More stories

  • in

    Functional trade-offs in fish communities

    Eddy, T. D. et al. One Earth 4, 1278–1285 (2021).Article 

    Google Scholar 
    Mumby, P. J. et al. Science 311, 98–101 (2006).CAS 
    Article 

    Google Scholar 
    Maire, E. et al. Proc. R. Soc. Lond. B 285, 20181167 (2018).
    Google Scholar 
    Schiettekatte, N. M. D. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-0-01710-5 (2022).Article 

    Google Scholar 
    Woodhead, A. J., Hicks, C. C., Norström, A. V., Williams, G. J. & Graham, N. A. J. Funct. Ecol. 33, 1023–1034 (2019).
    Google Scholar 
    Naeem, S., Bunker, D. E., Hector, A., Loreau, M. & Perrings, C. Biodiversity, Ecosystem Functioning, and Human Wellbeing: An Ecological and Economic Perspective (Oxford Univ. Press, 2009).Villéger, S., Brosse, S., Mouchet, M., Mouillot, D. & Vanni, M. J. Aquat. Sci. 79, 783–801 (2017).Article 

    Google Scholar 
    Bascompte, J., Melián, C. J. & Sala, E. Proc. Natl Acad. Sci. USA 102, 5443–5447 (2005).CAS 
    Article 

    Google Scholar 
    Houk, P. & Musburger, C. Mar. Ecol. Prog. Ser. 488, 23–34 (2013).Article 

    Google Scholar 
    Allgeier, J. E., Burkepile, D. E. & Layman, C. A. Glob. Change Biol. 23, 2166–2178 (2017).Article 

    Google Scholar 
    Meyer, J. L., Schultz, E. T. & Helfman, G. S. Science 220, 1047–1049 (1983).CAS 
    Article 

    Google Scholar 
    Brandl, S. J. et al. Science 364, 1189–1192 (2019).CAS 
    Article 

    Google Scholar 
    Morais, R. A., Siqueira, A. C., Smallhorn-West, P. F. & Bellwood, D. R. PLoS Biol. 19, e3001435 (2021).CAS 
    Article 

    Google Scholar 
    Larned, S. T. Mar. Biol. 132, 409–421 (1998).Article 

    Google Scholar 
    McClanahan, T. R., Carreiro-Silva, M. & DiLorenzo, M. Mar. Pollut. Bull. 54, 1947–1957 (2007).CAS 
    Article 

    Google Scholar 
    McLean, M. et al. Proc. Natl Acad. Sci. USA 118, e2012318118 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    Development and validation of an eDNA protocol for monitoring endemic Asian spiny frogs in the Himalayan region of Pakistan

    Lindenmayer, D. et al. A checklist of attributes for effective monitoring of threatened species and threatened ecosystems. J. Environ. Manage. 262, 110312 (2020).PubMed 

    Google Scholar 
    Reid, A. J. et al. Emerging threats and persistent conservation challenges for freshwater biodiversity. Biol. Rev. 94, 849–873 (2019).PubMed 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2019-3. http://www.iucnredlist.org (2021).Adams, M. J. et al. Trends in amphibian occupancy in the United States. PLoS ONE 8, e64347 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Corn, P. S. Climate change and amphibians. Anim. Biodivers. Conserv. 28, 59–67 (2005).
    Google Scholar 
    Kiesecker, J. M., Blaustein, A. R. & Belden, L. K. Complex causes of amphibian population declines. Nature 410, 681–684 (2001).ADS 
    CAS 

    Google Scholar 
    Baldwin, R. F. & deMaynadier, P. G. Assessing threats to pool-breeding amphibian habitat in an urbanizing landscape. Biol. Conserv. 142, 1628–1638 (2009).Borzée, A., Kyong, C. N., Kil, H. K. & Jang, Y. Impact of water quality on the occurrence of two endangered Korean anurans: Dryophytes suweonensis and Pelophylax chosenicus. Herpetologica 74, 1–7 (2018).
    Google Scholar 
    Stuart, S. N. et al. Status and trends of amphibian declines and extinctions worldwide. Science 306, 1783–1786 (2004).ADS 
    CAS 

    Google Scholar 
    Caro, T., Rowe, Z., Berger, J., Wholey, P. & Dobson, A. An inconvenient misconception: climate change is not the principal driver of biodiversity loss. Conserv. Lett. e12868 (2022).Daszak, P. et al. Emerging infectious diseases and amphibian population declines. Emerg. Infect. 5, 735–748 (1999).CAS 

    Google Scholar 
    Fellers, G., Green, D. E. & Longcore, J. Oral chytridiomycosis in the mountain yellow-legged frog (Rana muscosa). Copeia 2001, 945–953Blaustein, A. R. et al. Effects of ultraviolet radiation on amphibians: field experiments. Am. Zool. 38, 799–812 (1999).
    Google Scholar 
    Langhelle, A., Lindell, M. J. & Nyström, P. Effects of ultraviolet radiation on amphibian embryonic and larval development. J. Herpetol. 33, 449–456 (1999).
    Google Scholar 
    Beebee, T. J. C. Amphibians breeding and climate. Nature 374, 219–220 (1995).ADS 
    CAS 

    Google Scholar 
    Donnelly, M. A. & Crump, M. L. Potential effects of climate change on two neotropical amphibian assemblages. In Potential Impacts of Climate Change on Tropical Forest Ecosystems (ed. Markham, A.) 401–421 (Springer Netherlands, 1998).Carey, C. & Alexander, M. A. Climate change and amphibian declines: is there a link? Divers. Distrib. 9, 111–121 (2003).
    Google Scholar 
    Fisher, R. N. & Shaffer, H. B. The decline of amphibians in California’s Great Central Valley. Conserv. Biol. 10, 1387–1397 (1996).
    Google Scholar 
    Sparling, D. W., Donald, W., Linder, G. & Bishop, C. A. Ecotoxicology of Amphibians and Reptiles. (SETAC Press, 2000).Rouse, M. J. & Daellenbach, U. S. Rethinking research methods for the resource-based perspective: isolating sources of sustainable competitive advantage. Strat. Manag. J. 20, 487–494 (1999).
    Google Scholar 
    Bridges, C. M. & Boone, M. D. The interactive effects of UV-B and insecticide exposure on tadpole survival, growth and development. Biol. Conserv. 113, 49–54 (2003).
    Google Scholar 
    Schmeller, D. S. et al. National responsibilities in European species conservation: a methodological review. Conserv. Biol. 22, 593–601 (2008).PubMed 

    Google Scholar 
    Anderson, S. Area and endemism. Q. Rev. Biol. 69, 451–471 (1994).
    Google Scholar 
    Strayer, D. L. & Dudgeon, D. Freshwater biodiversity conservation: recent progress and future challenges. J. N. Am. Benthol. Soc. 29, 344–358 (2010).
    Google Scholar 
    Gorman, C. E., Potts, B. M., Schweitzer, J. A. & Bailey, J. K. Shifts in species interactions due to the evolution of functional differences between endemics and non-endemics: an endemic syndrome hypothesis. PLoS ONE 9, e111190 (2014).Mace, G. M. et al. Quantification of extinction risk: IUCN’s system for classifying threatened species. Conserv. Biol. 22, 1424–1442 (2008).PubMed 

    Google Scholar 
    Fontaine, B. et al. The European Union’s 2010 target: putting rare species in focus. Biol. Conserv. 139, 167–185 (2007).
    Google Scholar 
    Saeed, M. et al. Rise in temperature causes decreased fitness and higher extinction risks in endemic frogs at high altitude forested wetlands in northern Pakistan. J. Therm. Biol. 95, 102809 (2021).McDonald, L. L. Sampling rare populations. In Sampling Rare or Elusive Species: Concepts, Designs, and Techniques for Estimating Population Parameters (ed. Thompson W. L.) 11–42 (Island Press, 2004).Dodd Jr. K. Monitoring Amphibians in Great Smoky Mountains National Park (USGS Survey Circular, 2003).Qu, C. & Stewart, K. A. Evaluating monitoring options for conservation : traditional and environmental DNA tools for a critically endangered mammal. Sci. Nat. 106, 9 (2019).
    Google Scholar 
    Deiner, K. et al. Environmental DNA metabarcoding: transforming how we survey animal and plant communities. Mol. Ecol. 26, 5872–5895 (2017).PubMed 

    Google Scholar 
    Schmidt, B. R., Kery, M., Ursenbacher, S., Hyman, O. J. & Collins, J. P. Site occupancy models in the analysis of environmental DNA presence/absence surveys: a case study of an emerging amphibian pathogen. Methods Ecol. Evol. 4, 646–653 (2013).
    Google Scholar 
    Iknayan, K. J., Tingley, M. W., Furnas, B. J. & Beissinger, S. R. Detecting diversity: emerging methods to estimate species diversity. Trends Ecol. Evol. 29, 97–106 (2014).PubMed 

    Google Scholar 
    Kéry, M. & Schmidt, B. R. Imperfect detection and its consequences for monitoring for conservation. Community Ecol. 9, 207–216 (2008).
    Google Scholar 
    Mackenzie, D. I. et al. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255 (2002).
    Google Scholar 
    Mackenzie, D. I. & Royle, J. A. Designing occupancy studies: general advice and allocating survey effort. J. Appl. Ecol. 42, 1105–1114 (2005).
    Google Scholar 
    Ficetola, G. F., Miaud, C., Pompanon, F. & Taberlet, P. Species detection using environmental DNA from water samples. Biol. Lett. 4, 423–425 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Darling, J. A. & Mahon, A. R. From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environ. Res. 111, 978–988 (2011).CAS 
    PubMed 

    Google Scholar 
    Goldberg, C. S., Pilliod, D. S., Arkle, R. S. & Waits, L. P. Molecular detection of vertebrates in stream water: a demonstration using Rocky Mountain tailed frogs and Idaho giant salamanders. PLoS ONE 6, e22746 (2011).Williams, M. R. et al. Isothermal amplification of environmental DNA (eDNA) for direct field-based monitoring and laboratory confirmation of Dreissena sp. PLoS ONE 12, e0186462 (2017).Agersnap, S. et al. Monitoring of noble, signal and narrow-clawed crayfish using environmental DNA from freshwater samples. PLoS ONE 12, e0179261 (2017).Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).CAS 

    Google Scholar 
    Bohmann, K. et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol. Evol. 29, 358–367 (2014).PubMed 

    Google Scholar 
    Sigsgaard, E. E., Carl, H., Møller, P. R. & Thomsen, P. F. Monitoring the near-extinct European weather loach in Denmark based on environmental DNA from water samples. Biol. Conserv. 183, 46–52 (2015).
    Google Scholar 
    Bedwell, M. E., Hopkins, K. V. S., Dillingham, C. & Goldberg, C. S. Evaluating Sierra Nevada yellow-legged frog distribution using environmental DNA. J. Wildl. Mangaement 85, 945–952 (2021).
    Google Scholar 
    Eiler, A., Löfgren, A., Hjerne, O., Nordén, S. & Saetre, P. Environmental DNA (eDNA) detects the pool frog (Pelophylax lessonae) at times when traditional monitoring methods are insensitive. Sci. Rep. 8, 5452 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brozio, S. et al. Development and application of an eDNA method to detect the critically endangered Trinidad golden tree frog (Phytotriades auratus) in bromeliad phytotelmata. PLoS ONE 12, e0170619 (2017).Pellet, J. & Schmidt, B. R. Monitoring distributions using call surveys: estimating site occupancy, detection probabilities and inferring absence. Biol. Conserv. 123, 27–35 (2005).
    Google Scholar 
    Weir, L. A., Royle, J. A., Nanjappa, P. & Jung, R. E. Modeling anuran detection and site occupancy on North American Amphibian Monitoring Program (NAAMP) routes in Maryland. J. Herpetol. 39, 627–639 (2005).
    Google Scholar 
    Fiske, I. J. & Chandler, R. B. Unmarked: an R package for fitting hierarchical models of wildlife occurrence and abundance. J. Stat. Softw. 43, 1–23 (2011).
    Google Scholar 
    Goldberg, C. S. et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods Ecol. Evol. 7, 1299–1307 (2016).
    Google Scholar 
    Holland, M. M. & Parsons, T. J. Mitochondrial DNA sequence analysis – validation and use for forensic casework. Forensic Sci. Rev. 11, 21–50 (1999).CAS 
    PubMed 

    Google Scholar 
    Willerslev, E. et al. Diverse plant and animal genetic records from Holocene and Pleistocene sediments. Science 300, 791–795 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Waits, L. P. & Paetkau, D. Noninvasive genetic sampling tools for wildlife biologists: a review of applications and recommendations for accurate data collection. J. Wildl. Manage. 69, 1419–1433 (2006).
    Google Scholar 
    Shokralla, S. et al. Next-generation DNA barcoding: using next-generation sequencing to enhance and accelerate DNA barcode capture from single specimens. Mol. Ecol. Resour. 14, 892–901 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mills, L. S., Pilgrim, K. L., Schwartz, M. K. & McKelvey, K. Identifying lynx and other North American felids based on mtDNA analysis. Conserv. Genet. 1, 285–288 (2000).CAS 

    Google Scholar 
    Hajibabaei, M. et al. A minimalist barcode can identify a specimen whose DNA is degraded. Mol. Ecol. Notes 6, 959–964 (2006).CAS 

    Google Scholar 
    Kim, P., Kim, D., Yoon, T. J. & Shin, S. Early detection of marine invasive species, Bugula neritina (Bryozoa: Cheilostomatida), using species-specific primers and environmental DNA analysis in Korea. Mar. Environ. Res. 139, 1–10 (2018).CAS 
    PubMed 

    Google Scholar 
    Dejean, T. et al. Persistence of environmental DNA in freshwater ecosystems. PLoS ONE 6, e23398 (2011).Xia, Z. et al. Early detection of a highly invasive bivalve based on environmental DNA (eDNA). Biol. Invasions 20, 437–447 (2018).
    Google Scholar 
    Torresdal, J. D., Farrell, A. D. & Goldberg, C. S. Environmental DNA detection of the golden tree frog (Phytotriades auratus) in bromeliads. PLoS ONE 12, e0168787 (2017).Biggs, J. et al. Using eDNA to develop a national citizen science-based monitoring programme for the great crested newt (Triturus cristatus). Biol. Conserv. 183, 19–28 (2015).
    Google Scholar 
    Pilliod, D. S., Goldberg, C. S., Arkle, R. S. & Waits, L. P. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples. Can. J. Fish. Aquat. Sci. 70, 1123–1130 (2013).CAS 

    Google Scholar 
    Smith, D. H. V., Jones, B., Randall, L. & Prescott, D. R. C. Difference in detection and occupancy between two anurans: the importance of species-specific monitoring. Herpetol. Conserv. Biol. 9, 267–277 (2014).
    Google Scholar 
    Bayley, P. B. & Peterson, J. T. An approach to estimate probability of presence and richness of fish species. Trans. Am. Fish. Soc. 130, 620–633 (2004).
    Google Scholar 
    Mehta, S. V., Haight, R. G., Homans, F. R., Polasky, S. & Venette, R. C. Optimal detection and control strategies for invasive species management. Ecol. Econ. 61, 237–245 (2007).
    Google Scholar 
    Scott, Jr., N. J. & Woodward, B. D. Surveys at breeding sites. In Measuring and Monitoring Biological Diversity: Standard Methods for Amphibians (eds. Heyer, W. R., Donnelly, M. A., McDiarmid, R. W., Hayek, L. C., & Foster, M. S.) 118–125 (Smithsonian Institution Press, 1994).Dejean, T. et al. Improved detection of an alien invasive species through environmental DNA barcoding: the example of the American bullfrog Lithobates catesbeianus. J. Appl. Ecol. 49, 953–959 (2012).
    Google Scholar 
    Goldberg, C. S., Sepulveda, A., Ray, A., Baumgardt, J. & Waits, L. P. Environmental DNA as a new method for early detection of New Zealand mudsnails (Potamopyrgus antipodarum). Freshw. Sci. 32, 792–800 (2013).
    Google Scholar 
    Mahon, A. R. et al. Validation of eDNA surveillance sensitivity for detection of Asian carps in controlled and field experiments. PLoS ONE 8, e58316 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khan, M. S. Amphibians and Reptiles of Pakistan (Krieger Publishing Company, 2006).Ruppert, K. M., Davis, D. R., Rahman, M. S. & Kline, R. J. Development and assessment of an environmental DNA (eDNA) assay for a cryptic Siren (Amphibia: Sirenidae). Environ. Adv. 7, 100163 (2022).
    Google Scholar 
    Hobbs, J., Round, J. M., Allison, M. J. & Helbing, C. C. Expansion of the known distribution of the coastal tailed frog, Ascaphus truei, in British Columbia, Canada, using robust eDNA detection methods. PLoS ONE 14, e0213849 (2019).Barata, I. M., Griffiths, R. A., Fogell, D. J. & Buxton, A. S. Comparison of eDNA and visual surveys for rare and cryptic bromeliad-dwelling frogs. Herpetol. J. 31, 1–9 (2021).
    Google Scholar 
    Ahmed, W. et al. Site occupancy of two endemic stream frogs in different forest types in Pakistan. Herpetol. Conserv. Biol. 15, 506–511 (2020).
    Google Scholar 
    Richmond, O. M. W., Hines, J. E. & Beissinger, S. R. Two-species occupancy models: a new parameterization applied to co-occurrence of secretive rails. Ecol. Appl. 20, 2036–2046 (2010).PubMed 

    Google Scholar 
    Shea, C. P., Eaton, M. J. & MacKenzie, D. I. Implementation of an occupancy-based monitoring protocol for a widespread and cryptic species, the New England cottontail (Sylvilagus transitionalis). Wildl. Res. 46, 222–235 (2019).
    Google Scholar 
    Rota, C. T. et al. A multispecies occupancy model for two or more interacting species. Methods Ecol. Evol. 7, 1164–1173 (2016).
    Google Scholar 
    Ohler, A. & Dubois, A. Phylogenetic relationships and generic taxonomy of the tribe Paini (Amphibia, Anura, Ranidae, Dicroglossinae). Zoosystema 28, 769–784 (2006).
    Google Scholar 
    Jiang, J. et al. Phylogenetic relationships of the tribe Paini (Amphibia, Anura, Ranidae) based on partial sequences of mitochondrial 12s and 16s rRNA genes. Zool. Res. 362, 353–362 (2005).
    Google Scholar 
    Rais, M. et al. A note on recapture of Nanorana vicina (Anura: Amphibia) from Murree, Pakistan. J. Anim. Plant Sci. 24, 455–458 (2014).
    Google Scholar 
    Siddiqui, M. F., Ahmed, M., Khan, N. & Khan, I. A. A quantitative description of moist temperate conifer forests of Himalayan region of Pakistan and Azad Kashmir. Int. J. Biotechnol. 7, 175–185 (2010).
    Google Scholar 
    Beck, H. E. et al. Present and future köppen-geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).Sheikh, M. I. & Hafeez, S. M. Forest and Forestry in Pakistan (A-one Publishers, 2001).Lodhi, A. Conservation of leopards in Ayubia National Park, Pakistan (MS Thesis) (University of Montana, 2007).Palumbi, S. R. Nucleic acids II: the polymerase chain reaction. In Molecular Systematics, 2nd Edition (eds. Hillis, D. M. et al.) 205–247 (Sinauer, 1996).Vences, M., Thomas, M., Van Der Meijden, A., Chiari, Y. & Vieites, D. R. Comparative performance of the 16S rRNA gene in DNA barcoding of amphibians. Front. Zool. 2, 5 (2005).Pounds, J. A. & Crump, M. L. Amphibian declines and climate disturbance: the case of the golden toad and the harlequin frog. Conserv. Biol. 8, 72–85 (1994).
    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. R foundation for statistical computing, Vienna, Austria. https://www.R-project.org/ (2021).Hutchinson, R. A., Valente, J. J., Emerson, S. C., Betts, M. G. & Dietterich, T. G. Penalized likelihood methods improve parameter estimates in occupancy models. Methods Ecol. Evol. 6, 949–959 (2015).
    Google Scholar 
    Clipp, H. L., Evans, A. L., Kessinger, B. E., Kellner, K., & Rota, C. T. A penalized likelihood for multispecies occupancy models improves predictions of species interactions. Ecology 102, e03520 (2021).PubMed 

    Google Scholar  More

  • in

    Sustainable palm fruit harvesting as a pathway to conserve Amazon peatland forests

    Dargie, G. C. et al. Age, extent and carbon storage of the central Congo Basin peatland complex. Nature 542, 86–90 (2017).CAS 
    Article 

    Google Scholar 
    Horn, C. M., Vargas Paredes, V. H., Gilmore, M. P. & Endress, B. A. Spatio-temporal patterns of Mauritia flexuosa fruit extraction in the Peruvian Amazon: implications for conservation and sustainability. Appl. Geogr. 97, 98–108 (2018).Article 

    Google Scholar 
    Virapongse, A., Endress, B. A., Gilmore, M. P., Horn, C. & Romulo, C. Ecology, livelihoods, and management of the Mauritia flexuosa palm in South America. Glob. Ecol. Conserv. 10, 70–92 (2017).Article 

    Google Scholar 
    van der Hoek, Y., Solas, S. Á. & Peñuela, M. C. The palm Mauritia flexuosa, a keystone plant resource on multiple fronts. Biodivers. Conserv. 28, 539–551 (2019).Article 

    Google Scholar 
    Roucoux, K. H. et al. Threats to intact tropical peatlands and opportunities for their conservation. Conserv. Biol. 31, 1283–1292 (2017).CAS 
    Article 

    Google Scholar 
    Dargie, G. C. et al. Congo Basin peatlands: threats and conservation priorities. Mitig. Adapt. Strateg. Glob. Change 24, 669–686 (2019).Article 

    Google Scholar 
    Pandey, A. K., Tripathi, Y. C. & Kumar, A. Non timber forest products (NTFPs) for sustained livelihood: challenges and strategies. Res. J. For. 10, 1–7 (2016).CAS 

    Google Scholar 
    Kor, L., Homewood, K., Dawson, T. P. & Diazgranados, M. Sustainability of wild plant use in the Andean Community of South America. Ambio 50, 1681–1697 (2021).Draper, F. C. et al. The distribution and amount of carbon in the largest peatland complex in Amazonia. Environ. Res. Lett. 9, 124017 (2014).Article 

    Google Scholar 
    Freitas, L. Impacto del aprovechamiento en la estructura, producción y valor de uso del aguaje en la Amazonía peruana. Recur. Naturales y Ambient. 67, 35–45 (2012).
    Google Scholar 
    Aprovechamiento de los Residuos de Mauritia flexuosa (ITP-CITE, 2018).Falen, L. Y. & Honorio Coronado, E. N. Assessment of the techniques use to harvest buriti fruits (Mauritia flexuosa L.f.) in the district of Jenaro Herrera, Loreto, Peru. Folia Amazónica 27, 131–150 (2018).Article 

    Google Scholar 
    Draper, F. C. et al. Peatland forests are the least diverse tree communities documented in Amazonia, but contribute to high regional beta-diversity. Ecography 41, 1256–1269 (2018).Article 

    Google Scholar 
    Bejarano, P. & Piana, R. Plan de Manejo de los Aguajales Aledaños al Caño Parinari (WWF-AIF/DK – Reserva Nacional Pacaya Samiria, 2002).Manzi, M. & Coomes, O. T. Managing Amazonian palms for community use: a case of aguaje palm (Mauritia flexuosa) in Peru. For. Ecol. Manage. 257, 510–517 (2009).Article 

    Google Scholar 
    Baker, T. R. et al. How can ecologists help realise the potential of payments for carbon in tropical forest countries? J. Appl. Ecol. 47, 1159–1165 (2010).Article 

    Google Scholar 
    Padoch, C. Marketing of non-timber forest products in Western Amazonia: general observations and research priorities. Adv. Econ. Bot. 9, 43–50 (1192).
    Google Scholar 
    Delgado, C., Couturierb, G. & Mejía, K. Mauritia flexuosa (Arecaceae: Calamoideae), an Amazonian palm with cultivation purposes in Peru. Fruits 62, 157–169 (2007).Article 

    Google Scholar 
    Living Planet Index 2020—Bending the Curve of Biodiversity Loss (WWF, 2020).Gentry, A. H. & Vasquez, R. Where have all the ceibas gone? A case history of mismanagement of a tropical forest resource. For. Ecol. Manage. 23, 73–76 (1988).Article 

    Google Scholar 
    Pauly, D. Anecdotes and the shifting baseline syndrome of fisheries. Trends Ecol. Evol. 10, 430 (1995).CAS 
    Article 

    Google Scholar 
    Soga, M. & Gaston, K. J. Shifting baseline syndrome: causes, consequences, and implications. Front. Ecol. 16, 222–230 (2018).Article 

    Google Scholar 
    Nic Lughadha, E. et al. Extinction risk and threats to plants and fungi. Plants People Planet 2, 389–408 (2020).Article 

    Google Scholar 
    Ter Steege, H. et al. Estimating the global conservation status of more than 15,000 Amazonian tree species. Sci. Adv. 1, e1500936 (2015).Article 

    Google Scholar 
    Khan, F. & de Granville, J. J. Palms in Forest Ecosystems of Amazonia (Springer-Verlag, 1992).Freitas, L., Zárate, Z., Bardales, R. & Del Castillo, D. Efecto de la densidad de siembra en el desarrollo vegetativo del aguaje (Mauritia flexuosa L.f.) en plantaciones forestales. Rev. Peru. de. Biol. 26, 227–234 (2019).Article 

    Google Scholar 
    Benítez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).Article 

    Google Scholar 
    Endress, B. A., Gilmore, M. P., Vargas, V. H. & Horn, C. Data on spatio-temporal patterns of wild fruit harvest from the economically important palm Mauritia flexuosa in the Peruvian Amazon. Data Brief 20, 132–139 (2018).Article 

    Google Scholar 
    Ahrends, A. et al. Predictable waves of sequential forest degradation and biodiversity loss spreading from an African city. Proc. Natl Acad. Sci. USA 107, 14556–14561 (2010).Article 

    Google Scholar 
    Hardin, G. The tragedy of the commons. Science 162, 1243–1248 (1968).CAS 
    Article 

    Google Scholar 
    Ostrom, E. in The New Palgrave Dictionary of Economics Online (eds Durlauf, N.S. & Blume, L.E.) (Palgrave Macmillan, 2008); https://hdl.handle.net/10535/5887Dietz, T., Ostrom, E. & Stern, P. C. The struggle to govern the commons. Science 302, 1907–1912 (2003).CAS 
    Article 

    Google Scholar 
    Isaza, C., Bernal, R., Galeano, G. & Martorell, C. Demography of Euterpe precatoria and Mauritia flexuosa in the Amazon: application of integral projection models for their harvest. Biotropica 49, 653–664 (2017).Article 

    Google Scholar 
    Chuquinbalqui, C. M. et al. Diagnóstico socioeconómico de la población organizada para el manejo de recursos naturales en las cuencas Yanayacu Pucate y Pacaya en la Reserva Nacional Pacaya Samiria (Reserva Nacional Pacaya Samiria – SERNANP, 2014).Koh, L. & Wilcove, D. Cashing in palm oil for conservation. Nature 448, 993–994 (2007).CAS 
    Article 

    Google Scholar 
    Murdiyarso, D., Suryadiputra, I. N. & Wahyunto. Tropical peatlands management and climate change: a case study in Sumatra, Indonesia. In Proc. 12th International Peat Congress on Wise Use of Peatlands Vol. 1 (ed. Paivanen, J.) 698–706 (International Peat Society, 2004).Freitas, M. A. B. et al. Intensification of açaí palm management largely impoverishes tree assemblages in the Amazon estuarine forest. Biol. Conserv. 261, 109251 (2021).Article 

    Google Scholar 
    Plan Operativo de Castaña Región Madre de Dios (MINCETUR, 2007).La Industria de la Madera en el Perú. Identificación de las Barreras y Oportunidades para el Comercio Interno de Productos Responsables de Madera, Provenientes de Fuentes Sostenibles y Legales en las MIPYMES del Perú (FAO, 2018).Transferencias por Tipo de Canon, Regalías, y Otros (Congreso Perú, 2019).Peters, C. M., Gentry, A. H. & Mendelsohn, R. O. Valuation of an Amazonian rainforest. Nature 339, 655–656 (1989).Article 

    Google Scholar 
    Sheil, D. & Wunder, S. The value of tropical forest to local communities: complications, caveats, and cautions. Conserv. Ecol. 6, 9 (2002).Belcher, B. & Schreckenberg, K. Commercialisation of non-timber forest products: a reality check. Dev. Policy Rev. 25, 355–377 (2007).Article 

    Google Scholar 
    López, M. et al. What Do We Know about Peruvian Peatlands? (CIFOR, 2020).Gilmore, M. P., Endress, B. A. & Horn, C. M. The socio-cultural importance of Mauritia flexuosa palm swamps (aguajales) and implications for multi-use management in two Maijuna communities of the Peruvian Amazon. J. Ethnobiol. Ethnomed. 9, 29 (2013).Article 

    Google Scholar 
    Tagle Casapia, X. et al. Identifying and quantifying the abundance of economically important palms in tropical moist forest using UAV imagery. Remote Sens 12, 9 (2020).Article 

    Google Scholar 
    Bruenig, E. F. Conservation and Management of Tropical Rainforests: An integrated Approach to Sustainability 2nd edn (CABI, 2016).de Mello, N. G., Gulinckb, H., Van den Broeckc, P. & Parra, P. Social-ecological sustainability of non-timber forest products: a review and theoretical considerations for future research. For. Policy Econ. 112, 102109 (2020).Article 

    Google Scholar 
    van Lent, J. Land-Use Change and Greenhouse Gas Emissions in the Tropics: Forest Degradation on Peat Soils. PhD thesis, Wageningen Univ. Res. (2020).Baker, T. R. et al. in Peru: Deforestation in Times of Climate Change (ed. Chirif, A.) 155–174 (IWGIA, Servindi, ONAMIAP & COHARYIMA, 2019).Bhomia, R. K. et al. Impacts of Mauritia flexuosa degradation on the carbon stocks of freshwater peatlands in the Pastaza-Marañón river basin of the Peruvian Amazon. Mitig. Adapt Strateg. Glob. Change 24, 645–668 (2019).Article 

    Google Scholar 
    Marengo, J. in Geoecología y Desarrollo Amazónico: Estudio Integrado en la Zona de Iquitos Biológica – Geographica – Geológica (eds Kalliola, R. & Flores, S.) 35–57 (Univ. Turku Press, 1998).Koolen, H. H. F., Da Silva, F. M. A., Da Silva, V. S. V., Paz, W. H. P. & Bataglion, G. A. in Exotic Fruits (eds Rodrigues, S. et al.) 61–67 (Elsevier, 2018).Malleux, O. J. Inventarios Forestales en Bosques Tropicales (Universidad Nacional Agraria La Molina, 1982).Del Castillo, D., Otárola, E. & Freitas, L. Aguaje, La Maravillosa Palmera de la Vida (Instituto de Investigaciones de la Amazonía Peruana, 2006).Khorsand Rosa, M., Barbosa, R. & Koptur, S. Which factors explain reproductive output of Mauritia flexuosa (Arecaceae) in forest and savanna habitats of northern Amazonia? Int. J. Plant Sci. 175, 307–318 (2014).Article 

    Google Scholar 
    Quinteros, Y., Roca, F. & Quinteros, V. in XIV. Morichales y cananguchales y otros palmares inundables de Suramérica. Parte II: Colombia, Venezuela, Brasil, Perú, Bolivia, Paraguay, Uruguay y Argentina Vol. XIV Serie recursos hidrobiológicos y pesqueros continentales de Colombia (eds Lasso, C. A. et al.) 265–282 (Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 2016).Hergoualc’h, K., Gutiérrez-Vélez, V. H., Menton, M. & Verchot, L. V. Characterizing degradation of palm swamp peatlands from space and on the ground: an exploratory study in the Peruvian Amazon. For. Ecol. Manage. 393, 63–73 (2017).Article 

    Google Scholar 
    Honorio Coronado, E. N. et al. Intensive field sampling increases the known extent of carbon-rich Amazonian peatland pole forests. Environ. Res. Lett. 16, 074048 (2021).Article 

    Google Scholar 
    de Jong, J. The Impact of Indigenous and Local Communities in the Peruvian Amazon: Integrating Forest Inventory and Remote Sensing. MSc thesis, Wageningen Univ. Res. (2019).Alvarado, L. Estudio del Potencial de las Embarcaciones Solares en la Amazonía. Caso de Estudio Río Napo. MA thesis, Universidad Politécnica Madrid (2017).ArcGIS Desktop v.10.4 (ESRI, 2015).Directorio Nacional de Centrol Poblados – Censos Nacionales 2017- XII de Poblacion, VII de vivienda y III de Comunidades indigenas (Instituto Nacional de Estadítica e Informática, 2018).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. https://doi.org/10.18637/jss.v067.i01 (2015).R Core Team. R: A Language and Environment for Statistical Computing. R version 3.5.3 (R Foundation for Statistical Computing, 2019).Taylor, J. R. An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements 2nd edn (University Science Books, 1997).Consumer Price Index (Peru) (World Bank Group, 2020); https://data.worldbank.org/indicator/FP.CPI.TOTL?locations=PE More

  • in

    Population density, bottom-up and top-down control as an interactive triplet to trigger dispersal

    Nathan, R. The challenges of studying dispersal. Trends. Ecol. Evol. 16, 481–483. https://doi.org/10.1016/S0169-5347(01)02272-8 (2001).CAS 
    Article 

    Google Scholar 
    Bonte, D. et al. Costs of dispersal. Biol. Rev. Camb. Philos. Soc. 87, 290–312. https://doi.org/10.1111/j.1469-185X.2011.00201.x (2012).Article 
    PubMed 

    Google Scholar 
    Matthysen, E. Multicausality of dispersal: A review. In Dispersal Ecology and Evolution (eds Clobert, J. et al.) 3–18 (Oxford University Press, 2012).Chapter 

    Google Scholar 
    Clobert, J., Le Galliard, J.-F., Cote, J., Meylan, S. & Massot, M. Informed dispersal, heterogeneity in animal dispersal syndromes and the dynamics of spatially structured populations. Ecol. Lett. 12, 197–209. https://doi.org/10.1111/j.1461-0248.2008.01267.x (2009).Article 
    PubMed 

    Google Scholar 
    Poethke, H. J. & Hovestadt, T. Evolution of density- and patch-size-dependent dispersal rates. Proc. R. Soc. Lond. 269, 637–645. https://doi.org/10.1098/rspb.2001.1936 (2002).Article 

    Google Scholar 
    Benton, T. G. & Bowler, D. E. Dispersal in invertebrates: Influences on individual decisions. Ecol. Evol. 1, 41–49 (2012).
    Google Scholar 
    Legrand, D. et al. Ranking the ecological causes of dispersal in a butterfly. Ecography 38, 822–831. https://doi.org/10.1111/ecog.01283 (2015).Article 

    Google Scholar 
    Travis, J. M. J., Murrell, D. J. & Dytham, C. The evolution of density–dependent dispersal. Proc. R. Soc. Lond. B 266, 1837–1842. https://doi.org/10.1098/rspb.1999.0854 (1999).Article 

    Google Scholar 
    Matthysen, E. Density-dependent dispersal in birds and mammals. Ecography 28, 403–416. https://doi.org/10.1111/j.0906-7590.2005.04073.x (2005).Article 

    Google Scholar 
    de Meester, N., Derycke, S., Rigaux, A. & Moens, T. Active dispersal is differentially affected by inter- and intraspecific competition in closely related nematode species. Oikos 124, 561–570. https://doi.org/10.1111/oik.01779 (2015).Article 

    Google Scholar 
    Bowler, D. E. & Benton, T. G. Causes and consequences of animal dispersal strategies: Relating individual behaviour to spatial dynamics. Biol. Rev. 80, 205–225. https://doi.org/10.1017/S1464793104006645 (2005).Article 
    PubMed 

    Google Scholar 
    Bengtsson, G., Hedlund, K. & Rundgren, S. Food- and density-dependent dispersal: Evidence from a soil collembolan. J. Anim. Ecol. 63, 513. https://doi.org/10.2307/5218 (1994).Article 

    Google Scholar 
    Fellous, S., Duncan, A., Coulon, A. & Kaltz, O. Quorum sensing and density-dependent dispersal in an aquatic model system. PLoS ONE 7, e48436. https://doi.org/10.1371/journal.pone.0048436 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aguillon, S. M. & Duckworth, R. A. Kin aggression and resource availability influence phenotype-dependent dispersal in a passerine bird. Behav. Ecol. Sociobiol. 69, 625–633. https://doi.org/10.1007/s00265-015-1873-5 (2015).Article 

    Google Scholar 
    Byers, J. E. Effects of body size and resource availability on dispersal in a native and a non-native estuarine snail. J. Exp. Mar. Biol. Ecol. 248, 133–150. https://doi.org/10.1016/S0022-0981(00)00163-5 (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    de Meester, N., Derycke, S. & Moens, T. Differences in time until dispersal between cryptic species of a marine nematode species complex. PLoS ONE 7, e42674. https://doi.org/10.1371/journal.pone.0042674 (2012).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sepulveda, A. J. & Marczak, L. B. Active dispersal of an aquatic invader determined by resource and flow conditions. Biol. Invasions 14, 1201–1209. https://doi.org/10.1007/s10530-011-0149-x (2012).Article 

    Google Scholar 
    Lobbia, P. A. & Mougabure-Cueto, G. Active dispersal in Triatoma infestans (Klug, 1834) (Hemiptera Reduviidae: Triatominae): Effects of nutritional status, the presence of a food source and the toxicological phenotype. Acta Trop. 204, 105345. https://doi.org/10.1016/j.actatropica.2020.105345 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Barbraud, C., Johnson, A. R. & Bertault, G. Phenotypic correlates of post-fledging dispersal in a population of greater flamingos: The importance of body condition. J. Anim. Ecol. 72, 246–257. https://doi.org/10.1046/j.1365-2656.2003.00695.x (2003).Article 

    Google Scholar 
    Bonte, D. & de La Peña, E. Evolution of body condition-dependent dispersal in metapopulations. J. Evol. Biol. 22, 1242–1251. https://doi.org/10.1111/j.1420-9101.2009.01737.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Moran, N. P., Sánchez-Tójar, A., Schielzeth, H. & Reinhold, K. Poor nutritional condition promotes high-risk behaviours: A systematic review and meta-analysis. Biol. Rev. Camb. Philos. Soc. 96, 269–288. https://doi.org/10.1111/brv.12655 (2021).Article 
    PubMed 

    Google Scholar 
    Altermatt, F. & Fronhofer, E. A. Dispersal in dendritic networks: Ecological consequences on the spatial distribution of population densities. Freshw. Biol. 63, 22–32. https://doi.org/10.1111/fwb.12951 (2018).Article 

    Google Scholar 
    McCauley, S. J. & Rowe, L. Notonecta exhibit threat-sensitive, predator-induced dispersal. Biol. Lett. 6, 449–452. https://doi.org/10.1098/rsbl.2009.1082 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baines, C. B., McCauley, S. J. & Rowe, L. Dispersal depends on body condition and predation risk in the semi-aquatic insect, Notonecta undulata. Ecol. Evol. 5, 2307–2316. https://doi.org/10.1002/ece3.1508 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hammill, E., Fitzjohn, R. G. & Srivastava, D. S. Conspecific density modulates the effect of predation on dispersal rates. Oecologia 178, 1149–1158. https://doi.org/10.1007/s00442-015-3303-9 (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    Fronhofer, E. A. et al. Bottom-up and top-down control of dispersal across major organismal groups. Nat. Ecol. Evol. 2, 1859–1863. https://doi.org/10.1038/s41559-018-0686-0 (2018).Article 
    PubMed 

    Google Scholar 
    Delm, M. Vigilance for predators: Detection and dilution effects. Behav. Ecol. Sociobiol. https://doi.org/10.1007/BF00171099 (1990).Article 

    Google Scholar 
    Matthysen, E. Multicausality of dispersal: A review. Ecol. Evol. 1, 3–18 (2012).
    Google Scholar 
    Bowler, D. E. & Benton, T. G. Variation in dispersal mortality and dispersal propensity among individuals: The effects of age, sex and resource availability. J. Anim. Ecol. 78, 1234–1241. https://doi.org/10.1111/j.1365-2656.2009.01580.x (2009).Article 
    PubMed 

    Google Scholar 
    Giere, O. Meiobenthology. The microscopic motile fauna of aquatic sediments 2nd edn. (Springer, 2009).
    Google Scholar 
    Ptatscheck, C. & Traunspurger, W. The ability to get everywhere: Dispersal modes of free-living, aquatic nematodes. Hydrobiologia 22, 71. https://doi.org/10.1007/s10750-020-04373-0 (2020).Article 

    Google Scholar 
    Ptatscheck, C. & Gansfort, B. Dispersal of free-living nematodes. In Ecology of Freshwater Nematodes (ed. Traunspurger, W.) 151–184 (CABI, 2021).Chapter 

    Google Scholar 
    Traunspurger, W., Bergtold, M., Ettemeyer, A. & Goedkoop, W. Effects of copepods and chironomids on the abundance and vertical distribution of nematodes in a freshwater sediment. J. Freshw. Ecol. 21, 81–90. https://doi.org/10.1080/02705060.2006.9664100 (2006).Article 

    Google Scholar 
    Bargmann, C. I. Chemosensation in C. elegans. WormBook 1, 1–29. https://doi.org/10.1895/wormbook.1.123.1 (2006).Article 

    Google Scholar 
    Chasnov, J. R. & Chow, K. L. Why are there males in the hermaphroditic species Caenorhabditis elegans?. Genetics 160, 983–994 (2002).CAS 
    Article 

    Google Scholar 
    Ramot, D., Johnson, B. E., Berry, T. L., Carnell, L. & Goodman, M. B. The Parallel Worm Tracker: A platform for measuring average speed and drug-induced paralysis in nematodes. PLoS ONE 3, e2208. https://doi.org/10.1371/journal.pone.0002208 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muschiol, D. & Traunspurger, W. Life cycle and calculation of the intrinsic rate of natural increase of two bacterivorous nematodes, Panagrolaimus sp. and Poikilolaimus sp. from chemoautotrophic Movile Cave, Romania. Nematology 9, 271–284. https://doi.org/10.1163/156854107780739117 (2007).Article 

    Google Scholar 
    Beier, S., Bolley, M. & Traunspurger, W. Predator-prey interactions between Dugesia gonocephala and free-living nematodes. Freshw. Biol. 49, 77–86. https://doi.org/10.1046/j.1365-2426.2003.01168.x (2004).Article 

    Google Scholar 
    Powers, E. M. & Sayre, R. M. A predacious soil turbellarian that feeds on free-living and plant-parasitic nematodes. Nematology 12, 619–629. https://doi.org/10.1163/187529266X00482 (1966).Article 

    Google Scholar 
    Kreuzinger-Janik, B., Kruscha, S., Majdi, N. & Traunspurger, W. Flatworms like it round: Nematode consumption by Planaria torva (Müller 1774) and Polycelis tenuis (Ijima 1884). Hydrobiologia 819, 231–242. https://doi.org/10.1007/s10750-018-3642-8 (2018).Article 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Practical use of the information-theoretic approach. In Model Selection and Inference (eds Burnham, K. P. & Anderson, D. R.) 75–117 (Springer, 1998).Chapter 

    Google Scholar 
    McCulloch, C. E., Searle, S. R. & Neuhaus, J. M. Generalized, Linear, and Mixed Models (Wiley, 2008).MATH 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021). https://www.R-project.org/.Mazerolle, M. J. AICcmodavg: Model Selection and Multimodel Inference Based on (Q)AIC(c) (2020).Bonte, D., de Roissart, A., Wybouw, N. & van Leeuwen, T. Fitness maximization by dispersal: Evidence from an invasion experiment. Ecology 95, 3104–3111. https://doi.org/10.1890/13-2269.1 (2014).Article 

    Google Scholar 
    You, Y., Kim, J., Raizen, D. M. & Avery, L. Insulin, cGMP, and TGF-beta signals regulate food intake and quiescence in C. elegans: a model for satiety. Cell Metab. 7, 249–257. https://doi.org/10.1016/j.cmet.2008.01.005 (2008).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shtonda, B. B. & Avery, L. Dietary choice behavior in Caenorhabditis elegans. J. Exp. Biol. 209, 89–102. https://doi.org/10.1242/jeb.01955 (2006).Article 
    PubMed 

    Google Scholar 
    Mathieu, J. et al. Habitat quality, conspecific density, and habitat pre-use affect the dispersal behaviour of two earthworm species, Aporrectodea icterica and Dendrobaena veneta, in a mesocosm experiment. Soil Biol. Biochem. 42, 203–209. https://doi.org/10.1016/j.soilbio.2009.10.018 (2010).CAS 
    Article 

    Google Scholar 
    Oro, D., Cam, E., Pradel, R. & Martínez-Abraín, A. Influence of food availability on demography and local population dynamics in a long-lived seabird. Proc. R. Soc. Lond. B 271, 387–396. https://doi.org/10.1098/rspb.2003.2609 (2004).Article 

    Google Scholar 
    Harvey, S. C. Non-dauer larval dispersal in Caenorhabditis elegans. J. Exp. Zool. B Mol. Dev. Evol. 312B, 224–230. https://doi.org/10.1002/jez.b.21287 (2009).Article 
    PubMed 

    Google Scholar 
    Wilden, B., Majdi, N., Kuhlicke, U., Neu, T. R. & Traunspurger, W. Flatworm mucus as the base of a food web. BMC Ecol. 19, 15. https://doi.org/10.1186/s12898-019-0231-2 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gloria-Soria, A. & Azevedo, R. B. R. npr-1 Regulates foraging and dispersal strategies in Caenorhabditis elegans. Curr. Biol. 18, 1694–1699. https://doi.org/10.1016/j.cub.2008.09.043 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Harrison, R. G. Dispersal Polymorphisms in Insects. Annu. Rev. Ecol. Syst. 11, 95–118. https://doi.org/10.1146/annurev.es.11.110180.000523 (1980).Article 

    Google Scholar 
    Denno, R. F. & Peterson, M. A. Density-dependent dispersal and its consequences for population dynamics. Popul Dyn 1, 113–130 (2021).
    Google Scholar 
    Srinivasan, J. et al. A modular library of small molecule signals regulates social behaviors in Caenorhabditis elegans. PLoS Biol. 10, e1001237. https://doi.org/10.1371/journal.pbio.1001237 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bretscher, A. J. et al. Temperature, oxygen, and salt-sensing neurons in C. elegans are carbon dioxide sensors that control avoidance behavior. Neuron 69, 1099–1113. https://doi.org/10.1016/j.neuron.2011.02.023 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freckman, D. W., Duncan, D. A. & Larson, J. R. Nematode density and biomass in an annual grassland ecosystem. J. Range Manag. 32, 418. https://doi.org/10.2307/3898550 (1979).Article 

    Google Scholar 
    Cote, J. et al. Evolution of dispersal strategies and dispersal syndromes in fragmented landscapes. Ecography 40, 56–73. https://doi.org/10.1111/ecog.02538 (2017).Article 

    Google Scholar  More

  • in

    Black Kites on a flyway between Western Siberia and the Indian Subcontinent

    Ferguson-Lees, J., Christie, D. A. Raptors of the World. Helm Identification Guides (Christopher Helm, London, 2001).
    Google Scholar 
    BirdLife International 2021 Species factsheet: Milvus migrans. Downloaded from http://www.birdlife.org on 10 May 2021.Sergio, F., Pedrini, P. & Marchesi, L. Adaptive selection of foraging and nesting habitat by black kites Milvus migrans and its implications for conservation: a multi-scale approach. Biol. Conserv. 112, 351–362 (2003).
    Google Scholar 
    Tanferna, A., López-Jiménez, L., Blas, J., Hiraldo, F. & Sergio, F. Habitat selection by Black kite breeders and floaters: implications for conservation management of raptor floaters. Biol. Conserv. 160, 1–9 (2013).
    Google Scholar 
    Cortés-Avizanda, A. et al. Spatial heterogeneity in resource distribution promotes facultative sociality in two Trans-Saharan migratory birds. PLoS ONE 6, e21016 (2011).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Panuccio, M., Agostini, N., Mellone. U. & Bogliani, G. Circannual variation in movement patterns of the Black Kite (Milvus migrans migrans): A review. Ethol. Ecol. Evol. 26, 1–18 (2013).Dickinson, E. C. & Remsen, J. V. The Howard and Moore Complete Checklist of the Birds of the World, 4th (Aves Press, 2013).
    Google Scholar 
    Clements, J. F. et al. The eBird/Clements Checklist of Birds of the World: v2019. (2019).Orta, J., Marks, J. S., Garcia, E. & Kirwan, G. M. Black Kite (Milvus migrans). In Birds of the World (eds. Billerman, S.M., Keeney, B.K., Rodewald, P.G. & Schulenberg T.S.) 168–172 (Cornell Lab of Ornithology, 2020).Gill, F., Donsker, D. & Rasmussen, P. IOC World Bird List – version 11.1 (worldbirdnames.org., 2021).Dementiev, G. P., Gladkov, N. A., Ptushenko, E. S., Spangenberg, E. P. & Sudilovskaya, A. M. Birds of the Soviet Union, Vol. 1 (Sovetskaya Nauka, Moscow, in Russian, 1951).
    Google Scholar 
    Stepanyan, L. S. Conspectus of the Ornithological Fauna of the USSR (Nauka, Moscow, in Russian, 1990).Karyakin, I. Problem of identification of Eurasian subspecies of the Black Kite and records of the Pariah Kite in Southern Siberia, Russia. Raptors Conserv. 34, 49–67 (2017).
    Google Scholar 
    Skyrpan, M. & Literák, I. A kite Milvus migrans migrans/lineatus in Ukraine. Biologia 74, 1669–1673 (2019).
    Google Scholar 
    Panter, C. T. et al. Kites (Milvus spp.) wintering on Crete. Eur. Zool. J. 87, 591–596 (2020).
    Google Scholar 
    Skyrpan, M. et al. Kites Milvus migrans lineatus (Milvus migrans migrans/lineatus) are spreading west across Europe. J. Ornithol. 162, 317–323 (2021).
    Google Scholar 
    Onrubia Baticón A. Patrones espacio-temporales de la migración de aves planeadoras en el Estrecho de Gibraltar (Spatial and temporal patterns of soaring birds migration through the straits of Gibraltar). Doctoral thesis (Universidad de León, 2015).Literák, I. et al. Weather-influenced water-crossing behaviour of black kites Milvus migrans during migration. Biologia 76, 1267–1273 (2021).
    Google Scholar 
    Ovčiariková, S. et al. Natal dispersal in Black Kites Milvus migrans migrans in Europe. J. Ornithol. 161, 935–951 (2020).
    Google Scholar 
    Sklyarenko, S., Gavrilov, E. & Gavrilov, A. Migratory flyways of raptors and owls in Kazakhstan according to ringing data. Vogelwarte 41, 263–268 (2002).
    Google Scholar 
    Probst, R. & Pavličev, M. Migration in the Novosibirsk region and the Kuznetsky Alatau, Russia. Sandgrouse 28, 114–118 (2006).
    Google Scholar 
    Harris, T. Migration Hotspots. The World’s Best Bird Migration Sites. (Bloomsbury, London, New Delhi, New York, Sydney, 2013).Hirano, T. & Ueda, M. Black Kite Milvus migrans in Japanese. Bird Res. News 810, 1–6 (2011).
    Google Scholar 
    Choudhuri, A. Migration of Black-eared or Large Indian Kite Milvus migrans lineatus Gray from Mongolia to North-Eastern India. J. Bombay Nat. Hist. Soc. 102, 229–230 (2005).
    Google Scholar 
    Davaasuren, B. Khurkh Bird Ringing Station Annual Report 2018. (Wildlife Science Conservation Center of Mongolia, Ulaanbaatar, 2019).Kumar, N. et al. GPS-telemetry unveils the regular high-elevation crossing of the Himalayan by a migratory raptor: Implications for definition of a “Central Asian Flyway”. Sci. Rep. 10, 15988 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Juhant, M. A. & Bildstein, K. L. Raptor migration across and around the Himalayas. In Bird Migration Across the Himalayas (eds. Prins, H. H. T. & Namgail, T.) 98–116 (Cambridge University Press, Cambridge, 2017).
    Google Scholar 
    Rotics, S. et al. The challenges of the first migration: Movement and behaviour of juvenile vs. adult white storks with insights regarding juvenile mortality. J. Anim. Ecol. 85, 938–947 (2016).PubMed 

    Google Scholar 
    Vidal-Mateo, J. et al. Wind effects on the migration routes of trans-Saharan soaring raptors: Geographical, seasonal and interspecific variation. Curr. Zool. 62, 89–97 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Safi, K. et al. Flying with the wind: Scale dependency of speed and direction measurements in modelling wind support in avian flight. Mov. Ecol. 1, 4 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Green, M., Alerstam, T., Clausen, P., Drent, R. & Ebbinge, B. S. Dark-bellied Brent Geese Branta bernicla bernicla, as recorded by satellite telemetry, do not minimize flight distance during spring migration. Ibis 144, 106–121 (2002).
    Google Scholar 
    Malmiga, G., Nilsson, C., Bäckman, J. & Alerstam, T. Interspecific comparison of the flight performance between sparrowhawks and common buzzards migrating at the Falsterbo peninsula: a radar study. Curr. Zool. 605, 670–679 (2014).
    Google Scholar 
    Vansteelant, W. M. G. et al. Regional and seasonal flight speeds of soaring migrants and the role of weather conditions at hourly and daily scales. J. Avian Biol. 46, 25–39 (2015).
    Google Scholar 
    Dodge, S., Bohrer, G. & Weinzierl, R. MoveBank track annotation project: linking animal movement data with the environment to discover the impact of environmental change in animal migration. In Workshop on GIScience in the Big Data Age in Conjunction with the Seventh International Conference on Geographic Information Science 2012 GIScience (eds. Janowicz, K., Kessler, C., Kauppinen, T. & Kolas, D.) 35–41 (Columbus, OH, 2012).Scott, G. R. et al. How bar-headed geese fly over the Himalayas. Physiology 30, 107–115 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andreyenkova, N. G., Andreyenkov, O. V., Karyakin, I. V. & Zhimulev, I. F. New haplotypes of the mitochondrial gene cytB in the nesting population of the Siberian Black Kite Milvus migrans lineatus Gray, 1831 in the territory of the Republic of Tyva. Dokl. Biochem. Biophys. 482, 242–244 (2018).CAS 
    PubMed 

    Google Scholar 
    Mellone, U. et al. Interspecific comparison of the performance of soaring migrants in relation to morphology, meteorological conditions and migration strategies. PLoS ONE 7, e39833 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kemp, M. U., Emiel van Loon, E., Shamoun-Baranes, J. & Bouten, W. RNCEP: global weather and climate data at your fingertips. Methods Ecol. Evol. 3, 65–70 (2012).
    Google Scholar 
    Team, R.C. R: A Language and Environment for Statistical Computing. R 739 (Foundation for Statistical Computing [Internet], Vienna, Austria, 2018). https://www.R-project.org/Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002).MATH 

    Google Scholar 
    Andreyenkova, N. G. et al. Phylogeography and demographic history of the Black Kite Milvus migrans, raptor widespread in Eurasia, Australia and Africa. J. Avian Biol. 52, e02822 (2021).
    Google Scholar 
    Lindholm, A. & Forsten, A. Black Kites Milvus migrans in Russian Altai. Caluta 2, 1–6 (2011).
    Google Scholar 
    Vansteelant, W.M.G. An ontogenetic perspective on migration learning and critical life-history traits in raptors. In Abstracts of British Ornithologists’ Union 2019 Annual Conference Tracking Migration: Drivers, Challenges and Consequences of Seasonal Movements. 45–46. (University of Warwick, UK, 2019).Dixon, A., Rahman, L., Sokolov, A. & Sokolov, V. Peregrine Falcons crossing the „Roof of the World”. In Bird Migration Across the Himalayas, Wetland Functioning Amidst Mountains and Glaciers (eds. Prins, H.T. & Namgail, T.) 128–141 (Cambridge University Press, Cambridge, 2017).Parr, N. et al. High altitude flights by ruddy shelduck Tadorna ferruginea during trans-Himalayan migrations. J. Avian Biol. 48, 1310–1315 (2017).
    Google Scholar 
    Hawkes, L. A. et al. The paradox of extreme high-altitude migration in bar-headed geese Anser indicus. Proc. R. Soc. B 280, 1–8 (2013).
    Google Scholar 
    Bishop, C. M. et al. The roller coaster flight strategy of bar-headed geese conserves energy during Himalayan migrations. Science 347, 250–254 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Agostini, N., Pannucio, M. & Pasquaretta, C. Morphology, flight performace, and water crossing tendencies of Afro-Palearctic raptors during migration. Curr. Zool. 61, 951–958 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Altshuler, D. & Dudley, R. The physiology and biomechanics of avian flight at high altitude. Integr. Comp. Biol. 46, 62–71 (2006).PubMed 

    Google Scholar 
    Santos, C. D. et al. Match between soaring modes of black kites and the fine-scale distribution of updrafts. Sci. Rep. 7, 6421 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ohlmann, K. The wind system in the Himalayas: From a Bird’s-Eye View. In Bird Migration Across the Himalayas, Wetland Functioning Amidst Mountains and Glaciers (eds. Prins, H.T. & Namgail, T.), 9–28 (Cambridge University Press, Cambridge, 2017).Heise, R. Birds, gliders and uplift systems over the Himalayas. In Bird Migration Across the Himalayas, Wetland Functioning Amidst Mountains and Glaciers (eds. Prins, H.T. & Namgail, T.), 229–40 (Cambridge University Press, Cambridge, 2017).Harel, R. et al. Decision-making by a soaring bird: time, energy and risk considerations at different spatiotemporal scales. Philos. T. R. Soc. B 371, 20150397 (2016).
    Google Scholar 
    Vansteelant, W. M. G., Shamoun-Baranes, J., McLaren, J., van Diermen, J. & Bouten, W. Soaring across continents: Decision-making of a soaring migrant under changing atmospheric conditions along an entire flyway. J. Avian Biol. 48, 887–896 (2017).
    Google Scholar 
    Nilsson, C., Klaassen, R. H. G. & Alerstam, T. Differences in speed and duration of bird migration between spring and autumn. Am. Nat. 181, 837–845 (2013).PubMed 

    Google Scholar 
    Kokko, H. Competition for early arrival in migratory birds. J. Anim. Ecol. 68, 940–150 (1999).
    Google Scholar 
    Moore, F.R., Smith, R.J. & Sandberg, R. Stopover ecology of intercontinental migrants: en route problems and consequences for reproductive performance. In Birds of Two Worlds: the Ecology and Evolution of Migration (eds. Greenberg, R. & Marra, P.P.), 251–261 (Johns Hopkins University Press, Baltimore, 2005).McNamara, J. M., Welham, R. K. & Houston, A. I. The timing of migration within the context of an annual routine. J. Avian Biol. 29, 416–423 (1998).
    Google Scholar 
    Köppen, U. et al. Seasonal migrations of four individual bar-headed geese Anser indicus from Kyrgyzstan followed by satellite telemetry. J. Ornithol. 151, 703–712 (2010).
    Google Scholar 
    Kölzsch, A. et al. Towards a new understanding of migration timing: slower spring than autumn migration in geese reflects different decision rules for stopover use and departure. Oikos 125, 1496–1507 (2016).
    Google Scholar 
    Butler, R. W., Williams, T. D., Warnock, N. & Bishop, M. A. Wind assistance: a requirement for migration of shorebirds? Auk 114, 456–466 (1997).
    Google Scholar 
    Santos, C. D., Silva, J. P., Muñoz, A. R., Onrubia, A. & Wikelski, M. The gateway to Africa: What determines sea crossing performance of a migratory soaring birds at the Strait of Gibraltar. J. Anim. Ecol. 89, 1317–1328 (2020).PubMed 

    Google Scholar 
    Kumerloeve, H. V. Überwintern des Schwarzmilans im vorderen Orient. Falke 14, 274–227 (1967).
    Google Scholar 
    Baumgart, W., Kasparek, M. & Stephan, B. Die Vögel Syrien: eine Übersicht (Max Kasparek Verlag, 1995).
    Google Scholar 
    Tsvelykh, A. N. & Panyushkin, V. E. Wintering of the Black Kite Milvus migrans in Ukraine. Vestn. Zool. 36, 81–83 (2002).
    Google Scholar 
    Sarà, M. The colonisation of Sicily by the Black Kite Milvus migrans. J. Raptor Res. 37, 167–172 (2003).
    Google Scholar 
    Domashevskii, S. V. First record of the Black Kite in winter in the northern part of Ukraine. Berkut 18, 212–213 (2009).
    Google Scholar 
    Ciach, M. & Kruszyk, R. Foraging of White Storks Ciconia ciconia on rubbish dumps on nonbreeding grounds. Waterbirds 33, 101–104 (2010).
    Google Scholar 
    Biricik, M. & Karakaş. R. Black Kites Milvus migrans winter in Southeastern Anatolia, Turkey. J. Raptor Res. 45, 370–373 (2011).Literák, I., Horal, D., Alivizatos, H. & Matušík, H. Common wintering of black kites Milvus migrans migrans in Greece, and new data on their wintering elsewhere in Europe. Slovak Raptor J. 11, 91–102 (2017).
    Google Scholar 
    Shirihai, H., Yosef, R., Alon, D., Kirwan, G.M. & Spaar, R. Raptor Migration in Israel and the Middle East (International Birdwatching Centre Eilat IBRCE, IOC, Israel, 2000).Forsman, D. Identification of Black-eared Kite. Bird. World 16, 156–216 (2003).
    Google Scholar 
    Abuladze, A. Birds of Prey of Georgia, Materials towards a Fauna of Georgia, Issue VI (Ilia State University, Tbilisi, 2013).
    Google Scholar 
    Brooke, R. K. The migratory Black Kite Milvus migrans migrans Aves: Accipitridae of the Palearctic in southern Africa. Durb. Mus. Novit. 10, 53–66 (1974).
    Google Scholar 
    Forsman, D. Flight Identifcation of Raptors of Europe (North Africa and the Middle East (Christopher Helm, 2016).
    Google Scholar 
    Percie du Sert, N. et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 18, e3000410 (2020). More

  • in

    A hierarchical inventory of the world’s mountains for global comparative mountain science

    The generation of this map of the world’s mountains consisted of five steps (Fig. 1): (i) the identification and hierarchisation of named mountain ranges and the recording of range-specific information; (ii) the manual digitization of the ranges’ general shape; (iii) the definition of mountainous terrain (and the inventory’s outer borders) using a DEM-based algorithm; (iv) the automatic refinement of the digitized and named ranges’ inner borders; and (v) the preparation of the final layers. The resulting products consist of a refined mountain definition (GMBA Definition v2.0), two versions of the inventory (GMBA Inventory v2.0_standard & GMBA Inventory v2.0_broad), and a set of tools to work with the inventories.Step i: Identification and hierarchisation of mountain rangesIn a first step, we identified mountain ranges worldwide. To do so we adopted the mountain ranges identified in the GMBA Inventory v1.410,14 and searched existing resources in any languages for other named ranges not yet included. The ranges added could either be adjacent to, included in (child range or subrange) or including (parent range or mountain system) mountain ranges of the GMBA Inventory v1.4. The resources used for our searches included world atlases (e.g. The Times Comprehensive Atlas of the World19, Knaurs grosser Weltatlas20, Pergamon World Atlas21); topographic maps (e.g. http://legacy.lib.utexas.edu/maps/imw/, http://legacy.lib.utexas.edu/maps/onc/, https://maps.lib.utexas.edu/maps/tpc/, www.topomap.co.nz, https://norgeskart.no, www.ign.es/iberpix/visor/); encyclopaedias (www.wikipedia.org; www.britannica.com); online gazetteers and reference sites (e.g. www.wikidata.org, www.geonames.org (GeoNames), www.mindat.org); mountain classification systems (e.g. the International Standardized Mountain Subdivision of the Alps or SOIUSA for the Alps22, Alpenvereinseinteilung der Ostalpen23, Classification of the Himalaya24, www.peakbagger.com/rangindx.aspx (PEMRACS), www.carpathian-research-network.eu/ogulist, http://www.sopsr.sk/symfony-bioregio/lkpcarporog, www.dinarskogorje.com, https://bivouac.com/, https://climbnz.org.nz/); and national or regional landscape, geomorphological, or physiographic maps and publications4,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42. The full list of the consulted sources and references is available on GitHub at https://www.github.com/GMBA-biodiversity/Inventory (GMBA Mountain Inventory v2.0 References.pdf).All identified mountain ranges were recorded in a Microsoft Access relational database (“Mountain database”, see below) and given a name, a unique 5-digit identifier (GMBA_V2_ID), and the corresponding Wikidata unique resource identifier (URI), when available. This URI gives access to a range’s name as well as to its Wikipedia page URL in all available languages and lists other identifiers for given mountain ranges in a variety of other repositories such as GeoNames or PEMRACS. The primary mountain range names were based on the resources used for range identification and were preferably recorded in English. Names used nationally, locally, as well as/or by indigenous people and local communities were extracted from Wikidata and recorded in a separate attribute field.In the process of cataloguing, we attributed a parent range to each of the mapped mountain ranges. Information about parent ranges is included in PEMRACS, often also in Wikidata as a property that can be extracted though a SPARQL query, in the corresponding Wikipedia pages description, and in regional hierarchical mountain classifications that exist for the European Alps (SOIUSA), the Carpathians, and the Dinaric Alps. When no such information was available, we relied on other sources of information that we found either using a general web search (leading to specific papers, reports, or web pages on mountain ranges) or by consulting (online) topographical maps and atlases at different scales. The information about parent ranges was used to construct a hierarchy of up to 10 levels using a recursive SQL query (see Step v). The result of this step was a relational database with a hierarchy of mountain systems and (sub-) ranges (Fig. 1, “Mountain database”).Step ii: Digitization of the mountain rangesIn a second step, we digitized all identified ‘childless’ mountain ranges (i.e. smallest mapping units, called ‘Basic’ as opposed to ‘Aggregated’ in the database) in one vector GIS layer. To do so, we used the Google Maps Terrain layers (Google, n.d.) as background and the WHYMAP named rivers layer42 as spatial reference since descriptions of mountain range areal extension is often given with reference to major rivers. The digitization, which was done in QGIS43 using the WGS 84 / Pseudo-Mercator (EPSG 3857) coordinate reference system, consisted in the drawing of shapes (polygons) that roughly followed the core area of each mountain range. In general, the approximate shape and extent of the mountain ranges we digitized could be distinguished based on the terrain structure as represented by the shaded relief background that corresponded to the placement and orientation of the range’s name label on a topographical map, atlas or other resource. As the exact placement and orientation of mountain range labels in each specific source can be influenced by cartographic considerations (e.g. avoiding overlaps with other features), the final approximation of the mountain range was obtained by consulting a variety of sources for each mountain range. Occasionally, the mountain terrain’s geomorphological characteristics strongly hampered the accuracy of our visual identification of mountain subranges within larger systems. This was particularly the case in old, eroded massifs such as the Brazilian Highlands or the highlands of Madagascar, where individual mountain ranges are not separated by deep well-defined valleys and have a very complex topography. In these cases, we referred to available topographical descriptions of range extent and to the river layer (see above). Other complex regions included Borneo and the Angolan Highlands, whereas subranges in mountain systems such as the European Alps, the Himalayas, and the North American Cordillera were comparatively easy to map. Moreover, the density of currently available mountain toponymical information varied quite strongly between regions. Accordingly, regional variation in the size of the smallest mountain range map units can be considerable. The result of this step was a (manually) digitized vector layer of named mountain ranges shapes (Fig. 1, “Manual mountain shapes”).Step iii: Definition of mountainous terrainIn a third step, we defined mountainous terrain (GMBA Definition v2.0). To distinguish mountainous from non-mountainous terrain, we developed a simple algorithm which we implemented in ArcMap 10.7.144. This algorithm is based on ruggedness (defined as highest minus lowest elevation in meter) within eight circular neighbourhood analysis windows (NAWs) of different sizes (from 1 pixel (≈ 250 m) to 20 (≈ 5 km) around each point, Fig. 2c) combined with empirically derived thresholds for each NAW (Fig. 2). The decision to use multiple NAW sizes was made because calculating ruggedness based on only a small or a large NAW comes at the risk of identifying the many local irregularities typically occurring in flat or rolling terrain as mountainous or of including extensive flat ‘skirts’ through the smoothing and generalization of large NAWs3. Accordingly, our approach ensures that any point in the landscape classified as mountainous showed some level of ruggedness not only at one but across scales. This also resulted in a smooth and homogeneous delineation of mountainous terrain, very suitable for our mapping purpose.Fig. 2Elevation range thresholds for the eight neighbourhood analysis windows (NAW) and their contribution to calculations of the GMBA Definition v2.0. (a) distribution of elevation range values (ruggedness) for NAWs (numbered I to VIII) in mountain regions as defined by the geometric intersection of K1, K2 and K3. (b): plot of the minimum elevation range versus the area of the NAW (n = 920). (c) NAWs and their corresponding threshold values. (d) percent overlap between GMBA Definition v2.0 (intersection of eight NAW-threshold pairs) and area defined by each individual NAW-threshold pair. (e) percent eliminated by each NAW-threshold pair (I to VIII) from the mountain area defined by the other 7 NAW-threshold combinations. Highlighted bars in the two graphs represent the combination of three NAW-threshold pairs that results in the highest overlap with the GMBA Definition v2.0.Full size imageWe used the median value of the 7.5 arc second GMTED2010 DEM45 as our source map. To reduce the latitudinal distortion of the raster, and thus the shape and area of the NAWs, we divided the global DEM into three raster layers corresponding to three latitudinal zones (84° N to 30° N, 30° N to 30° S and 30° S to 56° S) excluding ice-covered Antarctica and projected the two high latitude zones to Lambert Azimuthal Equal Area and the equatorial zone to WGS 1984 Cylindrical Equal Area. We used these reprojected DEM layers to produce eight ruggedness layers, each using one of the eight NAWs.To determine the threshold values of our algorithm, we selected 1000 random points within the area defined by the geometric intersection (Fig. 1b) of the three commonly applied mountain definitions, i.e. the definitions by UNEP-WCMC46, GMBA15, and USGS3. These layers (referred to as K1, K2, and K3, respectively by Sayre and co-authors12) were obtained from the Global Mountain Explorer47. We eliminated 80 clearly misclassified points (i.e., points that fell within lakes, oceans, or clearly flat areas according to the shaded relief map we used as a background) and used the remaining 920 to sample the eight ruggedness layers. For each of the 8 layers, we retained the lowest of the 920 ruggedness values as the threshold for the layer’s specific NAW (Fig. 2c). The eight threshold values were then used to reclassify each of the eight layers by attributing the value 1 to all cells with a ruggedness value higher than or equal to the corresponding threshold and the value 0 to all other cells. Finally, we performed a geometric intersection (see Fig. 1b) of the eight reclassified layers to derive the new mountain definition.After these calculations, we reprojected the three raster layers to WGS84 and combined them through mosaic to new raster. To eliminate isolated cells and jagged borders, we then generalized the resulting raster map by passing a majority filter (3 × 3 pixels, majority threshold) three times. This layer corresponds to the GMBA Definition v2.0.The resulting mountain definition (GMBA Definition v2.0) distinguishes itself from previous ones because of the empirically derived thresholds method used to develop it and the use of eight NAWs. In line with the previous GMBA definition, it relies entirely on the ruggedness values within NAWs. The GMBA Definition v2.0 was used to determine the outer delineation of this inventory’s mountainous terrain. As expected, it includes neither the wide ‘skirts’ of flat or undulating land around mountain ranges nor the topographical irregularities that are both typically included when other approaches are applied. It also successfully excludes extensive areas of rolling non-mountainous terrain such as the 52,000 km2 Badain Jaran Desert sand dunes in China. However, this mountain definition is conservative and only includes the highest, most rugged cores of low mountain systems, as for example in the Central Uplands of Germany, and therefore excludes some lower hill areas still considered by some as mountains.As a further step towards generalization, we considered that small ( More

  • in

    Reduced bacterial mortality and enhanced viral productivity during sinking in the ocean

    Volk T, Hoffert MI. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes. In: Sundquist ET, Broecker WS. (eds). The carbon cycle and atmospheric CO2: Natural variations archean to present. American Geophysical Union, Geophysical Monograph, Washington, DC: 1985. p. 32:99–110.Scharek R, Tupas LM, Karl DM. Diatom fluxes to the deep sea in the oligotrophic North Pacific gyre at Station ALOHA. Mar Ecol-Prog Ser. 1999;182:55–67.
    Google Scholar 
    Simon M, Grossart H, Schweitzer B, Ploug H. Microbial ecology of organic aggregates in aquatic ecosystems. Aquat Micro Ecol. 2002;28:175–211.
    Google Scholar 
    Siegenthaler U, Sarmiento JL. Atmospheric carbon dioxide and the ocean. Nature. 1993;365:119–25.CAS 

    Google Scholar 
    Ducklow H, Steinberg DK. Upper ocean carbon export and the biological pump. Oceanography. 2001;14:50–58.
    Google Scholar 
    Jiao N, Herndl GJ, Hansell DA, Benner R, Kattner G, Wilhelm SW, et al. Microbial production of recalcitrant dissolved organic matter: long-term carbon storage in the global ocean. Nat Rev Microbiol. 2010;8:593–9.CAS 
    PubMed 

    Google Scholar 
    DeLong EF, Franks DG, Alldredge AL. Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr. 1993;38:924–34.
    Google Scholar 
    Allen AE, Allen LZ, McCrow JP. Lineage specific gene family enrichment at the microscale in marine systems. Curr Opin Microbiol. 2013;16:605–17.CAS 
    PubMed 

    Google Scholar 
    D’Ambrosio L, Ziervogel K, MacGregor B, Teske A, Arnosti C. Composition and enzymatic function of particle-associated and free-living bacteria: a coastal/offshore comparison. ISME J. 2014;8:2167–79.PubMed 
    PubMed Central 

    Google Scholar 
    Martin JH, Knauer GA, Karl DM, Broenkow WW. VERTEX: carbon cycling in the northeast Pacific. Deep-Sea Res Part I-Oceanogr Res Pap. 1987;34:267–85.CAS 

    Google Scholar 
    Buesseler KO. The decoupling of production and particulate export in the surface ocean. Glob Biogeochem Cycle. 1998;12:297–310.CAS 

    Google Scholar 
    Schlitzer R. Applying the adjoint method for biogeochemical modeling: export of particulate organic matter in the world ocean. In: Kasibhata P, editor. Inverse Methods in Global biogeochemical Cycles. Washington, DC: American Geophysical Union; 2000. p. 114:107–24.Steinberg DK, Van Mooy BAS, Buesseler KO, Boyd PW, Kobari T, Karl DM. Bacterial vs. zooplankton control of sinking particle flux in the ocean’s twilight zone. Limnol Oceanogr. 2008;53:1327–38.
    Google Scholar 
    Cho BC, Azam F. Major role of bacteria in biogeochemical fluxes in the ocean’s interior. Nature. 1988;332:441–3.CAS 

    Google Scholar 
    Herndl GJ, Reinthaler T. Microbial control of the dark end of the biological pump. Nat Geosci. 2013;6:718–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bergh Ø, Borsheim KY, Bratbak G, Heldal M. High abundance of viruses found in aquatic environments. Nature. 1989;340:467–8.CAS 
    PubMed 

    Google Scholar 
    Suttle CA. Viruses in the sea. Nature. 2005;437:356–61.CAS 
    PubMed 

    Google Scholar 
    Zhang R, Wei W, Cai L. The fate and biogeochemical cycling of viral elements. Nat Rev Microbiol. 2014;12:850–1.CAS 
    PubMed 

    Google Scholar 
    Middelboe M, Lyck PG. Regeneration of dissolved organic matter by viral lysis in marine microbial communities. Aquat Micro Ecol. 2002;27:187–94.
    Google Scholar 
    Weinbauer MG, Brettar I, Hofle MG. Lysogeny and virus-induced mortality of bacterioplankton in surface, deep, and anoxic marine waters. Limnol Oceanogr. 2003;48:1457–65.
    Google Scholar 
    Fuhrman JA. Marine viruses and their biogeochemical and ecological effects. Nature. 1999;399:541–8.CAS 
    PubMed 

    Google Scholar 
    Jover LF, Effler TC, Buchan A, Wilhelm SW, Weitz JS. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat Rev Microbiol. 2014;12:519–28.CAS 
    PubMed 

    Google Scholar 
    Bongiorni L, Magagnini M, Armeni M, Noble R, Danovaro R. Viral production, decay rates, and life strategies along a trophic gradient in the North Adriatic Sea. Appl Environ Microbiol. 2005;71:6644–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weinbauer MG, Bettarel Y, Cattaneo R, Luef B, Maier C, Motegi C, et al. Viral ecology of organic and inorganic particles in aquatic systems: avenues for further research. Aquat Micro Ecol. 2009;57:321–41.CAS 

    Google Scholar 
    Tian Y, Cai L, Xu Y, Luo T, Zhao Z, Wang Q, et al. Stability and infectivity of allochthonous viruses in deep sea: A long-term high pressure simulation experiment. Deep-Sea Res Part I-Oceanogr Res Pap. 2020;161:103302.
    Google Scholar 
    Lara E, Vaqué D, Sà EL, Boras JA, Gomes A, Borrull E, et al. Unveiling the role and life strategies of viruses from the surface to the dark ocean. Sci Adv. 2017;3:e1602565.PubMed 
    PubMed Central 

    Google Scholar 
    Zhang R, Li Y, Yan W, Wang Y, Cai L, Luo T, et al. Viral control of biomass and diversity of bacterioplankton in the deep sea. Commun Biol. 2020;3:256.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Woźniak SB, Stramski D, Stramska M, Reynolds RA, Wright VM, Miksic EY, et al. Optical variability of seawater in relation to particle concentration, composition, and size distribution in the nearshore marine environment at Imperial Beach, California. J Geophys Res. 2010;115:C08027.
    Google Scholar 
    White AE, Letelier RM, Whitmire AL, Barone B, Bidigare RR, Church MJ, et al. Phenology of particle size distributions and primary productivity in the North Pacific subtropical gyre (Station ALOHA). J Geophys Res-Oceans. 2015;120:7381–99.PubMed 
    PubMed Central 

    Google Scholar 
    Vaulot D, Courties C, Partensky F. A simple method to preserve oceanic phytoplankton for flow cytometric analyses. Cytom Part A. 1989;10:629–35.CAS 

    Google Scholar 
    Chen X, Liu H, Weinbauer M, Chen B, Jiao N. Viral dynamics in the surface water of the western South China Sea in summer 2007. Aquat Micro Ecol. 2011;63:145–60.
    Google Scholar 
    Wei W, Zhang R, Peng L, Liang Y, Jiao N. Effects of temperature and photosynthetically active radiation on virioplankton decay in the western Pacific Ocean. Sci Rep. 2018;8:1525–34.PubMed 
    PubMed Central 

    Google Scholar 
    Marie D, Partensky F, Vaulot D, Brussaard C. Numeration of phytoplankton, bacteria and viruses in marine samples. Curr Protoc Cytom. 1999;11:1–15.
    Google Scholar 
    Marie D, Brussaard CPD, Thyrhaug R, Bratbak G, Vaulot D. Enumeration of marine viruses in culture and natural samples by flow cytometry. Appl Environ Microbiol. 1999;65:45–52.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brussaard CP. Optimization of procedures for counting viruses by flow cytometry. Appl Environ Microbiol. 2004;70:1506–13.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilhelm SW, Brigden SM, Suttle CA. A dilution technique for the direct measurement of viral production: a comparison in stratified and tidally mixed coastal waters. Micro Ecol. 2002;43:168–73.CAS 

    Google Scholar 
    Weinbauer MG, Rowe JM, Wilhelm SW. Determining rates of virus production in aquatic systems by the virus reduction approach. In: Wilhelm SW, Weinbauer MG, Suttle CA. (eds). Manual of Aquatic Viral Ecology. American Society of Limnology and Oceanography Inc., Waco, TX: 2010. p. 1–8.Chen X, Wei W, Wang J, Li H, Sun J, Ma R, et al. Tide driven microbial dynamics through virus-host interactions in the estuarine ecosystem. Water Res. 2019;160:118–29.CAS 
    PubMed 

    Google Scholar 
    Luef B, Luef F, Peduzzi P. Online program ‘vipcal’ for calculating lytic viral production and lysogenic cells based on a viral reduction approach. Environ Microbiol Rep. 2009;1:78–85.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Winget DM, Helton RR, Williamson KE, Bench SR, Williamson SJ. Repeating patterns of virioplankton production within an estuarine ecosystem. Proc Natl Acad Sci USA. 2011;108:11506–11.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wei W, Wang N, Cai L, Zhang C, Jiao N, Zhang R. Impacts of freshwater and seawater mixing on the production and decay of virioplankton in a subtropical estuary. Micro Ecol. 2019;78:843–54.CAS 

    Google Scholar 
    Noble RT, Fuhrman JA. Virus decay and its causes in coastal waters. Appl Environ Microbiol. 1997;63:77–83.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suttle CA, Chen F. Mechanisms and rates of decay of marine viruses in seawater. Appl Environ Microbiol. 1992;58:3721–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rowe JM, Saxton MA, Cottrell MT, DeBruyn JM, Berg GM, Kirchman DL, et al. Constraints on viral production in the Sargasso Sea and North Atlantic. Aquat Micro Ecol. 2008;52:233–44.
    Google Scholar 
    Evans C, Pearce I, Brussaard CP. Viral-mediated lysis of microbes and carbon release in the sub-Antarctic and Polar Frontal zones of the Australian Southern Ocean. Environ Microbiol. 2009;11:2924–34.CAS 
    PubMed 

    Google Scholar 
    De Corte D, Sintes E, Winter C, Yokokawa T, Reinthaler T, Herndl GJ. Links between viral and prokaryotic communities throughout the water column in the (sub)tropical Atlantic Ocean. ISME J. 2010;4:1431–42.PubMed 

    Google Scholar 
    Li Y, Lou T, Sun J, Cai L, Liang Y, Jiao N, et al. Lytic viral infection of bacterioplankton in deep waters of the western Pacific Ocean. Biogeosciences. 2014;11:2531–42.
    Google Scholar 
    Liang Y, Zhang Y, Zhang Y, Luo T, Rivkin R, Jiao N. Distributions and relationships of virio- and picoplankton in the epi-, meso- and bathypelagic zones of the Western Pacific Ocean. FEMS Microbiol Ecol. 2017;93:fiw238.PubMed 

    Google Scholar 
    Wommack KE, Colwell RR. Virioplankton: viruses in aquatic ecosystems. Microbiol Mol Biol Rev. 2000;64:69–114.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parikka KJ, Le Romancer M, Wauters N, Jacquet S. Deciphering the virus-to-prokaryote ratio (VPR): insights into virus-host relationships in a variety of ecosystems. Biol Rev. 2016;92:1081–1100.PubMed 

    Google Scholar 
    Parada V, Herndl GJ, Weinbauer MG. Viral burst size of heterotrophic prokaryotes in aquatic systems. J Mar Biol Assoc UK. 2006;86:613–21.
    Google Scholar 
    Yuan D. A numerical study of the South China Sea deep circulation and its relation to the Luzon Strait transport. Acta Oceano Sin. 2002;21:187–202.
    Google Scholar 
    Tian J, Yang Q, Zhao W. Enhanced diapycnal mixing in the South China Sea. J Phys Oceanogr. 2009;39:3191–203.
    Google Scholar 
    Alford MH, Lien R, Simmons H, Klymak J, Ramp S, Yang YJ, et al. Speed and evolution of nonlinear internal waves transiting the South China Sea. J Phys Oceanogr. 2010;40:1338–55.
    Google Scholar 
    Parada V, Sintes E, Van Aken HM, Weinbauer MG, Herndl GJ. Viral abundance, decay, and diversity in the meso- and bathypelagic waters of the north atlantic. Appl Environ Microbiol. 2007;73:4429–38.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Corte D, Sintes E, Yokokawa T, Reinthaler T, Herndl GJ. Links between viruses and prokaryotes throughout the water column along a North Atlantic latitudinal transect. ISME J. 2012;6:1566–77.PubMed 
    PubMed Central 

    Google Scholar 
    Zachary A. An ecological study of bacteriophages of Vibrio natriegens. Appl Environ Microbiol. 1978;24:321–4.CAS 

    Google Scholar 
    Motegi C, Nagata T. Enhancement of viral production by addition of nitrogen or nitrogen plus carbon in subtropical surface waters of the South Pacific. Aquat Micro Ecol. 2007;48:27.
    Google Scholar 
    Bratbak G, Egge JK, Heldal M. Viral mortality of the marine alga Emiliania huxleyi (Haptophyceae) and termination of algal blooms. Mar Ecol-Prog Ser. 1993;93:39–48.
    Google Scholar 
    Motegi C, Kaiser K, Benner R, Weinbauer MG. Effect of P-limitation on prokaryotic and viral production in surface waters of the Northwestern Mediterranean Sea. J Plankton Res. 2015;37:16–20.CAS 

    Google Scholar 
    Hewson I, O’Neil JM, Fuhrman JA, Dennison WC. Virus-like particle distribution and abundance in sediments and overmaying waters along eutrophication gradients in two subtropical estuaries. Limnol Oceanogr. 2001;46:1734–46.
    Google Scholar 
    Wilson WH, Mann NH. Lysogenic and lytic viral production in marine microbial communities. Aquat Micro Ecol. 1997;13:95–100.
    Google Scholar 
    Paul JH. Prophages in marine bacteria: dangerous molecular time bombs or the key to survival in the seas? ISME J. 2008;2:579–89.CAS 
    PubMed 

    Google Scholar 
    Chibani-Chennoufi S, Bruttin A, Dillmann ML, Brussow H. Phage-host interaction: an ecological perspective. J Bacteriol. 2004;186:3677–86.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weinbauer MG. Ecology of prokaryotic viruses. FEMS Microbiol Rev. 2004;28:127–81.CAS 
    PubMed 

    Google Scholar 
    Williamson SJ, Paul JH. Nutrient stimulation of lytic phage production in bacterial populations of the Gulf of Mexico. Aquat Micro Ecol. 2004;36:9–17.
    Google Scholar 
    Williamson SJ, Paul JH. Environmental factors that influence the transition from lysogenic to lytic existence in the ϕHSIC/Listonella pelagia marine phage–host system. Micro Ecol. 2006;52:217–25.CAS 

    Google Scholar 
    Cissoko M, Desnues A, Bouvy M, Sime-Ngando T, Verling E, Bettarel Y. Effects of freshwater and seawater mixing on virio- and bacterioplankton in a tropical estuary. Freshw Biol. 2008;53:1154–62.
    Google Scholar 
    Bettarel Y, Bouvier T, Agis M, Bouvier C, Van Chu T, Combe M, et al. Viral distribution and life strategies in the Bach Dang Estuary, Vietnam. Micro Ecol. 2011;62:143–54.
    Google Scholar 
    Shkilnyj P, Koudelka GB. Effect of salt shock on stability of λimm434 lysogens. J Bacteriol. 2007;189:3115–23.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tuomi P, Fagerbakke KM, Bratbak G, Heldal M. Nutritional enrichment of a microbial community: the effects on activity, elemental composition, community structure and virus production. FEMS Microbiol Ecol. 1995;16:23–134.
    Google Scholar 
    Dell’Anno A, Corinaldesi C, Danovaro R. Virus decomposition provides an important contribution to benthic deep-sea ecosystem functioning. Proc Natl Acad Sci USA. 2015;112:E2014–E2019.PubMed 
    PubMed Central 

    Google Scholar 
    Mojica KD, Brussaard CP. Factors affecting virus dynamics and microbial host-virus interactions in marine environments. FEMS Microbiol Ecol. 2014;89:495–515.CAS 
    PubMed 

    Google Scholar 
    Zweifel UL. Factors controlling accumulation of labile dissolved organic carbon in the Gulf of Riga. Estuar Coast Shelf Sci. 1999;48:357–70.CAS 

    Google Scholar 
    Pomeroy LR, Wiebe WJ. Temperature and substrates as interactive limiting factors for marine heterotrophic bacteria. Aquat Micro Ecol. 2001;23:187–204.
    Google Scholar 
    Ploug H, Grossart H, Azam F, Jørgensen BB. Photosynthesis, respiration, and carbon turnover in sinking marine snow from surface waters of Southern California Bight: implications for the carbon cycle in the ocean. Mar Ecol-Prog Ser. 1999;179:1–11.CAS 

    Google Scholar 
    Azam F, Malfatti F. Microbial structuring of marine ecosystems. Nature. 2007;5:782–91.CAS 

    Google Scholar 
    De Corte D, Sintes E, Yokokawa T, Lekunberri I, Herndl GJ. Large-scale distribution of microbial and viral populations in the South Atlantic Ocean. Environ Microbiol Rep. 2016;8:305–15.PubMed 
    PubMed Central 

    Google Scholar 
    Yang YH, Yokokawa T, Motegi C, Nagata T. Large-scale distribution of viruses in deep waters of the Pacific and Southern Oceans. Aquat Micro Ecol. 2014;71:193–202.
    Google Scholar 
    Labonté JM, Swan BK, Poulos B, Luo H, Koren S, Hallam SJ, et al. Single-cell genomics-based analysis of virus-host interactions in marine surface bacterioplankton. ISME J. 2015;9:2386–99.PubMed 
    PubMed Central 

    Google Scholar 
    Martinez-Hernandez F, Fornas Ò, Lluesma Gomez M, Garcia-Heredia I, Maestre-Carballa L, López-Pérez M, et al. Single-cell genomics uncover Pelagibacter as the putative host of the extremely abundant uncultured 37-F6 viral population in the ocean. ISME J. 2019;13:232–6.CAS 
    PubMed 

    Google Scholar 
    Mruwat N, Carlson MCG, Goldin S, Ribalet F, Kirzner S, Hulata Y, et al. A single-cell polony method reveals low levels of infected Prochlorococcus in oligotrophic waters despite high cyanophage abundances. ISME J. 2021;15:41–54.CAS 
    PubMed 

    Google Scholar 
    Peduzzi P, Weinbauer M. Effect of concentrating the virus-rich 2–200 nm size fraction of seawater on the formation of algal flocs (marine snow). Limnol Oceanogr. 1993;38:1562–5.
    Google Scholar 
    Uitz J, Stramski D, Baudoux A, Reynolds RA, Wright VM, Dubranna J, et al. Variations in the optical properties of a particle suspension associated with viral infection of marine bacteria. Limnol Oceanogr. 2010;55:2317–30.
    Google Scholar 
    Sullivan MB, Weitz JS, Wilhelm SW. Viral ecology comes of age. Environ Microbiol Rep. 2017;9:33–35.PubMed 

    Google Scholar 
    Laber CP, Hunter JE, Carvalho F, Collins JR, Hunter EJ, Schieler BM, et al. Coccolithovirus facilitation of carbon export in the North Atlantic. Nat Microbiol. 2018;3:537–47.CAS 
    PubMed 

    Google Scholar 
    Kranzler CF, Brzezinski MA, Cohen NR, Lampe RH, Maniscalco M, Till CP, et al. Impaired viral infection and reduced mortality of diatoms in iron-limited oceanic regions. Nat Geosci. 2021;4:231–7.
    Google Scholar 
    Hewson I, Fuhrman JA. Viriobenthos production and virioplankton sorptive scavenging by suspended sediment particles in coastal and pelagic waters. Micro Ecol. 2003;46:337–47.CAS 

    Google Scholar  More

  • in

    MeadoWatch: a long-term community-science database of wildflower phenology in Mount Rainier National Park

    Study origin and designThe MeadoWatch project (MW) is a project run collaboratively between the University of Washington (UW) and the United States National Park Service to monitor the phenology of alpine and subalpine wildflower species across large elevational gradients in Mount Rainier National Park (Fig. 2). MW was established in 2013 with the goal of understanding long-term effects of climate change on Mount Rainier National Park wildflower communities using community-science approaches. The first MW transect was established along Reflection Lakes, Skyline, and Paradise Glacier trail system in 2013 (9–11 plots). In 2015, MW expanded to include a second transect (15–17 plots) along the Glacier Basin trail (Fig. 1a). The MW transects span around 5 km each, over a 400 m altitudinal gradient (Reflection Lakes: 1490m–1889m a.s.l.; Glacier Basin: 1460m–1831m a.s.l.)Fig. 2Alpine meadows, plot extension, and target species. (a) Species-rich alpine meadow in Mount Rainier National Park (Mount Tahoma), showing many of the target species in the foreground. (b) MW volunteer coordinator Anna Wilson at a plot, indicating the arm span that defines the plot area (personal likeness used with confirmed consent). (c) Species composition and proportion of reports per species in each of the transects; species common to both trails are highlighted with striped shadowing. Photographs: A. John (a), L. Felker (b).Full size imagePlots are located along the side of each trail, marked with a colored survey marker. The area of each plot is defined by the arm-span of volunteers when they position themselves over the plot marker looking away from the trail (Fig. 2b). While less accurate than marking the corners of plots, this approach was used to avoid establishing permanent structures in wilderness areas within the National Park. The surveyed area in each plot is, on average, 1.25 m2. Each plot is also equipped with temperature sensors (HOBO Pendant Logger, Onset Computer Corp.) buried approximately 4 cm below the ground. Sensors are placed at the start of each fall season and removed at the beginning of each summer season for data downloading. The HOBO sensors provide an estimate for the date of snow disappearance and in-situ temperature at 3 hours intervals. Once plots are covered in snow, soil temperatures remain at 0 °C and show no diurnal variation, so that daily changes in temperatures above 1 °C can be used to determine the earliest date without snow cover20. We use these approaches to provide dates of snow appearance and disappearance, snow cover duration, and minimum soil temperatures for each year and plot. Occasionally, temperature data during the snow disappearing window were lost due to sensor failure or loss of sensors (which occurs because plots are not permanently marked and/or well-meaning visitors remove sensors). This, and the lack of temperature sensors in the first year of the project, resulted in approx. 20% of cases of missing data. In those cases, we used a data imputation method to estimate the missing values based on data from nearby plots and a parallel temperature data collection with 890 total observations. These estimates were highly reliable in filling the data gaps (see Appendix C in16 for further details).Focal speciesWe originally targeted 16 native wildflower species along each transect, which were chosen based on their abundance, ease of identification, and presence in the plot. Four of those target species were present on both transects. In 2016 we replaced one species with a different one (see further information below), making for a total of 17 species monitored (Fig. 2c). The focal species are: American bistort* (Polygonum bistortoides), avalanche lily (Erythronium montanum), bracted lousewort* (Pedicularis bracteosa), broadleaf arnica (Arnica latifolia), cascade aster (Aster ledophyllus; synonym Eucephalus ledophyllus), glacier lily (Erythronium grandiflorum), Gray’s lovage (Ligusticum grayi), magenta paintbrush (Castilleja parviflora), mountain daisy (Erigenon peregrinus; synonym Erigeron glacialis), northern microseris (Microseris alpestris; synonym Nothocalais alpestris), scarlet paintbrush (Castilleja miniata), sharptooth angelica (Angelica arguta), sitka valerian* (Valeriana sitchensis), subalpine lupine* (Lupinus arcticus; synonym Lupinus latifolius var. subalpinus), tall bluebell (Mertensia paniculata), Canby’s licorice-root (Ligusticum canbyi), and western anemone (Anemone occidentalis). Asterisks denote species monitored along both trails.Due to challenges in species identification, we dropped Canby’s licorice-root (Ligusticum canbyi) as a target species in 2016. Consequently, Ligusticum canbyi has limited replication in the database (Fig. 2c). While we included the phenological records of this species for the sake of completeness, we recommend focusing on the other 16 species, which are both better represented (in terms of data coverage) and are free of any potential misidentification issues.For additional information on the species, methods, identification cues, and image resources see: http://www.meadowatch.org, https://www.youtube.com/channel/UCGBFTKxf8FIWswMDxBavpuQ, and the appendices therein16.Data collection and volunteer trainingDuring the summer months, MW volunteers and scientists collect reproductive phenology data with a frequency between 3 and 9 trail reports per week. Each report records the presence or absence of 4 phenophases for each target species present in each of the plots. The phenophases are ‘budding’, ‘flowering’, ‘ripening fruit’, and ‘releasing seed’. Phenophases were defined as follows:BuddingThe beginning growth of the flower which has not yet opened. A plant is considered budding if buds are present, but the stamen and pistils are not yet visible and available to pollinators.FloweringThe generally “showy” part of the plant that holds the reproductive parts (stamens and pistils). A plant is considered flowering when at least one flower is open, and the stamens and pistils are visible and available for pollination and reproduction.Ripening fruitThe fruit develops from the female part of the flower following successful pollination. In the target species, fruits can take many forms, from hard, fleshy capsules, juicy berries, to a feathery tuft on the end of a seed. A plant is in the ripening fruit stage when reproductive parts on at least one reproductive stalk are non-functional and the formation of the fruit part is clearly ongoing (visible), but seeds are not yet fully mature and not yet being dispersed.Releasing seedAfter the fruit ripens, seeds are released to be dispersed by gravity, wind, or animals. A plant is considered in the releasing seed stage if seeds are actively being released on at least one reproductive stalk (but there are still seeds present).A full description, including illustrations for each species’ phenophase and identification cues is available in http://www.meadowatch.org/volunteer-resources.html, as well as in Annex 1 – Supplementary Documentation. Multiple phenophases can be present simultaneously, depending on the species, and are noted independently. Additionally, volunteers are also asked to record the presence of snow (‘snow covered plot’, ‘partially covered plot’, or ‘snow-free plot’), and, since 2017, the presence of damage by herbivory (‘presence of browsed stems’) on each plot.In years not impacted by the SARS-Cov-2 pandemic MW volunteers attend an in-person 3-hour botanical and phenological training session taught by UW scientists at the beginning of each sampling season. Volunteers were also provided with detailed species-identification guides, including an extensive description of sampling methods and location of the plots. The trainings for the 2020 and 2021 seasons were held virtually via a series of online training videos. In these years, volunteers took a quiz on wildflower phenology, plant identification and data collection methods after viewing these videos and were required to ‘pass’ a certain threshold to volunteer (unlimited attempts were allowed). During these virtual trainings, volunteers were provided with digital copies of the species identification guides, with many returning volunteers using printed guides they had kept from previous years.At the end of their phenological hike, volunteers submit their data sheets either by depositing them in lockboxes located within the park, or by scanning and emailing them directly to [email protected]. Data are then entered manually and stored in the UW repositories after being checked for consistency at the end of each sampling season.The parallel data collection by members of UW’s Hille Ris Lambers group (including PI, postdoctoral researchers, graduate students, and trained interns) acted as the following: (i) a quality-control, i.e., allowing us to compare the consistency in phenology assessments between volunteers and scientists, and (ii) a way to increase the temporal resolution and scale of the data, e.g., by reducing early season gaps and ‘weekend bias’17. This parallel expert sampling was carried out around once a week between 2013 and 2020, showing great consistency between the two groups. For detailed comparisons between volunteers and scientists’ assessments see the data validation section (as well as Appendix E in16).Processed dataIn addition to the raw phenological data, we also provide here parameters to construct the year, species, and plot-specific flowering phenology based on the timing of snow disappearance (as in16). Models describe unimodal probability distributions that were fitted with maximum likelihood models to binomial flowering data from each species, year, and plot. These curves have been used to estimate peak flowering dates and diversity and link them to reported visitor experiences16. Here, we provide the 3 parameters defining the unimodal curve of flowering probability per species i, plot j and year k: the duration of flowering (𝛿ijk), the maximum probability of flowering (𝜇ijk), and peak flowering (in DOY – ρijk); following the equations described in16 and https://github.com/ajijohn/MeadoWatch).The parameters of these probability distribution curves are ready-to-use values that can be broadly and easily used to estimate floral compositional change over past seasons due to changing environmental conditions—for example, to inform plant-pollinator interaction networks if combined with pollinator behavioral data (e.g.21). More