More stories

  • in

    Genetic variation in released gametes produces genetic diversity in the offspring of the broadcast spawning coral Acropora tenuis

    Barton, N. Evolutionary biology. The geometry of adaptation. Nature 395, 751–752. https://doi.org/10.1038/27338 (1998).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Otto, S. P. & Lenormand, T. Resolving the paradox of sex and recombination. Nat. Rev. Genet. 3, 252–261. https://doi.org/10.1038/nrg761 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Becks, L. & Agrawal, A. F. Higher rates of sex evolve in spatially heterogeneous environments. Nature 468, 89–92. https://doi.org/10.1038/nature09449 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hughes, T. P. et al. Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science 359, 80–83. https://doi.org/10.1126/science.aan8048 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thompson, D. M. & van Woesik, R. Corals escape bleaching in regions that recently and historically experienced frequent thermal stress. Proc. Biol. Sci. 276, 2893–2901. https://doi.org/10.1098/rspb.2009.0591 (2009).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422. https://doi.org/10.1126/science.1204794 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Sully, S., Burkepile, D. E., Donovan, M. K., Hodgson, G. & van Woesik, R. A global analysis of coral bleaching over the past two decades. Nat. Commun. 10, 1264. https://doi.org/10.1038/s41467-019-09238-2 (2019).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yund, P. O. How severe is sperm limitation in natural populations of marine free-spawners?. Trends Ecol. Evol. 15, 10–13 (2000).CAS 
    Article 

    Google Scholar 
    Levitan, D. R. & Petersen, C. Sperm limitation in the sea. Trend Ecol. Evol. 10, 228–231 (1995).CAS 
    Article 

    Google Scholar 
    Baird, A., Guest, J. & Willis, B. Systematic and biogeographical patterns in the reproductive biology of scleractinian corals. Annu. Rev. Ecol. Evol. Syst. 40, 551–571. https://doi.org/10.1146/Annurev.Ecolsys.110308.120220 (2009).Article 

    Google Scholar 
    Wei, N. V. et al. Reproductive isolation among Acropora species (Scleractinia: Acroporidae) in a marginal coral assemblage. Zool. Stud. 51, 85–92 (2012).
    Google Scholar 
    Kitanobo, S., Isomura, N., Fukami, H., Iwao, K. & Morita, M. The reef-building coral Acropora conditionally hybridize under sperm limitation. Biol. Lett. 12, 20160511. https://doi.org/10.1098/rsbl.2016.0511 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mercier, A. & Hamel, J.-F. Synchronized breeding events in sympatric marine invertebrates: Role of behavior and fine temporal windows in maintaining reproductive isolation. Behav. Ecol. Sociobiol. 64, 1749–1765 (2010).Article 

    Google Scholar 
    Levitan, D. R. et al. Mechanisms of reproductive isolation among sympatric broadcast-spawning corals of the Montastraea annularis species complex. Evolution 58, 308–323 (2004).Article 

    Google Scholar 
    Willis, B. L., Babcock, R. C., Harrison, P. L. & Wallace, C. C. Experimental hybridization and breeding incompatibilities within the mating systems of mass spawning reef corals. Coral Reefs 16, S53–S65 (1997).Article 

    Google Scholar 
    Nozawa, Y., Isomura, N. & Fukami, H. Influence of sperm dilution and gamete contact time on the fertilization rate of scleractinian corals. Coral Reefs 34, 1199–1206. https://doi.org/10.1007/s00338-015-1338-3 (2015).ADS 
    Article 

    Google Scholar 
    Oliver, J. & Babcock, R. Aspects of the fertilization ecology of broadcast spawning corals: Sperm dilution effects and in situ measurements of fertilization. Biol. Bull. 183, 409–417. https://doi.org/10.2307/1542017 (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Coma, R. & Lasker, H. R. Small-scale heterogeneity of fertilization success in a broadcast spawning octocoral. J. Exp. Mar. Biol. Ecol. 214, 107–120. https://doi.org/10.1016/S0022-0981(97)00017-8 (1997).Article 

    Google Scholar 
    Teo, A. & Todd, P. A. Simulating the effects of colony density and intercolonial distance on fertilisation success in broadcast spawning scleractinian corals. Coral Reefs 37, 891–900. https://doi.org/10.1007/s00338-018-1715-9 (2018).ADS 
    Article 

    Google Scholar 
    Marshall, D. J. In situ measures of spawning synchrony and fertilization success in an intertidal, free-spawning invertebrate. Mar. Ecol. Prog. Ser. 236, 113–119 (2002).ADS 
    Article 

    Google Scholar 
    Babcock, R. C., Mundy, C. N. & Whitehead, D. Sperm diffusion-models and in-situ confirmation of long-distance fertilization in the free-spawning asteroid Acanthaster planci. Biol. Bull. 186, 17–28 (1994).CAS 
    Article 

    Google Scholar 
    Omori, M., Fukami, H., Kobinata, H. & Hatta, M. Significant drop of fertilization of Acropora corals in 1999. An after-effect of heavy coral bleaching?. Limnol. Oceanogr. 46, 704–706. https://doi.org/10.4319/lo.2001.46.3.0704 (2001).ADS 
    Article 

    Google Scholar 
    Levitan, D. R., Fogarty, N. D., Jara, J., Lotterhos, K. E. & Knowlton, N. Genetic, spatial, and temporal components of precise spawning synchrony in reef building corals of the Montastraea annularis species complex. Evolution 65, 1254–1270. https://doi.org/10.1111/j.1558-5646.2011.01235.x (2011).Article 
    PubMed 

    Google Scholar 
    Fukami, H., Omori, M., Shimoike, K., Hayashibara, T. & Hatta, M. Ecological and genetic aspects of reproductive isolation by different spawning times in Acropora corals. Mar. Biol. 142, 679–684. https://doi.org/10.1007/S00227-002-1001-8 (2003).Article 

    Google Scholar 
    Morita, M. et al. Reproductive strategies in the intercrossing corals Acropora donei and A. tenuis to prevent hybridization. Coral Reefs 38, 1211–1223. https://doi.org/10.1007/s00338-019-01839-z (2019).ADS 
    Article 

    Google Scholar 
    Shinzato, C. et al. Development of novel, cross-species microsatellite markers for Acropora corals using next-generation sequencing technology. Front. Mar. Sci. 1, 11 (2014).Article 

    Google Scholar 
    R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2020).Albright, R. & Mason, B. Projected near-future levels of temperature and pCO2 reduce coral fertilization success. PLoS One 8, e56468. https://doi.org/10.1371/journal.pone.0056468 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Iguchi, A., Morita, M., Nakajima, Y., Nishikawa, A. & Miller, D. In vitro fertilization efficiency in coral Acropora digitifera. Zygote 17, 225–227. https://doi.org/10.1017/S096719940900519X (2009).Article 
    PubMed 

    Google Scholar 
    Morita, M. et al. Eggs regulate sperm flagellar motility initiation, chemotaxis and inhibition in the coral Acropora digitifera, A. gemmifera and A. tenuis. J. Exp. Biol. 209, 4574–4579. https://doi.org/10.1242/jeb.02500 (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chan, W. Y., Hoffmann, A. A. & van Oppen, M. J. H. Hybridization as a conservation management tool. Conserv. Lett. https://doi.org/10.1111/conl.12652 (2019).Article 

    Google Scholar  More

  • in

    The Chengjiang Biota inhabited a deltaic environment

    Hou, X., et al. The Cambrian fossils of Chengjiang, China: the flowering of early animal life. 316p., (Wiley Blackwell, Second Edition, 2017).Zhao, F., Zhu, M. & Hu, S. Community structure and composition of the Cambrian Chengjiang biota. Sci. China Earth Sci. 53, 1784–1799 (2010).ADS 

    Google Scholar 
    Yang, X. et al. A juvenile-rich palaeocommunity of the lower Cambrian Chengjiang biota sheds light on palaeo-boom or palaeo-bust environments. Nat. Ecol. Evol. 5, 1082–1090 (2021).PubMed 

    Google Scholar 
    Ma, X., Hou, X., Edgecombe, G. D. & Strausfeld, N. J. Complex brain and optic lobes in an early Cambrian arthropod. Nature 490, 258–261 (2012).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Saleh, F. et al. Taphonomic bias in exceptionally preserved biotas. Earth Planet. Sci. Lett. 529, 115873 (2020).CAS 

    Google Scholar 
    Saleh, F. et al. A novel tool to untangle the ecology and fossil preservation knot in exceptionally preserved biotas. Earth Planet. Sci. Lett. 569, 117061 (2021).CAS 

    Google Scholar 
    Harper, D. A. et al. The Sirius Passet Lagerstätte of North Greenland: a remote window on the Cambrian explosion. J. Geol. Soc. 176, 1023–1037 (2019).ADS 

    Google Scholar 
    Nanglu, K., Caron, J. B. & Gaines, R. R. The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology 46, 58–81 (2020).
    Google Scholar 
    Tanaka, G., Hou, X., Ma, X., Edgecombe, G. D. & Strausfeld, N. J. Chelicerate neural ground pattern in a Cambrian great appendage arthropod. Nature 502, 364–367 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Cong, P., Ma, X., Hou, X., Edgecombe, G. D. & Strausfeld, N. J. Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature 513, 538–542 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Liu, Y., Ortega-Hernández, J., Zhai, D. & Hou, X. A reduced labrum in a Cambrian great-appendage euarthropod. Curr. Biol. 30, 3057–3061 (2020).CAS 
    PubMed 

    Google Scholar 
    Liu, Y. et al. Computed tomography sheds new light on the affinities of the enigmatic euarthropod Jianshania furcatus from the early Cambrian Chengjiang biota. BMC Evol. Biol. 20, 1–17 (2020).
    Google Scholar 
    Gabbott, S. E., Hou, X.-G., Norry, M. J. & Siveter, D. J. Preservation of Early Cambrian animals of the Chengjiang biota. Geology 32, 901–904 (2004).CAS 
    ADS 

    Google Scholar 
    Gaines, R. R. et al. Mechanism for Burgess Shale-type preservation. Proc. Natl. Acad. Sci. 109, 5180–5184 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Forchielli, A., Steiner, M., Kasbohm, J., Hu, S. & Keupp, H. Taphonomic traits of clay-hosted early Cambrian Burgess Shale-type fossil Lagerstätten in South China. Palaeogeogr, Palaeoclimatol. Palaeoecol. 398, 59–85 (2014).
    Google Scholar 
    Ma, X., Edgecombe, G. D., Hou, X., Goral, T. & Strausfeld, N. J. Preservational pathways of corresponding brains of a Cambrian euarthropod. Curr. Biol. 25, 2969–2975 (2015).CAS 
    PubMed 

    Google Scholar 
    Hammarlund, E. U. et al. Early Cambrian oxygen minimum zone-like conditions at Chengjiang. Earth Planet. Sci. Lett. 475, 160–168 (2017).CAS 
    ADS 

    Google Scholar 
    Qi, C. et al. Influence of redox conditions on animal distribution and soft-bodied fossil preservation of the Lower Cambrian Chengjiang Biota. Palaeogeogr. Palaeoclimatol. Palaeoecol. 507, 180–187 (2018).
    Google Scholar 
    Saleh, F., Daley, A. C., Lefebvre, B., Pittet, B. & Perrillat, J. P. Biogenic iron preserves structures during fossilization: a hypothesis: iron from decaying tissues may stabilize their morphology in the fossil record. BioEssays 42, 1900243 (2020).CAS 

    Google Scholar 
    Daley, A. C. et al. Insights into soft-part preservation from the Early Ordovician Fezouata Biota. Earth Sci. Rev. 213, 103464 (2021).
    Google Scholar 
    Pu, X. C., et al. Cambrian lithofacies, paleogeography and mineralization in south China, Geological Publishing House, Beijing, 191 p. (1992).Zhu, M. Y., Zhang, J. M. & Li, G. X. Sedimentary environments of the early Cambrian Chengjiang biota: sedimentology of the Yu’anshan Formation in Chengjiang County, eastern Yunnan. Acta Palaeontol. Sin. 40, 80–105 (2001).
    Google Scholar 
    Babcock, L. E. & Zhang, W. Stratigraphy, palaeontology, and depositional setting of the Chengjiang Lagerstätte (Lower Cambrian), Yunnan, China. Palaeoworld 13, 66–86 (2001).
    Google Scholar 
    Babcock, L. E., Zhang, W. & Leslie, S. A. The Chengjiang biota: record of the Early Cambrian diversification of life and clues to exceptional preservation of fossils. GSA Today 11, 4–9 (2001).
    Google Scholar 
    MacKenzie, L. A., Hofmann, M. H., Junyuan, C. & Hinman, N. W. Stratigraphic controls of soft-bodied fossil occurrences in the Cambrian Chengjiang Biota Lagerstätte, Maotianshan Shale, Yunnan Province, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 420, 96–115 (2015).
    Google Scholar 
    Chen, J. Y. & Lindström, M. A lower Cambrian soft-bodied fauna from Chengjiang, Yunnan, China. Geologiska Föreningen i Stockholm Förhandlingar 113, 79–81 (1991).
    Google Scholar 
    Jin, Y. G., Wang, H. Y. & Wang, W. Palaeoecological aspect of branchiopods from Chiungchussu Formation of Early Cambrian Age, Eastern Yunnan, China. Palaeoecol. China 1, 25–47 (1991).CAS 

    Google Scholar 
    Hu, S. Taphonomy and palaeoecology of the Early Cambrian Chengjiang Biota from eastern Yunnan, China. Berl. Paläobiologische Abhandlungen 7, 189 (2005).ADS 

    Google Scholar 
    Schieber, J., Southard, J. & Thaisen, K. Accretion of mudstone beds from migrating floccule ripples. Science 318, 1760–1763 (2007).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Lamb, M. P., Myrow, P. M., Lukens, C., Houck, K. & Strauss, J. Deposits from wave-influenced turbidity currents: Pennsylvanian Minturn Formation, Colorado, USA. J. Sediment. Res. 78, 480–498 (2008).ADS 

    Google Scholar 
    Baas, J. H., Best, J. L., Peakall, J. & Wang, M. A phase diagram for turbulent, transitional, and laminar clay suspension flows. J. Sediment. Res. 79, 162–183 (2009).ADS 

    Google Scholar 
    Plint, A. G. & Macquaker, J. H. Bedload Transport of Mud Across a Wide, Storm-Influenced Ramp: Cenomanian–Turonian Kaskapau Formation, Western Canada Foreland Basin—Reply. J. Sediment. Res. 83, 1200–1201 (2013).
    Google Scholar 
    Bohacs, K. M., Lazar, O. R. & Demko, T. M. Parasequence types in shelfal mudstone strata—Quantitative observations of lithofacies and stacking patterns, and conceptual link to modern depositional regimes. Geology 42, 131–134 (2014).ADS 

    Google Scholar 
    Lazar, O. R., Bohacs, K. M., Macquaker, J. H., Schieber, J. & Demko, T. M. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: nomenclature and description guidelines. J. Sediment. Res. 85, 230–246 (2015).CAS 
    ADS 

    Google Scholar 
    Wheatcroft, R. A. Oceanic flood sedimentation: a new perspective. Continent. Shelf Res. 20, 2059–2066 (2000).ADS 

    Google Scholar 
    Wright, L. D. & Friedrichs, C. T. Gravity-driven sediment transport on continental shelves: a status report. Continent. Shelf Res. 26, 2092–2107 (2006).ADS 

    Google Scholar 
    Bhattacharya, J. P. & MacEachern, J. A. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. J. Sediment. Res. 79, 184–209 (2009).ADS 

    Google Scholar 
    Ichaso, A. A. & Dalrymple, R. W. Tide-and wave-generated fluid mud deposits in the Tilje Formation (Jurassic), offshore Norway. Geology 37, 539–542 (2009).ADS 

    Google Scholar 
    Schieber, J. Experimental testing of the transport-durability of shale lithics and its implications for interpreting the rock record. Sediment. Geol. 331, 162–169 (2016).ADS 

    Google Scholar 
    Zavala, C. & Arcuri, M. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics. Sediment. Geol. 337, 36–54 (2016).ADS 

    Google Scholar 
    Boulesteix, K., Poyatos-Moré, M., Hodgson, D. M., Flint, S. S. & Taylor, K. G. Fringe or background: characterizing deep-water mudstones beyond the basin-floor fan sandstone pinchout. J. Sediment. Res. 90, 1678–1705 (2020).ADS 

    Google Scholar 
    Dumas, S. & Arnott, R. W. C. Origin of hummocky and swaley cross-stratification—the controlling influence of unidirectional current strength and aggradation rate. Geology 34, 1073–1076 (2006).ADS 

    Google Scholar 
    Perillo, M. M. et al. A unified model for bedform development and equilibrium under unidirectional, oscillatory and combined‐flows. Sedimentology 61, 2063–2085 (2014).
    Google Scholar 
    Jelby, M. E., Grundvåg, S. A., Helland‐Hansen, W., Olaussen, S. & Stemmerik, L. Tempestite facies variability and storm‐depositional processes across a wide ramp: Towards a polygenetic model for hummocky cross‐stratification. Sedimentology 67, 742–781 (2020).
    Google Scholar 
    Collins, D. S., Johnson, H. D., Allison, P. A., Guilpain, P. & Damit, A. R. Coupled ‘storm‐flood’depositional model: application to the Miocene–Modern Baram Delta Province, north‐west Borneo. Sedimentology 64, 1203–1235 (2017).
    Google Scholar 
    Dillinger, A., Vaucher, R. & Haig, D. W. Refining the depositional model of the lower Permian Carynginia Formation in the northern Perth Basin: anatomy of an ancient mouth bar. Aust. J. Earth Sci. 69, 135–151 (2022).CAS 
    ADS 

    Google Scholar 
    Zavala, C. Hyperpycnal (over density) flows and deposits. J. Palaeogeogr. 9, 1–21 (2020).
    Google Scholar 
    Lin, W. & Bhattacharya, J. P. Storm‐flood‐dominated delta: a new type of delta in stormy oceans. Sedimentology 68, 1109–1136 (2021).
    Google Scholar 
    MacEachern, J. A., Raychaudhuri, I. & Pemberton, S. G. Stratigraphic applications of the Glossifungites ichnofacies: delineating discontinuities in the rock record. In Applications of Ichnology to Petroleum Exploration: a Core Workshop, ed. S.G. Pemberton. Soc. Sediment. Geol. Core Workshop 17, 169–198 (1992).
    Google Scholar 
    Hubbard, S. M. & Shultz, M. R. Deep burrows in submarine fan-channel deposits of the Cerro Toro Formation (Cretaceous), Chilean Patagonia: implications for firmground development and colonization in the deep sea. Palaios 23, 223–232 (2008).ADS 

    Google Scholar 
    Buatois, L. A. & Mángano, M. G. Ichnology: organism-substrate interactions in space and time. Cambridge University Press (2011).Droser, M. L., Jensen, S. & Gehling, J. G. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: implications for the record of early bilaterians and sediment mixing. Proc. Natl Acad. Sci. 99, 12572–12576 (2002).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Droser, M. L., Jensen, S. & Gehlîng, J. G. Development of early Palaeozoic ichnofabrics: evidence from shallow marine siliciclastics. Geological Society, London, Special Publications 228, 383–396 (2004).Macquaker, J. H., Bentley, S. J. & Bohacs, K. M. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions. Geology 38, 947–950 (2010).ADS 

    Google Scholar 
    Myrow, P. M., Fischer, W. & Goodge, J. W. Wave-modified turbidites: combined-flow shoreline and shelf deposits, Cambrian, Antarctica. J. Sediment. Res. 72, 641–656 (2002).CAS 
    ADS 

    Google Scholar 
    Mackay, D. A. & Dalrymple, R. W. Dynamic mud deposition in a tidal environment: the record of fluid-mud deposition in the Cretaceous Bluesky Formation, Alberta, Canada. J. Sediment. Res. 81, 901–920 (2011).ADS 

    Google Scholar 
    Birgenheier, L. P., Horton, B., McCauley, A. D., Johnson, C. L. & Kennedy, A. A depositional model for offshore deposits of the lower Blue Gate Member, Mancos Shale, Uinta Basin, Utah, USA. Sedimentology 64, 1402–1438 (2017).
    Google Scholar 
    Lobza, V. & Schieber, J. Biogenic sedimentary structures produced by worms in soupy, soft muds; observations from the Chattanooga Shale (Upper Devonian) and experiments. J. Sediment. Res. 69, 1041–1049 (1999).ADS 

    Google Scholar 
    Savrda, C. E. & Bottjer, D. J. Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology 14, 3–6 (1986).CAS 
    ADS 

    Google Scholar 
    Dashtgard, S. E., Snedden, J. W. & MacEachern, J. A. Unbioturbated sediments on a muddy shelf: hypoxia or simply reduced oxygen saturation? Palaeogeogr. Palaeoclimatol. Palaeoecol. 425, 128–138 (2015).
    Google Scholar 
    Dashtgard, S. E. & MacEachern, J. A. Unburrowed mudstones may record only slightly lowered oxygen conditions in warm, shallow basins. Geology 44, 371–374 (2016).ADS 

    Google Scholar 
    Pattison, S. A., Bruce Ainsworth, R. & Hoffman, T. A. Evidence of across‐shelf transport of fine‐grained sediments: turbidite‐filled shelf channels in the Campanian Aberdeen Member, Book Cliffs, Utah, USA. Sedimentology 54, 1033–1064 (2007).ADS 

    Google Scholar 
    Buatois, L. A. et al. Sedimentological and ichnological signatures of changes in wave, river and tidal influence along a Neogene tropical deltaic shoreline. Sedimentology 59, 1568–1612 (2012).CAS 
    ADS 

    Google Scholar 
    Vaucher, R. et al. Tectonic controls on late Cambrian-Early Ordovician deposition in Cordillera Oriental (Northwest Argentina). Int. J. Earth Sci. 109, 1897–1920 (2020).CAS 

    Google Scholar 
    Paz, M. et al. Bottomset and foreset sedimentary processes in the mixed carbonate-siliciclastic Upper Jurassic-Lower Cretaceous Vaca Muerta Formation, Picún Leufú Area, Argentina. Sediment. Geol. 389, 161–185 (2019).CAS 
    ADS 

    Google Scholar 
    Zavala, C. et al. Deltas: a new classification expanding Bates’s concepts. J. Palaeogeogr. 10, 1–15 (2021).
    Google Scholar 
    Davies, N. S. & Gibling, M. R. Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth-Sci. Rev. 98, 171–200 (2010).ADS 

    Google Scholar 
    McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    MacEachern, J. A., Bann, K. L., Bhattacharya, J. P. & Howell Jr, C. D. Ichnology of deltas: organism responses to the dynamic interplay of rivers, waves, storms, and tides. In River Deltas — Concepts, Models, and Examples: SEPM (eds Bhattacharya, J. P. & Giosan, L.), 49–85 (Special Publication, 2005).Buatois, L. A. & Mángano, M. G. Recurrent patterns and processes: the significance of ichnology in evolutionary paleoecology. In The trace-fossil record of major evolutionary events (eds Mángano, M. G. & Buatois, L. A.), Vol. 2, 449–473, Mesozoic and Cenozoic (Topics in Geobiology 40, 2016).Buatois, L. A. & Mángano, M. G. The other biodiversity record: Innovations in animal-substrate interactions through geologic time. GSA Today 28, 4–10 (2018).
    Google Scholar 
    Thayer, C. W. Biological bulldozers and the evolution of marine benthic communities. Science 203, 458–461 (1979).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Thayer C. W. Sediment-mediated biological disturbance and the evolution of the marine benthos. In: Tevesz M. J. S., McCall P. L. (eds) Biotic interactions in recent and fossil benthic communities. Plenum, Zeitschr (1983).Buatois, L. A., et al. The Mesozoic marine revolution. In The trace-fossil record of major evolutionary events, (eds Mángano, M. G. & Buatois, L. A.), Vol. 40, 19–134. Mesozoic and Cenozoic (Topics in Geobiology, 2016).Gougeon, R. C., Mángano, M. G., Buatois, L. A., Narbonne, G. M. & Laing, B. A. Early Cambrian origin of the shelf sediment mixed layer. Nat. Commun. 9, 1909 (2018).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Herbers, D. S., MacNaughton, R. B., Timmer, E. R., Gingras, M. K. & Hubbard, S. Sedimentology and ichnology of an Early-Middle Cambrian storm-influenced barred shoreface succession, Colville Hills, Northwest territories. Bull. Can. Petrol. Geol. 64, 538–554 (2016).
    Google Scholar 
    Jensen, S. Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Foss. Strat. 42, 1–111 (1997).
    Google Scholar 
    Mángano, M. G. & Buatois, L. A. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: Evolutionary and geobiological feedbacks. Proc. R. Soc. B. 281, 1–9 (2014).
    Google Scholar 
    Gaines, R. R. Burgess Shale-type preservation and its distribution in space and time. In Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization, (eds Laflamme, M., Schiffbauer, J. D. & Darroch, S. A. F.) Vol. 20, 123–146 (Paleontol. Soc. Pap. 2014).Enright, O. G. B., Minter, N. J., Sumner, E. J., Mángano, M. G. & Buatois, L. A. Flume experiments reveal flows in the Burgess Shale can sample and transport organisms across substantial distances. Commun. Earth Environ. 2, 1–7 (2021).
    Google Scholar 
    Daily, B., Moore, P. S. & Rust, B. R. Terrestrial‐marine transition in the Cambrian rocks of Kangaroo Island, South Australia. Sedimentology 27, 379–399 (1980).ADS 

    Google Scholar 
    Buatois, L. A., Mángano, M. G. & Pattison, S. A. Ichnology of prodeltaic hyperpycnite–turbidite channel complexes and lobes from the Upper Cretaceous Prairie Canyon Member of the Mancos Shale, Book Cliffs, Utah, USA. Sedimentology 66, 1825–1860 (2019).
    Google Scholar 
    Serra, F., Balseiro, D., Vaucher, R. & Waisfeld, B. G. Structure of Trilobite communities along a delta-marine gradient (lower Ordovician; Northwestern Argentina). Palaios 36, 39–52 (2021).ADS 

    Google Scholar 
    Saleh, F. et al. Storm-induced community dynamics in the Fezouata Biota (Lower Ordovician, Morocco). Palaios 33, 535–541 (2018).ADS 

    Google Scholar 
    Saleh, F. et al. Large trilobites in a stress-free Early Ordovician environment. Geol. Mag. 158, 261–270 (2021).ADS 

    Google Scholar 
    Tabb, D. C. & Jones, A. C. Effect of Hurricane Donna on the aquatic fauna of North Florida Bay. Trans. Am. Fish. Soc. 91, 375–378 (1962).
    Google Scholar 
    Barry, J. P. & Dayton, P. K. Physical heterogeneity and the organization of marine communities. In Ecological heterogeneity pp. 270–320. (Springer, New York, NY 1991).Shu, D. G., Zhang, X. L. & Chen, L. Reinterpretation of Yunnanozoon as the earliest known hemichordate. Nature 380, 428–430 (1996).CAS 
    ADS 

    Google Scholar 
    Russell, M. P. Echinoderm responses to variation in salinity. Adv. Mar. Biol. 66, 171–212 (2013).PubMed 

    Google Scholar 
    Zhao, Y. et al. Kaili Biota: a taphonomic window on diversification of metazoans from the basal Middle Cambrian: Guizhou, China. Acta Geol. Sin. 79, 751–765 (2005).
    Google Scholar  More

  • in

    Paternal transmission of migration knowledge in a long-distance bird migrant

    Alerstam, T., Hedenström, A. & Åkesson, S. Long‐distance migration: evolution and determinants. Oikos 103, 247–260 (2003).Article 

    Google Scholar 
    Newton, I. The migration ecology of birds (Elsevier, London, 2008).Putman, N. F. et al. An inherited magnetic map guides ocean navigation in juvenile Pacific salmon. Curr. Biol. 24, 446–450 (2014).CAS 
    Article 

    Google Scholar 
    Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Milner-Gulland, E. J., Fryxell, J. M. & Sinclair, A. R. (Eds.) Animal migration: a synthesis (Oxford University Press, New York, 2011).Conradt, L. & Roper, T. J. Consensus decision making in animals. Trends Ecol. Evol. 20, 449–456 (2005).Article 

    Google Scholar 
    Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A. Effective leadership and decision-making in animal groups on the move. Nature 433, 513–516 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Vansteelant, W. M. G., Kekkonen, J. & Byholm, P. Wind conditions and geography shape the first outbound migration of juvenile honey buzzards and their distribution across sub-Saharan Africa. Proc. R. Soc. B 284, 20170387 (2017).Article 

    Google Scholar 
    Flack, A., Nagy, M., Fiedler, W., Couzin, I. D. & Wikelski, M. From local collective behavior to global migratory patterns in white storks. Science 360, 911–914 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Chernetsov, N., Berthold, P. & Querner, U. Migratory orientation of first-year white storks (Ciconia ciconia): inherited information and social interactions. J. Exp. Biol. 207, 937–943 (2004).Article 

    Google Scholar 
    Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Whiten, A. Cultural evolution in animals. Annu. Rev. Ecol. Evol. Syst. 50, 27–48 (2019).Article 

    Google Scholar 
    Whitehead, H. & Rendell, L. The Cultural Lives of Whales and Dolphins (Chicago University Press, Chicago, 2015).Franks, N. R. & Richardson, T. Teaching in tandem-running ants. Nature 439, 153–153 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Thornton, A. & McAuliffe, K. Teaching in wild meerkats. Science 313, 227–229 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Cramp, S. (Ed.) The birds of the Western Palearctic. Vol. IV. Terns to woodpeckers (Oxford University Press, New York, 1985).Méndez, V. et al. Paternal effects in the initiation of migratory behaviour in birds. Sci. Rep. 11, 2782 (2021).ADS 
    Article 

    Google Scholar 
    Olson, V. A., Liker, A., Freckleton, R. P. & Székely, T. Parental conflict in birds: comparative analyses of offspring development, ecology and mating opportunities. Proc. R. Soc. B 275, 301–307 (2008).CAS 
    Article 

    Google Scholar 
    Ledwoń, M. & Neubauer, G. Offspring desertion and parental care in the Whiskered Tern Chlidonias hybrida. Ibis 159, 860–872 (2017).Article 

    Google Scholar 
    Arnqvist, G. & Rowe, L. Sexual conflict (Princeton University Press, New York, 2005).Goodenough, K. S. & Patton, R. T. Satellite telemetry reveals strong fidelity to migration routes and wintering grounds for the gull-billed tern (Gelochelidon nilotica). Waterbirds 42, 400–410 (2019).Article 

    Google Scholar 
    Gu, Z. et al. Climate-driven flyway changes and memory-based long-distance migration. Nature 591, 259–264 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Baert, J. M. et al. Resource predictability drives interannual variation in migratory behavior in a long-lived bird. Behav. Ecol. arab132, https://doi.org/10.1093/beheco/arab132 (2021).Papageorgiou, D. & Farine, D. R. Group size and composition influence collective movement in a highly social terrestrial bird. eLife 9, e59902 (2020).CAS 
    Article 

    Google Scholar 
    Caro, T. M. & Hauser, M. D. Is there teaching in nonhuman animals? Q. Rev. Biol. 67, 151–174 (1992).CAS 
    Article 

    Google Scholar 
    Thornton, A. & Raihani, N. J. The evolution of teaching. Anim. Behav. 75, 1823–1836 (2008).Article 

    Google Scholar 
    Riedman, M. L. The evolution of alloparental care and adoption in mammals and birds. Q. Rev. Biol. 57, 405–435 (1982).Article 

    Google Scholar 
    Sheppard, C. E. et al. Decoupling of genetic and cultural inheritance in a wild mammal. Curr. Biol. 28, 1846–1850 (2018).CAS 
    Article 

    Google Scholar 
    Åkesson, S. & Helm, B. Endogenous programs and flexibility in bird migration. Front. Ecol. Evol. 8, 1–20 (2020).Article 

    Google Scholar 
    Sasaki, T. & Biro, D. Cumulative culture can emerge from collective intelligence in animal groups. Nat. Commun. 8, 1–6 (2017).ADS 
    Article 

    Google Scholar 
    Whiten, A., Ayala, F. J., Feldman, M. W. & Laland, K. N. The extension of biology through culture. Proc. Natl Acad. Sci. USA 114, 7775–7781 (2017).CAS 
    Article 

    Google Scholar 
    Aplin, L. M. Culture and cultural evolution in birds: a review of the evidence. Anim. Behav. 147, 179–187 (2019).Article 

    Google Scholar 
    Laland, K. N., Toyokawa, W. & Oudman, T. Animal learning as a source of developmental bias. Evol. Dev. 22, 126–142 (2020).Article 

    Google Scholar 
    Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Guttal, V. & Couzin, I. D. Social interactions, information use, and the evolution of collective migration. Proc. Natl Acad. Sci. USA 107, 16172–16177 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Oudman, T. et al. Young birds switch but old birds lead: how barnacle geese adjust migratory habits to environmental change. Front. Ecol. Evol. 7, 106–120 (2020).Article 

    Google Scholar 
    Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Chang 4, 217–221 (2014).ADS 
    Article 

    Google Scholar 
    Vickery, J. A. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).Article 

    Google Scholar 
    Thaxter, C. B. et al. A trial of three harness attachment methods and their suitability for long-term use on Lesser Black-backed Gulls and Great Skuas. Ringing Migr. 29, 65–76 (2014).Article 

    Google Scholar 
    Byholm, P., Beal, M., Isaksson, N., Lötberg, U. & Åkesson, S. Data from: paternal transmission of migration knowledge in a long-distance bird migrant. Movebank Data Repos. https://doi.org/10.5441/001/1.352qf1cv (2022).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, 2020). https://www.R-project.org/. More

  • in

    Measuring protected-area effectiveness using vertebrate distributions from leech iDNA

    This section provides an overview of methods. The Supplementary Information provides additional detailed descriptions of the leech collections, laboratory processing, bioinformatics pipeline, and site-occupancy modelling. Code for our bioinformatics pipeline is available at Ji72 and Yu73. Code for our site-occupancy modelling and analysis is available at Baker et al.74.Leech collectionsSamples were collected during the rainy season, from July to September 2016, by park rangers from the Ailaoshan Forestry Bureau. The nature reserve is divided into 172 non-overlapping patrol areas defined by the Yunnan Forestry Survey and Planning Institute. These areas range in size from 0.5 to 12.5 km2 (mean 3.9 ± sd 2.5 km2), in part reflecting accessibility (smaller areas tend to be more rugged). These patrol areas pre-existed our study, and are used in the administration of the reserve. The reserve is divided into six parts, which are managed by six cities or autonomous counties (NanHua, ChuXiong, JingDong, ZhenYuan, ShuangBai, XinPing) which assign patrol areas to the villages within their jurisdiction based on proximity. The villages establish working groups to carry out work within the patrol areas. Thus, individual park rangers might change every year, but the patrol areas and the villages responsible for them are fixed.Each ranger was supplied with several small bags containing tubes filled with RNAlater preservative. Rangers were asked to place any leeches they could collect opportunistically during their patrols (e.g. from the ground or clothing) into the tubes, in exchange for a one-off payment of RMB 300 ( ~USD 45) for participation, plus RMB 100 if they caught one or more leeches. Multiple leeches could be placed into each tube, but the small tube sizes generally required the rangers to use multiple tubes for their collections.A total of 30,468 leeches were collected in 3 months by 163 rangers across all 172 patrol areas. When a bag of tubes contained  More

  • in

    Spatio-temporal patterns of multi-trophic biodiversity and food-web characteristics uncovered across a river catchment using environmental DNA

    Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).
    Google Scholar 
    Wilson, R. J., Thomas, C. D., Fox, R., Roy, D. B. & Kunin, W. E. Spatial patterns in species distributions reveal biodiversity change. Nature 432, 393–396 (2004).CAS 
    PubMed 

    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    PubMed 

    Google Scholar 
    Ings, T. C. et al. Ecological networks—beyond food webs. J. Anim. Ecol. 78, 253–269 (2009).PubMed 

    Google Scholar 
    Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 364, 1711–1723 (2009).
    Google Scholar 
    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).PubMed 

    Google Scholar 
    Vellend, M. The Theory of Ecological Communities Vol. 57 229 (Princeton University Press, 2016).Altermatt, F. Diversity in riverine metacommunities: a network perspective. Aquat. Ecol. 47, 365–377 (2013).
    Google Scholar 
    Peterson, E. E. et al. Modelling dendritic ecological networks in space: an integrated network perspective. Ecol. Lett. 16, 707–719 (2013).PubMed 

    Google Scholar 
    Tonkin, J. D. et al. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshw. Biol. 63, 141–163 (2018).
    Google Scholar 
    Muneepeerakul, R. et al. Neutral metacommunity models predict fish diversity patterns in Mississippi-Missouri basin. Nature 453, 220–222 (2008).CAS 
    PubMed 

    Google Scholar 
    Besemer, K. et al. Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proc. Biol. Sci. 280, 20131760 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Finn, D. S., Bonada, N., Múrria, C. & Hughes, J. M. Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. J. North Am. Benthol. Soc. 30, 963–980 (2011).
    Google Scholar 
    Altermatt, F., Seymour, M. & Martinez, N. River network properties shape α-diversity and community similarity patterns of aquatic insect communities across major drainage basins. J. Biogeogr. 40, 2249–2260 (2013).
    Google Scholar 
    Harvey, E., Gounand, I., Fronhofer, E. A. & Altermatt, F. Disturbance reverses classic biodiversity predictions in river-like landscapes. Proc. R. Soc. B: Biol. Sci. 285, 20182441 (2018).
    Google Scholar 
    Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279 (2010).
    Google Scholar 
    Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).PubMed 

    Google Scholar 
    Woodward, G. & Hildrew, A. G. Food web structure in riverine landscapes. Freshw. Biol. 47, 777–798 (2002).
    Google Scholar 
    Williams, R. J. & Martinez, N. D. Limits to trophic levels and omnivory in complex food webs: theory and data. Am. Nat. 163, 458–468 (2004).PubMed 

    Google Scholar 
    Thompson, R. M. & Townsend, C. R. The effect of seasonal variation on the community structure and food-web attributes of two streams: implications for food-web science. Oikos 87, 75–88 (1999).
    Google Scholar 
    Wood, S. A., Russell, R., Hanson, D., Williams, R. J. & Dunne, J. A. Effects of spatial scale of sampling on food web structure. Ecol. Evol. 5, 3769–3782 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol., Evolution, Syst. 48, 25–48 (2017).
    Google Scholar 
    Romanuk, T. N. et al. The structure of food webs along river networks. Ecography 29, 3–10 (2006).
    Google Scholar 
    Olivier, P. et al. Exploring the temporal variability of a food web using long‐term biomonitoring data. Ecography 42, 2107–2121 (2019).
    Google Scholar 
    Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).PubMed 

    Google Scholar 
    Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. Camb. Philos. Soc. https://doi.org/10.1111/brv.12433 (2018).Article 
    PubMed 

    Google Scholar 
    Tavares-Cromar, A. F. & Williams, D. D. The importance of temporal resolution in food web analysis: Evidence from a detritus-based stream. Ecol. Monogr. 66, 91–113 (1996).
    Google Scholar 
    Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).
    Google Scholar 
    Thomsen, P. F. & Willerslev, E. Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).
    Google Scholar 
    Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J.-C. & Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7, 12544 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dunne, J. A. In Ecological Networks: Linking Structure and Dynamics (eds. Pascual, J. A. & Dunne, J. A.) 27–86 (University Press, 2006).Neff, F. et al. Changes in plant-herbivore network structure and robustness along land-use intensity gradients in grasslands and forests. Sci Adv 7, eabf3985 (2021).O’Connor, M. J. et al. Unveiling the food webs of tetrapods across Europe through the prism of the Eltonian niche. J. Biogeogr. 47, 181–192 (2020).
    Google Scholar 
    Pellissier, L. et al. Comparing species interaction networks along environmental gradients. Biol. Rev. Camb. Philos. Soc. 93, 785–800 (2018).PubMed 

    Google Scholar 
    Saravia, L. A. et al. Ecological network assembly: how the regional metaweb influences local food webs. BioRxiv, https://doi.org/10.1101/340430 (2021).Blackman, R. C. et al. Mapping biodiversity hotspots of fish communities in subtropical streams through environmental DNA. Sci. Rep. 4, e65352 (2021).
    Google Scholar 
    Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity: Betapart package. Methods Ecol. Evol. 3, 808–812 (2012).
    Google Scholar 
    Seymour, M. et al. Executing multi-taxa eDNA ecological assessment via traditional metrics and interactive networks. Sci. Total Environ. 729, 138801 (2020).CAS 
    PubMed 

    Google Scholar 
    D’Alessandro, S. & Mariani, S. Sifting environmental DNA metabarcoding data sets for rapid reconstruction of marine food webs. Fish Fish 22, 822–833 (2021).
    Google Scholar 
    Zhang, Y. et al. Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals. Environ. Int. 135, 105307 (2020).PubMed 

    Google Scholar 
    Altermatt, F. et al. Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems. Oikos 129, 607–618 (2020).
    Google Scholar 
    Widder, S. et al. Fluvial network organization imprints on microbial co-occurrence networks. Proc. Natl Acad. Sci. USA 111, 12799–12804 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seymour, M. et al. Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Commun. Biol. 4, 512 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mächler, E. et al. Assessing different components of diversity across a river network using eDNA. Environ. DNA 1, 290–301 (2019).
    Google Scholar 
    Peralta-Maraver, I., López-Rodríguez, M. J. & de Figueroa, J. M. T. Structure, dynamics and stability of a Mediterranean river food web. Mar. Freshw. Res. 68, 484–495 (2017).
    Google Scholar 
    Woodward, G. et al. Ecological networks in a changing climate. Ecol. Netw. 42, 71–138 (2010).
    Google Scholar 
    Kondoh, M., Kato, S. & Sakato, Y. Food webs are built up with nested subwebs. Ecology 91, 3123–3130 (2010).PubMed 

    Google Scholar 
    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).
    Google Scholar 
    Power, M. E. & Dietrich, W. E. Food webs in river networks. Ecol. Res. https://doi.org/10.1046/j.0912-3814.2002.00503.x (2002).Montoya, D., Yallop, M. L. & Memmott, J. Functional group diversity increases with modularity in complex food webs. Nat. Commun. 6, 7379 (2015).CAS 
    PubMed 

    Google Scholar 
    Gravel, D., Albouy, C. & Thuiller, W. The meaning of functional trait composition of food webs for ecosystem functioning. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 371, 20150268 (2016).Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).
    Google Scholar 
    Carraro, L., Mächler, E., Wüthrich, R. & Altermatt, F. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nat. Commun. 11, 3585 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).CAS 

    Google Scholar 
    Bista, I. et al. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nat. Commun. 8, 14087 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Erickson, R. A., Merkes, C. M., Jackson, C. A., Goforth, R. R. & Amberg, J. J. Seasonal trends in eDNA detection and occupancy of bigheaded carps. J. Gt. Lakes Res. 43, 762–770 (2017).
    Google Scholar 
    Troth, C. R., Sweet, M. J., Nightingale, J. & Burian, A. Seasonality, DNA degradation and spatial heterogeneity as drivers of eDNA detection dynamics. Sci. Total Environ. 768, 144466 (2021).CAS 
    PubMed 

    Google Scholar 
    Thalinger, B. et al. The effect of activity, energy use, and species identity on environmental DNA shedding of freshwater fish. Front. Ecol. Evolution 9, 73 (2021).
    Google Scholar 
    Kelly, R. P., Port, J. A., Yamahara, K. M. & Crowder, L. B. Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE 9, e86175 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).CAS 
    PubMed 

    Google Scholar 
    Liu, C. M. et al. BactQuant: An enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC Microbiol. 12, 56 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mansfeldt, C. et al. Microbial community shifts in streams receiving treated wastewater effluent. Sci. Total Environ. 709, 135727 (2020).CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 

    Google Scholar 
    Andrews, S. FASTQC A Quality Control tool for High Throughput Sequence Data (Babraham Institute, 2015).Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Hänfling, B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 25, 3101–3119 (2016).PubMed 

    Google Scholar 
    Csárdi, G. & Nepusz, T. The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package 2.5-6. https://CRAN.Rproject.org/package=vegan (2019).Tachet, H., Bournaud, M., Richoux, P. & Usseglio-Polatera, P. Invertébrés d’eau douce—systématique, biologie, écologie (CNRS Editions, 2010).Schmidt-Kloiber, A. & Hering, D. www.freshwaterecology.info—an online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 53, 271–282 (2015).Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75, 14–49 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).PubMed 

    Google Scholar 
    Johnson, S., Domínguez-García, V., Donetti, L. & Muñoz, M. A. Trophic coherence determines food-web stability. Proc. Natl Acad. Sci. USA 111, 17923–17928 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wootton, K. L. Omnivory and stability in freshwater habitats: Does theory match reality? Freshw. Biol. 62, 821–832 (2017).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw., Artic. 82, 1–26 (2017).
    Google Scholar 
    Lenth, R. V. Estimated Marginal Means, aka Least-Squares Means [R package emmeans version 1.6.1] (2021).RStudio Team RStudio: Integrated development for R. RStudio, PBC, Boston, MA. R version 4.0.4 Retrieved from http://www.rstudio.com/ (2021) More

  • in

    Long-distance, synchronized and directional fall movements suggest migration in Arctic hares on Ellesmere Island (Canada)

    Jeltsch, F. et al. Integrating movement ecology with biodiversity research—Exploring new avenues to address spatiotemporal biodiversity dynamics. Mov. Ecol. 1, 6 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Dingle, H. Migration: The Biology of Life on the Move Migration (Oxford University Press, 2014).Joly, K. et al. Longest terrestrial migrations and movements around the world. Sci. Rep. 9, 15333 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lundberg, J. & Moberg, F. Mobile link organisms and ecosystem functioning: Implications for ecosystem resilience and management. Ecosystems 6, 0087–0098 (2003).
    Google Scholar 
    Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CAS 
    PubMed 

    Google Scholar 
    Nifong, J. C., Layman, C. A. & Silliman, B. R. Size, sex and individual-level behaviour drive intrapopulation variation in cross-ecosystem foraging of a top-predator. J. Anim. Ecol. 84, 35–48 (2015).PubMed 

    Google Scholar 
    Giroux, M.-A. et al. Benefiting from a migratory prey: Spatio-temporal patterns in allochthonous subsidization of an arctic predator. J. Anim. Ecol. 81, 533–542 (2012).PubMed 

    Google Scholar 
    Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 3, 155 (2016).
    Google Scholar 
    Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: Individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2011).PubMed 

    Google Scholar 
    Teitelbaum, C. S. & Mueller, T. Beyond migration: Causes and consequences of nomadic animal movements. Trends Ecol. Evol. 34, 569–581 (2019).PubMed 

    Google Scholar 
    Berg, J. E., Hebblewhite, M., St. Clair, C. C. & Merrill, E. H. Prevalence and mechanisms of partial migration in ungulates. Front. Ecol. Evol. 7, 325 (2019).
    Google Scholar 
    Avgar, T., Street, G. & Fryxell, J. M. On the adaptive benefits of mammal migration. Can. J. Zool. 92, 481–490 (2014).
    Google Scholar 
    Barbour, M. G. & Billings, W. D. North American Terrestrial Vegetation (Cambridge University Press, 2000).
    Google Scholar 
    Smith, S. L., Throop, J. & Lewkowicz, A. G. Recent changes in climate and permafrost temperatures at forested and polar desert sites in northern Canada. Can. J. Earth Sci. 49, 914–924 (2012).ADS 

    Google Scholar 
    Lévesque, E. Plant Distribution and Colonization in Extreme Polar Deserts, Ellesmere Island, Canada (University of Toronto, 1997).
    Google Scholar 
    Bliss, L. C., Svoboda, J. & Bliss, D. I. Polar deserts, their plant cover and plant production in the Canadian High Arctic. Holarctic Ecol. 7, 305–324 (1984).
    Google Scholar 
    Berteaux, D. et al. Effects of changing permafrost and snow conditions on tundra wildlife: Critical places and times. Arctic Sci. 3, 65–90 (2017).
    Google Scholar 
    Duchesne, D., Gauthier, G. & Berteaux, D. Habitat selection, reproduction and predation of wintering lemmings in the Arctic. Oecologia 167, 967–980 (2011).ADS 
    PubMed 

    Google Scholar 
    Fuglei, E., Blanchet, M.-A., Unander, S., Ims, R. A. & Pedersen, Å. Ø. Hidden in the darkness of the Polar night: A first glimpse into winter migration of the Svalbard rock ptarmigan. Wildl. Biol. 2017, SP1 (2017).
    Google Scholar 
    Schmidt, N. M. et al. Ungulate movement in an extreme seasonal environment: Year-round movement patterns of high-arctic muskoxen. Wildl. Biol. 22, 253–267 (2016).
    Google Scholar 
    Berteaux, D. & Lai, S. Walking on water: Terrestrial mammal migrations in the warming Arctic. Anim. Migr. 8, 65–73 (2021).
    Google Scholar 
    Gnanadesikan, G. E., Pearse, W. D. & Shaw, A. K. Evolution of mammalian migrations for refuge, breeding, and food. Ecol. Evol. 7, 5891–5900 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Best, T. L. & Henry, T. H. Lepus arcticus. Mamm. Species 1–9 (1994).Dalerum, F. et al. Exploring the diet of arctic wolves (Canis lupus arctos) at their northern range limit. Can. J. Zool. 96, 277–281 (2018).
    Google Scholar 
    Mech, L. D. Annual arctic wolf pack size related to arctic hare numbers. Arctic 60, 309–311 (2007).
    Google Scholar 
    Small, R. J., Keith, L. B. & Barta, R. M. Demographic responses of Arctic hares Lepus arcticus placed on two predominantly forested islands in Newfoundland. Ecography 15, 161–165 (1992).
    Google Scholar 
    Small, R. J., Keith, L. B. & Barta, R. M. Dispersion of introduced arctic hares (Lepus arcticus) on islands off Newfoundland’s south coast. Can. J. Zool. 69, 2618–2623 (1991).
    Google Scholar 
    Hearn, B. J., Keith, L. B. & Rongstad, O. J. Demography and ecology of the arctic hare (Lepus arcticus) in southwestern Newfoundland. Can. J. Zool. 65, 852–861 (1987).
    Google Scholar 
    Harper, F. The Mammals of Keewatin Vol. 12 (Miscellaneaous Publications, Museum of Natural History, University of Kansas, 1956).
    Google Scholar 
    Dalerum, F. et al. Spatial variation in Arctic hare (Lepus arcticus) populations around the Hall Basin. Polar Biol. 40, 2113–2118 (2017).
    Google Scholar 
    Fraser, K. C. et al. Tracking the conservation promise of movement ecology. Front. Ecol. Evol. 6, 150 (2018).
    Google Scholar 
    CAFF. Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri (2013).Desjardins, É. et al. Survey of the vascular plants of Alert (Ellesmere Island, Canada), a polar desert at the northern tip of the Americas. CheckList 17, 181–225 (2021).
    Google Scholar 
    Keith, L. B., Meslow, E. C. & Rongstad, O. J. Techniques for snowshoe hare population studies. J. Wildl. Manag. 32, 801–812 (1968).
    Google Scholar 
    Davidson, S. C. et al. Ecological insights from three decades of animal movement tracking across a changing Arctic. Science 370, 712–715 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wikelski, M., Davidson, S. C. & Kays, R. Movebank: Archive, analysis and sharing of animal movement data. Hosted by the Max Planck Institute of Animal Behavior. http://www.movebank.org (2021).Berteaux, D. Data from: Study ‘Arctic hare Alert—Argos tracking’. MoveBank Data Repository https://doi.org/10.5441/001/1.d5d912c4 (2021).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).Christin, S., St-Laurent, M.-H. & Berteaux, D. Evaluation of Argos telemetry accuracy in the High-Arctic and implications for the estimation of home-range size. PLoS One 10, e0141999 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    QGIS Association. QGIS Geographic Information System (2021).Harris, S. et al. Home-range analysis using radio-tracking data? A review of problems and techniques particularly as applied to the study of mammals. Mamm. Rev. 20, 97–123 (1990).
    Google Scholar 
    Le Corre, M., Dussault, C. & Côté, S. D. Detecting changes in the annual movements of terrestrial migratory species: Using the first-passage time to document the spring migration of caribou. Mov. Ecol. 2, 19 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Nicholson, K. L., Arthur, S. M., Horne, J. S., Garton, E. O. & Vecchio, P. A. D. Modeling caribou movements: Seasonal ranges and migration routes of the central Arctic herd. PLoS One 11, e0150333 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Nelson, M. E., Mech, L. D. & Frame, P. F. Tracking of white-tailed deer migration by global positioning system. J. Mammal. 85, 505–510 (2004).
    Google Scholar 
    Singh, N. J. & Ericsson, G. Changing motivations during migration: Linking movement speed to reproductive status in a migratory large mammal. Biol. Lett. 10, 20140379 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Jakes, A. F. et al. Classifying the migration behaviors of pronghorn on their northern range. J. Wildl. Manag. 82, 1229–1242 (2018).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. (2015).Duong, T. ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. 21, 1–16 (2007).
    Google Scholar 
    Gitzen, R. A., Millspaugh, J. J. & Kernohan, B. J. Bandwidth selection for fixed-kernel analysis of animal utilization distributions. J. Wildl. Manag. 70, 1334–1344 (2006).
    Google Scholar 
    Austin, R. E. et al. Patterns of at-sea behaviour at a hybrid zone between two threatened seabirds. Sci. Rep. 9, 14720 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gillis, E. A. & Krebs, C. J. Natal dispersal of snowshoe hares during a cyclic population increase. J. Mammal. 80, 933–939 (1999).
    Google Scholar 
    Dahl, F. & Willebrand, T. Natal dispersal, adult home ranges and site fidelity of mountain hares (Lepus timidus) in the boreal forest of Sweden. Wildl. Biol. 11, 309–317 (2005).
    Google Scholar 
    Angerbjörn, A. & Flux, J. E. C. Lepus timidus. Mamm. Species 495, 1–11 (1995).
    Google Scholar 
    Smith, G. W., Stoddart, L. C. & Knowlton, F. F. Long-distance movements of black-tailed jackrabbits. J. Wildl. Manag. 66, 463 (2002).
    Google Scholar 
    Cote, J. et al. Behavioural synchronization of large-scale animal movements—Disperse alone, but migrate together?. Biol. Rev. 92, 1275–1296 (2017).PubMed 

    Google Scholar 
    Bauer, S., McNamara, J. M. & Barta, Z. Environmental variability, reliability of information and the timing of migration. Proc. R. Soc. B 287, 20200622 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Couzin, I. D. Collective animal migration. Curr. Biol. 28, R976–R980 (2018).CAS 
    PubMed 

    Google Scholar 
    Lai, S. et al. Unsuspected mobility of Arctic hares revealed by longest journey ever recorded in a lagomorph. Ecology 103(3), e3620 https://doi.org/10.1002/ecy.3620 (2022).PubMed 

    Google Scholar 
    Abrahms, B. et al. Suite of simple metrics reveals common movement syndromes across vertebrate taxa. Mov. Ecol. 5, 12 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Chapman, B. B., Brönmark, C., Nilsson, J. -Å. & Hansson, L.-A. The ecology and evolution of partial migration. Oikos 120, 1764–1775 (2011).
    Google Scholar 
    Singh, N. J., Börger, L., Dettki, H., Bunnefeld, N. & Ericsson, G. From migration to nomadism: Movement variability in a northern ungulate across its latitudinal range. Ecol. Appl. 22, 2007–2020 (2012).PubMed 

    Google Scholar 
    Bastille-Rousseau, G. et al. Flexible characterization of animal movement pattern using net squared displacement and a latent state model. Mov. Ecol. 4, 15 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments—From individual behaviors to population distributions. Oikos 117, 654–664 (2008).
    Google Scholar 
    Krebs, C. J., Boonstra, R. & Boutin, S. Using experimentation to understand the 10-year snowshoe hare cycle in the boreal forest of North America. J. Anim. Ecol. 87, 87–100 (2018).PubMed 

    Google Scholar 
    Reid, N. & Harrison, A. Post-release GPS tracking of hand-reared Irish hare Lepus timidus hibernicus leverets, Slemish, Co. Antrim, Northern Ireland. J. Wildl. Rehabil. 31, 25 (2011).
    Google Scholar 
    Weterings, M. J. A. et al. Strong reactive movement response of the medium-sized European hare to elevated predation risk in short vegetation. Anim. Behav. 115, 107–114 (2016).
    Google Scholar 
    Krebs, C. J., Boutin, S. & Boonstra, R. Ecosystem Dynamics of the Boreal Forest: The Kluane Project (Oxford University Press, 2001).
    Google Scholar 
    Feierabend, D. & Kielland, K. Movements, activity patterns, and habitat use of snowshoe hares (Lepus americanus) in interior Alaska. J. Mammal. 95, 525–533 (2014).
    Google Scholar 
    Levänen, R., Pohjoismäki, J. L. O. & Kunnasranta, M. Home ranges of semi-urban brown hares (Lepus europaeus) and mountain hares (Lepus timidus) at northern latitudes. Ann. Zool. Fenn. 56, 107–120 (2019).
    Google Scholar 
    Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. U.S.A. 105, 19052–19059 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).PubMed 

    Google Scholar 
    France, R. L. The Lake Hazen trough: A late winter oasis in a polar desert. Biol. Conserv. 63, 149–151 (1993).
    Google Scholar 
    Jenkins, D. A., Campbell, M., Hope, G., Goorts, J. & McLoughlin, P. Recent trends in abundance of Peary caribou (Rangifer tarandus pearyi) and muskoxen (Ovibos moschatus) in the Canadian Arctic Archipelago, Nunavut 233.Mech, L. Proportion of calves and adult muskoxen, Ovibos moschatus killed by gray wolves, Canis lupus, in July on Ellesmere Island (USGS Northern Prairie Wildlife Research Center, 2010).
    Google Scholar 
    Gunn, A., Miller, F., Barry, S. & Buchan, A. A near-total decline in caribou on Prince of Wales, Somerset, and Russell Islands, Canadian Arctic. Arctic 59, 1–13 (2006).
    Google Scholar 
    Edwards, J. Diet shifts in moose due to predator avoidance. Oecologia 60, 185–189 (1983).ADS 
    PubMed 

    Google Scholar 
    Gustine, D. D., Parker, K. L., Lay, R. J., Gillingham, M. P. & Heard, D. C. Calf survival of woodland caribou in a multi-predator ecosystem. Wildl. Monogr. 165, 1–32 (2006).
    Google Scholar 
    Klein, D. & Bay, C. Diet selection by vertebrate herbivores in the High Arctic of Greenland. Ecography 14, 152–155 (1991).
    Google Scholar 
    Parks Canada. Resource Description and Analysis—Ellesmere Island National Park Reserve Vol. 1 (Natural Resource Conservation Section, Parks Canada, Department of Canadian Heritage, 1994).
    Google Scholar 
    Parks Canada. Quttinirpaaq National Park of Canada: Management plan 76. https://www.pc.gc.ca/en/pn-np/nu/quttinirpaaq/info/index/gestion-management-2009 (2009).Winkler, D. W. et al. Cues, strategies, and outcomes: How migrating vertebrates track environmental change. Mov. Ecol. 2, 10 (2014).
    Google Scholar 
    Robinson, R. et al. Travelling through a warming world: Climate change and migratory species. Endang. Species Res. 7, 87–99 (2009).ADS 

    Google Scholar  More

  • in

    Effects of plastic mulching on soil CO2 efflux in a cotton field in northwestern China

    Site descriptionIn 2012, a field experiment was conducted in the Aksu National Experimental Station of Oasis Farmland Ecosystem27 (40°37′ N, 80°45′ E, altitude 1028 m) (Fig. 1), located in the west of Tarim River Basin in Xinjiang Province, China. The experimental area had a typical temperate arid climate. During the study period (May to October), the average minimum and maximum temperatures varied between 16.7 and 34.8 ℃ respectively.Figure 1Location of the Aksu National Experimental Station of Oasis Farmland Ecosystem (the map was created by software: QGIS Version 3.16.15 LTR: URL, https://www.qgis.org/en/site/).Full size imageThe cotton fields where the experiment conducted were public land, belong to Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, China. With the permissions of Xinjiang Institute of Ecology and Geography, we conducted experiments in the cotton field of the Aksu National Experimental Station of Oasis Farmland Ecosystem.Experimental designTwo treatments, each 10 m × 10 m in size, were established on one of cotton fields at the Aksu National Experimental Station of Oasis Farmland Ecosystem on April 5, 2012.One treatment planting cotton with TC method, the other with MC method. For the MC method, a high-density and air-tight transparent polythene film (0.01–0.02 mm thick, 1.25 m wide) was placed over the soil surface before sowing. Small holes (0.02 m × 0.02 m, at 0.1 m intervals within a row) in the plastic film were made to place cotton seeds. Four rows were sown on each strip of plastic film. For the TC treatment, the plants were sown as that for the MC treatment. The planting density (266 667plant ha−1) and irrigation pattern (frequency and volume of irrigation) for the TC method were entirely consistent with those for the MC method.Half-hourly measurements of soil CO2 efflux, soil temperature and moisture were made on 6 June 2012. The whole experiment was completed on 4 November 2012. According to irrigation, the whole experiment can be divided into three stages: stage before irrigation (from 6 to 24 June), during irrigation (from 25 June to 10 October) and irrigation stop stage (from 11October to 4 November). During the irrigation period, we conducted seven times of irrigation (once in two week). The water-soluble compound fertilizer (N + P2O5 + K2O ≥ 51%) was used for fertilization in the experimental field, and the application rate was 30 g m−2. We dissolved water-soluble compound fertilizer in water and sprayed into the field by sprayer. During the irrigation period, the fertilizer was applied for 5 times.The cottonseeds we used in this study comply with the provisions of the regulations of the People’s Republic of China on Seed Administration and the detailed rules for the implementation of crop seeds. The fertilization we used in this study comply with the provisions of the People’s Republic of China on Chemical fertilizer standard. All the experiments we conducted in the cotton field of Aksu oasis farmland ecosystem National Experimental Station met the provisions of the agricultural law of the People’s Republic of China. We also carried out the experiment of this study under the guidance of the provisions of the measures for the administration of national field scientific observation and research stations.Field measurement of soil CO2 concentrationSolid-state CO2 sensors (GMM221 and GMM222, Vaisala, Finland) were installed in the midpoint of each treatment to measure soil CO2 concentration. A cable connected each soil probe with a transimitter body placed on the ground. The transimitter sent output signals from the probe to a data logger (CR1000, Campbell Scientific Inc., Logan, UT, USA) and to an optional LCC display on the transmitter.In each treatment, four CO2 concentration sensors were buried at depths of 0 cm, 5 cm, 10 cm and 15 cm. Soil CO2 concentrations were recorded once in 30 min. The measurement of soil CO2 concentrations were conducted from 6 June 2012 to 4 November 2012.On 8 November, these sensors were excavated and recalibrated in the laboratory. We found no change in the slope or offset.Environmental and soil CO2 efflux measurementsThe soil water content and temperature at the same soil depth with solid-state CO2 sensors were measured on the cotton fields at the Aksu National Experimental Station of Oasis Farmland Ecosystem27,28, respectively. Soil volumetric water content and soil temperature were measured using soil moisture probes (pF-Meter, EcoTech GmbH, Bonn, Germany)26 and temperature probes (PT100,Heraeus Sensor Technology, Kleinostheim, Germany)26, respectively.Bulk density was determined by core method29. Briefly, a cylindrical metal sampler (volume of 100cm3) was inserted into the soil and carefully removed to preserve the sample. The sample was oven-dried at 105 °C and weighed. The ratio between dry weight of the soil sample and the cylinder volume was applied to provide the bulk density.Half-hourly soil CO2 efflux measurements were conducted using a closed dynamic chamber method26 (CIRAS-1 PP Systems, Hitchin, UK) on the TC treatment, beginning on 6 June 2012. A chamber, with a diameter of 9.96 cm and a volume of 1, 170 cm3 was inserted into the soil at depth of 3 cm. Soil CO2 concentrations were measured by infrared gas analyzer. The collecting of CO2 from each sampling point took 120 s to get reliable estimates of soil CO2 efflux.Data analysisIn order to calculate CO2 efflux in soil, Fick’s first law of diffusion was used:$$F_{i} = – D_{s} frac{dc}{{dz}}$$
    (1)
    where Fi is the CO2 efflux at depth zi, Ds the CO2 diffusion coefficient in the soil, and dc / dz the vertical soil CO2 gradient. In this study, the vertical CO2 gradient (dC/dz) was approximately a constant at different depths of soil in our site for the field conditions experienced in the TC treatment during study period. However, a quadratic function of depth to concentrations fitted to soil CO2 concentration gradients in the MC treatment.Ds can be estimated as$$D_{s} = xi D_{a}$$
    (2)
    where ξ is the gas tortuosity factor and Da is the CO2 diffusion coefficient in free air. The effect of temperature and pressure on Da is given by$$D_{a} = D_{a} 0left( {frac{T}{293.15}} right)^{1.75} left( {frac{P}{101.3}} right)$$
    (3)
    where T is the temperature (K), P the air pressure (kPa), Dao a reference value of Da at 20 °C (293.15 K) and 101.3 kPa, and is given as 14.7 mm2 s–130 .There are several empirical models in the literature for computing ξ31. We used the Millington–Quirk model32:$$xi = frac{{alpha^{10/3} }}{{phi^{2} }}$$
    (4)
    where a is the volumetric air content (air-filled porosity), Φ is the porosity. Note,$$phi = alpha + theta = 1 – frac{{rho_{b} }}{{rho_{m} }}$$
    (5)
    where ρb is the bulk density, and ρm is the particle density for the mineral soil.Soil surface CO2 efflux was calculated using the CO2 gradient flux method based on CO2 concentrations within the soil profile1. Briefly, the flux of CO2 between any two layers in the soil profile was calculated using the Moldrup model33.In order to determine soil CO2 storage, the equation for CO2 was performed.$${S}_{C{O}_{2}}=frac{partial (aC)}{partial t}$$
    (6)
    where C (ppm) is the concentration of CO2 within the soil pores, (a) is the aerial porosity of the soil layer, D is the molecular diffusivity of CO2 with the soil, and S(µmol m−3 s−1)is the source strength in the soil layer at depth.We determined temperature responses for soil CO2 efflux using the van’t Hoff equation34 (Eq. 7);$$R = R0e^{BT}$$
    (7)
    where R is soil CO2 efflux, T is soil temperature (°C) at 10 cm depth, and R0 is the soil respiration rate at a reference temperature of 0 °C (µmol m−3 s−1).The Q10 value for Eq. (8) was calculated according to definition as:$$Q_{{{1}0}} = R_{{{text{T}} + {1}0}} /R_{{text{T}}} = {text{ e}}^{{{1}0{text{B}}}}$$
    (8)
    where RT and RT+10 are Rr or Rd rates at temperature T and T + 10, respectively. The Q10 value is independent of temperature in Eq. (8). More

  • in

    Assessment of global health risk of antibiotic resistance genes

    Global patterns of ARG distributionWe used a set of 4572 metagenomic samples to illustrate the global patterns of ARG distribution (Supplementary Data 1). These samples were collected from six types of habitats: air, aquatic, terrestrial, engineered, humans and other hosts (Fig. 1a and Supplementary Data 1). From these samples, we identified a total of 2561 ARGs that conferred resistance to 24 drug classes of antibiotics based on the Comprehensive Antibiotic Research Database (CARD). Of these, 2401 were genes conferring resistance to only one drug class, and 160 conferred resistances to multiple drug classes (Supplementary Data 2). Twenty-five ARGs were found in more than 75% samples, however, the frequency of most ARGs (2313/2561) were More