More stories

  • in

    Oldest leaf mine trace fossil from East Asia provides insight into ancient nutritional flow in a plant–herbivore interaction

    Connor, E. F. & Taverner, M. P. The evolution and adaptive significance of the leaf-mining habit. Oikos 79, 6–25. https://doi.org/10.2307/3546085 (1997).Article 

    Google Scholar 
    Hespenheide, H. A. Bionomics of leaf-mining insects. Annu. Rev. Entomol. 36, 535–560. https://doi.org/10.1146/annurev.en.36.010191.002535 (1991).Article 

    Google Scholar 
    Kato, M. Structure, organization, and response of a species-rich parasitoid community to host leafminer population dynamics. Oecologia 97, 17–25 (1994).ADS 
    Article 

    Google Scholar 
    López, R., Carmona, D., Vincini, A. M., Monterubbianesi, G. & Caldiz, D. Population dynamics and damage caused by the leafminer Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae), on seven potato processing varieties grown in temperate environment. Neotrop. Entomol. 39, 108–114. https://doi.org/10.1590/S1519-566X2010000100015 (2010).Article 
    PubMed 

    Google Scholar 
    Lopez-Vaamonde, C., Godfray, H. C. J. & Cook, J. M. Evolutionary dynamics of host-plant use in a genus of leaf-mining moths. Evolution 57, 1804–1821. https://doi.org/10.1111/j.0014-3820.2003.tb00588.x (2003).Article 
    PubMed 

    Google Scholar 
    Lopez-Vaamonde, C. et al. Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. J. Evol. Biol. 19, 1314–1326. https://doi.org/10.1111/j.1420-9101.2005.01070.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Scheffer, S. J., Lewis, M. L., Hébert, J. B. & Jacobsen, F. Diversity and host plant-use in North American Phytomyza Holly Leafminers (Diptera: Agromyzidae): Colonization, divergence, and specificity in a host-associated radiation. Ann. Entomol. Soc. Am. 114, 59–69. https://doi.org/10.1093/aesa/saaa034 (2021).CAS 
    Article 

    Google Scholar 
    Tooker, J. F. & Giron, D. The evolution of endophagy in herbivorous insects. Front. Plant Sci. 11, 581816. https://doi.org/10.3389/fpls.2020.581816 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hawkins, B. A. Pattern and Process in Host-Parasitoid Interactions (Cambridge University Press, 1994).Book 

    Google Scholar 
    Novotny, V. & Basset, Y. Host specificity of insect herbivores in tropical forests. Proc. R. Soc. B Biol. Sci. 272, 1083–1090. https://doi.org/10.1098/rspb.2004.3023 (2005).Article 

    Google Scholar 
    Lewis, O. T. et al. Structure of a diverse tropical forest insect-parasitoid community. J. Anim. Ecol. 71, 855–873. https://doi.org/10.1046/j.1365-2656.2002.00651.x (2002).Article 

    Google Scholar 
    Hirao, T. & Murakami, M. Quantitative food webs of lepidopteran leafminers and their parasitoids in a Japanese deciduous forest. Ecol. Res. 23, 159–168. https://doi.org/10.1007/s11284-007-0351-6 (2008).Article 

    Google Scholar 
    Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977. https://doi.org/10.1126/science.1214915 (2012).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Leppänen, S. A., Altenhofer, E., Liston, A. D. & Nyman, T. Phylogenetics and evolution of host-plant use in leaf-mining sawflies (Hymenoptera: Tenthredinidae: Heterarthrinae). Mol. Phylogenet. Evol. 64, 331–341. https://doi.org/10.1016/j.ympev.2012.04.005 (2012).Article 
    PubMed 

    Google Scholar 
    Doorenweerd, C., Van Nieukerken, E. J. & Menken, S. B. J. A global phylogeny of leafmining Ectoedemia moths (Lepidoptera: Nepticulidae): Exploring host plant family shifts and allopatry as drivers of speciation. PLoS ONE 10, 1–20. https://doi.org/10.1371/journal.pone.0119586 (2015).CAS 
    Article 

    Google Scholar 
    Nakadai, R. & Kawakita, A. Phylogenetic test of speciation by host shift in leaf cone moths (Caloptilia) feeding on maples (Acer). Ecol. Evol. 6, 4958–4970. https://doi.org/10.1002/ece3.2266 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Opler, P. A. Fossil lepidopterous leaf mines demonstrate the age of some insect-plant relationships. Science 179, 1321–1323. https://doi.org/10.1126/science.179.4080.1321 (1973).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Labandeira, C. C., Dilcher, D. L., Davis, D. R. & Wagner, D. L. Ninety-seven million years of angiosperm-insect association: Paleobiological insights into the meaning of coevolution. Proc. Natl. Acad. Sci. U. S. A. 91, 12278–12282. https://doi.org/10.1073/pnas.91.25.12278 (1994).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Winkler, I. S., Labandeira, C. C., Wappler, T. & Wilf, P. Distinguishing Agromyzidae (Diptera) leaf mines in the fossil record: New taxa from the Paleogene of North America and Germany and their evolutionary implications. J. Paleontol. 84, 935–954. https://doi.org/10.1666/09-163.1 (2010).Article 

    Google Scholar 
    van Nieukerken, E. J., Doorenweerd, C., Hoare, R. J. B. & Davis, D. R. Revised classification and catalogue of global Nepticulidae and Opostegidae (Lepidoptera, Nepticuloidea). Zookeys 2016, 65–246. https://doi.org/10.3897/zookeys.628.9799 (2016).Article 

    Google Scholar 
    Maccracken, S. A., Sohn, J.-C., Miller, I. M. & Labandeira, C. C. A new Late Cretaceous leaf mine Leucopteropsa spiralae gen. et sp. nov. (Lepidoptera: Lyonetiidae) represents the first confirmed fossil evidence of the Cemiostominae. J. Syst. Palaeontol. 19, 131–144. https://doi.org/10.1080/14772019.2021.1881177 (2021).Article 

    Google Scholar 
    Wilf, P., Labandeira, C. C., Johnson, K. R. & Ellis, B. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 313, 1112–1115. https://doi.org/10.1126/science.1129569 (2006)ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Donovan, M. P., Wilf, P., Labandeira, C. C., Johnson, K. R. & Peppe, D. J. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of Cretaceous leaf miners, Great Plains, USA. PLoS ONE 9, e103542. https://doi.org/10.1371/journal.pone.0103542 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donovan, M. P., Iglesias, A., Wilf, P., Labandeira, C. C. & Cúneo, N. R. Rapid recovery of Patagonian plant–insect associations after the end-Cretaceous extinction. Nat. Ecol. Evol. 1, 0012. https://doi.org/10.1038/s41559-016-0012 (2017).Article 

    Google Scholar 
    Donovan, M. P., Wilf, P., Iglesias, A., Cúneo, N. R. & Labandeira, C. C. Persistent biotic interactions of a Gondwanan conifer from Cretaceous Patagonia to modern Malesia. Commun. Biol. 3, 708. https://doi.org/10.1038/s42003-020-01428-9 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Labandeira, C. C. The four phases of plant-arthropod associations in deep time. Geol. Acta 4, 409–438. https://doi.org/10.1344/105.000000344 (2006).Article 

    Google Scholar 
    Labandeira, C. C. Silurian to Triassic plant and hexapod clades and their associations: new data, a review, and interpretations. Arthropod Syst. Phylogen. 64, 53–94 (2006).
    Google Scholar 
    Wakita, K., Nakagawa, T., Sakata, M., Tanaka, N. & Oyama, N. Phanerozoic accretionary history of Japan and the western Pacific margin. Geol. Mag. https://doi.org/10.1017/s0016756818000742 (2018).Article 

    Google Scholar 
    Katayama, M. Stratigraphical study on the Mine Series. J. Geol. Soc. Jpn. 46, 127–141. https://doi.org/10.5575/geosoc.46.127 (1939).Article 

    Google Scholar 
    Maeda, H. & Oyama, N. Stratigraphy and fossil assemblages of the Triassic Mine Group and Jurassic Toyora Group in western Yamaguchi Prefecture. J. Geol. Soc. Japan 125, 585–594. https://doi.org/10.5575/geosoc.2019.0020 (2019).Article 

    Google Scholar 
    Aizawa, J. Fossil insect-bearing strata of the Triassic Mine Group, Yamaguchi Prefecture. Bull. Kitakyushu Mus. Nat. Hist. Hum. Hist. Ser. A 10, 91–98 (1991).
    Google Scholar 
    Oyama, N. & Maeda, H. Madygella humioi sp. nov. from the Upper Triassic Mine Group, Southwest Japan: The oldest record of a sawfly (Hymenoptera: Symphyta) in East Asia. Paleontol. Res. 24, 64–71 (2020).Article 

    Google Scholar 
    Fujiyama, I. Mesozoic insect fauna of East Asia part 1. Introduction and upper Triassic faunas. Bull. Natl. Sci. Mus. 16, 331–386 (1973).
    Google Scholar 
    Fujiyama, I. Late Triassic insects from Mine, Yamaguchi, Japan, Part 1. Odonata. Bull. Natl. Sci. Mus. Tokyo Ser. C 17, 49–56 (1991).
    Google Scholar 
    Ueda, K. A Triassic fossil of scorpion fly from Mine, Japan. Bull. Kitakyushu Mus. Nat. Hist. Hum. Hist. Ser. Ser. A 10, 99–103 (1991).
    Google Scholar 
    Takahashi, F., Ishida, H., Nohara, M., Doi, E. & Taniguchi, S. Occurrence of insect fossils from the Late Triassic Mine Group. Bull. Mine City Mus. Yamaguchi Prefect. Jpn. 13, 1–27 (1997).CAS 

    Google Scholar 
    Kametaka, M. Provenance of the Upper Triassic mine group Southwest Japan. J. Geol. Soc. Jpn. 105, 651–667 (1999).CAS 
    Article 

    Google Scholar 
    Takahashi, E. & Mikami, T. Triassic. In Geology of Yamaguchi Prefecture (ed. Yamaguchi Museum) 93–108 (Yamaguchi Museum, 1975).Kiminami, K. Atsu Group and Mine Group. In Monograph on Geology of Japan 6, Chugoku Region (ed. Geological Society of Japan) 85–88 (Asakura Publishing Co., Ltd., 2009).Naito, G. Plant Fossils from the Mine Group (Mine City Education Comittee, 2000).
    Google Scholar 
    Kimura, T. Geographical distribution of Palaeozoic and Mesozoic plants in East and Southeast Asia. Hist. Biogeogr. Plate Tecton. Evol. Jpn. East Asia 1982, 135–200 (1987).
    Google Scholar 
    Kimura, T., Naito, G. & Ohana, T. Baiera cf. furcata (Lindley and Hutton) Braun from the Carnic Momonoki Formation, Japan. Bull. Natl. Sci. Mus. 9, 91–114 (1983).
    Google Scholar 
    Katagiri, T. Pallaviciniites oishii (comb. Nov.), a thalloid liverwort from the Late Triassic of Japan. Bryologist 118, 245–251. https://doi.org/10.1639/0007-2745-118.3.245 (2015).Article 

    Google Scholar 
    Kustatscher, E. et al. Flora of the Late Triassic. In The Late Triassic World, Topics in Geobiology, Vol. 46 (ed. Tanner, L. H.) 545–622 (Springer, 2018). https://doi.org/10.1007/978-3-319-68009-5_13.Oyama, N., Yukawa, H. & Maeda, H. Mesozoic insect fossils of Japan: Significance of the Upper Triassic insect fauna of the Mine Group, Yamaguchi Pref. Bull. Mine City Mus. Yamaguchi Prefect. Jpn. 33, 1–13 (2020).
    Google Scholar 
    Shcherbakov, D. E., Lukashevich, E. D. & Blagoderov, V. Triassic Diptera and initial radiation of the order. Int. J. Dipterol. Res. 6, 75–115 (1995).
    Google Scholar 
    Krzemiński, W. & Krzemińska, E. Triassic Diptera: Descriptions, revisions and phylogenetic relations. Acta Zool. Cracov. 46, 153–184 (2003).
    Google Scholar 
    Blagoderov, V., Grimaldi, D. A. & Fraser, N. C. How time flies for flies: Diverse Diptera from the Triassic of Virginia and early radiation of the order. Am. Mus. Novit. 3572, 1–39. https://doi.org/10.1206/0003-0082(2007)509[1:HTFFFD]2.0.CO;2 (2007).Article 

    Google Scholar 
    Lukashevich, E. D., Przhiboro, A. A., Marchal-Papier, F. & Grauvogel-Stamm, L. The oldest occurrence of immature Diptera (Insecta), Middle Triassic France. Ann. la Société Entomol. Fr. 46, 4–22. https://doi.org/10.1080/00379271.2010.10697636 (2010).Article 

    Google Scholar 
    Schmidt, A. R. et al. Arthropods in amber from the Triassic Period. Proc. Natl. Acad. Sci. 109, 14796–14801. https://doi.org/10.1073/pnas.1208464109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lara, M. B. & Lukashevich, E. D. The first Triassic dipteran (Insecta) from South America, with review of Hennigmatidae. Zootaxa 3710, 81–92. https://doi.org/10.11646/zootaxa.3710.1.6 (2013).Article 
    PubMed 

    Google Scholar 
    Kimura, T. & Ohana, T. Some fossil ferns from the Middle Carnic Momonoki Formation, Yamaguchi prefecture, Japan. Bull. Natl. Sci. Mus. Ser. C Geol. Paleontol. 6, 73–92 (1980).
    Google Scholar 
    Hering, E. M. Biology of the Leaf Miners https://doi.org/10.1007/978-94-015-7196-8. (Springer, 1951).Book 

    Google Scholar 
    Kirichenko, N. et al. Systematics of Phyllocnistis leaf-mining moths (Lepidoptera, Gracillariidae) feeding on dogwood (Cornus spp.) in Northeast Asia, with the description of three new species. Zookeys 2018, 79–118. https://doi.org/10.3897/zookeys.736.20739 (2018).Article 

    Google Scholar 
    Cerdeña, J. et al. Phyllocnistis furcata sp. nov.: A new species of leaf-miner associated with Baccharis (Asteraceae) from Southern Peru (Lepidoptera, Gracillariidae). Zookeys 2020, 121–145. https://doi.org/10.3897/zookeys.996.53958 (2020).Article 

    Google Scholar 
    Elb, P. M., Melo-de-Pinna, G. F. & de Menezes, N. L. Morphology and anatomy of leaf miners in two species of Commelinaceae (Commelina diffusa Burm. F. and Floscopa glabrata (Kunth) Hassk). Acta Bot. Brasilica 24, 283–287. https://doi.org/10.1590/S0102-33062010000100030 (2010).Article 

    Google Scholar 
    Vasco, A., Moran, R. C. & Ambrose, B. A. The evolution, morphology, and development of fern leaves. Front. Plant Sci. 4, 1–16. https://doi.org/10.3389/fpls.2013.00345 (2013).Article 

    Google Scholar 
    Eiseman, C. Leafminers of North America. (Charley Eiseman, 2019).Yang, J., Wang, X., Duffy, K. & Dai, X. A preliminary world checklist of fern-mining insects. Biodivers. Data J. 9, e62839. https://doi.org/10.3897/BDJ.9.e62839 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ding, Q., Labandeira, C. C. & Ren, D. Biology of a leaf miner (Coleoptera) on Liaoningocladus boii (Coniferales) from the Early Cretaceous of northeastern China and the leaf-mining biology of possible insect culprit clades. Arthropod Syst. Phylogen. 72, 281–308 (2014).
    Google Scholar 
    Boucher, S. Revision of the Canadian species of Amauromyza Hendel (Diptera: Agromyzidae). Can. Entomol. 144, 733–757. https://doi.org/10.4039/tce.2012.80 (2012).Article 

    Google Scholar 
    Scheirs, J., Vandevyvere, I. & De Bruyn, L. Influence of monocotyl leaf anatomy on the feeding pattern of a grass-mining agromyzid (Diptera). Ann. Entomol. Soc. Am. 90, 646–654 (1997).Article 

    Google Scholar 
    Boucher, S. Leaf-miner flies (Diptera: Agromyzidae). In Encyclopedia of Entomology (ed. Capinera J. L.) 2163–2169 (Springer, 2008). https://doi.org/10.1007/978-1-4020-6359-6.Eiseman, C. S. New rearing records for muscoid leafminers (Diptera: Anthomyiidae, Scathophagidae) in the United States. Proc. Entomol. Soc. Wash. 120, 25–50. https://doi.org/10.4289/0013-8797.120.1.25 (2018).Article 

    Google Scholar 
    Meikle, A. A. The insects associated with bracken. Agric. Prog. 14, 58–61 (1937).
    Google Scholar 
    Lawton, J. H. The structure of the arthropod community on bracken. Bot. J. Linn. Soc. 73, 187–216. https://doi.org/10.1111/j.1095-8339.1976.tb02022.x (1976).Article 

    Google Scholar 
    Lawton, J. H., MacGarvin, M. & Heads, P. A. Effects of altitude on the abundance and species richness of insect herbivores on bracken. J. Anim. Ecol. 56, 147–160. https://doi.org/10.2307/4805 (1987).Article 

    Google Scholar 
    Cooper-Driver, Gi. A. Insect-fern associations. Entomol. Exp. Appl. 24, 310–316. https://doi.org/10.1111/j.1570-7458.1978.tb02787.x (1978).Article 

    Google Scholar 
    Eiseman, C. S. Further Nearctic rearing records for phytophagous muscoid flies (Diptera: Anthomyiidae, Scathophagidae). Proc. Entomol. Soc. Washingt. 122, 595–603. https://doi.org/10.4289/0013-8797.122.3.595 (2020).Article 

    Google Scholar 
    Santos, M. G. & Maia, V. C. A synopsis of fern galls in Brazil. Biota Neotrop. 18, e20180513. https://doi.org/10.1590/1676-0611-BN-2018-0513 (2018).Article 

    Google Scholar 
    Peters, R. S. et al. Evolutionary history of the Hymenoptera. Curr. Biol. 27, 1013–1018. https://doi.org/10.1016/j.cub.2017.01.027 (2017). CAS 
    Article 
    PubMed 

    Google Scholar 
    Ronquist, F. et al. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61, 973–999. https://doi.org/10.1093/sysbio/sys058 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Needham, J. G., Frost, S. W. & Tothill, B. H. Leaf-Mining Insects (Waverly Press, 1928).
    Google Scholar 
    Smith, D. R., Eiseman, C. S., Charney, N. D. & Record, S. A new Nearctic Scolioneura (Hymenoptera, Tenthredinidae) mining leaves of Vaccinium (Ericaceae). J. Hymenopt. Res. 43, 1–8. https://doi.org/10.3897/JHR.43.4546 (2015).Article 

    Google Scholar 
    Zheng, D. et al. Middle-Late Triassic insect radiation revealed by diverse fossils and isotopic ages from China. Sci. Adv. 4, eaat1380. https://doi.org/10.1126/sciadv.aat1380 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, S. Q. et al. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Commun. 9, 1–11. https://doi.org/10.1038/s41467-017-02644-4 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    McKenna, D. D. et al. The evolution and genomic basis of beetle diversity. Proc. Natl. Acad. Sci. 116, 24729–24737. https://doi.org/10.1073/pnas.1909655116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gimmel, M. L. & Ferro, M. L. General overview of saproxylic Coleoptera. In Saproxylic Insects, Zoological Monographs, Vol. 1 (ed. Ulyshen, M. D.) 51–128 (Springer, 2018). https://doi.org/10.1007/978-3-319-75937-1_2.Labandeira, C. C., Anderson, J. M. & Anderson, H. M. Expansion of arthropod herbivory in Late Triassic South Africa: The Molteno Biota, Aasvoëlberg 411 site and developmental biology of a gall. In The Late Triassic World, Topics in Geobiology Vol. 46 (ed. Tanner, L. H.) 623–719 (Springer International Publishing AG, 2018).Chapter 

    Google Scholar 
    Fiebrig, K. Eine Schaum bildende Käferlarve Pachyschelus spec. (Bupr. Sap.) Die Ausscheidung von Kautschuk aus der Nahrung und dessen Verwertung zu Schutzzwecken (auch bei Rhynchoten). Z. f. Wiss. Insektenbiol. 4, 333–339 (1908).
    Google Scholar 
    Bruch, C. Metamórfosis de Pachyschelus undularius (Burm.). Physis 3, 30–36 (1917).
    Google Scholar 
    Hering, E. M. Neotropische Buprestiden-Minen. Arb. Physiol. Angew. Entomol. 9, 241–249 (1942).
    Google Scholar 
    Kogan, M. Contribuição ao conhecimento da sistemática e biologia de buprestídeos minadores do gênero Pachyschelus Solier, 1833: (Coleoptera, Buprestidae). Mem. Inst. Oswaldo Cruz 61, 429–457 (1963).CAS 
    Article 

    Google Scholar 
    Kawahara, A. Y. et al. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc. Natl. Acad. Sci. 116, 22657–22663. https://doi.org/10.1073/pnas.1907847116 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Eldijk, T. J. B. et al. A Triassic-Jurassic window into the evolution of lepidoptera. Sci. Adv. 4, e1701568. https://doi.org/10.1126/sciadv.1701568 (2018).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sohn, J. C., Labandeira, C. C., Davis, D. & Mitter, C. An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa. https://doi.org/10.11646/zootaxa.3286.1.1 (2012).Doorenweerd, C., Van Nieukerken, E. J., Sohn, J. C. & Labandeira, C. C. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin. Zootaxa 3963, 295–334. https://doi.org/10.11646/zootaxa.3963.3.2 (2015).Article 
    PubMed 

    Google Scholar 
    Kawahara, A. Y. et al. A molecular phylogeny and revised higher-level classification for the leaf-mining moth family Gracillariidae and its implications for larval host-use evolution. Syst. Entomol. 42, 60–81. https://doi.org/10.1111/syen.12210 (2017).Article 

    Google Scholar 
    Mazumdar, J. Phytoliths of pteridophytes. S. Afr. J. Bot. 77, 10–19. https://doi.org/10.1016/j.sajb.2010.07.020 (2011).Article 

    Google Scholar 
    Trembath-Reichert, E., Wilson, J. P., McGlynn, S. E. & Fischer, W. W. Four hundred million years of silica biomineralization in land plants. Proc. Natl. Acad. Sci. U. S. A. 112, 5449–5454 https://doi.org/10.1073/pnas.1500289112 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hunt, J. W., Dean, A. P., Webster, R. E., Johnson, G. N. & Ennos, A. R. A novel mechanism by which silica defends grasses against herbivory. Ann. Bot. 102, 653–656. https://doi.org/10.1093/aob/mcn130 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reynolds, O. L., Keeping, M. G. & Meyer, J. H. Silicon-augmented resistance of plants to herbivorous insects: A review. Ann. Appl. Biol. 155, 171–186. https://doi.org/10.1111/j.1744-7348.2009.00348.x (2009).CAS 
    Article 

    Google Scholar 
    Edwards, N. P. et al. Leaf metallome preserved over 50 million years. Metallomics 6, 774–782. https://doi.org/10.1039/C3MT00242J (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Müller, A. H. Über Hyponome fossiler und rezenter Insekten, erster Beitrag. Freib. Forschungsh. C 366, 7–27 (1982).
    Google Scholar 
    Beck, A. L. & Labandeira, C. C. Early Permian insect folivory on a gigantopterid-dominated riparian flora from north-central Texas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 142, 139–173. https://doi.org/10.1016/S0031-0182(98)00060-1 (1998).Article 

    Google Scholar 
    Jarzembowski, E. A. The oldest plant-insect interaction in Croatia: Carboniferous evidence. Geol. Croat. 65(3), 387–392. https://doi.org/10.4154/GC.2012.28 (2002).Article 

    Google Scholar 
    Donovan, M. P. & Lucas, S. G. Insect herbivory on the Late Pennsylvanian Kinney Brick Quarry Flora, New Mexico, USA. Kinney Brick Quarry Lagerstätte. N. M. Mus. Nat. Hist. Sci. Bull. 84, 193–207 (2021).Potonié, R. Ueber das Rothliegende des Thüringer Waldes. Theil II: Die Flora des Rothliegenden von Thüringen. Abh. Preuss. Geol. Landesanst. 9, 1–298 (1893).
    Google Scholar 
    Potonié, R. Mitteilungen über mazerierte kohlige Pflanzenfossilien. Z. Bot. 13, 79–88 (1921).Adami-Rodrigues, K. A., Iannuzzi, R. & Pinto, I. D. Permian plant-insect interactions from a Gondwana flora of southern Brazil. Foss. Strat. 51, 106–126 (2004).
    Google Scholar 
    Krassilov, V. A. & Karasev, E. First evidence of plant–arthropod interaction at the Permian–Triassic boundary in the Volga Basin European Russia. Alavesia 2, 247–252 (2008).
    Google Scholar 
    Labandeira, C. C., Wilf, P., Johnson, K. & Marsh, F. Guide to insect (and other) damage types on compressed plant fossils. Version 3.0. Smithson. Institution, Washington, DC 25 (2007).Scott, A. C., Anderson, J. M. & Anderson, H. M. Evidence of plant-insect interactions in the Upper Triassic Molteno formation of South Africa. J. Geol. Soc. London. 161, 401–410. https://doi.org/10.1144/0016-764903-118 (2004).Article 

    Google Scholar 
    Tillyard, R. J. Mesozoic Insects of Queensland No. 9. Orthoptera, and Additions to the Protorthoptera, Odonata, Hemiptera, and Planipennia. Proc. Linn. Soc. N. S. W. 47, 447–470 (1922).
    Google Scholar 
    Rozefelds, A. C. & Sobbe, I. Problematic insect leaf mines from the Upper Triassic Ipswich Coal Measures of Southeastern Queensland Australia. Alcheringa 11, 51–57 (1987).Article 

    Google Scholar 
    Wappler, T., Kustatscher, E. & Dellantonio, E. Plant-insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, N-Italy)-Initial pattern and response to abiotic environmental pertubations. PeerJ 2015, e921. https://doi.org/10.7717/peerj.921 (2015).Article 

    Google Scholar 
    Meller, B., Ponomarenko, A. G., Vasilenko, D. V., Fischer, T. C. & Aschauer, B. First beetle elytra, abdomen (Coleoptera) and a mine trace from Lunz (Carnian, Late Triassic, Lunz-am-See, Austria) and their taphonomical and evolutionary aspects. Palaeontology 54, 97–110. https://doi.org/10.1111/j.1475-4983.2010.01009.x (2011).Article 

    Google Scholar 
    Vassilenko, D. V. Traces of plant-arthropod interactions from Madygen (Triassic, Kyrgyzstan): Preliminary data. Sovremennaya paleontologia: klassicheskie i noveishie metody 9–16 (2009).Zherikhin, V. V. Insect Trace Fossils. In History of Insects (ed. Rasnitsyn A. P., Quicke, D. L.) 303–324 (Kluwer Academic Publishers, 2010).Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 

    Google Scholar  More

  • in

    Salmon lice in the Pacific Ocean show evidence of evolved resistance to parasiticide treatment

    BioassaysSalmon-louse bioassays were performed by the BC Centre for Aquatic Health Sciences (CAHS) as described in Saksida et al.10. Briefly, motile (i.e., pre-adult and adult) L. salmonis were collected from 11 salmon farms in the Broughton Archipelago (BA) between 2010 and 2021 and transported to CAHS in Campbell River, BC. Within 18 h of collection, healthy lice were separated by sex and randomly placed into petri dishes each containing approximately 10 lice (mean ± SD = 9.6 ± 1.1) and subjected to one of six EMB concentrations (either 0, 31.3, 62.5, 125, 250, and 500 ppb or 0, 62.5, 125, 250, 500, and 1000 ppb, depending on suspected variation in EMB sensitivity11). Each collection corresponded to one bioassay, and each bioassay contained roughly four replicates for each sex (4.0 ± 1.3 for females and 3.6 ± 0.9 for males). After 24 h of EMB exposure, lice were classified as alive if they could swim and attach to the petri dish, or moribund/dead otherwise. Lice were kept at 10 °C throughout the process. In total, 34 bioassays were conducted from 11 farms between October 2010 and November 2021.We analysed the proportion of lice that survived exposure to EMB, using standard statistical descriptions that accounted for within-assay dependencies (generalized linear mixed models (GLMMs) with logit link functions, fitted separately to the data from each bioassay). The models included fixed effects for EMB concentration, sex, and the interaction between the two, as well as a random intercept for petri dish. For each analysis, we centered concentration values and scaled them by one standard deviation. We used the GLMM fits to calculate the effective concentrations at which 50% of the lice survived (EC50) in each bioassay. The GLMM for one bioassay produced a singular fit because there was not enough variation in the female survival data to warrant the random-effects structure. We retained the EC50 values resulting from this singular fit because re-fitting without the random intercept yielded identical EC50 values, and removing the entire bioassay from the overall dataset did not qualitatively affect the subsequent analysis.To assess whether the sensitivity of salmon lice to EMB has decreased over time, we fitted a set of five standard GLMs with gamma error distributions and log link functions to the maximum-likelihood EC50 estimates. Each of these five models included binary effects for sex and for whether the farm’s stock had previously been treated, since both affect EMB sensitivity in lice10. The first model included only these two effects and served as a null model that assumed lice did not evolve EMB resistance over time. The second model added a fixed effect for time (i.e., the number of days since January 1, 2010), while the third model included an interaction between time and sex. The fourth and fifth models were identical to the second and third, but with a quadratic effect for time, to account for possible first-order nonlinearity. We were unable to add an effect for farm due to small sample sizes. We performed model selection using the Akaike Information Criterion penalized for small sample sizes AICc25, treating AICc differences of less than two as being indistinguishable in terms of statistical support and selecting the least complex model when that was the case26. The ΔAICc values for the EC50 models were 48.1, 6.1, 4.9, 0, 1.75, respectively.Field efficacyWe used relative salmon-louse counts after EMB treatment (i.e., the post-treatment count divided by the pre-treatment count) as our measure of EMB field resistance between 2010 and 2021 (higher relative counts imply lower treatment efficacy). We defined “pre-treatment” as one month prior to treatment and “post-treatment” as three months after treatment (roughly when one would expect to find the lowest counts in louse populations previously unexposed to EMB), as in Saksida et al.10. We excluded EMB treatments for which an additional, non-EMB treatment was performed within the following three months. In total, there were 73 EMB treatments for which we were able to calculate relative post-treatment counts.Salmon-louse counts were performed by farm staff as described by Godwin et al.27. In short, salmon-louse counts were usually performed at least one per month by capturing 20 stocked fish in each of three net pens using a box seine net, then placing the fish in an anesthetic bath of tricaine methanesulfonate (TMS, or MS-222) and assessing the fish for motile (i.e., pre-adult and adult) L. salmonis by eye.The treatment dataset included the date and type of every treatment that has been performed on a BA farm (i.e., not just the 11 farms with bioassay data). In total, 88 EMB treatments were conducted between 2010 and 2021, of which we were able to calculate relative post-treatment counts for 73 because some months lacked counts or had a non-EMB treatment performed within the following three months. An additional 22 non-EMB treatments (e.g., freshwater and hydrogen baths) were performed, all since the beginning of 2019, but we excluded these data from our analysis.To determine whether field efficacy of EMB treatments has decreased over time, we used GLM-based “hurdle models”—standard statistical descriptions used to accommodate an over-abundance of zeroes in data being analysed. A hurdle model uses two components—one model for whether a count is nonzero and another for the value of the nonzero count—to predict overall mean count. To this end, we fitted three binomial GLMs paired with three gamma GLMs to the relative-count data, each of the paired models being structurally identical in terms of predictors. All of these submodels included a binary fixed effect for previous treatment, as in the EC50 models. The null pair of submodels included no additional terms, the second pair of submodels included a fixed effect for time (i.e., the number of days since January 1, 2010), and the third pair of submodels included a quadratic effect of time (again, to account for possible first-order deviations nonlinearity). We were unable to add an effect for farm due to small sample sizes. We performed model selection of the hurdle models, again using the Akaike Information Criterion penalized for small sample sizes. The ΔAICc values for the three hurdle models were 39.6, 18.3, and 0, respectively. We performed our analyses in R 3.6.028, using the lme4 package29. More

  • in

    A cyclical wildfire pattern as the outcome of a coupled human natural system

    Base run simulationFigure 6 shows the results of the base run simulation. In this scenario, strong vegetation declines over time, while the empty area and flammable vegetation have increasing trends. As such, more fuel would be available for burning, and the wildfire can burn broader areas. Panel (a) shows an oscillatory trend for the burn rate with an average upward trend (To make sure the oscillatory behavior of the model does not fade, Appendix 4 shows the simulation result for 100 years). The observed pattern in the burn rate can be traced back to the patterns of human ignition (Panel b), and the growing trend of vulnerable properties (Panel c). In addition, the results show the long-term declining trend of strong vegetation in our base line simulation (Panel d); over time, stronger vegetation is replaced by flammable vegetation which can lead to more fire. This change in vegetation composition effectively increases the average burn rate. Over time, with more flammable vegetation and with the expansion of vulnerable properties, the likelihood of human-made ignition increases.Figure 6Base run simulation for a 20-year run of the model.Full size imageCoupling effectsFigure 7 shows how the relation between perceived fire risk and the burn rate influences the system. The black line is the base run simulation for comparison. The blue dashed line depicts the condition in which risk perception changes extremely slowly, and the human system is almost disconnected from the natural system. In this situation, if humans underestimate the fire potential, the system burns down nature, resulting in a catastrophic environmental outcome as depicted in panel (a). Panel (a) shows that the burn rate overshoots in the short term but relatively declines due to less remaining natural resources to burn.Figure 7Coupling effect analysis for 20 years. Human ignition unit is Ignition/year, and vulnerable property unit is a million hectares. Strong vegetation and flammable vegetation are provided as the ratio that each occupied the forest area.Full size imagePanel (b) displays the total burn rate throughout the study time to cast further insight into the burn rate sensitivity to perceived risk. The overall burn rate does not significantly change when the risk perception changes from 0.5 to 2, indicating the difference among burn rates in panel (a) is more about the fluctuation timing, but not the size. However, an additional rise in the sense of risk greatly raises the overall burn rate, as seen in panel (a).In the case of prolonged change in risk perception, human ignition continues to increase (panel c) as the perceived risk changes slowly. Furthermore, vulnerable properties are being built faster than their demolition (panel d). A slighter delay in perception leads to a higher frequency of oscillation as depicted in the graphs by the red dashed lines and a longer delay in a lower frequency oscillation, as shown by the purple graphs. Overall, the results are not much different from the base run. We are losing forests (panel e) and have periodic burn rates of increasing magnitude over time.Policy experimentsHere we examine the impact of implementing four proposed policies introduced in Table 2. To prevent the initial condition and transition periods affecting our comparison of proposed policies, we imposed each policy at the fifth year and compared the total burn rates between 10 and 20 years. Figure 8 shows the effect of these policies on different variables. Figure 8Policy implementation. Note: P1: limits vulnerable property development; P2: prescribed burning; P3: effective firefighting; and P4: Clear cutting. Human ignition unit is Ignition/year, and vulnerable property unit is a million hectares. Strong vegetation and flammable vegetation are provided as the ratio that each occupied the forest area.Full size imagePanels (a) and (b) show the burn rate over time and cumulative, respectively. All four policies reduce the burn-rate magnitude compared to the base run. P3 is more effective in early burning-rate reduction compared to other policies, but they ultimately result in similar behavior. It is worth noticing that P1 has the most effect on long-run fluctuation reduction, although its total effect in the time span is less than P3. It seems that firefighting is more effective in the short run, but it fails to dampen the fluctuation and instead limits its growth. This is partly because of the increase in human ignition and settlement due to the success of firefighting in the short run. As a result, people perceive less fire danger and continue to engage in high-risk activities and expand housing in the WUI. The result is further fluctuation in the burn rate even when P3 is implemented. On the other hand, the WUI expansion limitation policy can effectively reduce the burn-rate fluctuation in a timely manner. Implementing P4 causes a reduction in strong vegetation, which leads to flammable vegetation increase. As flammable vegetation is the main fuel for wildfire, this policy cause increase in fuel availability and an increase in the burning rate.Change in human ignition is provided in panel (c). Different levels of human-made ignition are observable, and the reason is that people adjust their high-risk behavior with burn rate, and not with the number of fires. In the firefighting policy, as for a given level of ignition, the burn rate declines, we observe more risky behavior and more human-made ignition. It is interesting to note that, as panel (c) shows, we end up with more WUI under policies 2, 3, and 4. In fact, the reason is that the firefighting, prescribed burning and clear cutting only affect natural sector of the model, decrease burn rate, which decreases risk perception and in turn result in more WUI development. On the other hand, P1 directly targets WUIs.Panel (e) displays the change in strong vegetation, which shows that P4 causes the most reduction in forest tree cover as it directly removes strong vegetation. P2 also causes a decrease in strong vegetation compared to the base run. The reason is that burning flammable vegetation damages young trees and prevents them from developing into solid vegetation. On the other hand, P3 has the least effect on strong vegetation by slowing the damage to young trees and confining the fire. Panel (f) shows the flammable vegetation dynamic after imposing each policy. P3 and P2 reduce flammable vegetation more than P1. However, there is an important difference in how these policies cause the reduction in flammable vegetation. In comparing panels (a) and (b), we see that while P3 causes further increases in the strong vegetation, P2 causes an increase in the empty area. P4 is the only policy that increases flammable vegetation by removing the strong vegetation and providing an empty area to be filled with young vegetation.Overall, it looks like each policy has some marginal effect on containing wildfire, though the magnitudes of effect are not considerable.Replication of United States dataFor model validation, we investigate its ability to fit a single case, United States’ wildfires from 1996 to 2015. We utilize the United States Department of Agriculture’s wildfire database for the conterminous United States (Short, 2017). The results are shown in Fig. 9. In this figure, simulation of burning rate and human ignition (continuous lines, in black) closely follows the real-world data (dotted lines, in red), and the model fairly replicates the historical trends.Figure 9Burning rate and human ignition per unit of forest area. The black line represents the model result, and the red dotted line represents the historical wildfire activity in the conterminous United States.Full size imageCombination policy implementation analysisTo better understand the impacts of our policies, we run different pairs of policies simultaneously. The results illustrate the nonlinear incremental impacts between policies. Simply put, it appears that the impact of several policies is enforced when combined synergistically. In other words, applying several policies might have a greater overall impact than the sum of the policies’ individual effects and suggests that policymakers should avoid searching for a panacea and adopt a broad range of approaches thoughtfully.The results of multiple policy implementations along with single ones are presented in Fig. 10. For example, P1 and P2 each reduce the total burn rate by 4.9% and 4.5%, respectively. While the summation of these effects is 9.4%, simultaneously implementing P1 and P2 lead to a 13.6% burn-rate reduction—P1 controls the human ignition, and P2 reduces the flammable vegetation stock—together, the burn rate is more affected than if implemented separately. The case is more interesting when P1 and P3 are imposed together. The result is a 38% burn-rate reduction compared to 13.9%, which is the sum of solely implementing each policy. The synergic effect happens because P3 lets the flammable vegetation (mainly young trees) age and become strong vegetation. Furthermore, the P1 also prevents human ignition from growing as fast as a single P3 implementation.Figure 10The nonlinear effect of policies. The benefits of implementing multiple policies differ from the sum of the effect of policies. The figure shows the percent of burn rate reduction. Note: P1: limit vulnerable property development; P2: prescribed burning; P3: effective firefighting; and P4: Clear cutting.Full size imageAn interesting case happens when P2 and P3 are implemented together. The synergic effect is less than the sum of separate implementation, mainly because both policies affect the vegetation dynamic and not the human factor in the wildfire. P2 and P3 both cause a lower initial burn rate, but due to the reduction in perceived risk of wildfire and expansion of WUI, this effect quickly disappears. This is another evidence for the importance of considering the problem as an interconnected natural and human system, where effective policies should address both sides.Finally, an interesting result emerges when all policies impose together. Surprisingly, imposing all policies together does not have the most impact on the total burn rate (32.5%), which is less than the P1 and P3 effect (38.0%). The reason relates mainly to the fact P2 and P4 both cause increase in flammable vegetation after empty area filled, which lead to more burning rate after a delay.Sensitivity analysisWe conducted a series of sensitivity analysis to check the model’s robustness to our assumptions. Specifically, we conducted a Monte-Carlo analysis and changed several parameter values to determine the range of outcomes. The results are reported in Appendix 2. In summary, the focus was on parameters that can take on substantially different values from those assumed in the model, including parameters used for risk perception formulation, its effect on human behavior, such as time to perceive risk and time to change behavior, in addition to fractional burning rate per ignition, average s burning, initial flammable vegetation, initial strong vegetation, human ignition multiplier, and initial vulnerable property. As described in the Appendix, for most of these variables, we changed the corresponding variable up to double its base run value. Moreover, we test different values for initial strong vegetation and initial flammable vegetation changing them between zero and their base run values. Each sensitivity test is the outcome of 2000 simulation runs using a uniformly distributed random distribution of the parameters within the specified intervals. The results are qualitatively robust, and their variability is within reasonable limits (See Figure A1). More

  • in

    Publisher Correction: Heterogeneity within and among co-occurring foundation species increases biodiversity

    Marine Ecology Research Group and Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury, Christchurch, New ZealandMads S. Thomsen, Luca Mondardini, David R. Schiel & Alfonso SicilianoDepartment of Bioscience, Aarhus University, 4000, Roskilde, DenmarkMads S. ThomsenSmithsonian Tropical Research Institute, Apartado, 0843-03092, Balboa, Ancon, Republic of PanamaAndrew H. Altieri, Viktoria M. M. Frühling, Seamus B. Harrison & Gerhard ZotzEnvironmental Engineering Sciences, University of Florida, Gainesville, FL, USAAndrew H. Altieri & Christine AngeliniDepartment of Biological Sciences, Macquarie University, Sydney, NSW, AustraliaMelanie J. Bishop & Semonn OleksynDipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, ItalyFabio Bulleri & Joachim LangeneckMarine Sciences, University of Georgia, Athens, GA, USARoxanne FarhanCentre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, AustraliaPaul E. Gribben & Brendan S. LanhamSydney Institute of Marine Science, Chowder Bay Road, Mosman, 2088, Sydney, NSW, AustraliaPaul E. Gribben & Brendan S. LanhamCoastal Ecology Lab, MOE Key Laboratory for Biodiversity Science and Ecological Engineering, School of Life Sciences, Fudan University, 2005 Songhu Road, 200438, Shanghai, ChinaQiang HeInstitute for Biology and Environmental Sciences, Carl von Ossietzky University Oldenburg, Oldenburg, GermanyMoritz Klinghardt, Tristan Schneider & Gerhard ZotzSchool of Biological Sciences and UWA Oceans Institute, University of Western Australia, Perth, WA, AustraliaYannick Mulders & Thomas WernbergDepartment of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, NC, USAAaron P. RamusNicholas School of the Environment, Duke University, 135 Duke Marine Lab Road, Beaufort, NC, USABrian R. Silliman & Stacy ZhangMarine Biological Association of the United Kingdom, The Laboratory, Citadel Hill, Plymouth, PL1 2PB, UKDan A. SmaleCawthron Institute, Nelson, New ZealandPaul M. South More

  • in

    Mapping the purple menace: spatiotemporal distribution of purple loosestrife (Lythrum salicaria) along roadsides in northern New York State

    Lázaro-Lobo, A. & Ervin, G. N. A global examination on the differential impacts of roadsides on native versus exotic and weedy plant species. Glob. Ecol. Conserv. 17(e00555), 1–13 (2019).
    Google Scholar 
    Christen, D. C. & Matlack, G. R. The habitat and conduit functions of roads in the spread of three invasive plant species. Biol. Invasions 11(2), 453–465 (2009).Article 

    Google Scholar 
    Mortensen, D. A., Rauschert, E. S., Nord, A. N. & Jones, B. P. Forest roads facilitate the spread of invasive plants. Invasive Plant Sci. Manag. 2(3), 191–199 (2009).Article 

    Google Scholar 
    Lemke, A., Kowarik, I. & von der Lippe, M. How traffic facilitates population expansion of invasive species along roads: The case of common ragweed in Germany. J. Appl. Ecol. 56(2), 413–422 (2019).Article 

    Google Scholar 
    Rauschert, E. S., Mortensen, D. A. & Bloser, S. M. Human-mediated dispersal via rural road maintenance can move invasive propagules. Biol. Invasions 19(7), 2047–2058 (2017).Article 

    Google Scholar 
    Meunier, G. & Lavoie, C. Roads as corridors for invasive plant species: New evidence from smooth bedstraw (Galium mollugo). Invasive Plant Sci. Manag. 5(1), 92–100 (2012).Article 

    Google Scholar 
    Mohit, S., Johnson, T. B. & Arnott, S. E. Recreational watercraft decontamination: Can current recommendations reduce aquatic invasive species spread?. Manag. Biol. Invasions 12(1), 148–164 (2021).Article 

    Google Scholar 
    Ferguson, L., Duncan, C. L., & Snodgrass, K. Backcountry road maintenance and weed management. United States: U.S. Department of Agriculture, Forest Service, Technology & Development Program. 22pp (2003). At https://www.google.com/books/edition/Backcountry_Road_Maintenance_and_Weed_Ma/y2amRwT1rIsC?hl=en&gbpv=0.Lelong, B., Lavoie, C., Jodoin, C. & Belzile, F. Expansion pathways of the exotic common reed (Phragmites australis): A historical and genetic analysis. Divers. Distrib. 13, 430–437 (2007).Article 

    Google Scholar 
    Joly, M. et al. Paving the way for invasive species: Road type and the spread of common ragweed (Ambrosia artemisiifolia). Environ. Manag. 48(3), 514–522 (2011).ADS 
    Article 

    Google Scholar 
    Thompson, D. Q., Stuckey, R. L. & Thompson, E. B. Spread, impact, and control of purple loosestrife (Lythrum salicaria) in North American wetlands. U. S. Fish and Wildlife Service (1987). At http://stoppinginvasives.com/dotAsset/670d2f92-cd0c-41ab-9955-7204f1a9a192.pdf.Stuckey, R. L. Distributional history of Lythrum salicaria (purple loosestrife) in North America. Bartonia 47, 3–20 (1980).
    Google Scholar 
    Blossey, B., Skinner, L. C. & Taylor, J. Impact and management of purple loosestrife (Lythrum salicaria) in North America. Biodivers. Conserv. 10(10), 1787–1807 (2001).Article 

    Google Scholar 
    Wilcox, D. A. Migration and control of purple loosestrife (Lythrum salicaria L.) along highway corridors. Environ. Manag. 13(3), 365–370 (1989).ADS 
    Article 

    Google Scholar 
    St. Louis, E., Stastny, M. & Sargent, R. D. The impacts of biological control on the performance of Lythrum salicaria 20 years post-release. Biol. Control. 140, 104–123 (2020).Article 

    Google Scholar 
    NYSDOT Environmental Science Bureau. Environmental Handbook for Transportation Operations: A Summary of the Environmental Requirements and Best Practices for Maintaining the Constructing Highways and Transportation Systems. Prepared by NYSDOT Environmental Science Bureau, (2011) At https://www.dot.ny.gov/divisions/engineering/environmental-analysis/repository/oprhbook.pdf.Blossey, B., Schroeder, D., Hight, S. D. & Malecki, R. A. Host specificity and environmental impact of two leaf beetles (Galerucella calmariensis and G. pusilla) for biological control of purple loosestrife (Lythrum salicaria). Weed Sci. 42, 134–140 (1994).Article 

    Google Scholar 
    Blossey, B. Before, during and after: The need for long-term monitoring in invasive plant species management. Biol. Invasions 1, 301–311 (1999).Article 

    Google Scholar 
    Blossey, B. & Hunt, T. R. Mass rearing methods for Galerucella calmariensis and G. pusilla (Coleoptera: Chrysomelidae), biological control agents of Lythrum salicaria (Lythraceae). J. Econ. Entomol. 92(2), 325–334 (1999).CAS 
    Article 

    Google Scholar 
    Grevstad, F. S. Ten-year impacts of the biological control agents Galerucella pusilla and G. calmariensis (Coleoptera: Chrysomelidae) on purple loosestrife (Lythrum salicaria) in Central New York State. Biol. Control 39(1), 1–8 (2006).Article 

    Google Scholar 
    Boag, A. E. & Eckert, C. G. The effect of host abundance on the distribution and impact of biocontrol agents on purple loosestrife (Lythrum salicaria, Lythraceae). Écoscience 20(1), 90–99 (2013).Article 

    Google Scholar 
    Lakoba, V. T., Brooks, R. K., Haak, D. C. & Barney, J. N. An Analysis of US State regulated weed lists: A discordance between biology and policy. Bioscience 70(9), 804–813 (2020).Article 

    Google Scholar 
    Welling, C. H. & Becker, R. L. Seed bank dynamics of Lythrum salicaria L.: Implications for control of this species in North America. Aquat. Bot. 38, 303–309 (1990).Article 

    Google Scholar 
    Brown, B. J. & Wickstrom, C. E. Adventitious root production and survival of purple loosestrife (Lythrum salicaria) shoot sections. Ohio J. Sci. 97, 2–4 (1997).
    Google Scholar 
    Farnsworth, E. J. & Ellis, D. R. Is purple loosestrife (Lythrum salicaria) an invasive threat to freshwater wetlands? Conflicting evidence from several ecological metrics. Wetlands 21(2), 199–209 (2001).Article 

    Google Scholar 
    Mahaney, W. M., Smemo, K. A. & Yavitt, J. B. Impacts of Lythrum salicaria invasion on plant community and soil properties in two wetlands in central New York, USA. Botany 84(3), 477–484 (2006).
    Google Scholar 
    Treberg, M. A. & Husband, B. C. Relationship between the abundance of Lythrum salicaria (purple loosestrife) and plant species richness along the Bar River Canada. Wetlands 19(1), 118–125 (1999).Article 

    Google Scholar 
    Hager, H. & Vinebrooke, R. E. Positive relationships between invasive purple loosestrife (Lythrum salicaria) and plant species diversity and abundance in Minnesota wetlands. Can. J. Bot. 82(6), 763–773 (2004).Article 

    Google Scholar 
    Lavoie, C. Should we care about purple loosestrife? The history of an invasive plant in North America. Biol. Invasions 12(7), 1967–1999 (2010).Article 

    Google Scholar 
    Fickbohm, S. S. & Zhu, W. X. Exotic purple loosestrife invasion of native cattail freshwater wetlands: Effects on organic matter distribution and soil nitrogen cycling. Appl. Soil. Ecol. 32(1), 123–131 (2006).Article 

    Google Scholar 
    Ramula, S. Annual mowing has the potential to reduce the invasion of herbaceous Lupinus polyphyllus. Biol. Invasions 22(10), 3163–3173 (2020).Article 

    Google Scholar 
    Milakovic, I., Fiedler, K. & Karrer, G. Management of roadside populations of invasive Ambrosia artemisiifolia by mowing. Weed Res. 54(3), 256–264 (2014).Article 

    Google Scholar 
    Vitalos, M. & Karrer, G. Dispersal of Ambrosia artemisiifolia seeds along roads: The contribution of traffic and mowing machines. Neobiota 8, 53–60 (2009).
    Google Scholar 
    Forman, R. T. & Alexander, L. E. Roads and their major ecological effects. Annu. Rev. Ecol. Syst. 29(1), 207–231 (1998).Article 

    Google Scholar 
    Milt, A. W. et al. Minimizing opportunity costs to aquatic connectivity restoration while controlling an invasive species. Conserv. Biol. 32(4), 894–904 (2018).Article 

    Google Scholar 
    RStudio Team. RStudio: Integrated Development Environment for R. RStudio, PBC. (2021). URL http://www.rstudio.com/.R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2021). https://www.R-project.org/.U. S. Fish and Wildlife Service. National Wetlands Inventory. http://www.fws.gov/wetlands/ (2020).Yakimowski, S. B., Hager, H. A. & Eckert, C. G. Limits and effects of invasion by the nonindigenous wetland plant Lythrum salicaria (purple loosestrife): A seed bank analysis. Biol. Invasions 7, 687–698 (2005).Article 

    Google Scholar 
    Thomas, S. M. & Moloney, K. A. Combining the effects of surrounding land-use and propagule pressure to predict the distribution of an invasive plant. Biol. Invasions 17, 477–495 (2015).Article 

    Google Scholar 
    Barbier, E. B., Knowler, D., Gwatipedza, J., Reichard, S. H. & Hodges, A. R. Implementing policies to control invasive plant species. Bioscience 63(2), 132–138 (2013).Article 

    Google Scholar 
    Blossey, B. Measuring and Evaluating Ecological Outcomes of Biological Control Introductions. In Integrating Biological Control into Conservation Practice (eds Van Driesche, R. et al.) 161–188 (Wiley, 2016).Chapter 

    Google Scholar 
    Rowell, N. Warren County Purple Loosestrife Management Program Final Report. (2015). At https://www.warrenswcd.org/reports.html.Vanneste, T. et al. Plant diversity in hedgerows and road verges across Europe. J. Appl. Ecol. 57(7), 1244–1257 (2020).Article 

    Google Scholar 
    Auffret, A. G. & Lindgren, E. Roadside diversity in relation to age and surrounding source habitat: Evidence for long time lags in valuable green infrastructure. Ecol. Solut. Evid. 1(1), e12005 (2020).Article 

    Google Scholar 
    Mccleery, R. A., Holdorf, A. R., Hubbard, L. L. & Peer, B. D. Maximizing the wildlife conservation value of road right-of-ways in an agriculturally dominated lands. Plos one 10(3), e0120375 (2015).Article 

    Google Scholar 
    New York Invasive Species Information (NYISI). Purple Loosestrife. (2019). at http://nyis.info/invasive_species/purple-loosestrife.Rogers, J. Controlling purple loosestrife (Lythrum Salicaria) along roadsides in St. Lawrence County: Monitoring and biological controls. Adirondack J. Environ. Stud. 23(1), 5 (2019).
    Google Scholar 
    New York State Department of Transportation. Clear Zones. (2021). At https://www.dot.ny.gov/divisions/engineering/environmental-analysis/landscape/trees/rs-lsf-plant-photos.ESRI. ArcGIS Pro: Version 2.9: Environmental System Research Institute. (2021). At https://pro.arcgis.com/en/pro-app/latest/get-started/get-started.htm.IBM Corp. IBM SPSS Statistics for Windows, Version 25.0. Armonk, NY: IBM Corp. Released 2017. More

  • in

    Spatial ecology, activity patterns, and habitat use by giant pythons (Simalia amethistina) in tropical Australia

    Seigel, R. A. & Ford, N. B. Reproductive ecology in Snakes: Ecology and Evolutionary Biology (eds. Seigel, R. A., Collins, J. T. &. Novak, S. S.). 210–252. (MacMillan Publishing, 1987).Kremen, C., Merenlender, A. M. & Murphy, D. D. Ecological monitoring: A vital need for integrated conservation and development programs in the tropics. Conserv. Biol. 8, 388–397 (1994).
    Google Scholar 
    Shine, R. & Bonnet, X. Snakes: A new ‘model organism’ in ecological research?. Trends Ecol. Evol. 15, 221–222 (2000).CAS 
    PubMed 

    Google Scholar 
    Vilela, B., Villalobos, F., Rodríguez, M. Á. & Terribile, L. C. Body size, extinction risk and knowledge bias in New World snakes. PLoS ONE 9, e113429 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mathies, T. Reproductive cycles of tropical snakes. in Reproductive Biology and Phylogeny of Snakes (eds. Sever, D. & Aldridge, R.). 523–562. (CRC Press, 2016).Shine, R., Harlow, P. S. & Keogh, J. S. The allometry of life-history traits: Insights from a study of giant snakes (Python reticulatus). J. Zool. 244, 405–414 (1998).
    Google Scholar 
    Natusch, D. J., Lyons, J. A., Riyanto, A., Khadiejah, S. & Shine, R. Detailed biological data are informative, but robust trends are needed for informing sustainability of wildlife harvesting: A case study of reptile offtake in Southeast Asia. Biol. Conserv. 233, 83–92 (2019).
    Google Scholar 
    Freeman, A. & Freeman, A. Habitat use in a large rainforest python (Morelia kinghorni) in the wet tropics of north Queensland, Australia. Herpetol. Conserv. Biol. 4, 252–260 (2009).
    Google Scholar 
    Smith, S. N., Jones, M. D., Marshall, B. M. & Strine, C. T. Native Burmese pythons exhibit site fidelity and preference for aquatic habitats in an agricultural mosaic. Sci. Rep. 11, 7014 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kramer, D. L. & Chapman, M. R. Implications of fish home range size and relocation for marine reserve function. Environ. Biol. Fishes 55, 65–79 (1999).
    Google Scholar 
    Spong, G. Space use in lions, Panthera leo, in the Selous Game Reserve: Social and ecological factors. Behav. Ecol. Sociobiol. 52, 303–307 (2002).
    Google Scholar 
    Webb, J. K. & Shine, R. A field study of spatial ecology and movements of a threatened snake species, Hoplocephalus bungaroides. Biol. Conserv. 82, 203–217 (1997).
    Google Scholar 
    Fearn, S. & Sambono, J. A reliable size record for the scrub python Morelia amethistina (Serpentes: Pythonidae) in north east Queensland. Herpetofauna 30, 2–6 (2000).
    Google Scholar 
    Grow, D., Wheeler, S. & Clark, B. Reproduction of the Amethystine python Python amethystinus kinghorni at the Oklahoma City Zoo. Int. Zoo Year. 27, 241–244 (1988).
    Google Scholar 
    Feldman, A. & Meiri, S. Length–mass allometry in snakes. Biol. J. Linn. Soc. 108, 161–172 (2013).
    Google Scholar 
    Harvey, M. B., Barker, D. G., Ammerman, L. K. & Chippindale, P. T. Systematics of pythons of the Morelia amethistina complex (Serpentes: Boidae) with the description of three new species. Herpetol. Monogr. 14, 139–185 (2000).
    Google Scholar 
    Fearn, S., Schwarzkopf, L. & Shine, R. Giant snakes in tropical forests: A field study of the Australian scrub python, Morelia kinghorni. Wildl. Res. 32, 193–201 (2005).
    Google Scholar 
    Natusch, D. J. D., Lyons, J. A. & Shine, R. Rainforest pythons flexibly adjust foraging ecology to exploit seasonal concentrations of prey. J. Zool. 313, 114–123 (2021).
    Google Scholar 
    Martin, R. W. Field observation of predation on Bennett’s tree-kangaroo (Dendrolagus bennettianus) by an amethystine python (Morelia amethistina). Herpetol. Rev. 26, 74–75 (1995).
    Google Scholar 
    Natusch, D., Lyons, J., Mears, L. A. & Shine, R. Biting off more than you can chew: Attempted predation on a human by a giant snake (Simalia amethistina). Austral. Ecol. 46, 159–162 (2021).
    Google Scholar 
    Neldner, V. J. & Clarkson, J. R. Vegetation of Cape York Peninsula. (Department of Environment and Heritage, 1995).Bureau of Meteorology. Climate Data Online. http://www.bom.gov.au/climate/data/. Accessed 17 July 2020 (2020).Whitaker, P. B. & Shine, R. A radiotelemetric study of movements and shelter-site selection by free-ranging brownsnakes (Pseudonaja textilis, Elapidae). Herpetol. Monogr. 17, 130–144 (2003).
    Google Scholar 
    Harris, S. et al. Home-range analysis using radio-tracking data–A review of problems and techniques particularly as applied to the study of mammals. Mamm. Rev. 20, 97–123 (1990).
    Google Scholar 
    Fearn, S. & Sambono, J. Some ambush predation postures of the Scrub Python Morelia amethistina (Serpentes: Pythonidae) in north east Queensland. Herpetofauna 30, 39–44 (2000).
    Google Scholar 
    Caswell, H. Theory and models in ecology: A different perspective. Ecol. Model. 43, 33–44 (1988).
    Google Scholar 
    Silva, I., Crane, M., Marshall, B. M. & Strine, C. T. Reptiles on the wrong track? Moving beyond traditional estimators with dynamic Brownian bridge movement models. Move. Ecol. 8, 43 (2020).
    Google Scholar 
    Row, J. R. & Blouin-Demers, G. Kernels are not accurate estimators of home-range size for herpetofauna. Copeia 2006, 797–802 (2006).
    Google Scholar 
    Newman, P., Dwyer, R. G., Belbin, L. & Campbell, H. A. ZoaTrack—An online tool to analyse and share animal location data: User engagement and future perspectives. Aust. Zool. 41, 12–18. https://zoatrack.org/toolkit/doi (2020).Pearson, D. J. & Shine, R. Expulsion of interperitoneally-implanted radiotransmitters by Australian pythons. Herpetol. Rev. 33, 261–263 (2002).
    Google Scholar 
    Hale, V. L. et al. Radio transmitter implantation and movement in the wild timber rattlesnake (Crotalus horridus). J. Wildl. Dis. 53, 591–595 (2017).PubMed 

    Google Scholar 
    Martin, A. E., Jørgensen, D. & Gates, C. C. Costs and benefits of straight versus tortuous migration paths for Prairie Rattlesnakes (Crotalus viridis viridis) in seminatural and human-dominated landscapes. Can. J. Zool. 95, 921–928 (2017).
    Google Scholar 
    Glaudas, X., Rice, S. E., Clark, R. W. & Alexander, G. J. Male energy reserves, mate-searching activities, and reproductive success: Alternative resource use strategies in a presumed capital breeder. Oecologia 194, 415–425 (2020).ADS 
    PubMed 

    Google Scholar 
    Glaudas, X., Rice, S. E., Clark, R. W. & Alexander, G. J. The intensity of sexual selection, body size and reproductive success in a mating system with male–male combat: is bigger better?. Oikos 129, 998–1011 (2020).
    Google Scholar 
    Gannon, V. P. J. & Secoy, D. M. Seasonal and daily activity patterns in a Canadian population of the prairie rattlesnake, Crotalus viridus viridis. Can. J. Zool. 63, 86–91 (1985).
    Google Scholar 
    Heard, G. W., Black, D. & Robertson, P. Habitat use by the inland carpet python (Morelia spilota metcalfei: Pythonidae): Seasonal relationships with habitat structure and prey distribution in a rural landscape. Austral. Ecol. 29, 446–460 (2004).
    Google Scholar 
    Madsen, T. & Shine, R. Seasonal migration of predators and prey—A study of pythons and rats in tropical Australia. Ecology 77, 149–156 (1996).
    Google Scholar 
    Graves, B. M. & Duvall, D. Reproduction, rookery use, and thermoregulation in free-ranging, pregnant Crotalus v. viridis. J. Herpetol. 27, 33–41 (1993).
    Google Scholar 
    Chiaraviglio, M. The effects of reproductive condition on thermoregulation in the Argentina boa constrictor (Boa constrictor occidentalis) (Boidae). Herpetol. Monogr. 20, 172–177 (2006).
    Google Scholar 
    Smith, C. F., Schuett, G. W., Earley, R. L. & Schwenk, K. The spatial and reproductive ecology of the copperhead (Agkistrodon contortrix) at the northeastern extreme of its range. Herpetol. Monogr. 23, 45–73 (2009).
    Google Scholar 
    Shine, R. & Fitzgerald, M. Large snakes in a mosaic rural landscape: The ecology of carpet pythons Morelia spilota (Serpentes: Pythonidae) in coastal eastern Australia. Biol. Conserv. 76, 113–122 (1996).
    Google Scholar 
    Heard, G. W. et al. Canid predation: A potentially significant threat to relic populations of the Inland Carpet Python ‘Morelia spilota metcalfei’ (Pythonidae) in Victoria. Vic. Nat. 123, 68–74 (2006).
    Google Scholar 
    Downes, S. & Shine, R. Sedentary snakes and gullible geckos: Predator–prey coevolution in nocturnal rock-dwelling reptiles. Anim. Behav. 55, 1373–1385 (1998).CAS 
    PubMed 

    Google Scholar 
    Miller, A. K., Maritz, B., McKay, S., Glaudas, X. & Alexander, G. J. An ambusher’s arsenal: chemical crypsis in the puff adder (Bitis arietans). Proc. R. Soc. B 282, 20152182 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Maritz, B. & Alexander, G. J. Dwarfs on the move: Spatial ecology of the world’s smallest viper, Bitis schneideri. Copeia 2012, 115–120 (2012).
    Google Scholar 
    Stirrat, S. C. Seasonal changes in home-range area and habitat use by the agile wallaby (Macropus agilis). Wildl. Res. 30, 593–600 (2003).
    Google Scholar 
    Ayers, D. Y. & Shine, R. Thermal influences on foraging ability: Body size, posture and cooling rate of an ambush predator, the python Morelia spilota. Funct. Ecol. 11, 342–347 (1997).
    Google Scholar 
    Pearson, D., Shine, R. & Williams, A. Spatial ecology of a threatened python (Morelia spilota imbricata) and the effects of anthropogenic habitat change. Austral. Ecol. 30, 261–274 (2005).
    Google Scholar 
    Freeman, A. A study in power and grace: The amethystine python. Wildl. Aust. 53, 27–29 (2016).
    Google Scholar 
    Silva, I., Crane, M., Suwanwaree, P., Strine, C. & Goode, M. Using dynamic Brownian bridge movement models to identify home range size and movement patterns in king cobras. PLoS ONE 13, e0203449 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, B. M. et al. Space fit for a king: Spatial ecology of king cobras (Ophiophagus hannah) in Sakaerat Biosphere Reserve, Northeastern Thailand. Amphibia-Reptilia 40, 163–178 (2019).
    Google Scholar 
    Udyawer, V., Simpfendorfer, C. A., Heupel, M. R. & Clark, T. D. Temporal and spatial activity-associated energy partitioning in free-swimming sea snakes. Funct. Ecol. 31, 1739–1749 (2017).
    Google Scholar 
    Smaniotto, N. P., Moreira, L. F., Rivas, J. A. & Strüssmann, C. Home range size, movement, and habitat use of yellow anacondas (Eunectes notaeus). Salamandra 56, 159–167 (2020).
    Google Scholar 
    Low, M. R. Rescue, rehabilitation and release of reticulated pythons in Singapore. in Global Reintroduction Perspectives: 2018. Case Studies from Around the Globe (ed. Soorae, P. S.) 78–81 (IUCN/SSC Reintroduction Specialist Group, 2018).Alexander, G. J. & Maritz, B. Sampling interval affects the estimation of movement parameters in four species of African snakes. J. Zool. 297, 309–318 (2015).
    Google Scholar 
    Smith, B. J. et al. Betrayal: Radio-tagged Burmese pythons reveal locations of conspecifics in Everglades National Park. Biol. Invasions 18, 3239–3250 (2016).
    Google Scholar  More

  • in

    A nearly complete database on the records and ecology of the rarest boreal tiger moth from 1840s to 2020

    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).ADS 
    CAS 

    Google Scholar 
    Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971 (2019).CAS 
    PubMed 

    Google Scholar 
    Wagner, D. L. Insect declines in the Anthropocene. Annu. Rev. Entomol. 65, 457–480 (2020).CAS 
    PubMed 

    Google Scholar 
    Heikkinen, R. K. et al. Assessing the vulnerability of European butterflies to climate change using multiple criteria. Biodivers. Conserv. 19, 695–723 (2010).
    Google Scholar 
    Montgomery, G. A. et al. Is the insect apocalypse upon us? How to find out. Biol. Conserv. 241, 108327 (2020).
    Google Scholar 
    Hufnagel, L. & Kocsis, M. Impacts of climate change on Lepidoptera species and communities. Appl. Ecol. Environ. Res. 9, 43–72 (2011).
    Google Scholar 
    Geyle, H. M. et al. Butterflies on the brink: identifying the Australian butterflies (Lepidoptera) most at risk of extinction. Austral Entomol. 60, 98–110 (2021).
    Google Scholar 
    Merckx, T., Huertas, B., Basset, Y. & Thomas, J. A global perspective on conserving butterflies and moths and their habitats. Key Topics in Conservation Biology 2, 237–257 (2013).
    Google Scholar 
    New, T. R. Moths (Insecta: Lepidoptera) and conservation: background and perspective. J. Insect Conserv. 8, 79–94 (2004).
    Google Scholar 
    Wagner, D. L., Fox, R., Salcido, D. M. & Dyer, L. A. A window to the world of global insect declines: Moth biodiversity trends are complex and heterogeneous. Proc. Natl. Acad. Sci. USA 118, e2002549117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Langevelde, F. et al. Declines in moth populations stress the need for conserving dark nights. Glob. Chang. Biol. 24, 925–932 (2018).ADS 
    PubMed 

    Google Scholar 
    Green, K. et al. Australian Bogong moths Agrotis infusa (Lepidoptera: Noctuidae). 1951–2020: decline and crash. Austral Entomol. 60, 66–81 (2021).
    Google Scholar 
    Sánchez‐Bayo, F. & Wyckhuys, K. A. Further evidence for a global decline of the entomofauna. Austral Entomol. 60, 9–26 (2021).
    Google Scholar 
    Rönkä, K., Mappes, J., Kaila, L. & Wahlberg, N. Putting Parasemia in its phylogenetic place: a molecular analysis of the subtribe Arctiina (Lepidoptera). Syst. Entomol. 41, 844–853 (2016).
    Google Scholar 
    Witt, T. J., Speidel, W., Ronkay, G., Ronkay, L. & László, G. M. Subfamilia Arctiinae in Noctuidae Europaeae. Volume 13. Lymantriinae and Arctiinae including phylogeny and check list of the quadrifid Noctuoidea of Europe (eds. Witt, T. J. & Ronkay, L.) 81-216 (Entomological Press, 2011).Dowdy, N. J. et al. A deeper meaning for shallow‐level phylogenomic studies: nested anchored hybrid enrichment offers great promise for resolving the tiger moth tree of life (Lepidoptera: Erebidae: Arctiinae). Syst. Entomol. 45, 874–893 (2020).
    Google Scholar 
    Zahiri, R. et al. Molecular phylogenetics of Erebidae (Lepidoptera, Noctuoidea). Syst. Entomol. 37, 102–124 (2012).
    Google Scholar 
    Holloway, J. D. The Moths of Borneo 6: family Arctiidae, subfamilies: Syntominae, Euchromiinae, Arctiinae; Noctuidae misplaced in Arctiidae (Camptoma, Aganinae) (Southdene Sdn. Bhd., 1988).Černý, K. & Pinratana, A. Arctiidae. Moths of Thailand 6, 1–283 (2009).
    Google Scholar 
    Černý, K. A review of the subfamily Arctiinae (Lepidoptera: Arctiidae) from the Philippines. Entomofauna 32, 29–92 (2011).
    Google Scholar 
    Bucsek, K. Erebidae, Arctiinae (Lithosiini, Arctiini) of Malay Peninsula – Malaysia (Institut of Zoology SAS, 2012).Bolotov, I. N., Kondakov, A. V. & Spitsyn, V. M. A review of tiger moths (Lepidoptera: Erebidae: Arctiinae: Arctiini) from Flores Island, Lesser Sunda Archipelago, with description of a new species and new subspecies. Ecol. Montenegrina 16, 1–15 (2018).
    Google Scholar 
    Dubatolov, V. V. New genera and species of Arctiinae from the Afrotropical fauna (Lepidoptera: Arctiidae). Nachr. Entomol. Ver. Apollo 27, 139–152 (2006).
    Google Scholar 
    Ferro, V. G., Melo, A. S. & Diniz, I. R. Richness of tiger moths (Lepidoptera: Arctiidae) in the Brazilian Cerrado: how much do we know? Zoologia (Curitiba) 27, 725–731 (2010).
    Google Scholar 
    Schmidt, B. C. A new genus and two new species of arctiine tiger moth (Noctuidae, Arctiinae, Arctiini) from Costa Rica. Zookeys 9, 89–96 (2009).
    Google Scholar 
    Dubatolov, V. V. Tiger-moths of Eurasia (Lepidoptera, Arctiidae) (Nyctemerini by Rob de Vos and V. V. Dubatolov). Neue Ent. Nachr. 65, 1–106 (2010).
    Google Scholar 
    Fibiger, M. et al. Lymantriinae and Arctiinae, including phylogeny and check list of the quadrifid Noctuoidea of Europe. Noctuidae Europaeae 13, 1–448 (2011).
    Google Scholar 
    Koshkin, E. S. Moths (Lepidoptera, Macroheterocera, excluding Geometridae and Noctuidae s.l.) of the Bureinsky State Nature Reserve and adjacent territories (Khabarovsk Krai, Russia) [In Russian]. Amur. Zool. J. 12, 412–435 (2020).
    Google Scholar 
    Kullberg, J., Filippov, B. Y., Spitsyn, V. M., Zubrij, N. A. & Kozlov, M. V. Moths and butterflies (Insecta: Lepidoptera) of the Russian Arctic islands in the Barents Sea. Polar Biol. 42, 335–346 (2019).
    Google Scholar 
    Bolotov, I. N. et al. The distribution and biology of Pararctia subnebulosa (Dyar, 1899) (Lepidoptera: Erebidae: Arctiinae), the largest tiger moth species in the High Arctic. Polar Biol. 38, 905–911 (2015).
    Google Scholar 
    Bolotov, I. N. et al. New occurrences, morphology, and imaginal phenology of the rarest Arctic tiger moth Arctia tundrana (Erebidae: Arctiinae). Ecol. Montenegrina 39, 121–128 (2021).
    Google Scholar 
    Bolotov, I. N., Gofarov, M. Y., Kolosova, Y. S. & Frolov, A. A. Occurrence of Borearctia menetriesii (Eversmann, 1846) (Erebidae: Arctiinae) in Northern European Russia: a new locality in a disjunct species range. Nota Lepidopterol. 36, 65–75 (2013).
    Google Scholar 
    Dubatolov, V. V. Borearctia gen. n., a new genus for the tiger moth Callimorpha menetriesi (Ev.) (Lepidoptera, Arctiidae) [In Russian]. Entomol. Rev. 63, 157–161 (1984).
    Google Scholar 
    Hori, H. An unrecorded species of the Arctiidae [In Japanese]. Kontyu 1, 86 (1926).
    Google Scholar 
    Eversmann, E. Lepidoptera quaedam nova in Rossia observata. Bulletin de la Société Impériale des Naturalistes de Moscou 19, 83–88 (1846).
    Google Scholar 
    Koshkin, E. S. Life history of the rare boreal tiger moth Arctia menetriesii (Eversmann, 1846) (Lepidoptera, Erebidae, Arctiinae) in the Russian Far East. Nota Lepidopterol. 44, 141–151 (2021).
    Google Scholar 
    Krogerus, H. D. Vorkommen von Callimorpha menetriesi Ev. in Fennoskandien, nebst Beschriebungen der verschiedenen Entwicklungsstadien [In German]. Not. Entomol. 24, 79–86 (1944).
    Google Scholar 
    Saarenmaa, H. Conservation ecology of Borearctia menetriesii [online]. http://www.bormene.myspecies.info/en (2011-2021).Berlov, O. E. & Bolotov, I. N. Record of Borearctia menetriesii (Eversmann, 1846) (Lepidoptera, Erebidae, Arctiinae) larva on Aconitum rubicundum Fischer (Ranunculaceae) in Eastern Siberia. Nota Lepidopterol. 38, 23–27 (2015).
    Google Scholar 
    Staudinger, O. & Rebel, H. Catalog der Lepidopteren des palaearctischen Faunengebietes. Vol. 1. Th. Famil. Papilionidae-Hepialidae (R. Friedländer & Sohn, 1901).Filipiev, I. Lepidoptera [In Russian]. Russkoe Entomologicheskoe Obozrenie 16, 376–378 (1916).
    Google Scholar 
    Fabritius, G. R. Anmärkningsvärda fynd av fjärilar, bland dessa den för Europa nya Callimorpha menetriesii Ev. [In Finnish]. Meddeland. Soc. Fauna Fl. Fenn. 40, 47–49 (1914).
    Google Scholar 
    Carpelan, J. Callimorpha menetriesii Ev. återfunnen [In Finnish]. Meddeland. Soc. Fauna Fl. Fenn. 48, 108–109 (1921).
    Google Scholar 
    Kurentzov, A. I. Zoogeography of the Amur Region [In Russian] (Nauka Publisher, 1965).Dubatolov, V. V. Tiger moths (Lepidoptera, Arctiidae: Arctiinae) of South Siberian mountains (report 2) [In Russian] in Arthropods and Helminths, Fauna of Siberia Series (ed. Zolotarenko, G. S.) 139–169 (Nauka Publisher, 1990).Klitin, A. K. New record of the tiger moth Borearctia menetriesii on Sakhalin Island [In Russian]. Bulletin of Sakhalin Museum 16, 269–271 (2009).
    Google Scholar 
    Nupponen, K. & Fibiger, M. Additions to the checklist of Bombycoidea and Noctuoidea of the Volgo-Ural region. Part II. (Lepidoptera: Lasiocampidae, Erebidae, Nolidae, Noctuidae). Nota Lepidopterol. 35, 33–50 (2012).
    Google Scholar 
    Koshkin, E. S. Preliminary results of the examination of the fauna of Higher Moths (Macroheterocera, excluding Geometridae and Noctuidae) of the upper Bureya River basin (Khabarovsk Region) [In Russian]. Proceedings of Grodekovsky Museum (Nature of the Far East) 24, 65–75 (2010).
    Google Scholar 
    Marttila, O., Saarinen, K., Haahtela, T. & Pajari, M. Idänsiilikäs Borearctia menetriesi (Eversmann, 1846) [In Finnish] in Suomen kiitäjät ja kehrääjät [Macrolepidoptera of Finland] 265–266 (Kirjayhtymä Oy, 1996).Lappi, E., Mikkola, K. & Ryynänen, J. Idänsiilikäs Borearctia menetriesii, tervetuloa takaisin! [Welcome back Borearctia menetriesii] [In Finnish]. Baptria 29, 28–29 (2004).
    Google Scholar 
    Silvonen, K. Borearctia Dubatolov, 1985 [online]. Kimmo’s Lepidoptera Site, Finland. http://www.kolumbus.fi/~kr5298/lnel/a/bormenet.htm (2010).Bolotov, I. N. et al. Menetries’ Tiger Moth Range and Ecology Database (1840s-2020). figshare https://doi.org/10.6084/m9.figshare.15000399 (2022).Dirzo, R. et al. Defaunation in the Anthropocene. Science 345, 401–406 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Young, H. S., McCauley, D. J., Galetti, M. & Dirzo, R. Patterns, causes, and consequences of anthropocene defaunation. Annu. Rev. Ecol. Evol. Syst. 47, 333–358 (2016).
    Google Scholar 
    Conrad, K. F., Warren, M. S., Fox, R., Parsons, M. S. & Woiwod, I. P. Rapid declines of common, widespread British moths provide evidence of an insect biodiversity crisis. Biol. Conserv. 132, 279–291 (2006).
    Google Scholar 
    Sánchez-Bayo, F. & Wyckhuys, K. A. G. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232, 8–27 (2019).
    Google Scholar 
    Simmons, B. I. et al. Worldwide insect declines: An important message, but interpret with caution. Ecol. Evol. 9, 3678–3680 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Didham, R. K. et al. Interpreting insect declines: seven challenges and a way forward. Insect Conserv. Diver. 13, 103–114 (2020).
    Google Scholar 
    Boyes, D. H., Evans, D. M., Fox, R., Parsons, M. S. & Pocock, M. J. Is light pollution driving moth population declines? A review of causal mechanisms across the life cycle. Insect Conserv. Diver. 14, 167–187 (2021).
    Google Scholar 
    Raven, P. H. & Wagner, D. L. Agricultural intensification and climate change are rapidly decreasing insect biodiversity. Proc. Natl. Acad. Sci. USA 118, e2002548117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, D. L., Grames, E. M., Forister, M. L., Berenbaum, M. R. & Stopak, D. Insect decline in the Anthropocene: Death by a thousand cuts. Proc. Natl. Acad. Sci. USA 118, e2023989118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schowalter, T. D., Pandey, M., Presley, S. J., Willig, M. R. & Zimmerman, J. K. Arthropods are not declining but are responsive to disturbance in the Luquillo Experimental Forest, Puerto Rico. Proc. Natl. Acad. Sci. USA 118, e2002556117 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berry, P. A. M., Smith, R. G. & Benveniste, J. ACE2: the new global digital elevation model in Gravity, Geoid and Earth Observation (ed. Mertikas, S. P.) 231–237 (Springer, 2010).Kurentzov, A. I. My travels [In Russian] (Far Eastern Publishing House, 1973).Dubatolov, V. V. A catalogue of type specimens of Palaearctic tiger moths (Lepidoptera, Arctiidae, Arctiinae) preserved in the collection of the Zoological Institute of Russian Academy of Sciences (St. Petersburg) [In Russian]. Entomol. Rev. 75, 338–356 (1996).
    Google Scholar 
    Bailey, R. G. Explanatory Supplement to Ecoregions Map of the Continents. Environ. Conserv. 16, 307–309 (1989).
    Google Scholar 
    Olson, D. M. & Dinerstein, E. The Global 200: Priority ecoregions for global conservation. Ann. Mo. Bot. Gard. 89, 199–224 (2002).
    Google Scholar 
    Olson, D. M. et al. Terrestrial Ecoregions of the World: A New Map of Life on Earth. BioScience 51, 933–938 (2001).
    Google Scholar 
    Beaumont, L. J. et al. Impacts of climate change on the world’s most exceptional ecoregions. Proc. Natl. Acad. Sci. USA 108, 2306–2311 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, J. R. et al. A global test of ecoregions. Nat. Ecol. Evol. 2, 1889–1896 (2018).PubMed 

    Google Scholar  More

  • in

    Global impacts of future urban expansion on terrestrial vertebrate diversity

    Direct habitat lossAccording to the global projections of urban expansion under five SSPs17 (Supplementary Note 3 and Supplementary Fig. 1), 36–74 million hectares (Mha) of land areas will be urbanized by 2100, representing a 54–111% increase compared with the baseline year of 2015. Among these, 11–33 Mha natural habitats (Supplementary Table 1) will become urban areas by 2100. Across SSP scenarios, the patterns of change in losses of total habitat, forest, shrubland, and grassland are consistent with the global projections of urban expansion (Fig. 1). In terms of urban encroachment on wetlands, wetland will undergo the largest loss under scenario SSP4 than under other scenarios. However, if the sustainable pathway of scenario SSP1 is properly implemented, this will enable us to conserve the global wetland. The greatest loss of other habitat will occur under scenario SSP3, but the minimal loss of other habitat will occur under scenario SSP1. Under the five different SSP scenarios, the United States, Nigeria, Australia, Germany, and the UK are consistently predicted to have greater habitat loss due to urban expansion (Supplementary Table 2).Fig. 1: Future direct habitat loss due to urban expansion under SSP scenarios.a The habitat loss by 2100 for each habitat type. Bars indicate the mean habitat loss area (five scenarios) for each habitat type. Error bars represent mean values ± 1 SEM for the loss of each habitat type under five scenarios, n = 5 scenarios. Points represent data in five scenarios. b The losses in total area, forest, shrubland, grassland, wetland, and other land.Full size imageThere are obvious disparities in the hot spots and cold spots of habitat loss under the five SSP scenarios (Fig. 2 and Supplementary Figs. 2–6). Potential hot spots of habitat loss are concentrated in regions such as the northeastern, southern, and western coasts of the United States, the Gulf of Guinea coastal areas, Sub-Saharan Africa, and the Persian Gulf coastal areas. Under scenario SSP5, parts of central and western Europe will also become hot spots. However, under other scenarios, the cold spots will be particularly concentrated in eastern and southern Europe. East Asia and South Asia, which are represented by China, India, and Japan, are dominated by cold spots (Supplementary Figs. 2–6), because these regions may experience a decline in urban land demand from 2050 to 2100 (for examples in China, see Supplementary Figs. 7–11), although they are currently the most populous regions in the world.Fig. 2: Future hot spots and cold spots of habitat loss due to urban expansion under SSP scenarios by 2100.Figures for the United States (a), Europe (b), Africa (c), and China (d) are presented separately. The Gi_Bin identifies statistically significant hot spots and cold spots. Statistical significance was based on the p-value and z-score (two-sided), and no adjustments were made for multiple comparisons.Full size imageOur scenario projections show that the largest natural habitat loss is expected to occur in the temperate broadleaf and mixed forests biome (except for scenario SSP3). In addition, many biomes will experience proportionate loss of natural habitat. These biomes include the tropical and subtropical coniferous forests biome, the temperate coniferous forests biome, the flooded grasslands and savannas biome, the Mediterranean forests, woodlands, and scrub biome, and the mangroves biome (Supplementary Table 3). Although the rate of future habitat loss is small at the global scale, it can be large in some areas. For example, the habitat in the temperate broadleaf and mixed forests may decrease by 1.4% under scenario SSP5. At the ecoregion scale, about 9% of 867 terrestrial ecoregions will lose more than 1% of habitat due to urban expansion (Supplementary Fig. 12). In the future, four ecoregions—the Atlantic coastal pine barrens, the coastal forests of the northeastern United States, and the Puerto Rican moist and dry forests—will experience more than 20% of habitat loss.Urban expansion threatens biodiversity prioritization schemesTo reflect the potential impact of urban expansion on protected areas (Supplementary Note 4), the analyses presented here were based on the assumption that urban expansion within protected areas is not strictly restricted and can even occur in the currently gazetted protected areas (Supplementary Note 5, Supplementary Figs. 13 and 14). In 2015, urban areas with a total area of 30,594 km2 were distributed in 28,152 protected areas, accounting for 12.6% of global protected areas (Supplementary Figs. 15 and 16). Moreover, 38% of the urban land-use changes within protected areas were due to the conversion of natural habitats into urban land between 1992 and 2015. If urban expansion continues without strict restrictions, 13.2–19.8% of the protected areas will be affected by urban land by 2100, and urban land will occur in 29,563–44,400 protected areas with a total urban land area of up to 46,705–89,901 km2 across the five SSP scenarios (the lowest and highest proportions of urban land in each protected area by 2100 under SSP3 and SSP5 scenarios are presented in Supplementary Figs. 17 and 18).We also found that 0.90% of all terrestrial biodiversity hotspots (Supplementary Note 6), which are the world’s most biologically rich yet threatened terrestrial regions24, were urbanized in 2015. And this proportion (0.90%) is higher than that located in the rest of the Earth’s surface (0.51%) in 2015. By 2100, the new urban expansion will additionally occupy 1.5–1.8% of hotspot areas under the five SSP scenarios (Supplementary Table 4). Five biodiversity hotspots are projected to suffer the largest proportion of urban land conversion: the California Floristic Province (6–11%), Japan (6–8%), the North American Coastal Plain (4–8%), the Guinean Forests of West Africa (4–8%), and the Forests of East Australia (2–6%). In contrast, the East Melanesian Islands and the New Caledonia are almost unaffected by urban expansion. Biodiversity hotspots (e.g., the Guinean Forests of West Africa, the Coastal Forests of Eastern Africa, Eastern Afromontane, and the Polynesia-Micronesia) with few human disturbances in 2015 are projected to experience the highest percentage of future urban growth. Compared with the urban areas in 2015, by 2100, the urban areas in these four biodiversity hotspots will experience a disproportionate increase of 281–708, 294–535, 169–305, and 33–337%, respectively.The World Wildlife Fund (WWF) selected the ecoregions that are most crucial to the conservation of global biodiversity as Global 20025 (Supplementary Note 7). However, about 93% of the Global 200 ecoregions will be affected by future urban expansion. Although the proportion of urban land in each ecoregion will be less than 1% in 2100, the urban area located in these ecoregions will experience an increase of 74–160% from 2015 to 2100 across the five SSP scenarios (Supplementary Table 4). Four ecologically vulnerable ecoregions that have the highest urban growth rates are the Sudd-Sahelian Flooded Grasslands and Savannas, the East African Acacia Savannas, the Hawaii Moist Forest, and the Congolian Coastal Forests. By 2100, the urban areas in these four ecoregions will increase by 877–9955, 527–646, 18–902, and 500–1037%, respectively.The five SSP scenarios showed that the urban area is expected to increase by only 73–213 km2 in the Last of the Wild areas26 (see Supplementary Note 8 for descriptions about the Last of the Wild areas) by 2100 (Supplementary Table 4).Impacts of urban expansion on habitat fragmentationThe increasing exposures of natural habitat to urbanized land use may cause long-term changes in the function and structure of the natural habitat that is adjacent to urban areas13. To examine this proximity effect, we investigated the impact of future urban expansion on the nearest distance between urban areas and natural habitat (i.e., the distance from patch edges of urban areas to patch edges of the nearest natural habitats) under different SSP scenarios. Although the global urban area is expected to increase by 36–74 Mha by 2100, the impacts of future urban expansion on adjacent natural habitat are disproportionately large. Future urban expansion will make urban areas much closer to patch edges of 34–40 Mha natural habitat, which will inevitably threaten the natural habitat and increase the risk of biodiversity decline. The effects of urban expansion on adjacent patch edges of natural habitats are remarkably different across different scenarios. Specifically, the area of affected adjacent natural habitat is expected to be 38.45, 34.24, 40.31, 37.84, and 39.42 Mha under SSP1 to SSP5 scenarios by 2100, with the smallest effect under scenario SSP2, and the largest effect under scenario SSP3. Moreover, the scale of urban expansion does not correspond directly with the size of the impact. Several countries, including Mauritania, Algeria, Saudi Arabia, Western Sahara, and the United States, will have a large change in the distance from future urban areas to natural habitats due to urban expansion (Supplementary Table 5). Such effects also varied across different natural habitat types. The distance from the patch edges of urban areas to patch edges of (a) wetland, other land, and forest, (b) grassland, and (c) shrubland will generally be shortened by ~2000, ~1500 and ~900 m, respectively.In addition to the effect on the distance to the habitat edge, urban-caused habitat fragmentation is also reflected in reducing mean patch size (MPS)13, increasing mean edge index (edge density (ED), i.e., edge length on a per-unit area)27, and enlarging isolation (mean Euclidean nearest neighbor distance, ENN_MN)28 (Fig. 3). Taking the global ecoregions as the analysis unit, we found that within a 5 km buffer of urban areas, the median of MPS of natural habitats tends to show an overall decline trend, and the segmentation and subdivision of habitats become more obvious as future urban land expands. The median of MPS is the largest under scenario SSP1, followed by SSP4, SPP2, and SSP3 with some fluctuations in between, and the smallest MPS is found with the most fragmented landscape under scenario SSP5. A smaller patch size indicates that the inner parts of the habitat are subject to higher risk of being influenced by external disturbance. Future urban expansion also tends to cause an increase in the ED of natural habitat, which is often linked with smaller patches or more irregular shapes, and therefore poses a threat to biodiversity that influences many ecological processes (e.g., the spread of dispersal and predation)13,27,28. Scenario SSP1 shows the best performance in maintaining a low habitat ED and a high level of biodiversity conservation. However, under scenario SSP5, ED will experience a rapid increase in the second half of the 21st century. Meanwhile, the ENN_MN will increase substantially in the future, suggesting that areas with the same habitat type will become increasingly isolated, irregular, dispersed, or unevenly distributed due to the barrier of urban land. This will affect the speed of dispersal and patch recolonization. Scenario SSP1 is also most conducive to maintaining the proximity of natural habitats with the same habitat type. Other scenarios show relatively similar performance.Fig. 3: Future urban expansion effects on habitat fragmentation under SSP scenarios.a Mean patch size (MPS), b edge density (ED), c mean Euclidean nearest-neighbor distance (ENN_MN).Full size imageImpacts of urban expansion on terrestrial biodiversityWe focus on biodiversity in three common vertebrate taxa (i.e., amphibians, mammals, and birds) in our analyses. Future land system conversion to urban land will cause an average of 34% loss in the overall relative species richness. Land conversion from dense forest, mosaic grassland and open forest, mosaic grassland, and bare and natural grassland to urban land will cause the highest overall relative biodiversity loss (48%, 95% confidence interval (CI): 34–59% on a 1 km grid). These land systems with a high risk of biodiversity loss are concentrated in the United States, Europe, and Sub-Saharan Africa (Supplementary Fig. 19). Overall, the negative effect of future urban expansion on the total abundance of species will be more pronounced than that on species richness. Urban land changes will result in an average of 52% overall loss in relative total abundance of species. In particular, the losses of dense forest, natural grassland, and mosaic grassland, due to conversion to urban land, will lead to a high risk of species loss (62%, 95% CI: 38–76%).In terms of the number of species (i.e., all amphibians, mammals, and birds), future urban expansion will cause an average loss of 7–9 species and a loss of up to ~197 species per 10 km grid cell by 2100 across the five SSP scenarios (Fig. 4 and Supplementary Fig. 20). Species loss is most likely to be concentrated in Sub-Saharan Africa (particularly the Gulf of Guinea coast), the United States, and Europe. In addition, southeastern Brazil, India, and the eastern coast of Australia are also relatively high-risk areas. However, the specific effects of urban expansion vary substantially across different SSP scenarios. For instance, under scenario SSP5, urban expansion will pose a fatal threat to the global species richness in areas with urban development potential (species richness loss will occur in ~740 Mha land areas), whereas under the divided pathway (SSP4) and regional rivalry pathway (SSP3) scenarios, urban expansion will threaten the richest biodiversity hotspots, such as Sub-Saharan Africa and Latin America (Supplementary Fig. 20).Fig. 4: Potential biodiversity loss due to future urban expansion under SSP scenarios.The biodiversity loss in terms of the number of terrestrial vertebrate species (amphibians, mammals, and birds) lost per 10 km grid cell in the North America (a), Europe (b), the Gulf of Guinea coast (c), and East Asia (d).Full size imageWe also found a loss of up to 12 species of threatened amphibians, mammals, and birds (including vulnerable, endangered, or critically endangered categories defined in the IUCN Red List), and a loss of up to 40 species of small-ranged amphibians, mammals, and birds (small-ranged species are species with a geographic range size smaller than the median range size for that taxon)29 due to future urban expansion by 2100. There are a few scattered areas that will be hotspots for the loss of threatened species, such as West Africa, East Africa, northern India, and the eastern coast of Australia (Supplementary Fig. 21). The loss of small-ranged species will concentrate in fewer areas (Supplementary Fig. 22). We have identified 30 conservation priority ecoregions with high risks of habitat loss and small-ranged species loss due to future urban expansion (Supplementary Table 6). These conservation priority ecoregions are all found in Latin America and Sub-Saharan Africa (Supplementary Fig. 23). However, some hotspots outside of these conservation priority regions, such as tropical Southeast Asia, the west coast of the United States, and northern New Zealand, will also be affected (Supplementary Fig. 23).The top 5% 10 km grid cells with the highest loss in species richness (28–38 species potentially being lost) scatter across adjacent urban areas. However, only 6.4–8.6% of these regions are covered by the current global network of protected areas. These areas are often overlooked, and thus receive relatively low conservation spending. Ecoregions in Sub-Saharan African, Central and South America, Southeast Asia, and Australia will be responsible for the top 43% of average species loss across the SSP scenarios (Fig. 5). Kenya, Swaziland, Brunei, Zambia, Republic of Congo, and Zimbabwe will face the largest potential species richness loss (approximately > 29 species lost per 10 km grid cell) under all five SSP scenarios (Supplementary Fig. 24 and Supplementary Table 7).Fig. 5: Average potential biodiversity loss per 10 km grid cell in ecoregions due to future urban expansion under SSP scenarios.The mean potential biodiversity loss represents the average number of terrestrial vertebrate species (amphibians, mammals, and birds) lost per 10 km grid cell.Full size image More