Diel variations in planktonic ciliate community structure in the northern South China Sea and tropical Western Pacific
Lynn, D. H. Ciliated Protozoa: Characterization, Classification, and Guide to the Literature 3rd edn, 1–455 (Springer, 2008).
Google Scholar
Stoecker, D. K., Michaels, A. E. & Davis, L. H. Grazing by the jellyfish, Aurelia aurita, on microzooplankton. J. Plankton Res. 9, 901–915 (1987).Article
Google Scholar
Dolan, J. R., Vidussi, F. & Claustre, H. Planktonic ciliates in the Mediterranean Sea: Longitudinal trends. Deep-Sea Res. I(46), 2025–2039 (1999).Article
Google Scholar
Gómez, F. Trends on the distribution of ciliates in the open Pacific Ocean. Acta Oecol. 32, 188–202 (2007).Article
ADS
Google Scholar
Azam, F. et al. The ecological role of water column microbes in the sea. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).Article
ADS
Google Scholar
Pierce, R. W. & Turner, J. T. Ecology of planktonic ciliates in marine food webs. Rev. Aquat. Sci. 6, 139–181 (1992).
Google Scholar
Calbet, A. & Saiz, E. The ciliate-copepod link in marine ecosystems. Aquat. Microb. Ecol. 38, 157–167 (2005).Article
Google Scholar
Kim, Y. O. et al. Tintinnid species as biological indicators for monitoring intrusion of the warm oceanic waters into Korean coastal waters. Ocean Sci. J. 47, 161–172 (2012).Article
ADS
Google Scholar
Wang, C. F. et al. Impact of the warm eddy on planktonic ciliate, with an emphasis on tintinnids as bioindicator species. Ecol. Indic. 133, 108441 (2021).Article
Google Scholar
Wang, C. F. et al. Planktonic tintinnid community structure variations in different water masses of the Arctic Basin. Front. Mar. Sci. 8, 775653 (2022).Article
Google Scholar
Haney, J. F. Diel patterns of zooplankton behavior. Bull. Mar. Sci. 43, 583–603 (1988).ADS
Google Scholar
Vaulot, D. & Marie, D. Diel variability of photosynthetic picoplankton in the equatorial Pacific. J. Geophys. Res-Oceans 104, 3297–3310 (1999).Article
ADS
CAS
Google Scholar
Hays, G. C., Webb, P. I. & Frears, S. L. Diet changes in the carbon and nitrogen content of the copepod Metridia lucens. J. Plankton Res. 4, 727–737 (1998).Article
Google Scholar
Hays, G. C., Harris, R. P. & Head, R. N. Diel changes in the near-surface biomass of zooplankton and the carbon content of vertical migrants. Deep-Sea Res. II(48), 1063–1068 (2001).ADS
Google Scholar
Anna, A., Enric, S. & Albert, C. Towards an understanding of diel feeding phythms in marine protists: Consequences of light manipulation. Microb. Ecol. 79, 64–72 (2020).Article
Google Scholar
Vaulot, D., Marie, D., Olson, R. J. & Chisholm, S. W. Growth of Prochlorococcus, a photosynthetic prokaryote, in the equatorial Pacific Ocean. Science 268, 1480–1482 (1995).Article
ADS
CAS
PubMed
Google Scholar
Binder, B. J. & DuRand, M. D. Diel cycles in surface waters of the equatorial Pacific. Deep-Sea Res. II(49), 2601–2617 (2002).ADS
Google Scholar
Li, C. L. et al. Quasi-antiphase diel patterns of abundance and cell size/biomass of picophytoplankton in the oligotrophic ocean. Geophys. Res. Lett. 49, e2022GL097753 (2022).ADS
Google Scholar
Ohman, M. D. The demographic benefits of diel vertical migration by zooplankton. Ecol. Monogr. 60, 257–281 (1990).Article
Google Scholar
Ringelberg, J. The photo behavior of Daphnia spp. as a model to explain diel vertical migration in zooplankton. Biol. Rev. 74, 397–423 (1999).Article
Google Scholar
Tarling, G. A., Jarvis, T., Emsley, S. M. & Matthews, J. B. L. Midnight sinking behaviour in Calanus finmarchicus: A response to satiation or krill predation?. Mar. Ecol. Prog. 240, 183–194 (2002).Article
Google Scholar
Cohen, J. H. & Forward, R. B. Diel vertical migration of the marine copepod Calanopia americana. I. Twilight DVM and its relationship to the diel light cycle. Mar. Biol. 147, 387–398 (2005).Article
Google Scholar
Cohen, J. H. & Forward, R. B. Diel vertical migration of the marine copepod Calanopia americana. II. Proximate role of exogenous light cues and endogenous rhythms. Mar. Biol. 147, 399–410 (2005).Article
Google Scholar
Ringelberg, J. Diel Vertical Migration of Zooplankton in Lakes and Oceans 1–347 (Springer, 2010).
Google Scholar
Liu, H. J., Zhu, M. L., Guo, S. J., Zhao, X. H. & Sun, X. X. Effects of an anticyclonic eddy on the distribution and community structure of zooplankton in the South China Sea northern slope. J. Mar. Syst. 205, 103311 (2020).Article
Google Scholar
Tao, Z. C. et al. The diel vertical distribution and carbon biomass of the zooplankton community in the Caroline Seamount area of the western tropical Pacific Ocean. Sci. Rep. 12, 18908 (2022).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Dale, T. Diel vertical distribution of planktonic ciliates in Lindåspollene, Western Norway. Mar. Microb. Food Webs 2, 15–28 (1987).
Google Scholar
Jonsson, P. R. Vertical distribution of planktonic ciliates–an experimental analysis of swimming behavior. Mar. Ecol. Prog. Ser. 52, 39–53 (1989).Article
ADS
Google Scholar
Stocker, D. K., Taniguchi, A. & Michaels, A. E. Abundance of autotrophic, mixotrophic and heterotrophic ciliates in shelf and slope waters. Mar. Ecol. Prog. Ser. 50, 241–254 (1989).Article
ADS
Google Scholar
Passow, U. Vertical migration of Gonyaulax catenata and Mesodinium rubrum. Mar. Biol. 110, 455–463 (1991).Article
Google Scholar
Suzuki, T. & Taniguchi, A. Temporal change of clustered distribution of planktonic ciliates in Toyama Bay in summers of 1989 and 1990. J. Oceanogr. 53, 35–40 (1997).Article
CAS
Google Scholar
Olli, K. Diel vertical migration of phytoplankton and heterotrophic flagellates in the Gulf of Riga. J. Mar. Syst. 23, 145–163 (1999).Article
Google Scholar
Pérez, M. T., Dolan, J. R., Vidussi, F. & Fukai, E. Diel vertical distribution of planktonic ciliates within the surface layer of the NW Mediterrean (May 1995). Deep-Sea Res. I(47), 479–503 (2000).Article
Google Scholar
Rossberg, M. & Wickham, S. A. Ciliate vertical distribution and diel vertical migration in a eutrophic lake. Fund. Appl. Limnol. 171, 1–14 (2008).Article
Google Scholar
Gu, B. W. et al. High dynamics of ciliate community revealed via short-term, high-frequency sampling in a subtropical estuarine ecosystem. Front. Microbiol. 13, 797638 (2022).Article
PubMed
PubMed Central
Google Scholar
Su, J. L. Overview of the South China Sea circulation and its influence on the coastal physical oceanography near the Pearl River Estuary. Cont. Shelf Res. 24, 1745–1760 (2004).Article
Google Scholar
Cravatte, S., Delcroix, T., Zhang, D., Mcphaden, M. & Leloup, J. Observed freshening and warming of the western pacific warm pool. Clim. Dyn. 33, 565–589 (2009).Article
Google Scholar
Feng, M. P., Zhang, W. C., Yu, Y., Xiao, T. & Sun, J. Horizontal distribution of tintinnids in the western South China Sea during summer 2007. J. Trop. Oceanogr. 32, 86–92 (2013).
Google Scholar
Liu, H. X. et al. Composition and distribution of planktonic ciliates in the southern South China Sea during late summer: Comparison between surface and 75 m deep layer. J. Ocean Univ. China 15, 171–176 (2016).Article
ADS
Google Scholar
Wang, C. F. et al. Vertical distribution of planktonic ciliates in the oceanic and slope areas of the western Pacific Ocean. Deep-Sea Res. II(167), 70–78 (2019).
Google Scholar
Sun, P., Zhang, S. L., Wang, Y. & Huang, B. Q. Biogeographic role of the Kuroshio Current Intrusion in the microzooplankton community in the boundary zone of the northern South China Sea. Microorganisms 9, 1104 (2021).Article
CAS
PubMed
PubMed Central
Google Scholar
Sohrin, R., Imazawa, M., Fukuda, H. & Suzuki, Y. Full-depth profiles of prokaryotes, heterotrophic nanoflagellates, and ciliates along a transect from the equatorial to the subarctic central Pacific Ocean. Deep-Sea Res. II(57), 1537–1550 (2010).ADS
Google Scholar
Wang, C. F. et al. Difference of planktonic ciliate communities of the tropical West Pacific, the Bering Sea and the Arctic Ocean. Acta Oceanol. Sin. 39, 9–17 (2020).Article
CAS
Google Scholar
Wang, C. F. et al. Planktonic ciliate trait structure variation over Yap, Mariana and Caroline seamounts in the tropical western Pacific Ocean. J. Oceanol. Limnol. 39, 1705–1717 (2021).Article
ADS
Google Scholar
McLaren, I. A. Demographic strategy of vertical migration by a marine copepod. Amer. Nat. 108, 91–102 (1974).Article
Google Scholar
Loose, C. J., Von Elert, E. & Dawidowicz, P. Chemically-induced diel vertical migration in Daphnia: A new bioassay for kairomones exuded by fish. Arch. Hydrobiol. 126, 329–337 (1993).Article
Google Scholar
Bandara, K., Varpe, Ø., Wijewardene, L., Tverberg, V. & Eiane, K. Two hundred years of zooplankton vertical migration research. Biol. Rev. 96, 1–43 (2021).Article
Google Scholar
Oubelkheir, K. & Sciandra, A. Diel variations in particle stocks in the oligotrophic waters of the Ionian Sea (Mediterranean). J. Mar. Syst. 74, 364–371 (2008).Article
Google Scholar
Yang, E. J., Choi, J. K. & Hyun, J. H. Distribution and structure of heterotrophic protist communities in the northeast equatorial Pacific Ocean. Mar. Biol. 146, 1–15 (2004).Article
Google Scholar
Wang, C. F. et al. Planktonic ciliate community structure and its distribution in the oxygen minimum zones in the Bay of Bengal (Eastern Indian Ocean). J. Sea Res. 190, 102311 (2022).Article
Google Scholar
Daro, M. H. Migratory and grazing behavior of copepods and vertical distribution of phytoplankton. Bull. Mar. Sci. 43, 710–729 (1988).
Google Scholar
Ursella, L., Cardin, V., Batistić, M., Garić, R. & Gačić, M. Evidence of zooplankton vertical migration from continuous Southern Adriatic buoy current-meter records. Prog. Oceanogr. 167, 78–96 (2018).Article
ADS
Google Scholar
Roman, M. R., Dam, H. G., Le Borgne, R. & Zhang, X. Latitudinal comparisons of equatorial Pacific zooplankton. Deep-Sea Res. II(49), 2695–2711 (2002).ADS
Google Scholar
Steinberg, D. K., Cope, J. S., Wilson, S. E. & Kobari, T. A comparison of mesopelagic mesozooplankton community structure in the subtropical and subarctic North Pacific Ocean. Deep-Sea Res. II(55), 1615–1635 (2008).ADS
Google Scholar
Isla, A., Scharek, R. & Latasa, M. Zooplankton diel vertical migration and contribution to deep active carbon flux in the NW Mediterranean. J. Mar. Syst. 143, 86–97 (2015).Article
Google Scholar
Dolan, J. R. Morphology and ecology in tintinnid ciliates of the marine plankton: Correlates of lorica dimensions. Acta Protozoologica 49, 235–244 (2010).
Google Scholar
Jacquet, S., Partensky, F., Lennon, J. F. & Vaulot, D. Diel patterns of growth and division in marine picoplankton in culture. J. Phycol. 37, 357–369 (2001).Article
Google Scholar
Pitta, P., Giannakourou, A. & Christaki, U. Planktonic ciliates in the oligotrophic Mediterranean Sea: Longitudinal trends of standing stocks, distributions and analysis of food vacuole contents. Aquat. Microb. Ecol. 24, 297–311 (2001).Article
Google Scholar
Weisse, T. & Montagnes, D. J. S. Ecology of planktonic ciliates in a changing world: Concepts, methods, and challenges. J. Eukaryot. Microbiol. 69, e12879 (2022).Article
PubMed
Google Scholar
Heinbokel, J. F. Diel periodicities and rates of reproduction in natural populations of tintinnines in the oligotrophic waters off Hawaii, September 1982. Mar. Microb. Food Webs 2, 1–14 (1987).
Google Scholar
Tsai, A. Y., Chiang, K. P., Chang, J. & Gong, G. C. Seasonal diel variations of picoplankton and nanoplankton in a subtropical western Pacific coastal ecosystem. Limnol. Oceanogr. 50, 1221–1231 (2005).Article
ADS
CAS
Google Scholar
Ribalet, F. et al. Light-driven synchrony of Prochlorococcus growth and mortality in the subtropical Pacific gyre. Proc. Natl. Acad. Sci. U. S. A. 112, 8008–8012 (2015).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Connell, P. E., Ribalet, F., Armbrust, E. V., White, A. & Caron, D. A. Diel oscillations in the feeding activity of heterotrophic and mixotrophic nanoplankton in the North Pacific Subtropical Gyre. Aquat. Microb. Ecol. 85, 167–181 (2020).Article
Google Scholar
Cheung, K. C., Poon, B., Lan, C. Y. & Wong, M. H. Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, South China. Chemosphere 52, 1431–1440 (2003).Article
ADS
CAS
PubMed
Google Scholar
Huang, X. P., Huang, L. M. & Yue, W. Z. The characteristics of nutrients and eutrophication in the Pearl River estuary. South China. Mar. Pollut. Bull. 47, 30–36 (2003).Article
CAS
PubMed
Google Scholar
Liu, S. M. et al. Nutrient dynamics in the winter thermohaline frontal zone of the northern shelf region of the South China Sea. J. Geophys. Res. 115, C11020 (2010).Article
ADS
Google Scholar
Shu, Y. Q., Wang, Q. & Zu, T. T. Progress on shelf and slope circulation in the northern South China Sea. Sci. China Earth Sci. 61, 560–571 (2018).Article
ADS
Google Scholar
Dai, S. et al. The effects of a warm-core eddy on chlorophyll a distribution and phytoplankton community structure in the northern South China Sea in spring 2017. J. Mar. Syst. 210, 103396 (2020).Article
Google Scholar
He, X. Q. et al. Eddy-entrained Pearl River plume into the oligotrophic basin of the South China Sea. Cont. Shelf Res. 124, 117–124 (2016).Article
ADS
Google Scholar
Pan, X. J. et al. Remote sensing of surface [nitrite + nitrate] in river-influenced shelf-seas: The northern South China Sea Shelf-sea. Remote Sens. Environ. 210, 1–11 (2018).Article
ADS
Google Scholar
Xu, J. et al. Phosphorus limitation in the northern South China Sea during late summer: Influence of the Pearl River. Deep-Sea Res. I. 55, 1330–1342 (2008).Article
CAS
Google Scholar
Caron, D. Inorganic nutrients, bacteria, and the microbial loop. Microb. Ecol. 28, 295–298 (1994).Article
CAS
PubMed
Google Scholar
Kirchman, D. The uptake of inorganic nutrients by heterotrophic bacteria. Microb. Ecol. 28, 255–271 (1994).Article
CAS
PubMed
Google Scholar
Song, J. M. Biogeochemical Processes of Biogenic Elements in China Marginal Seas 1–657 (Springer, 2011).
Google Scholar
Zhang, W. C. et al. Review of nutrient (nitrogen and phosphorus) regeneration in the marine pelagic microbial food web. Mar. Sci. Bull. 35, 241–251 (2016).CAS
Google Scholar
Ma, J. et al. Effects of Y3 seamount on nutrients influencing the ecological environment in the Western Pacific Ocean. Earth Sci. Front. 27, 322–331 (2020).
Google Scholar
Li, H. B. et al. Tintinnid diversity in the tropical West Pacific Ocean. Acta Oceanol. Sin. 37, 218–228 (2018).Article
CAS
Google Scholar
Dolan, J. R., Ritchie, M. E. & Ras, J. The, “neutral” community structure of planktonic herbivores, tintinnid ciliates of the microzooplankton, across the SE Tropical Pacific Ocean. Biogeosciences 4, 297–310 (2007).Article
ADS
CAS
Google Scholar
Dolan, J. R., Ritchie, M. E., Tunin-Ley, A. & Pizay, M. Dynamics of core and occasional species in the marine plankton: Tintinnid ciliates in the north-west Mediterranean Sea. J. Biogeogr. 36, 887–895 (2009).Article
Google Scholar
Dolan, J. R. & Marrasé, C. Planktonic ciliate distribution relative to a deep chlorophyll maximum: Catalan Sea, NW Mediterranean, June 1993. Deep-Sea Res. I(42), 1965–1987 (1995).Article
Google Scholar
Suzuki, T. & Taniguchi, A. Standing crops and vertical distribution of four groups of marine planktonic ciliates in relation to phytoplankton chlorophyll a. Mar. Biol. 132, 375–382 (1998).Article
Google Scholar
Utermöhl, H. Zur vervollkommnung der quantitativen phytoplankton Methodik. Mit. Int. Ver. Theor. Angew. Limnol. 9, 1–38 (1958).
Google Scholar
Lund, J. W. G., Kipling, C. & Cren, E. D. L. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia 11, 143–170 (1958).Article
Google Scholar
Kofoid, C. A. & Campbell, A. S. A Conspectus of the Marine and Fresh-Water Ciliata Belonging to the Suborder Tintinnoinea: With Descriptions of New Species Principally from the Agassiz Expedition to the Eastern Tropical Pacific 1904–1905 (University of California Press, 1929).
Google Scholar
Kofoid, C. A., & Campbell, A. S. Reports on the scientific results of the expedition to the eastern tropical Pacific, in charge to Alexander Agassiz, by US Fish commission steamer “Albatross”, from October 1904 to March 1905, The Ciliata: The Tintinnoinea (Bulletin of the Museum of Comparative Zoology of Harvard College), vol. XXXVII. Cambridge University, Harvard (Lieut.-Commander LM Garrett, USN commanding) (1939).Zhang, W. C., Feng, M. P., Yu, Y., Zhang, C. X. & Xiao, T. An Illustrated Guide to Contemporary Tintinnids in the World 1–499 (Science Press, 2012).
Google Scholar
Paranjape, M. A. & Gold, K. Cultivation of marine pelagic protozoa. Ann. Inst. Oceanogr. Paris 58, 143–150 (1982).
Google Scholar
Alder, V. A. Tintinnoinea. In South Atlantic zooplankton (ed. Boltovskoy, D.) 321–384 (Backhuys, 1999).
Google Scholar
Verity, P. G. & Langdon, C. Relationships between lorica volume, carbon, nitrogen, and ATP content of tintinnids in Narragansett Bay. J. Plankton R. 6, 859–868 (1984).Article
CAS
Google Scholar
Putt, M. & Stoecker, D. K. An experimentally determined carbon: Volume ratio for marine “oligotrichous” ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34, 1097–1103 (1989).Article
ADS
Google Scholar
Yu, Y. et al. Basin-scale variation in planktonic ciliate distribution: A detailed temporal and spatial study of the Yellow Sea. Mar. Biol. Res. 10, 641–654 (2014).Article
Google Scholar
Wang, C. F. et al. Hydrographic feature variation caused pronounced differences of planktonic ciliate community in the Pacific Arctic Region in summer 2016 and 2019. Front. Microbiol. 13, 881048 (2022).Article
PubMed
PubMed Central
Google Scholar
Margalef, R. Information theory in ecology. Gen. Syst. 3, 36–71 (1958).
Google Scholar
Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948).Article
MathSciNet
MATH
Google Scholar
Dolan, J. R. & Pierce, R. W. Diversity and distributions of tintinnid ciliates. In The Biology and Ecology of Tintinnid Ciliates: Models for Marine Plankton (eds Dolan, J. R. et al.) 214–243 (Wiley-Blackwell, 2013).
Google Scholar
Xu, Z. L. & Chen, Y. Q. Aggregated intensity of dominant species of zooplankton in autumn in the East China Sea. J. Ecol. 8, 13–15 (1989).
Google Scholar
Anderson, M. J., Gorley, R. N. & Clarke, K. R. PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods (PRIMER-E, 2008).
Google Scholar
Jiang, Y., Xu, G. & Xu, H. Use of multivariate dispersion to assess water quality based on species composition data. Environ. Sci. Pollut. Res. 23, 3267–3272 (2016).Article
CAS
Google Scholar More