Xu, L., Saatchi, S.S., Yang, Y., Yu, Y., Pongratz, J., Bloom, A.A., Bowman, K., Worden, J., Liu, J., Yin, Y. & Domke, G. Changes in global terrestrial live biomass over the 21st century. Sci. Adv. 7(27), p.eabe9829 (2001).Hoecker, T. J., Higuera, P. E., Kelly, R. & Hu, F. S. Arctic & boreal paleofire records reveal drivers of fire activity & departures from Holocene variability. Ecology 101(9), e03096 (2020).Article
Google Scholar
Bradshaw, C. J. & Warkentin, I. G. Global estimates of boreal forest carbon stocks & flux. Global Planet. Change 128, 24–30 (2015).Article
Google Scholar
Kuhry, P. & Turunen, J. The postglacial development of boreal and subarctic peatlands in Boreal Peatland Ecosystems, 25–46 (Springer, 2006).Walker, X. J. et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 572(7770), 520–523 (2019).CAS
Article
Google Scholar
Gauthier, S., Bernier, P., Kuuluvainen, T., Shvidenko, A. Z. & Schepaschenko, D. G. Boreal forest health & global change. Science 349(6250), 819–822 (2015).CAS
Article
Google Scholar
Walker, X. J. et al. Cross-scale controls on carbon emissions from boreal forest megafires. Global Change Biol. 24(9), 4251–4265 (2018).Article
Google Scholar
Flannigan, M. D., Logan, K. A., Amiro, B. D., Skinner, W. R. & Stocks, B. J. Future area burned in Canada. Clim. Change 72(1), 1–16 (2005).CAS
Article
Google Scholar
Balshi, M. S. et al. Assessing the response of area burned to changing climate in western boreal North America using a Multivariate Adaptive Regression Splines (MARS) approach. Global Change Biol. 15(3), 578–600 (2009).Article
Google Scholar
Johnstone, J. F. & Chapin, F. S. Fire interval effects on successional trajectory in boreal forests of northwest Canada. Ecosystems 9(2), 268–277 (2006).Article
Google Scholar
Viereck, L.A. & Little, E.L. Alaska trees & shrubs. US Forest Service 410, (1972).Paine, R. T., Tegner, M. J. & Johnson, E. A. Compounded perturbations yield ecological surprises. Ecosystems 1(6), 535–545 (1998).Article
Google Scholar
Buma, B. Disturbance interactions: characterization, prediction, & the potential for cascading effects. Ecosphere 6(4), 1–15 (2015).Article
Google Scholar
Burton, P. J., Jentsch, A. & Walker, L. R. The ecology of disturbance interactions. Bioscience 70(10), 854–870 (2020).Article
Google Scholar
Brown, C. D. & Johnstone, J. F. Once burned, twice shy: Repeat fires reduce seed availability & alter substrate constraints on Picea mariana regeneration. Forest Ecol. Manage. 266, 34–41 (2012).Article
Google Scholar
Buma, B., Brown, C. D., Donato, D. C., Fontaine, J. B. & Johnstone, J. F. The impacts of changing disturbance regimes on serotinous plant populations & communities. Bioscience 63(11), 866–876 (2013).Article
Google Scholar
Coop, J. D. et al. Wildfire-driven forest conversion in western North American landscapes. Bioscience 70(8), 659–673 (2020).Article
Google Scholar
Enright, N. J., Fontaine, J. B., Bowman, D. M., Bradstock, R. A. & Williams, R. J. Interval squeeze: altered fire regimes & demographic responses interact to threaten woody species persistence as climate changes. Front. Ecol. Enviro 13(5), 265–272 (2015).Article
Google Scholar
Burns, R.M., & Honkala B.H. Silvics of North America US Department of Agriculture, Forest Service, Ag. Handbook 654, (1990).Hayes, K. & Buma, B. Effects of short-interval disturbances continue to accumulate, overwhelming variability in local resilience. Ecosphere 12(3), 03379 (2021).Article
Google Scholar
Mack, M. C. et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science 372(6539), 280–283 (2021).CAS
Article
Google Scholar
Viereck, L. A., Dyrness, C. T. & Foote, M. J. An overview of the vegetation & soils of the floodplain ecosystems of the Tanana River, interior Alaska. Can. J. For. Res. 23(5), 889–898 (1993).Article
Google Scholar
Hoy, E. E., Turetsky, M. R. & Kasischke, E. S. More frequent burning increases vulnerability of Alaskan boreal black spruce forests. Enviro. Res. Lett. 11(9), 095001 (2016).Article
Google Scholar
Whitman, E., Parisien, M. A., Thompson, D. K. & Flannigan, M. D. Short-interval wildfire & drought overwhelm boreal forest resilience. Sci. Rep. 9(1), 1–12 (2019).Article
Google Scholar
Greene, D. F. et al. The reduction of organic-layer depth by wildfire in the North American boreal forest & its effect on tree recruitment by seed. Can. J. For. Res. 37(6), 1012–1023 (2007).Article
Google Scholar
Héon, J., Arseneault, D. & Parisien, M. A. Resistance of the boreal forest to high burn rates. PNAS 111(38), 13888–13893 (2014).Article
Google Scholar
Buma, B., Weiss, S., Hayes, K. & Lucash, M. Wildland fire reburning trends across the US West suggest only short-term negative feedback & differing climatic effects. Enviro. Res. Lett. 15(3), 034026 (2020).Article
Google Scholar
Thompson, D. K. et al. Fuel accumulation in a high-frequency boreal wildfire regime: from wetland to upland. Can. J. For. Res. 47(7), 957–964 (2017).Article
Google Scholar
Kasischke, E. S. et al. Alaska’s changing fire regime—implications for the vulnerability of its boreal forests. Can. J. For. Res. 40(7), 1313–1324 (2010).Article
Google Scholar
Kelly, R. et al. Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. PNAS 110(32), 13055–13060 (2013).CAS
Article
Google Scholar
Gaboriau, D. M. et al. Temperature & fuel availability control fire size/severity in the boreal forest of central Northwest Territories, Canada. Quat. Sci. Rev. 250, 106697 (2020).Article
Google Scholar
Johnstone, J. F., Rupp, T. S., Olson, M. & Verbyla, D. Modeling impacts of fire severity on successional trajectories & future fire behavior in Alaskan boreal forests. Landscape Ecol. 26(4), 487–500 (2011).Article
Google Scholar
Hess, K. A. et al. Satellite-based assessment of grassland conversion & related fire disturbance in the Kenai Peninsula, Alaska. Rem. Sens. 11(3), 283 (2019).Article
Google Scholar
Hollingsworth, T. N., Breen, A. L., Hewitt, R. E. & Mack, M. C. Does fire always accelerate shrub expansion in Arctic tundra? Examining a novel grass-dominated successional trajectory on the Seward Peninsula. A. A. A. Res. 53(1), 93–109 (2021).
Google Scholar
Turner, M. G., Romme, W. H. & Tinker, D. B. Surprises & lessons from the 1988 Yellowstone fires. Frontiers Ecol. Environ. 1(7), 351–358 (2003).Article
Google Scholar
Shvidenko, A. Z. et al. Impact of wildfire in Russia between 1998–2010 on ecosystems & the global carbon budget. Dokl. Earth Sci. 441(2), 1678–1682 (2011).CAS
Article
Google Scholar
Alaska Fire Service 2021. Alaska Interagency Coordination Center, Bureau of L& Management, Alaska Fire Service. https://fire.ak.blm.gov/arcgis/rest/services/Map&FeatureServices/FireHistory/MapServer/1French, N. H. et al. Using Landsat data to assess fire & burn severity in the North American boreal forest region: an overview and summary of results. Int. J. Wildland Fire 17(4), 443–462 (2008).Article
Google Scholar
Morimoto, M. & Juday, G. Perspectives on Sustainable Forest Management in Interior Alaska Boreal Forest: Recent History and Challenges. Forests 10(6), 484 (2019).Article
Google Scholar
NASA/METI/AIST/Japan Spacesystems, & U.S./Japan ASTER Science Team. ASTER Global Digital Elevation Model V003. distributed by NASA EOSDIS L& Processes DAAC, https://doi.org/10.5067/ASTER/ASTGTM.003 (2018)Fick, S. E. & Hijmans, R. J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Clim 37(12), 4302–4315 (2017).Article
Google Scholar
US Environmental Protection Agency, Level III Ecoregions of the Continental United States, Corvallis, Oregon: U.S. EPA— National Health & Environmental Effects Research Laboratory https://epa.gov/eco-research/level-iii-&-ivecoregions-continental-united-states (2013)Wang, J.A., et al. ABoVE: Landsat-derived Annual Dominant Land Cover Across ABoVE Core Domain, 1984-2014. ORNL DAAC, Oak Ridge, Tennessee, USA (2019).. https://doi.org/10.3334/ORNLDAAC/1691Debeer, D. & Strobl, C. Conditional permutation importance revisited. BMC Bioinform. 21(1), 1–30 (2020).Article
Google Scholar
Strobl, C., Boulesteix, A. L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for r&om forests. BMC Bioinform. 9(1), 1–11 (2008).Article
Google Scholar
Moisen, G. & Frescino, T. Comparing five modelling techniques for predicting forest characteristics. Ecol. Mod. 157, 209–225 (2002).Article
Google Scholar
R Core Team R: A language & environment for statistical computing (2021).Pebesma, E.J. & Bivand, R.S. Classes and methods for spatial data in R. R News 5 (2), https://cran.r-project.org/doc/Rnews/. (2005)Hijmans, R.J. raster: Geographic Data Analysis and Modeling. R package version 3.4–5. (2020) https://CRAN.R-project.org/package=rasterStrobl, C., Boulesteix, A.-L., Kneib, T., Augustin, T. & Zeileis, A. Conditional variable importance for random forests. BMC Bioinform. 9, 307 (2008).Article
Google Scholar
Debeer, D., Hothorn, T. & Strobl, C permimp: Conditional Permutation Importance. R package version 1.0–1. https://CRAN.R-project.org/package=permimp (2021)Schneider, G., Chicken, E., & Becvarik, R. NSM3:Functions and Datasets to Accompany Hollander, Wolfe, and Chicken – Nonparametric Statistical Methods, Third Edition. R package version 1.16. https://CRAN.R-project.org/package=NSM3 (2021) More