More stories

  • in

    Funding battles stymie ambitious plan to protect global biodiversity

    NEWS
    31 March 2022

    Funding battles stymie ambitious plan to protect global biodiversity

    Researchers are disappointed with the progress — but haven’t lost hope.

    Natasha Gilbert

    Natasha Gilbert

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Animals such as this orangutan in Indonesia are endangered because of illegal deforestation.Credit: Jami Tarris/Future Publishing via Getty

    Scientists are frustrated with countries’ progress towards inking a new deal to protect the natural world. Government officials from around the globe met in Geneva, Switzerland, on 14–29 March to find common ground on a draft of the deal, known as the post-2020 global biodiversity framework, but discussions stalled, mostly over financing. Negotiators say they will now have to meet again before a highly anticipated United Nations biodiversity summit later this year, where the deal was to be signed.The framework so far sets out 4 broad goals, including slowing species extinction, and 21 mostly quantitative targets, such as protecting at least 30% of the world’s land and seas. It is part of an international treaty known as the UN Convention on Biological Diversity, and aims to address the global biodiversity crisis, which could see one million plant and animal species go extinct in the next few decades because of factors such as climate change, human activity and disease.
    China takes centre stage in global biodiversity push
    The COVID-19 pandemic has already slowed discussions of the deal. Over the past two years, countries’ negotiators met only virtually; the Geneva meeting was the first in-person gathering since the pandemic began. When it ended, Basile van Havre, one of the chairs of the framework negotiations working group, said that because negotiators couldn’t agree on goals, additional discussions will need to take place in June in Nairobi. The convention’s pivotal summit — its Conference of the Parties (COP15) — is expected to be held in Kunming, China, in August and September, but no firm date has been set.Anne Larigauderie, executive secretary of the Intergovernmental Platform on Biodiversity and Ecosystem Services in Bonn, Germany, who attended the Geneva gathering, told Nature: “We are leaving the meeting with no quantitative elements. I was hoping for more progress.”Robert Watson, a retired environmental scientist at the University of East Anglia, UK, says the quantitative targets are crucial to conserving biodiversity and monitoring progress towards that goal. He calls on governments to “bite the bullet and negotiate an appropriate deal that both protects and restores biodiversity”.Finance fightMany who were at the meeting say that disagreements over funding for biodiversity conservation were the main hold-up to negotiations. For example, the draft deal proposed that US$10 billion of funding per year should flow from developed nations to low- and middle-income countries to help them to implement the biodiversity framework. But many think this is not enough. A group of conservation organizations has called for at least $60 billion per year to flow to poorer nations.
    Biodiversity moves beyond counting species
    The consumption habits of wealthy nations are among the key drivers of biodiversity loss. And poorer nations are often home to areas rich in biodiversity, but have fewer means to conserve them.“The most challenging aspect is the amount of financing that wealthy nations are committing to developing nations,” says Brian O’Donnell, director of the Campaign for Nature in Washington DC, a partnership of private charities and conservation organizations advocating a deal to safeguard biodiversity. “Nations need to up their level of financing to get progress in the COP.”Other nations, particularly low-income ones, probably don’t want to agree “unless they have assurances of resources to allow them to implement the new framework”, Larigauderie says.Countries including Argentina and Brazil are largely responsible for stalling the deal, several sources close to the negotiations told Nature. They asked to remain anonymous because the negotiations are confidential.
    The world’s species are playing musical chairs: how will it end?
    No agreement could be reached even on targets with broad international support, such as protecting at least 30% of the world’s land and seas by 2030. O’Donnell says that just one country blocked agreement on this target, questioning its scientific basis.Van Havre downplayed the lack of progress, saying that the brinksmanship at the meeting was part of a “normal negotiating process”. He told reporters: “We are happy with the progress made.” Further delays ‘unacceptable’A bright spot in the negotiations, van Havre said, was a last-minute “major step forward” in discussions on how to fairly and equitably share the benefits of digital sequence information (DSI). DSI consists of genetic data collected from plants, animals and other organisms.
    Why deforestation and extinctions make pandemics more likely
    When pressed, however, van Havre admitted that the progress was simply an agreement between countries to continue discussing a way forward.Thomas Brooks, chief scientist at the International Union for Conservation of Nature in Gland, Switzerland, says that DSI discussions have actually been fraught. Communities from biodiverse-rich regions where genetic material is collected have little control over the commercialization of the data that come from it, and no way to recoup financial and other benefits, he explains.Like biodiversity financing, DSI rights could hold up negotiations on the overall framework. Low-income countries want a fair and equitable share of the benefits from genetic material that originates in their lands, but rich nations don’t want unnecessary barriers to sharing the information.“We are a long way from a watershed moment, and there remain genuine disagreements,” Brooks says. However, he is optimistic that progress will eventually be made.
    The biodiversity leader who is fighting for nature amid a pandemic
    Some conservation organizations take hope from new provisional language in the deal that calls for halting all human-caused species extinctions. The previous draft of the deal proposed only a reduction in the rate and risk of extinctions, says Paul Todd, an environmental lawyer at the Natural Resources Defense Council, a non-profit group based in New York City.Given how much work governments must do to reach agreement on the deal, Watson says the extra Nairobi meeting is a “logical” move. But he warns: “Any further delay would be unacceptable.”“This isn’t even the hard work,” Todd says. “Implementing the deal will be the real work.”

    doi: https://doi.org/10.1038/d41586-022-00916-8

    Related Articles

    China takes centre stage in global biodiversity push

    The biodiversity leader who is fighting for nature amid a pandemic

    Why deforestation and extinctions make pandemics more likely

    Biodiversity moves beyond counting species

    The battle for the soul of biodiversity

    The world’s species are playing musical chairs: how will it end?

    Subjects

    Biodiversity

    Conservation biology

    Climate change

    Latest on:

    Biodiversity

    Are there limits to economic growth? It’s time to call time on a 50-year argument
    Editorial 16 MAR 22

    Africa: sequence 100,000 species to safeguard biodiversity
    Comment 15 MAR 22

    Rewilding Argentina: lessons for the 2030 biodiversity targets
    Comment 07 MAR 22

    Climate change

    Trends in Europe storm surge extremes match the rate of sea-level rise
    Article 30 MAR 22

    The race to upcycle CO2 into fuels, concrete and more
    News Feature 29 MAR 22

    Biden bids again to boost science spending — but faces long odds
    News 28 MAR 22

    Jobs

    wiss. Mitarbeiter/in (m/w/d)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    wiss. Mitarbeiter/in (m/w/d)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Junior Research Group Leader on Robustness and Decision Making in Cells and Tissues

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Junior Research Group Leader on Physical Measurement and Manipulation of Living Systems

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany More

  • in

    Coupled online sequential extreme learning machine model with ant colony optimization algorithm for wheat yield prediction

    Martin, G., Martin-Clouaire, R. & Duru, M. Farming system design to feed the changing world. A review. Agron. Sustain. Dev. 33, 131–149 (2013).
    Google Scholar 
    McElwee, G. & Bosworth, G. Exploring the strategic skills of farmers across a typology of farm diversification approaches. J. Farm Manag. 13, 819–838 (2010).
    Google Scholar 
    Maghrebi, M. et al. Iran’s agriculture in the anthropocene. Earth’s Future. https://doi.org/10.1029/2020EF001547 (2020).Article 

    Google Scholar 
    Raorane, A. A. & Kulkarni, R. V. Data mining: An effective tool for yield estimation in the agricultural sector. Int. J. Emerg. Trends Technol. Comput. Sci. 1, 1–4 (2012).
    Google Scholar 
    Gonzalez-Sanchez, A., Frausto-Solis, J. & Ojeda-Bustamante, W. Attribute selection impact on linear and nonlinear regression models for crop yield prediction. Sci. World J. 2014, 509429 (2014).
    Google Scholar 
    Salman, S. A. et al. Changes in climatic water availability and crop water demand for Iraq region. Sustainability 12, 3437 (2020).
    Google Scholar 
    Mahmood, N., Arshad, M., Kächele, H., Ullah, A. & Müller, K. Economic efficiency of rainfed wheat farmers under changing climate: Evidence from Pakistan. Environ. Sci. Pollut. Res. 27, 34453–34467 (2020).
    Google Scholar 
    Pracha, A. S. & Volk, T. A. An edible energy return on investment (EEROI) analysis of wheat and rice in Pakistan. Sustainability 3, 2358–2391 (2011).
    Google Scholar 
    Canadell, J. et al. Abberton, M., Conant, R., & Batello, C. (Eds.). (2010). Grassland carbon sequestration: Management, policy and economics. Food and Agriculture Organization of the United Nations, Integrated Crop Management, Vol. 11–2010. Ahlstrom, A., Raupach, M., Schurgers. Sensit. A Semi-Arid Grassl. To Extrem. Precip. Events 127, 6 (2021).
    Google Scholar 
    Canton, H. Food and Agriculture Organization of the United Nations—FAO. In The Europa Directory of International Organizations 2021 (ed. Canton, H.) 297–305 (Routledge, 2021).
    Google Scholar 
    Abdullah, A. et al. Potential for sustainable utilisation of agricultural residues for bioenergy production in Pakistan: An overview. J. Clean. Prod. 287, 125047 (2020).
    Google Scholar 
    Mughal, I. et al. Protein quantification and enzyme activity estimation of Pakistani wheat landraces. PLoS ONE 15, e0239375 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dorosh, P. & Salam, A. Wheat markets and price stabilisation in Pakistan: An analysis of policy options. Pak. Dev. Rev. 47, 71–87 (2008).
    Google Scholar 
    Fowke, V. The National Policy and the Wheat Economy (University of Toronto Press, 2019).
    Google Scholar 
    Hussain, S. et al. Study the effects of COVID-19 in Punjab, Pakistan using space-time scan statistic for policy measures in regional agriculture and food supply chain. Environ. Sci. Pollut. Res. Int. 20, 1–14 (2021).
    Google Scholar 
    Sajjad, S. A. Story of Pakistan’s Elite Wheat (The Express Tribune, 2017).
    Google Scholar 
    Durgun, Y. Ö., Gobin, A., Duveiller, G. & Tychon, B. A study on trade-offs between spatial resolution and temporal sampling density for wheat yield estimation using both thermal and calendar time. Int. J. Appl. Earth Obs. Geoinf. 86, 101988 (2020).
    Google Scholar 
    Vannoppen, A. et al. Wheat yield estimation from NDVI and regional climate models in Latvia. Remote Sens. 12, 2206 (2020).ADS 

    Google Scholar 
    Irmak, A. et al. Artificial neural network model as a data analysis tool in precision farming. Trans. ASABE 49, 2027–2037 (2006).
    Google Scholar 
    Bannerjee, G., Sarkar, U., Das, S. & Ghosh, I. Artificial intelligence in agriculture: A literature survey. Int. J. Sci. Res. Comput. Sci. Appl. Manag. Stud. 7, 1–6 (2018).
    Google Scholar 
    Patrício, D. I. & Rieder, R. Computer vision and artificial intelligence in precision agriculture for grain crops: A systematic review. Comput. Electron. Agric. 153, 69–81 (2018).
    Google Scholar 
    Yaseen, Z. M. et al. Prediction of evaporation in arid and semi-arid regions: A comparative study using different machine learning models. Eng. Appl. Comput. Fluid Mech. 14, 70–89 (2019).
    Google Scholar 
    Bauer, M. E. The role of remote sensing in determining the distribution and yield of crops. In Advances in Agronomy (ed. Sparks, D. L.) 271–304 (Elsevier, 1975). https://doi.org/10.1016/s0065-2113(08)70012-9.Chapter 

    Google Scholar 
    Dempewolf, J. et al. Wheat yield forecasting for Punjab Province from vegetation index time series and historic crop statistics. Remote Sens. 6, 9653–9675 (2014).ADS 

    Google Scholar 
    Hamid, N., Pinckney, T. C., Gnaegy, S. & Valdes, A. The Wheat Economy of Pakistan: Setting and Prospects (IFPRI, 2015).
    Google Scholar 
    Muhammad, K. Description of the Historical Background of Wheat Improvement in Baluchistan, Pakistan (Agriculture Research Institute (Sariab, Quetta, Baluchistan, Pakistan), 1989).
    Google Scholar 
    Iqbal, N., Bakhsh, K., Maqbool, A. & Abid Shohab, A. Use of the ARIMA model for forecasting wheat area and production in Pakistan. J. Agric. Soc. Sci. 1, 120–122 (2005).
    Google Scholar 
    Sher, F. & Ahmad, E. Forecasting wheat production in Pakistan. LAHORE J. Econ. 13, 57–85 (2008).
    Google Scholar 
    Khan, N. et al. Determination of cotton and wheat yield using the standard precipitation evaporation index in Pakistan. Arab. J. Geosci. 14, 1–16 (2021).
    Google Scholar 
    Rahman, M. M., Haq, N. & Rahman, R. M. Machine learning facilitated rice prediction in Bangladesh. In 2014 Annual Global Online Conference on Information and Computer Technology. https://doi.org/10.1109/gocict.2014.9 (2014).Chen, C. & Mcnairn, H. A neural network integrated approach for rice crop monitoring. Int. J. Remote Sens. 27, 1367–1393 (2006).
    Google Scholar 
    Kaul, M., Hill, R. L. & Walthall, C. Artificial neural networks for corn and soybean yield prediction. Agric. Syst. 85, 1–18 (2005).
    Google Scholar 
    Deo, R. C., Samui, P., Kisi, O. & Yaseen, Z. M. Intelligent Data Analytics for Decision-Support Systems in Hazard Mitigation: Theory and Practice of Hazard Mitigation (Springer Nature, 2020).
    Google Scholar 
    Sanikhani, H. et al. Survey of different data-intelligent modeling strategies for forecasting air temperature using geographic information as model predictors. Comput. Electron. Agric. 152, 242–260 (2018).
    Google Scholar 
    Hai, T. et al. Global solar radiation estimation and climatic variability analysis using extreme learning machine based predictive model. IEEE Access 8, 12026–12042 (2020).
    Google Scholar 
    Ramos, A. P. M. et al. A random forest ranking approach to predict yield in maize with UAV-based vegetation spectral indices. Comput. Electron. Agric. 178, 105791 (2020).
    Google Scholar 
    Suchithra, M. S. & Pai, M. L. Improving the prediction accuracy of soil nutrient classification by optimizing extreme learning machine parameters. Inf. Process. Agric. 7, 72–82 (2020).
    Google Scholar 
    Feng, Z., Huang, G. & Chi, D. Classification of the complex agricultural planting structure with a semi-supervised extreme learning machine framework. Remote Sens. 12, 3708 (2020).ADS 

    Google Scholar 
    Tur, R. & Yontem, S. A comparison of soft computing methods for the prediction of wave height parameters. Knowl. Based Eng. Sci. 2, 31–46 (2021).
    Google Scholar 
    Yaseen, Z. M., Ali, M., Sharafati, A., Al-Ansari, N. & Shahid, S. Forecasting standardized precipitation index using data intelligence models: Regional investigation of Bangladesh. Sci. Rep. 11, 1–25 (2021).
    Google Scholar 
    Sharafati, A., Asadollah, S. B. H. S. & Neshat, A. A new artificial intelligence strategy for predicting the groundwater level over the Rafsanjan aquifer in Iran. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2020.125468 (2020).Article 

    Google Scholar 
    Huang, G.-B., Zhu, Q.-Y. & Siew, C.-K. Extreme learning machine: Theory and applications. Neurocomputing 70, 489–501 (2006).
    Google Scholar 
    Adnan, R. M. et al. Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization. Knowl. Based Syst. 230, 107379 (2021).
    Google Scholar 
    Yaseen, Z. M. et al. Stream-flow forecasting using extreme learning machines: A case study in a semi-arid region in Iraq. J. Hydrol. 542, 603–614 (2016).ADS 

    Google Scholar 
    Prasad, R., Deo, R. C., Li, Y. & Maraseni, T. Ensemble committee-based data intelligent approach for generating soil moisture forecasts with multivariate hydro-meteorological predictors. Soil Tillage Res. https://doi.org/10.1016/j.still.2018.03.021 (2018).Article 

    Google Scholar 
    Tiyasha, T. et al. Functionalization of remote sensing and on-site data for simulating surface water dissolved oxygen: Development of hybrid tree-based artificial intelligence models. Mar. Pollut. Bull. 170, 112639 (2021).CAS 
    PubMed 

    Google Scholar 
    Ali, M. et al. Variational mode decomposition based random forest model for solar radiation forecasting: New emerging machine learning technology. Energy Rep. 7, 6700–6717 (2021).
    Google Scholar 
    Khozani, Z. S. et al. Determination of compound channel apparent shear stress: Application of novel data mining models. J. Hydroinform. 21, 798–811 (2019).MathSciNet 

    Google Scholar 
    Dorigo, M. & Di Caro, G. Ant colony optimization: A new meta-heuristic. In Proceedings of the 1999 Congress on Evolutionary Computation, CEC 1999. https://doi.org/10.1109/CEC.1999.782657 (1999).Mullen, R. J., Monekosso, D., Barman, S. & Remagnino, P. A review of ant algorithms. Expert Syst. Appl. https://doi.org/10.1016/j.eswa.2009.01.020 (2009).Article 

    Google Scholar 
    Sweetlin, J. D., Nehemiah, H. K. & Kannan, A. Feature selection using ant colony optimization with tandem-run recruitment to diagnose bronchitis from CT scan images. Comput. Methods Prog. Biomed. https://doi.org/10.1016/j.cmpb.2017.04.009 (2017).Article 

    Google Scholar 
    Cordon, O., Herrera, F. & Stützle, T. A review on the ant colony optimization metaheuristic: Basis, models and new trends. Mathw. Comput. 9, 2–3 (2002).MathSciNet 
    MATH 

    Google Scholar 
    Singh, G., Kumar, N. & Kumar Verma, A. Ant colony algorithms in MANETs: A review. J. Netw. Comput. Appl. https://doi.org/10.1016/j.jnca.2012.07.018 (2012).Article 

    Google Scholar 
    Kumar, S., Solanki, V. K., Choudhary, S. K., Selamat, A. & González Crespo, R. Comparative study on ant colony optimization (ACO) and K-means clustering approaches for jobs scheduling and energy optimization model in internet of things (IoT). Int. J. Interact. Multimed. Artif. Intell. 6, 107 (2020).
    Google Scholar 
    Paniri, M., Dowlatshahi, M. B. & Nezamabadi-pour, H. MLACO: A multi-label feature selection algorithm based on ant colony optimization. Knowl. Based Syst. 192, 105285 (2020).
    Google Scholar 
    Yaseen, Z. M., Sulaiman, S. O., Deo, R. C. & Chau, K.-W. An enhanced extreme learning machine model for river flow forecasting: State-of-the-art, practical applications in water resource engineering area and future research direction. J. Hydrol. 569, 387–408 (2019).ADS 

    Google Scholar 
    Manju Parkavi, R., Shanthi, M. & Bhuvaneshwari, M. C. Recent trends in ELM and MLELM: A review. Adv. Sci. Technol. Eng. Syst. https://doi.org/10.25046/aj020108 (2017).Article 

    Google Scholar 
    Araba, A. M., Memon, Z. A., Alhawat, M., Ali, M. & Milad, A. Estimation at completion in Civil engineering projects: Review of regression and soft computing models. Knowl. Based Eng. Sci. 2, 1–12 (2021).
    Google Scholar 
    Tamura, S. & Tateishi, M. Capabilities of a four-layered feedforward neural network: Four layers versus three. IEEE Trans. Neural Netw. 8, 251–255 (1997).CAS 
    PubMed 

    Google Scholar 
    Huang, G.-B. Learning capability and storage capacity of two-hidden-layer feedforward networks. IEEE Trans. Neural Netw. 14, 274–281 (2003).PubMed 

    Google Scholar 
    Ali, M., Deo, R. C., Downs, N. J. & Maraseni, T. Multi-stage hybridized online sequential extreme learning machine integrated with Markov Chain Monte Carlo copula-Bat algorithm for rainfall forecasting. Atmos. Res. 213, 450–464 (2018).
    Google Scholar 
    Liang, N.-Y., Huang, G.-B., Saratchandran, P. & Sundararajan, N. A fast and accurate online sequential learning algorithm for feedforward networks. IEEE Trans. Neural Netw. 17, 1411–1423 (2006).PubMed 

    Google Scholar 
    Lan, Y., Soh, Y. C. & Huang, G.-B. Ensemble of online sequential extreme learning machine. Neurocomputing 72, 3391–3395 (2009).
    Google Scholar 
    Yadav, B., Ch, S., Mathur, S. & Adamowski, J. Discharge forecasting using an online sequential extreme learning machine (OS-ELM) model: A case study in Neckar River, Germany. Measurement 92, 433–445 (2016).ADS 

    Google Scholar 
    Breiman, L. Bagging predictors. Mach. Learn. 24, 123–140 (1996).MATH 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 

    Google Scholar 
    Al-Sulttani, A. O. et al. Proposition of new ensemble data-intelligence models for surface water quality prediction. IEEE Access 9, 108527–108541 (2021).
    Google Scholar 
    Carranza, C., Nolet, C., Pezij, M. & Van Der Ploeg, M. Root zone soil moisture estimation with random forest. J. Hydrol. 593, 125840 (2021).
    Google Scholar 
    Evans, J. S., Murphy, M. A., Holden, Z. A. & Cushman, S. A. Modeling species distribution and change using random forest. In Predictive Species and Habitat Modeling in Landscape Ecology (eds Ashton Drew, C. et al.) 139–159 (Springer, 2011).
    Google Scholar 
    Rahmati, O., Pourghasemi, H. R. & Melesse, A. M. Application of GIS-based data driven random forest and maximum entropy models for groundwater potential mapping: A case study at Mehran Region, Iran. CATENA 137, 360–372 (2016).
    Google Scholar 
    Prasad, R., Ali, M., Kwan, P. & Khan, H. Designing a multi-stage multivariate empirical mode decomposition coupled with ant colony optimization and random forest model to forecast monthly solar radiation. Appl. Energy 236, 778–792 (2019).
    Google Scholar 
    Sharafati, A. et al. The potential of novel data mining models for global solar radiation prediction. Int. J. Environ. Sci. Technol. https://doi.org/10.1007/s13762-019-02344-0 (2019).Article 

    Google Scholar 
    Service, A. M. I. District-Wise Area of Wheat Crop. Available at: http://www.amis.pk/Agristatistics/DistrictWise/2010-2012/Wheat.html (2012).Service, A. M. I. District-Wise Area of Wheat Crop. Available at: http://www.amis.pk/Agristatistics/DistrictWise/2012-2014/Wheat.html (2014).Punjab, P. Population. Available at: https://en.wikipedia.org/wiki/Punjab_Pakistan (2015).Steiniger, S. & Hunter, A. J. S. The 2012 free and open source GIS software map—A guide to facilitate research, development, and adoption. Comput. Environ. Urban Syst. 39, 136–150 (2013).
    Google Scholar 
    Hsu, C.-W. et al. A practical guide to support vector classification. BJU Int. https://doi.org/10.1177/02632760022050997 (2008).Article 
    PubMed 

    Google Scholar 
    Bergmeir, C. & Benítez, J. M. On the use of cross-validation for time series predictor evaluation. Inf. Sci. (NY) 191, 192–213 (2012).
    Google Scholar 
    Xia, Y., Liu, C., Li, Y. Y. & Liu, N. A boosted decision tree approach using Bayesian hyper-parameter optimization for credit scoring. Expert Syst. Appl. https://doi.org/10.1016/j.eswa.2017.02.017 (2017).Article 

    Google Scholar 
    Yen, B. C., ASCE Task Committee on Definition of Criteria for Evaluation of Watershed Models of the Watershed Management Committee Irrigation and Drainage Division. Discussion and closure: Criteria for evaluation of watershed models. J. Irrig. Drain. Eng. 121, 130–132 (1995).
    Google Scholar 
    Yaseen, Z. M. An insight into machine learning models era in simulating soil, water bodies and adsorption heavy metals: Review, challenges and solutions. Chemosphere 277, 130126 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dawson, C. W., Abrahart, R. J. & See, L. M. HydroTest: A web-based toolbox of evaluation metrics for the standardised assessment of hydrological forecasts. Environ. Model. Softw. 22, 1034–1052 (2007).
    Google Scholar 
    Legates, D. R. & Mccabe, G. J. Evaluating the use of ‘goodness-of-fit’ measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 35, 233–241 (1999).ADS 

    Google Scholar 
    Willmott, C. J. & Willmott, C. J. Some comments on the evaluation of model performance. Bull. Am. Meteorol. Soc. https://doi.org/10.1175/1520-0477(1982)063%3c1309:SCOTEO%3e2.0.CO;2 (1982).Article 
    MATH 

    Google Scholar 
    Willmott, C. J. On the validation of models. Phys. Geogr. https://doi.org/10.1080/02723646.1981.10642213 (1981).Article 
    MATH 

    Google Scholar 
    Sharafati, A., Yasa, R. & Azamathulla, H. M. Assessment of stochastic approaches in prediction of wave-induced pipeline scour depth. J. Pipeline Syst. Eng. Pract. 9, 04018024 (2018).
    Google Scholar 
    Mohammadi, K. et al. A new hybrid support vector machine-wavelet transform approach for estimation of horizontal global solar radiation. Energy Convers. Manag. 92, 162–171 (2015).
    Google Scholar 
    Willmott, C. J., Robeson, S. M. & Matsuura, K. A refined index of model performance. Int. J. Climatol. 32, 2088–2094 (2012).
    Google Scholar 
    Nash, J. E. & Sutcliffe, J. V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 10, 282–290 (1970).ADS 

    Google Scholar 
    Yaseen, Z. M. et al. Hourly river flow forecasting: Application of emotional neural network versus multiple machine learning paradigms. Water Resour. Manag. 34, 1075–1091 (2020).
    Google Scholar 
    Bhagat, S. K., Tung, T. M. & Yaseen, Z. M. Heavy metal contamination prediction using ensemble model: Case study of Bay sedimentation, Australia. J. Hazard. Mater. 403, 123492 (2021).CAS 
    PubMed 

    Google Scholar 
    Hora, J. & Campos, P. A review of performance criteria to validate simulation models. Expert Syst. 32, 578–595 (2015).
    Google Scholar 
    Nourani, V., Kisi, Ö. & Komasi, M. Two hybrid Artificial Intelligence approaches for modeling rainfall-runoff process. J. Hydrol. https://doi.org/10.1016/j.jhydrol.2011.03.002 (2011).Article 

    Google Scholar 
    Ertekin, C. & Yaldiz, O. Comparison of some existing models for estimating global solar radiation for Antalya (Turkey). Energy Convers. Manag. 41, 311–330 (2000).
    Google Scholar 
    Li, M. F., Tang, X. P., Wu, W. & Liu, H. B. General models for estimating daily global solar radiation for different solar radiation zones in mainland China. Energy Convers. Manag. 70, 139–148. https://doi.org/10.1016/j.enconman.2013.03.004 (2013).Article 

    Google Scholar 
    Xu, Z., Hou, Z., Han, Y. & Guo, W. A diagram for evaluating multiple aspects of model performance in simulating vector fields. Geosci. Model Dev. 9, 4365–4380 (2016).ADS 

    Google Scholar 
    Dan Foresee, F. & Hagan, M. T. Gauss–Newton approximation to bayesian learning. In IEEE International Conference on Neural Networks—Conference Proceedings. https://doi.org/10.1109/ICNN.1997.614194 (1997).Akhtar, I. U. H. Pakistan needs a new crop forecasting system (2012).Stathakis, D., Savina, I. & Nègrea, T. Neuro-fuzzy modeling for crop yield prediction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 34, 1–4 (2006).
    Google Scholar 
    Kumar, P., Gupta, D. K., Mishra, V. N. & Prasad, R. Comparison of support vector machine, artificial neural network, and spectral angle mapper algorithms for crop classification using LISS IV data. Int. J. Remote Sens. 36, 1604–1617 (2015).
    Google Scholar 
    Sun, J., Xu, W. & Feng, B. A global search strategy of quantum-behaved particle swarm optimization. In 2004 IEEE Conference on Cybernetics and Intelligent Systems. https://doi.org/10.1109/iccis.2004.1460396 (2004)Naganna, S. et al. Dew point temperature estimation: Application of artificial intelligence model integrated with nature-inspired optimization algorithms. Water. https://doi.org/10.3390/w11040742 (2019).Article 

    Google Scholar 
    Gilles, J. Empirical wavelet transform. IEEE Trans. Signal Process. 61, 3999–4010 (2013).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Bokde, N., Feijóo, A., Al-Ansari, N., Tao, S. & Yaseen, Z. M. The hybridization of ensemble empirical mode decomposition with forecasting models: Application of short-term wind speed and power modeling. Energies 13, 1666 (2020).
    Google Scholar 
    Chau, K. W. & Wu, C. L. A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. J. Hydroinform. 12, 458–473 (2010).
    Google Scholar  More

  • in

    Spatio-temporal inhabitation of settlements by Hystrix cristata L., 1758

    Emlen, S. T. & Oring, L. W. Ecology, sexual selection, and evolution of mating systems. Science 197(4300), 215–223 (1977).ADS 
    CAS 
    Article 

    Google Scholar 
    Lagos, V. O., Bozinovic, F. & Contreras, L. C. Microhabitat use by a small diurnal rodent (Octodon degus) in a semiarid environment: Thermoregulatory constraints or predation risk? J. Mammal. 76(3), 900–905 (1995).Article 

    Google Scholar 
    Lagos, V. O., Contreras, L. C., Meserve, P. L., Gutiérrez, J. R. & Jaksic, F. M. Effects of predation risk on space use by small mammals: A field experiment with a neotropical rodent. Oikos 74, 259–264 (1995).Article 

    Google Scholar 
    Schradin, C. & Pillay, N. Female striped mice (Rhabdomys pumilio) change their home ranges in response to seasonal variation in food availability. Behav. Ecol. 17(3), 452–458. https://doi.org/10.1093/beheco/arj047 (2006).Article 

    Google Scholar 
    Hayes, L. D., Chesh, A. S. & Ebensperger, L. A. Ecological predictors of range areas and use of burrow systems in the diurnal rodent, Octodon degus. Ethology 113, 155–165. https://doi.org/10.1111/j.1439-0310.2006.01305.x (2007).Article 

    Google Scholar 
    Brivio, F. et al. Forecasting the response to global warming in a heat-sensitive species. Sc. Rep. 9, 3048. https://doi.org/10.1038/s41598-019-39450-5 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Santamaría, A. E., Olea, P. P., Vinuela, J. & Garcia, J. T. Spatial and seasonal variation in occupation and abundance of common vole burrows in highly disturbed agricultural ecosystems. Eur. J. Wildl. Res. 65, 52. https://doi.org/10.1007/s10344-019-1286-2 (2019).Article 

    Google Scholar 
    Kinlaw, A. A review of burrowing by semi-fossorial vertebrates in arid environments. J. Arid Environ. 41, 127–145 (1999).ADS 
    Article 

    Google Scholar 
    Daly, M., Beherends, P. R. & Wilson, M. I. Activity patterns of kangaroo rats—Granivores in a desert habitat. In Activity Patterns in Small Mammals: An Ecological Approach (eds Halle, S. & Stenseth, N. C.) 145–158 (Springer, 2000).Chapter 

    Google Scholar 
    Mackin-Rogalska, R., Adamczewska-Andrzejewska, K. & Nabaglo, L. Common vole numbers in relation to the utilization of burrow system. Acta Theriol. 31(2), 17–44 (1986).Article 

    Google Scholar 
    Powell, R. A. & Fried, J. J. Helping by juvenile pine voles (Microtus pinetorum), growth and survival of younger siblings, and the evolution of pine vole sociality. Behav. Ecol. 3, 325–333 (1992).Article 

    Google Scholar 
    Randall, J. A., Rogovin, K., Parker, P. G. & Eimes, J. A. Flexible social structure of a desert rodent, Rhombomys opimus: Philopatry, kinship, and ecological constraints. Behav. Ecol. 16, 961–973 (2005).Article 

    Google Scholar 
    Ebensperger, L. A. et al. Burrow limitations and group living in the communally rearing rodent, Octodon degus. J. Mammal. 92(1), 21–30 (2011).Article 

    Google Scholar 
    Santini, L. The habits and influence on the environment of the old world porcupine Hystrix cristata L. in the northernmost part of its range. In Proc. 9th Vertebrate Pest Conference, Vol. 34, 149–153 (1980).Felicioli, A., Grazzini, A. & Santini, L. The mounting and copulation behaviour of the crested porcupine Hystrix cristata. Ital. J. Zool. 64, 155–161 (1997).Article 

    Google Scholar 
    Felicioli, A., Grazzini, A. & Santini, L. The mounting behaviour of a pair of crested porcupine H. cristata L.. Mammalia 61(1), 123–126 (1997).
    Google Scholar 
    Felicioli, A. Analisi spazio-temporale dell’attività motoria in Hystrix cristata L. Dissertation, University of Pisa (1991).Felicioli, A. & Santini, L. Burrow entrance-hole orientation and first emergence time in the crested porcupine Hystrix cristata L.: Space-time dependence on sunset. Pol. Ecol. Stud. 20(3–4), 317–321 (1994).
    Google Scholar 
    Mori, E., Nourisson, D. H., Lovari, S., Romeo, G. & Sforzi, A. Self-defence may not be enough: Moonlight avoidance in a large, spiny rodent. J. Zool. 294, 31–40 (2014).Article 

    Google Scholar 
    Corsini, M. T., Lovari, S. & Sonnino, S. Temporal activity patterns of crested porcupine Hystrix cristata. J. Zool. Lond. 236, 43–54 (1995).Article 

    Google Scholar 
    Coppola, F., Vecchio, G. & Felicioli, A. Diurnal motor activity and “sunbathing” behaviour in crested porcupine (Hystrix cristata L., 1758). Sci. Rep. 9, 14283 (2019).ADS 
    Article 

    Google Scholar 
    Pigozzi, G. Crested porcupines (Hystrix cristata) within badger setts (Meles meles) in the Maremma Natural Park, Italy. Saugetierk. Mitt. 33, 261–263 (1986).
    Google Scholar 
    Coppola, F. & Felicioli, A. Reproductive behaviour in free-ranging crested-porcupine Hystrix cristata L., 1758. Sci. Rep. 11, 20142. https://doi.org/10.1038/s41598-021-99819-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Monetti, L., Massolo, A., Sforzi, A. & Lovari, S. Site selection and fidelity by crested porcupines for denning. Ethol. Ecol. Evol. 17, 149–159 (2005).Article 

    Google Scholar 
    Coppola, F., Dari, C., Vecchio, G., Scarselli, D. & Felicioli, A. Co-habitation of settlements among Crested Porcupines (Hystrix cristata), Red Foxes (Vulpes vulpes) and European Badgers (Meles meles). Curr. Sci. 119(5), 817–822 (2020).Article 

    Google Scholar 
    De Villiers, M. S., Van Aarde, R. J. & Dott, H. M. Habitat utilization by the Cape porcupine Hystrix africaeaustralis in a savanna ecosystem. J. Zool. Lond. 232, 539–549 (1994).Article 

    Google Scholar 
    Corbet, N. U. & de Aarde, R. J. Social organization and space use in the Cape porcupine in a Southern African savanna. Afr. J. Ecol. 34, 1–14 (1996).Article 

    Google Scholar 
    Massolo, A., Dani, F. R. & Bella, N. Sexual and individual cues in the peri-anal gland secretum of crested porcupines (Hystrix cristata). Mamm. Biol. 74, 488–496 (2009).Article 

    Google Scholar 
    Mori, E. & Lovari, S. Sexual size monomorphism in the crested porcupine (Hystrix cristata). Mamm. Biol. 79, 157–160 (2014).Article 

    Google Scholar 
    Mori, E. et al. Patterns of spatial overlap in a monogamous large rodent, the crested porcupine. Behav. Process. 107, 112–118 (2014).Article 

    Google Scholar 
    Mukherjee, A., Pilakandy, R., Kumara, H. N., Manchi, S. S. & Bhupathy, S. Burrow characteristics and its importance in occupancy of burrow dwelling vertebrates in Semiarid area of Keoladeo National Park, Rajasthan, India. J. Arid Environ. 141, 7–15 (2017).ADS 
    Article 

    Google Scholar 
    Mukherjee, A., Pal, A., Velankar, A. D., Kumara, H. N. & Bhupathy, S. Stay awhile in my burrow! Interspecific associations of vertebrates to Indian crested porcupine burrows. Ethol. Ecol. Evol. 3(4), 313–328 (2019).Article 

    Google Scholar 
    Fernandez, N. & Palomares, F. The selection of breeding dens by the endangered Iberian lynx (Lynx pardinus): Implications for its conservation. Biol. Conserv. 94, 51–61 (2000).Article 

    Google Scholar 
    Ross, S., Kamnitzer, R., Munkhtsog, B. & Harris, S. Den-site selection is critical for Pallas’s cats (Otocolobus manul). Can. J. Zool. 88(9), 905–913. https://doi.org/10.1139/Z10-056 (2010).Article 

    Google Scholar 
    Libal, N. S., Belant, J. L., Leopold, B. D., Wang, G. & Owen, A. Despotism and risk of infanticide influence grizzly bear den-site selection. PLoS ONE 6(9), e24133. https://doi.org/10.1371/journal.pone.0024133 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elbroch, L. M., Lendrum, P. E. & Quigley, H. Cougar den site selection in the Southern Yellowstone ecosystem. Mamm. Res. 60, 89–96. https://doi.org/10.1007/s13364-015-0212-6 (2015).Article 

    Google Scholar 
    Solomon, N. G., Christiansen, A. M., Kirk Lin, Y. & Hayes, L. D. Factors affecting nest location of prairie voles (Microtus ochrogaster). J. Mammal. 86(3), 555–560 (2005).Article 

    Google Scholar 
    Pereoglou, F. et al. Refuge site selection by the eastern chestnut mouse in recently burnt heath. Wildl. Res. 38(4), 290–298. https://doi.org/10.1071/WR11007 (2011).Article 

    Google Scholar 
    Grazzini, M. T. Comportamento riproduttivo e accrescimento post-natale in Hystrix cristata L. (Rodentia, Hystricidae). Dissertation, University of Pisa (1992).Capizzi, D. & Santini, L. Hystrix cristata Linnaeus, 1758. In Fauna d’Italia, Mammalia II: Erinaceomorpha, Soricomorpha, Lagomorpha, Rodentia (eds Amori, G. et al.) 695–706 (Edizione Calderini de il Sole 24 Ore, 2008).
    Google Scholar 
    Coppola, F. New knowledge tools for crested porcupine (Hystrix cristata L., 1758) management in the wild: First census model, new behavioural ecology aspects and preliminary investigation on health status. University of Pisa, PhD thesis (2021).Wood, S. N. Generalized Additive Models: An Introduction with R 2nd edn. (Chapman and Hall/CRC, 2017).Book 

    Google Scholar 
    Wood, S. N. A simple test for random effects in regression models. Biometrika 100, 1005–1010 (2013).MathSciNet 
    Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).Book 

    Google Scholar  More

  • in

    Small brains predisposed Late Quaternary mammals to extinction

    Martin, P. S. & Klein, R. G. Quaternary extinctions: a prehistoric revolution. (University of Arizona Press, 1984).Waguespack, N. M. & Surovell, T. A. Clovis hunting strategies, or how to make out on plentiful resources. Am. Antiq. 68, 333–352 (2003).
    Google Scholar 
    Surovell, T. A., Pelton, S. R., Anderson-Sprecher, R. & Myers, A. D. Test of Martin’s overkill hypothesis using radiocarbon dates on extinct megafauna. Proc. Natl. Acad. Sci. 113, 886–891 (2016).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Martin, P. S. Prehistoric overkill: the global model. In Quaternary extinctions: a prehistoric revolution (eds. Martin, P. S. & Klein, R. G.) 355–403 (University of Arizona Press, 1984).Barnosky, A. D. & Lindsey, E. L. Timing of Quaternary megafaunal extinction in South America in relation to human arrival and climate change. Quatern. Int. 217, 10–29 (2010).
    Google Scholar 
    Prescott, G. W., Williams, D. R., Balmford, A., Green, R. E. & Manica, A. Quantitative global analysis of the role of climate and people in explaining late Quaternary megafaunal extinctions. Proc. Natl. Acad. Sci. 109, 4527–4531 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B Biol. Sci. 281, 20133254 (2014).
    Google Scholar 
    Wolfe, A. L. & Broughton, J. M. A foraging theory perspective on the associational critique of North American Pleistocene overkill. J. Archaeol. Sci. 119, 105162 (2020).
    Google Scholar 
    Berger, J., Swenson, J. E. & Persson, I. L. Recolonizing carnivores and naïve prey: Conservation lessons from pleistocene extinctions. Science 291, 1036–1039 (2001).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Brook, B. W. & Bowman, D. M. J. S. The uncertain blitzkrieg of Pleistocene megafauna. J. Biogeogr. 31, 517–523 (2004).
    Google Scholar 
    Johnson, C. N. Determinants of loss of mammal species during the Late Quaternary ‘megafauna’ extinctions: life history and ecology, but not body size. Proc. R. Soc. London. Ser. B Biol. Sci. 269, 2221–2227 (2002).CAS 

    Google Scholar 
    Bourgon, N. et al. Trophic ecology of a Late Pleistocene early modern human from tropical Southeast Asia inferred from zinc isotopes. J. Hum. Evol. 161, 103075 (2021).PubMed 

    Google Scholar 
    Meltzer, D. J. Overkill, glacial history, and the extinction of North America’s Ice Age megafauna. Proc. Natl. Acad. Sci. 117, 28555–28563 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart, M., Carleton, W. C. & Groucutt, H. S. Climate change, not human population growth, correlates with Late Quaternary megafauna declines in North America. Nat. Commun. 12, 965 (2021).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Nogués-Bravo, D., Rodríguez, J., Hortal, J., Batra, P. & Araújo, M. B. Climate change, humans, and the extinction of the woolly mammoth. PLoS Biol. 6, e79 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Koch, P. L. & Barnosky, A. D. Late quaternary extinctions: State of the debate. Annu. Rev. Ecol. Evol. Syst. 37, 215–250 (2006).
    Google Scholar 
    Cardillo, M. Multiple causes of high extinction risk in large mammal species. Science 309, 1239–1241 (2005).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Meiri, S. & Liang, T. Rensch’s rule—Definitions and statistics. Glob. Ecol. Biogeogr. 30, 573–577 (2021).
    Google Scholar 
    Lyons, S. K. et al. The changing role of mammal life histories in Late Quaternary extinction vulnerability on continents and islands. Biol. Lett. 12, 20160342 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Alroy, J. A multispecies overkill simulation of the end-pleistocene megafaunal mass extinction. Science 292, 1893–1896 (2001).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Smaers, J. B. et al. The evolution of mammalian brain size. Sci. Adv. 7, 1–12 (2021).
    Google Scholar 
    Jerison, H. J. Evolution of the Brain and Intelligence (Academic Press, 1973). https://doi.org/10.2307/4512058.Book 

    Google Scholar 
    Sol, D., Bacher, S., Reader, S. M. & Lefebvre, L. Brain size predicts the success of mammal species introduced into novel environments. Am. Nat. 172, S63–S71 (2008).PubMed 

    Google Scholar 
    Møller, A. P. & Erritzøe, J. Brain size in birds is related to traffic accidents. R. Soc. Open Sci. 4, 161040 (2017).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Sayol, F., Sol, D. & Pigot, A. L. Brain size and life history interact to predict urban tolerance in birds. Front. Ecol. Evol. 8, 58 (2020).
    Google Scholar 
    Budd, G. E. & Jensen, S. The origin of the animals and a ‘Savannah’ hypothesis for early bilaterian evolution. Biol. Rev. 92, 446–473 (2017).PubMed 

    Google Scholar 
    Benoit, J. et al. Brain evolution in Proboscidea (Mammalia, Afrotheria) across the Cenozoic. Sci. Rep. 9, 9323 (2019).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Møller, A. P. & Erritzøe, J. Brain size and the risk of getting shot. Biol. Lett. 12, 20160647 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Di Febbraro, M. et al. Does the jack of all trades fare best? Survival and niche width in Late Pleistocene megafauna. J. Biogeogr. 44, 2828–2838 (2017).
    Google Scholar 
    Morris, S. D., Kearney, M. R., Johnson, C. N. & Brook, B. W. Too hot for the devil? Did climate change cause the mid-Holocene extinction of the Tasmanian devil Sacrophilus harrisii from mainland Australia? Ecography 2022, (2022).Fillios, M., Crowther, M. S. & Letnic, M. The impact of the dingo on the thylacine in Holocene Australia. World Archaeol. 44, 118–134 (2012).
    Google Scholar 
    González-Lagos, C., Sol, D. & Reader, S. M. Large-brained mammals live longer. J. Evol. Biol. 23, 1064–1074 (2010).PubMed 

    Google Scholar 
    Barton, R. A. & Capellini, I. Maternal investment, life histories, and the costs of brain growth in mammals. Proc. Natl. Acad. Sci. U.S.A. 108, 6169–6174 (2011).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Abelson, E. S. Brain size is correlated with endangerment status in mammals. Proc. R. Soc. B Biol. Sci. 283, 20152772 (2016).
    Google Scholar 
    Gonzalez-Voyer, A., González-Suárez, M., Vilà, C. & Revilla, E. Larger brain size indirectly increases vulnerability to extinction in mammals. Evolution (N.Y.) 70, 1364–1375 (2016).
    Google Scholar 
    Ives, A. R. & Helmus, M. R. Generalized linear mixed models for phylogenetic analyses of community structure. Ecol. Monogr. 81, 511–525 (2011).
    Google Scholar 
    Castiglione, S. et al. A new method for testing evolutionary rate variation and shifts in phenotypic evolution. Methods Ecol. Evol. 9, 974–983 (2018).
    Google Scholar 
    Billet, G. Phylogeny of the Notoungulata (Mammalia) based on cranial and dental characters. J. Syst. Palaeontol. 9, 481–497 (2011).
    Google Scholar 
    Shultz, S., Bradbury, R. B., Evans, K. L., Gregory, R. D. & Blackburn, T. M. Brain size and resource specialization predict long-term population trends in British birds. Proc. R. Soc. B Biol. Sci. 272, 2305–2311 (2005).
    Google Scholar 
    Ducatez, S., Sol, D., Sayol, F. & Lefebvre, L. Behavioural plasticity is associated with reduced extinction risk in birds. Nat. Ecol. Evol. 4, 788–793 (2020).PubMed 

    Google Scholar 
    Abelson, E. S. Big brains reduce extinction risk in Carnivora. Oecologia 191, 721–729 (2019).PubMed 
    ADS 

    Google Scholar 
    Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. Proceedings of the National Academy of Sciences 117, 7871–7878 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shultz, S. & Dunbar, R. Encephalization is not a universal macroevolutionary phenomenon in mammals but is associated with sociality. Proceedings of the National Academy of Sciences 107, 21582–21586 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gould, S. J. & Vrba, E. S. Exaptation—A missing term in the science of form. Paleobiology 8, 4–15 (1982).
    Google Scholar 
    Wroe, S. et al. Climate change frames debate over the extinction of megafauna in Sahul (Pleistocene Australia-New Guinea). Proc. Natl. Acad. Sci. U.S.A. 110, 8777–8781 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Barnosky, A. D., Koch, P. L., Feranec, R. S., Wing, S. L. & Shabel, A. B. Assessing the Causes of Late Pleistocene Extinctions on the Continents. Science 306, 70–75 (2004).Article 
    PubMed 

    Google Scholar 
    Profico, A., Buzi, C., Melchionna, M., Veneziano, A. & Raia, P. Endomaker, a new algorithm for fully automatic extraction of cranial endocasts and the calculation of their volumes. Am. J. Phys. Anthropol. 172, 511–515 (2020).PubMed 

    Google Scholar 
    Damuth, J. & Macfadden, B. J. Body Size in Mammalian Paleobiology: Estimation and Biological Implications (Cambridge University Press, 1990).
    Google Scholar 
    Zagwijn, W. H. The beginning of the Ice Age in Europe and its major subdivisions. Quatern. Sci. Rev. 11, 583–591 (1992).ADS 

    Google Scholar 
    Hearty, P. J., Hollin, J. T., Neumann, A. C., O’Leary, M. J. & McCulloch, M. Global sea-level fluctuations during the Last Interglaciation (MIS 5e). Quatern. Sci. Rev. 26, 2090–2112 (2007).ADS 

    Google Scholar 
    Ashwell, K. W. S., Hardman, C. D. & Musser, A. M. Brain and behaviour of living and extinct echidnas. Zoology 117, 349–361 (2014).PubMed 

    Google Scholar 
    Castiglione, S. et al. The influence of domestication, insularity and sociality on the tempo and mode of brain size evolution in mammals. Biol. J. Linn. Soc. 132, 221–231 (2021).
    Google Scholar 
    Wilkins, A. S., Wrangham, R. W. & Tecumseh Fitch, W. The ‘domestication syndrome’ in mammals: A unified explanation based on neural crest cell behavior and genetics. Genetics 197, 795–808 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Sayol, F., Steinbauer, M. J., Blackburn, T. M., Antonelli, A. & Faurby, S. Anthropogenic extinctions conceal widespread evolution of flightlessness in birds. Sci. Adv. 6, eabb6095 (2020).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Fromm, A., Meiri, S. & McGuire, J. Big, flightless, insular and dead: Characterising the extinct birds of the Quaternary. J. Biogeogr. 48(9), 2350–2359. https://doi.org/10.1111/jbi.14206 (2021).Article 

    Google Scholar 
    Meiri, S., Dayan, T. & Simberloff, D. The generality of the island rule reexamined. J. Biogeogr. 33, 1571–1577 (2006).
    Google Scholar 
    Larramendi, A. & Palombo, M. R. Body Size, Structure, Biology and Encephalization Quotient of Palaeoloxodon ex gr. P. falconeri from Spinagallo Cave (Hyblean plateau, Sicily). Hystrix, the Italian Journal of Mammalogy 26, 102–109 (2015).Article 

    Google Scholar 
    Slavenko, A., Tallowin, O. J. S., Itescu, Y., Raia, P. & Meiri, S. Late Quaternary reptile extinctions: Size matters, insularity dominates. Glob. Ecol. Biogeogr. 25, 1308–1320 (2016).
    Google Scholar 
    Tracy, C. R. & George, T. L. On the determinants of extinction. Am. Nat. 139, 102–122 (1992).
    Google Scholar 
    Manne, L. L., Brooks, T. M. & Pimm, S. L. Relative risk of extinction of passerine birds on continents and islands. Nature 399, 258–261 (1999).CAS 
    ADS 

    Google Scholar 
    Turvey, S. T. In the shadow of the megafauna: prehistoric mammal and bird extinctions across the Holocene. in Holocene Extinctions 17–40 (Oxford University Press, 2009). https://doi.org/10.1093/acprof:oso/9780199535095.003.0002Ebinger, P. A cytoarchitectonic volumetric comparison of brains in wild and domestic sheep. Zeitschrift für Anat. und Entwicklungsgeschichte 144, 267–302 (1974).CAS 

    Google Scholar 
    Röhrs, M. & Ebinger, P. Welche quantitativen beziehungen bestehen bei säugetieren zwischen schädelkapazität und hirnvolumen? Mammalian Biology 66, 102–110 (2001).Köhler, M. & Moyà-Solà, S. Reduction of brain and sense organs in the fossil insular bovid Myotragus. Brain Behav. Evol. 63, 125–140 (2004).PubMed 

    Google Scholar 
    de Bello, F. et al. On the need for phylogenetic ‘corrections’ in functional trait-based approaches. Folia Geobot. 50, 349–357 (2015).
    Google Scholar 
    Bates, D., Sarkar, D., Bates, M. D. & Matrix, L. The lme4 Package. October (2007).Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar 
    Raia, P. & Meiri, S. The tempo and mode of evolution: Body sizes of island mammals. Evolution 65, 1927–1934 (2011).

    Google Scholar 
    Montgomery, S. H. et al. The evolutionary history of cetacean brain and body size. Evolution 67, 3339–3353 (2013).
    PubMed 

    Google Scholar 
    Li, D., Dinnage, R., Nell, L. A., Helmus, M. R. & Ives, A. R. phyr: An r package for phylogenetic species-distribution modelling in ecological communities. Methods Ecol. Evol. 11, 1455–1463 (2020).
    Google Scholar 
    Melchionna, M. et al. Macroevolutionary trends of brain mass in Primates. Biological Journal of the Linnean Society 129, 14–25 (2020).Article 

    Google Scholar 
    Serio, C. et al. Macroevolution of toothed whales exceptional relative brain size. Evol. Biol. 46, 332–342 (2019).
    Google Scholar 
    Wickham, H. et al. Welcome to the Tidyverse. Journal of Open Source Software 4, 1686 (2019).Barton, K. Package ‘MuMIn’ Title Multi-Model Inference. CRAN-R (2018). More

  • in

    Tropical tree growth driven by dry-season climate variability

    Forest Ecology and Forest Management Group, Wageningen University, Wageningen, the NetherlandsPieter A. Zuidema & Ute Sass-KlaassenSchool of Natural Resources and the Environment, University of Arizona, Tucson, AZ, USAFlurin BabstLaboratory of Tree-Ring Research, University of Arizona, Tucson, AZ, USAFlurin Babst, Valerie Trouet, Zakia Hassan Khamisi, Paul R. Sheppard & Ramzi TouchanDepartment of Plant Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, BrazilPeter Groenendijk & José Roberto Vieira AragãoWorld Agroforestry Centre (ICRAF), Addis Ababa, EthiopiaAbrham AbiyuDepartment of Microbiology and Parasitology, Universidad Nacional Autónoma de México, Mexico City, MexicoRodolfo Acuña-SotoLaboratory of Protection and Forest Management, Department of Forest Engineering, Universidade Regional de Blumenau, Santa Catarina, BrazilEduardo Adenesky-FilhoDepartment of Biology, Wilfrid Laurier University, Waterloo, Ontario, CanadaRaquel Alfaro-SánchezDepartment of Forest Sciences, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Piracicaba, BrazilGabriel Assis-Pereira, Claudia Fontana & Mario Tomazello-FilhoTree-Ring Laboratory, Forest Science Department, Federal University of Lavras, Lavras, BrazilGabriel Assis-Pereira & Ana Carolina BarbosaCAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, ChinaXue Bai, Ze-Xin Fan, Shankar Panthi & Zhe-Kun ZhouDepartment of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “L. Vanvitelli”, Caserta, ItalyGiovanna BattipagliaService of Wood Biology, Royal Museum for Central Africa, Tervuren, BelgiumHans Beeckman, Camille Couralet & Benjamin ToirambeBrazilian Agricultural Research Corporation (Embrapa), Embrapa Forestry, Colombo, BrazilPaulo Cesar BotossoU.S. Department of Agriculture, Forest Service, NWCG Member Agency, Washington, DC, USATim BradleyInstitute of Geography, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, GermanyAchim Bräuning, Mahmuda Islam, Mulugeta Mokria & Mizanur RahmanSchool of Geography, University of Leeds, Leeds, UKRoel Brienen & Emanuel GloorLamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USABrendan M. Buckley & Rosanne D’ArrigoInstituto Pirenaico de Ecología (IPE-CSIC), Zaragoza, SpainJ. Julio CamareroCentre for Functional Ecology, Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, Coimbra, PortugalAna Carvalho & Cristina NabaisDepartment of Botany, Institute of Biosciences, University of São Paulo, São Paulo, BrazilGregório Ceccantini, Bruno Barçante Ladvocat Cintra & Giuliano Maselli LocosselliInstituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaría en Relación Agua-Suelo-Planta-Atmósfera (CENID-RASPA), Gómez Palacio, MéxicoLibrado R. Centeno-Erguera, Julián Cerano-Paredes & Jose Villanueva-DiazInstituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Centro – Altos de Jalisco, Tepatitlán de Morelos, MéxicoÁlvaro Agustín Chávez-DuránDepartment of Geosciences, University of Arkansas, Fayetteville, AR, USAMalcolm K. Cleaveland & Daniela Granato-SouzaDepartment of Forest Sciences, Universidad Nacional de Colombia – Sede Medellín, Medellín, ColombiaJorge Ignacio del ValleMaster School for Carpentry and Cabinetmaking, Ebern, GermanyOliver DünischDepartment of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USABrian J. EnquistSanta Fe Institute, Santa Fe, NM, USABrian J. EnquistDepartment of Biological Sciences, University of Joinville Region ‐ UNIVILLE, Joinville, BrazilKarin Esemann-QuadrosPostgraduate Program in Forestry, Regional University of Blumenau – FURB, Blumenau, BrazilKarin Esemann-QuadrosCollege of Life Science, Climate Science Center and Department of Earth Science, Addis Ababa University, Addis Ababa, EthiopiaZewdu EshetuDepartamento de Dendrocronología e Historia Ambiental, IANIGLA, CCT-CONICET-Mendoza, Mendoza, ArgentinaM. Eugenia Ferrero, Lidio Lopez, Fidel Alejandro Roig & Ricardo VillalbaLaboratorio de Dendrocronología, Universidad Continental, Huancayo, PerúM. Eugenia Ferrero, Janet G. Inga & Edilson Jimmy Requena-RojasDepartment of Crop Sciences, Tropical Plant Production and Agricultural Systems Modelling, Göttingen University, Göttingen, GermanyEsther FichtlerInstitute of Pacific Islands Forestry, USDA Forest Service Pacific Southwest Research Station, Hilo, HI, USAKainana S. Francisco & Mulugeta MokriaWorld Agroforestry Centre (ICRAF), Nairobi, KenyaAster GebrekirstosFlanders Heritage Agency, Brussels, BelgiumKristof HanecaDepartment of Geography and Geological Sciences, University of Idaho, Moscow, ID, USAGrant Logan HarleyGerman Archaeological Institute DAI, Berlin, GermanyIngo HeinrichGeography Department, Humboldt University Berlin, Berlin, GermanyIngo HeinrichGFZ German Research Centre for Geosciences, Potsdam, GermanyIngo Heinrich & Gerd HelleDepartment of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, BangladeshMahmuda Islam & Mizanur RahmanFaculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Prague, Czech RepublicYu-mei JiangUS Fish and Wildlife Service, Albuquerque, NM, USAMark KaibDepartment of Ecology and Biogeography, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, PolandMarcin KoprowskiCentre for Climate Change Research, Nicolaus Copernicus University, Toruń, PolandMarcin KoprowskiWater Systems and Global Change Group, Wageningen University and Research, Wageningen, the NetherlandsBart KruijtInstituto Nacional de Innovación Agraria, Programa Nacional de Investigación Forestal, Huancayo, PerúEva LaymeEnvironmental Systems Analysis Group, Wageningen University and Research, Wageningen, the NetherlandsRik LeemansDepartment of Natural Resource Management, South Dakota State University, Brookings, USA, SDA. Joshua LefflerLaboratory of Plant Anatomy and Dendrochronology, Department of Biology, Universidade Federal de Sergipe, Sergipe, BrazilClaudio Sergio Lisi, Mariana Alves Pagotto & Adauto de Souza Ribeiro Department of Geography, Swansea University, Swansea, UKNeil J. Loader & Iain RobertsonDepartamento Forestal, Universidad Autónoma Agraria Antonio Narro, Saltillo, MexicoMaría I. López-HernándezCITAB – Department of Forestry Sciences and Landscape (CIFAP), University of Trás-os-Montes and Alto Douro, Vila Real, PortugalJosé Luís Penetra Cerveira LousadaEscuela de Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia (UPTC), Tunja, ColombiaHooz A. MendivelsoBrazilian Agricultural Research Corporation (Embrapa), Embrapa Amazônia Ocidental, Manaus, BrazilValdinez Ribeiro MontóiaIHE Delft, Delft, the NetherlandsEddy MoorsVU University Amsterdam, Amsterdam, the NetherlandsEddy MoorsDepartment of Biomaterials Science and Technology, School of Natural Resources, The Copperbelt University, Kitwe, ZambiaJustine NgomaLaboratory of Ecology and Dendrology of the Federal Institute of Sergipe, São Cristovão, BrazilFrancisco de Carvalho Nogueira JúniorLaboratory of Plant Ecology, Universidade do Vale do Rio dos Sinos (UNISINOS), São Leopoldo, BrazilJuliano Morales Oliveira & Gabriela Morais OlmedoBIOAPLIC, Departamento de Botánica, Universidade de Santiago de Compostela, EPSE, Lugo, SpainGonzalo Pérez-De-LisLaboratorio de Dendrocronología, Carrera de Ingeniería Forestal, Universidad Nacional de Loja, Loja, EcuadorDarwin Pucha-CofrepFaculty of Environment and Resource studies, Mahidol University, Nakhon Pathom, ThailandNathsuda PumijumnongFacultad de Ciencias Agrarias, Universidad del Cauca, Popayán, ColombiaJorge Andres RamirezHémera Centro de Observación de la Tierra, Escuela de Ingeniería Forestal, Facultad de Ciencias, Universidad Mayor, Santiago, ChileFidel Alejandro Roig & Alejandro Venegas-GonzálezInstituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro de Investigación Regional Pacífico Centro – Campo Experimental, Centro Altos de Jalisco, MéxicoErnesto Alonso Rubio-CamachoNational Institute for Amazon Research, Petrópolis, Manaus, BrazilJochen SchöngartDepartment of Earth Sciences, Freie Universität Berlin, Berlin, GermanyFranziska SlottaDepartment of Earth and Environmental Systems, Indiana State University, Terre Haute, IN, USAJames H. SpeerDepartment of Geography, University of Alabama, Tuscaloosa, AL, USAMatthew D. TherrellDepartment of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USAMax C. A. TorbensonDepartment of Geography, Johannes Gutenberg University, Mainz, GermanyMax C. A. TorbensonDepartment of Plant and Environmental Sciences, School of Natural Resources, The Copperbelt University, Kitwe, ZambiaRoyd VinyaForest and Nature Management, Van Hall Larenstein University of Applied Sciences, Velp, the NetherlandsMart VlamSchool of Teacher Training for Secondary Education Tilburg, Fontys University of Applied Sciences, Tilburg, the NetherlandsTommy WilsP.A.Z., P.G. and V.T. initiated the tropical tree-ring network; P.A.Z., F.B., P.G. and V.T. designed the study; all co-authors except F.B. contributed tree-ring data; F.B. and P.G. analysed the data, with important contributions from P.A.Z.; P.A.Z. and V.T. wrote the manuscript, with important contributions from F.B. and P.G. All co-authors read and approved the manuscript. More

  • in

    Coral calcification mechanisms in a warming ocean and the interactive effects of temperature and light

    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).
    Google Scholar 
    Poloczanska, E. S. et al. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62 (2016).Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377(2017).Cornwall, C. E. et al. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proc. R. Soc. B Biol. Sci. 285, 20181 (2018).
    Google Scholar 
    Schoepf, V. et al. Coral energy reserves and calcification in a high-CO2 world at two temperatures. PLoS One 8, e75049 (2013).CAS 

    Google Scholar 
    Kroeker, K. J. et al. Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Glob. Chang. Biol. 19, 1884–1896 (2013).Heron, S. F., Maynard, J. A., Van Hooidonk, R. & Eakin, C. M. Warming trends and bleaching stress of the world’s coral reefs 1985-2012. Sci. Rep. 6, 38402, 1–14 (2016).
    Google Scholar 
    Marshall, A. T. & Clode, P. Calcification rate and the effect of temperature in a zooxanthellate and an azooxanthellate scleractinian reef coral. Coral Reefs. 23, 218–224 (2004).
    Google Scholar 
    Jokiel, P. L. & Coles, S. L. Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol. 208, 201–208 (1977).
    Google Scholar 
    Rodolfo-Metalpa, R., Huot, Y. & Ferrier-Pagès, C. Photosynthetic response of the Mediterranean zooxanthellate coral Cladocora caespitosa to the natural range of light and temperature. J. Exp. Biol. 211, 1579–1586 (2008).CAS 

    Google Scholar 
    Cohen, A. L. & McConnaughey, T. A. Geochemical perspectives on coral mineralization. Rev. Mineral. Geochemistry 54, 151–187 (2003).CAS 

    Google Scholar 
    McCulloch, M. T., Falter, J. L., Trotter, J. & Montagna, P. Coral resilience to ocean acidification and global warming through pH up-regulation. Nat. Clim. Chang. 2, 1–5 (2012).
    Google Scholar 
    Venn, A. A., Tambutté, É., Holcomb, M., Allemand, D. & Tambutté, S. Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS One 6, e20013 (2011).CAS 

    Google Scholar 
    Cai, W.-J. et al. Microelectrode characterization of coral daytime interior pH and carbonate chemistry. Nat. Commun. 7, 11144 (2016).CAS 

    Google Scholar 
    Al-Horani, F. A., Al-Moghrabi, S. M. & de Beer, D. The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar. Biol. 142, 419–426 (2003).CAS 

    Google Scholar 
    Holcomb, M. et al. Coral calcifying fluid pH dictates response to ocean acidification. Sci. Rep. 4, 5207 (2014).CAS 

    Google Scholar 
    Holcomb, M., DeCarlo, T. M., Gaetani, G. A. & McCulloch, M. T. Factors affecting B/Ca ratios in synthetic aragonite. Chem. Geol. 437, 67–76 (2016).CAS 

    Google Scholar 
    McCulloch, M. T., D’Olivo, J. P., Falter, J., Holcomb, M. & Trotter, J. A. Coral calcification in a changing World: the interactive dynamics of pH and DIC up-regulation. Nat. Commun. 8, 15686 (2017).Tambutté, S. et al. Calcein labelling and electrophysiology: insights on coral tissue permeability and calcification. Proc. R. Soc. B 279, 19–27 (2012).
    Google Scholar 
    Trotter, J. et al. Quantifying the pH ‘vital effect’ in the temperate zooxanthellate coral Cladocora caespitosa: Validation of the boron seawater pH proxy. Earth Planet. Sci. Lett. 303, 163–173 (2011).CAS 

    Google Scholar 
    Schoepf, V., Jury, C. P., Toonen, R. & McCulloch, M. Coral calcification mechanisms facilitate adaptive response to ocean acidification. Proc. R. Soc. B 284, 2117 (2017).
    Google Scholar 
    Comeau, S., Cornwall, C. E. & McCulloch, M. T. Decoupling between the response of coral calcifying fluid pH and calcification to ocean acidification. Sci. Rep. 7, 7573 (2017).CAS 

    Google Scholar 
    Schoepf, V., D’Olivo, J. P., Rigal, C., Jung, E. M. U. & Mcculloch, M. T. Heat stress differentially impacts key calcification mechanisms in reef-building corals. Coral Reefs. https://doi.org/10.1007/s00338-020-02038-x (2021).Article 

    Google Scholar 
    Schoepf, V. et al. Short-term coral bleaching is not recorded by skeletal boron isotopes. PLoS One 9, e112011 (2014).
    Google Scholar 
    D’Olivo, J. P. & McCulloch, M. T. Response of coral calcification and calcifying fluid composition to thermally induced bleaching stress. Sci. Rep. 7, 2207 (2017).
    Google Scholar 
    Dishon, G. et al. A novel paleo-bleaching proxy using boron isotopes and high-resolution laser ablation to reconstruct coral bleaching events. Biogeosciences 12, 5677–5687 (2015).
    Google Scholar 
    Guillermic, M. et al. Thermal stress reduces pocilloporid coral resilience to ocean acidification by impairing control over calcifying fluid chemistry. Sci. Adv. 7, 20172117(2021).Ross, C. L., Falter, J. L. & McCulloch, M. T. Active modulation of the calcifying fluid carbonate chemistry (δ11B, B/Ca) and seasonally invariant coral calcification at sub-tropical limits. Sci. Rep. 7, 1–11 (2017). 13830.
    Google Scholar 
    D’Olivo, J. P., Ellwood, G., Decarlo, T. M. & Mcculloch, M. T. Deconvolving the long-term impacts of ocean acidification and warming on coral biomineralisation. Earth Planet. Sci. Lett. 526, 115785 (2019).
    Google Scholar 
    Ross, C. L., DeCarlo, T. M. & McCulloch, M. T. Environmental and physiochemical controls on coral calcification along a latitudinal temperature gradient in Western Australia. Glob. Chang. Biol. 25, 431–447 (2019).
    Google Scholar 
    Guo, W. Seawater temperature and buffering capacity modulate coral calcifying pH. Sci. Rep. 9, 1–13 (2019).
    Google Scholar 
    Reynaud, S., Ferrier-Pagès, C., Boisson, F., Allemand, D. & Fairbanks, R. G. Effect of light and temperature on calcification and strontium uptake in the scleractinian coral Acropora verweyi. Mar. Ecol. Prog. Ser. 279, 105–112 (2004).CAS 

    Google Scholar 
    Dissard, D. et al. Light and temperature effects on δ11B and B/Ca ratios of the zooxanthellate coral Acropora sp.: results from culturing experiments. Biogeosciences 9, 4589–4605 (2012).CAS 

    Google Scholar 
    Hönisch, B. et al. Assessing scleractinian corals as recorders for paleo-pH: Empirical calibration and vital effects. Geochim. Cosmochim. Acta 68, 3675–3685 (2004).
    Google Scholar 
    Comeau, S. et al. Flow-driven micro-scale pH variability affects the physiology of corals and coralline algae under ocean acidification. Sci. Reports 9, 1–12 (2019). 2019 91.
    Google Scholar 
    DeCarlo, T. M., Ross, C. L. & McCulloch, M. T. Diurnal cycles of coral calcifying fluid aragonite saturation state. Mar. Biol. 166, 1–6 (2019).CAS 

    Google Scholar 
    Ross, C. L., Schoepf, V., DeCarlo, T. M. & McCulloch, M. T. Mechanisms and seasonal drivers of calcification in the temperate coral Turbinaria reniformis at its latitudinal limits. Proc. R. Soc. B 285, 20180 (2018).
    Google Scholar 
    Krief, S. et al. Physiological and isotopic responses of scleractinian corals to ocean acidification. Geochim. Cosmochim. Acta 74, 4988–5001 (2010).CAS 

    Google Scholar 
    Coles, S. L. & Jokiel, P. L. Effects of temperature on photosynthesis and respiration in hermatypic corals. Mar. Biol. 43, 209–216 (1977).CAS 

    Google Scholar 
    Gattuso, J.-P., Allemand, D. & Frankignoulle, M. Photosynthesis and calcification at cellular, organismal and community levels in coral reefs: a review on interactions and control by carbonate chemistry. Am. Zool. 39, 160–183 (1999).CAS 

    Google Scholar 
    Kajiwara, K., Nagai, A., Ueno, S. & Yokochi, H. Examination of the effect of temperature, light intensity and zooxanthellae concentration on calcification and photosynthesis of scleractinian coral Acropora pulchra. J. Sch. Mar. Sci. Technol. Tokai Univ. 40, 95–103 (1995).
    Google Scholar 
    Reynaud, S. et al. Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification in a scleractinian coral. Glob Chang. Biol. 9, 1660–1668 (2003).
    Google Scholar 
    Furla, P., Galgani, I., Durand, I. & Allemand, D. Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. J. Exp. Biol. 203, 3445–3457 (2000).CAS 

    Google Scholar 
    Zoccola, D. et al. Bicarbonate transporters in corals point towards a key step in the evolution of cnidarian calcification. Sci. Rep. 5, 9983 (2015).CAS 

    Google Scholar 
    Allison, N. et al. Corals concentrate dissolved inorganic carbon to facilitate calcification. Nat. Commun. 5, 5741 (2014).CAS 

    Google Scholar 
    Vajed Samiei, J. et al. Variation in calcification rate of Acropora downingi relative to seasonal changes in environmental conditions in the northeastern Persian Gulf. Coral Reefs. https://doi.org/10.1007/s00338-016-1464-6 (2016).Article 

    Google Scholar 
    Kuffner, I. B., Hickey, T. D. & Morrison, J. M. Calcification rates of the massive coral Siderastrea siderea and crustose coralline algae along the Florida Keys (USA) outer-reef tract. Coral Reefs. 32, 987–997 (2013).
    Google Scholar 
    Courtney, T. A. et al. Environmental controls on modern scleractinian coral and reef-scale calcification. Sci. Adv. 3, e170135 (2017).
    Google Scholar 
    Burton, E. A. & Walter, L. M. Relative precipitation rates of aragonite and Mg calcite from seawater: Temperature or carbonate ion control? Geology 15, 111 (1987).CAS 

    Google Scholar 
    Lough, J. M. & Barnes, D. Environmental controls on growth of the massive coral Porites. J. Exp. Mar. Bio. Ecol. 245, 225–243 (2000).CAS 

    Google Scholar 
    Fitt, W. K., Brown, B., Warner, M. E. & Dunne, R. Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs. 20, 51–65 (2001).
    Google Scholar 
    Fisher, R., Bessell-Browne, P. & Jones, R. Synergistic and antagonistic impacts of suspended sediments and thermal stress on corals. Nat. Commun. 10, 1–9 (2019).CAS 

    Google Scholar 
    Teixeira, C. D. et al. Sustained mass coral bleaching (2016–2017) in Brazilian turbid-zone reefs: taxonomic, cross-shelf and habitat-related trends. Coral Reefs. 38, 801–813 (2019).
    Google Scholar 
    Bonesso, J. L., Leggat, W. & Ainsworth, T. D. Exposure to elevated sea-surface temperatures below the bleaching threshold impairs coral recovery and regeneration following injury. PeerJ 5, e3719 (2017).
    Google Scholar 
    Ulstrup, K. E., Kühl, M., van Oppen, M. J. H., Cooper, T. F. & Ralph, P. J. Variation in photosynthesis and respiration in geographically distinct populations of two reef-building coral species. Aquat. Biol. 12, 241–248 (2011).
    Google Scholar 
    Lough, J. M. & Cantin, N. E. Perspectives on massive coral growth rates in a changing ocean. Biol. Bull. 226, 187–202 (2014).
    Google Scholar 
    Howells, E. J., Berkelmans, R., van Oppen, M. J. H., Willis, B. L. & Bay, L. K. Historical thermal regimes define limits to coral acclimatization. Ecology 94, 1078–1088 (2013).
    Google Scholar 
    Veron, J. E. N. Corals of the world. Townsville, Australia (Australian Institute of Marine Science, 2000).Foster, T., Short, J., Falter, J. L., Ross, C. & McCulloch, M. T. Reduced calcification in Western Australian corals during anomalously high summer water temperatures. J. Exp. Mar. Bio. Ecol. 461, 133–143 (2014).CAS 

    Google Scholar 
    Ross, C. L., Falter, J. L., Schoepf, V. & McCulloch, M. T. Perennial growth of hermatypic corals at Rottnest Island, Western Australia (32°S). PeerJ 3, e781 (2015).
    Google Scholar 
    McCulloch, M. T., Holcomb, M., Rankenburg, K. & Trotter, J. A. Rapid, high-precision measurements of boron isotopic compositions in marine carbonates. Rapid Commun. Mass Spectrom. RCM 28, 2704–2712 (2014).CAS 

    Google Scholar 
    Okai, T., Suzuki, A., Kawahata, H., Terashima, S. & Imai, N. Preparation of a new Geological Survey of Japan geochemical reference material: Coral JCp-1. Geostand. Newsl 26, 95–99 (2002).CAS 

    Google Scholar 
    Dickson, A. G. Thermodynamics of the dissociation of boric acid in synthetic seawater from 273.15 to 318.15 K. Deep Sea Res. Part A. Oceanogr. Res. Pap. 37, 755–766 (1990).CAS 

    Google Scholar 
    McCulloch, M. T. et al. Resilience of cold-water scleractinian corals to ocean acidification: Boron isotopic systematics of pH and saturation state up-regulation. Geochim. Cosmochim. Acta 87, 21–34 (2012).CAS 

    Google Scholar 
    Cornwall, C. E. & Hurd, C. L. Experimental design in ocean acidification research: problems and solutions. ICES J. Mar. Sci. 73, 572–581 (2015). More

  • in

    Accumulation-depuration data collection in support of toxicokinetic modelling

    Storage and displayAll collected datasets (directly downloadable as tabular files), the bibtex file with all references, all reports and all kinetic bioaccumulation metric estimates are publicly available on Zenodo17. An rmarkdown file18,19 was created to build the overview table with information collected from the name of the dataset and from the dataset itself (e.g., column headers, number of data, number of replicates), as well as from the bibtex file. The R package DT was additionally used20 to combine all collected information in a user-friendly manner including a convenient search tool, and the rmarkdown file was finally compiled19 in HTML format for display to the user in packs of 10 lines by default. In such a way, each new dataset added into the repository will compile the rmarkdown file automatically for update.In parallel, the database can also be accessed directly via http://lbbe-shiny.univ-lyon1.fr/mosaic-bioacc/data/database/TK_database.html, or from MOSAICbioacc clicking on the “More scientific TK data” button. An example of the output of the overview table is shown in Fig. 2, while the full table is provided in the supplementary information (Table S2). The collected raw TK data of the database consist in the time-course of several types of chemical substances bioaccumulated in various species via different exposure routes.Fig. 2Screenshot of the first page of the overview table of the database available from MOSAICbioacc.Full size imageDatasets overviewEach dataset is summarized by:

    the file name (raw data directly downloadable by clicking on the file name, in text or CSV format),

    the genus of the tested organism,

    the category of the organism (e.g., aquatic, terrestrial, etc.),

    the tested chemical substance,

    the duration of the accumulation phase,

    the tested exposure routes (e.g., water, sediment, food, pore water),

    the total number of observations in the dataset (plus the number of replicate(s) in brackets),

    the kinetic bioaccumulation metric median value with its 95% uncertainty interval,

    the report which contains all the outputs from MOSAICbioacc (in PDF format),

    the link to the reference or the source of the data,

    some additional comments (e.g., lipid fraction, growth, biotransformation, if exposure was done for chemical mixtures or not, if total radioactivity was used or not, etc.).

    A summary of all datasets is presented in Table 1. Genus were separated in 12 categories: aquatic invertebrates (n = 105), fish (n = 42), insects (n = 17), aquatic worms (n = 10), terrestrial worms (n = 16), seawater sponges (n = 2), seawater plants (n = 1), aquatic algae (n = 1), terrestrial invertebrates (n = 1), vertebrates other than fish (n = 4), marine invertebrates (n = 8), and heterotrichea (n = 4). The most represented genus in the database are Gammarus (aquatic invertebrate, n = 43) and Daphnia (aquatic invertebrate, n = 27), followed by Oncorhynchus (fish, n = 15), genus that are classically used in ecotoxicological experiments. Recommended genus by OECD guidelines for bioaccumulation tests are Eisenia and Enchytraeus for terrestrial organisms (OECD 317)21, and Tubifex or Lumbriculus for aquatic invertebrates exposed to sediment (OECD 315)22; some datasets for these specific species are available in the database (n = 24).Table 1 Summary of the collected TK datasets.Full size tableChemical substances were divided in 10 classes following at the best the nomenclature used in Standartox23: pesticides (n = 71), hydrocarbons (n = 37), metals (n = 20), nanoparticules (n = 23), polychlorobiphenyls (PCB, n = 22), flame retardants (brominated or chlorinated, n = 8), pharmaceutical products (n = 14), PFAS (n = 7), octyphenol (n = 2) and other (n = 7). Among all datasets, the majority of bioaccumulation tests were performed via spiked water (n = 137). Besides, 34 datasets account for biotransformation processes, considering from 1 to 8 metabolites.According to ECHA (2017)2, BCF below 1,000 means that the chemical substance is not bioaccumulative, whereas one ranging between 1,000 and 5,000 corresponds to a bioaccumulative chemical substance: low bioaccumulative if BCF ∈]1,000; 2,000]; mid-bioaccumulative if BCF ∈]2,000; 5,000]. If BCF is >5000, the chemical substance is classified as very bioaccumulative. These ranges are reported in Table 1, where BCF median estimates are >5000 for 25 datasets, indicating a very bioaccumulative capacity of the corresponding chemical substances for the corresponding genus. Concerning BSAF and BMF estimates, their value must be compared to threshold 1. A median BSAF estimate >1 indicates that the corresponding chemical substance can bioaccumulate from soil or sediment into organisms at the base of the non-aquatic food chain24,25; a median BMF estimate >1 indicates that the corresponding chemical substance can biomagnify in the trophic relationship under consideration26. In the database, 16 datasets in 36 led to BSAF >1, for genus Eisenia (n = 2), Enchytraeus (n = 6), Gallus (n = 1), Lumbriculus (n = 2), Metaphire (n = 2), Physa (n = 1), Radix (n = 2)), while 8 datasets in 38 led to BMF >1, for genus Gallus (n = 1), Oncorhynchus (n = 5) and Perca (n = 2). On an ecotoxicological point of view, the highest BCF estimates were obtained for genus Culex and Sialis exposed to chlorpyrifos due to a very low estimate of the elimination rate, for genus Gammarus and Calanus exposed to hydrocarbons, and several aquatic invertebrates exposed to pesticides, especially chlorpyrifos (n = 4), attesting to the potential high bioaccumulation capacity and high risk of toxicity associated with this chemical substance for aquatic organisms. Overall, aquatic invertebrates seem to be the most sensitive category of organisms in terms of bioaccumulation of chemical substances representing 20 in the 25 datasets with a BCF estimates >5000. More

  • in

    Cross-biome antibiotic resistance decays after millions of years of soil development

    Van Goethem MW, Pierneef R, Bezuidt OKI, Van De Peer Y, Cowan DA, Makhalanyane TP. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome. 2018;6:40.Article 

    Google Scholar 
    D’Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science. 2006;311:374–7.Article 

    Google Scholar 
    Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol. 2010;8:251–9.CAS 
    Article 

    Google Scholar 
    Martinez JL, Coque TM, Baquero F. What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol. 2015;13:116–23.CAS 
    Article 

    Google Scholar 
    Genilloud O. Actinomycetes: still a source of novel antibiotics. Nat Prod Rep. 2017;34:1203–32.CAS 
    Article 

    Google Scholar 
    Ochoa-Hueso R, Plaza C, Moreno-Jimenez E, Delgado-Baquerizo M. Soil element coupling is driven by ecological context and atomic mass. Ecol Lett. 2021;24:319–26.Article 

    Google Scholar 
    Wardle DA, Walker LR, Bardgett RD. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science. 2004;305:509–13.CAS 
    Article 

    Google Scholar 
    Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, et al. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology. 1995;76:1407–24.Article 

    Google Scholar 
    Walker LR, Wardle DA, Bardgett RD, Clarkson BD. The use of chronosequences in studies of ecological succession and soil development. J Ecol. 2010;98:725–36.Article 

    Google Scholar 
    Delgado-Baquerizo M, Reich PB, Bardgett RD, Eldridge DJ, Lambers H, Wardle DA, et al. The influence of soil age on ecosystem structure and function across biomes. Nat Commun. 2020;11:4721.CAS 
    Article 

    Google Scholar 
    Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol. 2010;8:260–71.CAS 
    Article 

    Google Scholar 
    Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA. 2013;110:3435–40.CAS 
    Article 

    Google Scholar 
    Zhu YG, Zhao Y, Li B, Huang CL, Zhang SY, Yu S, et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol. 2017;2:16270.CAS 
    Article 

    Google Scholar 
    Li J, Cao J, Zhu YG, Chen QL, Shen F, Wu Y, et al. Global survey of antibiotic resistance genes in air. Environ Sci Technol. 2018;52:10975–84.CAS 
    Article 

    Google Scholar 
    Delgado-Baquerizo M, Bardgett RD, Vitousek PM, Maestre FT, Williams MA, Eldridge DJ, et al. Changes in belowground biodiversity during ecosystem development. Proc Natl Acad Sci USA. 2019;116:6891–6.CAS 
    Article 

    Google Scholar 
    Ortiz-Álvarez R, Fierer N, de Los Ríos A, Casamayor EO, Barberán A. Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession. ISME J. 2018;12:1658–67.Article 

    Google Scholar 
    Shen J, Li Z-M, Hu H, Zeng J, Zhang L-M, He J, et al. Distribution and succession feature of antibiotic resistance genes along a soil development chronosequence in Urumqi No. 1 Glacier of China. Front Microbiol. 2019;10:1569.Article 

    Google Scholar 
    Drenovsky RE, Vo D, Graham KJ, Scow KM. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Micro Ecol. 2004;48:424–30.CAS 
    Article 

    Google Scholar 
    Bastida F, Eldridge DJ, Garcia C, Kenny Png G, Bardgett RD, Delgado-Baquerizo M. Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes. ISME J. 2021;15:2081–91.CAS 
    Article 

    Google Scholar  More