Resident birds are more behaviourally plastic than migrants
Hall, M. J., Burns, A. L., Martin, J. M. & Hochuli, D. F. Flight initiation distance changes across landscapes and habitats in a successful urban coloniser. Urban Ecosyst. https://doi.org/10.1007/s11252-020-00969-5 (2020).Article
 Google Scholar 
 Møller, A. P., Samia, D. S. M., Weston, M. A., Guay, P. J. & Blumstein, D. T. Flight initiation distances in relation to sexual dichromatism and body size in birds from three continents. Biol. J. Linn. Soc. 117, 823–831 (2016).
 Google Scholar 
 Morelli, F. et al. Contagious fear: Escape behavior increases with flock size in European gregarious birds. Ecol. Evol. 9, 6096–6104 (2019).PubMed 
 PubMed Central 
 Google Scholar 
 Samia, D. S. M. et al. Rural-urban differences in escape behavior of European birds across a latitudinal gradient. Front. Ecol. Evol. 5, 66 (2017).ADS 
 Google Scholar 
 Blumstein, D. T. Developing an evolutionary ecology of fear: How life history and natural history traits affect disturbance tolerance in birds. Anim. Behav. 71, 389–399 (2006).
 Google Scholar 
 McFarland, D. Oxford companion to animal behavior. (Oxford University Press, 1987).Stankowich, T. & Blumstein, D. T. Fear in animals: A meta-analysis and review of risk assessment. Proc. R. Soc. B Biol. Sci. 272, 2627–2634 (2005).
 Google Scholar 
 Lima, S. L. Maximizing feeding efficiency and minimizing time exposed to predators: a trade-off in the black-capped chickadee. Oecologia 66, 60–67 (1985).ADS 
 PubMed 
 Google Scholar 
 Sol, D. et al. Risk-taking behavior, urbanization and the pace of life in birds. Behav. Ecol. Sociobiol. 72, 59 (2018).
 Google Scholar 
 Lockwood, R., Swaddle, J. P. & Rayner, J. M. V. Avian Wingtip Shape Reconsidered: Wingtip Shape Indices and Morphological Adaptations to Migration. J. Avian Biol. 29, 273–292 (1998).
 Google Scholar 
 Møller, A. P. Birds. in Escaping from predators: An integrative view of escape decisions and refuge use (eds. Cooper, W. E. J. & Blumstein, D. T.) 88–112 (Cambridge University Press, 2015).Møller, A. P. Flight distance of urban birds, predation and selection for urban life. Behav. Ecol. Sociobiol. 63, 63–75 (2008).
 Google Scholar 
 Fernández-Juricic, E. et al. Relationships of anti-predator escape and post-escape responses with body mass and morphology: a comparative avian study. Evol. Ecol. Res. 8, 731–752 (2006).
 Google Scholar 
 Weston, M. A., Mcleod, E. M., Blumstein, D. T. & Guay, P. J. A review of flight-initiation distances and their application to managing disturbance to Australian birds. Emu 112, 269–286 (2012).
 Google Scholar 
 Hemmingsen, A. The relation of shyness (flushing distance) to body size. Spolia Zool Musei Hauniensis 11, 74–76 (1951).
 Google Scholar 
 Blumstein, D. T. Flight-initiation distance in birds is dependent on intruder starting distance. J. Wildl. Manage. 67, 852–857 (2013).
 Google Scholar 
 Glover, H. K., Weston, M. A., Maguire, G. S., Miller, K. K. & Christie, B. A. Towards ecologically meaningful and socially acceptable buffers: Response distances of shorebirds in Victoria, Australia, to human disturbance. Landsc. Urban Plan. 103, 326–334 (2011).
 Google Scholar 
 Geist, C., Liao, J., Libby, S. & Blumstein, D. T. Does intruder group size and orientation affect flight initiation distance in birds?. Anim. Biodivers. Conserv. 28, 69–73 (2001).
 Google Scholar 
 Mikula, P. Pedestrian density influences flight distances of urban birds. Ardea 102, 53–60 (2014).
 Google Scholar 
 Piratelli, A. J., Favoretto, G. R. & de Almeida Maximiano, M. F. Factors affecting escape distance in birds. Zoologia 32, 438–444 (2015).Burger, J. & Gochfeld, M. Human activity influence and diurnal and nocturnal foraging of Sanderlings (Calidris alba). Condor 93, 259–265 (1991).
 Google Scholar 
 Møller, A. P. & Garamszegi, L. Z. Between individual variation in risk-taking behavior and its life history consequences. Behav. Ecol. 23, 843–853 (2012).
 Google Scholar 
 Ferguson, S. M., Gilson, L. N. & Bateman, P. W. Look at the time: diel variation in the flight initiation distance of a nectarivorous bird. Behav. Ecol. Sociobiol. 73, 147 (2019).
 Google Scholar 
 Garamszegi, L. Z. & Møller, A. P. Partitioning within-species variance in behaviour to within- and between-population components for understanding evolution. Ecol. Lett. 20, 599–608 (2017).PubMed 
 Google Scholar 
 Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CAS 
 PubMed 
 Google Scholar 
 Dufour, P. et al. Reconstructing the geographic and climatic origins of long-distance bird migrations. J. Biogeogr. 47, 155–166 (2020).
 Google Scholar 
 Sol, D. et al. Evolutionary divergence in brain size between migratory and resident birds. PLoS ONE 5, e9617 (2010).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Bonnet-Lebrun, A. S., Somveille, M., Rodrigues, A. S. L. & Manica, A. Exploring intraspecific variation in migratory destinations to investigate the drivers of migration. Oikos 130, 187–196 (2021).
 Google Scholar 
 Zurell, D., Gallien, L., Graham, C. H. & Zimmermann, N. E. Do long-distance migratory birds track their niche through seasons?. J. Biogeogr. 45, 1459–1468 (2018).
 Google Scholar 
 Samia, D. S. M., Nakagawa, S., Nomura, F., Rangel, T. F. & Blumstein, D. T. Increased tolerance to humans among disturbed wildlife. Nat. Commun. 6, 8877 (2015).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Ydenberg, R. C. & Dill, L. M. The economics of fleeing from predators. Adv. Study Behav. 16, 229–249 (1986).
 Google Scholar 
 Cooper, W. E. J. & Blumstein, D. T. Escape behavior: importance, scope, and variables. in Escaping from predators: An integrative view of escape decisions (eds. Cooper, W. E. J. & Blumstein, D. T.) 3–14 (Cambridge University Press, 2015). https://doi.org/10.1017/CBO9781107447189.002.Sayol, F., Sol, D. & Pigot, A. L. Brain size and life history interact to predict urban tolerance in birds. Front. Ecol. Evol. 8, 58 (2020).
 Google Scholar 
 Sayol, F., Downing, P. A., Iwaniuk, A. N., Maspons, J. & Sol, D. Predictable evolution towards larger brains in birds colonizing oceanic islands. Nat. Commun. 9, 2820 (2018).ADS 
 PubMed 
 PubMed Central 
 Google Scholar 
 Tobias, J. A. & Pigot, A. L. Integrating behaviour and ecology into global biodiversity conservation strategies. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190012 (2019).
 Google Scholar 
 Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).
 Google Scholar 
 Kamilar, J. M. & Cooper, N. Phylogenetic signal in primate behaviour, ecology and life history. Philos. Trans. R. Soc. B Biol. Sci. 368, 20120341–22012034 (2013).
 Google Scholar 
 Machado, J. P., Antunes, A., Borges, R., Gomes, C. & Rocha, A. P. Measuring phylogenetic signal between categorical traits and phylogenies. Bioinformatics https://doi.org/10.1093/bioinformatics/bty800 (2018).Article 
 Google Scholar 
 Ericson, P. G. P. et al. Diversification of Neoaves: integration of molecular sequence data and fossils. Biol. Lett. 2, 543–547 (2006).PubMed 
 PubMed Central 
 Google Scholar 
 Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
 PubMed 
 Google Scholar 
 Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 
 Google Scholar 
 Revell, L. J. & Chamberlain, S. A. Rphylip: An R interface for PHYLIP R package. (2014).Blomberg, S. P. & Garland, T. Tempo and mode in evolution: phylogenetic inertia, adaptation and comparative methods. J. Evol. Biol. 15, 899–910 (2003).
 Google Scholar 
 Keck, F., Rimet, F., Bouchez, A. & Franc, A. Phylosignal: An R package to measure, test, and explore the phylogenetic signal. Ecol. Evol. 6, 2774–2780 (2016).PubMed 
 PubMed Central 
 Google Scholar 
 Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
 Google Scholar 
 Kot, M. Adaptation: Statistics and a null model for estimating phylogenetic effects. Syst. Zool. 39, 227–241 (1990).
 Google Scholar 
 Blomberg, S. P., Garland, T. J. & Ives, A. R. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution (N. Y.) 57, 717–745 (2003).
 Google Scholar 
 Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).ADS 
 CAS 
 PubMed 
 Google Scholar 
 Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 
 Google Scholar 
 McCullagh, P. & Nelder, J. A. Generalized Linear Models. (Chapman and Hall, 1989).Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-140. 1–117 (2019).Nakazawa, M. ‘fmsb’ Functions for Medical Statistics Book with some Demographic Data – R package version 0.6.1. (2017).R Development Core Team. R: A language and environment for statistical computing. (2021).Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S. (Springer, 2002). https://doi.org/10.1007/978-0-387-21706-2. More
 
 
