More stories

  • in

    Cross-biome antibiotic resistance decays after millions of years of soil development

    Van Goethem MW, Pierneef R, Bezuidt OKI, Van De Peer Y, Cowan DA, Makhalanyane TP. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome. 2018;6:40.Article 

    Google Scholar 
    D’Costa VM, McGrann KM, Hughes DW, Wright GD. Sampling the antibiotic resistome. Science. 2006;311:374–7.Article 

    Google Scholar 
    Allen HK, Donato J, Wang HH, Cloud-Hansen KA, Davies J, Handelsman J. Call of the wild: antibiotic resistance genes in natural environments. Nat Rev Microbiol. 2010;8:251–9.CAS 
    Article 

    Google Scholar 
    Martinez JL, Coque TM, Baquero F. What is a resistance gene? Ranking risk in resistomes. Nat Rev Microbiol. 2015;13:116–23.CAS 
    Article 

    Google Scholar 
    Genilloud O. Actinomycetes: still a source of novel antibiotics. Nat Prod Rep. 2017;34:1203–32.CAS 
    Article 

    Google Scholar 
    Ochoa-Hueso R, Plaza C, Moreno-Jimenez E, Delgado-Baquerizo M. Soil element coupling is driven by ecological context and atomic mass. Ecol Lett. 2021;24:319–26.Article 

    Google Scholar 
    Wardle DA, Walker LR, Bardgett RD. Ecosystem properties and forest decline in contrasting long-term chronosequences. Science. 2004;305:509–13.CAS 
    Article 

    Google Scholar 
    Crews TE, Kitayama K, Fownes JH, Riley RH, Herbert DA, Mueller-Dombois D, et al. Changes in soil phosphorus fractions and ecosystem dynamics across a long chronosequence in Hawaii. Ecology. 1995;76:1407–24.Article 

    Google Scholar 
    Walker LR, Wardle DA, Bardgett RD, Clarkson BD. The use of chronosequences in studies of ecological succession and soil development. J Ecol. 2010;98:725–36.Article 

    Google Scholar 
    Delgado-Baquerizo M, Reich PB, Bardgett RD, Eldridge DJ, Lambers H, Wardle DA, et al. The influence of soil age on ecosystem structure and function across biomes. Nat Commun. 2020;11:4721.CAS 
    Article 

    Google Scholar 
    Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat Rev Microbiol. 2010;8:260–71.CAS 
    Article 

    Google Scholar 
    Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, et al. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci USA. 2013;110:3435–40.CAS 
    Article 

    Google Scholar 
    Zhu YG, Zhao Y, Li B, Huang CL, Zhang SY, Yu S, et al. Continental-scale pollution of estuaries with antibiotic resistance genes. Nat Microbiol. 2017;2:16270.CAS 
    Article 

    Google Scholar 
    Li J, Cao J, Zhu YG, Chen QL, Shen F, Wu Y, et al. Global survey of antibiotic resistance genes in air. Environ Sci Technol. 2018;52:10975–84.CAS 
    Article 

    Google Scholar 
    Delgado-Baquerizo M, Bardgett RD, Vitousek PM, Maestre FT, Williams MA, Eldridge DJ, et al. Changes in belowground biodiversity during ecosystem development. Proc Natl Acad Sci USA. 2019;116:6891–6.CAS 
    Article 

    Google Scholar 
    Ortiz-Álvarez R, Fierer N, de Los Ríos A, Casamayor EO, Barberán A. Consistent changes in the taxonomic structure and functional attributes of bacterial communities during primary succession. ISME J. 2018;12:1658–67.Article 

    Google Scholar 
    Shen J, Li Z-M, Hu H, Zeng J, Zhang L-M, He J, et al. Distribution and succession feature of antibiotic resistance genes along a soil development chronosequence in Urumqi No. 1 Glacier of China. Front Microbiol. 2019;10:1569.Article 

    Google Scholar 
    Drenovsky RE, Vo D, Graham KJ, Scow KM. Soil water content and organic carbon availability are major determinants of soil microbial community composition. Micro Ecol. 2004;48:424–30.CAS 
    Article 

    Google Scholar 
    Bastida F, Eldridge DJ, Garcia C, Kenny Png G, Bardgett RD, Delgado-Baquerizo M. Soil microbial diversity-biomass relationships are driven by soil carbon content across global biomes. ISME J. 2021;15:2081–91.CAS 
    Article 

    Google Scholar  More

  • in

    Phage-encoded ribosomal protein S21 expression is linked to late-stage phage replication

    Discovery of closely related phage sequences with the conserved genetic context of bS21Multiple phage-related sequences with a conserved genomic context were detected from several freshwater metagenome-assembled datasets (see Methods). Genes for bS21, TerL, PVP, prohead core scaffolding, and protease protein (hereafter prohead protease for short), and MCP are encoded in the genomic region. BLASTp search of the TerL sequences against the ggKbase sequences (ggkbase.berkeley.edu) obtained a total of 47 unique scaffolds with the conserved genomic region (Supplementary Table 1). Two related phages were included as outgroups for comparative analyses. The corresponding samples were collected from freshwater lakes or reservoirs (one from a wastewater treatment plant), and all but three were from the oxic layer (see Methods for details).General features of manually curated genomesAll the 49 phage sequences were manually curated to fill scaffolding gaps and fix the assembly errors, and nine of them (including one outgroup phage) were curated to completion (circular and no gaps or local assembly errors) (Supplementary Table 1). A total of 14 related phage genomes from IMG/VR were also included for further analyses. The eight bS21-encoding complete genomes had genome lengths of 293–331 kbp, GC contents of 31.0–33.7% and encoded 350–413 protein-coding genes (coding density, 91.1–94.9%), with 5–25 (average 17) tRNA genes. No alternative coding signal (i.e., stop codon reassignment) was detected in any genome. In comparison, the outgroup complete genome has a size of 308 kbp (450 protein-coding genes, 6 tRNAs, 94.7% coding density) and GC content of 27.3%.Genomic context of bS21 in phagesGenomic context analyses for bS21 genes showed a highly conserved gene architecture across phage genomes in proximity to the region encoding bS21 (see Fig. 1a for example). Specifically, we found that bS21 was consistently located in between two hypothetical protein families (positions 1 and –1 in Fig. 1b and Supplementary Table 2), with core structural proteins—including the TerL, PVP, prohead protease, and MCP—generally located within five genes in both the upstream and downstream DNA. Other hypothetical proteins were also consistently found in this region, although their positions were more variable upstream (positions –4 through –10, Fig. 1b). Importantly, the bS21 gene was consistently encoded in the reverse strand relative to the conserved hypothetical and structural protein genes (Fig. 1a and Supplementary Fig. 1).Fig. 1: Genetic context of the genes encoding bS21 in the phage genomes.a Examples of genetic context of phage genomes with and without bS21. The annotation of protein-coding genes is the same as indicated in b by different colors. Those in white are genes not shown in subfigure (b). b Summary of genetic context of all phage genomes encoding bS21. The relative position of genes near the bS21 gene is shown, and the size of circles indicates the number of phages with a gene belonging to a given protein family (annotation shown on right) at that relative position. Only the 12 most frequent families are shown. The details of the genetic context are shown in Supplementary Fig. 1.Full size imagePhylogeny of bS21-encoding phagesPhylogenetic analyses based on TerL suggested the phages belonging to several groups, we thus assigned them to clades a–e (Fig. 2 and Supplementary Table 1). Most of the phages belong to clades c, d, and e, and they have a broader environmental distribution than clades a and b. Interestingly, we found that some phages within a single clade were from distant sampling sites. Closer inspection indicated they also shared large genomic fragments with high similarity (82–98% for nucleotide sequences; Supplementary Fig. 2). Comparative genome-wide analyses of the complete genomes from the same site but sampled at different time points showed sequence variations in some genes (Supplementary Fig. 3).Fig. 2: The phylogeny of bS21 phages based on the large terminal (TerL) protein sequences.Two closely related phages without bS21 encoded were included as outgroups (shown at the top of the tree). The genomes are assigned to five clades (a, b, c, d, and e) based on the topology of the phylogenetic tree. The numbers in the brackets following the scaffold names indicate the total counts of the same scaffold detected from the corresponding sampling sites. The genomes that were manually curated to completion (circular and no gap) are indicated by squares, and the genome sizes are shown in brackets.Full size imageTerL phylogeny, constructed using sequences from this study and NCBI RefSeq sequences, indicated the most closely related classified phages belong to Caudovirales of either the Myoviridae or Ackermannviridae (Supplementary Fig. 4). A phage baseplate assembly protein was encoded in most curated genomes. This is an important building block for members of Siphoviridae and Myoviridae [8], so we concluded that the bS21-encoding phages are myoviruses.Predicted bacterial hosts of bS21-encoding phagesTo predict host-phage relationships we first used CRISPR-Cas spacers targeting. While none of the 16.5k unique spacers from the relevant metagenomes targeted any of the curated phage genomes from the same sampling sites, a single cross-site target was detected. Specifically, MIW1_072018_0_1um_scaffold_78 was targeted by a spacer (24 nt and no mismatch) from a MIW2 Flavobacterium genome (affiliation: Bacteroidetes, Flavobacteria). We then predicted the bacterial hosts based on the bacterial taxonomic affiliations of the phage gene inventories as previously described [2] (Supplementary Table 3). The results indicated that all of the phages infect members of Bacteroidetes, which were detected in 43 out of 45 samples (Fig. 3 and Supplementary Table 4). The two metagenomic samples without Bacteroidetes identified were both collected via filtering through 0.2 μm and onto 0.1 μm pore size filters. Bacteroidetes were detected in both of the corresponding 0.2 μm fraction samples (Fig. 3).Fig. 3: The relative abundance of the Bacteroidetes classes in all the analyzed samples in this study.The microbial communities were profiled based on ribosomal protein S3 (rpS3) assigned to the Bacteroidetes classes. The sampling sites were indicated by colored names, and the filter sizes used during sampling are shown by circles. The three pairs of filter samples are indicated by colored stars.Full size imageWe profiled the co-detection of phage clades and Bacteroidetes classes to test for specific connections (Supplementary Fig. 5). However, this was uninformative because most samples contained more than one class. However, phages from clades a and b are unlikely to infect class Bacteroidia members, as they did not co-occur in any sample.Comparison of bacterial and phage-encoded bS21Phylogenetic analyses revealed that bS21 protein sequences from phages (this study) and the bacterial bS21 sequences (from the corresponding samples and NCBI RefSeq) clustered separately (Supplementary Fig. 6). The bacterial bS21 sequences that are most similar to phage bS21 were from Bacteroidetes, mostly from the Flavobacteriia class (Supplementary Table 5). We aligned and compared the Bacteroidetes and phage bS21 sequences and mapped the divergent and non-divergent residues to the model of the ribosome of Flavobacterium johnsoniae (Fig. 4a). Multiple divergent positions are located at the beginning of the bS21 sequences and four residues (Arg21, Phe23, Asp25, and Thr28) were significantly divergent (Fig. 4b).Fig. 4: Conservation and differences between phage and bacterial bS21.a Location of bS21 (blue) within the 16S rRNA (green) and the ASD (magenta) of the F. johnsoniae ribosome (PDB ID: 7JIL) [9]. bS21 is in the neck region of the 16S rRNA, interacting closely with the 3’ end of the 16S rRNA, where the ASD is located. The 16S rRNA is shown from the subunit interface direction. b Zebra2 divergency results from an alignment of phage and bacterial bS21 sequences mapped on F. johnsoniae bS21. Divergent positions between phage and bacterial bS21 are shown with red. c Zebra2 conservation results from the same alignment as in (b) mapped on F. johnsoniae bS21 with conserved residues shown in yellow. The stacking interaction between Tyr54 and Adenine 1534 is indicated. d The sequence logo and consensus sequences of phage and bacterial bS21 alignments and the corresponding position of Tyr54 in F. johnsoniae bS21 in the alignment are highlighted. The C-terminal parts are highlighted with gray backgrounds.Full size imageBacteroidetes usually lack the SD sequences. It was recently reported that the bS21 Tyr54 (numbering in F. johnsoniae) is an important residue for blocking the ASD in the 16S rRNA within the ribosome [9]. Our analyses predict that all the analyzed bacterial and phage bS21 in this study have an amino acid with an aromatic ring (often Tyr54 but in a few cases His54, and in one case Phe54) at the position of Tyr54 in F. johnsoniae (Fig. 4c, d and Supplementary Fig. 6). This conservation of the aromatic property in phage bS21 should ensure stacking interaction with Adenine 1534 (numbering in F. johnsoniae 16S) from the ASD. In that way, phage bS21 mimics Bacteroidetes bS21 in the region where it binds the ribosome but differs from it in the region where the mRNA would bind.In contrast, the C-terminal regions of both the bacterial and phage bS21 sets were highly divergent (Fig. 4d). However, the phage C-terminal regions are generally conserved within the clades defined based on TerL phylogeny (Fig. 2 and Supplementary Fig. 7).Metabolic potentials of bS21-encoding phagesFunctional annotation of the predicted protein-coding genes revealed that in addition to bS21, these phages carry other genes related to protein production and stability (Supplementary Table 6). Examples include protein folding chaperones and Clp protease, suggesting the importance of controlling the proteostasis network of the cell. Interestingly, we also identified many genes involved in sugar-related chemistry and polysaccharide biosynthesis. Many of these genes were predicted to perform chemical transformations related to the biosynthesis of lipopolysaccharide, a major component of the Gram-negative bacterial outer membrane. We interpret this as a potential mechanism to remodel the cell surface and prevent superinfection by competitor phages, a strategy common to the phage lysogenic cycle. These phages lack detectable integration machinery (no gene for integrase or resolvase was detected), suggesting the possibility of a non-integrative long-term infection state such as pseudolysogeny [10].Clustering analyses of 22 phages with a minimum genome size of 100 kbp (including the two outgroup genomes) based on the presence/absence of protein families indicated they shared a total of 16 protein families (Supplementary Fig. 8 and Supplementary Table 7). Phosphate starvation-inducible protein PhoH (“fam582”) was the only predicted protein detected in all 22 phages (excluding the shared predicted proteins in the conserved rpS21-encoding region described above). Other common protein families include those related to DNA replication (e.g., DNA primase/helicase, DNA polymerase, HNH endonuclease, thymidylate synthase (EC:2.1.1.45), deoxyuridine 5’-triphosphate nucleotidohydrolase (EC:3.6.1.23)), those associated with virion assembly (e.g., a phage tail sheath protein, phage baseplate assembly protein W), and those for other functions (e.g., chaperone ATPase, alpha-amylase, DegT/DnrJ/EryC1/StrS aminotransferase).Temporal and spatial distribution and activity of bS21-encoding phages in Lake RotseeTo reveal the spatial and temporal distribution of the bS21-encoding phages, we focused on the Lake Rotsee data and profiled phage occurrence based on the sequencing coverage in the metagenomic datasets. The Lake Rotsee samples were collected from the oxic (7 samples) and anoxic (3 samples) layers of the water column. The bS21-encoding phages were readily detected in oxic samples, especially in the under-ice samples when the whole water column was oxic (Fig. 5a).Fig. 5: The spatial and temporal distribution and activity of bS21 phages at Lake Rotsee.a The sequencing coverage of each phage genome in each metagenomic dataset is shown in the heatmaps. The phages are phylogenetically clustered based on their TerL protein sequences (bootstraps shown in numbers), the colored backgrounds are the same as shown in Fig. 2 for different clades. The sampling time points and depths are shown on the left, and the oxygen conditions are indicated by colored circles on the right. Two replicates were sequenced from the 15 m sample collected in 2018. b The percentage of mapped RNA reads to the phage genomes in the corresponding samples (rows labeled in (a)). The mapped RNA reads had a minimum similarity of 98% to the phage genomes. No RNA data were generated for the three samples collected on October 10, 2017. See the figure legend for each genome in the upper right, the circular genomes have names in bold font.Full size imageRotsee Lake RNA reads were mapped to the phage genomes curated from this site to reveal the transcriptional activities of bS21-encoding phages (Fig. 5b). In general, the phages were likely to be most transcriptionally active in the oxic water columns. A total of 736 genes were transcribed in at least one sample (Supplementary Table 8), those for MCP, an AAA ATPase, tail sheath protein, bS21, FKBP-type peptidyl-prolyl cis-trans isomerase, and a methyltransferase FkbM domain protein are among the top 100 most highly transcribed. The high transcriptional activities of MCP in five phages indicated they were in the late stage of replication at the time of sampling.The transcriptional behavior of phage bS21 genesTo seek evidence of a transcriptional relationship involving bS21 and other genes we focused on the three phages that were most active based on the transcriptional level of their 19 shared single-copy genes (Fig. 6a). bS21 had very similar (but slightly lower) transcriptional activities as a neighboring gene (hereafter, bS21_CN gene) encoded on the opposite strand. The bS21_CN gene encodes a hypothetical protein (protein family: fam498) and was not detected in the two outgroup phages without bS21 (Supplementary Table 6). Interestingly, a comparison of the phylogenies of bS21 and bS21_CN showed a very similar evolutionary pattern (Supplementary Fig. 9), likely suggesting their potential functional relationship in the bS21-encoding phages.Fig. 6: The transcription levels of bS21 and core structural protein genes.a The normalized transcriptional level (NTL) of shared single-copy protein families of three phages (indicated by arrows in Fig. 5b) with ≥1000 RNA reads mapped. Two families (including MCP) are listed on a different scale due to their much higher transcription levels. Refer to Fig. 5 for shape symbols that designate phage genomes and samples. b Examples of RNA mapping profiles indicating the co-transcription of some genes neighboring bS21. Hypothetical protein genes are shown in white.Full size imageInspection of the RNA reads mapping profiles indicated that the conserved region encoding bS21 and core structural proteins was not transcribed as an operon, whereas bS21 and bS21_CN, MCP and its upstream hypothetical protein gene, and prohead protease and its downstream hypothetical protein gene may each be transcribed together (Fig. 6b). Given the observed RNA expression patterns, we conclude that the phage-encoded bS21 genes were actively transcribed during late-stage replication, along with other core structural proteins.Genomic context of bS21 genes in published phage genomesTo determine whether the phage bS21 genes are generally co-located with those for core structural proteins in diverse phages, we profiled the genomic context of bS21 in 900 published bS21-encoding phages [2, 11] (Supplementary Table 9). Functional annotations were performed for the upstream and downstream ten genes of the bS21 genes using pVOG (Supplementary Table 10). Of the 20 most abundant pVOGs, 6 were related to core structural assembly (Fig. 7a), i.e., prohead protease (n = 310), MCP (n = 154), PVP (n = 120), TerL (n = 78), neck protein (n = 70), and a tail sheath protein (n = 29). A total of 388 genomes contained at least one of these genes within ten genes of bS21, and eight had all of these six core structural proteins in close proximity. Three pVOGs were related to DNA processing, i.e., an exonuclease (n = 37), an endonuclease (n = 32), DNA helicase (n = 30). Other pVOGs included Hsp20 heat shock protein (n = 127), two ATP-dependent CLP proteases (n = 50 and 47, respectively), and lysozyme (for lysis; n = 29). Interestingly, the prohead protease and the MCP pVOG genes are very close to the bS21 gene (generally 2–4 genes; Fig. 7b), as in the bS21-encoding phage genomes analyzed in this study (2–6 genes away; Fig. 1 and Supplementary Fig. 1).Fig. 7: Neighboring genes within 10 genes of bS21 in published bS21-encoding phage genomes.a The annotation and corresponding functional category (if assigned) of the 20 most commonly detected pVOG genes and their predicted functions are shown on the left, the total number of genomes with the gene are shown on the right. b The distribution of the distance of each gene to bS21 in the genomes. The position of genes next to bS21 (thus distance = 1) is highlighted using a red dashed line. The average distance of each gene to bS21 is shown on the left. c The predicted hosts of bS21-encoding phages with the top 4 most abundant genes detected within 10 genes of bS21. The total count of hosts is shown on the right.Full size imageWe respectively predicted the hosts of the bS21-encoding phages with the four most dominant pVOGs within ten genes of bS21 (Fig. 7c and Supplementary Table 11). The bacterial hosts are diverse and include Proteobacteria, Bacteroidetes, and Firmicutes. More

  • in

    An integrative re-evaluation of Typhlatya shrimp within the karst aquifer of the Yucatán Peninsula, Mexico

    Bauer-Gottwein, P. et al. Review: The Yucatán Peninsula karst aquifer, Mexico. Hydrogeol. J. 19, 507–524 (2011).ADS 

    Google Scholar 
    Back, W., Hanshaw, B. B., Herman, J. S. & van Driel, J. N. Differential dissolution of a Pleistocene reef in the ground-water mixing zone of coastal Yucatan, Mexico. Geology 14, 137–140 (1986).ADS 

    Google Scholar 
    Coke, J. G. Underwater caves of the Yucatan Peninsula. In Encyclopedia of Caves (ed. Coke, J. G.) (Elsevier, 2019).
    Google Scholar 
    Smart, P. L. et al. Cave development on the Caribbean coast of the Yucatan Peninsula, Quintana Roo, Mexico. In Perspectives on Karst Geomorphology, Hydrology, and Geochemistry—A Tribute Volume to Derek C. Ford and William B. White Vol. 404 (eds Harmon, R. S. & Wicks, C. M.) (Geological Society of America, 2006).
    Google Scholar 
    Moore, W. S. The subterranean estuary: A reaction zone of ground water and sea water. Mar. Chem. 65, 111 (1999).CAS 

    Google Scholar 
    Moore, W. S. & Joye, S. B. Saltwater intrusion and submarine groundwater discharge: Acceleration of biogeochemical reactions in changing coastal aquifers. Front. Earth Sci. https://doi.org/10.3389/feart.2021.600710 (2021).Article 

    Google Scholar 
    Beddows, P. A., Smart, P. L., Whitaker, F. F. & Smith, S. L. Decoupled fresh-saline groundwater circulation of a coastal carbonate aquifer: Spatial patterns of temperature and specific electrical conductivity. J. Hydrol. 346, 18–32 (2007).ADS 

    Google Scholar 
    Perry, E., Velazquez-Oliman, G. & Marin, L. The Hydrogeochemistry of the Karst aquifer system of the northern Yucatan Peninsula, Mexico. Int. Geol. Rev. 44, 191 (2002).
    Google Scholar 
    Kovacs, S. E. et al. Hurricane ingrid and tropical storm hanna’s effects on the salinity of the coastal aquifer, Quintana Roo, Mexico. J. Hydrol. 551, 703 (2017).ADS 

    Google Scholar 
    Schmitter-Soto, J. J. et al. Hydrogeochemical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico). Hydrobiologia 467, 215–228 (2002).CAS 

    Google Scholar 
    Brankovits, D. et al. Methane-and dissolved organic carbon-fueled microbial loop supports a tropical subterranean estuary ecosystem. Nat. Commun. 8, 1–3 (2017).ADS 
    CAS 

    Google Scholar 
    Bishop, R. E. et al. ‘Anchialine’ redefined as a subterranean estuary in a crevicular or cavernous geological setting. J. Crustac. Biol. 35, 511–514 (2015).
    Google Scholar 
    Angyal, D., Simões, N. & Mascaró, M. Uptaded checklist, historical overview and illustrated guide to the stygobiont Malacostraca (Arthropoda: Crustacea) species of Yucatan (Mexico). Subterran. Biol. 36, 83–108 (2020).
    Google Scholar 
    Angyal, D. et al. New distribution records of subterranean crustaceans from cenotes in Yucatan (Mexico). ZooKeys 911, 21–49 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Álvarez, F., Iliffe, T. M., Benítez, S., Brankovits, D. & Villalobos, J. L. New records of anchialine fauna from the Yucatan Peninsula, Mexico. Check List 11, 1–10 (2015).
    Google Scholar 
    van Hengstum, P. J., Cresswell, J. N., Milne, G. A. & Iliffe, T. M. Development of anchialine cave habitats and karst subterranean estuaries since the last ice age. Sci. Rep. 9, 1–10 (2019).
    Google Scholar 
    Holthuis, L. Caridean shrimps found in land-locked saltwater pools at four Indo-West Pacific localities (Sinai Peninsula, Funafuti Atoll, Maui and Hawaii Islands), with the description of one new genus and four new species. Zool. Verhandelingen 128, 1–48 (1973).
    Google Scholar 
    Iliffe, T. M. & Kornicker, L. S. Worldwide diving discoveries of living fossil animals from the depths of anchialine and marine caves. Smithson. Contrib. Mar. Sci. https://doi.org/10.5479/si.01960768.38.1 (2009).Article 

    Google Scholar 
    Calderón-Gutiérrez, F. et al. Mexican anchialine fauna—With emphasis in the high biodiversity cave El Aerolito. Reg. Stud. Mar. Sci. 9, 43–55 (2017).
    Google Scholar 
    Creaser, E. P. Crustaceans from Yucatan. In The Cenotes of Yucatan. A Zoological and Hydrografic Survey (eds Pearse, A. S. et al.) 117–132 (Carnegie Institution of Washington, 1936).
    Google Scholar 
    Botello, A. et al. Historical biogeography and phylogeny of Typhlatya cave shrimps (Decapoda: Atyidae) based on mitochondrial and nuclear data. J. Biogeogr. 40, 594–607 (2013).
    Google Scholar 
    Jurado-Rivera, J. A. et al. Phylogenetic evidence that both ancient vicariance and dispersal have contributed to the biogeographic patterns of anchialine cave shrimps. Sci. Rep. 7, 1–11 (2017).CAS 

    Google Scholar 
    SEMARNAT. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección eigera—Especies nativas de México de flora y fauna silvestres—Categorías de riesgo y especificaciones para su eigera, eigera o cambio—Lista de especies en riesgo. Diario Oficial de la Federación (2010).Hobbs, H. H. III. & Hobbs, H. H. Jr. On the troglobitic shrimps of the Yucatan Peninsula, Mexico (Decapoda: Atyidae and Palaemonidae). Smithson. Contrib. Zool. 240, 1–23 (1976).
    Google Scholar 
    Álvarez, F., Iliffe, T. M. & Villalobos, J. L. New species of the genus Typhlatya (Decapoda: Atyidae) from anchialine caves in Mexico, the Bahamas, and Honduras. J. Crustac. Biol. 25, 81–94 (2005).
    Google Scholar 
    Chace, F. A. & Manning, R. B. Two new caridean shrimps, one representing a new family, from marine pools on Ascension Island (Crustacea: Decapoda: Natantia). Smithson. Contrib. Zool. https://doi.org/10.5479/si.00810282.131 (1972).Article 

    Google Scholar 
    Buhay, J. E. & Crandall, K. A. Taxonomic revision of cave crayfish in the Genus Cambarus, subgenus Aviticambarus (Decapoda: Cambaridae) with descriptions of two new species, C. speleocoopi and C. laconensis, endemic to Alabama, U.S.A.. J. Crustac. Biol. 29, 121 (2009).
    Google Scholar 
    Juan, C., Guzik, M. T., Jaume, D. & Cooper, S. J. B. Evolution in caves: Darwin’s “wrecks of ancient life” in the molecular era. Mol. Ecol. 19, 3865–3880 (2010).PubMed 

    Google Scholar 
    Zakšek, V., Sket, B. & Trontelj, P. Phylogeny of the cave shrimp Troglocaris: Evidence of a young connection between Balkans and Caucasus. Mol. Phylogenet. Evol. 42, 223–235 (2007).PubMed 

    Google Scholar 
    Hunter, R. L., Webb, M. S., Iliffe, T. M. & Alvarado Bremer, J. R. Phylogeny and historical biogeography of the cave-adapted shrimp genus Typhlatya (Atyidae) in the Caribbean Sea and western Atlantic. J. Biogeogr. 35, 65–75 (2008).
    Google Scholar 
    von Rintelen, K. et al. Drawn to the dark side: A molecular phylogeny of freshwater shrimps (Crustacea: Decapoda: Caridea: Atyidae) reveals frequent cave invasions and challenges current taxonomic hypotheses. Mol. Phylogenet. Evol. 63, 82–96 (2012).
    Google Scholar 
    Bracken, H. D., de Grave, S. & Felder, D. L. Phylogeny of the infraorder caridea based on mitochondrial and nuclear genes (Crustacea). In Decapod Crustacean Phylogenetics (eds Martin, J. W. et al.) (Taylor and Francis/CRC Press, 2009).
    Google Scholar 
    Porter, M. L., Pérez-Losada, M. & Crandall, K. A. Model-based multi-locus estimation of decapod phylogeny and divergence times. Mol. Phylogenet. Evol. 37, 355 (2005).CAS 
    PubMed 

    Google Scholar 
    Webb, M. S. Intraspecific Relationships Among the Stygobitic Shrimp, Typhlatya mitchelli, by Analyzing Sequence Data from Mitochondrial DNA (Texas A&M University, 2003).
    Google Scholar 
    Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. GenBank. Nucleic Acids Res. 36, D25 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Bridge, P. D., Roberts, P. J., Spooner, B. M. & Panchal, G. On the unreliability of published DNA sequences. New Phytol. 160, 43 (2003).CAS 
    PubMed 

    Google Scholar 
    Fritz, U., Vargas-Ramírez, M. & Široký, P. Phylogenetic position of Pelusios williamsi and a critique of current GenBank procedures (Reptilia: Testudines: Pelomedusidae). Amphibia-Reptilia 33, 150 (2012).
    Google Scholar 
    Li, X. et al. Detection of potential problematic Cytb gene sequences of fishes in GenBank. Front. Genet. 9, 30 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Tixier, M.-S., Hernandes, F. A., Guichou, S. & Kreiter, S. The puzzle of DNA sequences of Phytoseiidae (Acari: Mesostigmata) in the public GenBank database. Invertebr. Syst. 25, 389–406 (2011).CAS 

    Google Scholar 
    Vilgalys, R. Taxonomic misidentification in public DNA databases. New Phytol. 160, 4–5 (2003).CAS 
    PubMed 

    Google Scholar 
    Chavez-Diaz, J. M. Variación genética de las especies del genero Typhlatya (Decapoda: Atyidae) en sistemas aquilinos de la eigera de Yucatán, Mexico.Kambesis, P. N. & Coke, J. G. Overview of the controls on Eogenetic Cave and Karst development in Quintana Roo, Mexico. In Coastal Karst Landforms, Coastal Research Library Vol. 5 (eds Lace, M. & Mylroie, J.) (Springer, 2013).
    Google Scholar 
    Benítez, S., Illife, T. M., Quiroz-Martínez, B. & Álvarez, F. How is the anchialine fauna distributed within a cave? A study of the Ox Bel Ha System, Yucatan Peninsula, Mexico. Subterr. Biol. 31, 15–28 (2019).
    Google Scholar 
    Chávez-Solís, E. M., Rosas, C., Rodriguez Fuentes, G. & Mascaró, M. Ecophysiology of cave shrimps (Atyidae: Typhlatya); linking salinity tolerance with distribution patterns in anchialine caves of the Yucatan Peninusla. (In prep).Chávez-Solís, E. M., Solís, C., Simões, N. & Mascaró, M. Distribution patterns, carbon sources and niche partitioning in cave shrimps (Atyidae: Typhlatya). Sci. Rep. 10, 1–16 (2020).
    Google Scholar 
    Sanz, S. & Platvoet, D. New perspectives on the evolution of the genus Typhlatya (Crustacea). Contrib. Zool. 65, 79 (1995).
    Google Scholar 
    Jugovic, J., Prevorčnik, S., Blejec, A. & Sket, B. Morphological differentiation in the cave shrimps Troglocaris (Crustacea: Decapoda: Atyidae) of the Dinaric karst—A consequence of geographical isolation or adaptation?. J. Zool. Syst. Evol. Res. 49, 185–195 (2011).
    Google Scholar 
    Sarda, F. & Demestre, M. Shortening of the Rostrum and Rostral Variability in Aristeus antennatus (Risso, 1816) (Decapoda: Aristeidae). J. Crustac. Biol. 9, 570–577 (1989).
    Google Scholar 
    Martin, J. W. & Wicksten, M. K. Review and redescription of the freshwater atyid shrimp Genus Syncaris Holmes, 1900, in California. J. Crustac. Biol. 24, 447 (2004).
    Google Scholar 
    Chace, F. A. Jr. A new cave shrimp from Cuba. Proc. N. Engl. Zoöl. Club 19, 99–102 (1942).
    Google Scholar 
    Buden, D. W. & Fleder, D. L. Cave shrimps in the Caicos Islands. Proc. Biol. Soc. Wash. 90, 108–115 (1975).
    Google Scholar 
    van Hengstum, P. J., Reinhardt, E. G., Beddows, P. A. & Gabriel, J. J. Environmental reconstruction of a Mexican flooded cave system: Evidence for climate—Forced changes to the local freshwater lens. Quat. Sci. Rev. 29, 2788–2798 (2010).ADS 

    Google Scholar 
    van Hengstum, P. J., Scott, D. B., Gröcke, D. R. & Charette, M. A. Sea level controls sedimentation and environments in coastal caves and sinkholes. Mar. Geol. 286, 35–50 (2011).ADS 

    Google Scholar 
    Gabriel, J. J. et al. Palaeoenvironmental evolution of cenote Aktun Ha (Carwash) on the Yucatan Peninsula, Mexico and its response to eigera sea-level rise. J. Paleolimnol. 42, 199–213 (2009).ADS 

    Google Scholar 
    Moritsch, M. M., Pakes, M. J. & Lindberg, D. R. How might sea level change affect arthropod biodiversity in anchialine caves: A comparison of Remipedia and Atyidae taxa (Arthropoda: Altocrustacea)?. Org. Divers. Evol. 14, 225–235 (2014).
    Google Scholar 
    Mejía-Ortíz, L. M., Pakes, J., Zarza-González, E., Hartnoll, R. G. & López-Mejía, M. Morphological adaptations to anchialine environments in species of five shrimp families (Barbouria yanezi, Agostocaris bozanici, Procaris eigera, Calliasmata nohochi and Typhlatya pearsei). Crustaceana 86(5), 578–593 (2013).
    Google Scholar 
    Pindell, J. L. et al. A plate-kinematic framework for models of Caribbean evolution. Tectonophysics 155, 121 (1988).ADS 

    Google Scholar 
    Pitman, W. C. III., Cande, S. C., LaBrecque, J. & Pindell, J. L. Fragmentation of Gondwana: The separation of Africa from South America. In Biological Relationships Between Africa and South America (ed. Goldblatt, P.) 15–34 (Yale University Press, 1993).
    Google Scholar 
    Chakrabarty, P. Systematics and historical biogeography of Greater Antillean Cichlidae. Mol. Phylogenet. Evol. 39, 619–627 (2006).PubMed 

    Google Scholar 
    Gonzalez, B. C. et al. Genetic spatial structure of an anchialine cave annelid indicates connectivity within—But not between—Islands of the Great Bahama Bank. Mol. Phylogenet. Evol. 109, 259 (2017).PubMed 

    Google Scholar 
    Sommer, M. Late Cretaceous to Miocene Tectonic Reconstruction of the Northwestern Caribbean: Regional Analysis of Cuban Geology (Universität Greifswald, 2009).
    Google Scholar 
    Ramos, E. L. Geological summary of the Yucatan Peninsula. In The Gulf of Mexico and the Caribbean (eds Nairn, A. E. M. & Stehli, F. G.) (Springer, 1975).
    Google Scholar 
    Hart, C. W., Manning, R. B. & Iliffe, T. M. The fauna of Atlantic marine caves: Evidence of dispersal by sea floor spreading while maintaining ties to deep waters. Proc. Biol. Soc. Wash 98, 288–292 (1985).
    Google Scholar 
    Craft, J. D. et al. Islands under islands: The phylogeography and evolution of Halocaridina rubra Holthuis, 1963 (Crustacean: Decapoda: Atyidae) in the Hawaiian archipelago. Limnol. Oceanogr. 53, 675 (2008).ADS 

    Google Scholar 
    Vázquez-Domínguez, E. & Arita, H. T. The Yucatan peninsula: Biogeographical history 65 million years in the making. Ecography 33(2), 212–2019 (2010).
    Google Scholar 
    Quintana Roo Speleological Survey (2022). https://caves.org/project/qrss/qrlong.htm.Sommer, M. Late Cretaceous to Miocene tectonic reconstruction of the northwestern Caribbean: regional analysis of Cuban geology. Universität Greifswald. (2009).Gold, D. P. et al. The biostratigraphic record of Cretaceous to Paleogene tectono-eustatic relative sea-level change in Jamaica. J. S. Am. Earth Sci. https://doi.org/10.1016/j.jsames.2018.06.011 (2018).Article 

    Google Scholar 
    Suárez-Morales, E. Historical biogeography and distribution of the freshwater calanoid copepods (Crustacea: Copepoda) of the Yucatan Peninsula Mexico. J. Biogeogr. 30, 1851 (2003).
    Google Scholar 
    Suarez-Morales, E., Reid, J. W., Fiers, F. & Iliffe, T. M. Historical biogeography and distribution of the freshwater cyclopine copepods (Copepoda, Cyclopoida, Cyclopinae) of the Yucatan Peninsula, Mexico. J. Biogeogr. 31, 1051 (2004).
    Google Scholar 
    Arroyave, J., Martinez, C. M., Martínez-Oriol, F. H., Sosa, E. & Alter, S. E. Regional-scale aquifer hydrogeology as a driver of phylogeographic structure in the Neotropical catfish Rhamdia guatemalensis (Siluriformes: Heptapteridae) from cenotes of the Yucatán Peninsula, Mexico. Freshw. Biol. 66, 332–348 (2021).CAS 

    Google Scholar 
    Guimarais, M. et al. The conservational state of coastal ecosystems on the mexican caribbean coast: Environmental guidelines for their management. Sustainability 13, 2738 (2021).
    Google Scholar 
    Hillebrand, H., Jacob, U. & Leslie, H. M. Integrative research perspectives on marine conservation. Philos. Trans. R. Soc. B 375, 20190444 (2020).
    Google Scholar 
    Price, S. A. & Schmitz, L. A promising future for integrative biodiversity research: an increased role of scale-dependency and functional biology. Philos. Trans. R. Soc. B 371, 20150228 (2016).CAS 

    Google Scholar 
    IUCN 2021. The IUCN Red List of Threatened Species. Version 2021-1 (2021). https://www.iucnredlist.org.Kantun Manzano, C., Arcega-Cabrera, F., Derrien, M., Noreña-Barroso, E. & Herrera-Silveira, J. Submerged groundwater discharges as source of fecal material in protected karstic coastal areas. Geofluids 2018, 1–11 (2018).
    Google Scholar 
    Arcega-Cabrera, F., Velázquez-Tavera, N., Fargher, L., Derrien, M. & Noreña-Barroso, E. Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico. J. Contam. Hydrol. 168, 41 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Brown, A. L., Reinhardt, E. G., van Hengstum, P. J. & Pilarczyk, J. E. A Coastal Yucatan Sinkhole records intense hurricane events. J. Coast. Res. 294, 418 (2014).
    Google Scholar 
    Graillot, D. et al. Coupling groundwater modeling and biological indicators for identifying river/aquifer exchanges. Springerplus. https://doi.org/10.1186/2193-1801-3-68 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parmar, T. K., Rawtani, D. & Agrawal, Y. K. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 9, 110 (2016).CAS 

    Google Scholar 
    Scheffer, M., Carpenter, S. R., Dakos, V. & van Nes, E. H. Generic indicators of ecological resilience: Inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145 (2015).
    Google Scholar 
    Devitt, T. J., Wright, A. M., Cannatella, D. C. & Hillis, D. M. Species delimitation in endangered groundwater salamanders: Implications for aquifer management and biodiversity conservation. Proc. Natl. Acad. Sci. 116(7), 2624 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montagna, P. A., Palmer, T. A. & Pollack, J. Hydrological Changes and Estuarine Dynamics. Springerbriefs in Environmental Science Vol. 8 (Springer, 2013).
    Google Scholar 
    Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171 (2011).PubMed 

    Google Scholar 
    Katoh, K. & Toh, H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26, 1899 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) (2010). https://doi.org/10.1109/GCE.2010.5676129.Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32(1), 268–274 (2015).CAS 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A. FigTree v1.4.3 (2009). http://tree.bio.ed.ac.uk/software/figtree/.Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10(4), e1003537 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Neall, V. E. & Trewick, S. A. The age and origin of the Pacific islands: A geological overview. Philos. Trans. R. Soc. B Biol. Sci. 363, 3293 (2008).
    Google Scholar 
    Revell, L. J. Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217 (2012).
    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pennell, M. W. et al. geiger v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216 (2014).CAS 
    PubMed 

    Google Scholar 
    Rstudio Team. Rstudio: Integrated Development for R (Rstudio, 2020).
    Google Scholar 
    Bollback, J. P. SIMMAP: Stochastic character mapping of discrete traits on phylogenies. BMC Bioinform. https://doi.org/10.1186/1471-2105-7-88 (2006).Article 

    Google Scholar 
    QGIS Development Team. Open Source Geospatial Foundation Project (QGIS Geographic Information System, 2020).
    Google Scholar 
    Fujisawa, T. & Barraclough, T. G. Delimiting species using single-locus data and the generalized mixed yule coalescent approach: A revised method and evaluation on simulated data sets. Syst. Biol. 62, 707–724 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouckaert, R. & Drummond, A. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ezard, T., Fujisawa, T. & Barraclough, T. G. Splits: Species’ Limits by Threshold Statistics. R Package Version 1.11: r29 (2009) More

  • in

    Microbes contribute to setting the ocean carbon flux by altering the fate of sinking particulates

    Martin, J. H., Knauer, G. A., Karl, D. M. & Broenkow, W. W. VERTEX: carbon cycling in the northeast Pacific. Deep Sea Res. Part A. Oceanographic Res. Pap. 34, 267–285 (1987).CAS 

    Google Scholar 
    Gloege, L., McKinley, G. A., Mouw, C. B. & Ciochetto, A. B. Global evaluation of particulate organic carbon flux parameterizations and implications for atmospheric pCO2. Glob. Biogeochemical Cycles 31, 1192–1215 (2017).ADS 
    CAS 

    Google Scholar 
    Guidi, L. et al. A new look at ocean carbon remineralization for estimating deepwater sequestration. Glob. Biogeochemical Cycles 29, 1044–1059 (2015).ADS 
    CAS 

    Google Scholar 
    Marsay, C. M. et al. Attenuation of sinking particulate organic carbon flux through the mesopelagic ocean. PNAS 112, 1089–1094 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Omand, M. M., Govindarajan, R., He, J. & Mahadevan, A. Sinking flux of particulate organic matter in the oceans: Sensitivity to particle characteristics. Sci. Rep. 10, 5582 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aumont, O. et al. Variable reactivity of particulate organic matter in a global ocean biogeochemical model. Biogeosciences 14, 2321–2341 (2017).ADS 
    CAS 

    Google Scholar 
    DeVries, T., Liang, J.-H. & Deutsch, C. A mechanistic particle flux model applied to the oceanic phosphorus cycle. Biogeosciences 11, 5381–5398 (2014).ADS 

    Google Scholar 
    DeVries, T. & Weber, T. The export and fate of organic matter in the ocean: new constraints from combining satellite and oceanographic tracer observations. Glob. Biogeochemical Cycles 31, 535–555 (2017).ADS 
    CAS 

    Google Scholar 
    Kriest, I. & Oschlies, A. On the treatment of particulate organic matter sinking in large-scale models of marine biogeochemical cycles. Biogeosciences 5, 55–72 (2008).ADS 
    CAS 

    Google Scholar 
    Lutz, M., Dunbar, R. & Caldeira, K. Regional variability in the vertical flux of particulate organic carbon in the ocean interior. Glob. Biogeochemical Cycles 16, 11-1–11-18 (2002).
    Google Scholar 
    Pavia, F. J. et al. Shallow particulate organic carbon regeneration in the South Pacific Ocean. PNAS 116, 9753–9758 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weber, T., Cram, J. A., Leung, S. W., DeVries, T. & Deutsch, C. Deep ocean nutrients imply large latitudinal variation in particle transfer efficiency. Proc. Natl Acad. Sci. USA 113, 8606–8611 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cael, B. B. & Bisson, K. Particle flux parameterizations: quantitative and mechanistic similarities and differences. Front. Mar. Sci. 5, (2018).Cael, B. B. & White, A. E. Sinking versus suspended particle size distributions in the North Pacific Subtropical Gyre. Geophys. Res. Lett. 47, e2020GL087825 (2020).ADS 

    Google Scholar 
    Lam, P. J., Doney, S. C. & Bishop, J. K. B. The dynamic ocean biological pump: Insights from a global compilation of particulate organic carbon, CaCO3, and opal concentration profiles from the mesopelagic. Global Biogeochemical Cycles 25, (2011).Cram, J. A. et al. The role of particle size, ballast, temperature, and oxygen in the sinking flux to the deep sea. Glob. Biogeochemical Cycles 32, 858–876 (2018).ADS 
    CAS 

    Google Scholar 
    Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A. & Weber, T. Multi-faceted particle pumps drive carbon sequestration in the ocean. Nature 568, 327–335 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Boeuf, D. et al. Biological composition and microbial dynamics of sinking particulate organic matter at abyssal depths in the oligotrophic open ocean. PNAS 116, 11824–11832 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grabowski, E., Letelier, R. M., Laws, E. A. & Karl, D. M. Coupling carbon and energy fluxes in the North Pacific Subtropical Gyre. Nat. Commun. 10, 1895 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karl, D. M., Knauer, G. A. & Martin, J. H. Downward flux of particulate organic matter in the ocean: a particle decomposition paradox. Nature 332, 438–441 (1988).ADS 

    Google Scholar 
    Karl, D. M., Church, M. J., Dore, J. E., Letelier, R. M. & Mahaffey, C. Predictable and efficient carbon sequestration in the North Pacific Ocean supported by symbiotic nitrogen fixation. PNAS 109, 1842–1849 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Church, M. J. et al. Production and diversity of microorganisms associated with sinking particles in the subtropical North Pacific Ocean. Limnol. Oceanogr. 66, 3255–3270 (2021).ADS 
    CAS 

    Google Scholar 
    Briggs, N., Dall’Olmo, G. & Claustre, H. Major role of particle fragmentation in regulating biological sequestration of CO2 by the oceans. Science 367, 791–793 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cho, B. C. & Azam, F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature 332, 441–443 (1988).ADS 
    CAS 

    Google Scholar 
    Giering, S. L. C. et al. Reconciliation of the carbon budget in the ocean’s twilight zone. Nature 507, 480–483 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bianchi, D., Weber, T. S., Kiko, R. & Deutsch, C. Global niche of marine anaerobic metabolisms expanded by particle microenvironments. Nat. Geosci. 11, 263–268 (2018).ADS 
    CAS 

    Google Scholar 
    Cavan, E. L., Henson, S. A. & Boyd, P. W. The sensitivity of subsurface microbes to ocean warming accentuates future declines in particulate carbon export. Front. Ecol. Evol. 6, (2019).McDonnell, A. M. P. & Buesseler, K. O. Variability in the average sinking velocity of marine particles. Limnol. Oceanogr. 55, 2085–2096 (2010).ADS 

    Google Scholar 
    Bendtsen, J., Hilligsøe, K. M., Hansen, J. L. S. & Richardson, K. Analysis of remineralisation, lability, temperature sensitivity and structural composition of organic matter from the upper ocean. Prog. Oceanogr. 130, 125–145 (2015).ADS 

    Google Scholar 
    Steinberg, D. K. et al. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol. Oceanogr. 53, 1327–1338 (2008).ADS 

    Google Scholar 
    Alcolombri, U. et al. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 1–6 https://doi.org/10.1038/s41561-021-00817-x (2021).Biddanda, B. & Pomeroy, L. Microbial aggregation and degradation of phytoplankton-derived detritus in seawater. I. Microbial succession. Mar. Ecol. Prog. Ser. 42, 79–88 (1988).ADS 

    Google Scholar 
    Dilling, L. & Alldredge, A. L. Fragmentation of marine snow by swimming macrozooplankton: a new process impacting carbon cycling in the sea. Deep Sea Res. Part I: Oceanographic Res. 47, 1227–1245 (2000).ADS 
    CAS 

    Google Scholar 
    Buesseler, K. O. & Boyd, P. W. Shedding light on processes that control particle export and flux attenuation in the twilight zone of the open ocean. Limnol. Oceanogr. 54, 1210–1232 (2009).ADS 
    CAS 

    Google Scholar 
    Burd, A. B. & Jackson, G. A. Particle aggregation. Annu. Rev. Mar. Sci. 1, 65–90 (2009).ADS 

    Google Scholar 
    Romero‐Romero, S. et al. Deep zooplankton rely on small particles when particle fluxes are low. Limnol. Oceanogr. Lett. 5, 410–416 (2020).
    Google Scholar 
    Maas, A. E. et al. Migratory zooplankton excreta and its influence on prokaryotic communities. Front. Mar. Sci. 0, (2020).Möller, K. O. et al. Marine snow, zooplankton and thin layers: indications of a trophic link from small-scale sampling with the Video Plankton Recorder. Mar. Ecol. Prog. Ser. 468, 57–69 (2012).ADS 

    Google Scholar 
    Karakaş, G. et al. Impact of particle aggregation on vertical fluxes of organic matter. Prog. Oceanogr. 83, 331–341 (2009).ADS 

    Google Scholar 
    Cavan, E. L., Trimmer, M., Shelley, F. & Sanders, R. Remineralization of particulate organic carbon in an ocean oxygen minimum zone. Nat. Commun. 8, 1–9 (2017).
    Google Scholar 
    Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiørboe, T., Tang, K., Grossart, H.-P. & Ploug, H. Dynamics of microbial communities on marine snow aggregates: colonization, growth, detachment, and grazing mortality of attached bacteria. Appl. Environ. Microbiol. 69, 3036–3047 (2003).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Grossart, H.-P., Kiørboe, T., Tang, K. & Ploug, H. Bacterial colonization of particles: growth and interactions. Appl Environ. Microbiol 69, 3500–3509 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Enke, T. N., Leventhal, G. E., Metzger, M., Saavedra, J. T. & Cordero, O. X. Microscale ecology regulates particulate organic matter turnover in model marine microbial communities. Nat. Commun. 9, 2743 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirchman, D. L. Growth Rates of Microbes in the Oceans. Annu. Rev. Mar. Sci. 8, 285–309 (2016).ADS 

    Google Scholar 
    Ebrahimi, A., Schwartzman, J. & Cordero, O. X. Cooperation and spatial self-organization determine rate and efficiency of particulate organic matter degradation in marine bacteria. PNAS https://doi.org/10.1073/pnas.1908512116 (2019).Agusti, S. et al. Ubiquitous healthy diatoms in the deep sea confirm deep carbon injection by the biological pump. Nat. Commun. 6, 1–8 (2015).
    Google Scholar 
    Tamburini, C. et al. Effects of hydrostatic pressure on microbial alteration of sinking fecal pellets. Deep Sea Res. Part II: Topical Stud. Oceanogr. 56, 1533–1546 (2009).ADS 
    CAS 

    Google Scholar 
    Tamburini, C., Garcin, J., Ragot, M. & Bianchi, A. Biopolymer hydrolysis and bacterial production under ambient hydrostatic pressure through a 2000 m water column in the NW Mediterranean. Deep Sea Res. Part II Topical Stud. Oceanogr. 49, 2109–2123 (2002).ADS 
    CAS 

    Google Scholar 
    Tamburini, C., Boutrif, M., Garel, M., Colwell, R. R. & Deming, J. W. Prokaryotic responses to hydrostatic pressure in the ocean – a review. Environ. Microbiol. 15, 1262–1274 (2013).CAS 
    PubMed 

    Google Scholar 
    Lambert, B. S., Fernandez, V. I. & Stocker, R. Motility drives bacterial encounter with particles responsible for carbon export throughout the ocean. Limnol. Oceanogr. Lett. 4, 113–118 (2019).
    Google Scholar 
    Ploug, H. & Grossart, H.-P. Bacterial growth and grazing on diatom aggregates: respiratory carbon turnover as a function of aggregate size and sinking velocity. Limnol. Oceanogr. 45, 1467–1475 (2000).ADS 
    CAS 

    Google Scholar 
    Enke, T. N. et al. Modular assembly of polysaccharide-degrading marine microbial communities. Curr. Biol. 29, 1528–1535.e6 (2019).CAS 
    PubMed 

    Google Scholar 
    Kaul, R. B., Kramer, A. M., Dobbs, F. C. & Drake, J. M. Experimental demonstration of an Allee effect in microbial populations. Biol. Lett. 12, 20160070 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Kiørboe, T., Ploug, H. & Thygesen, U. H. Fluid motion and solute distribution around sinking aggregates I: Small-scale fluxes and heterogeneity of nutrients in the pelagic environment. Mar. Ecol. – Prog. Ser. 211, 1–13 (2001).ADS 

    Google Scholar 
    Kiørboe, T. & Jackson, G. A. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 46, 1309–1318 (2001).ADS 

    Google Scholar 
    Baumas, C. M. J. et al. Mesopelagic microbial carbon production correlates with diversity across different marine particle fractions. The ISME Journal 1–14 https://doi.org/10.1038/s41396-020-00880-z (2021).Mestre, M. et al. Spatial variability of marine bacterial and archaeal communities along the particulate matter continuum. Mol. Ecol. 26, 6827–6840 (2017).CAS 
    PubMed 

    Google Scholar 
    Mislan, K. A. S., Stock, C. A., Dunne, J. P. & Sarmiento, J. L. Group behavior among model bacteria influences particulate carbon remineralization depths. J. Mar. Res. 72, 183–218(36) (2014).
    Google Scholar 
    Iversen, M. H., Nowald, N., Ploug, H., Jackson, G. A. & Fischer, G. High resolution profiles of vertical particulate organic matter export off Cape Blanc, Mauritania: Degradation processes and ballasting effects. Deep Sea Res. Part I: Oceanographic Res. Pap. 57, 771–784 (2010).ADS 
    CAS 

    Google Scholar 
    Ilyina, T. et al. Global ocean biogeochemistry model HAMOCC: Model architecture and performance as component of the MPI-Earth system model in different CMIP5 experimental realizations. J. Adv. Modeling Earth Syst. 5, 287–315 (2013).ADS 

    Google Scholar 
    Garber, J. H. Laboratory study of nitrogen and phosphorus remineralization during the decomposition of coastal plankton and seston. Estuar., Coast. Shelf Sci. 18, 685–702 (1984).ADS 
    CAS 

    Google Scholar 
    Zakem, E. J., Cael, B. B. & Levine, N. M. A unified theory for organic matter accumulation. PNAS https://doi.org/10.1101/2020.09.25.314021 (2021).Sunagawa, S. et al. Structure and function of the global ocean microbiome. Science 348, (2015).Alldredge, A. The carbon, nitrogen and mass content of marine snow as a function of aggregate size. Deep Sea Res. Part I: Oceanographic Res. Pap. 45, 529–541 (1998).ADS 
    CAS 

    Google Scholar 
    Zakem, E. J. et al. Ecological control of nitrite in the upper ocean. Nat. Commun. 9, 1206 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyd, P. W. et al. Transformations of biogenic particulates from the pelagic to the deep ocean realm. Deep Sea Res. Part II: Topical Stud. Oceanogr. 46, 2761–2792 (1999).ADS 
    CAS 

    Google Scholar 
    Schmidt, S., Chou, L. & Hall, I. R. Particle residence times in surface waters over the north-western Iberian Margin: comparison of pre-upwelling and winter periods. J. Mar. Syst. 32, 3–11 (2002).
    Google Scholar 
    Schmidt, M. W. I. et al. Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).ADS 
    CAS 

    Google Scholar 
    Dittmar, T. et al. Enigmatic persistence of dissolved organic matter in the ocean. Nat. Rev. Earth Environ. 2, 570–583 (2021).ADS 
    CAS 

    Google Scholar 
    Poff, K. E., Leu, A. O., Eppley, J. M., Karl, D. M. & DeLong, E. F. Microbial dynamics of elevated carbon flux in the open ocean’s abyss. PNAS 118, (2021).Pelve, E. A., Fontanez, K. M. & DeLong, E. F. Bacterial Succession on Sinking Particles in the Ocean’s Interior. Front. Microbiol. 8, (2017).Boscolo-Galazzo, F. et al. Temperature controls carbon cycling and biological evolution in the ocean twilight zone. Science 371, 1148–1152 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Riley, J. S. et al. The relative contribution of fast and slow sinking particles to ocean carbon export. Global Biogeochemical Cycles 26, (2012).Guidi, L. et al. Plankton networks driving carbon export in the oligotrophic ocean. Nature 532, 465–470 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Steinberg, D. K. et al. Overview of the US JGOFS Bermuda Atlantic Time-series Study (BATS): a decade-scale look at ocean biology and biogeochemistry. Deep Sea Res. Part II: Topical Stud. Oceanogr. 48, 1405–1447 (2001).ADS 
    CAS 

    Google Scholar 
    Conte, M. H., Dickey, T. D., Weber, J. C., Johnson, R. J. & Knap, A. H. Transient physical forcing of pulsed export of bioreactive material to the deep Sargasso Sea. Deep Sea Res. Part I: Oceanographic Res. Pap. 50, 1157–1187 (2003).ADS 
    CAS 

    Google Scholar 
    Smith, K. L., Ruhl, H. A., Huffard, C. L., Messié, M. & Kahru, M. Episodic organic carbon fluxes from surface ocean to abyssal depths during long-term monitoring in NE Pacific. Proc. Natl Acad. Sci. USA 115, 12235–12240 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alkire, M. B. et al. Estimates of net community production and export using high-resolution, Lagrangian measurements of O2, NO3−, and POC through the evolution of a spring diatom bloom in the North Atlantic. Deep Sea Res. Part I: Oceanographic Res. Pap. 64, 157–174 (2012).ADS 
    CAS 

    Google Scholar 
    Briggs, N. et al. High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom. Deep Sea Res. Part I: Oceanographic Res. Pap. 58, 1031–1039 (2011).ADS 

    Google Scholar 
    Talmy, D. et al. An empirical model of carbon flow through marine viruses and microzooplankton grazers. Environ. Microbiol. 21, 2171–2181 (2019).CAS 
    PubMed 

    Google Scholar 
    Kostadinov, T. S., Milutinović, S., Marinov, I. & Cabré, A. Carbon-based phytoplankton size classes retrieved via ocean color estimates of the particle size distribution. Ocean Sci. 12, 561–575 (2016).ADS 
    CAS 

    Google Scholar 
    Jin, X., Gruber, N., Dunne, J. P., Sarmiento, J. L. & Armstrong, R. A. Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions. Global Biogeochemical Cycles 20, (2006).Mouw, C. B., Barnett, A., McKinley, G. A., Gloege, L. & Pilcher, D. Phytoplankton size impact on export flux in the global ocean. Glob. Biogeochemical Cycles 30, 1542–1562 (2016).ADS 
    CAS 

    Google Scholar  More

  • in

    Native range estimates for red-listed vascular plants

    Millennium Ecosystem Assessment. Ecosystems and Human Well-being: Biodiversity Synthesis. (World Resources Institute, 2005).Moran, D. & Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 1, 0023 (2017).
    Google Scholar 
    Newbold, T. Future effects of climate and land-use change on terrestrial vertebrate community diversity under different scenarios. Proc. R. Soc. B Biol. Sci. 285, 20180792 (2018).
    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Newbold, T. et al. Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science (80-.). 353, 288–291 (2016).ADS 
    CAS 

    Google Scholar 
    Verones, F., Moran, D., Stadler, K., Kanemoto, K. & Wood, R. Resource footprints and their ecosystem consequences. Sci. Rep. 7, 40743 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    United Nations. Transforming our World: the 2030 Agenda for Sustainable Development. A/RES/70/1 (United Nations, 2015).Díaz, S. et al. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science (80-.). 366, eaax3100 (2019).Lenzen, M. et al. International trade drives biodiversity threats in developing nations. Nature 486, 109–112 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hellweg, S. & Milà i Canals, L. Emerging approaches, challenges and opportunities in life cycle assessment. Science (80-.). 344, 1109–1113 (2014).ADS 
    CAS 

    Google Scholar 
    Chaudhary, A. & Brooks, T. M. National Consumption and Global Trade Impacts on Biodiversity. World Dev. 121, 178–187 (2019).
    Google Scholar 
    Pereira, H. M., Ziv, G. & Miranda, M. Countryside Species-Area Relationship as a Valid Alternative to the Matrix-Calibrated Species-Area Model. Conserv. Biol. 28, 874–876 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lomolino, M. V & Heaney, L. R. Frontiers of Biogeography: New Directions in the Geography of Nature. (Sinauer Associates Inc. Publishers, 2004).World Wildlife Fund. WildFinder: Online database of species distributions. http://www.worldwildlife.org/WildFinder (2006).BirdLife International. IUCN Red List for birds. http://www.birdlife.org (2019).IUCN. The IUCN Red List of Threatened Species. Version 2021-1 https://www.iucnredlist.org (2021).Curran, M. et al. Toward Meaningful End Points of Biodiversity in Life Cycle Assessment. Environ. Sci. Technol. 45, 70–79 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Woods, J. S. et al. Ecosystem quality in LCIA: status quo, harmonization, and suggestions for the way forward. Int. J. Life Cycle Assess. 23, 1995–2006 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 190, 231–259 (2006).
    Google Scholar 
    Merow, C., Smith, M. J. & Silander, J. A. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography (Cop.). 36, 1058–1069 (2013).
    Google Scholar 
    Araújo, M. B. et al. Standards for distribution models in biodiversity assessments. Sci. Adv. 5, eaat4858 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zurell, D. et al. A standard protocol for reporting species distribution models. Ecography (Cop.). 43, 1261–1277 (2020).
    Google Scholar 
    Brummitt, R. K., Pando, F., Hollis, S. & Brummitt, N. A. World Geographical Scheme for Recording Plant Distributions. International Working Group on Taxonomic Databases (TDWG) https://www.tdwg.org/standards/wgsrpd/ (2001).GBIF. The Global Biodiversity Information Facility: What is GBIF? https://www.gbif.org/what-is-gbif (2021).Phillips, S. J., Dudík, M. & Schapire, R. E. Maxent software for modeling species niches and distributions (Version 3.4.0). http://biodiversityinformatics.amnh.org/open_source/maxent/ (2016).Phillips, S. J., Dudík, M. & Schapire, R. E. A maximum entropy approach to species distribution modeling. Proc. Twenty-first Int. Conf. Mach. Learn. 655–662 (2004).Phillips, S. J., Anderson, R. P., Dudík, M., Schapire, R. E. & Blair, M. E. Opening the black box: an open-source release of Maxent. Ecography (Cop.). 40, 887–893 (2017).
    Google Scholar 
    Reddy, S. & Dávalos, L. M. Geographical sampling bias and its implications for conservation priorities in Africa. J. Biogeogr. 30, 1719–1727 (2003).
    Google Scholar 
    Hortal, J., Jiménez-Valverde, A., Gómez, J. F., Lobo, J. M. & Baselga, A. Historical bias in biodiversity inventories affects the observed environmental niche of the species. Oikos 117, 847–858 (2008).
    Google Scholar 
    Isaac, N. J. B. & Pocock, M. J. O. Bias and information in biological records. Biol. J. Linn. Soc. 115, 522–531 (2015).
    Google Scholar 
    Feeley, K. J. & Silman, M. R. Keep collecting: accurate species distribution modelling requires more collections than previously thought. Divers. Distrib. 17, 1132–1140 (2011).
    Google Scholar 
    Radosavljevic, A. & Anderson, R. P. Making better Maxent models of species distributions: complexity, overfitting and evaluation. J. Biogeogr. 41, 629–643 (2014).
    Google Scholar 
    ter Steege, H. et al. Hyperdominance in the Amazonian Tree Flora. Science (80-.). 342, 1243092 (2013).
    Google Scholar 
    Kuipers, K. J. J., Hellweg, S. & Verones, F. Potential Consequences of Regional Species Loss for Global Species Richness: A Quantitative Approach for Estimating Global Extinction Probabilities. Environ. Sci. Technol. 53, 4728–4738 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gade, A. L., Hauschild, M. Z. & Laurent, A. Globally differentiated effect factors for characterising terrestrial acidification in life cycle impact assessment. Sci. Total Environ. 761, 143280 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Géron, C. et al. Urban alien plants in temperate oceanic regions of Europe originate from warmer native ranges. Biol. Invasions 23, 1765–1779 (2021).
    Google Scholar 
    Mair, L. et al. A metric for spatially explicit contributions to science-based species targets. Nat. Ecol. Evol. 5, 836–844 (2021).PubMed 

    Google Scholar 
    Bachman, S., Moat, J., Hill, A., de la Torre, J. & Scott, B. Supporting Red List threat assessments with GeoCAT: geospatial conservation assessment tool. Zookeys 150, 117–126 (2011).
    Google Scholar 
    Cardoso, P. red – an R package to facilitate species red list assessments according to the IUCN criteria. Biodivers. Data J. 5, e20530 (2017).
    Google Scholar 
    Lee, C. K. F., Keith, D. A., Nicholson, E. & Murray, N. J. Redlistr: tools for the IUCN Red Lists of ecosystems and threatened species in R. Ecography (Cop.). 42, 1050–1055 (2019).
    Google Scholar 
    Bachman, S., Walker, B., Barrios, S., Copeland, A. & Moat, J. Rapid Least Concern: towards automating Red List assessments. Biodivers. Data J. 8 (2020).POWO. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. http://www.plantsoftheworldonline.org/ (2021).Chamberlain, S. et al. taxize: Taxonomic information from around the web. R package version 0.9.98. https://github.com/ropensci/taxize (2020).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.r-project.org/ (2021).ITIS. Integrated Taxonomic Information System. https://www.itis.gov/ (2021).Wickham, H. rvest: Easily Harvest (Scrape) Web Pages. R package version 0.3.5. https://cran.r-project.org/package=rvest (2019).Desmet, P. & Page, R. WGSRPD. GitHub repository https://github.com/tdwg/wgsrpd (2018).Chamberlain, S. et al. rgbif: Interface to the Global Biodiversity Information Facility API. R package version 3.6.0. https://cran.r-project.org/package=rgbif (2021).GBIF. GBIF Occurrence Download. https://doi.org/10.15468/dl.uvd56q (2021).Winkler, K., Fuchs, R., Rounsevell, M. & Herold, M. Global land use changes are four times greater than previously estimated. Nat. Commun. 12, 2501 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sippel, S., Meinshausen, N., Fischer, E. M., Székely, E. & Knutti, R. Climate change now detectable from any single day of weather at global scale. Nat. Clim. Chang. 10, 35–41 (2020).ADS 

    Google Scholar 
    Hijmans, R. J. raster: Geographic Data Analysis and Modeling. R package version 3.0-7. https://cran.r-project.org/package=raster (2019).Hernandez, P. A., Graham, C. H., Master, L. L. & Albert, D. L. The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography (Cop.). 29, 773–785 (2006).
    Google Scholar 
    Pearson, R. G., Raxworthy, C. J., Nakamura, M. & Townsend Peterson, A. Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J. Biogeogr. 34, 102–117 (2006).
    Google Scholar 
    Phillips, S. J. & Dudík, M. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography (Cop.). 31, 161–175 (2008).
    Google Scholar 
    Elith, J. et al. A statistical explanation of MaxEnt for ecologists. Divers. Distrib. 17, 43–57 (2011).
    Google Scholar 
    Anderson, R. P. & Raza, A. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. J. Biogeogr. 37, 1378–1393 (2010).
    Google Scholar 
    Själander, M., Jahre, M., Tufte, G. & Reissmann, N. EPIC: An Energy-Efficient, High-Performance GPGPU Computing Research Infrastructure. arXiv 1–4 (2019).Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. R package version 1.1-4. https://cran.r-project.org/package=dismo (2017).Muscarella, R. et al. ENMeval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods Ecol. Evol. 5, 1198–1205 (2014).
    Google Scholar 
    Karger, D. N. et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Karger, D. N. et al. Data from: Climatologies at high resolution for the earth’s land surface areas. Dryad, Dataset https://doi.org/10.5061/dryad.kd1d4 (2018).ESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. http://maps.elie.ucl.ac.be/CCI/viewer/download.php (2017).Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography (Cop.). 38, 541–545 (2015).
    Google Scholar 
    Akaike, H. Information Theory and an Extension of the Maximum Likelihood Principle. in 2nd International Symposium on Information Theory (eds. Petrov, B. N. & Csaki, F.) 267–281 (Akademia Kiado, 1973).Hurvich, C. M. & Tsai, C.-L. Regression and time series model selection in small samples. Biometrika 76, 297–307 (1989).MathSciNet 
    MATH 

    Google Scholar 
    Sugiura, N. Further analysts of the data by akaike’ s information criterion and the finite corrections. Commun. Stat. – Theory Methods 7, 13–26 (1978).MATH 

    Google Scholar 
    Morales, N. S., Fernández, I. C. & Baca-González, V. MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ 5, e3093 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Shcheglovitova, M. & Anderson, R. P. Estimating optimal complexity for ecological niche models: A jackknife approach for species with small sample sizes. Ecol. Modell. 269, 9–17 (2013).
    Google Scholar 
    Warren, D. L. & Seifert, S. N. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342 (2011).PubMed 

    Google Scholar 
    Moran, P. A. P. Notes on Continuous Stochastic Phenomena. Biometrika 37, 17 (1950).MathSciNet 
    CAS 
    MATH 

    Google Scholar 
    Borgelt, J., Sicacha-Parada, J., Skarpaas, O. & Verones, F. Native range estimates for red-listed vascular plants. Dryad, Dataset https://doi.org/10.5061/dryad.qbzkh18h9 (2022).Sing, T., Sander, O., Beerenwinkel, N. & Lengauer, T. ROCR: visualizing classifier performance in R. Bioinformatics 21, 3940–3941 (2005).CAS 
    PubMed 

    Google Scholar 
    Grau, J., Grosse, I. & Keilwagen, J. PRROC: computing and visualizing precision-recall and receiver operating characteristic curves in R. Bioinformatics 31, 2595–2597 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hosmer, D. W., Lemeshow, S. & Sturdivant, R. X. Applied Logistic Regression. The Statistician 45 (Wiley, 2013).Lobo, J. M., Jiménez-Valverde, A. & Real, R. AUC: a misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 17, 145–151 (2008).
    Google Scholar 
    Sofaer, H. R., Hoeting, J. A. & Jarnevich, C. S. The area under the precision‐recall curve as a performance metric for rare binary events. Methods Ecol. Evol. 10, 565–577 (2019).
    Google Scholar 
    Meyer, C., Weigelt, P. & Kreft, H. Multidimensional biases, gaps and uncertainties in global plant occurrence information. Ecol. Lett. 19, 992–1006 (2016).PubMed 

    Google Scholar 
    Caudullo, G., Welk, E. & San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Br. 12, 662–666 (2017).
    Google Scholar 
    Rivers, M. C. Laburnum anagyroides. The IUCN Red List of Threatened Species 2017: e.T79919483A79919650 https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T79919483A79919650.en (2017).Botanic Gardens Conservation International Group & IUCN SSC Global Tree Specialist. Terminalia macrostachya. The IUCN Red List of Threatened Species 2019: e.T150118895A150118897 https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T150118895A150118897.en (2019).Heil, K., Terry, M. & Corral-Díaz, R. Mammillaria grahamii (amended version of 2013 assessment). The IUCN Red List of Threatened Species 2017: e.T152723A121546147 https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T152723A121546147.en (2017).Brooker, M. & Kleinig, D. Field Guide to Eucalypts. (Bloomings Books, 2006).Koopman, M. M. A synopsis of the Malagasy endemic genus Megistostegium Hochr. (Hibisceae, Malvaceae). Adansonia 33, 101–113 (2011).
    Google Scholar 
    World Conservation Monitoring Centre. Memecylon elegantulum. The IUCN Red List of Threatened Species 1998: e.T32597A9713234 https://doi.org/10.2305/IUCN.UK.1998.RLTS.T32597A9713234.en (1998).Landrum, L. R. A revision of the Psidium salutare complex (Myrtaceae). SIDA, Contrib. to Bot. 20, 1449–1469 (2003).
    Google Scholar 
    Tropical Plants Database. Ken Fern. tropical.theferns.info https://tropical.theferns.info/viewtropical.php?id=Psidium+salutare (2021).Bernal, R., Gradstein, S. R. & Celis, M. Siparuna conica S.S.Renner & Hausner. Catálogo de plantas y líquenes de Colombia http://catalogoplantasdecolombia.unal.edu.co (2015).Renner, S. S. & Hausner, G. New Species of Siparuna (Monimiaceae) II. Seven New Species from Ecuador and Colombia. Missouri Bot. Gard. Press 6, 103–116 (1996).
    Google Scholar 
    Melendo, M., Giménez, E., Cano, E., Mercado, F. G. & Valle, F. The endemic flora in the south of the Iberian Peninsula: taxonomic composition, biological spectrum, pollination, reproductive mode and dispersal. Flora – Morphol. Distrib. Funct. Ecol. Plants 198, 260–276 (2003).
    Google Scholar 
    Chari, L. D., Martin, G. D., Steenhuisen, S.-L., Adams, L. D. & Clark, V. R. Biology of Invasive Plants 1. Pyracantha angustifolia (Franch.) C.K. Schneid. Invasive Plant Sci. Manag. 13, 120–142 (2020).
    Google Scholar 
    Sasidharan, N. Amomum pterocarpum Thwaites. India Biodiversity Portal https://indiabiodiversity.org/species/show/258864#habitat-and-distribution (2013).Contu, S. Amomum pterocarpum. The IUCN Red List of Threatened Species 2013: e.T44393013A44450020 https://doi.org/10.2305/IUCN.UK.2013-1.RLTS.T44393013A44450020.en (2013).Babyrose Devi, N., Das, A. & Singh, P. Amomum Pterocarpum (Zingiberaceae): a new record in the flora of Manipur. Int. J. Adv. Res. 6, 546–549 (2018).
    Google Scholar 
    Jetz, W., Sekercioglu, C. H. & Watson, J. E. M. Ecological correlates and conservation implications of overestimating species geographic ranges. Conserv. Biol. 22, 110–9 (2008).PubMed 

    Google Scholar 
    Gibbs, D. & Khela, S. Magnolia pugana. The IUCN Red List of Threatened Species 2014: e.T194806A2363344 https://doi.org/10.2305/IUCN.UK.2014-1.RLTS.T194806A2363344.en (2014).Sayer, C. Vallesia glabra. The IUCN Red List of Threatened Species 2015: e.T62543A72668627 https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T62543A72668627.en (2015).Sánchez Gómez, P., Stevens, D., Fennane, M., Gardner, M. & Thomas, P. Tetraclinis articulata. The IUCN Red List of Threatened Species 2011: e.T30318A9534227 https://doi.org/10.2305/IUCN.UK.2011-2.RLTS.T30318A9534227.en (2011).Article 

    Google Scholar 
    Stritch, L., Roy, S., Shaw, K. & Wilson, B. Corylus cornuta (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T194448A115337731 https://doi.org/10.2305/IUCN.UK.2016-1.RLTS.T194448A2336319.en (2016).Olson, D. M. et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 51, 933–938 (2001).
    Google Scholar 
    Rivers, M. C. Cotoneaster cambricus. The IUCN Red List of Threatened Species 2017: e.T102827479A102827485 https://doi.org/10.2305/IUCN.UK.2017-3.RLTS.T102827479A102827485.en (2017).RStudio Team. RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA http://www.rstudio.com/ (2021).Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. https://cran.r-project.org/package=rgdal (2019).Bivand, R. & Lewin-Koh, N. maptools: Tools for Handling Spatial Objects. R package version 0.9-5. https://cran.r-project.org/package=maptools/ (2019).Bivand, R. & Rundel, C. rgeos: Interface to Geometry Engine – Open Source (‘GEOS’). R package version 0.5-1. https://cran.r-project.org/package=rgeos (2019).Bivand, R. S., Pebesma, E. & Gómez-Rubio, V. Applied Spatial Data Analysis with R. (Springer New York, 2013).Phillips, S. J. & Elith, J. POC plots: calibrating species distribution models with presence-only data. Ecology 91, 2476–2484 (2010).PubMed 

    Google Scholar 
    Hurlbert, A. H. & Jetz, W. Species richness, hotspots, and the scale dependence of range maps in ecology and conservation. Proc. Natl. Acad. Sci. 104, 13384–13389 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jetz, W., McPherson, J. M. & Guralnick, R. P. Integrating biodiversity distribution knowledge: toward a global map of life. Trends Ecol. Evol. 27, 151–159 (2012).PubMed 

    Google Scholar  More

  • in

    Mechanisms of woody-plant mortality under rising drought, CO2 and vapour pressure deficit

    van Mantgem, P. J. et al. Widespread increase of tree mortality rates in the western United States. Science 323, 521–524 (2009).
    Google Scholar 
    Peng, C. et al. A drought-induced pervasive increase in tree mortality across Canada’s boreal forests. Nat. Clim. Chang. 1, 467–471 (2011).
    Google Scholar 
    Brienen, R. J. et al. Long-term decline of the Amazon carbon sink. Nature 519, 344–348 (2015).
    Google Scholar 
    Klein, T., Cahanovitc, R., Sprintsin, M., Herr, N. & Schiller, G. A nation-wide analysis of tree mortality under climate change: forest loss and its causes in Israel 1948–2017. For. Ecol. Manag. 432, 840–849 (2019).
    Google Scholar 
    Yu, K. et al. Pervasive decreases in living vegetation carbon turnover time across forest climate zones. Proc. Natl Acad. Sci. USA 116, 24662–24667 (2019).
    Google Scholar 
    Hubau, W. et al. Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature 579, 80–87 (2020).
    Google Scholar 
    Kharuk, V. I. et al. Climate-driven conifer mortality in Siberia. Glob. Ecol. Biogeogr. 30, 543–556 (2021).
    Google Scholar 
    Breshears, D. D. et al. Regional vegetation die-off in response to global-change-type drought. Proc. Natl Acad. Sci. USA 102, 15144–15148 (2005).
    Google Scholar 
    Lewis, S. L., Brando, P. M., Phillips, O. L., van der Heijden, G. M. & Nepstad, D. The 2010 amazon drought. Science 331, 554 (2011).
    Google Scholar 
    Ruthrof, K. X. et al. Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses. Sci. Rep. 8, 13094 (2018).
    Google Scholar 
    Senf, C. et al. Canopy mortality has doubled in Europe’s temperate forests over the last three decades. Nat. Commun. 9, 4978 (2018).
    Google Scholar 
    Schuldt, B. et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 45, 86–103 (2020).
    Google Scholar 
    Kannenberg, S. A., Driscoll, A. W., Malesky, D. & Anderegg, W. R. Rapid and surprising dieback of Utah juniper in the southwestern USA due to acute drought stress. For. Ecol. Manag. 480, 118639 (2021).
    Google Scholar 
    Allen, C. D., Breshears, D. D. & McDowell, N. G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 6, 1–55 (2015).
    Google Scholar 
    Powers, J. S. et al. A catastrophic tropical drought kills hydraulically vulnerable tree species. Glob. Change Biol. 26, 3122–3133 (2020).
    Google Scholar 
    Werner, W. L. Canopy dieback in the upper montane rain forests of Sri Lanka. GeoJournal 17, 245–248 (1988).
    Google Scholar 
    Feldpausch, T. R. et al. Amazon forest response to repeated droughts. Glob. Biogeochem. Cycles 30, 964–982 (2016).
    Google Scholar 
    Esquivel-Muelbert, A. et al. Tree mode of death and mortality risk factors across Amazon forests. Nat. Commun. 11, 5515 (2020).
    Google Scholar 
    Werner, R. A. & Holsten, E. H. Mortality of white spruce during a spruce beetle outbreak on the Kenai Peninsula in Alaska. Can. J. For. Res. 13, 96–101 (1983).
    Google Scholar 
    Suarez, M. L., Ghermandi, L. & Kitzberger, T. Factors predisposing episodic drought-induced tree mortality in Nothofagus: site, climatic sensitivity and growth trends. J. Ecol. 92, 954–966 (2004).
    Google Scholar 
    Swemmer, A. M. Locally high, but regionally low: the impact of the 2014–2016 drought on the trees of semi-arid savannas, South Africa. Afr. J. Range Forage Sci. 37, 31–42 (2020).
    Google Scholar 
    Michaelian, M., Hogg, E. H., Hall, R. J. & Arsenault, E. Massive mortality of aspen following severe drought along the southern edge of the Canadian boreal forest. Glob. Chang Biol. 17, 2084–2094 (2011).
    Google Scholar 
    Kharuk, V. I. et al. Climate-induced mortality of Siberian pine and fir in the Lake Baikal Watershed, Siberia. For. Ecol. Manag. 384, 191–199 (2017).
    Google Scholar 
    Kharuk, V. I., Ranson, K. J., Oskorbin, P. A., Im, S. T. & Dvinskaya, M. L. Climate induced birch mortality in Trans-Baikal lake region, Siberia. For. Ecol. Manag. 289, 385–392 (2013).
    Google Scholar 
    Crouchet, S. E., Jensen, J., Schwartz, B. F. & Schwinning, S. Tree mortality after a hot drought: distinguishing density-dependent and -independent drivers and why it matters. Front. For. Glob. Change 2, 21 (2019).
    Google Scholar 
    Breshears, D. D. et al. The critical amplifying role of increasing atmospheric moisture demand on tree mortality and associated regional die-off. Front. Plant Sci. 4, 266 (2013).
    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. New Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Chang. 4, 17–22 (2014).
    Google Scholar 
    Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Chang. 3, 292–297 (2013).
    Google Scholar 
    Xu, C. et al. Increasing impacts of extreme droughts on vegetation productivity under climate change. Nat. Clim. Chang. 9, 948–953 (2019).
    Google Scholar 
    Dore, M. H. Climate change and changes in global precipitation patterns: what do we know? Environ. Int. 31, 1167–1181 (2005).
    Google Scholar 
    Ukkola, A. M., De Kauwe, M. G., Roderick, M. L., Abramowitz, G. & Pitman, A. J. Robust future changes in meteorological drought in CMIP6 projections despite uncertainty in precipitation. Geophys. Res. Lett. 31, e2020GL087820 (2020).
    Google Scholar 
    Breshears, D. D. et al. Underappreciated plant vulnerabilities to heat waves. New Phytol. 231, 32–39 (2021).
    Google Scholar 
    Adams, H. D. et al. Temperature response surfaces for mortality risk of tree species with future drought. Environ. Res. Lett. 12, 115014 (2017).
    Google Scholar 
    McDowell, N. G. et al. Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat. Clim. Chang. 6, 295–300 (2016).
    Google Scholar 
    Keenan, T. F. et al. Increase in forest water-use efficiency as atmospheric carbon dioxide concentrations rise. Nature 499, 324–327 (2013).
    Google Scholar 
    Walker, A. P. et al. Integrating the evidence for a terrestrial carbon sink caused by increasing atmospheric CO2. New Phytol. 229, 2413–2445 (2020).
    Google Scholar 
    Long, S. P. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: has its importance been underestimated? Plant Cell Environ. 14, 729–739 (1991).
    Google Scholar 
    Hickler, T. et al. CO2 fertilization in temperate FACE experiments not representative of boreal and tropical forests. Glob. Change Biol. 14, 1531–1542 (2008).
    Google Scholar 
    Baig, S., Medlyn, B. E., Mercado, L. & Zaehle, S. Does the growth response of woody plants to elevated CO2 increase with temperature? A model-oriented meta-analysis. Glob. Change Biol. 21, 4303–4319 (2015).
    Google Scholar 
    Peñuelas, J. et al. Shifting from a fertilization-dominated to a warming-dominated period. Nat. Ecol. Evol. 1, 1438–1445 (2017).
    Google Scholar 
    Belmecheri, S. et al. Precipitation alters the CO2 effect on water-use efficiency of temperate forests. Glob. Change Biol. 27, 1560–1571 (2021).
    Google Scholar 
    Duffy, K. A. et al. How close are we to the temperature tipping point of the terrestrial biosphere? Sci. Adv. 7, eaay1052 (2021).
    Google Scholar 
    De Kauwe, M. G., Medlyn, B. E. & Tissue, D. T. To what extent can rising [CO2] ameliorate plant drought stress? New Phytol. 231, 2118–2124 (2021).
    Google Scholar 
    Martınez-Vilalta, J., Piñol, J. & Beven, K. A hydraulic model to predict drought-induced mortality in woody plants: an application to climate change in the Mediterranean. Ecol. Model. 155, 127–147 (2002).
    Google Scholar 
    McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).
    Google Scholar 
    McDowell, N. G. et al. The interdependence of mechanisms underlying climate-driven vegetation mortality. Trends Ecol. Evol. 26, 523–532 (2011).
    Google Scholar 
    Adams, H. D. et al. A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nat. Ecol. Evol. 1, 1285–1291 (2017).
    Google Scholar 
    Fisher, R. et al. Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytol. 187, 666–681 (2010).
    Google Scholar 
    McDowell, N. G. et al. Evaluating theories of drought-induced vegetation mortality using a multimodel–experiment framework. New Phytol. 200, 304–321 (2013).
    Google Scholar 
    Anderegg, W. R. L. et al. Hydraulic diversity of forests regulates ecosystem resilience during drought. Nature 561, 538–541 (2018).
    Google Scholar 
    Christoffersen, B. O. et al. Linking hydraulic traits to tropical forest function in a size-structured and trait-driven model (TFS v. 1-Hydro). Geosci. Model Dev. 9, 4227–4255 (2016).
    Google Scholar 
    Kennedy, D. et al. Implementing plant hydraulics in the community land model, version 5. J. Adv. Model. Earth Syst. 11, 485–513 (2019).
    Google Scholar 
    Koven, C. D. et al. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences 17, 3017–3044 (2020).
    Google Scholar 
    Anderegg, W. R., Kane, J. M. & Anderegg, L. D. Consequences of widespread tree mortality triggered by drought and temperature stress. Nat. Clim. Chang. 3, 30–36 (2013).
    Google Scholar 
    Hartmann, H. et al. Research frontiers for improving our understanding of drought-induced tree and forest mortality. New Phytol. 218, 15–28 (2018).
    Google Scholar 
    Adams, H. D. et al. Ecohydrological consequences of drought- and infestation-triggered tree die-off: insights and hypotheses. Ecohydrology 5, 145–159 (2012).
    Google Scholar 
    Bearup, L. A., Maxwell, R. M., Clow, D. W. & McCray, J. E. Hydrological effects of forest transpiration loss in bark beetle-impacted watersheds. Nat. Clim. Chang. 4, 481–486 (2014).
    Google Scholar 
    Bennett, K. E. et al. Climate-driven disturbances in the San Juan River sub-basin of the Colorado River. Hydrol. Earth Syst. Sci. 22, 709–725 (2018).
    Google Scholar 
    Lutz, J. A. & Halpern, C. B. Tree mortality during early forest development: a long-term study of rates, causes, and consequences. Ecol. Monogr. 76, 257–275 (2006).
    Google Scholar 
    Clark, J. S. et al. The impacts of increasing drought on forest dynamics, structure, and biodiversity in the United States. Glob. Change Biol. 22, 2329–2352 (2016).
    Google Scholar 
    McDowell, N. G. et al. Pervasive shifts in forest dynamics in a changing world. Science 368, eaaz9463 (2020).
    Google Scholar 
    Waring, K. M. et al. Modeling the impacts of two bark beetle species under a warming climate in the southwestern USA: ecological and economic consequences. Environ. Manag. 44, 824–835 (2009).
    Google Scholar 
    Barigah, T. S. et al. Water stress-induced xylem hydraulic failure is a causal factor of tree mortality in beech and poplar. Ann. Bot. 112, 1431–1437 (2013).
    Google Scholar 
    Guadagno, C. R. et al. Dead or alive? Using membrane failure and chlorophyll a fluorescence to predict plant mortality from drought. Plant Physiol. 175, 223–234 (2017).
    Google Scholar 
    Hammond, W. M. et al. Dead or dying? Quantifying the point of no return from hydraulic failure in drought-induced tree mortality. New Phytol. 223, 1834–1843 (2019).
    Google Scholar 
    Sapes, G. et al. Plant water content integrates hydraulics and carbon depletion to predict drought-induced seedling mortality. Tree Physiol. 39, 1300–1312 (2019).
    Google Scholar 
    Mantova, M., Menezes-Silva, P. E., Badel, E., Cochard, H. & Torres-Ruiz, J. M. The interplay of hydraulic failure and cell vitality explains tree capacity to recover from drought. Physiol. Plant. 172, 247–257 (2021).
    Google Scholar 
    Kono, Y. et al. Initial hydraulic failure followed by late-stage carbon starvation leads to drought-induced death in the tree Trema orientalis. Commun. Biol. 2, 8 (2019).
    Google Scholar 
    Preisler, Y. et al. Seeking the “point of no return” in the sequence of events leading to mortality of mature trees. Plant Cell Environ. 44, 1315–1328 (2020).
    Google Scholar 
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 259, 660–684 (2010).
    Google Scholar 
    Bennett, A. C. et al. Resistance of African tropical forests to an extreme climate anomaly. Proc. Natl Acad. Sci. USA 118, e2003169118 (2021).
    Google Scholar 
    McDowell, N. G. & Allen, C. D. Darcy’s law predicts widespread forest mortality under climate warming. Nat. Clim. Chang. 5, 669–672 (2015).
    Google Scholar 
    Stephenson, N. L. & van Mantgem, P. J. Forest turnover rates follow global and regional patterns of productivity. Ecol. Lett. 8, 524–531 (2005).
    Google Scholar 
    Zhu, K. C. et al. Dual impacts of climate change: forest migration and turnover through life history. Glob. Change Biol. 20, 251–264 (2014).
    Google Scholar 
    Jump, A. S. et al. Structural overshoot of tree growth with climate variability and the global spectrum of drought-induced forest dieback. Glob. Change Biol. 23, 3742–3757 (2017).
    Google Scholar 
    Trugman, A. T. et al. Tree carbon allocation explains forest drought-kill and recovery patterns. Ecol. Lett. 21, 1552–1560 (2018).
    Google Scholar 
    Hartmann, H. et al. Climate change risks to global forest health – emergence of unexpected events of elevated tree mortality world-wide. Annu. Rev. Plant Biol. https://doi.org/10.1146/annurev-arplant-102820-012804 (2022).Article 

    Google Scholar 
    Manion, P. D. Tree Disease Concepts (Prentice-Hall, 1981)Brodribb, T. J. Learning from a century of droughts. Nat. Ecol. Evol. 4, 1007–1008 (2020).
    Google Scholar 
    Anderegg, W. R. et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 208, 674–683 (2015).
    Google Scholar 
    Huang, J. et al. Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytol. 225, 26–36 (2019).
    Google Scholar 
    Martinez-Vilalta, J., Anderegg, W. R., Sapes, G. & Sala, A. Greater focus on water pools may improve our ability to understand and anticipate drought-induced mortality in plants. New Phytol. 223, 22–32 (2019).
    Google Scholar 
    Cuneo, I. F., Knipfer, T., Brodersen, C. R. & McElrone, A. J. Mechanical failure of fine root cortical cells initiates plant hydraulic decline during drought. Plant Physiol. 172, 1669–1678 (2016).
    Google Scholar 
    Johnson, D. M. et al. Co-occurring woody species have diverse hydraulic strategies and mortality rates during an extreme drought. Plant Cell Environ. 41, 576–588 (2018).
    Google Scholar 
    Cochard, H. A new mechanism for tree mortality due to drought and heatwaves. Peer Community J. 1, e36 (2021).
    Google Scholar 
    Duursma, R. A. et al. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. New Phytol. 221, 693–705 (2019).
    Google Scholar 
    Beckett, R. P. Pressure–volume analysis of a range of poikilohydric plants implies the existence of negative turgor in vegetative cells. Ann. Bot. 79, 145–152 (1997).
    Google Scholar 
    Ding, Y., Zhang, Y., Zheng, Q. S. & Tyree, M. T. Pressure–volume curves: revisiting the impact of negative turgor during cell collapse by literature review and simulations of cell micromechanics. New Phytol. 203, 378–387 (2014).
    Google Scholar 
    Sperry, J. S., Adler, F. R., Campbell, G. S. & Comstock, J. P. Limitation of plant water use by rhizosphere and xylem conductance: results from a model. Plant Cell Environ. 21, 347–359 (1998).
    Google Scholar 
    Rodriguez-Dominguez, C. M. & Brodribb, T. J. Declining root water transport drives stomatal closure in olive under moderate water stress. New Phytol. 225, 126–134 (2020).
    Google Scholar 
    Carminati, A. & Javaux, M. Soil rather than xylem vulnerability controls stomatal response to drought. Trends Plant Sci. 25, 868–880 (2020).
    Google Scholar 
    Maseda, P. H. & Fernandez, R. J. Stay wet or else: three ways in which plants can adjust hydraulically to their environment. J. Exp. Bot. 57, 3963–3977 (2006).
    Google Scholar 
    Plaut, J. A. et al. Hydraulic limits preceding mortality in a piñon–juniper woodland under experimental drought. Plant Cell Environ. 35, 1601–1617 (2012).
    Google Scholar 
    Creek, D. et al. Xylem embolism in leaves does not occur with open stomata: evidence from direct observations using the optical visualization technique. J. Exp. Bot. 71, 1151–1159 (2020).
    Google Scholar 
    Choat, B. et al. Triggers of tree mortality under drought. Nature 558, 531–539 (2018).
    Google Scholar 
    Hammond, W. M. & Adams, H. D. Dying on time: traits influencing the dynamics of tree mortality risk from drought. Tree Physiol. 39, 906–909 (2019).
    Google Scholar 
    Körner, C. No need for pipes when the well is dry — a comment on hydraulic failure in trees. Tree Physiol. 39, 695–700 (2019).
    Google Scholar 
    Machado, R. et al. Where do leaf water leaks come from? Trade-offs underlying the variability in minimum conductance across tropical savanna species with contrasting growth strategies. New Phytol. 229, 1415–1430 (2021).
    Google Scholar 
    Burghardt, M. & Riederer, M. in Biology of the Plant Cuticle (eds Riederer, M. & Müller, C.) 292–311 (Blackwell, 2006).Billon, L. M. et al. The DroughtBox: a new tool for phenotyping residual branch conductance and its temperature dependence during drought. Plant Cell Environ. 43, 1584–1594 (2020).
    Google Scholar 
    Wolfe, B. T. Bark water vapour conductance is associated with drought performance in tropical trees. Biol. Lett. 16, 20200263 (2020).
    Google Scholar 
    Martín-Gómez, P., Serrano, L. & Ferrio, J. P. Short-term dynamics of evaporative enrichment of xylem water in woody stems: implications for ecohydrology. Tree Physiol. 37, 511–522 (2017).
    Google Scholar 
    Arend, M. et al. Rapid hydraulic collapse as cause of drought-induced mortality in conifers. Proc. Natl Acad. Sci. USA 118, e2025251118 (2021).
    Google Scholar 
    Wang, W. et al. Mortality predispositions of conifers across western USA. New Phytol. 229, 831–844 (2020).
    Google Scholar 
    Christiansen, E., Waring, R. H. & Berryman, A. A. Resistance of conifers to bark beetle attack: searching for general relationships. For. Ecol. Manag. 22, 89–106 (1987).
    Google Scholar 
    Bigler, C., Bräker, O. U., Bugmann, H., Dobbertin, M. & Rigling, A. Drought as an inciting mortality factor in Scots pine stands of the Valais, Switzerland. Ecosystems 9, 330–343 (2006).
    Google Scholar 
    Richardson, A. D. et al. Seasonal dynamics and age of stemwood nonstructural carbohydrates in temperate forest trees. New Phytol. 197, 850–861 (2013).
    Google Scholar 
    Meinzer, F. C. et al. Dynamics of water transport and storage in conifers studied with deuterium and heat tracing techniques. Plant Cell Environ. 29, 105–114 (2006).
    Google Scholar 
    McDowell, N. G., Allen, C. D. & Marshall, L. Growth, carbon-isotope discrimination, and drought-associated mortality across a Pinus ponderosa elevational transect. Glob. Change Biol. 16, 399–415 (2010).
    Google Scholar 
    Kane, J. M. & Kolb, T. E. Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack. Oecologia 164, 601–609 (2010).
    Google Scholar 
    Ferrenberg, S., Kane, J. M. & Mitton, J. B. Resin duct characteristics associated with tree resistance to bark beetles across lodgepole and limber pines. Oecologia 174, 1283–1292 (2014).
    Google Scholar 
    Cailleret, M. et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Change Biol. 23, 1675–1690 (2017).
    Google Scholar 
    Muller, B., Pantin, F., Génard, M., Turc, O., Freixes, S., Piques, M. & Gibon, Y. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J. Exp. Bot. 62, 1715–1729 (2011).
    Google Scholar 
    Yu, S. Cellular and genetic responses of plants to sugar starvation. Plant Physiol. 121, 687–693 (1999).
    Google Scholar 
    Koster, K. L. & Leopold, A. C. Sugars and desiccation tolerance in seeds. Plant Physiol. 88, 829–832 (1988).
    Google Scholar 
    Sapes, G., Demaree, P., Lekberg, Y. & Sala, A. Plant carbohydrate depletion impairs water relations and spreads via ectomycorrhizal networks. New Phytol. 229, 3172–3183 (2021).
    Google Scholar 
    Hoekstra, F. A., Golovina, E. A. & Buitink, J. Mechanisms of plant desiccation tolerance. Trends Plant Sci. 6, 431–438 (2001).
    Google Scholar 
    Van den Ende, W. & Valluru, R. Sucrose, sucrosyl oligosaccharides, and oxidative stress: scavenging and salvaging? J. Exp. Bot. 60, 9–18 (2009).
    Google Scholar 
    Matros, A., Peshev, D., Peukert, M., Mock, H.-P. & Ende, W. Vden Sugars as hydroxyl radical scavengers: proof-of-concept by studying the fate of sucralose in Arabidopsis. Plant J. 82, 822–839 (2015).
    Google Scholar 
    Rolland, F., Baena-González, E. & Sheen, J. Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 57, 675–709 (2006).
    Google Scholar 
    Ramel, F., Sulmon, C., Bogard, M., Couée, I. & Gouesbet, G. Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol. 9, 28 (2009).
    Google Scholar 
    Fine, P. V. A. et al. The growth–defense trade-off and habitat specialization by plants in Amazonian forests. Ecology 87, S150–S162 (2006).
    Google Scholar 
    Huot, B., Yao, J., Montgomery, B. L. & He, S. Y. Growth–defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7, 1267–1287 (2014).
    Google Scholar 
    Ouédraogo, D.-Y., Mortier, F., Gourlet-Fleury, S., Freycon, V. & Picard, N. Slow-growing species cope best with drought: evidence from long-term measurements in a tropical semi-deciduous moist forest of Central Africa. J. Ecol. 101, 1459–1470 (2013).
    Google Scholar 
    de la Mata, R., Hood, S. & Sala, A. Insect outbreak shifts the direction of selection from fast to slow growth rates in the long-lived conifer Pinus ponderosa. Proc. Natl Acad. Sci. USA 114, 7391–7396 (2017).
    Google Scholar 
    Roskilly, B., Keeling, E., Hood, S., Giuggiola, A. & Sala, A. Conflicting functional effects of xylem pit structure relate to the growth-longevity trade-off in a conifer species. Proc. Natl Acad. Sci. USA 116, 15282–15287 (2019).
    Google Scholar 
    Snyder, K. A. & Williams, D. G. Defoliation alters water uptake by deep and shallow roots of Prosopis velutina (Velvet Mesquite). Funct. Ecol. 17, 363–374 (2003).
    Google Scholar 
    Eyles, A., Pinkard, E. A. & Mohammed, C. Shifts in biomass and resource allocation patterns following defoliation in Eucalyptus globulus growing with varying water and nutrient supplies. Tree Physiol. 29, 753–764 (2009).
    Google Scholar 
    Hillabrand, R. M., Hacke, U. G. & Lieffers, V. J. Defoliation constrains xylem and phloem functionality. Tree Physiol. 39, 1099–1108 (2019).
    Google Scholar 
    Landhäusser, S. M. & Lieffers, V. J. Defoliation increases risk of carbon starvation in root systems of mature aspen. Trees 26, 653–661 (2012).
    Google Scholar 
    Poyatos, R., Aguadé, D., Galiano, L., Mencuccini, M. & Martínez-Vilalta, J. Drought-induced defoliation and long periods of near-zero gas exchange play a key role in accentuating metabolic decline of Scots pine. New Phytol. 200, 388–401 (2013).
    Google Scholar 
    Cardoso, A. A., Batz, T. A. & McAdam, S. A. Xylem embolism resistance determines leaf mortality during drought in Persea americana. Plant Physiol. 182, 547–554 (2020).
    Google Scholar 
    Mencuccini, M. et al. Leaf economics and plant hydraulics drive leaf:wood area ratios. New Phytol. 224, 1544–1556 (2019).
    Google Scholar 
    Cochard, H., Pimont, F., Ruffault, J. & Martin-St Paul, N. SurEau: a mechanistic model of plant water relations under extreme drought. Ann. Forest Sci. 78, 1–23 (2021).
    Google Scholar 
    Yin, M. C. & Blaxter, J. H. S. Temperature, salinity tolerance, and buoyancy during early development and starvation of Clyde and North Sea herring, cod, and flounder larvae. J. Exp. Mar. Biol. Ecol 107, 279–290 (1987).
    Google Scholar 
    Cahill, G. F. Jr. Fuel metabolism in starvation. Annu. Rev. Nutr. 26, 1–22 (2006).
    Google Scholar 
    Yandi, I. & Altinok, I. Irreversible starvation using RNA/DNA on lab-grown larval anchovy, Engraulis encrasicolus, and evaluating starvation in the field-caught larval cohort. Fish. Res. 201, 32–37 (2018).
    Google Scholar 
    Smith, A. M. & Stitt, M. Coordination of carbon supply and plant growth. Plant Cell Environ. 30, 1126–1149 (2007).
    Google Scholar 
    Schädel, C., Richter, A., Blöchl, A. & Hoch, G. Hemicellulose concentration and composition in plant cell walls under extreme carbon source–sink imbalances. Physiol. Plant. 139, 241–255 (2010).
    Google Scholar 
    Tsamir-Rimon, M. et al. Rapid starch degradation in the wood of olive trees under heat and drought is permitted by three stress-specific beta amylases. New Phytol. 229, 1398–1414 (2020).
    Google Scholar 
    McLoughlin, F. et al. Autophagy plays prominent roles in amino acid, nucleotide, and carbohydrate metabolism during fixed-carbon starvation in maize. Plant Cell 32, 2699–2724 (2020).
    Google Scholar 
    Quirk, J., McDowell, N. G., Leake, J. R., Hudson, P. J. & Beerling, D. J. Increased susceptibility to drought-induced mortality in Sequoia sempervirens (Cupressaceae) trees under Cenozoic atmospheric carbon dioxide starvation. Am. J. Bot. 100, 582–591 (2013).
    Google Scholar 
    Sevanto, S., Mcdowell, N. G., Dickman, L. T., Pangle, R. & Pockman, W. T. How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ. 37, 153–161 (2014).
    Google Scholar 
    Tomasella, M., Petrussa, E., Petruzzellis, F., Nardini, A. & Casolo, V. The possible role of non-structural carbohydrates in the regulation of tree hydraulics. Int. J. Mol. Sci. 21, 144 (2020).
    Google Scholar 
    Gaylord, M. L. et al. Drought predisposes piñon–juniper woodlands to insect attacks and mortality. New Phytol. 198, 567–578 (2013).
    Google Scholar 
    Dickman, L. T., McDowell, N. G., Sevanto, S., Pangle, R. E. & Pockman, W. T. Carbohydrate dynamics and mortality in a piñon-juniper woodland under three future precipitation scenarios. Plant Cell Environ. 38, 729–739 (2015).
    Google Scholar 
    Ruehr, N. K. et al. Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol. 184, 950–961 (2009).
    Google Scholar 
    Mencuccini, M., Minunno, F., Salmon, Y., Martínez-Vilalta, J. & Hölttä, T. Coordination of physiological traits involved in drought-induced mortality of woody plants. New Phytol. 208, 396–409 (2015).
    Google Scholar 
    Hagedorn, F. et al. Recovery of trees from drought depends on belowground sink control. Nat. Plants 2, 16111 (2016).
    Google Scholar 
    Hesse, B. D., Goisser, M., Hartmann, H. & Grams, T. E. E. Repeated summer drought delays sugar export from the leaf and impairs phloem transport in mature beech. Tree Physiol. 39, 192–200 (2019).
    Google Scholar 
    Wiley, E., Hoch, G. & Landhäusser, S. M. Dying piece by piece: carbohydrate dynamics in aspen (Populus tremuloides) seedlings under severe carbon stress. J. Exp. Bot. 68, 5221–5232 (2017).
    Google Scholar 
    Weber, R. et al. Living on next to nothing: tree seedlings can survive weeks with very low carbohydrate concentrations. New Phytol. 218, 107–118 (2018).
    Google Scholar 
    Hasanuzzaman, M. & Tanveer, M. (eds) Salt and Drought Stress Tolerance in Plants: Signaling Networks and Adaptive Mechanisms (Springer, 2020)O’Brien, M. J., Leuzinger, S., Philipson, C. D., Tay, J. & Hector, A. Drought survival of tropical tree seedlings enhanced by non-structural carbohydrate levels. Nat. Clim. Chang. 4, 710–714 (2014).
    Google Scholar 
    Nardini, A. et al. Rooting depth, water relations and non-structural carbohydrate dynamics in three woody angiosperms differentially affected by an extreme summer drought. Plant Cell Environ. 39, 618–627 (2016).
    Google Scholar 
    Zinselmeier, C., Westgate, M. E., Schussler, J. R. & Jones, R. J. Low water potential disrupts carbohydrate metabolism in maize (Zea mays L.) ovaries. Plant Physiol. 107, 385–391 (1995).
    Google Scholar 
    Desprez-Loustau, M.-L., Marçais, B., Nageleisen, L.-M., Piou, D. & Vannini, A. Interactive effects of drought and pathogens in forest trees. Ann. For. Sci. 63, 597–612 (2006).
    Google Scholar 
    Oliva, J., Stenlid, J. & Martínez-Vilalta, J. The effect of fungal pathogens on the water and carbon economy of trees: implications for drought-induced mortality. New Phytol. 203, 1028–1035 (2014).
    Google Scholar 
    Kolb, T. et al. Drought-mediated changes in tree physiological processes weaken tree defenses to bark beetle attack. J. Chem. Ecol. 45, 888–900 (2019).
    Google Scholar 
    Croize, L., Lieutier, F., Cochard, H. & Dreyer, E. Effects of drought stress and high density stem inoculations with Leptographium wingfieldii on hydraulic properties of young Scots pine trees. Tree Physiol. 21, 427–436 (2001).
    Google Scholar 
    Wullschleger, S. D., McLaughlin, S. B. & Ayres, M. P. High-resolution analysis of stem increment and sap flow for loblolly pine trees attacked by southern pine beetle. Can. J. For. Res. 34, 387–2393 (2004).
    Google Scholar 
    Hubbard, R. M., Rhoades, C. C., Elder, K. & Negron, J. Changes in transpiration and foliage growth in lodgepole pine trees following mountain pine beetle attack and mechanical girdling. For. Ecol. Manag. 289, 312–317 (2013).
    Google Scholar 
    Manter, D. K. & Kavanagh, K. L. Stomatal regulation in Douglas fir following a fungal-mediated chronic reduction in leaf area. Trees 17, 485–491 (2003).
    Google Scholar 
    Lahr, E. L. & Sala, A. Sapwood stored resources decline in whitebark and lodgepole pines attacked by mountain pine beetles (Coleoptera: Curculionidae). Environ. Entomol. 45, 1463–1475 (2016).
    Google Scholar 
    Marler, T. E. & Cascasan, A. N. Carbohydrate depletion during lethal infestation of Aulacaspis yasumatsui on Cycas revoluta. Int. J. Plant Sci. 179, 497–504 (2018).
    Google Scholar 
    Hood, S. & Sala, A. Ponderosa pine resin defenses and growth: metrics matter. Tree Physiol. 35, 1223–1235 (2015).
    Google Scholar 
    Roth, M., Hussain, A., Cale, J. A. & Erbilgin, N. Successful colonization of lodgepole pine trees by mountain pine beetle increased monoterpene production and exhausted carbohydrate reserves. J. Chem. Ecol. 44, 209–214 (2018).
    Google Scholar 
    Raffa, K. F. et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience 58, 501–517 (2008).
    Google Scholar 
    Seidl, R., Schelhaas, M. J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 4, 806–810 (2014).
    Google Scholar 
    Ryan, M. G., Sapes, G., Sala, A. & Hood, S. M. Tree physiology and bark beetles. New Phytol. 205, 955–957 (2015).
    Google Scholar 
    Huang, J. et al. Tree defence and bark beetles in a drying world: carbon partitioning, functioning and modelling. New Phytol. 225, 26–36 (2020).
    Google Scholar 
    Goodsman, D. W., Lusebrink, I., Landhäusser, S. M., Erbilgin, N. & Lieffers, V. J. Variation in carbon availability, defense chemistry and susceptibility to fungal invasion along the stems of mature trees. New Phytol. 197, 586–594 (2013).
    Google Scholar 
    Wiley, E., Rogers, B. J., Hodgkinson, R. & Landhäusser, S. M. Nonstructural carbohydrate dynamics of lodgepole pine dying from mountain pine beetle attack. New Phytol. 209, 550–562 (2016).
    Google Scholar 
    Netherer, S. et al. Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytol. 205, 1128–1141 (2015).
    Google Scholar 
    Rissanen, K. et al. Drought effects on carbon allocation to resin defences and on resin dynamics in old-grown Scots pine. Environ. Exp. Bot. 185, 104410 (2021).
    Google Scholar 
    Gershenzon, J. Metabolic costs of terpenoid accumulation in higher plants. J. Chem. Ecol. 20, 1281–1328 (1994).
    Google Scholar 
    Navarro, L. et al. DELLAs control plant immune responses by modulating the balance of jasmonic acid and salicylic acid signaling. Curr. Biol. 1, 650–655 (2008).
    Google Scholar 
    Fox, H. et al. Transcriptome analysis of Pinus halepensis under drought stress and during recovery. Tree Physiol. 38, 423–441 (2018).
    Google Scholar 
    Caretto, S., Linsalata, V., Colella, G., Mita, G. & Lattanzio, V. Carbon fluxes between primary metabolism and phenolic pathway in plant tissues under stress. Int. J. Mol. Sci. 16, 26378–26394 (2015).
    Google Scholar 
    Franceschi, V. R., Krokene, P., Christiansen, E. & Krekling, T. Anatomical and chemical defenses of conifer bark against bark beetles and other pests. New Phytol. 167, 353–376 (2005).
    Google Scholar 
    Suárez-Vidal, E. et al. Drought stress modifies early effective resistance and induced chemical defences of Aleppo pine against a chewing insect herbivore. Environ. Exp. Bot. 162, 550–559 (2019).
    Google Scholar 
    Hood, S., Sala, A., Heyerdahl, E. K. & Boutin, M. Low-severity fire increases tree defense against bark beetle attacks. Ecology 96, 1846–1855 (2015).
    Google Scholar 
    Zhao, S. & Erbilgin, N. Larger resin ducts are linked to the survival of lodgepole pine trees during mountain pine beetle outbreak. Front. Plant Sci. 10, 1459 (2019).
    Google Scholar 
    Kichas, N. E., Hood, S. M., Pederson, G. T., Everett, R. G. & McWethy, D. B. Whitebark pine (Pinus albicaulis) growth and defense in response to mountain pine beetle outbreaks. For. Ecol. Manag. 457, 117736 (2020).
    Google Scholar 
    Gaylord, M. L., Kolb, T. E. & McDowell, N. G. Mechanisms of piñon pine mortality after severe drought: a retrospective study of mature trees. Tree Physiol. 35, 806–816 (2015).
    Google Scholar 
    Anderegg, W. et al. Tree mortality predicted from drought-induced vascular damage. Nat. Geosci. 8, 367–371 (2015).
    Google Scholar 
    De Kauwe, M. G. et al. Identifying areas at risk of drought-induced tree mortality across South-Eastern Australia. Glob. Change Biol. 26, 5716–5733 (2020).
    Google Scholar 
    Sperry, J. S. et al. The impact of rising CO2 and acclimation on the response of US forests to global warming. Proc. Natl Acad. Sci. USA 116, 25734–25744 (2019).
    Google Scholar 
    Medlyn, B. E. et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 149, 247–264 (2001).
    Google Scholar 
    Klein, T. & Ramon, U. Stomatal sensitivity to CO2 diverges between angiosperm and gymnosperm tree species. Funct. Ecol. 33, 1411–1424 (2019).
    Google Scholar 
    Paudel, I. et al. Elevated CO2 compensates for drought effects in lemon saplings via stomatal downregulation, increased soil moisture, and increased wood carbon storage. Environ. Exp. Bot. 148, 117–127 (2018).
    Google Scholar 
    Bobich, E. G., Barron-Gafford, G. A., Rascher, K. G. & Murthy, R. Effects of drought and changes in vapour pressure deficit on water relations of Populus deltoides growing in ambient and elevated CO2. Tree Physiol. 30, 866–875 (2010).
    Google Scholar 
    Gimeno, T. E., McVicar, T. R., O’Grady, A. P., Tissue, D. T. & Ellsworth, D. S. Elevated CO2 did not affect the hydrological balance of a mature native Eucalyptus woodland. Glob. Change Biol. 24, 3010–3024 (2018).
    Google Scholar 
    Nowak, R. S. et al. Elevated atmospheric CO2 does not conserve soil water in the mojave desert. Ecology 85, 93–99 (2004).
    Google Scholar 
    Schäfer, K. V., Oren, R., Lai, C. T. & Katul, G. G. Hydrologic balance in an intact temperate forest ecosystem under ambient and elevated atmospheric CO2 concentration. Glob. Change Biol. 8, 895–911 (2002).
    Google Scholar 
    Novick, K. A., Katul, G. G., McCarthy, H. R. & Oren, R. Increased resin flow in mature pine trees growing under elevated CO2 and moderate soil fertility. Tree Physiol. 32, 752–763 (2012).
    Google Scholar 
    Li, X. M. et al. Temperature alters the response of hydraulic architecture to CO2 in cotton plants (Gossypium hirsutum). Environ. Exp. Bot. 172, 104004 (2020).
    Google Scholar 
    Li, W. et al. The sweet side of global change–dynamic responses of non-structural carbohydrates to drought, elevated CO2 and nitrogen fertilization in tree species. Tree Physiol. 38, 1706–1723 (2018).
    Google Scholar 
    Duan, H. et al. Elevated [CO2] does not ameliorate the negative effects of elevated temperature on drought-induced mortality in Eucalyptus radiata seedlings. Plant Cell Environ. 37, 1598–1613 (2014).
    Google Scholar 
    Duan, H. et al. CO2 and temperature effects on morphological and physiological traits affecting risk of drought-induced mortality. Tree Physiol. 38, 1138–1151 (2018).
    Google Scholar 
    Zavala, J. A., Nabity, P. D. & DeLucia, E. H. An emerging understanding of mechanisms governing insect herbivory under elevated CO2. Annu. Rev. Entomol. 58, 79–97 (2013).
    Google Scholar 
    Kazan, K. Plant-biotic interactions under elevated CO2: a molecular perspective. Environ. Exp. Bot. 153, 249–261 (2018).
    Google Scholar 
    Gessler, A., Schaub, M. & McDowell, N. G. The role of nutrients in drought-induced tree mortality and recovery. New Phytol. 214, 513–520 (2017).
    Google Scholar 
    Mackay, D. S. et al. Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought. Water Resour. Res. 51, 6156–6176 (2015).
    Google Scholar 
    Mackay, D. S. et al. Conifers depend on established roots during drought: results from a coupled model of carbon allocation and hydraulics. New Phytol. 225, 679–692 (2020).
    Google Scholar 
    Tai, X. et al. Plant hydraulic stress explained tree mortality and tree size explained beetle attack in a mixed conifer forest. J. Geophys. Res. Biogeosci. 124, 3555–3568 (2019).
    Google Scholar 
    Sala, A., Piper, F. & Hoch, G. Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol. 186, 274–281 (2010).
    Google Scholar 
    Limousin, J. M. et al. Regulation and acclimation of leaf gas exchange in a piñon–juniper woodland exposed to three different precipitation regimes. Plant Cell Environ. 36, 1812–1825 (2013).
    Google Scholar 
    Sorek, Y. et al. An increase in xylem embolism resistance of grapevine leaves during the growing season is coordinated with stomatal regulation, turgor loss point and intervessel pit membranes. New Phytol. 229, 1955–1969 (2021).
    Google Scholar 
    Hudson, P. J. et al. Impacts of long-term precipitation manipulation on hydraulic architecture and xylem anatomy of piñon and juniper in Southwest USA. Plant Cell Environ. 41, 421–435 (2018).
    Google Scholar 
    Warren, J. M., Norby, R. J. & Wullschleger, S. D. Elevated CO2 enhances leaf senescence during extreme drought in a temperate forest. Tree Physiol. 31, 117–130 (2011).
    Google Scholar 
    Matusick, G. et al. Chronic historical drought legacy exacerbates tree mortality and crown dieback during acute heatwave-compounded drought. Environ. Res. Lett. 13, 095002 (2018).
    Google Scholar 
    Shirley, H. L. Lethal high temperatures for conifers, and the cooling effect of transpiration. J. Agric. Res. 53, 239–258 (1936).
    Google Scholar 
    Fisher, R. A. & Koven, C. D. Perspectives on the future of land surface models and the challenges of representing complex terrestrial systems. J. Adv. Model. Earth Syst. 12, e2018MS001453 (2020).
    Google Scholar 
    Menzel, A., Sparks, T. H., Estrella, N. & Roy, D. B. Altered geographic and temporal variability in phenology in response to climate change. Glob. Ecol. Biogeogr. 15, 498–504 (2006).
    Google Scholar 
    Keenan, T. F. et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat. Clim. Chang. 4, 598–604 (2014).
    Google Scholar 
    Nakamura, T. et al. Tree hazards compounded by successive climate extremes after masting in a small endemic tree, Distylium lepidotum, on subtropical islands in Japan. Glob. Change Biol 27, 5094–5108 (2021).
    Google Scholar 
    Hummel, I. et al. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol. 154, 357–372 (2010).
    Google Scholar 
    Jamieson, M. A., Trowbridge, A. M., Raffa, K. F. & Lindroth, R. L. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol. 160, 1719–1727 (2012).
    Google Scholar 
    Mithöfer, A. & Boland, W. Plant defense against herbivores: chemical aspects. Annu. Rev. Plant Biol. 63, 431–450 (2012).
    Google Scholar 
    Netherer, S. et al. Interactions among Norway spruce, the bark beetle Ips typographus and its fungal symbionts in times of drought. J. Pest Sci. 94, 591–614 (2021).
    Google Scholar 
    Love, D. M. et al. Dependence of aspen stands on a subsurface water subsidy: implications for climate change impacts. Water Resour. Res. 55, 1833–1848 (2019).
    Google Scholar 
    McDowell, N. G. et al. Mechanisms of a coniferous woodland persistence under drought and heat. Environ. Res. Lett. 14, 045014 (2019).
    Google Scholar 
    Rozendaal, D. M. et al. Competition influences tree growth, but not mortality, across environmental gradients in Amazonia and tropical Africa. Ecology 101, e03052 (2020).
    Google Scholar 
    Friedlingstein, P. et al. Uncertainties in CMIP5 climate projections due to carbon cycle feedbacks. J. Clim. 27, 511–526 (2014).
    Google Scholar 
    CH2018 Project Team. CH2018 — climate scenarios for Switzerland. NCCS https://doi.org/10.18751/Climate/Scenarios/CH2018/1.0 (2018).Article 

    Google Scholar 
    McMaster, G. S. & Wilhelm, W. W. Growing degree-days: one equation, two interpretations. Agric. For. Meteorol. 87, 291–300 (1997).
    Google Scholar 
    McDowell, N. G. Mechanisms linking drought, hydraulics, carbon metabolism, and vegetation mortality. Plant Physiol. 155, 1051–1059 (2011).
    Google Scholar  More

  • in

    Dozens of unidentified bat species likely live in Asia — and could host new viruses

    NEWS
    29 March 2022

    Dozens of unidentified bat species likely live in Asia — and could host new viruses

    Study suggests some 40% of horseshoe bats in the region have yet to be formally described.

    Smriti Mallapaty

    Smriti Mallapaty

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    There could be more species of horseshoe bat than previously thought.Credit: Chien Lee/Nature Picture Library

    A genomic analysis suggests that there are probably dozens of unknown species of horseshoe bats in southeast Asia1. Horseshoe bats (Rhinolophidae) are considered the reservoir of many zoonotic viruses — which jump from animals to people — including the close relatives of the viruses that caused severe acute respiratory syndrome and COVID-19. Identifying bat species correctly might help pinpoint geographical hotspots with a high risk of zoonotic disease, says Shi Zhengli, a virologist at the Wuhan Institute of Virology in China. “This work is important,” she says. The study was published in Frontiers in Ecology and Evolution on 29 March.Better identification of unknown bat species could also support the search for the origins of SARS-CoV-2 by narrowing down where to look for bats that may harbour close relatives of the virus, says study co-author Alice Hughes, a conservation biologist at the University of Hong Kong. The closest known relatives of SARS-CoV-2 have been found in Rhinolophus affinis bats in Yunnan province, in southwestern China2, and in three species of horseshoe bat in Laos3.Cryptic speciesHughes wanted to better understand the diversity of bats in southeast Asia and find standardized ways of identifying them. So she and her colleagues captured bats in southern China and southeast Asia between 2015 and 2020. They took measurements and photographs of the bats’ wings and noseleaf — “the funky set of tissue around their nose”, as Hughes describes it — and recorded their echolocation calls. They also collected a tiny bit of tissue from the bats’ wings to extract genetic data.To map the bats’ genetic diversity, the team used mitochondrial DNA sequences from 205 of their captured animals, and another 655 sequences from online databases — representing a total of 11 species of Rhinolophidae. As a general rule, the greater the difference between two bats’ genomes, the more likely the animals represent genetically distinct groups, and therefore different species.The researchers found that each of the 11 species were probably actually multiple species, possibly including dozens of hidden species across the whole sample. Hidden, or ‘cryptic’, species are animals that seem to belong to the same species but are actually genetically distinct. For example, the genetic diversity of Rhinolophus sinicus suggests that the group could be six separate species. Overall, they estimated that some 40% of the species in Asia have not been formally described.“It’s a sobering number, but not terribly surprising,” says Nancy Simmons, a curator at the American Museum of Natural History in New York City. Rhinolophid bats are a complex group and there has been only a limited sampling of the animals, she says.However, relying on mitochondrial DNA could mean that the number of hidden species is an overestimate. That is because mitochondrial DNA is inherited only from the mother, so could be missing important genetic information, says Simmons. Still, the study could lead to a burst of research into naming new bat species in the region, she says.Further evidenceThe findings corroborate other genetic research suggesting that there are many cryptic species in southeast Asia, says Charles Francis, a biologist at the Canadian Wildlife Service, Environment and Climate Change Canada, in Ottawa, who studies bats in the region. But, he says, the estimates are based on a small number of samples.Hughes’ team used the morphological and acoustic data to do a more detailed analysis of 190 bats found in southern China and Vietnam and found that it supported their finding that many species had not been identified in those regions. The study makes a strong argument for “the use of multiple lines of evidence when delineating species”, says Simmons.Hughes says her team also found that the flap of tissue just above the bats’ nostrils, called the sella, could be used to identify species without the need for genetic data. Gábor Csorba, a taxonomist at the Hungarian Natural History Museum in Budapest, says this means that hidden species could be identified without doing intrusive morphology studies or expensive DNA analyses.

    doi: https://doi.org/10.1038/d41586-022-00776-2

    ReferencesChornelia, A., Jianmei, L. & Hughes, A. C. Front. Ecol. Evol. 10, 854509 (2022).Article 

    Google Scholar 
    Zhou, P. et al. Nature 579, 270–273 (2020).PubMed 
    Article 

    Google Scholar 
    Temmam, S. et al. Nature https://doi.org/10.1038/s41586-022-04532-4 (2022).PubMed 
    Article 

    Google Scholar 
    Download references

    Subjects

    SARS-CoV-2

    Virology

    Ecology

    Latest on:

    SARS-CoV-2

    Time is running out for COVID vaccine patent waivers
    Editorial 29 MAR 22

    Global vaccination must be swifter
    Comment 28 MAR 22

    A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic
    Article 28 MAR 22

    Virology

    Time is running out for COVID vaccine patent waivers
    Editorial 29 MAR 22

    A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic
    Article 28 MAR 22

    Global vaccination must be swifter
    Comment 28 MAR 22

    Ecology

    The marine biologist whose photography pastime became a profession
    Career Column 25 MAR 22

    Subaqueous foraging among carnivorous dinosaurs
    Article 23 MAR 22

    Where are Earth’s oldest trees? Far from prying eyes
    Research Highlight 22 MAR 22

    Jobs

    Co-Leader, Cancer Biology and Evolution Program

    H. Lee Moffitt Cancer Center & Research Institute
    Tampa, FL, United States

    Postdoctoral Position

    Schepens Eye Research Institute, MEEI
    Boston, MA, United States

    Assistant Professor in Medical Science

    Karolinska Institutet (KI)
    Stokholm, Sweden

    Postdoctoral fellowship in RNA biology and transcription in the Gregersen Group at Department of Cellular and Molecular Medicine (ICMM)

    University of Copenhagen (UCPH)
    Copenhagen, Denmark More

  • in

    Diel activity patterns of two distinct populations of Aedes aegypti in Miami, FL and Brownsville, TX

    Our results show that the average diel activity patterns of Ae. aegypti populations in both Miami, FL and in Brownsville, TX were very similar; they both had two peaks, one in the early morning and the other in the evening, and the average host-seeking peaks are between 7:00 and 8:00 and between 19:00 and 20:00 (Fig. 4). Similar observations were previously reported by several investigators3,4,10,11,12 and the bimodal diel activity pattern is the most frequently reported for Ae. aegypti populations worldwide. However, variations between peak activity have been detected between populations. In East Africa, for instance, Trpis et al.3 reported peak activity at 7:00 and at 19:00, whereas McClelland10 reported peak activity two or three hours after sunrise (9:00 or 10:00) and one or two hours before sunset (17:00 or 16:00). Similarly, in the United States, Smith et al.7 observed a bimodal diel activity pattern for Ae. aegypti, but the evening peak was earlier, between 17:00 and 19:00. Despite these variations, the spacing of the peaks is similar in all these studies despite the fact that these studies were conducted in ecologically and climatically diverse locations.The activity patterns observed at site 3 in Brownsville (Fig. 2) and at site 1 in Miami (Fig. 1) were trimodal. In Brownsville, the trimodal activity peaks were between 6:30 and 7:30, 9:30 and 10:30, and 18:30 and 19:30 (Fig. 2), and in Miami the trimodal peaks were between 7:00 and 8:00, 9:00 and 10:00 and between 19:00 and 20:00 (Fig. 1). Interestingly, the timing of the third peak was similar in both Brownsville site 3 and Miami site 1 suggesting similar underlying factors despite geographic distance, different ecology, and different climate. Brownsville, Texas, is in the Lower Rio Grande Alluvial Floodplain ecoregion. The climate is humid subtropical and urbanization has removed most of the indigenous palm trees and floodplain forests vegetation (https://www.epa.gov/sites/default/files/2018-05/documents/brownsvilletx.pdf). Miami is in the Tropical Florida Ecoregion. Similar to Brownsville, Texas, urbanization and agriculture has replaced most of the indigenous Pine Rockland vegetation. Trimodal biting patterns for Ae. aegypti have been observed before in Trinidad by Chadee and Martinez4, but the middle peak was observed at 11:00 which is half an hour to an hour later than what we observed in Miami and Brownsville, respectively (Figs. 1 and 2). While the morning and evening peaks coincide with human outdoor activity, the middle peak occurs during high heat conditions and the factors that lead to this peak or its importance in the epidemiology of Ae. aegypti-borne arboviral diseases are currently not known. The studies by McClelland13 observed multiple activity peaks in an East African population of Ae. aegypti. The significance of the different activity patterns to the epidemiology of Ae. aegypti-borne arboviral diseases are currently unknown and we think they need more investigation especially since Ae. aegypti-borne arboviral infections have been rising in the recent past14,15.We observed that the host-seeking activity peaks were consistent between 5:45 and 7:30 and between 18:00 and 20:45 (Figs. 1 and 2). These observations are important in planning and conducting control operations directed at the adult Ae. aegypti female populations. During the 2016 Zika outbreak, there was no specific information on the host-seeking activity patterns of Ae. aegypti in Miami Dade County and the adulticide treatment implemented as part of an integrated approach targeted the morning activity16. The integrated approach effectively reduced the vector population and interrupted the transmission of the Zika virus; however, it highlighted the need for site-specific information on the diel activity patterns of Ae. aegypti in Miami Dade County in particular and the CONUS in general. There have been sporadic Ae. aegypti-borne arboviral disease outbreaks in Miami Dade County, FL and the city of Brownsville, TX17,18,19,20,21, in the future we will be better prepared to conduct effective adulticide applications with the current knowledge of the diel activity patterns of Ae. aegypti in these areas. Furthermore, we are now better equipped to educate the public on how to minimize exposure to Ae. aegypti-borne arboviral diseases by avoiding outdoor activities during peak biting activity periods.In our studies, we used BG-Sentinel 2 traps and monitored them every hour, twenty-four hours a day over 96 h, a method with some similarities to that used by Smith et al.7. In the past, diel biting activity studies were carried out using human landing catches following the methods primarily established by Haddow22. To our knowledge, only two studies have previously used sampling procedures not based on human landing catches to study the biting activity patterns of Ae. aegypti; the study by Ortega-Lopez et al.6 used mosquito electrocuting traps, and the study by Smith et al.7 used a mechanical rotator mosquito trap. In the present study, the use of BG-Sentinel II traps had the advantage that it was specifically designed to capture female host-seeking Ae. aegypti8,9. In addition, attached BG-Counter devices can keep track of the number of mosquitoes captured per specified unit time and environmental conditions, and store the information in a cloud server. However, the BG-Sentinel 2 traps collected a wide variety of mosquito species, (Table 1), and to keep track of specific species captured each hour, we had to monitor them every hour.Overall, we present data on the diel activity of Ae. aegypti populations in two cities in the southern United States. In both cities the activity patterns were bimodal; there were peaks of activity in the mornings and the evenings. The significance of these observations is that these peaks can be targeted to improve the effectiveness of adulticide treatments aimed at controlling Ae. aegypti adult populations. Using BG-Sentinel 2 traps eliminates individual variations associated with human landing catches and the associated danger of infections from wild mosquitoes especially during ongoing outbreaks. More