Hou, X., et al. The Cambrian fossils of Chengjiang, China: the flowering of early animal life. 316p., (Wiley Blackwell, Second Edition, 2017).Zhao, F., Zhu, M. & Hu, S. Community structure and composition of the Cambrian Chengjiang biota. Sci. China Earth Sci. 53, 1784–1799 (2010).ADS
Google Scholar
Yang, X. et al. A juvenile-rich palaeocommunity of the lower Cambrian Chengjiang biota sheds light on palaeo-boom or palaeo-bust environments. Nat. Ecol. Evol. 5, 1082–1090 (2021).PubMed
Google Scholar
Ma, X., Hou, X., Edgecombe, G. D. & Strausfeld, N. J. Complex brain and optic lobes in an early Cambrian arthropod. Nature 490, 258–261 (2012).CAS
PubMed
ADS
Google Scholar
Saleh, F. et al. Taphonomic bias in exceptionally preserved biotas. Earth Planet. Sci. Lett. 529, 115873 (2020).CAS
Google Scholar
Saleh, F. et al. A novel tool to untangle the ecology and fossil preservation knot in exceptionally preserved biotas. Earth Planet. Sci. Lett. 569, 117061 (2021).CAS
Google Scholar
Harper, D. A. et al. The Sirius Passet Lagerstätte of North Greenland: a remote window on the Cambrian explosion. J. Geol. Soc. 176, 1023–1037 (2019).ADS
Google Scholar
Nanglu, K., Caron, J. B. & Gaines, R. R. The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology 46, 58–81 (2020).
Google Scholar
Tanaka, G., Hou, X., Ma, X., Edgecombe, G. D. & Strausfeld, N. J. Chelicerate neural ground pattern in a Cambrian great appendage arthropod. Nature 502, 364–367 (2013).CAS
PubMed
ADS
Google Scholar
Cong, P., Ma, X., Hou, X., Edgecombe, G. D. & Strausfeld, N. J. Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature 513, 538–542 (2014).CAS
PubMed
ADS
Google Scholar
Liu, Y., Ortega-Hernández, J., Zhai, D. & Hou, X. A reduced labrum in a Cambrian great-appendage euarthropod. Curr. Biol. 30, 3057–3061 (2020).CAS
PubMed
Google Scholar
Liu, Y. et al. Computed tomography sheds new light on the affinities of the enigmatic euarthropod Jianshania furcatus from the early Cambrian Chengjiang biota. BMC Evol. Biol. 20, 1–17 (2020).
Google Scholar
Gabbott, S. E., Hou, X.-G., Norry, M. J. & Siveter, D. J. Preservation of Early Cambrian animals of the Chengjiang biota. Geology 32, 901–904 (2004).CAS
ADS
Google Scholar
Gaines, R. R. et al. Mechanism for Burgess Shale-type preservation. Proc. Natl. Acad. Sci. 109, 5180–5184 (2012).CAS
PubMed
PubMed Central
ADS
Google Scholar
Forchielli, A., Steiner, M., Kasbohm, J., Hu, S. & Keupp, H. Taphonomic traits of clay-hosted early Cambrian Burgess Shale-type fossil Lagerstätten in South China. Palaeogeogr, Palaeoclimatol. Palaeoecol. 398, 59–85 (2014).
Google Scholar
Ma, X., Edgecombe, G. D., Hou, X., Goral, T. & Strausfeld, N. J. Preservational pathways of corresponding brains of a Cambrian euarthropod. Curr. Biol. 25, 2969–2975 (2015).CAS
PubMed
Google Scholar
Hammarlund, E. U. et al. Early Cambrian oxygen minimum zone-like conditions at Chengjiang. Earth Planet. Sci. Lett. 475, 160–168 (2017).CAS
ADS
Google Scholar
Qi, C. et al. Influence of redox conditions on animal distribution and soft-bodied fossil preservation of the Lower Cambrian Chengjiang Biota. Palaeogeogr. Palaeoclimatol. Palaeoecol. 507, 180–187 (2018).
Google Scholar
Saleh, F., Daley, A. C., Lefebvre, B., Pittet, B. & Perrillat, J. P. Biogenic iron preserves structures during fossilization: a hypothesis: iron from decaying tissues may stabilize their morphology in the fossil record. BioEssays 42, 1900243 (2020).CAS
Google Scholar
Daley, A. C. et al. Insights into soft-part preservation from the Early Ordovician Fezouata Biota. Earth Sci. Rev. 213, 103464 (2021).
Google Scholar
Pu, X. C., et al. Cambrian lithofacies, paleogeography and mineralization in south China, Geological Publishing House, Beijing, 191 p. (1992).Zhu, M. Y., Zhang, J. M. & Li, G. X. Sedimentary environments of the early Cambrian Chengjiang biota: sedimentology of the Yu’anshan Formation in Chengjiang County, eastern Yunnan. Acta Palaeontol. Sin. 40, 80–105 (2001).
Google Scholar
Babcock, L. E. & Zhang, W. Stratigraphy, palaeontology, and depositional setting of the Chengjiang Lagerstätte (Lower Cambrian), Yunnan, China. Palaeoworld 13, 66–86 (2001).
Google Scholar
Babcock, L. E., Zhang, W. & Leslie, S. A. The Chengjiang biota: record of the Early Cambrian diversification of life and clues to exceptional preservation of fossils. GSA Today 11, 4–9 (2001).
Google Scholar
MacKenzie, L. A., Hofmann, M. H., Junyuan, C. & Hinman, N. W. Stratigraphic controls of soft-bodied fossil occurrences in the Cambrian Chengjiang Biota Lagerstätte, Maotianshan Shale, Yunnan Province, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 420, 96–115 (2015).
Google Scholar
Chen, J. Y. & Lindström, M. A lower Cambrian soft-bodied fauna from Chengjiang, Yunnan, China. Geologiska Föreningen i Stockholm Förhandlingar 113, 79–81 (1991).
Google Scholar
Jin, Y. G., Wang, H. Y. & Wang, W. Palaeoecological aspect of branchiopods from Chiungchussu Formation of Early Cambrian Age, Eastern Yunnan, China. Palaeoecol. China 1, 25–47 (1991).CAS
Google Scholar
Hu, S. Taphonomy and palaeoecology of the Early Cambrian Chengjiang Biota from eastern Yunnan, China. Berl. Paläobiologische Abhandlungen 7, 189 (2005).ADS
Google Scholar
Schieber, J., Southard, J. & Thaisen, K. Accretion of mudstone beds from migrating floccule ripples. Science 318, 1760–1763 (2007).CAS
PubMed
ADS
Google Scholar
Lamb, M. P., Myrow, P. M., Lukens, C., Houck, K. & Strauss, J. Deposits from wave-influenced turbidity currents: Pennsylvanian Minturn Formation, Colorado, USA. J. Sediment. Res. 78, 480–498 (2008).ADS
Google Scholar
Baas, J. H., Best, J. L., Peakall, J. & Wang, M. A phase diagram for turbulent, transitional, and laminar clay suspension flows. J. Sediment. Res. 79, 162–183 (2009).ADS
Google Scholar
Plint, A. G. & Macquaker, J. H. Bedload Transport of Mud Across a Wide, Storm-Influenced Ramp: Cenomanian–Turonian Kaskapau Formation, Western Canada Foreland Basin—Reply. J. Sediment. Res. 83, 1200–1201 (2013).
Google Scholar
Bohacs, K. M., Lazar, O. R. & Demko, T. M. Parasequence types in shelfal mudstone strata—Quantitative observations of lithofacies and stacking patterns, and conceptual link to modern depositional regimes. Geology 42, 131–134 (2014).ADS
Google Scholar
Lazar, O. R., Bohacs, K. M., Macquaker, J. H., Schieber, J. & Demko, T. M. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: nomenclature and description guidelines. J. Sediment. Res. 85, 230–246 (2015).CAS
ADS
Google Scholar
Wheatcroft, R. A. Oceanic flood sedimentation: a new perspective. Continent. Shelf Res. 20, 2059–2066 (2000).ADS
Google Scholar
Wright, L. D. & Friedrichs, C. T. Gravity-driven sediment transport on continental shelves: a status report. Continent. Shelf Res. 26, 2092–2107 (2006).ADS
Google Scholar
Bhattacharya, J. P. & MacEachern, J. A. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. J. Sediment. Res. 79, 184–209 (2009).ADS
Google Scholar
Ichaso, A. A. & Dalrymple, R. W. Tide-and wave-generated fluid mud deposits in the Tilje Formation (Jurassic), offshore Norway. Geology 37, 539–542 (2009).ADS
Google Scholar
Schieber, J. Experimental testing of the transport-durability of shale lithics and its implications for interpreting the rock record. Sediment. Geol. 331, 162–169 (2016).ADS
Google Scholar
Zavala, C. & Arcuri, M. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics. Sediment. Geol. 337, 36–54 (2016).ADS
Google Scholar
Boulesteix, K., Poyatos-Moré, M., Hodgson, D. M., Flint, S. S. & Taylor, K. G. Fringe or background: characterizing deep-water mudstones beyond the basin-floor fan sandstone pinchout. J. Sediment. Res. 90, 1678–1705 (2020).ADS
Google Scholar
Dumas, S. & Arnott, R. W. C. Origin of hummocky and swaley cross-stratification—the controlling influence of unidirectional current strength and aggradation rate. Geology 34, 1073–1076 (2006).ADS
Google Scholar
Perillo, M. M. et al. A unified model for bedform development and equilibrium under unidirectional, oscillatory and combined‐flows. Sedimentology 61, 2063–2085 (2014).
Google Scholar
Jelby, M. E., Grundvåg, S. A., Helland‐Hansen, W., Olaussen, S. & Stemmerik, L. Tempestite facies variability and storm‐depositional processes across a wide ramp: Towards a polygenetic model for hummocky cross‐stratification. Sedimentology 67, 742–781 (2020).
Google Scholar
Collins, D. S., Johnson, H. D., Allison, P. A., Guilpain, P. & Damit, A. R. Coupled ‘storm‐flood’depositional model: application to the Miocene–Modern Baram Delta Province, north‐west Borneo. Sedimentology 64, 1203–1235 (2017).
Google Scholar
Dillinger, A., Vaucher, R. & Haig, D. W. Refining the depositional model of the lower Permian Carynginia Formation in the northern Perth Basin: anatomy of an ancient mouth bar. Aust. J. Earth Sci. 69, 135–151 (2022).CAS
ADS
Google Scholar
Zavala, C. Hyperpycnal (over density) flows and deposits. J. Palaeogeogr. 9, 1–21 (2020).
Google Scholar
Lin, W. & Bhattacharya, J. P. Storm‐flood‐dominated delta: a new type of delta in stormy oceans. Sedimentology 68, 1109–1136 (2021).
Google Scholar
MacEachern, J. A., Raychaudhuri, I. & Pemberton, S. G. Stratigraphic applications of the Glossifungites ichnofacies: delineating discontinuities in the rock record. In Applications of Ichnology to Petroleum Exploration: a Core Workshop, ed. S.G. Pemberton. Soc. Sediment. Geol. Core Workshop 17, 169–198 (1992).
Google Scholar
Hubbard, S. M. & Shultz, M. R. Deep burrows in submarine fan-channel deposits of the Cerro Toro Formation (Cretaceous), Chilean Patagonia: implications for firmground development and colonization in the deep sea. Palaios 23, 223–232 (2008).ADS
Google Scholar
Buatois, L. A. & Mángano, M. G. Ichnology: organism-substrate interactions in space and time. Cambridge University Press (2011).Droser, M. L., Jensen, S. & Gehling, J. G. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: implications for the record of early bilaterians and sediment mixing. Proc. Natl Acad. Sci. 99, 12572–12576 (2002).CAS
PubMed
PubMed Central
ADS
Google Scholar
Droser, M. L., Jensen, S. & Gehlîng, J. G. Development of early Palaeozoic ichnofabrics: evidence from shallow marine siliciclastics. Geological Society, London, Special Publications 228, 383–396 (2004).Macquaker, J. H., Bentley, S. J. & Bohacs, K. M. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions. Geology 38, 947–950 (2010).ADS
Google Scholar
Myrow, P. M., Fischer, W. & Goodge, J. W. Wave-modified turbidites: combined-flow shoreline and shelf deposits, Cambrian, Antarctica. J. Sediment. Res. 72, 641–656 (2002).CAS
ADS
Google Scholar
Mackay, D. A. & Dalrymple, R. W. Dynamic mud deposition in a tidal environment: the record of fluid-mud deposition in the Cretaceous Bluesky Formation, Alberta, Canada. J. Sediment. Res. 81, 901–920 (2011).ADS
Google Scholar
Birgenheier, L. P., Horton, B., McCauley, A. D., Johnson, C. L. & Kennedy, A. A depositional model for offshore deposits of the lower Blue Gate Member, Mancos Shale, Uinta Basin, Utah, USA. Sedimentology 64, 1402–1438 (2017).
Google Scholar
Lobza, V. & Schieber, J. Biogenic sedimentary structures produced by worms in soupy, soft muds; observations from the Chattanooga Shale (Upper Devonian) and experiments. J. Sediment. Res. 69, 1041–1049 (1999).ADS
Google Scholar
Savrda, C. E. & Bottjer, D. J. Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology 14, 3–6 (1986).CAS
ADS
Google Scholar
Dashtgard, S. E., Snedden, J. W. & MacEachern, J. A. Unbioturbated sediments on a muddy shelf: hypoxia or simply reduced oxygen saturation? Palaeogeogr. Palaeoclimatol. Palaeoecol. 425, 128–138 (2015).
Google Scholar
Dashtgard, S. E. & MacEachern, J. A. Unburrowed mudstones may record only slightly lowered oxygen conditions in warm, shallow basins. Geology 44, 371–374 (2016).ADS
Google Scholar
Pattison, S. A., Bruce Ainsworth, R. & Hoffman, T. A. Evidence of across‐shelf transport of fine‐grained sediments: turbidite‐filled shelf channels in the Campanian Aberdeen Member, Book Cliffs, Utah, USA. Sedimentology 54, 1033–1064 (2007).ADS
Google Scholar
Buatois, L. A. et al. Sedimentological and ichnological signatures of changes in wave, river and tidal influence along a Neogene tropical deltaic shoreline. Sedimentology 59, 1568–1612 (2012).CAS
ADS
Google Scholar
Vaucher, R. et al. Tectonic controls on late Cambrian-Early Ordovician deposition in Cordillera Oriental (Northwest Argentina). Int. J. Earth Sci. 109, 1897–1920 (2020).CAS
Google Scholar
Paz, M. et al. Bottomset and foreset sedimentary processes in the mixed carbonate-siliciclastic Upper Jurassic-Lower Cretaceous Vaca Muerta Formation, Picún Leufú Area, Argentina. Sediment. Geol. 389, 161–185 (2019).CAS
ADS
Google Scholar
Zavala, C. et al. Deltas: a new classification expanding Bates’s concepts. J. Palaeogeogr. 10, 1–15 (2021).
Google Scholar
Davies, N. S. & Gibling, M. R. Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth-Sci. Rev. 98, 171–200 (2010).ADS
Google Scholar
McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).CAS
PubMed
ADS
Google Scholar
MacEachern, J. A., Bann, K. L., Bhattacharya, J. P. & Howell Jr, C. D. Ichnology of deltas: organism responses to the dynamic interplay of rivers, waves, storms, and tides. In River Deltas — Concepts, Models, and Examples: SEPM (eds Bhattacharya, J. P. & Giosan, L.), 49–85 (Special Publication, 2005).Buatois, L. A. & Mángano, M. G. Recurrent patterns and processes: the significance of ichnology in evolutionary paleoecology. In The trace-fossil record of major evolutionary events (eds Mángano, M. G. & Buatois, L. A.), Vol. 2, 449–473, Mesozoic and Cenozoic (Topics in Geobiology 40, 2016).Buatois, L. A. & Mángano, M. G. The other biodiversity record: Innovations in animal-substrate interactions through geologic time. GSA Today 28, 4–10 (2018).
Google Scholar
Thayer, C. W. Biological bulldozers and the evolution of marine benthic communities. Science 203, 458–461 (1979).CAS
PubMed
ADS
Google Scholar
Thayer C. W. Sediment-mediated biological disturbance and the evolution of the marine benthos. In: Tevesz M. J. S., McCall P. L. (eds) Biotic interactions in recent and fossil benthic communities. Plenum, Zeitschr (1983).Buatois, L. A., et al. The Mesozoic marine revolution. In The trace-fossil record of major evolutionary events, (eds Mángano, M. G. & Buatois, L. A.), Vol. 40, 19–134. Mesozoic and Cenozoic (Topics in Geobiology, 2016).Gougeon, R. C., Mángano, M. G., Buatois, L. A., Narbonne, G. M. & Laing, B. A. Early Cambrian origin of the shelf sediment mixed layer. Nat. Commun. 9, 1909 (2018).PubMed
PubMed Central
ADS
Google Scholar
Herbers, D. S., MacNaughton, R. B., Timmer, E. R., Gingras, M. K. & Hubbard, S. Sedimentology and ichnology of an Early-Middle Cambrian storm-influenced barred shoreface succession, Colville Hills, Northwest territories. Bull. Can. Petrol. Geol. 64, 538–554 (2016).
Google Scholar
Jensen, S. Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Foss. Strat. 42, 1–111 (1997).
Google Scholar
Mángano, M. G. & Buatois, L. A. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: Evolutionary and geobiological feedbacks. Proc. R. Soc. B. 281, 1–9 (2014).
Google Scholar
Gaines, R. R. Burgess Shale-type preservation and its distribution in space and time. In Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization, (eds Laflamme, M., Schiffbauer, J. D. & Darroch, S. A. F.) Vol. 20, 123–146 (Paleontol. Soc. Pap. 2014).Enright, O. G. B., Minter, N. J., Sumner, E. J., Mángano, M. G. & Buatois, L. A. Flume experiments reveal flows in the Burgess Shale can sample and transport organisms across substantial distances. Commun. Earth Environ. 2, 1–7 (2021).
Google Scholar
Daily, B., Moore, P. S. & Rust, B. R. Terrestrial‐marine transition in the Cambrian rocks of Kangaroo Island, South Australia. Sedimentology 27, 379–399 (1980).ADS
Google Scholar
Buatois, L. A., Mángano, M. G. & Pattison, S. A. Ichnology of prodeltaic hyperpycnite–turbidite channel complexes and lobes from the Upper Cretaceous Prairie Canyon Member of the Mancos Shale, Book Cliffs, Utah, USA. Sedimentology 66, 1825–1860 (2019).
Google Scholar
Serra, F., Balseiro, D., Vaucher, R. & Waisfeld, B. G. Structure of Trilobite communities along a delta-marine gradient (lower Ordovician; Northwestern Argentina). Palaios 36, 39–52 (2021).ADS
Google Scholar
Saleh, F. et al. Storm-induced community dynamics in the Fezouata Biota (Lower Ordovician, Morocco). Palaios 33, 535–541 (2018).ADS
Google Scholar
Saleh, F. et al. Large trilobites in a stress-free Early Ordovician environment. Geol. Mag. 158, 261–270 (2021).ADS
Google Scholar
Tabb, D. C. & Jones, A. C. Effect of Hurricane Donna on the aquatic fauna of North Florida Bay. Trans. Am. Fish. Soc. 91, 375–378 (1962).
Google Scholar
Barry, J. P. & Dayton, P. K. Physical heterogeneity and the organization of marine communities. In Ecological heterogeneity pp. 270–320. (Springer, New York, NY 1991).Shu, D. G., Zhang, X. L. & Chen, L. Reinterpretation of Yunnanozoon as the earliest known hemichordate. Nature 380, 428–430 (1996).CAS
ADS
Google Scholar
Russell, M. P. Echinoderm responses to variation in salinity. Adv. Mar. Biol. 66, 171–212 (2013).PubMed
Google Scholar
Zhao, Y. et al. Kaili Biota: a taphonomic window on diversification of metazoans from the basal Middle Cambrian: Guizhou, China. Acta Geol. Sin. 79, 751–765 (2005).
Google Scholar More