Polyzos, S. & Tsiotas, D. The contribution of transport infrastructures to the economic and regional development: A review of the conceptual framework. Theor. Empir. Res. Urban Manag. 15, 5–23 (2020).
 Google Scholar 
 Ledec, G. & Posas, P. J. Biodiversity conservation in road projects: Lessons from World Bank experience in Latin America. Transp. Res. Rec. 1819, 198–202 (2003).Article 
 Google Scholar 
 Hughes, A. C. Understanding and minimizing environmental impacts of the Belt and Road Initiative. Conserv. Biol. 33, 883–894 (2019).Article 
 Google Scholar 
 Seiler, A. in COST 341—habitat fragmentation due to transportation infrastructure: the European review (eds Trocmé, M. et al.) Ch. 3, 31–50 (Office for Official Publications of the European Communities, 2002).Marcantonio, M., Rocchini, D., Geri, F., Bacaro, G. & Amici, V. Biodiversity, roads, & landscape fragmentation: Two Mediterranean cases. Appl. Geogr. 42, 63–72. https://doi.org/10.1016/j.apgeog.2013.05.001 (2013).Article 
 Google Scholar 
 Plămădeal, V. & Slobodeaniuc, S. Negative impact of railway transport on the ambient environment. J. Eng. Sci. https://doi.org/10.5281/zenodo.2640044 (2019).Lala, F. et al. Wildlife roadkill in the Tsavo Ecosystem, Kenya: Identifying hotspots, potential drivers, and affected species. Heliyon 7, e06364 (2021).Article 
 Google Scholar 
 Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232. https://doi.org/10.1038/nature13717 (2014).ADS 
 CAS 
 Article 
 PubMed 
 Google Scholar 
 Laurance, W. F., Goosem, M. & Laurance, S. G. W. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol. 24, 659–669. https://doi.org/10.1016/j.tree.2009.06.009 (2009).Article 
 PubMed 
 Google Scholar 
 Clair, C. C. S., Whittington, J., Forshner, A., Gangadharan, A. & Laskin, D. N. Railway mortality for several mammal species increases with train speed, proximity to water, and track curvature. Sci. Rep. 10, 20476. https://doi.org/10.1038/s41598-020-77321-6 (2020).CAS 
 Article 
 Google Scholar 
 Kušta, T., Ježek, M. & Keken, Z. Mortality of large mammals on railway tracks. Sci. Agric. Bohem. 42, 12–18 (2011).
 Google Scholar 
 Dorsey, B. & Olsson, M. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 26, 219–227 (Wiley, 2015).Barrientos, R. & Borda-de-Água, L. Railway Ecology (eds Borda-de-Água, L. et al.) Ch. 4, 43–64 (Springer Open, 2017).Lucas, P. S., de Carvalho, R. G. & Grilo, C. Railway Ecology Ch. Chapter 6, 81–99 (2017).Barrientos, R., Ascensão, F., Beja, P., Pereira, H. M. & Borda-de-Água, L. Railway ecology vs. road ecology: Similarities and differences. Eur. J. Wildl. Res. 65, 1–9. https://doi.org/10.1007/s10344-018-1248-0 (2019).Article 
 Google Scholar 
 Jasińska, K. D. et al. Linking habitat composition, local population densities and traffic characteristics to spatial patterns of ungulate-train collisions. J. Appl. Ecol. 56, 2630–2640. https://doi.org/10.1111/1365-2664.13495 (2019).Article 
 Google Scholar 
 Smith, D. J., Ree, R. v. d. & Rosell, C. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 21, 172–183 (Wiley, 2015).Gilhooly, P. S., Nielsen, S. E., Whittington, J. & Clair, C. C. S. Wildlife mortality on roads and railways following highway mitigation. Ecosphere 10, e02597 (2019).Article 
 Google Scholar 
 Clevenger, A. P., Chruszcz, B. & Gunson, K. E. Highway mitigation fencing reduces wildlife-vehicle collisions. Wildl. Soc. Bull. 29, 646–653 (2001).
 Google Scholar 
 Simpson, N. O. et al. Overpasses and underpasses: Effectiveness of crossing structures for migratory ungulates. J. Wildl. Manag. 80, 1370–1378. https://doi.org/10.1002/jwmg.21132 (2016).Article 
 Google Scholar 
 Seidler, R. G., Green, D. S. & Beckmann, J. P. Highways, crossing structures and risk: Behaviors of Greater Yellowstone pronghorn elucidate efficacy of road mitigation. Glob. Ecol. Conserv. 15, e00416. https://doi.org/10.1016/j.gecco.2018.e00416 (2018).Article 
 Google Scholar 
 Huijser, M. P. et al. Effectiveness of short sections of wildlife fencing and crossing structures along highways in reducing wildlife–vehicle collisions and providing safe crossing opportunities for large mammals. Biol. Conserv. 197, 61–68. https://doi.org/10.1016/j.biocon.2016.02.002 (2016).Article 
 Google Scholar 
 Olsson, M. P. O. & Widen, P. Effects of highway fencing and wildlife crossings on moose Alces alces movements and space use in southwestern Sweden. Wildl. Biol. 14, 111–117 (2008).Article 
 Google Scholar 
 Donaldson, B. Use of highway underpasses by large mammals and other wildlife in Virginia: Factors influencing their effectiveness. Transp. Res. Rec. 157–164, 2007. https://doi.org/10.3141/2011-17 (2011).Article 
 Google Scholar 
 Foster, M. L. & Humphrey, S. R. Use of highway underpasses by Florida panthers and other wildlife. Wildl. Soc. Bull. 23, 95–100 (1995).
 Google Scholar 
 Caldwell, M. R. & Klip, J. M. K. Wildlife interactions within highway underpasses. J. Wildl. Manag. 84, 227–236. https://doi.org/10.1002/jwmg.21801 (2019).Article 
 Google Scholar 
 Clevenger, A. P. & Waltho, N. Performance indices to identify attributes of highway crossing structures facilitating movement of large mammals. Biol. Conserv. 121, 453–464. https://doi.org/10.1016/j.biocon.2004.04.025 (2005).Article 
 Google Scholar 
 Mcdonald, W. & Clair, C. C. S. Elements that promote highway crossing structure use by small mammals in Banff National Park. J. Appl. Ecol. 41, 82–93 (2004).Article 
 Google Scholar 
 Mata Estacio, C., Hervás Bengoechea, I., Herranz Barrera, J., Suárez Cardona, F. & Arrazola, J. E. M. International Conference on Ecology and Transportation (ICOET 2003) Federal Highway Administration.Sawyer, H., Lebeau, C. & Hart, T. Mitigating roadway impacts to migratory mule deer—A case study with underpasses and continuous fencing. Wildl. Soc. Bull. 36, 492–498. https://doi.org/10.1002/wsb.166 (2012).Article 
 Google Scholar 
 Rodriguez, A., Crema, G. & Delibes, M. Use of non-wildlife passages across a high speed railway by terrestrial vertebrates. J. Appl. Ecol. 33, 1527–1540 (1996).Article 
 Google Scholar 
 Yanes, M., Velasco, J. M. & Sufirez, F. Permeability of roads and railways to vertebrates: The importance of culverts. Biol. Conserv. 71, 217–222 (1995).Article 
 Google Scholar 
 Rodriguez, A., Crema, G. & Delibes, M. Factors affecting crossing of red foxes and wildcats through non-wildlife passages across a high-speed railway. Ecography 2, 287–294 (1997).Article 
 Google Scholar 
 Weeks, S. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 43, 353–356 (Wiley, 2015).Okita-Ouma, B. et al. Effectiveness of wildlife underpasses and culverts in connecting elephant habitats: A case study of new railway through Kenya’s Tsavo National Parks. Afr. J. Ecol. 59(3), 624–640 (2021).Article 
 Google Scholar 
 Collinson, W., Davies-Mostert, H., Roxburgh, L. & van der Ree, R. Status of road ecology research in Africa: Do we understand the impacts of roads, and how to successfully mitigate them?. Front. Ecol. Evol. 7, 479. https://doi.org/10.3389/fevo.2019.00479 (2019).ADS 
 Article 
 Google Scholar 
 Wang, Y., Guan, L., Chen, J. & Kong, Y. Influences on mammals frequency of use of small bridges and culverts along the Qinghai-Tibet railway, China. Ecol. Res. 33, 879–887. https://doi.org/10.1007/s11284-018-1578-0 (2018).Article 
 Google Scholar 
 Ng, S. J., Dole, J. W., Sauvajot, R. M., Riley, S. P. D. & Valone, T. J. Use of highway undercrossings by wildlife in southern California. Biol. Conserv. 115, 499–507. https://doi.org/10.1016/s0006-3207(03)00166-6 (2004).Article 
 Google Scholar 
 Mata, C., Hervas, I., Herranz, J., Suarez, F. & Malo, J. E. Are motorway wildlife passages worth building? Vertebrate use of road-crossing structures on a Spanish motorway. J. Environ. Manag. 88, 407–415. https://doi.org/10.1016/j.jenvman.2007.03.014 (2008).CAS 
 Article 
 Google Scholar 
 Mata, C., Herranz, J. & Malo, J. E. Attraction and avoidance between predators and prey at wildlife crossings on roads. Diversity 12, 166. https://doi.org/10.3390/d12040166 (2020).Article 
 Google Scholar 
 Stewart, L., Russell, B., Zelig, E., Patel, G. & Whitney, K. S. Wildlife crossing design influences effectiveness for small and large mammals in Banff National Park. Case Stud. Environ. 4, 1231752. https://doi.org/10.1525/cse.2020.1231752 (2020).Article 
 Google Scholar 
 Mysłajek, R. W., Nowak, S., Kurek, K., Tołkacz, K. & Gewartowska, O. Utilisation of a wide underpass by mammals on an expressway in the Western Carpathians, S Poland. Folia Zool. 65, 225–232. https://doi.org/10.25225/fozo.v65.i3.a8.2016 (2016).Article 
 Google Scholar 
 Clevenger, A. P. & Waltho, N. factors influencing the effectiveness of wildlife underpasses in Banff National Park, Alberta, Canada. Conserv. Biol. 14, 47–56 (2000).Article 
 Google Scholar 
 Laurance, W. F., Sloan, S., Weng, L. & Sayer, J. A. Estimating the environmental costs of Africa’s massive “development corridors”. Curr. Biol. 25, 3202–3208. https://doi.org/10.1016/j.cub.2015.10.046 (2015).CAS 
 Article 
 PubMed 
 Google Scholar 
 van der Ree, R., Gagnon, J. W. & Smith, D. J. Handbook of Road Ecology (eds van der Ree, R. et al.) Ch. 20, 159–171 (Wiley, 2015).Ascensão, F. & Mira, A. Factors affecting culvert use by vertebrates along two stretches of road in southern Portugal. Ecol. Res. 22, 57–66. https://doi.org/10.1007/s11284-006-0004-1 (2006).Article 
 Google Scholar 
 Hepenstrick, D., Thiel, D., Holderegger, R. & Gugerli, F. Genetic discontinuities in roe deer (Capreolus capreolus) coincide with fenced transportation infrastructure. Basic Appl. Ecol. 13, 631–638. https://doi.org/10.1016/j.baae.2012.08.009 (2012).Article 
 Google Scholar 
 Wilson, R. E., Farley, S. D., McDonough, T. J., Talbot, S. L. & Barboza, P. S. A genetic discontinuity in moose (Alces alces) in Alaska corresponds with fenced transportation infrastructure. Conserv. Genet. 16, 791–800. https://doi.org/10.1007/s10592-015-0700-x (2015).Article 
 Google Scholar 
 Jaeger, J. A. G. & Fahrig, L. Effects of road fencing on population persistence. Conserv. Biol. 18, 1651–1657 (2004).Article 
 Google Scholar 
 Ngene, S., Lala, F., Nzisa, M., Kimitei, K., Mukeka, J., Kiambi, S., Davidson, Z., Bakari, S., Lyimo, E. & Khayale, C. (eds Arusha Kenya Wildlife Service (KWS) and Tanzania Wildlife Research Institute (TAWIRI)) (2017).World Resources Institute, Department of Resource Surveys and Remote Sensing Ministry of Environment and Natural Resources Kenya, Central Bureau of Statistics Ministry of Planning and National Development Kenya & International Livestock Research Institute. Nature’s Benefits in Kenya, An Atlas of Ecosystems and Human Well-Being (World Resources Institute, 2007).Wijngaarden, W. V. Elephants, trees, grass, grazers: relationships between climate, soils, vegetation, and large herbivores in a semi-arid savanna ecosystem (Tsavo, Kenya) Doctor of Philosophy thesis, Landbouwhogeschool te Wageningen (1985).Stuart, C. Field Guide to Tracks & Signs of Southern, Central & East African Wildlife (Penguin Random House South Africa, 2013).
 Google Scholar 
 Murie, O. J. & Elbroch, M. A Field Guide to Animal Tracks Vol. 3 (Houghton Mifflin Harcourt, 2005).
 Google Scholar 
 Kerley, G. I. H., Pressey, R. L., Cowling, R. M., Boshoff, A. F. & Sims-Castley, R. Options for the conservation of large and medium-sized mammals in the Cape Floristic Region hotspot, South Africa. Biol. Conserv. 112, 169–190. https://doi.org/10.1016/S0006-3207(02)00426-3 (2003).Article 
 Google Scholar 
 R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2021).Hayward, M. W., Hayward, G. J., Tambling, C. J. & Kerley, G. I. Do lions Panthera leo actively select prey or do prey preferences simply reflect chance responses via evolutionary adaptations to optimal foraging?. PLoS ONE 6, e23607 (2011).ADS 
 CAS 
 Article 
 Google Scholar 
 De Boer, W. F. et al. Spatial distribution of lion kills determined by the water dependency of prey species. J. Mammal. 91, 1280–1286 (2010).Article 
 Google Scholar 
 Hayward, M. W. & Kerley, G. I. H. Prey preferences of the lion (Panthera leo). J. Zool. 267, 309–322. https://doi.org/10.1017/S0952836905007508 (2005).Article 
 Google Scholar 
 Davidson, Z. et al. Seasonal diet and prey preference of the African lion in a waterhole-driven semi-arid Savanna. PLoS ONE 8, e55182. https://doi.org/10.1371/journal.pone.0055182 (2013).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Patterson, B. D., Kasiki, S. M., Selempo, E. & Kays, R. W. Livestock predation by lions (Panthera leo) and other carnivores on ranches neighboring Tsavo National ParkS, Kenya. Biol. Conserv. 119, 507–516. https://doi.org/10.1016/j.biocon.2004.01.013 (2004).Article 
 Google Scholar 
 Hayward, M. W. et al. Prey preferences of the leopard (Panthera pardus). J. Zool. 270, 298–313. https://doi.org/10.1111/j.1469-7998.2006.00139.x (2006).Article 
 Google Scholar 
 Ogara, W. O. et al. Determination of carnivores prey base by scat analysis in Samburu community group ranches in Kenya. Afr. J. Environ. Sci. Technol. 4, 540–546 (2010).
 Google Scholar 
 Hayward, M. W. Prey preferences of the spotted hyaena (Crocuta crocuta) and degree of dietary overlap with the lion (Panthera leo). J. Zool. 270, 606–614. https://doi.org/10.1111/j.1469-7998.2006.00183.x (2006).Article 
 Google Scholar 
 Brooks, M. E. et al. glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear mixed modeling. R J. 9, 378–400 (2017).Article 
 Google Scholar 
 Barton, K. & Barton, M. K. Package ‘MuMIn’. Version 1, 18 (2015).
 Google Scholar 
 Williams, E. M. Giraffe stature and neck elongation: Vigilance as an evolutionary mechanism. Biology 5, 35 (2016).Article 
 Google Scholar 
 Shorrocks, B. The Giraffe: Biology, Ecology, Evolution and Behaviour (Wiley, 2016).Book 
 Google Scholar 
 Mata, C., Bencini, R., Chambers, B. K. & Malo, J. E. Handbook of Road Ecology (eds Smith, D. J. & van der Ree, C. G. R.) Ch. 23, 190–197 (Wiley, 2015).Harris, I. M., Mills, H. R. & Bencini, R. Multiple individual southern brown bandicoots (Isoodonobesulus fusciventer) and foxes (Vulpes vulpes) use underpasses installed at a new highway in Perth, Western Australia. Wildl. Res. 37, 127–133 (2010).Article 
 Google Scholar 
 Fehlmann, G. et al. Extreme behavioural shifts by baboons exploiting risky, resource-rich, human-modified environments. Sci. Rep. 7, 1–8 (2017).CAS 
 Article 
 Google Scholar 
 McLennan, M. R., Spagnoletti, N. & Hockings, K. J. The implications of primate behavioral flexibility for sustainable human-primate coexistence in anthropogenic habitats. Int. J. Primatol. 38, 105–121. https://doi.org/10.1007/s10764-017-9962-0 (2017).Article 
 Google Scholar 
 Riley, E. P. Flexibility in diet and activity patterns of Macaca tonkeana in response to anthropogenic habitat alteration. Int. J. Primatol. 28, 107–133. https://doi.org/10.1007/s10764-006-9104-6 (2007).Article 
 Google Scholar 
 Johnson-Ulrich, L., Yirga, G., Strong, R. L. & Holekamp, K. E. The effect of urbanization on innovation in spotted hyenas. Anim. Cogn. 24, 1027–1038. https://doi.org/10.1007/s10071-021-01494-4 (2021).Article 
 PubMed 
 Google Scholar 
 Holekamp, K. E. & Dloniak, S. M. Intraspecific variation in the behavioral ecology of a tropical carnivore, the spotted hyena. Adv. Study Behav. 42, 189–229 (2010).Article 
 Google Scholar 
 Devens, C. H. et al. Estimating leopard density across the highly modified human-dominated landscape of the Western Cape, South Africa. Oryx 55, 34–45. https://doi.org/10.1017/S0030605318001473 (2021).Article 
 Google Scholar 
 Van Cleave, E. K. et al. Diel patterns of movement activity and habitat use by leopards (Panthera pardus pardus) living in a human-dominated landscape in central Kenya. Biol. Conserv. 226, 224–237. https://doi.org/10.1016/j.biocon.2018.08.003 (2018).Article 
 Google Scholar 
 Odden, M., Athreya, V., Rattan, S. & Linnell, J. D. C. Adaptable neighbours: Movement patterns of GPS-collared leopards in human dominated landscapes in India. PLoS ONE 9, e112044. https://doi.org/10.1371/journal.pone.0112044 (2014).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Athreya, V., Odden, M., Linnell, J. D. C., Krishnaswamy, J. & Karanth, K. U. A cat among the dogs: Leopard Panthera pardus diet in a human-dominated landscape in western Maharashtra, India. Oryx 50, 156–162. https://doi.org/10.1017/S0030605314000106 (2016).Article 
 Google Scholar 
 Suraci, J. P. et al. Behavior-specific habitat selection by African lions may promote their persistence in a human-dominated landscape. Ecology 100, e02644. https://doi.org/10.1002/ecy.2644 (2019).Article 
 PubMed 
 Google Scholar 
 Daniels, S. E., Fanelli, R. E., Gilbert, A. & Benson-Amram, S. Behavioral flexibility of a generalist carnivore. Anim. Cogn. 22, 387–396 (2019).Article 
 Google Scholar 
 Murray, M. H. & St. Clair, C. C. Individual flexibility in nocturnal activity reduces risk of road mortality for an urban carnivore. Behav. Ecol. 26, 1520–1527. https://doi.org/10.1093/beheco/arv102 (2015).Article 
 Google Scholar 
 Galanti, V., Preatoni, D., Martinoli, A., Wauter, L. A. & Tosi, G. Space and habitat use of the African elephant in the Tarangire-Manyara ecosystem, Tanzania: Implications for conservation. Mamm. Biol. 71, 99–114. https://doi.org/10.1016/j.mambio.2005.10.001 (2006).Article 
 Google Scholar 
 Douglas-Hamilton, I., Krink, T. & Vollrath, F. Movements and corridors of African elephants in relation to protected areas. Naturwissenschaften 92, 158–163. https://doi.org/10.1007/s00114-004-0606-9 (2005).ADS 
 CAS 
 Article 
 PubMed 
 Google Scholar 
 Coe, P. K. et al. Identifying migration corridors of mule deer threatened by highway development. Wildl. Soc. Bull. 39, 256–267. https://doi.org/10.1002/wsb.544 (2015).Article 
 Google Scholar 
 Spinage, C. A. Territoriality and social organization of the Uganda defassa waterbuck Kobus defassa ugandae. J. Zool. Lond. 159, 329–361 (1969).Article 
 Google Scholar 
 Mizutani, F. & Jewell, P. A. Home-range and movements of leopards (Panthera pardus) on a livestock ranch in Kenya. J. Zool. Lond. 244, 269–286 (1998).Article 
 Google Scholar 
 Riley, S. P. et al. A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol. Ecol. 15, 1733–1741. https://doi.org/10.1111/j.1365-294X.2006.02907.x (2006).CAS 
 Article 
 PubMed 
 Google Scholar 
 Sells, S. N. & Mitchell, M. S. The economics of territory selection. Ecol. Model. 438, 109329. https://doi.org/10.1016/j.ecolmodel.2020.109329 (2020).Article 
 Google Scholar 
 Valls-Fox, H. et al. Water and cattle shape habitat selection by wild herbivores at the edge of a protected area. Anim. Conserv. 21, 365–375. https://doi.org/10.1111/acv.12403 (2018).Article 
 Google Scholar 
 Hibert, F. et al. Spatial avoidance of invading pastoral cattle by wild ungulates: Insights from using point process statistics. Biodivers. Conserv. 19, 2003–2024 (2010).Article 
 Google Scholar 
 Stewart, K. M., Bowyer, R. T., Kie, J. G., Cimon, N. J. & Johnson, B. K. Temporospatial distributions of elk, mule deer, and cattle: Resource partitioning and competitive displacement. J. Mammal. 83, 229–244. https://doi.org/10.1644/1545-1542(2002)083%3c0229:Tdoemd%3e2.0.Co;2 (2002).Article 
 Google Scholar 
 Leeuw, J. D. et al. Distribution and diversity of wildlife in northern Kenya in relation to livestock and permanent water points. Biol. Conserv. 100, 297–306 (2001).Article 
 Google Scholar 
 Donaldson, B. Use of highway underpasses by large mammals and other wildlife in Virginia. Transp. Res. Rec 157–164, 2007. https://doi.org/10.3141/2011-17 (2011).Article 
 Google Scholar 
 Dodd, N. L., Gagnon, J. W., Manzo, A. L. & Schweinsburg, R. E. Video surveillance to assess highway underpass use by elk in Arizona. J. Wildl. Manag. 71, 637–645. https://doi.org/10.2193/2006-340 (2007).Article 
 Google Scholar 
 Gordon, K. M. & Anderson, S. H. International Conference on Ecology and Transportation https://escholarship.org/uc/item/2wv1v6dz.Bond, A. R. & Jones, D. N. Temporal trends in use of fauna-friendly underpasses and overpasses. Wildl. Res. 35, 103–112. https://doi.org/10.1071/WR07027 (2008).Article 
 Google Scholar 
 Altmann, J., Schoeller, D., Altmann, S. A., Muruthi, P. & Sapolsky, R. M. Body size and fatness of free-living baboons reflect food availability and activity levels. Am. J. Primatol. 30, 149–161. https://doi.org/10.1002/ajp.1350300207 (1993).Article 
 PubMed 
 Google Scholar 
 Kiffner, C. et al. Road-based line distance surveys overestimate densities of olive baboons. PLoS ONE 17, e0263314. https://doi.org/10.1371/journal.pone.0263314 (2022).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Strandburg-Peshkin, A., Farine, D. R., Crofoot, M. C. & Couzin, I. D. Habitat and social factors shape individual decisions and emergent group structure during baboon collective movement. Elife 6, e19505. https://doi.org/10.7554/eLife.19505 (2017).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Bohrer, G., Beck, P. S., Ngene, S. M., Skidmore, A. K. & Douglas-Hamilton, I. Elephant movement closely tracks precipitation driven vegetation dynamics in a Kenyan forest-savanna landscape. Mov. Ecol. 2, 2 (2014).Article 
 Google Scholar 
 Merkle, J. A. et al. Large herbivores surf waves of green-up during spring. Proc. Biol. Sci. 283, 20160456. https://doi.org/10.1098/rspb.2016.0456 (2016).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Middleton, A. D. et al. Green-wave surfing increases fat gain in a migratory ungulate. Oikos 127, 1060–1068. https://doi.org/10.1111/oik.05227 (2018).Article 
 Google Scholar 
 Bartlam-Brooks, H. L. A., Beck, P. S. A., Bohrer, G. & Harris, S. In search of greener pastures: Using satellite images to predict the effects of environmental change on zebra migration. J. Geophys. Res. Biogeosci. 118, 1427–1437. https://doi.org/10.1002/jgrg.20096 (2013).Article 
 Google Scholar 
 Bischof, R. et al. A migratory northern ungulate in the pursuit of spring: Jumping or surfing the green wave?. Am. Nat. 180, 407–424. https://doi.org/10.1086/667590 (2012).Article 
 PubMed 
 Google Scholar 
 Aikens, E. O. et al. The greenscape shapes surfing of resource waves in a large migratory herbivore. Ecol. Lett. 20, 741–750. https://doi.org/10.1111/ele.12772 (2017).Article 
 PubMed 
 Google Scholar 
 Mandinyenya, B., Monks, N., Mundy, P. J., Sebata, A. & Chirima, A. Habitat choices of African buffalo (Syncerus caffer) and plains zebra (Equus quagga) in a heterogeneous protected area. Wildl. Res. 47, 106–113. https://doi.org/10.1071/WR18201 (2020).Article 
 Google Scholar  More