More stories

  • in

    Western boundary currents drive sun-coral (Tubastraea spp.) coastal invasion from oil platforms

    Katsanevakis, S. et al. Impacts of invasive alien marine species on ecosystem services and biodiversity: A pan-European review. Aquat. Invasions 9, 391–423 (2014).
    Google Scholar 
    Huxel, G. R. Rapid displacement of native species by invasive species: Effects of hybridization. Biol. Conserv. 89, 143–152 (1999).
    Google Scholar 
    Molnar, J. L., Gamboa, R. L., Revenga, C. & Spalding, M. D. Assessing the global threat of invasive species to marine biodiversity. Front. Ecol. Environ. 6, 485–492 (2008).
    Google Scholar 
    Blackburn, T. M. et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011).PubMed 

    Google Scholar 
    Ferreira, C. E. L., Gonçalves, J. E. A. & Coutinho, R. Ship hulls and oil platforms as potential vectors to marine species introduction. J. Coast. Res. SI 39 (Pro), 1341–1346 (2006).
    Google Scholar 
    Glasby, T. M., Connell, S. D., Holloway, M. G. & Hewitt, C. L. Nonindigenous biota on artificial structures: Could habitat creation facilitate biological invasions?. Mar. Biol. 151, 887–895 (2007).
    Google Scholar 
    Hedge, L. H. & Johnston, E. L. Propagule pressure determines recruitment from a commercial shipping pier. Biofouling 28, 73–85 (2012).PubMed 

    Google Scholar 
    Capel, K. C. C., Creed, J., Kitahara, M. V., Chen, C. A. & Zilberberg, C. Multiple introductions and secondary dispersion of Tubastraea spp. in the Southwestern Atlantic. Sci. Rep. 9, 1–11 (2019).CAS 

    Google Scholar 
    De Paula, A. F. & Creed, J. C. Two species of the coral Tubastraea (Cnidaria, Scleractinia) in Brazil: A case of accidental introduction. Bull. Mar. Sci. 74, 175–183 (2004).
    Google Scholar 
    Lages, B. G., Fleury, B. G., Menegola, C. & Creed, J. C. Change in tropical rocky shore communities due to an alien coral invasion. Mar. Ecol. Prog. Ser. 438, 85–96 (2011).ADS 

    Google Scholar 
    Mantelatto, M. C., Creed, J. C., Mourão, G. G., Migotto, A. E. & Lindner, A. Range expansion of the invasive corals Tubastraea coccinea and Tubastraea tagusensis in the Southwest Atlantic. Coral Reefs 30, 397–397 (2011).ADS 

    Google Scholar 
    do Santos, L. A. H., Ribeiro, F. V. & Creed, J. C. Antagonism between invasive pest corals Tubastraea spp. and the native reef-builder Mussismilia hispida in the southwest Atlantic. J. Exp. Mar. Biol. Ecol. 449, 69–76 (2013).
    Google Scholar 
    Miranda, R. J., Cruz, I. C. S. & Barros, F. Effects of the alien coral Tubastraea tagusensis on native coral assemblages in a southwestern Atlantic coral reef. Mar. Biol. 163, 1–12 (2016).CAS 

    Google Scholar 
    Silva, A. G., Lima, R. P., Gomes, A. N., Fleury, B. G. & Creed, J. C. Expansion of the invasive corals Tubastraea coccinea and Tubastraea tagusensis into the tamoios ecological station marine protected area, Brazil. Aquat. Invasions 6, S105–S110 (2011).
    Google Scholar 
    Mizrahi, D., Navarrete, S. A. & Flores, A. A. V. Groups travel further: Pelagic metamorphosis and polyp clustering allow higher dispersal potential in sun coral propagules. Coral Reefs 33, 443–448 (2014).ADS 

    Google Scholar 
    De Paula, A. F., De Oliveira Pires, D. & Creed, J. C. Reproductive strategies of two invasive sun corals (Tubastraea spp.) in the southwestern Atlantic. J. Mar. Biol. Assoc. UK 94, 481–492 (2014).
    Google Scholar 
    Capel, K. C. C. et al. Clone wars: Asexual reproduction dominates in the invasive range of Tubastraea spp. (Anthozoa: Scleractinia) in the South-Atlantic Ocean. PeerJ 2017, 1–21 (2017).
    Google Scholar 
    Luz, B. L. P., Di Domenico, M., Migotto, A. E. & Kitahara, M. V. Life-history traits of Tubastraea coccinea: Reproduction, development, and larval competence. Ecol. Evol. 10, 6223–6238 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Kitahara, M. V. Species richness and distribution of azooxanthellate scleractinia in Brazil. Bull. Mar. Sci. 81, 497–518 (2007).
    Google Scholar 
    da Silva, A. G., de Paula, A. F., Fleury, B. G. & Creed, J. C. Eleven years of range expansion of two invasive corals (Tubastraea coccinea and Tubastraea tagusensis) through the southwest Atlantic (Brazil). Estuar. Coast. Shelf Sci. 141, 9–16 (2014).ADS 

    Google Scholar 
    Creed, J. C. et al. The invasion of the azooxanthellate coral Tubastraea (Scleractinia: Dendrophylliidae) throughout the world: History, pathways and vectors. Biol. Invasions 19, 283–305 (2017).
    Google Scholar 
    Mantelatto, M. C., Pires, L. M., de Oliveira, G. J. G. & Creed, J. C. A test of the efficacy of wrapping to manage the invasive corals Tubastraea tagusensis and T. coccinea. Manag. Biol. Invasions 6, 367–374 (2015).
    Google Scholar 
    Crivellaro, M. S. et al. Fighting on the edge: Reproductive effort and population structure of the invasive coral Tubastraea coccinea in its southern Atlantic limit of distribution following control activities. Biol. Invasions 23, 811–823 (2021).
    Google Scholar 
    Creed, J. C., Casares, F. A., Oigman-Pszczol, S. S. & Masi, B. P. Multi-site experiments demonstrate that control of invasive corals (Tubastraea spp.) by manual removal is effective. Ocean Coast. Manag. 207, 105616 (2021).
    Google Scholar 
    Sammarco, P. W., Atchison, A. D., Boland, G. S., Sinclair, J. & Lirette, A. Geographic expansion of hermatypic and ahermatypic corals in the Gulf of Mexico, and implications for dispersal and recruitment. J. Exp. Mar. Biol. Ecol. 436–437, 36–49 (2012).
    Google Scholar 
    Sammarco, P. W., Atchison, A. D. & Boland, G. S. Coral settlement on oil/gas platforms in the northern Gulf of Mexico: Preliminary evidence of rarity. Gulf Mex. Sci. 32, 11–23 (2014).
    Google Scholar 
    López, C. et al. Invasive Tubastraea spp. and Oculina patagonica and other introduced scleractinians corals in the Santa Cruz de Tenerife (Canary Islands) harbor: Ecology and potential risks. Reg. Stud. Mar. Sci. 29, 100713 (2019).
    Google Scholar 
    Yeo, D. C. J. et al. Semisubmersible oil platforms: Understudied and potentially major vectors of biofouling-mediated invasions. Biofouling 26, 179–186 (2009).
    Google Scholar 
    Lockwood, J. L., Cassey, P. & Blackburn, T. M. The more you introduce the more you get: The role of colonization pressure and propagule pressure in invasion ecology. Divers. Distrib. 15, 904–910 (2009).
    Google Scholar 
    Sammarco, P. W., Atchison, A. D. & Boland, G. S. Expansion of coral communities within the Northern Gulf of Mexico via offshore oil and gas platforms. Mar. Ecol. Prog. Ser. 280, 129–143 (2004).ADS 

    Google Scholar 
    Macreadie, P. I., Fowler, A. M. & Booth, D. J. Rigs-to-reefs: Will the deep sea benefit from artificial habitat?. Front. Ecol. Environ. 9, 455–461 (2011).
    Google Scholar 
    Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies. Biol. Rev. 80, 205–225 (2005).PubMed 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).PubMed 

    Google Scholar 
    Peterson, R. G. & Stramma, L. Upper-level circulation in the South Atlantic Ocean. Prog. Oceanogr. 26, 1–73 (1991).ADS 

    Google Scholar 
    Johns, W. E. et al. Annual cycle and variability of the North Brazil current. J. Phys. Oceanogr. 28, 103–128 (1998).ADS 

    Google Scholar 
    Silveira, I. C. A. et al. Brazil current off the eastern Brazilian coast. Rev. Brasil. Oceanog. 48, 171–183 (2000).
    Google Scholar 
    Soutelino, R. G., Gangopadhyay, A. & da Silveira, I. C. A. The roles of vertical shear and topography on the eddy formation near the site of origin of the Brazil Current. Cont. Shelf Res. 70, 46–60 (2013).ADS 

    Google Scholar 
    D’Agostini, A., Gherardi, D. F. M. & Pezzi, L. P. Connectivity of marine protected areas and its relation with total kinetic energy. PLoS ONE 10, 1–19 (2015).
    Google Scholar 
    Endo, C. A. K., Gherardi, D. F. M., Pezzi, L. P. & Lima, L. N. Low connectivity compromises the conservation of reef fishes by marine protected areas in the tropical South Atlantic. Sci. Rep. 9, 1–11 (2019).
    Google Scholar 
    Hanski, I. Metapopulation dynamics. Nature 396, 41–49 (1998).ADS 
    CAS 

    Google Scholar 
    López-Duarte, P. C. et al. What controls connectivity? An empirical, multi-species approach. Integr. Comp. Biol. 52, 511–524 (2012).PubMed 

    Google Scholar 
    Batista, D. et al. Distribution of the invasive orange cup coral tubastraea coccinea lesson, 1829 in an upwelling area in the South Atlantic Ocean fifteen years after its first record. Aquat. Invasions 12, 23–32 (2017).
    Google Scholar 
    O’Connor, M. I. et al. Temperature control of larval dispersal and the implications for marine ecology, evolution, and conservation. Proc. Natl. Acad. Sci. USA. 104, 1266–1271 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cairns, S. Studies on the natural history of the Caribbean region. Stud. Fauna Curaçao other Caribb. … IXl, (2000).De Paula, A. F. & Creed, J. C. Spatial distribution and abundance of nonindigenous coral genus Tubastraea (Cnidaria, Scleractinia) around Ilha Grande, Brazil. Braz. J. Biol. 65, 661–673 (2005).CAS 
    PubMed 

    Google Scholar 
    Papacostas, K. J. et al. Biological mechanisms of marine invasions. Mar. Ecol. Prog. Ser. 565, 251–268 (2017).ADS 

    Google Scholar 
    Loureiro, T. G., Silva Gentil Anastácio, P. M., Souty-Grosset, C., Araujo, P. B. & Pereira Almerão, M. Red swamp crayfish: Biology, ecology and invasion—an overview. Nauplius 23, 1–19 (2015).
    Google Scholar 
    Shanks, A. L., Grantham, B. A. & Carr, M. H. Propagule dispersal distance and the size and spacing of marine reserves. Ecol. Appl. 13, 159–169 (2003).
    Google Scholar 
    Siegel, D. A. et al. The stochastic nature of larval connectivity among nearshore marine populations. Proc. Natl. Acad. Sci. USA. 105, 8974–8979 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viard, F., Ellien, C. & Dupont, L. Dispersal ability and invasion success of Crepidula fornicata in a single gulf: Insights from genetic markers and larval-dispersal model. Helgol. Mar. Res. 60, 144–152 (2006).ADS 

    Google Scholar 
    Rodrigues, R. R., Rothstein, L. M. & Wimbush, M. Seasonal variability of the South Equatorial Current bifurcation in the Atlantic Ocean: A numerical study. J. Phys. Oceanogr. 37, 16–30 (2007).ADS 

    Google Scholar 
    Fenner, D. Biogeography of three Caribbean corals (Scleractinia) and the invasion of Tubastraea coccinea into the Gulf of Mexico. Bull. Mar. Sci. 69, 1175–1189 (2001).
    Google Scholar 
    Gouveia, M. B. et al. Persistent meanders and eddies lead to quasi-steady Lagrangian transport patterns in a weak western boundary current. Sci. Rep. 11, 1–18 (2021).
    Google Scholar 
    Campos, E. J., Gonçalves, J. & Ikeda, Y. Water mass characteristics and geostrophic circulation in the South Brazil bight: Summer of 1991. J. Geophys. Res. Oceans 100, 18537–18550. https://doi.org/10.1029/95jc01724 (1995).ADS 
    Article 

    Google Scholar 
    Silveira, I. C. A. et al. Is the meander growth in the Brazil Current system off Southeast Brazil due to baroclinic instability?. Dyn. Atmos. Ocean. 45, 187–207 (2008).ADS 

    Google Scholar 
    Lima, L. S. et al. Potential changes in the connectivity of marine protected areas driven by extreme ocean warming. Sci. Rep. 11, 1–12 (2021).
    Google Scholar 
    Thompson, D. M. et al. Variability in oceanographic barriers to coral larval dispersal: Do currents shape biodiversity?. Progr. Oceanogr. 165, 110–122 (2018).ADS 

    Google Scholar 
    Ellien, C., Thiébaut, E., Dumas, F., Salomon, J. C. & Nival, P. A modelling study of the respective role of hydrodynamic processes and larval mortality on larval dispersal and recruitment of benthic invertebrates: Example of Pectinaria koreni (Annelida: Polychaeta) in the Bay of Seine (English Channel). J. Plankton Res. 26, 117–132 (2004).
    Google Scholar 
    Leão, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. Corals and coral reefs of Brazil. In Latin American Coral Reefs (ed. Cortés, J.) 9–52 (Elsevier Science, 2003).
    Google Scholar 
    Dutra, G. F., Allen, G. R., Werner, T., et al. A rapid marine biodiversity assessment of the Abrolhos Bank, Bahia, Brazil. In RAP Bull. Mar. Biol. Assessment, Vol. 38 (Conservation International, 2005).Costa, T. J. F. et al. Expansion of an invasive coral species over Abrolhos Bank, Southwestern Atlantic. Mar. Pollut. Bull. 85, 252–253 (2014).CAS 
    PubMed 

    Google Scholar 
    Moura, R. L. et al. An extensive reef system at the Amazon River mouth. Sci. Adv. 2, 1–12 (2016).
    Google Scholar 
    Soares, M. O., Davis, M. & de Macêdo Carneiro, P. B. Northward range expansion of the invasive coral (Tubastraea tagusensis) in the southwestern Atlantic. Mar. Biodivers. 48, 1651–1654 (2018).
    Google Scholar 
    Rocha, L. A. & Rosa, I. L. Baseline assessment of reef fish assemblages of Parcel Manuel Luiz Marine State Park, Maranhão, north-east Brazil. J. Fish Biol. 58, 985–998 (2001).
    Google Scholar 
    Luz, B. L. P. & Kitahara, M. V. Could the invasive scleractinians Tubastraea coccinea and T. tagusensis replace the dominant zoantharian Palythoa caribaeorum in the Brazilian subtidal?. Coral Reefs 36, 875 (2017).ADS 

    Google Scholar 
    Cordeiro, C. A. M. M. et al. Conservation status of the southernmost reef of the Amazon Reef System: The Parcel de Manuel Luís. Coral Reefs 40, 165–185 (2021).
    Google Scholar 
    Rocha, L. A. Patterns of distribution and processes of speciation in Brazilian reef fishes. J. Biogeogr. 30, 1161–1171 (2003).
    Google Scholar 
    Cruz, R. et al. Life cycle and connectivity of the spiny lobster, Panulirus spp.: Case studies from Brazil and the Wider Caribbean (Decapoda, Achelata). Crustaceana 94, 603–645 (2021).
    Google Scholar 
    Castro, B. D., Lorenzzetti, J., Silveira, I. D. & Miranda, L. D. Estrutura termohalina e circulação na região entre o cabo de são tomé (rj) eo chuí (rs). O ambiente oceanográfco da plataforma continental e do talude na região sudeste-sul do Brasil 1, 11–120 (2006).
    Google Scholar 
    Dias, D. F., Pezzi, L. P., Gherardi, D. F. M. & Camargo, R. Modeling the spawning strategies and larval survival of the Brazilian sardine (Sardinella brasiliensis). Prog. Oceanogr. 123, 38–53 (2014).ADS 

    Google Scholar 
    Nickols, K. J., Wilson White, J., Largier, J. L. & Gaylord, B. Marine population connectivity: Reconciling large-scale dispersal and high self-retention. Am. Nat. 185, 196–211 (2015).PubMed 

    Google Scholar 
    Vinagre, C. et al. Food web organization following the invasion of habitat-modifying Tubastraea spp. corals appears to favour the invasive borer bivalve Leiosolenus aristatus. Ecol. Indic. 85, 1204–1209 (2018).
    Google Scholar 
    Capel, K. C. C., Creed, J. C. & Kitahara, M. V. Invasive corals trigger seascape changes in the southwestern Atlantic. Bull. Mar. Sci. 96, 217–218 (2020).
    Google Scholar 
    Silva, R. et al. Sun coral invasion of shallow rocky reefs: Effects on mobile invertebrate assemblages in Southeastern Brazil. Biol. Invasions 21, 1339–1350 (2019).
    Google Scholar 
    Creed, J. C. & De Paula, A. F. Substratum preference during recruitment of two invasive alien corals onto shallow-subtidal tropical rocky shores. Mar. Ecol. Prog. Ser. 330, 101–111 (2007).ADS 

    Google Scholar 
    Glynn, P. W. et al. Reproductive ecology of the azooxanthellate coral Tubastraea coccinea in the Equatorial Eastern Pacific: Part V. Dendrophylliidae. Mar. Biol. 153, 529–544 (2008).
    Google Scholar 
    Eckman, J. E. Closing the larval loop: Linking larval ecology to the population dynamics of marine benthic invertebrates. J. Exp. Mar. Biol. Ecol. 200, 207–237 (1996).
    Google Scholar 
    Cairns, S. D. & Zibrowius, H. Azooxanthellate Scleractinia from the Philippines and Indonesian regions. Mémoires du Muséum national d’Histoire naturelle, Vol. 172, (1997).Saura, S., Bodin, Ö. & Fortin, M. J. EDITOR’S CHOICE: Stepping stones are crucial for species’ long-distance dispersal and range expansion through habitat networks. J. Appl. Ecol. 51, 171–182 (2014).
    Google Scholar 
    Faria, L. C. & Kitahara, M. V. Invasive corals hitchhiking in the Southwestern Atlantic. Ecology 101, 1–3 (2020).
    Google Scholar 
    Mantelatto, M. C., Póvoa, A. A., Skinner, L. F., de Araujo, F. V. & Creed, J. C. Marine litter and wood debris as habitat and vector for the range expansion of invasive corals (Tubastraea spp.). Mar. Pollut. Bull. 160, 111659 (2020).CAS 
    PubMed 

    Google Scholar 
    Braga, M. D. A. et al. Retirement risks: Invasive coral on old oil platform on the Brazilian equatorial continental shelf. Mar. Pollut. Bull. 165, 112156 (2021).CAS 
    PubMed 

    Google Scholar 
    IMO. Anti-fouling systems. Online (2019). https://www.imo.org/en/OurWork/Environment/Pages/Anti-fouling.aspx. (Accessed 01 May 2021).Vander Zanden, M. J., Hansen, G. J. A., Higgins, S. N. & Kornis, M. S. A pound of prevention, plus a pound of cure: Early detection and eradication of invasive species in the Laurentian Great Lakes. J. Great Lakes Res. 36, 199–205 (2010).
    Google Scholar 
    Pimentel, D. et al. Economic and environmental threats of alien plant, animal, and microbe invasions. Agric. Ecosyst. Environ. 84(1), 1–20 (2001).
    Google Scholar 
    Shchepetkin, A. F. & McWilliams, J. C. The regional oceanic modeling system (ROMS): A split-explicit, free-surface, topography-following-coordinate oceanic model. Ocean Model 9, 347–404 (2005).ADS 

    Google Scholar 
    Shchepetkin, A. F. & McWilliams, J. C. Correction and commentary for “ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by haidvogel et al., j. comp. phys. 227, pp. 3595–3624. J. Comput. Phys. 228, 8985–9000 (2009).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Lett, C. et al. A Lagrangian tool for modelling ichthyoplankton dynamics. Environ. Model. Sofw. 23, 1210–1214 (2008).
    Google Scholar 
    Gouveia, M. B., Gherardi, D. F. M., Lentini, C. A. D., Dias, D. F. & Campos, P. C. Do the Brazilian sardine commercial landings respond to local ocean circulation?. PLoS ONE 12, 1–19 (2017).
    Google Scholar 
    Saha, S. et al. The NCEP climate forecast system reanalysis. Bull. Am. Meteorol. Soc. 91, 1015–1057 (2010).ADS 

    Google Scholar 
    Carton, J. A., Chepurin, G. A. & Chen, L. SODA3: A new ocean climate reanalysis. J. Clim. 31, 6967–6983 (2018).ADS 

    Google Scholar 
    Flather, R. A. A tidal model of the northeast pacific. Atmos. Ocean 25, 22–45 (1987).
    Google Scholar 
    Chapman, D. C. Numerical treatment of cross-shelf open boundaries in a barotropic coastal ocean model. J. Phys. Oceanogr. 15(8), 1060–1075 (1985).ADS 

    Google Scholar 
    Marchesiello, P., McWilliams, J. C. & Shchepetkin, A. Open boundary conditions for long-term integration of regional oceanic models. Ocean Model 3, 1–20 (2001).ADS 

    Google Scholar 
    Egbert, G. D. & Erofeeva, S. Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 19, 183–204 (2002).ADS 

    Google Scholar 
    Marchesiello, P., McWilliams, J. C. & Shchepetkin, A. Equilibrium structure and dynamics of the California current system. J. Phys. Oceanogr. 33, 753–783 (2003).ADS 

    Google Scholar 
    Mizrahi, D., Navarrete, S. A. & Flores, A. A. V. Uneven abundance of the invasive sun coral over habitat patches of different orientation: An outcome of larval or later benthic processes?. J. Exp. Mar. Biol. Ecol. 452, 22–30 (2014).
    Google Scholar 
    Silverman, B. W. Density Estimation for Statistics and Data Analysis (Chapman and Hall, 1986).MATH 

    Google Scholar  More

  • in

    Intra- and interpopulation transposition of mobile genetic elements driven by antibiotic selection

    Poirel, L. et al. Tn125-related acquisition of blaNDM-like genes in Acinetobacter baumannii. Antimicrob. Agents Chemother. 56, 1087–1089 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, R. et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 9, 1179 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Clark, N. C., Weigel, L. M., Patel, J. B. & Tenover, F. C. Comparison of Tn1546-like elements in vancomycin-resistant Staphylococcus aureus isolates from Michigan and Pennsylvania. Antimicrob. Agents Chemother. 49, 470–472 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, e00088-17 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Stokes, H. W. & Gillings, M. R. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol. Rev. 35, 790–819 (2011).CAS 

    Google Scholar 
    Ghaly, T. M. & Gillings, M. R. Mobile DNAs as ecologically and evolutionarily independent units of life. Trends Microbiol. 26, 904–912 (2018).CAS 

    Google Scholar 
    Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499, 219–222 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown-Jaque, M., Calero-Cáceres, W. & Muniesa, M. Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid https://doi.org/10.1016/j.plasmid.2015.01.001 (2015).Frantzeskakis, L. et al. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics 19, 381 (2018).Scott, K. P. The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract. Cell. Mol. Life Sci. 59, 2071–2082 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pezzella, C., Ricci, A., DiGiannatale, E., Luzzi, I. & Carattoli, A. Tetracycline and streptomycin resistance genes, transposons, and plasmids in Salmonella enterica isolates from animals in Italy. Antimicrob. Agents Chemother. 48, 903–908 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E. & Larsson, D. G. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol. 5, 648 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Imchen, M. & Kumavath, R. Shotgun metagenomics reveals a heterogeneous prokaryotic community and a wide array of antibiotic resistance genes in mangrove sediment. FEMS Microbiol. Ecol. 96, fiaa173 (2020).CAS 

    Google Scholar 
    Zhang, T., Zhang, X.-X. & Ye, L. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS ONE 6, e26041 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hu, H. et al. Novel plasmid and its variant harboring both a blaNDM-1 gene and type IV secretion system in clinical isolates of Acinetobacter lwoffii. Antimicrob. Agents Chemother. 56, 1698–1702 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smet, A. et al. Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: insertional events of transposons and insertion sequences. PLoS ONE 5, e11202 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Revilla, C. et al. Different pathways to acquiring resistance genes illustrated by the recent evolution of IncW plasmids. Antimicrob. Agents Chemother. 52, 1472–1480 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poirel, L., Dortet, L., Bernabeu, S. & Nordmann, P. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob. Agents Chemother. 55, 5403–5407 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Toleman, M. A., Spencer, J., Jones, L. & Walsh, T. R. blaNDM-1 is a chimera likely constructed in Acinetobacter baumannii. Antimicrob. Agents Chemother. 56, 2773–2776 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonnin, R. A., Poirel, L. & Nordmann, P. New Delhi metallo-β-lactamase-producing Acinetobacter baumannii: a novel paradigm for spreading antibiotic resistance genes. Future Microbiol. 9, 33–41 (2014).CAS 

    Google Scholar 
    Waterman, P. E. et al. Bacterial peritonitis due to Acinetobacter baumannii sequence type 25 with plasmid-borne New Delhi metallo-β-lactamase in Honduras. Antimicrob. Agents Chemother. 57, 4584–4586 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McGann, P. et al. Detection of New Delhi metallo-β-lactamase (encoded by blaNDM-1) in Acinetobacter schindleri during routine surveillance. J. Clin. Microbiol. 51, 1942–1944 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiang, X. et al. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. Commun. 8, 15784 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spanogiannopoulos, P., Waglechner, N., Koteva, K. & Wright, G. D. A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria. Proc. Natl Acad. Sci. USA 111, 7102–7107 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, J. et al. Marine sediment bacteria harbor antibiotic resistance genes highly similar to those found in human pathogens. Microb. Ecol. 65, 975–981 (2013).CAS 

    Google Scholar 
    D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Van Goethem, M. W. et al. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 6, 40 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Mindlin, S., Soina, V. S., Petrova, M. A. & Gorlenko, Zh. M. Isolation of antibiotic resistance bacterial strains from Eastern Siberia permafrost sediments. Genetika 44, 36–44 (2008).CAS 

    Google Scholar 
    Cohen, S. N. Transposable genetic elements and plasmid evolution. Nature 263, 731–738 (1976).CAS 

    Google Scholar 
    Wright, G. D. Environmental and clinical antibiotic resistomes, same only different. Curr. Opin. Microbiol. 51, 57–63 (2019).CAS 

    Google Scholar 
    von Wintersdorff, C. J. et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 7, 173 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Rankin, D. J., Rocha, E. P. C. & Brown, S. P. What traits are carried on mobile genetic elements, and why? Heredity (Edinb) https://doi.org/10.1038/hdy.2010.24 (2011).Kottara, A., Hall, J. P., Harrison, E. & Brockhurst, M. A. Variable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species. FEMS Microbiol. Ecol. 94, fix172 (2018).
    Google Scholar 
    Hall, J. P., Wood, A. J., Harrison, E. & Brockhurst, M. A. Source–sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. Proc. Natl Acad. Sci. USA 113, 8260–8265 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hall, J. P. J., Williams, D., Paterson, S., Harrison, E. & Brockhurst, M. A. Positive selection inhibits gene mobilisation and transfer in soil bacterial communities. Nat. Ecol. Evol. 1, 1348–1353 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Naumann, T. A. & Reznikoff, W. S. Tn5 transposase with an altered specificity for transposon ends. J. Bacteriol. 184, 233–240 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, H. et al. Increased plasmid copy number is essential for Yersinia T3SS function and virulence. Science 353, 492–495 (2016).CAS 

    Google Scholar 
    Sandegren, L. & Andersson, D. I. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat. Rev. Microbiol. 7, 578–588 (2009).CAS 

    Google Scholar 
    Dimitriu, T., Mathews, A. C. & Buckling, A. Increased copy number couples the evolution of plasmid horizontal transmission and plasmid-encoded antibiotic resistance. Proc. Natl Acad. Sci. USA 118, e2107818118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol. 172, 6568–6572 (1990).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lichtenstein, C. & Brenner, S. Site-specific properties of Tn7 transposition into the E. coli chromosome. Mol. Gen. Genet. 183, 380–387 (1981).CAS 

    Google Scholar 
    Bethke, J. H. et al. Environmental and genetic determinants of plasmid mobility in pathogenic Escherichia coli. Sci. Adv. 6, eaax3173 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mahillon, J. & Chandler, M. Insertion sequences. Microbiol. Mol. Biol. Rev. 62, 725–774 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siguier, P., Perochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36 (2006).CAS 

    Google Scholar 
    Seelke, R. W., Kline, B. C., Trawick, J. D. & Ritts, G. D. Genetic studies of F plasmid maintenance genes involved in copy number control, incompatability, and partitioning. Plasmid 7, 163–179 (1982).CAS 

    Google Scholar 
    Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Watve, M. M., Dahanukar, N. & Watve, M. G. Sociobiological control of plasmid copy number in bacteria. PLoS ONE 5, e9328 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Lehtinen, S. et al. Horizontal gene transfer rate is not the primary determinant of observed antibiotic resistance frequencies in Streptococcus pneumoniae. Sci. Adv. 6, eaaz6137 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ubeda, C. et al. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 56, 836–844 (2005).CAS 

    Google Scholar 
    Beaber, J. W., Hochhut, B. & Waldor, M. K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427, 72–74 (2004).CAS 

    Google Scholar 
    al‐Masaudi, S. B., Day, M. & Russell, A. D. Effect of some antibiotics and biocides on plasmid transfer in Staphylococcus aureus. J. Appl. Bacteriol. 71, 239–243 (1991).
    Google Scholar 
    Nichols, B. P. & Guay, G. G. Gene amplification contributes to sulfonamide resistance in Escherichia coli. Antimicrob. Agents Chemother. 33, 2042–2048 (1989).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Normark, S., Edlund, T., Grundström, T., Bergström, S. & Wolf-Watz, H. Escherichia coli K-12 mutants hyperproducing chromosomal beta-lactamase by gene repetitions. J. Bacteriol. 132, 912–922 (1977).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zienkiewicz, M., Kern-Zdanowicz, I., Carattoli, A., Gniadkowski, M. & Cegłowski, P. Tandem multiplication of the IS 26-flanked amplicon with the blaSHV-5 gene within plasmid p1658/97. FEMS Microbiol. Lett. 341, 27–36 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matthews, P. R. & Stewart, P. R. Amplification of a section of chromosomal DNA in methicillin-resistant Staphylococcus aureus following growth in high concentrations of methicillin. J. Gen. Microbiol. 134, 1455–1464 (1988).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sun, S., Berg, O. G., Roth, J. R. & Andersson, D. I. Contribution of gene amplification to evolution of increased antibiotic resistance in Salmonella typhimurium. Genetics 182, 1183–1195 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andersson, D. I. & Hughes, D. Gene amplification and adaptive evolution in bacteria. Annu. Rev. Genet. 43, 167–195 (2009).CAS 

    Google Scholar 
    Nicoloff, H., Perreten, V. & Levy, S. B. Increased genome instability in Escherichia coli lon mutants: relation to emergence of multiple-antibiotic-resistant (Mar) mutants caused by insertion sequence elements and large tandem genomic amplifications. Antimicrob. Agents Chemother. 51, 1293–1303 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertini, A. et al. Multicopy blaOXA-58 gene as a source of high-level resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother. 51, 2324–2328 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knapp, C. W. et al. Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures. Environ. Sci. Technol. 42, 5348–5353 (2008).CAS 

    Google Scholar 
    San Millan, A., Escudero, J. A., Gifford, D. R., Mazel, D. & MacLean, R. C. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat. Ecol. Evol. 1, 10 (2016).
    Google Scholar 
    Rodriguez-Beltran, J. et al. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nat. Ecol. Evol. 2, 873–881 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C. & San Millán, Á. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat. Rev. Microbiol. 19, 347–359 (2021).
    Google Scholar 
    Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3, 722–732 (2005).CAS 

    Google Scholar 
    You, L., Hoonlor, A. & Yin, J. Modeling biological systems using Dynetica—a simulator of dynamic networks. Bioinformatics 19, 435–436 (2003).CAS 

    Google Scholar 
    Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wingett, S. W. & Andrews, S. FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res. 7, 1338 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Blankenberg, D. et al. Manipulation of FASTQ data with Galaxy. Bioinformatics 26, 1783–1785 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Squid adjust their body color according to substrate

    Endler, J. A. Interactions between predators and prey. In Behavioural Ecology: An Evolutionary Approach 3rd edn (eds Krebs, J. R. & Davies, N. B.) 169–196 (Blackwell, 1991).
    Google Scholar 
    Stevens, M. & Merilaita, S. Animal camouflage: Current issues and new perspectives. Philos. Trans. R Soc. Lond. B 364, 423–427 (2009).
    Google Scholar 
    Stevens, M. & Merilaita, S. Animal camouflage: Function and mechanisms. In Animal Camouflage: Mechanisms and Function (eds Stevens, M. & Merilaita, S.) 1–17 (Cambridge University Press, 2011).
    Google Scholar 
    Reiter, S. & Laurent, G. Visual perception and cuttlefish camouflage. Curr. Opin. Neurobiol. 260, 47–54 (2020).
    Google Scholar 
    Cott, H. B. Adaptive Coloration in Animals (Methuen, 1940).
    Google Scholar 
    Cloney, R. A. & Florey, E. Ultrastructure of cephalopod chromatophore organs. Z. Zellforsch. Mikrosk. Anat. 89, 250–280 (1968).CAS 
    PubMed 

    Google Scholar 
    Borrelli, L., Gherardi, F. & Fiorito, G. A. Catalogue of Body Patterning in Cephalopoda (Firenze University Press, 2006).
    Google Scholar 
    Reiter, S. et al. Elucidating the control and development of skin patterning in cuttlefish. Nature 562, 361–366 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbosa, A., Allen, J. J., Mäthger, L. M. & Hanlon, R. T. Cuttlefish use visual cues to determine arm postures for camouflage. Proc. R Soc. B Biol. Sci. 279, 84–90 (2012).
    Google Scholar 
    Hanlon, R. T. Cephalopod dynamic camouflage. Curr. Biol. 17, R400-404 (2007).CAS 
    PubMed 

    Google Scholar 
    Hill, A. V. & Solandt, D. Y. Myograms from the chromatophores of Sepia. J. Physiol. Lond. 83, 13–14 (1935).
    Google Scholar 
    Williams, T. L. et al. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat. Commun. 10, 1–5 (2019).
    Google Scholar 
    Hanlon, R. T. et al. Rapid adaptive camouflage in cephalopods. In Animal Camouflage: Mechanisms and Functions (eds Stevens, M. & Merilaita, S.) 145–163 (Cambridge Univ Press, 2011).
    Google Scholar 
    Hanlon, R. T. & Messenger, J. B. Adaptive coloration in young cuttlefish (Sepia officinalis L.): The morphology and development of body patterns and their relation to behavior. Philos. Trans. R Soc. Lond. B 320, 437–487 (1988).ADS 

    Google Scholar 
    Ferguson, G., Messenger, J. B. & Budelmann, B. Gravity and light influence the countershading reflexes of the cuttlefish Sepia officinalis. J. Exp. Biol. 191, 247–256 (1994).CAS 
    PubMed 

    Google Scholar 
    Shohet, A. J., Baddeley, R. J., Anderson, J. C., Kelman, E. J. & Osorio, D. Cuttlefish responses to visual orientation of substrates, water flow and a model of motion camouflage. J. Exp. Biol. 209, 4717–4723 (2006).CAS 
    PubMed 

    Google Scholar 
    Barbosa, A. et al. Disruptive coloration in cuttlefish: A visual perception mechanism that regulates ontogenetic adjustment of skin patterning. J. Exp. Biol. 210, 1139–1147 (2007).PubMed 

    Google Scholar 
    Chiao, C. C., Chubb, C. & Hanlon, R. T. Interactive effects of size, contrast, intensity and configuration of background objects in evoking disruptive camouflage in cuttlefish. Vis. Res. 47, 2223–2235 (2007).PubMed 

    Google Scholar 
    Nakajima, R. & Ikeda, Y. A catalog of the chromatic, postural, and locomotor behaviors of the pharaoh cuttlefish (Sepia pharaonis) from Okinawa Island, Japan. Mar. Biodivers. 47, 735–753 (2017).
    Google Scholar 
    Packard, A. Chromatophore fields in the skin of the octopus. J. Physiol. 238, 38–40 (1974).
    Google Scholar 
    Caldwell, R. L., Ross, R., Rodaniche, A. F. & Huffard, C. L. Behavior and body patterns of the larger pacific striped octopus. PLoS ONE 10, e0134152 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gutnick, T., Shomrat, T., Mather, J. A. & Kuba, M. J. The cephalopod brain: Motion control, learning, and cognition. In Physiology of Molluscs: A Collection of Selected Reviews Vol. 2 (eds Salleudin, S. & Mukai, S.) 139–177 (Apple Academic Press, 2016).
    Google Scholar 
    Hanlon, R. T. & Messenger, J. B. Cephalopod Behaviour 2nd edn. (Cambridge University Press, 2018).
    Google Scholar 
    Cloney, R. & Brocco, S. Chromatophore organs, reflector cells, iridocytes, and leucophores. Am. Zool. 23, 581–592 (1983).
    Google Scholar 
    Mäthger, L. M. & Hanlon, R. T. Malleable skin coloration in cephalopods: Selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell Tissue Res. 329, 179 (2007).PubMed 

    Google Scholar 
    Josef, N., Berenshtein, I., Fiorito, G., Sykes, A. V. & Shashar, N. Camouflage during movement in the European cuttlefish (Sepia officinalis). J. Exp. Biol. 218, 3391–3398 (2015).PubMed 

    Google Scholar 
    Josef, N. et al. Size matters: Observed and modeled camouflage response of European Cuttlefish (Sepia officinalis) to different substrate patch sizes during movement. Front. Physiol. 7, 671 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Poulton, E. B. The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects (D. Appleton, 1890).
    Google Scholar 
    Zhang, Y. & Richardson, J. S. Unidirectional prey–predator facilitation: Apparent prey enhance predators’ foraging success on cryptic prey. Biol. Lett. 3, 348–351 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Troscianko, T., Benton, C. P., Lovell, P. G., Tolhurst, D. J. & Pizlo, Z. Camouflage and visual perception. Philos. Trans. R Soc. B 364, 449–461 (2009).
    Google Scholar 
    Land, M. F. & Nilsson, D. E. Animal Eyes (Oxford University Press, 2012).
    Google Scholar 
    Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. Visual Ecology (Princeton University Press, 2014).
    Google Scholar 
    Hanlon, R. T. & Messenger, J. B. Cephalopod Behaviour (Cambridge University Press, 1996).
    Google Scholar 
    Staudinger, M. D., Hanlon, R. T. & Juanes, F. Primary and secondary defences of squid to cruising and ambush fish predators: Variable tactics and their survival value. Anim. Behav. 81, 585–594 (2011).
    Google Scholar 
    Ferguson, G. P. & Messenger, J. B. A countershading reflex in cephalopods. Proc. R. Soc. B 243, 63–67 (1991).ADS 

    Google Scholar 
    Zylinski, S. & Johnsen, S. Mesopelagic cephalopods switch between transparency and pigmentation to optimize camouflage in the deep. Curr. Biol. 21, 1937–1941 (2011).CAS 
    PubMed 

    Google Scholar 
    Young, R. E. & Roper, C. F. E. Bioluminescent countershading in mid water animals: Evidence from living squid. Science 191, 1046–1048 (1976).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jereb, P. & Roper, C. F. E. Cephalopods of the World. An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date. Myopsid and Oegopsid Squids Vol. 2 (FAO, 2010).
    Google Scholar 
    Okutani, T. Life history of the oval squid, Sepioteuthis lessoniana. Saibai Giken 13, 69–75 (1984) ((in Japanese)).
    Google Scholar 
    Segawa, S. Food consumption, food conversion and growth rates of the oval squid Sepioteuthis lessoniana by laboratory experiments. Nippon Suisan Gakkai Shi 56, 217–222 (1990).
    Google Scholar 
    Izuka, T., Segawa, S., Okutani, T. & Numachi, K. Evidence on the existence of three species in the oval squid Sepioteuthis lessoniana complex in Ishigaki Island, Okinawa, southwestern Japan, by isozyme analyses. Venus Jpn. J. Malacol/Kairuigaku Zasshi 53, 217–228 (1994).
    Google Scholar 
    Izuka, T. Biochemical study of the population heterogeneity and distribution of the oval squid Sepioteuthis lessoniana complex in southwestern Japan. Am. Malac. Bull. 12, 129–135 (1996).
    Google Scholar 
    Imai, H., & Aoki, M. Genetic diversity and genetic heterogeneity of bigfin reef squid “Sepioteuthis lessoniana” species complex in northwestern Pacific Ocean. in Analysis of Genetic Variation in Animals (Caliskan, M. ed). 151–166. (InTech, 2012).Cheng, S. H. et al. Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans. Hydrobiologia 725, 165–188 (2014).CAS 

    Google Scholar 
    Tomano, S. et al. Contribution of Sepioteuthis sp. 1 and Sepioteuthis sp. 2 to oval squid fishery stocks in western Japan. Fish Sci 82, 585–596 (2016).CAS 

    Google Scholar 
    Okutani, T. Past, present and future studies on cephalopod diversity in tropical west Pacific. Phuket Mar. Biol. Center Res. Bull. 66, 39–50 (2005).
    Google Scholar 
    Lee, P. G., Turk, P. E., Yang, W. T. & Hanlon, R. T. Biological characteristics and biomedical applications of the squid Sepioteuthis lessoniana cultured through multiple generations. Biol. Bull. 186, 328–341 (1994).CAS 
    PubMed 

    Google Scholar 
    Nabhitabhata, J. & Ikeda, Y. Sepioteuthis lessoniana. In Cephalopod Culture (eds Iglesias, J. et al.) 315–347 (Springer, 2014).
    Google Scholar 
    Lajbner, Z. et al. Captive breeding of the oval squid (Aori-ika; Sepioteuthis sp.). in Cephalopod International Advisory Council Conference 2018, Book of Abstracts, St. Petersburg. 152. (2018)Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, i01 (2015).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org (R Foundation for Statistical Computing, 2019).RStudio Team. RStudio: Integrated Development for R. http://www.rstudio.com (RStudio, Inc., 2019)Kenward, M. & Roger, J. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53, 983–997 (1997).CAS 
    PubMed 
    MATH 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, C. Y., Tsai, Y. C. & Chiao, C. C. Quantitative analysis of dynamic body patterning reveals the grammar of visual signals during the reproductive behavior of the oval squid Sepioteuthis lessoniana. Front. Ecol. Evol. 5, 30 (2017).
    Google Scholar 
    Chung, W. S., Kurniawan, N. D. & Marshall, N. J. Toward an MRI-based mesoscale connectome of the squid brain. Iscience 23, 100816 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Messenger, J. B. Cephalopod chromatophores: Neurobiology and natural history. Biol. Rev. Camb. Philos. Soc. 76, 473–528 (2001).CAS 
    PubMed 

    Google Scholar 
    York, C. A. & Bartol, I. K. Anti-predator behavior of squid throughout ontogeny. J. Exp. Mar. Biol. Ecol. 480, 26–35 (2016).
    Google Scholar 
    Suzuki, M., Kimura, T., Ogawa, H., Hotta, K. & Oka, K. Chromatophore activity during natural pattern expression by the squid Sepioteuthis lessoniana: Contributions of miniature oscillation. PLoS ONE 6, e18244 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Y.C., Wang, W.C., & Grasse, B. Electrical coupling between chromatophore muscle fibers allows for versatile control of chromatophore expansion in squid. bioRxiv 2020.02.17.951715 (2020).Hadjisolomou, S. P., El-Haddad, R. W., Kloskowski, K., Chavarga, A. & Abramov, I. Quantifying the speed of chromatophore activity at the single-organ level in response to a visual startle stimulus in living, intact squid. Front. Physiol. 12, 675252. https://doi.org/10.3389/fphys.2021.675252 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    A nearly complete database on the records and ecology of the rarest boreal tiger moth from 1840s to 2020

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).ADS 
    CAS 

    Google Scholar 
    Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971 (2019).CAS 
    PubMed 

    Google Scholar 
    Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS 
    PubMed 

    Google Scholar 
    Heikkinen, R. K. et al. Assessing the vulnerability of European butterflies to climate change using multiple criteria. Biodivers. Conserv. 19, 695–723 (2010).
    Google Scholar 
    Montgomery, G. A. et al. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241, 108327 (2020).
    Google Scholar 
    Hufnagel, L. & Kocsis, M. Impacts of climate change on Lepidoptera species and communities. Appl. Ecol. Environ. Res. 9, 43–72 (2011).
    Google Scholar 
    Geyle, H. M. et al. Butterflies on the brink: identifying the Australian butterflies (Lepidoptera) most at risk of extinction. Austral Entomol. 60, 98–110 (2021).
    Google Scholar 
    Merckx, T., Huertas, B., Basset, Y. & Thomas, J. A global perspective on conserving butterflies and moths and their habitats. Key Topics in Conservation Biology 2, 237–257 (2013).
    Google Scholar 
    New, T. R. Moths (Insecta: Lepidoptera) and conservation: background and perspective. J. Insect Conserv. 8, 79–94 (2004).
    Google Scholar 
    Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl. Acad. Sci. USA 118, e2002549117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Langevelde, F. et al. Declines in moth populations stress the need for conserving dark nights. Glob. Chang. Biol. 24, 925–932 (2018).ADS 
    PubMed 

    Google Scholar 
    Green, K. et al. Australian Bogong moths Agrotis infusa (Lepidoptera: Noctuidae). 1951–2020: decline and crash. Austral Entomol. 60, 66–81 (2021).
    Google Scholar 
    Sánchez‐Bayo, F. & Wyckhuys, K. A. Further evidence for a global decline of the entomofauna. Austral Entomol. 60, 9–26 (2021).
    Google Scholar 
    Rönkä, K., Mappes, J., Kaila, L. & Wahlberg, N. Putting Parasemia in its phylogenetic place: a molecular analysis of the subtribe Arctiina (Lepidoptera). Syst. Entomol. 41, 844–853 (2016).
    Google Scholar 
    Witt, T. J., Speidel, W., Ronkay, G., Ronkay, L. & László, G. M. Subfamilia Arctiinae in Noctuidae Europaeae. Volume 13. Lymantriinae and Arctiinae including phylogeny and check list of the quadrifid Noctuoidea of Europe (eds. Witt, T. J. & Ronkay, L.) 81-216 (Entomological Press, 2011).Dowdy, N. J. et al. A deeper meaning for shallow‐level phylogenomic studies: nested anchored hybrid enrichment offers great promise for resolving the tiger moth tree of life (Lepidoptera: Erebidae: Arctiinae). Syst. Entomol. 45, 874–893 (2020).
    Google Scholar 
    Zahiri, R. et al. Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Syst. Entomol. 37, 102–124 (2012).
    Google Scholar 
    Holloway, J. D. The Moths of Borneo 6: family Arctiidae, subfamilies: Syntominae, Euchromiinae, Arctiinae; Noctuidae misplaced in Arctiidae (Camptoma, Aganinae) (Southdene Sdn. Bhd., 1988).Černý, K. & Pinratana, A. Arctiidae. Moths of Thailand 6, 1–283 (2009).
    Google Scholar 
    Černý, K. A review of the subfamily Arctiinae (Lepidoptera: Arctiidae) from the Philippines. Entomofauna 32, 29–92 (2011).
    Google Scholar 
    Bucsek, K. Erebidae, Arctiinae (Lithosiini, Arctiini) of Malay Peninsula – Malaysia (Institut of Zoology SAS, 2012).Bolotov, I. N., Kondakov, A. V. & Spitsyn, V. M. A review of tiger moths (Lepidoptera: Erebidae: Arctiinae: Arctiini) from Flores Island, Lesser Sunda Archipelago, with description of a new species and new subspecies. Ecol. Montenegrina 16, 1–15 (2018).
    Google Scholar 
    Dubatolov, V. V. New genera and species of Arctiinae from the Afrotropical fauna (Lepidoptera: Arctiidae). Nachr. Entomol. Ver. Apollo 27, 139–152 (2006).
    Google Scholar 
    Ferro, V. G., Melo, A. S. & Diniz, I. R. Richness of tiger moths (Lepidoptera: Arctiidae) in the Brazilian Cerrado: how much do we know? Zoologia (Curitiba) 27, 725–731 (2010).
    Google Scholar 
    Schmidt, B. C. A new genus and two new species of arctiine tiger moth (Noctuidae, Arctiinae, Arctiini) from Costa Rica. Zookeys 9, 89–96 (2009).
    Google Scholar 
    Dubatolov, V. V. Tiger-moths of Eurasia (Lepidoptera, Arctiidae) (Nyctemerini by Rob de Vos and V. V. Dubatolov). Neue Ent. Nachr. 65, 1–106 (2010).
    Google Scholar 
    Fibiger, M. et al. Lymantriinae and Arctiinae, including phylogeny and check list of the quadrifid Noctuoidea of Europe. Noctuidae Europaeae 13, 1–448 (2011).
    Google Scholar 
    Koshkin, E. S. Moths (Lepidoptera, Macroheterocera, excluding Geometridae and Noctuidae s.l.) of the Bureinsky State Nature Reserve and adjacent territories (Khabarovsk Krai, Russia) [In Russian]. Amur. Zool. J. 12, 412–435 (2020).
    Google Scholar 
    Kullberg, J., Filippov, B. Y., Spitsyn, V. M., Zubrij, N. A. & Kozlov, M. V. Moths and butterflies (Insecta: Lepidoptera) of the Russian Arctic islands in the Barents Sea. Polar Biol. 42, 335–346 (2019).
    Google Scholar 
    Bolotov, I. N. et al. The distribution and biology of Pararctia subnebulosa (Dyar, 1899) (Lepidoptera: Erebidae: Arctiinae), the largest tiger moth species in the High Arctic. Polar Biol. 38, 905–911 (2015).
    Google Scholar 
    Bolotov, I. N. et al. New occurrences, morphology, and imaginal phenology of the rarest Arctic tiger moth Arctia tundrana (Erebidae: Arctiinae). Ecol. Montenegrina 39, 121–128 (2021).
    Google Scholar 
    Bolotov, I. N., Gofarov, M. Y., Kolosova, Y. S. & Frolov, A. A. Occurrence of Borearctia menetriesii (Eversmann, 1846) (Erebidae: Arctiinae) in Northern European Russia: a new locality in a disjunct species range. Nota Lepidopterol. 36, 65–75 (2013).
    Google Scholar 
    Dubatolov, V. V. Borearctia gen. n., a new genus for the tiger moth Callimorpha menetriesi (Ev.) (Lepidoptera, Arctiidae) [In Russian]. Entomol. Rev. 63, 157–161 (1984).
    Google Scholar 
    Hori, H. An unrecorded species of the Arctiidae [In Japanese]. Kontyu 1, 86 (1926).
    Google Scholar 
    Eversmann, E. Lepidoptera quaedam nova in Rossia observata. Bulletin de la Société Impériale des Naturalistes de Moscou 19, 83–88 (1846).
    Google Scholar 
    Koshkin, E. S. Life history of the rare boreal tiger moth Arctia menetriesii (Eversmann, 1846) (Lepidoptera, Erebidae, Arctiinae) in the Russian Far East. Nota Lepidopterol. 44, 141–151 (2021).
    Google Scholar 
    Krogerus, H. D. Vorkommen von Callimorpha menetriesi Ev. in Fennoskandien, nebst Beschriebungen der verschiedenen Entwicklungsstadien [In German]. Not. Entomol. 24, 79–86 (1944).
    Google Scholar 
    Saarenmaa, H. Conservation ecology of Borearctia menetriesii [online]. http://www.bormene.myspecies.info/en (2011-2021).Berlov, O. E. & Bolotov, I. N. Record of Borearctia menetriesii (Eversmann, 1846) (Lepidoptera, Erebidae, Arctiinae) larva on Aconitum rubicundum Fischer (Ranunculaceae) in Eastern Siberia. Nota Lepidopterol. 38, 23–27 (2015).
    Google Scholar 
    Staudinger, O. & Rebel, H. Catalog der Lepidopteren des palaearctischen Faunengebietes. Vol. 1. Th. Famil. Papilionidae-Hepialidae (R. Friedländer & Sohn, 1901).Filipiev, I. Lepidoptera [In Russian]. Russkoe Entomologicheskoe Obozrenie 16, 376–378 (1916).
    Google Scholar 
    Fabritius, G. R. Anmärkningsvärda fynd av fjärilar, bland dessa den för Europa nya Callimorpha menetriesii Ev. [In Finnish]. Meddeland. Soc. Fauna Fl. Fenn. 40, 47–49 (1914).
    Google Scholar 
    Carpelan, J. Callimorpha menetriesii Ev. återfunnen [In Finnish]. Meddeland. Soc. Fauna Fl. Fenn. 48, 108–109 (1921).
    Google Scholar 
    Kurentzov, A. I. Zoogeography of the Amur Region [In Russian] (Nauka Publisher, 1965).Dubatolov, V. V. Tiger moths (Lepidoptera, Arctiidae: Arctiinae) of South Siberian mountains (report 2) [In Russian] in Arthropods and Helminths, Fauna of Siberia Series (ed. Zolotarenko, G. S.) 139–169 (Nauka Publisher, 1990).Klitin, A. K. New record of the tiger moth Borearctia menetriesii on Sakhalin Island [In Russian]. Bulletin of Sakhalin Museum 16, 269–271 (2009).
    Google Scholar 
    Nupponen, K. & Fibiger, M. Additions to the checklist of Bombycoidea and Noctuoidea of the Volgo-Ural region. Part II. (Lepidoptera: Lasiocampidae, Erebidae, Nolidae, Noctuidae). Nota Lepidopterol. 35, 33–50 (2012).
    Google Scholar 
    Koshkin, E. S. Preliminary results of the examination of the fauna of Higher Moths (Macroheterocera, excluding Geometridae and Noctuidae) of the upper Bureya River basin (Khabarovsk Region) [In Russian]. Proceedings of Grodekovsky Museum (Nature of the Far East) 24, 65–75 (2010).
    Google Scholar 
    Marttila, O., Saarinen, K., Haahtela, T. & Pajari, M. Idänsiilikäs Borearctia menetriesi (Eversmann, 1846) [In Finnish] in Suomen kiitäjät ja kehrääjät [Macrolepidoptera of Finland] 265–266 (Kirjayhtymä Oy, 1996).Lappi, E., Mikkola, K. & Ryynänen, J. Idänsiilikäs Borearctia menetriesii, tervetuloa takaisin! [Welcome back Borearctia menetriesii] [In Finnish]. Baptria 29, 28–29 (2004).
    Google Scholar 
    Silvonen, K. Borearctia Dubatolov, 1985 [online]. Kimmo’s Lepidoptera Site, Finland. http://www.kolumbus.fi/~kr5298/lnel/a/bormenet.htm (2010).Bolotov, I. N. et al. Menetries’ Tiger Moth Range and Ecology Database (1840s-2020). figshare https://doi.org/10.6084/m9.figshare.15000399 (2022).Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).
    Google Scholar 
    Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S. & Woiwod, I. P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132, 279–291 (2006).
    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).
    Google Scholar 
    Simmons, B. I. et al. Worldwide insect declines: An important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Diver. 13, 103–114 (2020).
    Google Scholar 
    Boyes, D. H., Evans, D. M., Fox, R., Parsons, M. S. & Pocock, M. J. Is light pollution driving moth population declines? A review of causal mechanisms across the life cycle. Insect Conserv. Diver. 14, 167–187 (2021).
    Google Scholar 
    Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. USA 118, e2002548117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 118, e2023989118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schowalter, T. D., Pandey, M., Presley, S. J., Willig, M. R. & Zimmerman, J. K. Arthropods are not declining but are responsive to disturbance in the Luquillo Experimental Forest, Puerto Rico. Proc. Natl. Acad. Sci. USA 118, e2002556117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berry, P. A. M., Smith, R. G. & Benveniste, J. ACE2: the new global digital elevation model in Gravity, Geoid and Earth Observation (ed. Mertikas, S. P.) 231–237 (Springer, 2010).Kurentzov, A. I. My travels [In Russian] (Far Eastern Publishing House, 1973).Dubatolov, V. V. A catalogue of type specimens of Palaearctic tiger moths (Lepidoptera, Arctiidae, Arctiinae) preserved in the collection of the Zoological Institute of Russian Academy of Sciences (St. Petersburg) [In Russian]. Entomol. Rev. 75, 338–356 (1996).
    Google Scholar 
    Bailey, R. G. Explanatory Supplement to Ecoregions Map of the Continents. Environ. Conserv. 16, 307–309 (1989).
    Google Scholar 
    Olson, D. M. & Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 89, 199–224 (2002).
    Google Scholar 
    Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 51, 933–938 (2001).
    Google Scholar 
    Beaumont, L. J. et al. Impacts of climate change on the world’s most exceptional ecoregions. Proc. Natl. Acad. Sci. USA 108, 2306–2311 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).PubMed 

    Google Scholar  More

  • in

    Global impacts of future urban expansion on terrestrial vertebrate diversity

    Direct habitat lossAccording to the global projections of urban expansion under five SSPs17 (Supplementary Note 3 and Supplementary Fig. 1), 36–74 million hectares (Mha) of land areas will be urbanized by 2100, representing a 54–111% increase compared with the baseline year of 2015. Among these, 11–33 Mha natural habitats (Supplementary Table 1) will become urban areas by 2100. Across SSP scenarios, the patterns of change in losses of total habitat, forest, shrubland, and grassland are consistent with the global projections of urban expansion (Fig. 1). In terms of urban encroachment on wetlands, wetland will undergo the largest loss under scenario SSP4 than under other scenarios. However, if the sustainable pathway of scenario SSP1 is properly implemented, this will enable us to conserve the global wetland. The greatest loss of other habitat will occur under scenario SSP3, but the minimal loss of other habitat will occur under scenario SSP1. Under the five different SSP scenarios, the United States, Nigeria, Australia, Germany, and the UK are consistently predicted to have greater habitat loss due to urban expansion (Supplementary Table 2).Fig. 1: Future direct habitat loss due to urban expansion under SSP scenarios.a The habitat loss by 2100 for each habitat type. Bars indicate the mean habitat loss area (five scenarios) for each habitat type. Error bars represent mean values ± 1 SEM for the loss of each habitat type under five scenarios, n = 5 scenarios. Points represent data in five scenarios. b The losses in total area, forest, shrubland, grassland, wetland, and other land.Full size imageThere are obvious disparities in the hot spots and cold spots of habitat loss under the five SSP scenarios (Fig. 2 and Supplementary Figs. 2–6). Potential hot spots of habitat loss are concentrated in regions such as the northeastern, southern, and western coasts of the United States, the Gulf of Guinea coastal areas, Sub-Saharan Africa, and the Persian Gulf coastal areas. Under scenario SSP5, parts of central and western Europe will also become hot spots. However, under other scenarios, the cold spots will be particularly concentrated in eastern and southern Europe. East Asia and South Asia, which are represented by China, India, and Japan, are dominated by cold spots (Supplementary Figs. 2–6), because these regions may experience a decline in urban land demand from 2050 to 2100 (for examples in China, see Supplementary Figs. 7–11), although they are currently the most populous regions in the world.Fig. 2: Future hot spots and cold spots of habitat loss due to urban expansion under SSP scenarios by 2100.Figures for the United States (a), Europe (b), Africa (c), and China (d) are presented separately. The Gi_Bin identifies statistically significant hot spots and cold spots. Statistical significance was based on the p-value and z-score (two-sided), and no adjustments were made for multiple comparisons.Full size imageOur scenario projections show that the largest natural habitat loss is expected to occur in the temperate broadleaf and mixed forests biome (except for scenario SSP3). In addition, many biomes will experience proportionate loss of natural habitat. These biomes include the tropical and subtropical coniferous forests biome, the temperate coniferous forests biome, the flooded grasslands and savannas biome, the Mediterranean forests, woodlands, and scrub biome, and the mangroves biome (Supplementary Table 3). Although the rate of future habitat loss is small at the global scale, it can be large in some areas. For example, the habitat in the temperate broadleaf and mixed forests may decrease by 1.4% under scenario SSP5. At the ecoregion scale, about 9% of 867 terrestrial ecoregions will lose more than 1% of habitat due to urban expansion (Supplementary Fig. 12). In the future, four ecoregions—the Atlantic coastal pine barrens, the coastal forests of the northeastern United States, and the Puerto Rican moist and dry forests—will experience more than 20% of habitat loss.Urban expansion threatens biodiversity prioritization schemesTo reflect the potential impact of urban expansion on protected areas (Supplementary Note 4), the analyses presented here were based on the assumption that urban expansion within protected areas is not strictly restricted and can even occur in the currently gazetted protected areas (Supplementary Note 5, Supplementary Figs. 13 and 14). In 2015, urban areas with a total area of 30,594 km2 were distributed in 28,152 protected areas, accounting for 12.6% of global protected areas (Supplementary Figs. 15 and 16). Moreover, 38% of the urban land-use changes within protected areas were due to the conversion of natural habitats into urban land between 1992 and 2015. If urban expansion continues without strict restrictions, 13.2–19.8% of the protected areas will be affected by urban land by 2100, and urban land will occur in 29,563–44,400 protected areas with a total urban land area of up to 46,705–89,901 km2 across the five SSP scenarios (the lowest and highest proportions of urban land in each protected area by 2100 under SSP3 and SSP5 scenarios are presented in Supplementary Figs. 17 and 18).We also found that 0.90% of all terrestrial biodiversity hotspots (Supplementary Note 6), which are the world’s most biologically rich yet threatened terrestrial regions24, were urbanized in 2015. And this proportion (0.90%) is higher than that located in the rest of the Earth’s surface (0.51%) in 2015. By 2100, the new urban expansion will additionally occupy 1.5–1.8% of hotspot areas under the five SSP scenarios (Supplementary Table 4). Five biodiversity hotspots are projected to suffer the largest proportion of urban land conversion: the California Floristic Province (6–11%), Japan (6–8%), the North American Coastal Plain (4–8%), the Guinean Forests of West Africa (4–8%), and the Forests of East Australia (2–6%). In contrast, the East Melanesian Islands and the New Caledonia are almost unaffected by urban expansion. Biodiversity hotspots (e.g., the Guinean Forests of West Africa, the Coastal Forests of Eastern Africa, Eastern Afromontane, and the Polynesia-Micronesia) with few human disturbances in 2015 are projected to experience the highest percentage of future urban growth. Compared with the urban areas in 2015, by 2100, the urban areas in these four biodiversity hotspots will experience a disproportionate increase of 281–708, 294–535, 169–305, and 33–337%, respectively.The World Wildlife Fund (WWF) selected the ecoregions that are most crucial to the conservation of global biodiversity as Global 20025 (Supplementary Note 7). However, about 93% of the Global 200 ecoregions will be affected by future urban expansion. Although the proportion of urban land in each ecoregion will be less than 1% in 2100, the urban area located in these ecoregions will experience an increase of 74–160% from 2015 to 2100 across the five SSP scenarios (Supplementary Table 4). Four ecologically vulnerable ecoregions that have the highest urban growth rates are the Sudd-Sahelian Flooded Grasslands and Savannas, the East African Acacia Savannas, the Hawaii Moist Forest, and the Congolian Coastal Forests. By 2100, the urban areas in these four ecoregions will increase by 877–9955, 527–646, 18–902, and 500–1037%, respectively.The five SSP scenarios showed that the urban area is expected to increase by only 73–213 km2 in the Last of the Wild areas26 (see Supplementary Note 8 for descriptions about the Last of the Wild areas) by 2100 (Supplementary Table 4).Impacts of urban expansion on habitat fragmentationThe increasing exposures of natural habitat to urbanized land use may cause long-term changes in the function and structure of the natural habitat that is adjacent to urban areas13. To examine this proximity effect, we investigated the impact of future urban expansion on the nearest distance between urban areas and natural habitat (i.e., the distance from patch edges of urban areas to patch edges of the nearest natural habitats) under different SSP scenarios. Although the global urban area is expected to increase by 36–74 Mha by 2100, the impacts of future urban expansion on adjacent natural habitat are disproportionately large. Future urban expansion will make urban areas much closer to patch edges of 34–40 Mha natural habitat, which will inevitably threaten the natural habitat and increase the risk of biodiversity decline. The effects of urban expansion on adjacent patch edges of natural habitats are remarkably different across different scenarios. Specifically, the area of affected adjacent natural habitat is expected to be 38.45, 34.24, 40.31, 37.84, and 39.42 Mha under SSP1 to SSP5 scenarios by 2100, with the smallest effect under scenario SSP2, and the largest effect under scenario SSP3. Moreover, the scale of urban expansion does not correspond directly with the size of the impact. Several countries, including Mauritania, Algeria, Saudi Arabia, Western Sahara, and the United States, will have a large change in the distance from future urban areas to natural habitats due to urban expansion (Supplementary Table 5). Such effects also varied across different natural habitat types. The distance from the patch edges of urban areas to patch edges of (a) wetland, other land, and forest, (b) grassland, and (c) shrubland will generally be shortened by ~2000, ~1500 and ~900 m, respectively.In addition to the effect on the distance to the habitat edge, urban-caused habitat fragmentation is also reflected in reducing mean patch size (MPS)13, increasing mean edge index (edge density (ED), i.e., edge length on a per-unit area)27, and enlarging isolation (mean Euclidean nearest neighbor distance, ENN_MN)28 (Fig. 3). Taking the global ecoregions as the analysis unit, we found that within a 5 km buffer of urban areas, the median of MPS of natural habitats tends to show an overall decline trend, and the segmentation and subdivision of habitats become more obvious as future urban land expands. The median of MPS is the largest under scenario SSP1, followed by SSP4, SPP2, and SSP3 with some fluctuations in between, and the smallest MPS is found with the most fragmented landscape under scenario SSP5. A smaller patch size indicates that the inner parts of the habitat are subject to higher risk of being influenced by external disturbance. Future urban expansion also tends to cause an increase in the ED of natural habitat, which is often linked with smaller patches or more irregular shapes, and therefore poses a threat to biodiversity that influences many ecological processes (e.g., the spread of dispersal and predation)13,27,28. Scenario SSP1 shows the best performance in maintaining a low habitat ED and a high level of biodiversity conservation. However, under scenario SSP5, ED will experience a rapid increase in the second half of the 21st century. Meanwhile, the ENN_MN will increase substantially in the future, suggesting that areas with the same habitat type will become increasingly isolated, irregular, dispersed, or unevenly distributed due to the barrier of urban land. This will affect the speed of dispersal and patch recolonization. Scenario SSP1 is also most conducive to maintaining the proximity of natural habitats with the same habitat type. Other scenarios show relatively similar performance.Fig. 3: Future urban expansion effects on habitat fragmentation under SSP scenarios.a Mean patch size (MPS), b edge density (ED), c mean Euclidean nearest-neighbor distance (ENN_MN).Full size imageImpacts of urban expansion on terrestrial biodiversityWe focus on biodiversity in three common vertebrate taxa (i.e., amphibians, mammals, and birds) in our analyses. Future land system conversion to urban land will cause an average of 34% loss in the overall relative species richness. Land conversion from dense forest, mosaic grassland and open forest, mosaic grassland, and bare and natural grassland to urban land will cause the highest overall relative biodiversity loss (48%, 95% confidence interval (CI): 34–59% on a 1 km grid). These land systems with a high risk of biodiversity loss are concentrated in the United States, Europe, and Sub-Saharan Africa (Supplementary Fig. 19). Overall, the negative effect of future urban expansion on the total abundance of species will be more pronounced than that on species richness. Urban land changes will result in an average of 52% overall loss in relative total abundance of species. In particular, the losses of dense forest, natural grassland, and mosaic grassland, due to conversion to urban land, will lead to a high risk of species loss (62%, 95% CI: 38–76%).In terms of the number of species (i.e., all amphibians, mammals, and birds), future urban expansion will cause an average loss of 7–9 species and a loss of up to ~197 species per 10 km grid cell by 2100 across the five SSP scenarios (Fig. 4 and Supplementary Fig. 20). Species loss is most likely to be concentrated in Sub-Saharan Africa (particularly the Gulf of Guinea coast), the United States, and Europe. In addition, southeastern Brazil, India, and the eastern coast of Australia are also relatively high-risk areas. However, the specific effects of urban expansion vary substantially across different SSP scenarios. For instance, under scenario SSP5, urban expansion will pose a fatal threat to the global species richness in areas with urban development potential (species richness loss will occur in ~740 Mha land areas), whereas under the divided pathway (SSP4) and regional rivalry pathway (SSP3) scenarios, urban expansion will threaten the richest biodiversity hotspots, such as Sub-Saharan Africa and Latin America (Supplementary Fig. 20).Fig. 4: Potential biodiversity loss due to future urban expansion under SSP scenarios.The biodiversity loss in terms of the number of terrestrial vertebrate species (amphibians, mammals, and birds) lost per 10 km grid cell in the North America (a), Europe (b), the Gulf of Guinea coast (c), and East Asia (d).Full size imageWe also found a loss of up to 12 species of threatened amphibians, mammals, and birds (including vulnerable, endangered, or critically endangered categories defined in the IUCN Red List), and a loss of up to 40 species of small-ranged amphibians, mammals, and birds (small-ranged species are species with a geographic range size smaller than the median range size for that taxon)29 due to future urban expansion by 2100. There are a few scattered areas that will be hotspots for the loss of threatened species, such as West Africa, East Africa, northern India, and the eastern coast of Australia (Supplementary Fig. 21). The loss of small-ranged species will concentrate in fewer areas (Supplementary Fig. 22). We have identified 30 conservation priority ecoregions with high risks of habitat loss and small-ranged species loss due to future urban expansion (Supplementary Table 6). These conservation priority ecoregions are all found in Latin America and Sub-Saharan Africa (Supplementary Fig. 23). However, some hotspots outside of these conservation priority regions, such as tropical Southeast Asia, the west coast of the United States, and northern New Zealand, will also be affected (Supplementary Fig. 23).The top 5% 10 km grid cells with the highest loss in species richness (28–38 species potentially being lost) scatter across adjacent urban areas. However, only 6.4–8.6% of these regions are covered by the current global network of protected areas. These areas are often overlooked, and thus receive relatively low conservation spending. Ecoregions in Sub-Saharan African, Central and South America, Southeast Asia, and Australia will be responsible for the top 43% of average species loss across the SSP scenarios (Fig. 5). Kenya, Swaziland, Brunei, Zambia, Republic of Congo, and Zimbabwe will face the largest potential species richness loss (approximately > 29 species lost per 10 km grid cell) under all five SSP scenarios (Supplementary Fig. 24 and Supplementary Table 7).Fig. 5: Average potential biodiversity loss per 10 km grid cell in ecoregions due to future urban expansion under SSP scenarios.The mean potential biodiversity loss represents the average number of terrestrial vertebrate species (amphibians, mammals, and birds) lost per 10 km grid cell.Full size image More

  • in

    Revealing microhabitat requirements of an endangered specialist lizard with LiDAR

    Ceballos, G., García, A. & Ehrlich, P. R. The sixth extinction crisis: Loss of animal populations and species. J. Cosmol. 8, 31 (2010).
    Google Scholar 
    Johnson, C. N. et al. Biodiversity losses and conservation responses in the Anthropocene. Science 356, 270–275 (2017).CAS 
    PubMed 

    Google Scholar 
    Scott, J. M., Goble, D. D., Haines, A. M., Wiens, J. A. & Neel, M. C. Conservation-reliant species and the future of conservation. Conserv. Lett. 3, 91–97 (2010).
    Google Scholar 
    Johnson, M. A., Kirby, R., Wang, S. & Losos, J. What drives variation in habitat use by Anolis lizards: Habitat availability or selectivity?. Can. J. Zool. 84, 877–886 (2006).
    Google Scholar 
    Gaston, K. J., Blackburn, T. M. & Lawton, J. H. Interspecific abundance-range size relationships: an appraisal of mechanisms. J. Anim. Ecol. 66, 579–601 (1997).
    Google Scholar 
    Devictor, V. et al. Defining and measuring ecological specialization. J. Appl. Ecol. 47, 15–25 (2010).
    Google Scholar 
    Razgour, O., Hanmer, J. & Jones, G. Using multi-scale modelling to predict habitat suitability for species of conservation concern: The grey long-eared bat as a case study. Biol. Cons. 144, 2922–2930 (2011).
    Google Scholar 
    Jetz, W., Sekercioglu, C. H. & Watson, J. E. Ecological correlates and conservation implications of overestimating species geographic ranges. Conserv. Biol. 22, 110–119 (2008).PubMed 

    Google Scholar 
    Seddon, P. J. From reintroduction to assisted colonization: Moving along the conservation translocation spectrum. Restor. Ecol. 18, 796–802 (2010).
    Google Scholar 
    Tomlinson, S., Lewandrowski, W., Elliott, C. P., Miller, B. P. & Turner, S. R. High-resolution distribution modeling of a threatened short-range endemic plant informed by edaphic factors. Ecol. Evol. 10, 763–773 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Tomlinson, S., Webber, B. L., Bradshaw, S. D., Dixon, K. W. & Renton, M. Incorporating biophysical ecology into high-resolution restoration targets: insect pollinator habitat suitability models. Restor. Ecol. 26, 338–347 (2018).
    Google Scholar 
    Glen, A. S., Sutherland, D. R. & Cruz, J. An improved method of microhabitat assessment relevant to predation risk. Ecol. Res. 25, 311–314 (2010).
    Google Scholar 
    Limberger, D., Trillmich, F., Biebach, H. & Stevenson, R. D. Temperature regulation and microhabitat choice by free-ranging Galapagos fur seal pups (Arctocephalus galapagoensis). Oecologia 69, 53–59 (1986).PubMed 

    Google Scholar 
    Parmenter, R. R., Parmenter, C. A. & Cheney, C. D. Factors influencing microhabitat partitioning in arid-land darkling beetles (Tenebrionidae): temperature and water conservation. J. Arid Environ. 17, 57–67 (1989).
    Google Scholar 
    Kleckova, I., Konvicka, M. & Klecka, J. Thermoregulation and microhabitat use in mountain butterflies of the genus Erebia: importance of fine-scale habitat heterogeneity. J. Therm. Biol 41, 50–58 (2014).PubMed 

    Google Scholar 
    Napierała, A. & Błoszyk, J. Unstable microhabitats (merocenoses) as specific habitats of Uropodina mites (Acari: Mesostigmata). Exp. Appl. Acarol. 60, 163–180 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, K. L., Philpot, K. E. & Stevens, M. Microhabitat choice in island lizards enhances camouflage against avian predators. Sci. Rep. 6, 1–10 (2016).
    Google Scholar 
    Lovell, P. G., Ruxton, G. D., Langridge, K. V. & Spencer, K. A. Egg-laying substrate selection for optimal camouflage by quail. Curr. Biol. 23, 260–264 (2013).CAS 
    PubMed 

    Google Scholar 
    Wrege, P. H., Rowland, E. D., Keen, S. & Shiu, Y. Acoustic monitoring for conservation in tropical forests: Examples from forest elephants. Methods Ecol. Evol. 8, 1292–1301 (2017).
    Google Scholar 
    Measey, G. J., Stevenson, B. C., Scott, T., Altwegg, R. & Borchers, D. L. Counting chirps: Acoustic monitoring of cryptic frogs. J. Appl. Ecol. 54, 894–902 (2017).
    Google Scholar 
    Lambert, K. T. & McDonald, P. G. A low-cost, yet simple and highly repeatable system for acoustically surveying cryptic species. Austral Ecol. 39, 779–785 (2014).
    Google Scholar 
    Picciulin, M., Kéver, L., Parmentier, E. & Bolgan, M. Listening to the unseen: Passive Acoustic Monitoring reveals the presence of a cryptic fish species. Aquat. Conserv. Mar. Freshwat. Ecosyst. 29, 202–210 (2019).
    Google Scholar 
    Linkie, M. et al. Cryptic mammals caught on camera: assessing the utility of range wide camera trap data for conserving the endangered Asian tapir. Biol. Cons. 162, 107–115 (2013).
    Google Scholar 
    Balme, G. A., Hunter, L. T. & Slotow, R. Evaluating methods for counting cryptic carnivores. J. Wildl. Manag. 73, 433–441 (2009).
    Google Scholar 
    Carbone, C. et al. The use of photographic rates to estimate densities of tigers and other cryptic mammals in Animal Conservation forum. 75–79 (2001) (Cambridge University Press).Russell, J. C., Hasler, N., Klette, R. & Rosenhahn, B. Automatic track recognition of footprints for identifying cryptic species. Ecology 90, 2007–2013 (2009).PubMed 

    Google Scholar 
    Jarvie, S. & Monks, J. Step on it: can footprints from tracking tunnels be used to identify lizard species?. N. Z. J. Zool. 41, 210–217 (2014).
    Google Scholar 
    Watts, C., Thornburrow, D., Rohan, M. & Stringer, I. Effective monitoring of arboreal giant weta (Deinacrida heteracantha and D. mahoenui; Orthoptera: Anostostomatidae) using footprint tracking tunnels. J. Orthop. Res. 22, 93–100 (2013).
    Google Scholar 
    Williams, E. M. Developing monitoring methods for cryptic species: a case study of the Australasian bittern, Botaurus poiciloptilus: a thesis presented in partial fulfilment of the requirements for the degree of Doctor of Philosophy in Ecology at Massey University, Manawatū, New Zealand, Massey University (2016).Hacking, J., Abom, R. & Schwarzkopf, L. Why do lizards avoid weeds?. Biol. Invasions 16, 935–947 (2014).
    Google Scholar 
    Valentine, L. E. Habitat avoidance of an introduced weed by native lizards. Austral. Ecol. 31, 732–735 (2006).
    Google Scholar 
    Hawkins, J. P., Roberts, C. M. & Clark, V. The threatened status of restricted-range coral reef fish species in Animal Conservation forum. 81–88 (2000) (Cambridge University Press).Mason, L. D., Bateman, P. W. & Wardell-Johnson, G. W. The pitfalls of short-range endemism: High vulnerability to ecological and landscape traps. PeerJ 6, e4715 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Dassot, M., Constant, T. & Fournier, M. The use of terrestrial LiDAR technology in forest science: Application fields, benefits and challenges. Ann. For. Sci. 68, 959–974 (2011).
    Google Scholar 
    Weber, H. LiDAR Sensor Functionality and Variants (2018).Michel, P., Jenkins, J., Mason, N., Dickinson, K. & Jamieson, I. Assessing the ecological application of lasergrammetric techniques to measure fine-scale vegetation structure. Eco. Inform. 3, 309–320 (2008).
    Google Scholar 
    Lim, K., Treitz, P., Wulder, M., St-Onge, B. & Flood, M. LiDAR remote sensing of forest structure. Prog. Phys. Geogr. 27, 88–106 (2003).
    Google Scholar 
    Anderson, L. & Burgin, S. Patterns of bird predation on reptiles in small woodland remnant edges in peri-urban north-western Sydney, Australia. Landsc. Ecol. 23, 1039–1047 (2008).
    Google Scholar 
    Hannam, M. & Moskal, L. M. Terrestrial laser scanning reveals seagrass microhabitat structure on a tideflat. Remote Sensing 7, 3037–3055 (2015).
    Google Scholar 
    Zavalas, R., Ierodiaconou, D., Ryan, D., Rattray, A. & Monk, J. Habitat classification of temperate marine macroalgal communities using bathymetric LiDAR. Remote Sens. 6, 2154–2175 (2014).
    Google Scholar 
    Mandlburger, G., Hauer, C., Wieser, M. & Pfeifer, N. Topo-bathymetric LiDAR for monitoring river morphodynamics and instream habitats—A case study at the Pielach River. Remote Sens. 7, 6160–6195 (2015).
    Google Scholar 
    Laize, C. et al. Use of LIDAR to characterise river morphology (2014).Cooper, C. & Withers, P. Physiological significance of the microclimate in night refuges of the numbat Myrmecobius fasciatus. Austral. Mammal. 27, 169–174 (2005).
    Google Scholar 
    Orell, P. & Morris, K. Chuditch recovery plan. Western Austral. Wildl. Manag. Program 13, 1 (1994).
    Google Scholar 
    Pearson, D. Western Spiny-Tailed Skink (Egernia stokesii) Recovery Plan (Department of Environment and Conservation, 2012).
    Google Scholar 
    McPeek, M. A., Cook, B. & McComb, W. Habitat selection by small mammals. Trans. Kentucky Acad. Sci. 44, 68–73 (1983).
    Google Scholar 
    Armstrong, K. The distribution and roost habitat of the orange leaf-nosed bat, Rhinonicteris aurantius, in the Pilbara region of Western Australia. Wildl. Res. 28, 95–104 (2001).
    Google Scholar 
    Mancina, C. et al. Endemics under threat: an assessment of the conservation status of Cuban bats. Hystrix Ital. J. Mammal. 18, 3–15 (2007).
    Google Scholar 
    Webb, M. H., Holdsworth, M. C. & Webb, J. Nesting requirements of the endangered Swift Parrot (Lathamus discolor). Emu-Austral. Ornithol. 112, 181–188 (2012).
    Google Scholar 
    Watson, S. J., Watson, D. M., Luck, G. W. & Spooner, P. G. Effects of landscape composition and connectivity on the distribution of an endangered parrot in agricultural landscapes. Landsc. Ecol. 29, 1249–1259 (2014).
    Google Scholar 
    Duffield, G. & Bull, M. Stable social aggregations in an Australian lizard, Egernia stokesii. Naturwissenschaften 89, 424–427 (2002).CAS 
    PubMed 

    Google Scholar 
    Duffield, G. A. & Bull, M. Characteristics of the litter of the gidgee skink, Egernia stokesii. Wildl. Res. 23, 337–341 (1996).
    Google Scholar 
    Ecoscape. Blue Hills – Mungada East Terrestrial Fauna Assessment. (Sinosteel Midwest Corporation, 2016).Silver Lake Resources. Department of Water and Environmental Regulation Prescribe Premise Licence Application. (Egan Street Resources Limited, 2021).Maptek. I-Site 8800 Scanning System Solutions for Mining (2010).SoilWater Group. 3D LiDAR Scanning (2018).United States Department of Transportation. Ground-Based LiDAR Rock Slope Mapping and Assessment (2008).R Core Team. R: a language and environment for statistical computing, https://www.R-project.org/ (2017).Bartoń, K. Package ‘MuMIn’, https://cran.r-project.org/web/packages/MuMIn/MuMIn.pdf (2020).Converse, S. J., White, G. C. & Block, W. M. Small mammal responses to thinning and wildfire in ponderosa pine-dominated forests of the southwestern United States. J. Wildl. Manag. 70, 1711–1722 (2006).
    Google Scholar 
    Vieira, I. C. G. et al. Classifying successional forests using Landsat spectral properties and ecological characteristics in eastern Amazonia. Remote Sens. Environ. 87, 470–481 (2003).
    Google Scholar 
    Whitford, K. & Williams, M. Hollows in jarrah (Eucalyptus marginata) and marri (Corymbia calophylla) trees: II. Selecting trees to retain for hollow dependent fauna. For. Ecol. Manag. 160, 215–232 (2002).
    Google Scholar 
    Salmona, J., Dixon, K. M. & Banks, S. C. The effects of fire history on hollow-bearing tree abundance in montane and subalpine eucalypt forests in southeastern Australia. For. Ecol. Manag. 428, 93–103 (2018).
    Google Scholar 
    Lindenmayer, D., Cunningham, R., Donnelly, C., Tanton, M. & Nix, H. The abundance and development of cavities in Eucalyptus trees: a case study in the montane forests of Victoria, southeastern Australia. For. Ecol. Manage. 60, 77–104 (1993).
    Google Scholar 
    Craig, M. D. et al. How many mature microhabitats does a slow-recolonising reptile require? Implications for restoration of bauxite minesites in south-western Australia. Aust. J. Zool. 59, 9–17 (2011).
    Google Scholar 
    Schwarzkopf, L., Barnes, M. & Goodman, B. Belly up: Reduced crevice accessibility as a cost of reproduction caused by increased girth in a rock-using lizard. Austral Ecol. 35, 82–86 (2010).
    Google Scholar 
    Cooper, W. E. Jr. & Whiting, M. J. Islands in a sea of sand: Use of Acacia trees by tree skinks in the Kalahari Desert. J. Arid Environ. 44, 373–381 (2000).
    Google Scholar 
    Webb, J. K. & Shine, R. Out on a limb: conservation implications of tree-hollow use by a threatened snake species (Hoplocephalus bungaroides: Serpentes, Elapidae). Biol. Cons. 81, 21–33 (1997).
    Google Scholar 
    Fitzgerald, M., Shine, R. & Lemckert, F. Radiotelemetric study of habitat use by the arboreal snake Hoplocephalus stephensii (Elapidae) in eastern Australia. Copeia 2002, 321–332 (2002).
    Google Scholar 
    Grimm-Seyfarth, A., Mihoub, J. B. & Henle, K. Too hot to die? The effects of vegetation shading on past, present, and future activity budgets of two diurnal skinks from arid Australia. Ecol. Evol. 7, 6803–6813 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Attum, O., Eason, P., Cobbs, G. & El Din, S. M. B. Response of a desert lizard community to habitat degradation: Do ideas about habitat specialists/generalists hold?. Biol. Cons. 133, 52–62 (2006).
    Google Scholar 
    Melville, J. & Schulte Ii, J. A. Correlates of active body temperatures and microhabitat occupation in nine species of central Australian agamid lizards. Austral. Ecol. 26, 660–669. https://doi.org/10.1046/j.1442-9993.2001.01152.x (2001).Article 

    Google Scholar 
    Munguia-Vega, A., Rodriguez-Estrella, R., Shaw, W. W. & Culver, M. Localized extinction of an arboreal desert lizard caused by habitat fragmentation. Biol. Cons. 157, 11–20 (2013).
    Google Scholar 
    Pietrek, A., Walker, R. & Novaro, A. Susceptibility of lizards to predation under two levels of vegetative cover. J. Arid Environ. 73, 574–577 (2009).
    Google Scholar 
    Moreno, S., Delibes, M. & Villafuerte, R. Cover is safe during the day but dangerous at night: The use of vegetation by European wild rabbits. Can. J. Zool. 74, 1656–1660 (1996).
    Google Scholar 
    Tchabovsky, A. V., Krasnov, B., Khokhlova, I. S. & Shenbrot, G. I. The effect of vegetation cover on vigilance and foraging tactics in the fat sand rat Psammomys obesus. J. Ethol. 19, 105–113 (2001).
    Google Scholar 
    Pizzuto, T. A., Finlayson, G. R., Crowther, M. S. & Dickman, C. R. Microhabitat use by the brush-tailed bettong (Bettongia penicillata) and burrowing bettong (B. lesueur) in semiarid New South Wales: Implications for reintroduction programs. Wildl. Res. 34, 271–279 (2007).
    Google Scholar 
    Hawlena, D., Saltz, D., Abramsky, Z. & Bouskila, A. Ecological trap for desert lizards caused by anthropogenic changes in habitat structure that favor predator activity. Conserv. Biol. 24, 803–809 (2010).PubMed 

    Google Scholar 
    Oversby, W., Ferguson, S., Davis, R. A. & Bateman, P. Bad news for bobtails: Understanding predatory behaviour of a resource-subsidised corvid towards an island endemic reptile. Wildl. Res. 45, 595–601 (2018).
    Google Scholar 
    Pianka, E. R. Rarity in A ustralian desert lizards. Austral Ecol. 39, 214–224 (2014).
    Google Scholar 
    Germano, J. M. & Bishop, P. J. Suitability of amphibians and reptiles for translocation. Conserv. Biol. 23, 7–15 (2009).PubMed 

    Google Scholar 
    Tsiouvaras, C., Havlik, N. & Bartolome, J. Effects of goats on understory vegetation and fire hazard reduction in a coastal forest in California. For. Sci. 35, 1125–1131 (1989).
    Google Scholar 
    Tasker, E. M. & Bradstock, R. A. Influence of cattle grazing practices on forest understorey structure in north-eastern New South Wales. Austral. Ecol. 31, 490–502 (2006).
    Google Scholar 
    Payne, A., Van Vreeswyk, A., Leighton, K., Pringle, H. & Hennig, P. An inventory and condition survey of the Sandstone-Yalgoo-Paynes Find area, Western Australia (1998).Shoo, L. P., Freebody, K., Kanowski, J. & Catterall, C. P. Slow recovery of tropical old-field rainforest regrowth and the value and limitations of active restoration. Conserv. Biol. 30, 121–132 (2016).PubMed 

    Google Scholar 
    Lamb, D. in Regreening the Bare Hills 325–358 (Springer, 2011).Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225 (2005).PubMed 

    Google Scholar 
    Stow, A. J., Sunnucks, P., Briscoe, D. & Gardner, M. The impact of habitat fragmentation on dispersal of Cunningham’s skink (Egernia cunninghami): Evidence from allelic and genotypic analyses of microsatellites. Mol. Ecol. 10, 867–878 (2001).CAS 
    PubMed 

    Google Scholar 
    Stow, A. & Sunnucks, P. High mate and site fidelity in Cunningham’s skinks (Egernia cunninghami) in natural and fragmented habitat. Mol. Ecol. 13, 419–430 (2004).CAS 
    PubMed 

    Google Scholar  More

  • in

    The marine biologist whose photography pastime became a profession

    If you are a scientist hoping to photograph and share your own research:
    •    Don’t underestimate the power of modern media and social-media platforms. Content is changing the world and people’s lives, and it can easily change your life. Stay at the forefront of media technology, or at least be aware of developments. It’s a never-ending race, but it’s easy to get into.
    •    If you plan to share your work with others, imagine what will be of interest to them. If you can excitingly describe your work to a 5-year-old, you won’t have any trouble getting anyone interested. Beautiful pictures help, but the story always comes first.

    •    You will stand out much more if you have a niche and unique story. It could be your rare field of science or a special angle that you use to tell the story of your work. Being different is awesome.
    •    Set the bar very high. You can find dozens of examples of truly high-quality content on the Internet. And you can almost always find resources that can help you to learn how to create work of the same calibre. With practice, your skills will inevitably rise — but at any given time, it’s important to know the level you should aim for.
    •    Find people who are cooler than you. Don’t hesitate to ask them for advice or to shadow them. Have them share their experiences, stand behind them and observe their work if they’ll let you. Few things are more useful than real work experience, both your own and that of others.
    •    Take on a project. This could be a an illustrated workbook for colleagues or students, a guide book, a lecture for schoolchildren with compelling visuals, a course for students or a documentary on your topic.
    •    If you work in a team, you can raise the bar even higher. Use each other’s strengths, share experiences, make plans, apply for grants and take on challenging science-communication projects together. This multiplies the fun and the results. More

  • in

    Evaluating the impact of highway construction projects on landscape ecological risks in high altitude plateaus

    Tsering, D. Transport development in Tibet since the democratic reform in 1959. J. Tibetan Stud. 76–85 (2019).Yan, X. et al. Relationships between heavy metal concentrations in roadside topsoil and distance to road edge based on field observations in the Qinghai-Tibet Plateau, China. Int. J. Environ. Res. Public Health. 10(3), 762–765 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berling-Wolff, S. & Jianguo, W. U. Modeling urban landscape dynamics: A case study in Phoenix, USA. J. Urban Ecosyst. 7(3), 215–240 (2004).
    Google Scholar 
    Jianzhou, G., Yansui, L. & Beicheng, X. Spatial heterogeneity of urban land-cover landscape in Guangzhou from 1990 to 2005. J. Geogr. Sci. 19(2), 213–224 (2009).
    Google Scholar 
    Pan, L., Zhang, H. & Liu, A. Analysis of threshold of road networks effecting landscape fragmentation in Chongqing. J. Ecol. Sci. 34(5), 45–51 (2015).CAS 

    Google Scholar 
    Paukert, C. P., Pitts, K. L., Whittier, J. B. & Oldenc, J. D. Development and assessment of a landscape-scale ecological threat index for the Lower Colorado River Basin. J. Ecol. Indic. 11(2), 304–310 (2011).
    Google Scholar 
    Li, H., Yu, Q., Li, N., Wang, J. & Yang, Y. Study on landscape dynamics and driving mechanisms of the Shudu Lake catchment wetlands in Northwest Yunnan. J. West China Forest. Sci. 42(3), 34–39 (2013).Yunqing, H., Jinxi, W. & Hong, J. The dynamics of land cover change pattern and landscape fragmentation in Jiuzhaigou Nature Reserve, China. J. Proc. SPIE Int. Soc. Opt. Eng. 7498, 74983P (2009).Hu, L. et al. Landscape pattern in Nanwenghe nature reserve and its driving forces. J. Protect. Forest Sci. Technol. 0(7), 18–21 (2015).Li, X. et al. Land use/cover and landscape pattern changes in Manas River Basin based on remote sensing. J. Int. J. Agric. Biol. Eng. 13(5), 141–152 (2020).Andrejs, R. & Merkurjevs, J. Software tool implementing the fuzzy AHP method in ecological risk assessment. J. Inform. Technol. Manag. Sci. 20(1), 34–39 (2017).Peng, J., Dang, W., Liu, Y., Zong, M. & Hu, X. Research progress and prospect of landscape ecological risk assessment. J. Acta Geogr. Sin. 70(04), 664–677 (2015).
    Google Scholar 
    Xu, Y., Fu, B. & Lü, H. Research on landscape pattern and ecological processes based on landscape models. J. Acta Ecol. Sin. 30(1), 212–220 (2010).
    Google Scholar 
    Forman, R. Road ecology: A solution for the giant embracing us. J. Landsc. Ecol. 13(4), 3–5 (1998).
    Google Scholar 
    Minxi, W., Shiliang, L., Baoshan, C. & Min, Y. Impacts of hydroelectric project construction on nature reserve and assessment. J. Acta Ecol. Sin. 28(4), 1663–1671 (2008).
    Google Scholar 
    Yang, K., Deng, X., Xue-Ling, L. I. & Wen, P. Impacts of hydroelectric cascade exploitation on river ecosystem and landscape: A review. J. Acta Ecol. Sin. 22(5), 1359–1367 (2011).
    Google Scholar 
    Chen, L. D., Wang, J. P., Jiang, C. L. & Zhang, H. P. Quantitative study on effect of linear project construction on landscape pattern along pipeline. J. Sci. Geogr. Sin. 30(2), 161–167 (2010).
    Google Scholar 
    Qianqian, H., Luomeng, C. & Shanlin, W. Impact of expressway on land use and landscape pattern: A case study of Putan Guai to Chenghao section of Inner Mongolia Provincial Highway 103. J. Environ. Protect. Sci. 35(05), 58–61 (2009).
    Google Scholar 
    Huang, Y., Li, Y. & Ying, H. Responses of Chongqing-Yi Expressway to land use change and landscape pattern. J. Nat. Resourc. 30(09), 1449–1460 (2015).
    Google Scholar 
    Keken, Z., Sebkova, M. & Skalos, J. Analyzing land cover change—The impact of the motorway construction and their operation on landscape structure. J. Geogr. Inform. Syst. 6(5), 559–571 (2014).Mengna, H. & Ting, M. Assessing the impacts of China’s road network on landscape fragmentation and protected areas. J. Geo-inform. Sci. 21(8), 1183–1195 (2019).
    Google Scholar 
    Mothorpe, C., Hanson, A. & Schnier, K. The impact of interstate highways on land use conversion. J. Ann. Reg. Sci. 51(3), 833–870 (2013).
    Google Scholar 
    Wu, C.-F., Lin, Y.-P., Chiang, L.-C. & Huang, T. Assessing highway’s impacts on landscape patterns and ecosystem services: a case study in Puli Township, Taiwan. J. Landsc. Urban Plan. 128, 60–71 (2014).
    Google Scholar 
    Jia, L., Lei, T. & Yan, S. H. Environmental impact analysis and control measures in tunnel construction. J. Appl. Mech. Mater. 90–93, 3250–3253 (2011).ADS 

    Google Scholar 
    Wang, M. Analysis of high-speed railway construction on ecological environment impact and environmental protection contribution. J. Railway Constr. Technol. https://doi.org/10.3969/j.issn.1009-4539.2015.04.019 (2015).Article 

    Google Scholar 
    He, Y. & Xiong, C. Environmental impact of waste slurry in pile foundation construction of high-speed railway bridges and its countermeasures. J. Adv. Mater. Res. 383–390, 3690–3694 (2011).
    Google Scholar 
    Jing, C. et al. Influence of cross-sea bridge project on water quality and ecological environment of nearby sea and its tracking, monitoring and verification. J. Ocean Dev. Manag. 37(10), 96–100 (2020).
    Google Scholar 
    Jianhua, X., Mingquan, W., Shijian, Z. & Zheng, N. Remote sensing monitoring of ecological and economic impacts of major Railway construction along the Belt and Road. J. Sci. Technol. Eng. 20(11), 9 (2020).
    Google Scholar 
    Fang, L. On ecological environment impact assessment of metal mine construction project. J. Nonferrous Metals (Min. Sect.). 64(03), 58–60 (2012).
    Google Scholar 
    Bian, B., Lin, C. & Wu, H. S. Contamination and risk assessment of metals in road-deposited sediments in a medium-sized city of China. J. Ecotoxicol. Environ. Saf. 112, 87–95 (2015).CAS 

    Google Scholar 
    Limin, Y., Yanhai, Z., Rongzu, Q. & Xisheng, H. The influence of regional road construction on landscape ecology on both sides: A case study of Jiangle County, Fujian Province. J. Sichuan Agric. Univ. 33(2), 159–165 (2015).
    Google Scholar 
    Liang, Z. & Nianlai, C. Analysis on the impact of Jinwu Expressway on ecological environment based on comprehensive index evaluation method. J. Environ. Sustain. Dev. 44(3), 137–139 (2019).
    Google Scholar 
    Ting, W. & Zongmin, W. Study on eco-environmental impact assessment system of highway construction. J. Resourc. Econom. Environ. Protect. 3, 129–132. (2015).
    Google Scholar 
    Igondova, E., Pavlickova, K. & Majzlan, O. The ecological impact assessment of a proposed road development (the Slovak approach). J. Environ. Impact Assessm. Rev. 59, 43–54 (2016).
    Google Scholar 
    Chen, L., Fu, B. & Zhao, W. Source-sink landscape theory and its ecological significance. J. Front. Biol. China 3(2), 131–136 (2008).
    Google Scholar 
    Wu, J. et al. Spatial differentiation of landscape ecological risk in opencast mining area. J. Acta Ecol. Sin. 33(12), 3816–3824 (2013).
    Google Scholar 
    Wang, J., Cui, B., Liu, J., Yao, H. & Juan, H. The effect of land use and its change on ecological risk in the Lancang River watershed of Yunnan Province at the landscape scale. J. Acta Sci. Circumstan. 2, 269–277 (2008).CAS 
    Article 

    Google Scholar 
    Xie, H. Regional eco-risk analysis based on landscape structure and spatial statistics. J. Acta Ecol. Sin. 28(10), 5020–5026 (2008).
    Google Scholar 
    Jinggang, L. I., Chunyang, H. E. & Xiaobing, L. I. Landscape ecological risk assessment of natural/semi-natural landscapes in fast urbanization regions——A case study in Beijing, China. J. Nat. Resourc. 23(1), 33–47 (2008).
    Google Scholar 
    Jie, W., Wanqi, B. & Guoxing, T. Temporal and spatial characteristics of landscape ecological risk in Qinghai-Tibet Plateau. J. Resour. Sci. 42(9), 1739–1749 (2020).
    Google Scholar 
    Xuegong, X., Huiping, L., Zaiyi, F. & Rencang, B. Ecological risk assessment of wetland area in Yellow River Delta. J. Acta Sci. Nat. Univ. Pekinensis. 01, 111–120 (2001).
    Google Scholar 
    Malekmohammadi, B. & Blouchi, L. Ecological risk assessment of wetland ecosystems using multi criteria decision making and geographic information system. J. Ecol. Indic. 41, 133–144 (2014).
    Google Scholar 
    Campos, P., Paz, T., Lenz, L., Qiu, Y. & Paz, I. Multi-criteria decision method for sustainable watercourse management in urban areas. J. Sustain. 12(16), 6493–6514 (2020).
    Google Scholar 
    Peng, L. et al. Research on ecological risk assessment in land use model of Shengjin Lake in Anhui province, China. J. Environ. Geochem. Health. 41(6), 2665–2679 (2019).CAS 

    Google Scholar 
    Zhang, D., Yang, S., Wang, Z., Yang, C. & Chen, Y. Assessment of ecological environment impact in highway construction activities with improved group AHP-FCE approach in China. J. Environ. Monit. Assess. 192(7), 451–469 (2020).
    Google Scholar 
    Luan, B. et al. Evaluating green stormwater infrastructure strategies efficiencies in a rapidly urbanizing catchment using SWMM-based topsis. J. Clean. Prod. 223, 680–691 (2019).
    Google Scholar 
    Ramya, S. & Devadas, V. Integration of GIS, AHP and TOPSIS in evaluating suitable locations for industrial development: A case of Tehri Garhwal district, Uttarakhand, India. J. Clean. Prod. 238, 117872 (2019).Koc, K., Ekmekciolu, M. & Zger, M. An integrated framework for the comprehensive evaluation of low impact development strategies. J. Environ. Manag. 294, 113023 (2021).Xiumei, T., Yu, L., Yanmin, R., Yuchun, P. & Xingyao, H. Study on change of land use and ecosystem service value along expressway. J. China Agric. Univ. 21(2), 132–139 (2016).
    Google Scholar 
    Fei, Z., Shanjiang, Y. & Dongfang, W. Ecological risk assessment due to land use/cover changes (LUCC) in Jinghe County, Xinjiang, China from 1990 to 2014 based on landscape patterns and spatial statistics. J. Environ. Earth. Sci. 77(13), 491 (2018).
    Google Scholar 
    Rangel-Buitrago, N., Neal, W. J. & de Jonge, V. N. Risk assessment as tool for coastal erosion management. J. Ocean Coast. Manag. 186, 105099 (2020).
    Google Scholar 
    Mo, W., Wang, Y., Zhang, Y. & Zhuang, D. Impacts of road network expansion on landscape ecological risk in a megacity, China: A case study of Beijing. J. Sci. Total Environ. 574, 1000–1011 (2017).ADS 
    CAS 

    Google Scholar 
    Getis, A. & Ord, J. K. The analysis of spatial association by use of distance statistics. J. Springer Berlin Heidelberg. 24(3), 189–206 (2010).
    Google Scholar 
    Yingxue, Z., Wenbo, M., Yong, W. & Dafang, Z. Impact of land use change on landscape pattern around expressways in Beijing. J. Geo-Inform. Sci. 19(001), 28–38 (2017).
    Google Scholar 
    Gang, Z., HuiJun, G. & Guang, Z. Changes of wetland landscape pattern in arid inland area of Northwest China: A case study of inner flow area in Junggar, Xinjiang. J. Arid Land Resourc. Environ. 28(8), 77–82 (2014).
    Google Scholar 
    Haihang, W., Qianhui, Z., Jiayao, Z. & Chunguo, Z. Analysis on dynamic change of landscape pattern of land use in Zhushan County. J. Forest Resourc. Manag. 6, 76–83 (2018).
    Google Scholar 
    Shiliang, L., Zhifeng, Y., Baoshan, C. & Shu, G. Impact of road on landscape and ecological risk assessment: A case study of Lancang River Basin. J. Chin. J. Ecol. 8, 897–901 (2005).
    Google Scholar 
    Yuan, Y. et al. Flood-landscape ecological risk assessment under the background of urbanization. J. Water. 11(7), 1418 (2019).Xie, H., Wang, P. & Huang, H. Ecological risk assessment of land use change in the Poyang lake Eco-economic zone, China. J. Int. J. Environ. Res. Public Health. 10(1), 328–346 (2013).
    Google Scholar 
    Fengjiao, X. & Xiao, L. Ecological risk pattern in coastal areas of Jiangsu Province based on land use change. J. Acta Ecol. Sin. 38(20), 7312–7325 (2018).
    Google Scholar 
    Mann, D., Anees, M. M., Rankavat, S. & Joshi, P. K. Spatio-temporal variations in landscape ecological risk related to road network in the Central Himalaya. J. Hum. Ecol. Risk Assess. https://doi.org/10.1080/10807039.2019.1710693 (2020).Article 

    Google Scholar 
    Oliveira, B. R. D., Costa, E. L. D., Carvalho-Ribeiro, S. M. & Maia-Barbosa, P. M. Land use dynamics and future scenarios of the Rio Doce State Park buffer zone, Minas Gerais, Brazil. J. Environ. Monit. Assessm. 192(1), 39.1–39.12 (2020).
    Google Scholar 
    Li, Y., Sun, Y. & Li, J. Heterogeneous effects of climate change and human activities on annual landscape change in coastal cities of mainland China. J. Ecol. Indic. https://doi.org/10.1016/j.ecolind.2021.107561 (2021).Dadashpoor, H., Azizi, P. & Moghadasi, M. Land use change, urbanization, and change in landscape pattern in a metropolitan area. J. Sci. Total Environ. 655(10), 707–709 (2019).ADS 
    CAS 

    Google Scholar  More