Biol. Conserv. 139, 167–185 (2007).
    Google Scholar 
    Saeed, M. et al. Rise in temperature causes decreased fitness and higher extinction risks in endemic frogs at high altitude forested wetlands in northern Pakistan. J. Therm. Biol. 95, 102809 (2021).McDonald, L. L. Sampling rare populations. In Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters (ed. Thompson W. L.) 11–42 (Island Press, 2004).Dodd Jr. K. Monitoring Amphibians in Great Smoky Mountains National Park (USGS Survey Circular, 2003).Qu, C. & Stewart, K. A. Evaluating monitoring options for conservation : traditional and environmental DNA tools for a critically endangered mammal. Sci. Nat. 106, 9 (2019).
    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).PubMed 

    Google Scholar 
    Schmidt, B. R., Kery, M., Ursenbacher, S., Hyman, O. J. & Collins, J. P. Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods Ecol. Evol. 4, 646–653 (2013).
    Google Scholar 
    Iknayan, K. J., Tingley, M. W., Furnas, B. J. & Beissinger, S. R. Detecting diversity: emerging methods to estimate species diversity. Trends Ecol. Evol. 29, 97–106 (2014).PubMed 

    Google Scholar 
    Kéry, M. & Schmidt, B. R. Imperfect detection and its consequences for monitoring for conservation. Community Ecol. 9, 207–216 (2008).
    Google Scholar 
    Mackenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).
    Google Scholar 
    Mackenzie, D. I. & Royle, J. A. Designing occupancy studies: general advice and allocating survey effort. J. Appl. Ecol. 42, 1105–1114 (2005).
    Google Scholar 
    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Darling, J. A. & Mahon, A. R. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ. Res. 111, 978–988 (2011).CAS 
    PubMed 

    Google Scholar 
    Goldberg, C. S., Pilliod, D. S., Arkle, R. S. & Waits, L. P. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. PLoS ONE 6, e22746 (2011).Williams, M. R. et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE 12, e0186462 (2017).Agersnap, S. et al. Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples. PLoS ONE 12, e0179261 (2017).Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).CAS 

    Google Scholar 
    Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).PubMed 

    Google Scholar 
    Sigsgaard, E. E., Carl, H., Møller, P. R. & Thomsen, P. F. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol. Conserv. 183, 46–52 (2015).
    Google Scholar 
    Bedwell, M. E., Hopkins, K. V. S., Dillingham, C. & Goldberg, C. S. Evaluating Sierra Nevada yellow-legged frog distribution using environmental DNA. J. Wildl. Mangaement 85, 945–952 (2021).
    Google Scholar 
    Eiler, A., Löfgren, A., Hjerne, O., Nordén, S. & Saetre, P. Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive. Sci. Rep. 8, 5452 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brozio, S. et al. Development and application of an eDNA method to detect the critically endangered Trinidad golden tree frog (Phytotriades auratus) in bromeliad phytotelmata. PLoS ONE 12, e0170619 (2017).Pellet, J. & Schmidt, B. R. Monitoring distributions using call surveys: estimating site occupancy, detection probabilities and inferring absence. Biol. Conserv. 123, 27–35 (2005).
    Google Scholar 
    Weir, L. A., Royle, J. A., Nanjappa, P. & Jung, R. E. Modeling anuran detection and site occupancy on North American Amphibian Monitoring Program (NAAMP) routes in Maryland. J. Herpetol. 39, 627–639 (2005).
    Google Scholar 
    Fiske, I. J. & Chandler, R. B. Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43, 1–23 (2011).
    Google Scholar 
    Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).
    Google Scholar 
    Holland, M. M. & Parsons, T. J. Mitochondrial DNA sequence analysis – validation and use for forensic casework. Forensic Sci. Rev. 11, 21–50 (1999).CAS 
    PubMed 

    Google Scholar 
    Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Waits, L. P. & Paetkau, D. Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J. Wildl. Manage. 69, 1419–1433 (2006).
    Google Scholar 
    Shokralla, S. et al. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Mol. Ecol. Resour. 14, 892–901 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mills, L. S., Pilgrim, K. L., Schwartz, M. K. & McKelvey, K. Identifying lynx and other North American felids based on mtDNA analysis. Conserv. Genet. 1, 285–288 (2000).CAS 

    Google Scholar 
    Hajibabaei, M. et al. A minimalist barcode can identify a specimen whose DNA is degraded. Mol. Ecol. Notes 6, 959–964 (2006).CAS 

    Google Scholar 
    Kim, P., Kim, D., Yoon, T. J. & Shin, S. Early detection of marine invasive species, Bugula neritina (Bryozoa: Cheilostomatida), using species-specific primers and environmental DNA analysis in Korea. Mar. Environ. Res. 139, 1–10 (2018).CAS 
    PubMed 

    Google Scholar 
    Dejean, T. et al. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 6, e23398 (2011).Xia, Z. et al. Early detection of a highly invasive bivalve based on environmental DNA (eDNA). Biol. Invasions 20, 437–447 (2018).
    Google Scholar 
    Torresdal, J. D., Farrell, A. D. & Goldberg, C. S. Environmental DNA detection of the golden tree frog (Phytotriades auratus) in bromeliads. PLoS ONE 12, e0168787 (2017).Biggs, J. et al. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol. Conserv. 183, 19–28 (2015).
    Google Scholar 
    Pilliod, D. S., Goldberg, C. S., Arkle, R. S. & Waits, L. P. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 70, 1123–1130 (2013).CAS 

    Google Scholar 
    Smith, D. H. V., Jones, B., Randall, L. & Prescott, D. R. C. Difference in detection and occupancy between two anurans: the importance of species-specific monitoring. Herpetol. Conserv. Biol. 9, 267–277 (2014).
    Google Scholar 
    Bayley, P. B. & Peterson, J. T. An approach to estimate probability of presence and richness of fish species. Trans. Am. Fish. Soc. 130, 620–633 (2004).
    Google Scholar 
    Mehta, S. V., Haight, R. G., Homans, F. R., Polasky, S. & Venette, R. C. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61, 237–245 (2007).
    Google Scholar 
    Scott, Jr., N. J. & Woodward, B. D. Surveys at breeding sites. In Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians (eds. Heyer, W. R., Donnelly, M. A., McDiarmid, R. W., Hayek, L. C., & Foster, M. S.) 118–125 (Smithsonian Institution Press, 1994).Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).
    Google Scholar 
    Goldberg, C. S., Sepulveda, A., Ray, A., Baumgardt, J. & Waits, L. P. Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshw. Sci. 32, 792–800 (2013).
    Google Scholar 
    Mahon, A. R. et al. Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PLoS ONE 8, e58316 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khan, M. S. Amphibians and Reptiles of Pakistan (Krieger Publishing Company, 2006).Ruppert, K. M., Davis, D. R., Rahman, M. S. & Kline, R. J. Development and assessment of an environmental DNA (eDNA) assay for a cryptic Siren (Amphibia: Sirenidae). Environ. Adv. 7, 100163 (2022).
    Google Scholar 
    Hobbs, J., Round, J. M., Allison, M. J. & Helbing, C. C. Expansion of the known distribution of the coastal tailed frog, Ascaphus truei, in British Columbia, Canada, using robust eDNA detection methods. PLoS ONE 14, e0213849 (2019).Barata, I. M., Griffiths, R. A., Fogell, D. J. & Buxton, A. S. Comparison of eDNA and visual surveys for rare and cryptic bromeliad-dwelling frogs. Herpetol. J. 31, 1–9 (2021).
    Google Scholar 
    Ahmed, W. et al. Site occupancy of two endemic stream frogs in different forest types in Pakistan. Herpetol. Conserv. Biol. 15, 506–511 (2020).
    Google Scholar 
    Richmond, O. M. W., Hines, J. E. & Beissinger, S. R. Two-species occupancy models: a new parameterization applied to co-occurrence of secretive rails. Ecol. Appl. 20, 2036–2046 (2010).PubMed 

    Google Scholar 
    Shea, C. P., Eaton, M. J. & MacKenzie, D. I. Implementation of an occupancy-based monitoring protocol for a widespread and cryptic species, the New England cottontail (Sylvilagus transitionalis). Wildl. Res. 46, 222–235 (2019).
    Google Scholar 
    Rota, C. T. et al. A multispecies occupancy model for two or more interacting species. Methods Ecol. Evol. 7, 1164–1173 (2016).
    Google Scholar 
    Ohler, A. & Dubois, A. Phylogenetic relationships and generic taxonomy of the tribe Paini (Amphibia, Anura, Ranidae, Dicroglossinae). Zoosystema 28, 769–784 (2006).
    Google Scholar 
    Jiang, J. et al. Phylogenetic relationships of the tribe Paini (Amphibia, Anura, Ranidae) based on partial sequences of mitochondrial 12s and 16s rRNA genes. Zool. Res. 362, 353–362 (2005).
    Google Scholar 
    Rais, M. et al. A note on recapture of Nanorana vicina (Anura: Amphibia) from Murree, Pakistan. J. Anim. Plant Sci. 24, 455–458 (2014).
    Google Scholar 
    Siddiqui, M. F., Ahmed, M., Khan, N. & Khan, I. A. A quantitative description of moist temperate conifer forests of Himalayan region of Pakistan and Azad Kashmir. Int. J. Biotechnol. 7, 175–185 (2010).
    Google Scholar 
    Beck, H. E. et al. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).Sheikh, M. I. & Hafeez, S. M. Forest and Forestry in Pakistan (A-one Publishers, 2001).Lodhi, A. Conservation of leopards in Ayubia National Park, Pakistan (MS Thesis) (University of Montana, 2007).Palumbi, S. R. Nucleic acids II: the polymerase chain reaction. In Molecular Systematics, 2nd Edition (eds. Hillis, D. M. et al.) 205–247 (Sinauer, 1996).Vences, M., Thomas, M., Van Der Meijden, A., Chiari, Y. & Vieites, D. R. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front. Zool. 2, 5 (2005).Pounds, J. A. & Crump, M. L. Amphibian declines and climate disturbance: the case of the golden toad and the harlequin frog. Conserv. Biol. 8, 72–85 (1994).
    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/ (2021).Hutchinson, R. A., Valente, J. J., Emerson, S. C., Betts, M. G. & Dietterich, T. G. Penalized likelihood methods improve parameter estimates in occupancy models. Methods Ecol. Evol. 6, 949–959 (2015).
    Google Scholar 
    Clipp, H. L., Evans, A. L., Kessinger, B. E., Kellner, K., & Rota, C. T. A penalized likelihood for multispecies occupancy models improves predictions of species interactions. Ecology 102, e03520 (2021).PubMed 

    Google Scholar  More

  • in

    Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests

    Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).CAS 
    Article 

    Google Scholar 
    Horn, C. M., Vargas Paredes, V. H., Gilmore, M. P. & Endress, B. A. Spatio-temporal patterns of Mauritia flexuosa fruit extraction in the Peruvian Amazon: implications for conservation and sustainability. Appl. Geogr. 97, 98–108 (2018).Article 

    Google Scholar 
    Virapongse, A., Endress, B. A., Gilmore, M. P., Horn, C. & Romulo, C. Ecology, livelihoods, and management of the Mauritia flexuosa palm in South America. Glob. Ecol. Conserv. 10, 70–92 (2017).Article 

    Google Scholar 
    van der Hoek, Y., Solas, S. Á. & Peñuela, M. C. The palm Mauritia flexuosa, a keystone plant resource on multiple fronts. Biodivers. Conserv. 28, 539–551 (2019).Article 

    Google Scholar 
    Roucoux, K. H. et al. Threats to intact tropical peatlands and opportunities for their conservation. Conserv. Biol. 31, 1283–1292 (2017).CAS 
    Article 

    Google Scholar 
    Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Change 24, 669–686 (2019).Article 

    Google Scholar 
    Pandey, A. K., Tripathi, Y. C. & Kumar, A. Non timber forest products (NTFPs) for sustained livelihood: challenges and strategies. Res. J. For. 10, 1–7 (2016).CAS 

    Google Scholar 
    Kor, L., Homewood, K., Dawson, T. P. & Diazgranados, M. Sustainability of wild plant use in the Andean Community of South America. Ambio 50, 1681–1697 (2021).Draper, F. C. et al. The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ. Res. Lett. 9, 124017 (2014).Article 

    Google Scholar 
    Freitas, L. Impacto del aprovechamiento en la estructura, producción y valor de uso del aguaje en la Amazonía peruana. Recur. Naturales y Ambient. 67, 35–45 (2012).
    Google Scholar 
    Aprovechamiento de los Residuos de Mauritia flexuosa (ITP-CITE, 2018).Falen, L. Y. & Honorio Coronado, E. N. Assessment of the techniques use to harvest buriti fruits (Mauritia flexuosa L.f.) in the district of Jenaro Herrera, Loreto, Peru. Folia Amazónica 27, 131–150 (2018).Article 

    Google Scholar 
    Draper, F. C. et al. Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional beta-diversity. Ecography 41, 1256–1269 (2018).Article 

    Google Scholar 
    Bejarano, P. & Piana, R. Plan de Manejo de los Aguajales Aledaños al Caño Parinari (WWF-AIF/DK – Reserva Nacional Pacaya Samiria, 2002).Manzi, M. & Coomes, O. T. Managing Amazonian palms for community use: a case of aguaje palm (Mauritia flexuosa) in Peru. For. Ecol. Manage. 257, 510–517 (2009).Article 

    Google Scholar 
    Baker, T. R. et al. How can ecologists help realise the potential of payments for carbon in tropical forest countries? J. Appl. Ecol. 47, 1159–1165 (2010).Article 

    Google Scholar 
    Padoch, C. Marketing of non-timber forest products in Western Amazonia: general observations and research priorities. Adv. Econ. Bot. 9, 43–50 (1192).
    Google Scholar 
    Delgado, C., Couturierb, G. & Mejía, K. Mauritia flexuosa (Arecaceae: Calamoideae), an Amazonian palm with cultivation purposes in Peru. Fruits 62, 157–169 (2007).Article 

    Google Scholar 
    Living Planet Index 2020—Bending the Curve of Biodiversity Loss (WWF, 2020).Gentry, A. H. & Vasquez, R. Where have all the ceibas gone? A case history of mismanagement of a tropical forest resource. For. Ecol. Manage. 23, 73–76 (1988).Article 

    Google Scholar 
    Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    Article 

    Google Scholar 
    Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. 16, 222–230 (2018).Article 

    Google Scholar 
    Nic Lughadha, E. et al. Extinction risk and threats to plants and fungi. Plants People Planet 2, 389–408 (2020).Article 

    Google Scholar 
    Ter Steege, H. et al. Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci. Adv. 1, e1500936 (2015).Article 

    Google Scholar 
    Khan, F. & de Granville, J. J. Palms in Forest Ecosystems of Amazonia (Springer-Verlag, 1992).Freitas, L., Zárate, Z., Bardales, R. & Del Castillo, D. Efecto de la densidad de siembra en el desarrollo vegetativo del aguaje (Mauritia flexuosa L.f.) en plantaciones forestales. Rev. Peru. de. Biol. 26, 227–234 (2019).Article 

    Google Scholar 
    Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).Article 

    Google Scholar 
    Endress, B. A., Gilmore, M. P., Vargas, V. H. & Horn, C. Data on spatio-temporal patterns of wild fruit harvest from the economically important palm Mauritia flexuosa in the Peruvian Amazon. Data Brief 20, 132–139 (2018).Article 

    Google Scholar 
    Ahrends, A. et al. Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proc. Natl Acad. Sci. USA 107, 14556–14561 (2010).Article 

    Google Scholar 
    Hardin, G. The tragedy of the commons. Science 162, 1243–1248 (1968).CAS 
    Article 

    Google Scholar 
    Ostrom, E. in The New Palgrave Dictionary of Economics Online (eds Durlauf, N.S. & Blume, L.E.) (Palgrave Macmillan, 2008); https://hdl.handle.net/10535/5887Dietz, T., Ostrom, E. & Stern, P. C. The struggle to govern the commons. Science 302, 1907–1912 (2003).CAS 
    Article 

    Google Scholar 
    Isaza, C., Bernal, R., Galeano, G. & Martorell, C. Demography of Euterpe precatoria and Mauritia flexuosa in the Amazon: application of integral projection models for their harvest. Biotropica 49, 653–664 (2017).Article 

    Google Scholar 
    Chuquinbalqui, C. M. et al. Diagnóstico socioeconómico de la población organizada para el manejo de recursos naturales en las cuencas Yanayacu Pucate y Pacaya en la Reserva Nacional Pacaya Samiria (Reserva Nacional Pacaya Samiria – SERNANP, 2014).Koh, L. & Wilcove, D. Cashing in palm oil for conservation. Nature 448, 993–994 (2007).CAS 
    Article 

    Google Scholar 
    Murdiyarso, D., Suryadiputra, I. N. & Wahyunto. Tropical peatlands management and climate change: a case study in Sumatra, Indonesia. In Proc. 12th International Peat Congress on Wise Use of Peatlands Vol. 1 (ed. Paivanen, J.) 698–706 (International Peat Society, 2004).Freitas, M. A. B. et al. Intensification of açaí palm management largely impoverishes tree assemblages in the Amazon estuarine forest. Biol. Conserv. 261, 109251 (2021).Article 

    Google Scholar 
    Plan Operativo de Castaña Región Madre de Dios (MINCETUR, 2007).La Industria de la Madera en el Perú. Identificación de las Barreras y Oportunidades para el Comercio Interno de Productos Responsables de Madera, Provenientes de Fuentes Sostenibles y Legales en las MIPYMES del Perú (FAO, 2018).Transferencias por Tipo de Canon, Regalías, y Otros (Congreso Perú, 2019).Peters, C. M., Gentry, A. H. & Mendelsohn, R. O. Valuation of an Amazonian rainforest. Nature 339, 655–656 (1989).Article 

    Google Scholar 
    Sheil, D. & Wunder, S. The value of tropical forest to local communities: complications, caveats, and cautions. Conserv. Ecol. 6, 9 (2002).Belcher, B. & Schreckenberg, K. Commercialisation of non-timber forest products: a reality check. Dev. Policy Rev. 25, 355–377 (2007).Article 

    Google Scholar 
    López, M. et al. What Do We Know about Peruvian Peatlands? (CIFOR, 2020).Gilmore, M. P., Endress, B. A. & Horn, C. M. The socio-cultural importance of Mauritia flexuosa palm swamps (aguajales) and implications for multi-use management in two Maijuna communities of the Peruvian Amazon. J. Ethnobiol. Ethnomed. 9, 29 (2013).Article 

    Google Scholar 
    Tagle Casapia, X. et al. Identifying and quantifying the abundance of economically important palms in tropical moist forest using UAV imagery. Remote Sens 12, 9 (2020).Article 

    Google Scholar 
    Bruenig, E. F. Conservation and Management of Tropical Rainforests: An integrated Approach to Sustainability 2nd edn (CABI, 2016).de Mello, N. G., Gulinckb, H., Van den Broeckc, P. & Parra, P. Social-ecological sustainability of non-timber forest products: a review and theoretical considerations for future research. For. Policy Econ. 112, 102109 (2020).Article 

    Google Scholar 
    van Lent, J. Land-Use Change and Greenhouse Gas Emissions in the Tropics: Forest Degradation on Peat Soils. PhD thesis, Wageningen Univ. Res. (2020).Baker, T. R. et al. in Peru: Deforestation in Times of Climate Change (ed. Chirif, A.) 155–174 (IWGIA, Servindi, ONAMIAP & COHARYIMA, 2019).Bhomia, R. K. et al. Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater peatlands in the Pastaza-Marañón river basin of the Peruvian Amazon. Mitig. Adapt Strateg. Glob. Change 24, 645–668 (2019).Article 

    Google Scholar 
    Marengo, J. in Geoecología y Desarrollo Amazónico: Estudio Integrado en la Zona de Iquitos Biológica – Geographica – Geológica (eds Kalliola, R. & Flores, S.) 35–57 (Univ. Turku Press, 1998).Koolen, H. H. F., Da Silva, F. M. A., Da Silva, V. S. V., Paz, W. H. P. & Bataglion, G. A. in Exotic Fruits (eds Rodrigues, S. et al.) 61–67 (Elsevier, 2018).Malleux, O. J. Inventarios Forestales en Bosques Tropicales (Universidad Nacional Agraria La Molina, 1982).Del Castillo, D., Otárola, E. & Freitas, L. Aguaje, La Maravillosa Palmera de la Vida (Instituto de Investigaciones de la Amazonía Peruana, 2006).Khorsand Rosa, M., Barbosa, R. & Koptur, S. Which factors explain reproductive output of Mauritia flexuosa (Arecaceae) in forest and savanna habitats of northern Amazonia? Int. J. Plant Sci. 175, 307–318 (2014).Article 

    Google Scholar 
    Quinteros, Y., Roca, F. & Quinteros, V. in XIV. Morichales y cananguchales y otros palmares inundables de Suramérica. Parte II: Colombia, Venezuela, Brasil, Perú, Bolivia, Paraguay, Uruguay y Argentina Vol. XIV Serie recursos hidrobiológicos y pesqueros continentales de Colombia (eds Lasso, C. A. et al.) 265–282 (Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 2016).Hergoualc’h, K., Gutiérrez-Vélez, V. H., Menton, M. & Verchot, L. V. Characterizing degradation of palm swamp peatlands from space and on the ground: an exploratory study in the Peruvian Amazon. For. Ecol. Manage. 393, 63–73 (2017).Article 

    Google Scholar 
    Honorio Coronado, E. N. et al. Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests. Environ. Res. Lett. 16, 074048 (2021).Article 

    Google Scholar 
    de Jong, J. The Impact of Indigenous and Local Communities in the Peruvian Amazon: Integrating Forest Inventory and Remote Sensing. MSc thesis, Wageningen Univ. Res. (2019).Alvarado, L. Estudio del Potencial de las Embarcaciones Solares en la Amazonía. Caso de Estudio Río Napo. MA thesis, Universidad Politécnica Madrid (2017).ArcGIS Desktop v.10.4 (ESRI, 2015).Directorio Nacional de Centrol Poblados – Censos Nacionales 2017- XII de Poblacion, VII de vivienda y III de Comunidades indigenas (Instituto Nacional de Estadítica e Informática, 2018).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).R Core Team. R: A Language and Environment for Statistical Computing. R version 3.5.3 (R Foundation for Statistical Computing, 2019).Taylor, J. R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements 2nd edn (University Science Books, 1997).Consumer Price Index (Peru) (World Bank Group, 2020); https://data.worldbank.org/indicator/FP.CPI.TOTL?locations=PE More

  • in

    Revealing environmental synchronicity that enhances anchovy recruitment in the Mediterranean Sea

    Cury, P. et al. Small pelagics in upwelling systems: patterns of interaction and structural changes in “wasp-waist” ecosystems. ICES J. Mar. Sci. 57, 603–618 (2000).
    Google Scholar 
    Fréon, P., Cury, P., Shannon, L. & Roy, C. Sustainable exploitation of small pelagic fish stocks challenged by environmental and ecosystem changes: a review. Bull. Mar. Sci. 76, 385–462 (2005).
    Google Scholar 
    The State of Mediterranean and Black Sea Fisheries 2020. (FAO, 2020). doi:https://doi.org/10.4060/cb2429en.Checkley, D. M., Asch, R. G. & Rykaczewski, R. R. Climate, Anchovy, and Sardine. Annu. Rev. Mar. Sci. 9, 469–493 (2017).ADS 

    Google Scholar 
    Bakun, A. Patterns in the ocean: Ocean processes and marine population dynamics. Oceanogr. Lit. Rev. 5, 530 (1997).
    Google Scholar 
    Houde, E. D. Recruitment variability. Fish. Reprod. Biol. 1, 91–171 (2009).
    Google Scholar 
    Cole, J. & McGlade, J. Clupeoid population variability, the environment and satellite imagery in coastal upwelling systems. Rev. Fish Biol. Fish. 8, 445–471 (1998).
    Google Scholar 
    Pörtner, H. O. & Peck, M. A. Climate change effects on fishes and fisheries: towards a cause-and-effect understanding. J. Fish Biol. 77, 1745–1779 (2010).PubMed 

    Google Scholar 
    European Commission. Joint Research Centre. Institute for the Protection and the Security of the Citizen. Scientific, technical and economic committee for fisheries (STECF) : Assessment of mediterranean stocks (Part I). (Publications Office, 2010).García, A. & Palomera, I. Anchovy early life history and its relation to its surrounding environment in the Western Mediterranean basin. 12 (1996).Tsikliras, A. C., Antonopoulou, E. & Stergiou, K. I. Spawning period of Mediterranean marine fishes. 40 (2010).Fernández-Corredor, E., Albo-Puigserver, M., Pennino, M. G., Bellido, J. M. & Coll, M. Influence of environmental factors on different life stages of European anchovy (Engraulis encrasicolus) and European sardine (Sardina pilchardus) from the Mediterranean Sea: A literature review. Reg. Stud. Mar. Sci. 41, 1006 (2021).
    Google Scholar 
    Agostini, V. N. & Bakun, A. Ocean triads’ in the Mediterranean Sea: physical mechanisms potentially structuring reproductive habitat suitability (with example application to European anchovy, Engraulis encrasicolus). Fish. Oceanogr. 11, 129–142 (2002).
    Google Scholar 
    Lasker, R. The relation between oceanographic conditions and larval anchovy food in the California Current: identification of factors contributing to recruitment failure. Rapp. P-V Reun. Cons. Int. Explor. Mer. 173, 212–230 (1978).
    Google Scholar 
    Cushing, D. H. Plankton Production and Year-class Strength in Fish Populations: an Update of the Match/Mismatch Hypothesis. in Advances in Marine Biology (eds. Blaxter, J. H. S. & Southward, A. J.) vol. 26 249–293 (Academic Press, 1990).Patti, B. et al. Anchovy (Engraulis encrasicolus) early life stages in the Central Mediterranean Sea: connectivity issues emerging among adjacent sub-areas across the Strait of Sicily. Hydrobiologia 821, 25–40 (2018).
    Google Scholar 
    Maynou, F., Sabatés, A. & Raya, V. Changes in the spawning habitat of two small pelagic fish in the Northwestern Mediterranean. Fish. Oceanogr. 29, 201–213 (2020).
    Google Scholar 
    Basilone, G. et al. Spawning site selection by European anchovy ( Engraulis encrasicolus ) in relation to oceanographic conditions in the Strait of Sicily. Fish. Oceanogr. 22, 309–323 (2013).
    Google Scholar 
    Malavolti, S. et al. Distribution of Engraulis encrasicolus eggs and larvae in relation to coastal oceanographic conditions (the South-western Adriatic Sea case study). Mediterr. Mar. Sci. 19, 180 (2018).
    Google Scholar 
    Zorica, B. et al. Spatiotemporal distribution of anchovy early life stages in the eastern part of the Adriatic Sea in relation to some oceanographic features. J. Mar. Biol. Assoc. UK 99, 1205–1211 (2019).
    Google Scholar 
    Punt, A. E. et al. Fisheries management under climate and environmental uncertainty: control rules and performance simulation. ICES J. Mar. Sci. 71, 2208–2220 (2014).
    Google Scholar 
    Szuwalski, C. S. & Hilborn, R. Environment drives forage fish productivity. Proc. Natl. Acad. Sci. 112, E3314–E3315 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ganias, K. Biology and Ecology of Sardines and Anchovies. 391.Palomera, I. et al. Small pelagic fish in the NW Mediterranean Sea: An ecological review. Prog. Oceanogr. 74, 377–396 (2007).ADS 

    Google Scholar 
    Patti, B., Torri, M. & Cuttitta, A. General surface circulation controls the interannual fluctuations of anchovy stock biomass in the Central Mediterranean Sea. Sci. Rep. 10, 1554 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pisano, A. et al. New evidence of mediterranean climate change and variability from sea surface temperature observations. Rem. Sens. 12, 132 (2020).ADS 

    Google Scholar 
    Regner, S. Effects of environmental changes on early stages and reproduction of anchovy in the Adriatic Sea. Sci. Mar. 60, 167–177 (1996).
    Google Scholar 
    Lavigne, H. et al. Enhancing the comprehension of mixed layer depth control on the Mediterranean phytoplankton phenology: Mediterranean Phytoplankton Phenology. J. Geophys. Res. Oceans 118, 3416–3430 (2013).ADS 

    Google Scholar 
    Morote, E., Olivar, M. P., Villate, F. & Uriarte, I. A comparison of anchovy (Engraulis encrasicolus) and sardine (Sardina pilchardus) larvae feeding in the Northwest Mediterranean: Influence of prey availability and ontogeny. ICES J. Mar. Sci. 67, 897–908 (2010).
    Google Scholar 
    Basilone, G. et al. Spawning ecology of the European anchovy (Engraulis encrasicolus) in the Strait of Sicily: Linking variations of zooplankton prey, fish density, growth, and reproduction in an upwelling system. Prog. Oceanogr. 184, 102330 (2020).
    Google Scholar 
    McBride, R. S. et al. Energy acquisition and allocation to egg production in relation to fish reproductive strategies. Fish Fish. 16, 23–57 (2015).
    Google Scholar 
    d’Ortenzio, F. & Ribera d’Alcalà, M. On the trophic regimes of the Mediterranean Sea: a satellite analysis. Biogeosciences 6, 139–148 (2009).ADS 

    Google Scholar 
    Escribano, A., Aldanondo, N., Cotano, U., Boyra, G. & Urtizberea, A. Size- and density-dependent overwinter mortality of anchovy juveniles in the Bay of Biscay. Cont. Shelf Res. 183, 28–37 (2019).ADS 

    Google Scholar 
    Bellido, J. M. et al. Identifying essential fish habitat for small pelagic species in Spanish Mediterranean waters. Hydrobiologia 612, 171–184 (2008).
    Google Scholar 
    Van Beveren, E. et al. The fisheries history of small pelagics in the Northern Mediterranean. ICES J. Mar. Sci. 73, 1474–1484 (2016).
    Google Scholar 
    Edwards, M., Beaugrand, G., Helaouët, P., Alheit, J. & Coombs, S. Marine ecosystem response to the Atlantic Multidecadal Oscillation. PLoS ONE 8, e57212 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Erauskin-Extramiana, M. et al. Historical trends and future distribution of anchovy spawning in the Bay of Biscay. Deep Sea Res. Part II Top. Stud. Oceanogr. 159, 169–182 (2019).
    Google Scholar 
    Bertrand, A. et al. Schooling behaviour and environmental forcing in relation to anchoveta distribution: An analysis across multiple spatial scales. Prog. Oceanogr. 79, 264–277 (2008).ADS 

    Google Scholar 
    Giannoulaki, M. et al. Characterizing the potential habitat of European anchovy Engraulis encrasicolus in the Mediterranean Sea, at different life stages: Habitat of anchovy in the Mediterranean. Fish. Oceanogr. 22, 69–89 (2013).
    Google Scholar 
    Durant, J., Hjermann, D., Ottersen, G. & Stenseth, N. Climate and the match or mismatch between predator requirements and resource availability. Clim. Res. 33, 271–283 (2007).
    Google Scholar 
    Kharouba, H. M. & Wolkovich, E. M. Disconnects between ecological theory and data in phenological mismatch research. Nat. Clim. Change 10, 406–415 (2020).ADS 

    Google Scholar 
    Kodama, T. et al. Improvement in recruitment of Japanese sardine with delays of the spring phytoplankton bloom in the Sea of Japan. Fish. Oceanogr. 27, 289–301 (2018).
    Google Scholar 
    Platt, T., Fuentes-Yaco, C. & Frank, K. T. Spring algal bloom and larval fish survival. Nature 423, 398–399 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Schweigert, J. F. et al. Factors linking Pacific herring (Clupea pallasi) productivity and the spring plankton bloom in the Strait of Georgia, British Columbia. Canada. Prog. Oceanogr. 115, 103–110 (2013).ADS 

    Google Scholar 
    Laurel, B. J. et al. Regional warming exacerbates match/mismatch vulnerability for cod larvae in Alaska. Progress Oceanogr. 193, 1055 (2021).
    Google Scholar 
    Brosset, P. et al. A fine-scale multi-step approach to understand fish recruitment variability. Sci. Rep. 10, 16064 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferreira, A. et al. Match-mismatch dynamics in the Norwegian-Barents Sea system. Mar. Ecol. Prog. Ser. 650, 81–94 (2020).ADS 

    Google Scholar 
    Ferreira, A. S. A., Hátún, H., Counillon, F., Payne, M. R. & Visser, A. W. Synoptic-scale analysis of mechanisms driving surface chlorophyll dynamics in the North Atlantic. Biogeosciences 12, 3641–3653 (2015).ADS 

    Google Scholar 
    Taboada, F. G. & Anadón, R. Determining the causes behind the collapse of a small pelagic fishery using Bayesian population modeling. Ecol. Appl. 26, 886–898 (2016).
    Google Scholar 
    Katara, I., Pierce, G. J., Illian, J. & Scott, B. E. Environmental drivers of the anchovy/sardine complex in the Eastern Mediterranean. Hydrobiologia 670, 49–65 (2011).
    Google Scholar 
    Robinson, A. R. et al. The Atlantic Ionian Stream. J. Mar. Syst. 20, 129–156 (1999).
    Google Scholar 
    Di Lorenzo, M., Sinerchia, M. & Colloca, F. The North sector of the Strait of Sicily: A priority area for conservation in the Mediterranean Sea. Hydrobiologia 821, 235–253 (2018).
    Google Scholar 
    García Lafuente, J. et al. Hydrographic phenomena influencing early life stages of the Sicilian Channel anchovy: Hydrographic relations with the Sicilian Channel anchovy. Fish. Oceanogr. 11, 31–44 (2002).
    Google Scholar 
    Patti, B. et al. Role of physical forcings and nutrient availability on the control of satellite-based chlorophyll a concentration in the coastal upwelling area of the Sicilian Channel. Sci. Mar. 74, 577–588 (2010).
    Google Scholar 
    Marini, M., Jones, B. H., Campanelli, A., Grilli, F. & Lee, C. M. Seasonal variability and Po River plume influence on biochemical properties along western Adriatic coast. J. Geophys. Res. 113, C0590 (2008).
    Google Scholar 
    Artegiani et al. The Adriatic Sea General Circulation. Part I Air–.pdf. (1997)Artegiani, A. et al. The Adriatic Sea general circulation. Part II: Baroclinic circulation structure. J. Phys. Oceanogr. 27, 18 (1997).
    Google Scholar 
    Millot, C. The Gulf of Lions’ hydrodynamics. Cont. Shelf Res. 10, 885–894 (1990).ADS 

    Google Scholar 
    Petrenko, A., Leredde, Y. & Marsaleix, P. Circulation in a stratified and wind-forced Gulf of Lions, NW Mediterranean Sea: In situ and modeling data. Cont. Shelf Res. 25, 7–27 (2005).ADS 

    Google Scholar 
    Sverdrup, H. U. On conditions for the vernal blooming of phytoplankton. J. Cons. Int. Explor. Mer. 18, 287–295 (1953).
    Google Scholar 
    Wilcox, R. R. Introduction to robust estimation and hypothesis testing. (Elsevier, 2016).Pernet, C. R., Wilcox, R. R. & Rousselet, G. A. Robust correlation analyses: False positive and power validation using a new open source Matlab toolbox. Front. Psychol. 1, 1 (2013).
    Google Scholar 
    Mair, P. & Wilcox, R. Robust statistical methods in R using the WRS2 package. Behav. Res. Methods 52, 464–488 (2020).PubMed 

    Google Scholar 
    Fox, J., & Weisberg, S. “Robust regression.” An R and S-Plus companion to applied regression 91 (2002).Crawley, M. J. The R book. John Wiley & Sons (2012).Fox, J. Bootstrapping Regression Models Appendix to An R and S-PLUS Companion to Applied Regression (2002). More

  • in

    Influence of yellow gypsum on nutrient uptake and yield of groundnut in different acid soils of Southern India

    Seasonal conditions during crop growthThe groundnut crop produces optimum yield in the regions receiving rainfall between 200 to 1000 mm8. The total rainfall during groundnut growing season was 257.10 mm and 403.10 mm at Baljigapade in 2018 and 2019, respectively, wherein Pavagada (2018) total rainfall was 53.90 mm (Fig. 1). In 2018, both Pavagada and Baljigapade received very low and negligible rainfall during the reproduction and harvest stage of groundnut. Optimum temperature for groundnut production ranges between 20 to 30 °C and growth and pod formation limited below 16 °C and above 32 °C9. The monthly mean atmospheric temperature was ranged from 23 to 27 °C and 21 to 26 °C at Baljigapade in 2018 and 2019, respectively, wherein Pavagada ranged from 25 to 28 °C. At all three locations, the monthly mean atmospheric temperature was slightly high during the early vegetative growth of groundnut and it was progressively decreased as the crop reaches its maturity stage (Fig. 1). All three locations recorded higher and lower mean monthly sunshine hours (hours day−1) during peg initiation to pod filling stage (September and October) and early vegetative growth of groundnut (July and August), respectively.Growth parameters of groundnutAnalysis of variance revealed that treatment, location, and their interaction had a significant effect on plant height and number of branches at harvest (P  More

  • in

    Net benefit: using a turtle excluder device in the Adriatic Sea

    Download PDF

    I’m from a fishing family. My grandfather was a fisherman when he was a young man, working out of Fano, the Italian town where I grew up and still live. I’m used to the smell of fish.I’m pictured during an overnight shift on the fishing boat RIMAS. I work from 5 p.m. until 9 a.m. with fishermen from nearby Cesenatico on the north Adriatic Sea. It’s a small boat: there’s only six or so of us on board. At night, the fish are most active and we can avoid other vessels.The nets scrape the sea bed for the catch but sometimes they also catch turtles who often die in the nets or on board. That’s where I come in. The net I’m holding is designed to allow turtles to escape: it has a hole at the top they can swim out of. We call it TED — short for ‘turtle excluder device’. The TED is made from a high-strength plastic, and is based on decades of work and research aimed at reducing the bycatch of turtles from trawling. Turtles and some larger fish can leave through the escape hatch, but the current holds most of the catch in the net.I ensure that the net is working, and that the fishermen we’re collaborating with can still catch enough for their livelihoods while protecting turtles. The work is part of research by the Cetacea Foundation, based in Riccione, Italy, in collaboration with the University of Pisa, where I’m a field researcher. It is financed by the LIFE programme, the European Union’s funding instrument for the environment and climate action.I love this work. It means I’m not stuck in an office all day and instead can enjoy the ocean and work closely with people who live by the sea. I get to be a researcher who works outside, rather than being hunched over a microscope.When my grandfather was fishing in the 1970s, there were more fish and more turtles around. At the foundation, we save 50–60 turtles a year, most of them harmed because of fishing. If we can protect turtles by rolling out this device to fishermen all across the Adriatic, I’d see this work as a success.

    Nature 604, 210 (2022)
    doi: https://doi.org/10.1038/d41586-022-00930-w

    Related Articles

    Protector of giant salamander

    A photo celebration of scientists at work

    Gut feeling: building a picture of Latin American microbiomes

    Subjects

    Careers

    Climate change

    Conservation biology

    Latest on:

    Careers

    How and why to say ‘no’ to colleagues and collaborators
    Career Column 28 MAR 22

    Afghanistan’s girls’ schools can — and must — stay open. There is no alternative
    Editorial 28 MAR 22

    The marine biologist whose photography pastime became a profession
    Career Column 25 MAR 22

    Climate change

    Tropical forests have big climate benefits beyond carbon storage
    News 01 APR 22

    Funding battles stymie ambitious plan to protect global biodiversity
    News 31 MAR 22

    Trends in Europe storm surge extremes match the rate of sea-level rise
    Article 30 MAR 22

    Jobs

    Postdoctoral Fellow

    LSU Health Sciences Center New Orleans (LSUHSC-NO)
    New Orleans, LA, United States

    Associate Research Scientist

    Columbia University Medical Center (CUMC), CU
    New York, NY, United States

    Experimental Postdoctoral Research Associate in Optical/Quantum Metasurfaces

    Los Alamos National Laboratory (LANL)
    Los Alamos, NM, United States

    Theory Postdoctoral Research Associate in Optical/Quantum Metasurfaces

    Los Alamos National Laboratory (LANL)
    Los Alamos, NM, United States More

  • in

    Coupling genetic structure analysis and ecological-niche modeling in Kersting’s groundnut in West Africa

    Mabhaudhi, T. et al. Prospects of orphan crops in climate change. Planta 250, 695–708. https://doi.org/10.1007/s00425-019-03129-y (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singh, M., Bisht, I. S., Dutta, M., Springer. India, 221. https://doi.org/10.1007/978-81-322-2023-7(2014).Litrico, I. & Violle, C. Diversity in plant breeding: A new conceptual framework. Trends Plant Sci. 20, 604–613. https://doi.org/10.1016/j.tplants.2015.07.007 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Govindaraj, M., Vetriventhan, M. & Srinivasan, M. Importance of genetic diversity assessment in crop plants and its recent advances: An overview of its analytical perspectives. Genet. Res. Intern. 431–487, 2015. https://doi.org/10.1155/2015/431487 (2015).Article 

    Google Scholar 
    Akohoué, F., Sibiya, J. & Achigan-Dako, E. G. On-farm practices, mapping, and uses of genetic resources of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal et Baudet] across ecological zones in Benin and Togo. Genet. Resour. Crop. Evol. 66, 195–214. https://doi.org/10.1007/s10722-018-0705-7 (2018).CAS 
    Article 

    Google Scholar 
    Assogba, P. et al. Indigenous knowledge and agro-morphological evaluation of the minor crop Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal et Baudet] cultivars of Benin. Genet. Resour. Crop. Evol. 63, 513–529. https://doi.org/10.1007/s10722-015-0268-9 (2015).Article 

    Google Scholar 
    Adu-Gyamfi, R., Fearon, J., Bayorbor, T. B., Dzomeku, I. K. & Avornyo, V. K. The Status of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal and Baudet]. Outlook Agric. 40, 259–262. https://doi.org/10.5367/oa.2011.0050 (2011).Article 

    Google Scholar 
    Obasi, M. O. & Agbatse, A. Evaluation of nutritive value and some functional properties of Kersting’s groundnut seeds for optimum utilisation as a food and feed resource. E. Afr. Agric. For. J. 68, 173–181. https://doi.org/10.4314/eaafj.v68i4.1794 (2003).Article 

    Google Scholar 
    Ajayi, O. B. & Oyetayo, F. L. Potentials of Kerstingiella geocarpa as a health food. J. Med. Food 12, 184–187. https://doi.org/10.1089/jmf.2008.0100 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mohammed, M., Jaiswal, S. K., Sowley, E. N. K., Ahiabor, B. D. K. & Dakora, F. D. Symbiotic N2 fixation and grain yield of endangered Kersting’s groundnut landraces in response to soil and plant associated bradyrhizobium inoculation to promote ecological resource-use efficiency. Front. Microbiol. 9, 1–14. https://doi.org/10.3389/fmicb.2018.02105 (2018).CAS 
    Article 

    Google Scholar 
    Tamini, Z. Étude ethnobotanique de la Lentille de Terre [Macrotyloma geocarpum Maréchal & Baudet] au Burkina Faso. J. Agric. Trad. Bot. Appl. 37, 187–199. https://doi.org/10.3406/jatba.1995.3569 (1995).Article 

    Google Scholar 
    Coulibaly, M., Agossou, C. O. A., Akohoué, F., Sawadogo, M. & Achigan-Dako, E. G. Farmers’ preferences for genetic resources of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal and Baudet] in the production systems of Burkina Faso and Ghana. Agronomy 10, 1–20. https://doi.org/10.3390/agronomy10030371 (2020).CAS 
    Article 

    Google Scholar 
    AchiganDako, E. G. & Vodouhe, S. R. Macrotyloma geocarpum (Harms) Marechal & Baudet. In Plant Resources of Tropical Africa 1: Cereals and Pulses (ed. Brink, M. B. G.) 111–114 (Backhuys Publishers CTA, PROTA, 2006).
    Google Scholar 
    Mergeai, G. Influence des facteurs sociologiques sur la conservation des ressources phytogenetiques: Le cas de la lentille de terre [Macrotyloma geocarpum (Harms) Marechal et Baudet] au Togo. Bull Rech Agron 28, 487–500 (1993).
    Google Scholar 
    Long, S. P., Marshall-Colon, A. & Zhu, X. G. Meeting the global food demand of the future by engineering crop photosynthesis and yield potential. Cell 161, 56–66. https://doi.org/10.1016/j.cell.2015.03.019 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Akohoue, F., Achigan-Dako, E. G., Sneller, C., Van Deynze, A. & Sibiya, J. Genetic diversity, SNP-trait associations and genomic selection accuracy in a west African collection of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Marechal & Baudet]. PLoS ONE 15, 1–24. https://doi.org/10.1371/journal.pone.0234769 (2020).CAS 
    Article 

    Google Scholar 
    Schierenbeck, K. A. Population-level genetic variation and climate change in a biodiversity hotspot. Ann. Bot. 119, 215–228. https://doi.org/10.1093/aob/mcw214 (2017).Article 
    PubMed 

    Google Scholar 
    Araújo, M. B., Whittaker, R. J., Ladle, R. J. & Erhard, M. Reducing uncertainty in projections of extinction risk from climate change. Glob. Ecol. Biogeogr. 14, 529–538. https://doi.org/10.1111/j.1466-822X.2005.00182.x (2005).Article 

    Google Scholar 
    Araujo, M. B. & Peterson, A. T. Uses and misuses of bioclimatic envelope modeling. Ecology 93, 1527–1539. https://doi.org/10.1890/11-1930.1 (2012).Article 
    PubMed 

    Google Scholar 
    Martínez-Meyer, E. Climate change and biodiversity: Some considerations in forecasting shifts in species’ potential distributions. Biodiv. Inform. 2, 42–55. https://doi.org/10.17161/bi.v2i0.8 (2005).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Pironon, S. et al. Potential adaptive strategies for 29 sub-Saharan crops under future climate change. Nat. Clim. Chang. 9, 758–763. https://doi.org/10.1038/s41558-019-0585-7 (2019).ADS 
    Article 

    Google Scholar 
    Ramirez-Cabral, N. Y. Z., Kumar, L. & Taylor, S. Crop niche modeling projects major shifts in common bean growing areas. Agric. For. Meteor. 218–219, 102–113. https://doi.org/10.1016/j.agrformet.2015.12.002 (2016).Article 

    Google Scholar 
    Syfert, M. M. et al. Crop wild relatives of the brinjal eggplant (Solanum melongena): Poorly represented in genebanks and many species at risk of extinction. Am. J. Bot. 103, 1–17. https://doi.org/10.3732/ajb.1500539 (2016).CAS 
    Article 

    Google Scholar 
    Blonder, B. Hypervolume concepts in niche- and trait-based ecology. Ecography 41, 1441–1455. https://doi.org/10.1111/ecog.03187 (2018).Article 

    Google Scholar 
    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8, 461–467. https://doi.org/10.1111/j.1461-0248.2005.00739.x (2005).Article 
    PubMed 

    Google Scholar 
    Leimu, R. & Fischer, M. A meta-analysis of local adaptation in plants. PLoS ONE 3, 1–8. https://doi.org/10.1371/journal.pone.0004010 (2008).CAS 
    Article 

    Google Scholar 
    Hereford, J. A quantitative survey of local adaptation and fitness trade-offs. Am. Naturalist. 173, 579–588. https://doi.org/10.1086/597611 (2009).Article 

    Google Scholar 
    Shaw, R. G. & Etterson, J. R. Rapid climate change and the rate of adaptation: Insight from experimental quantitative genetics. New Phytol. 195, 752–765. https://doi.org/10.1111/j.1469-8137.2012.04230.x (2012).Article 
    PubMed 

    Google Scholar 
    Gotelli, N. J. & Stanton-Geddes, J. Climate change, genetic markers and species distribution modelling. J. Biogeogr. 42, 1577–1585. https://doi.org/10.1111/jbi.12562 (2015).Article 

    Google Scholar 
    Ikeda, D. H. et al. Genetically informed ecological niche models improve climate change predictions. Glob. Change Biol. 23, 164–176. https://doi.org/10.1111/gcb.13470 (2016).ADS 
    Article 

    Google Scholar 
    Alvarado-Serrano, D. F. & Knowles, L. L. Ecological niche models in phylogeographic studies: Applications, advances and precautions. Mol. Ecol. Resour. 14, 233–248. https://doi.org/10.1111/1755-0998.12184 (2014).Article 
    PubMed 

    Google Scholar 
    Thoen, M. P. et al. Genetic architecture of plant stress resistance: Multi-trait genome-wide association mapping. New Phytol. 213, 1346–1362. https://doi.org/10.1111/nph.14220 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kafoutchoni, K. M., Agoyi, E. E., Agbahoungba, S., Assogbadjo, A. E. & Agbangla, C. Genetic diversity and population structure in a regional collection of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal & Baudet]. Genet. Resour. Crop. Evol. https://doi.org/10.1007/s10722-021-01187-4 (2021).Article 

    Google Scholar 
    Brown, J. L. & Carnaval, A. C. A tale of two niches: Methods, concepts, and evolution. Front. Biogeogr. https://doi.org/10.21425/f5fbg44158 (2019).Article 

    Google Scholar 
    Marcer, A., Mendez-Vigo, B., Alonso-Blanco, C. & Pico, F. X. Tackling intraspecific genetic structure in distribution models better reflects species geographical range. Ecol. Evol. 6, 2084–2097. https://doi.org/10.1002/ece3.2010 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oney, B., Reineking, B., O’Neill, G. & Kreyling, J. Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol. Evol. 3, 437–449. https://doi.org/10.1002/ece3.426 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tamini, Z. Etude ethnobotanique et analyses morphophysiologiques du développement de la lentille de terre [Macrotyloma geocarpum (harms) Maréchal et Baudet] (Université de Ouagadougou, 1997).
    Google Scholar 
    Yohannes, H. A review on relationship between climate change and agriculture. J. Earth Sci. Clim. Change 7, 1–8. https://doi.org/10.4172/2157-7617.1000335 (2015).Article 

    Google Scholar 
    Sileshi, G. et al. Variation in maize yield gaps with plant nutrient inputs, soil type and climate across sub-Saharan Africa. Field Crops Res. 116, 1–13. https://doi.org/10.1016/j.fcr.2009.11.014 (2010).Article 

    Google Scholar 
    Padi, F. K. & Ehlers, J. D. Effectiveness of early generation selection in cowpea for grain yield and agronomic characteristics in Semiarid West Africa. Crop Sci. 48, 533–540. https://doi.org/10.2135/cropsci2007.05.0265 (2008).Article 

    Google Scholar 
    Kouelo, K. A. F. et al. Impact du travail du sol et de la fertilisation minérale sur la productivité de [Macrotyloma geocarpum (Harms) Maréchal et Baudet] au centre du Bénin. J. Appl. Biosci. 51, 3625–3632 (2012).
    Google Scholar 
    Wellenreuther, M., Larson, K. W. & Svensson, E. I. Climatic niche divergence or conservatism? Environmental niches and range limits in ecologically similar damselflie. Ecology 93, 1353–1366. https://doi.org/10.1890/11-1181.1 (2012).Article 
    PubMed 

    Google Scholar 
    Akohoue, F., Achigan-Dako, E. G., Coulibaly, M. & Sibiya, J. Correlations, path coefficient analysis and phenotypic diversity of a West African germplasm of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal & Baudet]. Genet. Resour. Crop Evol. 66, 1825–1842. https://doi.org/10.1007/s10722-019-00839-w (2019).Article 

    Google Scholar 
    Assogba, P. et al. Indigenous knowledge and agro-morphological evaluation of the minor crop Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal et Baudet] cultivars of Benin. Genet. Resour. Crop Evol. 63, 513–529. https://doi.org/10.1007/s10722-015-0268-9 (2015).Article 

    Google Scholar 
    Adu-Gyamfi, R., Dzomeku, I. K. & Lardi, J. Evaluation of growth and yield potential of genotypes of Kersting’s groundnut (Macrotyloma geocarpum Harms) in Northern Ghana. Int. Res. J. Agric. Sci. Soil Sci. 2, 509–515 (2012).
    Google Scholar 
    Burke, M. B., Lobell, D. B. & Guarino, L. Shifts in African crop climates by 2050, and the implications for crop improvement and genetic resources conservation. Glob. Environ. Change 19, 317–325. https://doi.org/10.1016/j.gloenvcha.2009.04.003 (2009).Article 

    Google Scholar 
    Ramirez-Cabral, N. Y. Z., Kumar, L. & Shabani, F. Global alterations in areas of suitability for maize production from climate change and using a mechanistic species distribution model (CLIMEX). Sci. Rep. 7, 1–13. https://doi.org/10.1038/s41598-017-05804-0 (2017).CAS 
    Article 

    Google Scholar 
    Hancock, A. M. et al. Adaptation to climate across the Arabidopsis thaliana genome. Science 334, 83–86. https://doi.org/10.1126/science.1209244 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Bellon, M. R. & van Etten, J. Climate change and on-farm conservation of crop landraces in centres of diversity. In Plant Genetic Resources and Climate Change Vol. 30 (eds Jackson, M. et al.) (CAB International, 2014).
    Google Scholar 
    Lane, A. & Jarvis, A. Changes in climate will modify the geography of crop suitability: Agricultural biodiversity can help with adaptation. ISI J 4, 12 (2007).
    Google Scholar 
    Vigouroux, Y., Barnaud, A., Scarcelli, N. & Thuillet, A. C. Biodiversity, evolution and adaptation of cultivated crops. C.R. Biol. 334, 450–457. https://doi.org/10.1016/j.crvi.2011.03.003 (2011).Article 
    PubMed 

    Google Scholar 
    Coulibaly, M., Agossou, C. O. A., Akohoué, F., Sawadogo, M. & Achigan-Dako, E. G. Farmers’ preferences for genetic resources of Kersting’s groundnut [Macrotyloma geocarpum (Harms) Maréchal and Baudet] in the production systems of Burkina Faso and Ghana. Agronomy 10, 371. https://doi.org/10.3390/agronomy10030371 (2020).CAS 
    Article 

    Google Scholar 
    Sohn, N., Fernandez, M. H., Papes, M. & Anciães, M. Ecological Niche modeling in practice: Flagship species and regional conservation planning. Oecol. Aust. 17, 429–440. https://doi.org/10.4257/oeco.2013.1703.11 (2013).Article 

    Google Scholar 
    Amujoyegbe, B., Obisesan, I., Ajayi, A. & Aderanti, F. Disappearance of Kersting’s groundnut [Macrotyloma geocarpum (harms) Maréchal et Baudet] in South-Western Nigeria: An indicator of genetic erosion. Plant Gen Res News 152, 45–50 (2007).
    Google Scholar 
    Banta, J. A. et al. Climate envelope modelling reveals intraspecific relationships among flowering phenology, niche breadth and potential range size in Arabidopsis thaliana. Ecol. Lett. 15, 769–777. https://doi.org/10.1111/j.1461-0248.2012.01796.x (2012).Article 
    PubMed 

    Google Scholar 
    Kumar, J., Choudhary, A. K., Gupta, D. S. & Kumar, S. Towards exploitation of adaptive traits for climate-resilient smart pulses. Int. J. Mol. Sci. 20, 1–30. https://doi.org/10.3390/ijms20122971 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Bohra, A., Mir, R. R., Jha, R., Maurya, A. K. & Varshney, R. K. Advances in genomics and molecular breeding for legume improvement. In Advancement in Crop Improvement Techniques (eds Bohra, A. et al.) 129–139 (Elsevier Inc, 2020).Chapter 

    Google Scholar 
    Gobu, R. et al. Accelerated crop breeding towards development of climate resilient varieties. In Climate Change and Indian Agriculture: Challenges and Adaptation Strategies (eds Srinivasarao, C. et al.) 49–69 (ICAR-National Academy of Agricultural Research Management, 2020).
    Google Scholar 
    Aliyu, S., Massawe, F. & Mayes, S. Genetic diversity and population structure of Bambara groundnut [Vigna subterranea (L.) Verdc.]: Synopsis of the past two decades of analysis and implications for crop improvement programmes. Genet. Resour. Crop. Evol. 63, 925–943. https://doi.org/10.1007/s10722-016-0406-z (2016).Article 

    Google Scholar 
    Al-Khayri, J. M., Jain, S. M., Johnson, D. V. Springer Nature Switzerland AG. Switzerland. https://doi.org/10.1007/978-3-030-23400-3(2019).Kilian, A. et al. Diversity arrays technology: a generic genome profiling technology on open platforms. Methods Mol. Biol. 888, 67–89. https://doi.org/10.1007/978-1-61779-870-2_5 (2012).Article 
    PubMed 

    Google Scholar 
    Illumina, I. HiSeq®2500 Sequencing System: Unsurpassed power and efficiency for production scale sequencing. System Specification Sheet: Sequencing, 1–4. https://www.illumina.com/documents/products/datasheets/datasheet_hiseq2500.pdf (2015).Buckler, E. et al. User Manual for TASSEL Trait Analysis by association, Evolution and Linkage Version 5.0. The Buckler Lab at Cornell University. 1–70. https://www.maizegenetics.net/tassel (2014).Pritchard, J. K., Wen, X., Falush, D. Department of Human Genetics, University of Chicago. (2010).Francis, R. M. pophelper: An R package and web app to analyse and visualize population structure. Mol. Ecol. Resour. 17, 27–32. https://doi.org/10.1111/1755-0998.12509 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software structure: A simulation study. Mol. Ecol. 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Jombart, T. & Ahmed, I. adegenet version 1.3-1: New tools for the analysis of genome-wide SNP data. Bioinformatics https://doi.org/10.1093/bioinformatics/btr521 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boria, R. A., Olson, L. E., Goodman, S. M. & Anderson, R. P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model 275, 73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012 (2014).Article 

    Google Scholar 
    Peterson, A. T. et al. NicheBook (Princeton University Press, 2011).
    Google Scholar 
    Kass, J. M., Pinilla-Buitrago, G. E., Vilela, B., Aiello-Lammens, M. E., Muscarella, R., Merow, C., Anderson, R. P., Wallace: A Modular Platform for Reproducible Modeling of Species Niches and Distributions. R package version 1.0.6.3. (2020).Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).Article 

    Google Scholar 
    Platts, P. J., Omeny, P. A. & Marchant, R. AFRICLIM: High-resolution climate projections for ecological applications in Africa. Afr. J. Ecol. 53, 103–108 (2014).Article 

    Google Scholar 
    Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Change 109, 213–241. https://doi.org/10.1007/s10584-011-0156-z (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    IPCC, I. P. o. C. C. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324(2013).Ramirez-Villegas, J. & Jarvis, A. Downscaling global circulation model outputs: The delta method decision and policy analysis, Working Paper No. 1. Policy Anal. Manag. 1, 1–18 (2010).
    Google Scholar 
    Hengl, T. et al. Mapping soil properties of Africa at 250 m resolution: Random forests significantly improve current predictions. PLoS ONE 10, 1–26. https://doi.org/10.1371/journal.pone.0125814 (2015).CAS 
    Article 

    Google Scholar 
    Osorio-Olvera, L. et al. ntbox: An R package with graphical user interface for modeling and evaluating multidimensional ecological niches Methods. Ecol. Evol. 11, 1199–1206. https://doi.org/10.1111/2041-210X.13452 (2020).Article 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum Entropy modeling of species geographic distributions. Ecol. Model 190, 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2005).Article 

    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Diversity Distrib. 17, 43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x (2010).Article 

    Google Scholar 
    Richards, C. L., Carstens, B. C. & Lacey Knowles, L. Distribution modelling and statistical phylogeography: An integrative framework for generating and testing alternative biogeographical hypotheses. J. Biogeogr. 34, 1833–1845. https://doi.org/10.1111/j.1365-2699.2007.01814.x (2007).Article 

    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 31, 161–175. https://doi.org/10.1111/j.2007.0906-7590.05203.x (2008).Article 

    Google Scholar 
    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36, 1058–1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x (2013).Article 

    Google Scholar 
    Phillips, S. J. et al. Sample selection bias and presence-only distribution models: Implications for background and pseudo-absence data. Ecol. Appl. 19, 181–197 (2009).Article 

    Google Scholar 
    Barve, N., Barve, V. ENMGadgets: Pre and post processing in ENM Workflow. R package version 0.1.0.1. (2019).Kass, J. M. et al. ENMeval 20: Redesigned for customizable and reproducible modeling of species’ niches and distributions. Ecol. Evolut. https://doi.org/10.1111/2041-210X.13628 (2021).Article 

    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342. https://doi.org/10.1890/10-1171.1 (2011).Article 
    PubMed 

    Google Scholar 
    Warren, D. L., Glor, R. E. & Turelli, M. Environmental Niche equivalency versus conservatism: Quantitative approaches to Niche evolution. Evolution 62, 2868–2883. https://doi.org/10.1111/j.1558-5646.2008.00482.x (2008).Article 
    PubMed 

    Google Scholar 
    Broennimann, O. et al. Measuring ecological niche overlap from occurrence and spatial environmental data. Glob. Ecol. Biogeogr. 21, 481–497. https://doi.org/10.1111/j.1466-8238.2011.00698.x (2012).Article 

    Google Scholar 
    Benhamou, S. & Cornélis, D. Incorporating movement behavior and barriers to improve kernel home range space use estimates. J. Wildl. Manag. 74, 1353–1360. https://doi.org/10.2193/2009-441 (2010).Article 

    Google Scholar  More

  • in

    Drawing the borders of the mesophotic zone of the Mediterranean Sea using satellite data

    Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the World’s Marine Ecosystems. Science 328, 1523–1528 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hewitt, J. E., Ellis, J. I. & Thrush, S. F. Multiple stressors, nonlinear effects and the implications of climate change impacts on marine coastal ecosystems. Glob. Change Biol. 22, 2665–2675 (2016).ADS 

    Google Scholar 
    Sweetman, A. K. et al. Major impacts of climate change on deep-sea benthic ecosystems. Elementa Sci. Anthropocene. https://doi.org/10.1525/elementa.203 (2017).Article 

    Google Scholar 
    Leslie, H. M. A synthesis of marine conservation planning approaches. Conserv. Biol. 19, 1701–1713 (2005).
    Google Scholar 
    Oppel, S. et al. Spatial scales of marine conservation management for breeding seabirds. Mar. Policy 98, 37–46 (2018).
    Google Scholar 
    Manea, E., Bianchelli, S., Fanelli, E., Danovaro, R. & Gissi, E. Towards an ecosystem-based marine spatial planning in the deep Mediterranean Sea. Sci. Total Environ. 715, 136884 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Aylesworth, L., Phoonsawat, R., Suvanachai, P. & Vincent, A. C. J. Generating spatial data for marine conservation and management. Biodivers. Conserv. 26, 383–399 (2017).
    Google Scholar 
    Lesser, M. P., Slattery, M. & Leichter, J. J. Ecology of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 375, 1–8 (2009).
    Google Scholar 
    James, N. P., Ginsburg, R. N. & Ginsburg, R. N. The Seaward Margin of Belize Barrier and Atoll Reefs: Morphology, Sedimentology, Organism Distribution, and Late Quaternary History (Blackwell Scientific, 1979).
    Google Scholar 
    Ginsburg, R. N., Harris, P. M., Eberli, G. P. & Swart, P. K. The growth potential of a bypass margin, Great Bahama Bank. J. Sediment. Res. 61, 976–987 (1991).
    Google Scholar 
    Pyle, R. L. & Copus, J. M. Mesophotic coral ecosystems: Introduction and overview. In Mesophotic Coral Ecosystems. Coral Reefs of the World (eds Loya, Y. et al.) 3–27 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_1.Chapter 

    Google Scholar 
    Kahng, S. E. et al. Community ecology of mesophotic coral reef ecosystems. Coral Reefs 29, 255–275 (2010).
    Google Scholar 
    Hinderstein, L. M. et al. Theme section on “Mesophotic coral ecosystems: Characterization, ecology, and management”. Coral Reefs 29, 247–251 (2010).ADS 

    Google Scholar 
    J. A. Turner, D. A. Andradi-Brown, A. Gori, P. Bongaerts, H. L. Burdett, C. Ferrier-Pagès, C. R. Voolstra, D. K. Weinstein, T. C. L. Bridge, F. Costantini, E. Gress, J. Laverick, Y. Loya, G. Goodbody-Gringley, S. Rossi, M. L. Taylor, N. Viladrich, J. D. Voss, J. Williams, L. C. Woodall, G. Eyal. in Mesophotic Coral Ecosystems, Coral Reefs of the World, 989–1003 (Y. Loya, K. A. Puglise, T. C. L. Bridge, Eds). (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_52.Baker, E. K., Puglise, K. A., Harris, P. T., United Nations Environment Programme, GRID-Arendal. Mesophotic Coral Ecosystems: A Lifeboat for Coral Reefs? (United Nations Environment Programme and GRID-Arendal, 2016).
    Google Scholar 
    Lang, J. C. Biological Zonation at the Base of a Reef: Observations from the submersible Nekton Gamma have led to surprising revelations about the deep fore-reef and island slope at Discovery Bay, Jamaica. Am. Scientist. 62, 272–281 (1974).ADS 

    Google Scholar 
    J. K. Reed. Deepest distribution of Atlantic hermatypic corals discovered in the Bahamas. in Proceedings of the 5th International Coral Reef Symposium (1985), Vol. 6, 249–254.Hanisak, M. D. & Blair, S. M. The deep-water macroalgal community of the East Florida continental shelf (USA). Helgolander Meeresunters. 42, 133–163 (1988).
    Google Scholar 
    Aponte, N. E. & Ballantine, D. L. Depth distribution of algal species on the deep insular fore reef at Lee Stocking Island, Bahamas. Deep Sea Res. Part I 48, 2185–2194 (2001).
    Google Scholar 
    Fricke, H. W., Vareschi, E. & Schlichter, D. Photoecology of the coral Leptoseris fragilis in the Red Sea twilight zone (an experimental study by submersible). Oecologia 73, 371–381 (1987).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kahng, S. & Maragos, J. The deepest, zooxanthellate scleractinian corals in the world?. Coral Reefs 25, 254–254 (2006).ADS 

    Google Scholar 
    Maragos, J. E. & Jokiel, P. L. Reef corals of Johnston Atoll: One of the world’s most isolated reefs. Coral Reefs 4, 141–150 (1986).ADS 

    Google Scholar 
    Bridge, T. C. L. et al. Variability in mesophotic coral reef communities along the Great Barrier Reef, Australia. Mar. Ecol. Progress Series 428, 63–75 (2011).ADS 

    Google Scholar 
    Lesser, M. P. & Slattery, M. Phase shift to algal dominated communities at mesophotic depths associated with lionfish (Pterois volitans) invasion on a Bahamian coral reef. Biol. Invasions 13, 1855–1868 (2011).
    Google Scholar 
    Slattery, M. & Lesser, M. P. The Bahamas and Cayman Islands. In Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 47–56 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_3.Chapter 

    Google Scholar 
    Slattery, M., Lesser, M. P., Brazeau, D., Stokes, M. D. & Leichter, J. J. Connectivity and stability of mesophotic coral reefs. J. Exp. Mar. Biol. Ecol. 408, 32–41 (2011).
    Google Scholar 
    Lesser, M. P., Slattery, M., Laverick, J. H., Macartney, K. J. & Bridge, T. C. Global community breaks at 60 m on mesophotic coral reefs. Glob. Ecol. Biogeogr. 28, 1403–1416 (2019).
    Google Scholar 
    Tamir, R., Eyal, G., Kramer, N., Laverick, J. H. & Loya, Y. Light environment drives the shallow-to-mesophotic coral community transition. Ecosphere 10, e02839 (2019).
    Google Scholar 
    Laverick, J. H., Green, T. K., Burdett, H. L., Newton, J. & Rogers, A. D. Depth alone is an inappropriate proxy for physiological change in the mesophotic coral Agaricia lamarcki. J. Mar. Biol. Assoc. UK 99, 1535–1546 (2019).
    Google Scholar 
    Lesser, M. P., Mobley, C. D., Hedley, J. D. & Slattery, M. Incident light on mesophotic corals is constrained by reef topography and colony morphology. Mar. Ecol. Prog. Ser. 670, 49–60 (2021).ADS 

    Google Scholar 
    Cerrano, C. et al. Temperate mesophotic ecosystems: Gaps and perspectives of an emerging conservation challenge for the Mediterranean Sea. Eur. Zool. J. 86, 370–388 (2019).
    Google Scholar 
    Idan, T. et al. Shedding light on an East-Mediterranean mesophotic sponge ground community and the regional sponge fauna. Mediterr. Mar. Sci. 19, 84–106 (2018).
    Google Scholar 
    Idan, T., Goren, L., Shefer, S., Brickner, I. & Ilan, M. Does depth matter? Reproduction pattern plasticity in two common sponge species found in both mesophotic and shallow waters. Front. Mar. Sci. 7, 1078 (2020).
    Google Scholar 
    Enrichetti, F. et al. Megabenthic communities of the Ligurian deep continental shelf and shelf break (NW Mediterranean Sea). PLoS ONE 14, e0223949 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kahng, S. E. et al. Coral reefs of the world. In Mesophotic Coral Ecosystems (eds Loya, Y. et al.) 47–56 (Springer International Publishing, 2019). https://doi.org/10.1007/978-3-319-92735-0_42 (801–828).Chapter 

    Google Scholar 
    D’Ortenzio, F. & Ribera d’Alcalà, M. On the trophic regimes of the Mediterranean Sea: A satellite analysis. Biogeosciences 6, 139–148 (2009).ADS 

    Google Scholar 
    Christaki, U. et al. Microbial food webs and metabolic state across oligotrophic waters of the Mediterranean Sea during summer. Biogeosciences 8, 1839–1852 (2011).ADS 
    CAS 

    Google Scholar 
    Rossi, V., Ser-Giacomi, E., López, C. & Hernández-García, E. Hydrodynamic provinces and oceanic connectivity from a transport network help designing marine reserves. Geophys. Res. Lett. 41, 2883–2891 (2014).ADS 

    Google Scholar 
    Basterretxea, G., Font-Muñoz, J. S., Salgado-Hernanz, P. M., Arrieta, J. & Hernández-Carrasco, I. Patterns of chlorophyll interannual variability in Mediterranean biogeographical regions. Remote Sens. Environ. 215, 7–17 (2018).ADS 

    Google Scholar 
    Tanhua, T. et al. Repeat hydrography in the Mediterranean Sea, data from the Meteor cruise 84/3 in 2011. Earth Syst. Sci. Data 5, 289–294 (2013).ADS 

    Google Scholar 
    Bethoux, J. P. Budgets of the Mediterranean Sea-their dependance on the local climate and on the characteristics of the Atlantic waters. Oceanol. Acta 2, 157–163 (1979).
    Google Scholar 
    Azov, Y. Eastern Mediterranean—A marine desert?. Mar. Pollut. Bull. 23, 225–232 (1991).
    Google Scholar 
    Pinardi, N., Zavatarelli, M., Arneri, E., Crise, A. & Ravaioli, M. The physical, sedimentary and ecological structure and variability of shelf areas in the Mediterranean Sea. The Sea 14, 1243–1330 (2006).
    Google Scholar 
    Rodolfo-Metalpa, R. et al. Calcification is not the Achilles’ heel of cold-water corals in an acidifying ocean. Glob. Change Biol. 21, 2238–2248 (2015).ADS 

    Google Scholar 
    Bo, M. et al. Fishing impact on deep Mediterranean rocky habitats as revealed by ROV investigation. Biol. Cons. 171, 167–176 (2014).
    Google Scholar 
    Cau, A. et al. Deepwater corals biodiversity along roche du large ecosystems with different habitat complexity along the south Sardinia continental margin (CW Mediterranean Sea). Mar. Biol. 162, 1865–1878 (2015).
    Google Scholar 
    L. Bramanti, M. C. Benedetti, R. Cupido, S. Cocito, C. Priori, F. Erra, M. Iannelli, G. Santangelo. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots, 529–548 (S. Rossi, L. Bramanti, A. Gori, C. Orejas Eds.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-21012-4_13.Capdevila, P., Linares, C., Aspillaga, E., Riera, J. L. & Hereu, B. Effective dispersal and density-dependence in mesophotic macroalgal forests: Insights from the Mediterranean species Cystoseira zosteroides. PLoS ONE 13, e0191346 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Angeletti, L. et al. A brachiopod biotope associated with rocky bottoms at the shelf break in the central Mediterranean Sea: Geobiological traits and conservation aspects. Aquat. Conserv. Mar. Freshwat. Ecosyst. 30, 402–411 (2020).
    Google Scholar 
    Angeletti, L. & Taviani, M. Offshore Neopycnodonte Oyster Reefs in the Mediterranean Sea. Diversity 12, 92 (2020).
    Google Scholar 
    Castellan, G., Angeletti, L., Taviani, M. & Montagna, P. The yellow coral Dendrophyllia cornigera in a warming ocean. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00692 (2019).Article 

    Google Scholar 
    Corriero, G. et al. A Mediterranean mesophotic coral reef built by non-symbiotic scleractinians. Sci. Rep. 9, 3601 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chimienti, G. Vulnerable Forests of the Pink Sea Fan Eunicella verrucosa in the Mediterranean Sea. Diversity 12, 176 (2020).
    Google Scholar 
    Gori, A. et al. Animal forests in deep coastal bottoms and continental shelf of the Mediterranean Sea. In Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots (eds Rossi, S. et al.) 1–28 (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-17001-5_5-2.Chapter 

    Google Scholar 
    Goren, L., Idan, T., Shefer, S. & Ilan, M. Macrofauna inhabiting massive demosponges from shallow and mesophotic habitats along the Israeli Mediterranean Coast. Front. Mar. Sci. 7, 1245 (2021).
    Google Scholar 
    Santín, A. et al. Sponge assemblages on the deep Mediterranean continental shelf and slope (Menorca Channel, Western Mediterranean Sea). Deep Sea Res. Part I 131, 75–86 (2018).
    Google Scholar 
    Martin, C. S. et al. Coralligenous and maërl habitats: predictive modelling to identify their spatial distributions across the Mediterranean Sea. Sci. Rep. 4, 5073 (2014).CAS 

    Google Scholar 
    D. Basso, L. Babbini, A. A. Ramos-Esplá, M. Salomidi. in Rhodolith/Maërl Beds: A Global Perspective, Coastal Research Library, 281–298 (R. Riosmena-Rodríguez, W. Nelson, J. Aguirre, Eds.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-29315-8_11.Foster, M. M., Amado Filho, G. M., Kamenos, N. A., Riosmena-Rodríguez, R. & Steller, D. L. Rhodoliths and rhodolith beds. Res. Discoveries Revolut. Sci. Through Scuba. 39, 143–155 (2013).
    Google Scholar 
    Littler, M. M., Littler, D. S. & Dennis Hanisak, M. Deep-water rhodolith distribution, productivity, and growth history at sites of formation and subsequent degradation. J. Exp. Mar. Biol. Ecol. 150, 163–182 (1991).
    Google Scholar 
    Ballesteros, E. Mediterranean coralligenous assemblages: a synthesis of present knowledge. Oceanogr. Mar. Biol. Annu. Rev. 44, 123–195 (2006).
    Google Scholar 
    Smith, T. B. et al. Benthic structure and cryptic mortality in a Caribbean mesophotic coral reef bank system, the Hind Bank Marine Conservation District, U. S. Virgin Islands. Coral Reefs 29, 289–308 (2010).ADS 

    Google Scholar 
    Markager, S. & Sand-Jensen, K. Light requirements and depth zonation of marine macroalgae. Mar. Ecol. Prog. Ser. 88, 83–92 (1992).ADS 

    Google Scholar 
    Runcie, J. W., Gurgel, C. F. D. & Mcdermid, K. J. In situ photosynthetic rates of tropical marine macroalgae at their lower depth limit. Eur. J. Phycol. 43, 377–388 (2008).CAS 

    Google Scholar 
    Bindoff, N. L., et al. Chapter 5: Changing ocean, marine ecosystems, and dependent communities. Intergovernmental panel of climate change. in IPCC Special Report on the Ocean and Cryosphere in a Changing Climate 447–587 (2019).Tweedley, J. R., Warwick, R. M. & Potter, I. C. The contrasting ecology of temperate macrotidal and microtidal estuaries. In Oceanography and Marine Biology: An Annual Review (eds Hughes, R. N. et al.) 73–171 (CRC Press, 2016).
    Google Scholar 
    Arias-Ortiz, A. et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Change. 8, 338–344 (2018).ADS 
    CAS 

    Google Scholar 
    Chen, N., Krom, M. D., Wu, Y., Yu, D. & Hong, H. Storm induced estuarine turbidity maxima and controls on nutrient fluxes across river-estuary-coast continuum. Sci. Total Environ. 628–629, 1108–1120 (2018).ADS 
    PubMed 

    Google Scholar 
    Agusti, S., Lubián, L. M., Moreno-Ostos, E., Estrada, M. & Duarte, C. M. Projected changes in photosynthetic picoplankton in a warmer subtropical ocean. Front. Mar. Sci. 5, 506 (2019).
    Google Scholar 
    Lesser, M. P. & Slattery, M. Will coral reef sponges be winners in the Anthropocene?. Glob. Change Biol. 26, 3202–3211 (2020).ADS 

    Google Scholar 
    Ponti, M., Turicchia, E., Ferro, F., Cerrano, C. & Abbiati, M. The understorey of gorgonian forests in mesophotic temperate reefs. Aquat. Conserv. Mar. Freshwat. Ecosyst. 28, 1153–1166 (2018).
    Google Scholar 
    Enrichetti, F. et al. Assessing the environmental status of temperate mesophotic reefs: A new, integrated methodological approach. Ecol. Ind. 102, 218–229 (2019).
    Google Scholar 
    Soares, M. O., Tavares, T. C. L. & Carneiro, P. B. M. Mesophotic ecosystems: Distribution, impacts and conservation in the South Atlantic. Diversity Distributions. 25, 255–268 (2019).
    Google Scholar 
    Mobley, C. D. & Mobley, C. D. Light and Water: Radiative Transfer in Natural Waters (Academic Press, 1994).
    Google Scholar 
    Marty, J.-C. & Chiavérini, J. Seasonal and interannual variations in phytoplankton production at DYFAMED time-series station, northwestern Mediterranean Sea. Deep Sea Res. Part II 49, 2017–2030 (2002).ADS 
    CAS 

    Google Scholar 
    Morel, A. & André, J.-M. Pigment distribution and primary production in the western Mediterranean as derived and modeled from coastal zone color scanner observations. J. Geophys. Res. Oceans. 96, 12685–12698 (1991).ADS 

    Google Scholar 
    Antoine, D., Morel, A. & André, J.-M. Algal pigment distribution and primary production in the eastern Mediterranean as derived from coastal zone color scanner observations. J. Geophys. Res. Oceans. 100, 16193–16209 (1995).ADS 

    Google Scholar 
    Mayot, N., D’Ortenzio, F., Ribera d’Alcalà, M., Lavigne, H. & Claustre, H. Interannual variability of the Mediterranean trophic regimes from ocean color satellites. Biogeosciences 13, 1901–1917 (2016).ADS 
    CAS 

    Google Scholar 
    S. Kahng, J. M. Copus, D. Wagner. in Marine Animal Forests: The Ecology of Benthic Biodiversity Hotspots, 185–206 (S. Rossi, L. Bramanti, A. Gori, C. Orejas, Eds.) (Springer International Publishing, 2017). https://doi.org/10.1007/978-3-319-21012-4_4.Chimienti, G. et al. Effects of global warming on Mediterranean coral forests. Sci. Rep. 11, 20703 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lesser, M. P., Slattery, M. & Mobley, C. D. Incident light and morphology determine coral productivity along a shallow to mesophotic depth gradient. Ecol. Evol. 11, 13445–13454 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Spalding, M. D. et al. Marine ecoregions of the world: A bioregionalization of coastal and shelf areas. Bioscience 57, 573–583 (2007).
    Google Scholar 
    Danovaro, R. et al. Towards a marine strategy for the deep Mediterranean Sea: Analysis of current ecological status. Mar. Policy. 112, 103781 (2020).
    Google Scholar 
    Saulquin, B. et al. Estimation of the diffuse attenuation coefficient KdPAR using MERIS and application to seabed habitat mapping. Remote Sens. Environ. 128, 224–233 (2013).ADS 

    Google Scholar 
    Grinyó, J. et al. Soft corals assemblages in deep environments of the Menorca Channel (Western Mediterranean Sea). Progress Oceanogr. 188, 102435 (2020).
    Google Scholar 
    Artegiani, A. et al. The Adriatic Sea general circulation. Part I: Air–sea interactions and water mass structure. J. Phys. Oceanogr. 27, 1492–1514 (1997).ADS 

    Google Scholar 
    Morel, A. et al. Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach. Remote Sens. Environ. 111, 69–88 (2007).ADS 

    Google Scholar 
    Davies, A. J. & Guinotte, J. M. Global habitat suitability for framework-forming cold-water corals. PLoS ONE 6, e18483 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Georgian, S. E. et al. Habitat suitability modelling to predict the spatial distribution of cold-water coral communities affected by the Deepwater Horizon oil spill. J. Biogeogr. 47, 1455–1466 (2020).
    Google Scholar 
    R. C. Team, R: A language and environment for statistical computing (3. 5. 1)[Computer software]. R Foundation for Statistical Computing (2020). More