More stories

  • in

    Minke whale feeding rate limitations suggest constraints on the minimum body size for engulfment filtration feeding

    Dove, A. D. & Pierce, S. J. Whale Sharks: Biology, Ecology, and Conservation (CRC Press, 2021).Friedman, M. et al. 100-million-year dynasty of giant planktivorous bony fishes in the Mesozoic seas. Science 327, 990–993 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Friedman, M. Parallel evolutionary trajectories underlie the origin of giant suspension-feeding whales and bony fishes. Proc. R. Soc. B https://doi.org/10.1098/rspb.2011.1381 (2011).Sanderson, S. L. & Wassersug, R. in The Skull: Functional and Evolutionary Mechanisms Vol. 3 (eds Hanken, J. & Hall, B. K.) 37–112 (Univ. Chicago Press, 1993).Rowat, D. & Brooks, K. A review of the biology, fisheries and conservation of the whale shark Rhincodon typus. J. Fish Biol. 80, 1019–1056 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Pimiento, C., Cantalapiedra, J. L., Shimada, K., Field, D. J. & Smaers, J. B. Evolutionary pathways toward gigantism in sharks and rays. Evolution 73, 588–599 (2019).Article 
    PubMed 

    Google Scholar 
    Stiefel, K. M. Evolutionary trends in large pelagic filter-feeders. Hist. Biol. 33, 1477–1488 (2021).Article 

    Google Scholar 
    Goldbogen, J. & Madsen, P. The largest of August Krogh animals: physiology and biomechanics of the blue whale revisited. Comp. Biochem. Physiol. A 254, 110894 (2021).Article 
    CAS 

    Google Scholar 
    Jørgensen, C. B. Quantitative aspects of filter feeding in invertebrates. Biol. Rev. 30, 391–453 (1955).Article 

    Google Scholar 
    Radke, R. J. & Kahl, U. Effects of a filter‐feeding fish [silver carp, Hypophthalmichthys molitrix (Val.)] on phyto‐and zooplankton in a mesotrophic reservoir: results from an enclosure experiment. Freshw. Biol. 47, 2337–2344 (2002).Article 

    Google Scholar 
    Schiemer, F. in Perspectives in Tropical Limnology (eds Schiemer, F. & Boland, K.T.) 65–76 (SPB Academic Publishing, 1996).Carey, N. & Goldbogen, J. A. Kinematics of ram filter feeding and beat-glide swimming in the northern anchovy Engraulis mordax. J. Exp. Biol. 220, 2717–2725 (2017).PubMed 

    Google Scholar 
    Haines, G. E. & Sanderson, S. L. Integration of swimming kinematics and ram suspension feeding in a model American paddlefish, Polyodon spathula. J. Exp. Biol. 220, 4535–4547 (2017).PubMed 

    Google Scholar 
    Paig‐Tran, E. M., Kleinteich, T. & Summers, A. P. The filter pads and filtration mechanisms of the devil rays: variation at macro and microscopic scales. J. Morphol. 274, 1026–1043 (2013).Article 
    PubMed 

    Google Scholar 
    Jacobsen, I. P. & Bennett, M. B. A comparative analysis of feeding and trophic level ecology in stingrays (Rajiformes; Myliobatoidei) and electric rays (Rajiformes: Torpedinoidei). PLoS ONE 8, e71348 (2013).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellis, J. Occurrence of pelagic stingray Pteroplatytrygon violacea (Bonaparte, 1832) in the North Sea. J. Fish Biol. 71, 933–937 (2007).Article 

    Google Scholar 
    Werth, A. J. & Potvin, J. Baleen hydrodynamics and morphology of cross-flow filtration in balaenid whale suspension feeding. PLoS ONE 11, e0150106 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Orton, L. S. & Brodie, P. F. Engulfing mechanics of fin whales. Can. J. Zool. 65, 2898–2907 (1987).Article 

    Google Scholar 
    Shadwick, R. E., Goldbogen, J. A., Potvin, J., Pyenson, N. D. & Vogl, A. W. Novel muscle and connective tissue design enables high extensibility and controls engulfment volume in lunge-feeding rorqual whales. J. Exp. Biol. 216, 2691–2701 (2013).PubMed 

    Google Scholar 
    Shadwick, R. E., Goldbogen, J. A., Pyenson, N. D. & Whale, J. C. Structure and function in the lunge feeding apparatus: mechanical properties of the fin whale mandible. Anat. Rec. 300, 1953–1962 (2017).Article 

    Google Scholar 
    Werth, A. J., Ito, H. & Ueda, K. Multiaxial movements at the minke whale temporomandibular joint. J. Morphol. 281, 402–412 (2020).Article 
    PubMed 

    Google Scholar 
    Lambertsen, R., Ulrich, N. & Straley, J. Frontomandibular stay of Balaenopteridae: a mechanism for momentum recapture during feeding. J. Mammal. 76, 877–899 (1995).Article 

    Google Scholar 
    Pyenson, N. D. et al. Discovery of a sensory organ that coordinates lunge feeding in rorqual whales. Nature 485, 498–501 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Goldbogen, J. A. et al. How baleen whales feed: the biomechanics of engulfment and filtration. Annu. Rev. Mar. Sci. 9, 367–386 (2017).Article 
    CAS 

    Google Scholar 
    Bierlich, K. C. et al. A Bayesian approach for predicting photogrammetric uncertainty in morphometric measurements derived from drones. Mar. Ecol. Prog. Ser. 673, 193–210 (2021).Article 

    Google Scholar 
    Slater, G. J., Goldbogen, J. A. & Pyenson, N. D. Independent evolution of baleen whale gigantism linked to Plio-Pleistocene ocean dynamics. Proc. R. Soc. B 284, 20170546 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lockyer, C. Growth and energy budgets of large baleen whales from the Southern Hemisphere. Food Agric. Organ. 3, 379–487 (1981).
    Google Scholar 
    Mackintosh, A. & Wheeler, J. Southern blue and fin whales. Discover. Rep. 1, 257–540 (1929).Smith, F. A. & Lyons, S. K. How big should a mammal be? A macroecological look at mammalian body size over space and time. Phil. Trans. R. Soc. B 366, 2364–2378 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gearty, W., McClain, C. R. & Payne, J. L. Energetic tradeoffs control the size distribution of aquatic mammals. Proc. Natl Acad. Sci. USA 115, 4194–4199 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lockyer, C. Body weights of some species of large whales. ICES J. Mar. Sci. 36, 259–273 (1976).Article 

    Google Scholar 
    Goldbogen, J. A. Physiological constraints on marine mammal body size. Proc. Natl Acad. Sci. USA 115, 3995–3997 (2018).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goldbogen, J. A. et al. Why whales are big but not bigger: physiological drivers and ecological limits in the age of ocean giants. Science 366, 1367–1372 (2019).Article 
    CAS 
    PubMed 

    Google Scholar 
    Cade, D. E. et al. Social exploitation of extensive, ephemeral, environmentally controlled prey patches by super-groups of rorqual whales. Anim. Behav. 182, 251–266 (2021).Article 

    Google Scholar 
    Goldbogen, J. A. et al. Scaling of lunge‐feeding performance in rorqual whales: mass‐specific energy expenditure increases with body size and progressively limits diving capacity. Funct. Ecol. 26, 216–226 (2012).Article 

    Google Scholar 
    Kahane-Rapport, S. R. & Goldbogen, J. A. Allometric scaling of morphology and engulfment capacity in rorqual whales. J. Morphol. 279, 1256–1268 (2018).Article 
    PubMed 

    Google Scholar 
    Kahane-Rapport, S. R. et al. Lunge filter feeding biomechanics constrain rorqual foraging ecology across scale. J. Exp. Biol. https://doi.org/10.1242/jeb.224196 (2020).McNab, B. K. Complications inherent in scaling the basal rate of metabolism in mammals. Q. Rev. Biol. 63, 25–54 (1988).Article 
    CAS 
    PubMed 

    Google Scholar 
    Boyd, I. in Marine Mammal Biology: An Evolutionary Approach (ed. Hoelzel, A. R.) 247–277 (Blackwell Science Ltd, 2002).Kleiber, M. Body size and metabolism. Hilgardia 6, 315–353 (1932).Article 
    CAS 

    Google Scholar 
    West, G. B., Brown, J. H. & Enquist, B. J. A general model for the origin of allometric scaling laws in biology. Science 276, 122–126 (1997).Article 
    CAS 
    PubMed 

    Google Scholar 
    Corkeron, P. J. & Connor, R. C. Why do baleen whales migrate? Mar. Mamm. Sci. 15, 1228–1245 (1999).Article 

    Google Scholar 
    Lockyer, C. Review of baleen whale (Mysticeti) reproduction and implications for management. Rep. Int. Whal. Commn 6, 27–50 (1984).
    Google Scholar 
    Lockyer, C. All creatures great and smaller: a study in cetacean life history energetics. J. Mar. Biol. Assoc. UK 87, 1035–1045 (2007).Article 

    Google Scholar 
    Frazer, J. & Huggett, A. S. G. Specific foetal growth rates of cetaceans. J. Zool. 169, 111–126 (1973).Article 

    Google Scholar 
    Zhou, M. & Dorland, R. D. Aggregation and vertical migration behavior of Euphausia superba. Deep Sea Res. II 51, 2119–2137 (2004).Article 

    Google Scholar 
    Gough, W. T. et al. Scaling of swimming performance in baleen whales. J. Exp. Biol. 222, jeb204172 (2019).Article 
    PubMed 

    Google Scholar 
    Cade, D. E. et al. Predator-scale spatial analysis of intra-patch prey distribution reveals the energetic drivers of rorqual whale super group formation. Funct. Ecol. 35, 894–908 (2021).Article 
    CAS 

    Google Scholar 
    Gough, W. T. et al. Scaling of oscillatory kinematics and Froude efficiency in baleen whales. J. Exp. Biol. 224, jeb237586 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Croll, D. A., Kudela, R. & Tershy, B. R. in Whales, Whaling, and Ocean Ecosystems (eds Estes, J. A. et al.) Ch. 16 (Univ. California Press, 2006).Woodward, B. L., Winn, J. P. & Fish, F. E. Morphological specializations of baleen whales associated with hydrodynamic performance and ecological niche. J. Morphol. 267, 1284–1294 (2006).Article 
    PubMed 

    Google Scholar 
    Webb, P. W. & De Buffrénil, V. Locomotion in the biology of large aquatic vertebrates. Trans. Am. Fish. Soc. 119, 629–641 (1990).Article 

    Google Scholar 
    Acevedo-Gutiérrez, A., Croll, D. & Tershy, B. High feeding costs limit dive time in the largest whales. J. Exp. Biol. 205, 1747–1753 (2002).Article 
    PubMed 

    Google Scholar 
    Goldbogen, J. A. et al. Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density. J. Exp. Biol. 214, 131–146 (2011).Article 
    CAS 
    PubMed 

    Google Scholar 
    Potvin, J., Cade, D. E., Werth, A. J., Shadwick, R. E. & Goldbogen, J. A. Rorqual lunge-feeding energetics near and away from the kinematic threshold of optimal efficiency. Integr. Org. Biol. 3, obab005 (2021).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pyenson, N. D. The ecological rise of whales chronicled by the fossil record. Curr. Biol. 27, R558–R564 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    Williams, T. M. in Whales, Whaling, and Ocean Ecosystems (eds Estes, J. A. et al.) Ch. 15 (Univ. California Press, 2006).Tackaberry, J. E. et al. From a calf’s perspective: humpback whale nursing behavior on two US feeding grounds. PeerJ 8, e8538 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, S.-L., Chou, L.-S. & Ni, I.-H. Comparable length at weaning in cetaceans. Mar. Mamm. Sci. 25, 875–887 (2009).Article 

    Google Scholar 
    Rice, D. Marine Mammals of the World: Systematics and Distribution (Society for Marine Mammalogy Special Publication, 1998).McNamara, J. M. & Houston, A. I. The effect of a change in foraging options on intake rate and predation rate. Am. Nat. 144, 978–1000 (1994).Article 

    Google Scholar 
    Mittelbach, G. G. Foraging efficiency and body size: a study of optimal diet and habitat use by bluegills. Ecology 62, 1370–1386 (1981).Article 

    Google Scholar 
    Robbins, C. T. et al. Optimizing protein intake as a foraging strategy to maximize mass gain in an omnivore. Oikos 116, 1675–1682 (2007).Article 

    Google Scholar 
    Werth, A. J. et al. Filtration area scaling and evolution in mysticetes: trophic niche partitioning and the curious cases of sei and pygmy right whales. Biol. J. Linn. Soc. 125, 264–279 (2018).Article 

    Google Scholar 
    Leslie, M. S., Peredo, C. M. & Pyenson, N. D. Norrisanima miocaena, a new generic name and redescription of a stem balaenopteroid mysticete (Mammalia, Cetacea) from the Miocene of California. PeerJ 7, e7629 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marx, F. G. & Uhen, M. D. Climate, critters, and cetaceans: Cenozoic drivers of the evolution of modern whales. Science 327, 993–996 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Perrin, W. F. Why are there so many kinds of whales and dolphins? Bioscience 41, 460–462 (1991).Article 

    Google Scholar 
    Kot, B. W., Sears, R., Zbinden, D., Borda, E. & Gordon, M. S. Rorqual whale (Balaenopteridae) surface lunge‐feeding behaviors: standardized classification, repertoire diversity, and evolutionary analyses. Mar. Mamm. Sci. 30, 1335–1357 (2014).Article 

    Google Scholar 
    Segre, P. S. et al. Scaling of maneuvering performance in baleen whales: larger whales outperform expectations. J. Exp. Biol. 225, jeb243224 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kawamura, A. A review of food of balaenopterid whales. Sci. Rep. Whales Res. Inst. 32, 155–197 (1980).
    Google Scholar 
    Iwata, T. et al. Tread-water feeding of Bryde’s whales. Curr. Biol. 27, R1154–R1155 (2017).Article 
    CAS 
    PubMed 

    Google Scholar 
    McMillan, C. J., Towers, J. R. & Hildering, J. The innovation and diffusion of “trap‐feeding,” a novel humpback whale foraging strategy. Mar. Mamm. Sci. 35, 779–796 (2019).Article 

    Google Scholar 
    Robbins, J. & Mattila, D. Estimating Humpback Whale (Megaptera novaeangliae) Entanglement Rates on the Basis of Scar Evidence (Northeast Fisheries Science Center, 2004).Horwood, J. in Encyclopedia of Marine Mammals 2nd edn (eds Wursig, B et al.) 1001–1003 (Elsevier, 2009).Haug, T., Lindstrøm, U. & Nilssen, K. T. Variations in minke whale (Balaenoptera acutorostrata) diet and body condition in response to ecosystem changes in the Barents Sea. Sarsia 87, 409–422 (2002).Article 

    Google Scholar 
    García-Vernet, R., Borrell, A., Víkingsson, G., Halldórsson, S. D. & Aguilar, A. Ecological niche partitioning between baleen whales inhabiting Icelandic waters. Prog. Oceanogr. 199, 102690 (2021).Article 

    Google Scholar 
    Cade, D. E., Carey, N., Domenici, P., Potvin, J. & Goldbogen, J. A. Predator-informed looming stimulus experiments reveal how large filter feeding whales capture highly maneuverable forage fish. Proc. Natl Acad. Sci. USA 117, 472–478 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Deméré, T. A., McGowen, M. R., Berta, A. & Gatesy, J. Morphological and molecular evidence for a stepwise evolutionary transition from teeth to baleen in mysticete whales. Syst. Biol. 57, 15–37 (2008).Article 
    PubMed 

    Google Scholar 
    Stafford, K. M., Fox, C. G. & Clark, D. S. Long-range acoustic detection and localization of blue whale calls in the northeast Pacific Ocean. J. Acoust. Soc. Am. 104, 3616–3625 (1998).Article 
    CAS 
    PubMed 

    Google Scholar 
    Totterdell, J. A. et al. The first three records of killer whales (Orcinus orca) killing and eating blue whales (Balaenoptera musculus). Mar. Mamm. Sci. 38, 1286–1301 (2022).Article 

    Google Scholar 
    Cade, D. E., Friedlaender, A. S., Calambokidis, J. & Goldbogen, J. A. Kinematic diversity in rorqual whale feeding mechanisms. Curr. Biol. 26, 2617–2624 (2016).Article 
    CAS 
    PubMed 

    Google Scholar 
    Goldbogen, J. A. et al. Using digital tags with integrated video and inertial sensors to study moving morphology and associated function in large aquatic vertebrates. Anat. Rec. 300, 1935–1941 (2017).Article 
    CAS 

    Google Scholar 
    Bierlich, K. et al. Comparing uncertainty associated with 1-, 2-, and 3D aerial photogrammetry-based body condition measurements of baleen whales. Front. Mar. Sci. 8, 1729 (2021).Article 

    Google Scholar 
    Cade, D. E. et al. Tools for integrating inertial sensor data with video bio-loggers, including estimation of animal orientation, motion, and position. Anim. Biotelemetry https://doi.org/10.1186/s40317-021-00256-w (2021).Cade, D. E., Barr, K. R., Calambokidis, J., Friedlaender, A. S. & Goldbogen, J. A. Determining forward speed from accelerometer jiggle in aquatic environments. J. Exp. Biol. 221, jeb170449 (2018).PubMed 

    Google Scholar 
    Wilson, R. P. et al. All at sea with animal tracks; methodological and analytical solutions for the resolution of movement. Deep Sea Res. II 54, 193–210 (2007).Article 

    Google Scholar 
    Potvin, J., Cade, D. E., Werth, A. J., Shadwick, R. E. & Goldbogen, J. A. A perfectly inelastic collision: bulk prey engulfment by baleen whales and dynamical implications for the world’s largest cetaceans. Am. J. Phys. 88, 851–863 (2020).Article 

    Google Scholar 
    Torres, W. I. & Bierlich, K. MorphoMetriX: a photogrammetric measurement GUI for morphometric analysis of megafauna. J. Open Source Softw. 5, 1825 (2020).Article 

    Google Scholar 
    Suter, H. & Houston, A. I. How to model optimal group size in social carnivores. Am. Nat. 197, 473–485 (2021).Article 
    PubMed 

    Google Scholar 
    Hazen, E. L., Friedlaender, A. S. & Goldbogen, J. A. Blue whale (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density. Sci. Adv. 1, e1500469 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doniol-Valcroze, T., Lesage, V., Giard, J. & Michaud, R. Optimal foraging theory predicts diving and feeding strategies of the largest marine predator. Behav. Ecol. 22, 880–888 (2011).Article 

    Google Scholar 
    Gough, W. T. et al. Fast and furious: energetic tradeoffs and scaling of high-speed foraging in rorqual whales. Integr. Org. Biol. 4, obac038 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laws, R. M. The ecology of the Southern Ocean. Am. Sci. 73, 26–40 (1985).
    Google Scholar 
    Brown, S. & Lockyer, C. in Antarctic Ecology Vol. 2 (ed. Laws, R. M.) (Academic Press, 1984).Peters, R. H. The Ecological Implications of Body Size Vol. 2 Ch. 7 (Cambridge Univ. Press, 1986).Rall, B. C. et al. Universal temperature and body-mass scaling of feeding rates. Phil. Trans. R. Soc. B 367, 2923–2934 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evans, E. & Miller, D. Comparative nutrition, growth and longevity. Proc. Nutr. Soc. 27, 121–129 (1968).Article 
    CAS 
    PubMed 

    Google Scholar 
    Farlow, J. O. A consideration of the trophic dynamics of a Late Cretaceous large‐dinosaur community (Oldman Formation). Ecology 57, 841–857 (1976).Article 

    Google Scholar 
    Harestad, A. S. & Bunnel, F. Home range and body weight – a reevaluation. Ecology 60, 389–402 (1979).Article 

    Google Scholar 
    Schoener, T. W. Sizes of feeding territories among birds. Ecology 49, 123–141 (1968).Article 

    Google Scholar 
    Calder, W. A. in Avian Energetics (ed. Paynter, R. A.) 86–151 (Nuttall Ornithological Club, 1974).Savage, V. M., Deeds, E. J. & Fontana, W. Sizing up allometric scaling theory. PLoS Comp. Biol. 4, e1000171 (2008).Article 

    Google Scholar 
    Kolokotrones, T., Savage, V., Deeds, E. J. & Fontana, W. Curvature in metabolic scaling. Nature 464, 753–756 (2010).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hudson, L. N., Isaac, N. J. & Reuman, D. C. The relationship between body mass and field metabolic rate among individual birds and mammals. J. Anim. Ecol. 82, 1009–1020 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Predicting metabolomic profiles from microbial composition through neural ordinary differential equations

    Donia, M. S. & Fischbach, M. A. Small molecules from the human microbiota. Science 349, 1254766 (2015).Koh, A., De Vadder, F., Kovatcheva-Datchary, P. & Bäckhed, F. From dietary fiber to host physiology: short-chain fatty acids as key bacterial metabolites. Cell 165, 1332–1345 (2016).Article 

    Google Scholar 
    Koppel, N., Rekdal, V. M. & Balskus, E. P. Chemical transformation of xenobiotics by the human gut microbiota. Science 356, eaag2770 (2017).Myhrstad, M. C., Tunsjø, H., Charnock, C. & Telle-Hansen, V. H. Dietary fiber, gut microbiota, and metabolic regulation—current status in human randomized trials. Nutrients 12, 859 (2020).Article 

    Google Scholar 
    Lin, R., Liu, W., Piao, M. & Zhu, H. A review of the relationship between the gut microbiota and amino acid metabolism. Amino Acids 49, 2083–2090 (2017).Article 

    Google Scholar 
    Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).Article 

    Google Scholar 
    Flint, H. J., Scott, K. P., Louis, P. & Duncan, S. H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol. 9, 577–589 (2012).Article 

    Google Scholar 
    Lloyd-Price, J. et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature 569, 655–662 (2019).Article 

    Google Scholar 
    Yang, Q. et al. Metabolomics biotechnology, applications, and future trends: a systematic review. RSC Adv. 9, 37245–37257 (2019).Article 

    Google Scholar 
    Castelli, F. A. et al. Metabolomics for personalized medicine: the input of analytical chemistry from biomarker discovery to point-of-care tests. Anal. Bioanal. Chem. 414, 759–789 (2022).Article 

    Google Scholar 
    Dias-Audibert, F. L. et al. Combining machine learning and metabolomics to identify weight gain biomarkers. Front. Bioeng. Biotechnol. 8, 6 (2020).Article 

    Google Scholar 
    Zheng, C., Zhang, S., Ragg, S., Raftery, D. & Vitek, O. Identification and quantification of metabolites in 1H NMR spectra by Bayesian model selection. Bioinformatics 27, 1637–1644 (2011).Article 

    Google Scholar 
    Information Resources Management Association. Bioinformatics: Concepts, Methodologies, Tools, and Applications (IGI Global, 2013).Johnson, C. H. & Gonzalez, F. J. Challenges and opportunities of metabolomics. J. Cell. Physiol. 227, 2975–2981 (2012).Article 

    Google Scholar 
    Ayling, M., Clark, M. D. & Leggett, R. M. New approaches for metagenome assembly with short reads. Brief. Bioinform. 21, 584–594 (2020).Article 

    Google Scholar 
    Brumfield, K. D., Huq, A., Colwell, R. R., Olds, J. L. & Leddy, M. B. Microbial resolution of whole genome shotgun and 16S amplicon metagenomic sequencing using publicly available neon data. PLoS ONE 15, e0228899 (2020).Article 

    Google Scholar 
    Garza, D. R., van Verk, M. C., Huynen, M. A. & Dutilh, B. E. Towards predicting the environmental metabolome from metagenomics with a mechanistic model. Nat. Microbiol. 3, 456–460 (2018).Article 

    Google Scholar 
    Noecker, C. et al. Metabolic model-based integration of microbiome taxonomic and metabolomic profiles elucidates mechanistic links between ecological and metabolic variation. MSystems 1, e00013–15 (2016).Article 

    Google Scholar 
    Yin, X. et al. A comparative evaluation of tools to predict metabolite profiles from microbiome sequencing data. Front. Microbiol. 11, 3132 (2020).Article 

    Google Scholar 
    Kettle, H., Louis, P., Holtrop, G., Duncan, S. H. & Flint, H. J. Modelling the emergent dynamics and major metabolites of the human colonic microbiota. Environ. Microbiol. 17, 1615–1630 (2015).Article 

    Google Scholar 
    Quinn, R. A. et al. Niche partitioning of a pathogenic microbiome driven by chemical gradients. Sci. Adv. 4, eaau1908 (2018).Article 

    Google Scholar 
    Wang, T., Goyal, A., Dubinkina, V. & Maslov, S. Evidence for a multi-level trophic organization of the human gut microbiome. PLoS Comput. Biol. 15, e1007524 (2019).Article 

    Google Scholar 
    Goyal, A., Wang, T., Dubinkina, V. & Maslov, S. Ecology-guided prediction of cross-feeding interactions in the human gut microbiome. Nat. Commun. 12, 1335 (2021).Mallick, H. et al. Predictive metabolomic profiling of microbial communities using amplicon or metagenomic sequences. Nat. Commun. 10, 3136 (2019).Article 

    Google Scholar 
    Le, V., Quinn, T. P., Tran, T. & Venkatesh, S. Deep in the bowel: highly interpretable neural encoder–decoder networks predict gut metabolites from gut microbiome. BMC Genom. 21, 256 (2020).Reiman, D., Layden, B. T. & Dai, Y. MiMeNet: exploring microbiome–metabolome relationships using neural networks. PLoS Comput. Biol. 17, e1009021 (2021).Article 

    Google Scholar 
    Morton, J. T. et al. Learning representations of microbe–metabolite interactions. Nat. Methods 16, 1306–1314 (2019).Article 

    Google Scholar 
    Chen, R. T., Rubanova, Y., Bettencourt, J. & Duvenaud, D. Neural ordinary differential equations. In Advances in Neural Information Processing Systems 31, 6572–6583 (NeurIPS, 2018).Lu, Y., Zhong, A., Li, Q. & Dong, B. Beyond finite layer neural networks: bridging deep architectures and numerical differential equations. In International Conference on Machine Learning 3276–3285 (PMLR, 2018).Qiu, C., Bendickson, A., Kalyanapu, J. & Yan, J. Accuracy and architecture studies of residual neural network solving ordinary differential equations. Preprint at arXiv https://doi.org/10.48550/arXiv.2101.03583 (2021).Dutta, S., Rivera-Casillas, P. & Farthing, M. W. Neural ordinary differential equations for data-driven reduced order modeling of environmental hydrodynamics. Preprint at https://doi.org/10.48550/arXiv.2104.13962 (2021).Marsland III, R. et al. Available energy fluxes drive a transition in the diversity, stability, and functional structure of microbial communities. PLoS Comput. Biol. 15, e1006793 (2019).Article 

    Google Scholar 
    Franzosa, E. A. et al. Gut microbiome structure and metabolic activity in inflammatory bowel disease. Nat. Microbiol. 4, 293–305 (2019).Article 

    Google Scholar 
    Swenson, T. L., Karaoz, U., Swenson, J. M., Bowen, B. P. & Northen, T. R. Linking soil biology and chemistry in biological soil crust using isolate exometabolomics. Nat. Commun. 9, 19 (2018).Article 

    Google Scholar 
    Litonjua, A. A. et al. Effect of prenatal supplementation with vitamin D on asthma or recurrent wheezing in offspring by age 3 years: the VDAART randomized clinical trial. JAMA 315, 362–370 (2016).Article 

    Google Scholar 
    Litonjua, A. A. et al. Six-year follow-up of a trial of antenatal vitamin D for asthma reduction. N. Engl. J. Med. 382, 525–533 (2020).Article 

    Google Scholar 
    Lee-Sarwar, K. A. et al. Integrative analysis of the intestinal metabolome of childhood asthma. J. Allergy Clin. Immunol. 144, 442–454 (2019).Article 

    Google Scholar 
    Lee-Sarwar, K. et al. Association of the gut microbiome and metabolome with wheeze frequency in childhood asthma. J. Allergy Clin. Immunol. 147, AB53 (2021).Article 

    Google Scholar 
    Harvard Willett Food Frequency Questionnaire (T.H. Chan School of Public Health, Department of Nutrition, Harvard Univ., 2015).Plan and Operation of the Third National Health and Nutrition Examination Survey, 1988–94 (National Centre for Health Statistics, 1994).Nelson, K. M., Reiber, G. & Boyko, E. J. Diet and exercise among adults with type 2 diabetes: findings from the third National Health and Nutrition Examination Survey (NHANES III). Diabetes Care 25, 1722–1728 (2002).Article 

    Google Scholar 
    Marriott, B. P., Olsho, L., Hadden, L. & Connor, P. Intake of added sugars and selected nutrients in the United States, National Health and Nutrition Examination Survey (NHANES) 2003-2006. Crit. Rev. Food Sci. Nutr. 50, 228–258 (2010).Article 

    Google Scholar 
    Moshfegh, A. Food and Nutrient Database for Dietary Studies (US Department of Agriculture, Agricultural Research Service, Food Surveys Research Group, 2022); http://www.ars.usda.gov/nea/bhnrc/fsrgRidlon, J. M., Kang, D.-J. & Hylemon, P. B. Bile salt biotransformations by human intestinal bacteria. J. Lipid Res. 47, 241–259 (2006).Article 

    Google Scholar 
    Bachmann, V. et al. Bile salts modulate the mucin-activated type VI secretion system of pandemic Vibrio cholerae. PLoS Negl. Trop. Dis. 9, e0004031 (2015).Article 

    Google Scholar 
    Ramírez-Pérez, O., Cruz-Ramón, V., Chinchilla-López, P. & Méndez-Sánchez, N. The role of the gut microbiota in bile acid metabolism. Ann. Hepatol. 16, 21–26 (2018).Article 

    Google Scholar 
    Jia, W., Xie, G. & Jia, W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis. Nat. Rev. Gastroenterol. Hepatol. 15, 111–128 (2018).Article 

    Google Scholar 
    Heinken, A. et al. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome 7, 75 (2019).Duboc, H. et al. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62, 531–539 (2013).Article 

    Google Scholar 
    Thomas, J. P., Modos, D., Rushbrook, S. M., Powell, N. & Korcsmaros, T. The emerging role of bile acids in the pathogenesis of inflammatory bowel disease. Front. Immunol. 13, 246 (2022).Kristal, A. R., Peters, U. & Potter, J. D. Is it time to abandon the food frequency questionnaire? Cancer Epidemiol. Biomarkers Prev. 14, 2826–2828 (2005).Article 

    Google Scholar 
    Scalbert, A. et al. The food metabolome: a window over dietary exposure. Am. J. Clin. Nutr. 99, 1286–1308 (2014).Article 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).Article 

    Google Scholar 
    Callahan, B. J. et al. DADA: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).Article 

    Google Scholar 
    Evans, A. M. et al. High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass spectrometry in high-throughput profiling metabolomics. Metabolomics 4, 1 (2014).
    Google Scholar 
    Blum, R. E. et al. Validation of a food frequency questionnaire in Native American and Caucasian children 1 to 5 years of age. Matern. Child Health J. 3, 167–172 (1999).Article 

    Google Scholar 
    Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization. Preprint at https://doi.org/10.48550/arXiv.1412.6980 (2014).Wang, T. wt1005203/mnode: initial release. Zenodo https://doi.org/10.5281/zenodo.7602940 (2023). More

  • in

    Global Protected Areas as refuges for amphibians and reptiles under climate change

    Barnosky, A. D. et al. Has the Earth’s sixth mass extinction already arrived? Nature 471, 51–57 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ceballos, G., Ehrlich, P. R. & Dirzo, R. Biological annihilation via the ongoing sixth mass extinction signaled by vertebrate population losses and declines. Proc. Natl Acad. Sci. USA 114, E6089–E6096 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cowie, R. H., Bouchet, P. & Fontaine, B. The Sixth Mass Extinction: fact, fiction or speculation? Biol. Rev. 97, 640–663 (2022).Article 
    PubMed 

    Google Scholar 
    Dirzo, R. et al. Defaunation in the anthropocene. Science 345, 401–406 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ceballos, G. et al. Accelerated modern human–induced species losses: entering the sixth mass extinction. Sci. Adv. 1, e1400253 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pimm, S. L. et al. The biodiversity of species and their rates of extinction, distribution, and protection. Science 344, 1246752 (2014).Article 
    CAS 
    PubMed 

    Google Scholar 
    Urban, M. et al. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pincheira-Donoso, D. et al. Temporal and spatial patterns of vertebrate extinctions during the Anthropocene. Preprint at bioRxiv https://doi.org/10.1101/2022.05.05.490605 (2022).Brook, B. W., Sodhi, N. S. & Bradshaw, C. J. A. Synergies among extinction drivers under global change. Trends Ecol. Evol. 23, 453–460 (2008).Article 
    PubMed 

    Google Scholar 
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).Article 
    ADS 

    Google Scholar 
    Thomas, C. D. et al. Extinction risk from climate change. Nature 427, 145–148 (2004).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Warren, R. et al. Quantifying the benefit of early climate change mitigation in avoiding biodiversity loss. Nat. Clim. Change 3, 678–682 (2013).Article 
    ADS 

    Google Scholar 
    Román-Palacios, C. & Wiens, J. J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl Acad. Sci. USA 117, 4211–4217 (2020).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaston, K. J., Jackson, S. F., Cantú-Salazar, L. & Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 39, 93–113 (2008).Article 

    Google Scholar 
    Saout, S. L. et al. Protected areas and effective biodiversity conservation. Science 342, 803–805 (2013).Article 
    ADS 
    PubMed 

    Google Scholar 
    Watson, J. E. M., Dudley, N., Segan, D. B. & Hockings, M. The performance and potential of protected areas. Nature 515, 67–73 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Araújo, M. B., Alagador, D., Cabeza, M., Noguésbravo, D. & Thuiller, W. Climate change threatens European conservation areas. Ecol. Lett. 14, 484–492 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, Y., Zhang, J., Jiang, J., Nielsen, S. & He, F. Assessing the effectiveness of China’s protected areas to conserve current and future amphibian diversity. Divers. Distrib. 23, 146–157 (2017).Article 

    Google Scholar 
    Jenkins, C. N. & Joppa, L. Expansion of the global terrestrial protected area system. Biol. Conserv. 142, 2166–2174 (2009).Article 

    Google Scholar 
    Johnston, A. et al. Observed and predicted effects of climate change on species abundance in protected areas. Nat. Clim. Change 3, 1055–1061 (2013).Article 
    ADS 

    Google Scholar 
    Lehikoinen, P., Santangeli, A., Jaatinen, K., Rajasärkkä, A. & Lehikoinen, A. Protected areas act as a buffer against detrimental effects of climate change-evidence from large-scale, long-term abundance data. Glob. Change Biol. 25, 304–313 (2018).Article 
    ADS 

    Google Scholar 
    Coetzee, B. W. T., Robertson, M. P., Erasmus, B. F. N., Rensburg, B. J. V. & Thuiller, W. Ensemble models predict Important Bird Areas in southern Africa will become less effective for conserving endemic birds under climate change. Glob. Ecol. Biogeogr. 18, 701–710 (2009).Article 

    Google Scholar 
    Araújo, M. B., Cabeza, M., Thuiller, W., Hannah, L. & Williams, P. H. Would climate change drive species out of reserves? An assessment of existing reserve‐selection methods. Glob. Change Biol. 10, 1618–1626 (2004).Article 
    ADS 

    Google Scholar 
    Pouzols, F. M. et al. Global protected area expansion is compromised by projected land-use and parochialism. Nature 516, 383–386 (2014).Article 
    ADS 

    Google Scholar 
    Monzn, J., Moyer-Horner, L. & Palamar, M. B. Climate change and species range dynamics in protected areas. Bioscience 61, 752–761 (2011).Article 

    Google Scholar 
    Newbold, T., Oppenheimer, P., Etard, A. & Williams, J. J. Tropical and Mediterranean biodiversity is disproportionately sensitive to land-use and climate change. Nat. Ecol. Evol. 4, 1630–1638 (2020).Article 
    PubMed 

    Google Scholar 
    Liu, X. et al. Animal invaders threaten protected areas worldwide. Nat. Commun. 11, 2892 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carlson, C. J. et al. Climate change increases cross-species viral transmission risk. Nature 607, 555–562 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mi, C., Huettmann, F. & Guo, Y. Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii) in China for the 21st century. Peerj 4, e1630–e1630 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guisan, A. et al. Predicting species distributions for conservation decisions. Ecol. Lett. 16, 1424–1435 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, G., Papeş, M., Giam, X., Cho, S.-H. & Armsworth, P. R. Are protected areas well-sited to support species in the future in a major climate refuge and corridor in the United States? Biol. Conserv. 255, 108982 (2021).Article 

    Google Scholar 
    Gutiérrez, J. A. & Duivenvoorden, J. F. Can we expect to protect threatened species in protected areas? A case study of the genus Pinus in Mexico. Rev. Mexicana Biodivers. 81, 875–882 (2010).
    Google Scholar 
    Velásquez-Tibatá, J., Salaman, P. & Graham, C. H. Effects of climate change on species distribution, community structure, and conservation of birds in protected areas in Colombia. Reg. Environ. Change 13, 235–248 (2013).Article 

    Google Scholar 
    Riquelme, C. et al. Protected areas’ effectiveness under climate change: a latitudinal distribution projection of an endangered mountain ungulate along the Andes Range. Peerj 6, e5222 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bazzichetto, M. et al. Plant invasion risk: a quest for invasive species distribution modelling in managing protected areas. Ecol. Indic. 95, 311–319 (2018).Article 

    Google Scholar 
    Hannah, L. et al. Protected area needs in a changing climate. Front. Ecol. Environ. 5, 131–138 (2007).Article 

    Google Scholar 
    Cox, N. et al. A global reptile assessment highlights shared conservation needs of tetrapods. Nature 695, 285–290 (2022).Article 
    ADS 

    Google Scholar 
    IUCN. The IUCN red list of threatened species. http://www.iucnredlist.org/ (2021).Wake, D. B. & Vredenburg, V. T. Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proc. Natl Acad. Sci. USA 105, 11466–11473 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cordier, J. M. et al. A global assessment of amphibian and reptile responses to land-use changes. Biol. Conserv. 253, 108863 (2021).Article 

    Google Scholar 
    Powers, R. P. & Jetz, W. Global habitat loss and extinction risk of terrestrial vertebrates under future land-use-change scenarios. Nat. Clim. Change 9, 323–329 (2019).Article 
    ADS 

    Google Scholar 
    Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Scheele, B. C. et al. Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463 (2019).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Blaustein, A. R. & Kiesecker, J. M. Complexity in conservation: lessons from the global decline of amphibian populations. Ecol. Lett. 5, 597–608 (2002).Article 

    Google Scholar 
    Kraus, F. Impacts from invasive reptiles and amphibians. Annu. Rev. Ecol. Evol. Syst. 46, 75–97 (2015).Article 

    Google Scholar 
    Alford, R. A., Bradfield, K. S. & Richards, S. J. Global warming and amphibian losses. Nature 447, E3–E4 (2007).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hof, C., Araújo, M. B., Jetz, W. & Rahbek, C. Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature 480, 516–519 (2011).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rohr, J. R. & Raffel, T. R. Linking global climate and temperature variability to widespread amphibian declines putatively caused by disease. Proc. Natl Acad. Sci. USA 107, 8269–8274 (2008).Article 
    ADS 

    Google Scholar 
    Pincheira‐Donoso, D. et al. The global macroecology of brood size in amphibians reveals a predisposition of low‐fecundity species to extinction. Glob. Ecol. Biogeogr. 30, 1299–1310 (2021).Article 

    Google Scholar 
    Smith, M. A. & Green, D. M. Dispersal and the metapopulation paradigm in amphibian ecology and conservation: are all amphibian populations metapopulations? Ecography 28, 110–128 (2005).Article 

    Google Scholar 
    Borzée, A. et al. Climate change-based models predict range shifts in the distribution of the only Asian plethodontid salamander: Karsenia koreana. Sci. Rep. 9, 11838 (2019).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Heller, N. E. & Zavaleta, E. S. Biodiversity management in the face of climate change: a review of 22 years of recommendations. Biol. Conserv. 142, 14–32 (2009).Article 

    Google Scholar 
    Haight, J. & Hammill, E. Protected areas as potential refugia for biodiversity under climatic change. Biol. Conserv. 241, 108258 (2020).Article 

    Google Scholar 
    Thomas, C. D. et al. Protected areas facilitate species’ range expansions. Proc. Natl Acad. Sci. USA 109, 14063–14068 (2012).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lawson, C. R., Bennie, J. J., Thomas, C. D., Hodgson, J. A. & Wilson, R. J. Active management of protected areas enhances metapopulation expansion under climate change. Conserv. Lett. 7, 111–118 (2014).Article 

    Google Scholar 
    Beale, C. M., Baker, N. E., Brewer, M. J. & Lennon, J. J. Protected area networks and savannah bird biodiversity in the face of climate change and land degradation. Ecol. Lett. 16, 1061–1068 (2013).Article 
    PubMed 

    Google Scholar 
    D’Amen, M. et al. Will climate change reduce the efficacy of protected areas for amphibian conservation in Italy? Biol. Conserv. 144, 989–997 (2011).Article 

    Google Scholar 
    Singh, M. Evaluating the impact of future climate and forest cover change on the ability of Southeast (SE) Asia’s protected areas to provide coverage to the habitats of threatened avian species. Ecol. Indic. 114, 106307 (2020).Article 

    Google Scholar 
    Hole, D. G. et al. Projected impacts of climate change on a continent‐wide protected area network. Ecol. Lett. 12, 420–431 (2009).Article 
    PubMed 

    Google Scholar 
    Lehikoinen, P. et al. Increasing protected area coverage mitigates climate-driven community changes. Biol. Conserv. 253, 108892 (2021).Article 

    Google Scholar 
    Araújo, M. B., Thuiller, W. & Pearson, R. G. Climate warming and the decline of amphibians and reptiles in Europe. J. Biogeogr. 33, 1712–1728 (2006).Article 

    Google Scholar 
    Girardello, M., Griggio, M., Whittingham, M. J. & Rushton, S. P. Models of climate associations and distributions of amphibians in Italy. Ecol. Res. 25, 103–111 (2010).Article 

    Google Scholar 
    McMenamin, S. K., Hadly, E. A. & Wright, C. K. Climatic change and wetland desiccation cause amphibian decline in Yellowstone National Park. Proc. Natl Acad. Sci. USA 105, 16988–16993 (2008).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ficetola, G. F. & Maiorano, L. Contrasting effects of temperature and precipitation change on amphibian phenology, abundance and performance. Oecologia 181, 683–693 (2016).Article 
    ADS 
    PubMed 

    Google Scholar 
    Bickford, D., Howard, S. D., Ng, D. J. J. & Sheridan, J. A. Impacts of climate change on the amphibians and reptiles of Southeast Asia. Biodivers. Conserv. 19, 1043–1062 (2010).Article 

    Google Scholar 
    Manne, L. L., Brooks, T. M. & Pimm, S. L. Relative risk of extinction of passerine birds on continents and islands. Nature 399, 258–261 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Jenkins, C. N., Pimm, S. L. & Joppa, L. N. Global patterns of terrestrial vertebrate diversity and conservation. Proc. Natl Acad. Sci. USA 110, E2602–E2610 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change 4, 217–221 (2014).Article 
    ADS 

    Google Scholar 
    Wauchope, H. S. et al. Protected areas have a mixed impact on waterbirds, but management helps. Nature 605, 103–107 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    WWF. Tropical and Subtropical Moist Broadleaf Forest Ecoregions (World Wide Fund for Nature, 2019).Rodrigues, A. S. L. et al. Global gap analysis: priority regions for expanding the global protected-area network. Bioscience 54, 1092–1100 (2004).Article 

    Google Scholar 
    Hidasi‐Neto, J., Loyola, R. & Cianciaruso, M. V. Global and local evolutionary and ecological distinctiveness of terrestrial mammals: identifying priorities across scales. Divers. Distrib. 21, 548–559 (2015).Article 

    Google Scholar 
    Martin, J.-L., Maris, V. & Simberloff, D. S. The need to respect nature and its limits challenges society and conservation science. Proc. Natl Acad. Sci. USA 113, 6105–6112 (2016).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Czech, B., Krausman, P. & Devers, P. Economic associations among causes of species endangerment in the United States. Bioscience 50, 593–601 (2000).Article 

    Google Scholar 
    CBD. First draft of the post-2020 global biodiversity framework. https://www.cbd.int/doc/c/abb5/591f/2e46096d3f0330b08ce87a45/wg2020-03-03-en.pdf (2021).Roll, U. et al. The global distribution of tetrapods reveals a need for targeted reptile conservation. Nat. Ecol. Evol. 1, 1677–1682 (2017).Article 
    PubMed 

    Google Scholar 
    Ficetola, G. F. et al. An evaluation of the robustness of global amphibian range maps. J. Biogeogr. 41, 211–221 (2014).Article 

    Google Scholar 
    Aiello‐Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545 (2015).Article 

    Google Scholar 
    Erfanian, M. B., Sagharyan, M., Memariani, F. & Ejtehadi, H. Predicting range shifts of three endangered endemic plants of the Khorassan-Kopet Dagh floristic province under global change. Sci. Rep. 11, 9159 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, J. L., Cameron, A., Yoder, A. D. & Vences, M. A necessarily complex model to explain the biogeography of the amphibians and reptiles of Madagascar. Nat. Commun. 5, 5046 (2014).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gaston, K. J. Rarity as double jeopardy. Nature 394, 229–230 (1998).Article 
    ADS 
    CAS 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).Article 

    Google Scholar 
    Li, X., Liu, X., Kraus, F., Tingley, R. & Li, Y. Risk of biological invasions is concentrated in biodiversity hotspots. Front. Ecol. Environ. 14, 411–417 (2016).Article 

    Google Scholar 
    Naimi, B., Hamm, N. A. S., Groen, T. A., Skidmore, A. K. & Toxopeus, A. G. Where is positional uncertainty a problem for species distribution modelling? Ecography 37, 191–203 (2014).Article 

    Google Scholar 
    Xin, X., Wu, T. & Zhang, J. Introduction of CMIP5 experiments carried out with the climate system models of beijing climate center. Adv. Clim. Change Res. 4, 41–49 (2013).Article 

    Google Scholar 
    Voldoire, A. et al. The CNRM-CM5.1 global climate model: description and basic evaluation. Clim. Dyn. 40, 2091–2121 (2013).Article 

    Google Scholar 
    Watanabe, S. et al. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geosci. Model Dev. 4, 845–872 (2011).Article 
    ADS 

    Google Scholar 
    Mi, C. et al. Temperate and tropical lizards are vulnerable to climate warming due to increased water loss and heat stress. Proc. R. Soc. Lond. B. Biol. Sci. 289, 20221074 (2022).
    Google Scholar 
    Naimi, B. & Araújo, M. B. sdm: a reproducible and extensible R platform for species distribution modelling. Ecography 39, 368–375 (2016).Article 

    Google Scholar 
    Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: how, where and how many?: How to use pseudo-absences in niche modelling? Methods Ecol. Evol. 3, 327–338 (2012).Article 

    Google Scholar 
    Andrade, A. F. A., de, Velazco, S. J. E. & Júnior, P. D. M. ENMTML: an R package for a straightforward construction of complex ecological niche models. Environ. Modell. Softw. 125, 104615 (2020).Article 

    Google Scholar 
    Senay, S. D., Worner, S. P. & Ikeda, T. Novel three-step pseudo-absence selection technique for improved species distribution modelling. PLos ONE 8, e71218 (2013).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thuiller, W. BIOMOD–optimizing predictions of species distributions and projecting potential future shifts under global change. Glob. Change Biol. 9, 1353–1362 (2003).Article 
    ADS 

    Google Scholar 
    Williams, J. N. et al. Using species distribution models to predict new occurrences for rare plants. Divers. Distrib. 15, 565–576 (2009).Article 

    Google Scholar 
    Graham, C. H. et al. The influence of spatial errors in species occurrence data used in distribution models. J. Appl. Ecol. 45, 239–247 (2008).Article 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).Article 

    Google Scholar 
    Mi, C., Huettmann, F., Guo, Y., Han, X. & Wen, L. Why choose Random Forest to predict rare species distribution with few samples in large undersampled areas? Three Asian crane species models provide supporting evidence. Peerj 5, e2849 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Drake, J. M., Randin, C. & Guisan, A. Modelling ecological niches with support vector machines. J. Appl. Ecol. 43, 424–432 (2006).Article 

    Google Scholar 
    Allouche, O., Tsoar, A. & Kadmon, R. Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 43, 1223–1232 (2006).Article 

    Google Scholar 
    McPherson, J., Jetz, W. & Rogers, D. J. The effects of species’ range sizes on the accuracy of distribution models: ecological phenomenon or statistical artefact? J. Appl. Ecol. 41, 811–823 (2004).Article 

    Google Scholar 
    Wang, B. et al. Australian wheat production expected to decrease by the late 21st century. Glob. Change Biol. 24, 2403–2415 (2017).Article 
    ADS 

    Google Scholar 
    Gallardo, B. et al. Protected areas offer refuge from invasive species spreading under climate change. Glob. Change Biol. 23, 5331–5343 (2017).Article 
    ADS 

    Google Scholar 
    Thuiller, W., Lafourcade, B., Engler, R. & Araújo, M. B. BIOMOD – a platform for ensemble forecasting of species distributions. Ecography 32, 369–373 (2009).Article 

    Google Scholar 
    UNEP-WCMC, I. and. The world database on protected areas (WDPA). https://www.protectedplanet.net/en#4_43.25_111_0 (2014).Asamoah, E. F., Beaumont, L. J. & Maina, J. M. Climate and land-use changes reduce the benefits of terrestrial protected areas. Nat. Clim. Change 11, 1105–1110 (2021).Article 
    ADS 

    Google Scholar 
    Brennan, A. et al. Functional connectivity of the world’s protected areas. Science 376, 1101–1104 (2022).You, Z. et al. Pitfall of big databases. Proc. Natl Acad. Sci. USA 115, 201813323 (2018).Article 

    Google Scholar 
    Nelson, A. & Chomitz, K. M. Effectiveness of strict vs. multiple use protected areas in reducing tropical forest fires: a global analysis using matching methods. PLoS ONE 6, e22722 (2011).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Albuquerque, F. & Beier, P. Rarity-weighted richness: a simple and reliable alternative to integer programming and heuristic algorithms for minimum set and maximum coverage problems in conservation planning. PLoS ONE 10, e0119905 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tang, C. Q. et al. Identifying long-term stable refugia for relict plant species in East Asia. Nat. Commun. 9, 4488 (2018).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kier, G. & Barthlott, W. Measuring and mapping endemism and species richness: a new methodological approach and its application on the flora of Africa. Biodivers. Conserv 10, 1513–1529 (2001).Article 

    Google Scholar 
    Albuquerque, F. & Gregory, A. The geography of hotspots of rarity-weighted richness of birds and their coverage by Natura 2000. PLoS ONE 12, e0174179 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jennings, M. D. Gap analysis: concepts, methods, and recent results. Landsc. Ecol. 15, 5–20 (2000).Article 

    Google Scholar 
    Romero‐Muñoz, A. et al. Increasing synergistic effects of habitat destruction and hunting on mammals over three decades in the Gran Chaco. Ecography 43, 954–966 (2020).Article 

    Google Scholar 
    Brooks, T. M. et al. Global biodiversity conservation priorities. Science 313, 58–61 (2006).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Human footprint is associated with shifts in the assemblages of major vector-borne diseases

    Ellis, E. C. et al. People have shaped most of terrestrial nature for at least 12,000 years. Proc. Natl. Acad. Sci. USA 118, e2023483118 (2021).Article 
    CAS 

    Google Scholar 
    Williams, B. A. et al. Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3, 371–382 (2020).Article 

    Google Scholar 
    Kuipers, K. J. J. et al. Habitat fragmentation amplifies threats from habitat loss to mammal diversity across the world’s terrestrial ecoregions. One Earth 4, 1505–1513 (2021).Article 

    Google Scholar 
    Venter, O. et al. Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat. Commun. 7, 12558 (2016).Article 
    CAS 

    Google Scholar 
    Watson, J. E. M. & Venter, O. Mapping the continuum of humanity’s footprint on land. One Earth 1, 175–180 (2019).Article 

    Google Scholar 
    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).Article 
    CAS 

    Google Scholar 
    Glidden, C. K. et al. Human-mediated impacts on biodiversity and the consequences for zoonotic disease spillover. Curr. Biol. 31, R1342–R1361 (2021).Article 
    CAS 

    Google Scholar 
    Grobbelaar, A. A. et al. Resurgence of yellow fever in Angola, 2015-2016. Emerg. Infect. Dis. 22, 1854–1855 (2016).Article 

    Google Scholar 
    Gubler, D. J. Epidemic dengue/dengue hemorrhagic fever as a public health, social and economic problem in the 21st century. Trends Microbiol. 10, 100–103 (2002).Article 
    CAS 

    Google Scholar 
    Hotez, P. J. Neglected tropical diseases in the Anthropocene: the cases of Zika, Ebola, and other infections. PLoS Negl. Trop. Dis. 10, e0004648 (2016).Article 

    Google Scholar 
    Paixão, E. S., Teixeira, M. G. & Rodrigues, L. C. Zika, chikungunya and dengue: the causes and threats of new and re-emerging arboviral diseases. BMJ Glob. Health 3, e000530 (2018).Article 

    Google Scholar 
    Rosenberg, R. et al. Vital signs: trends in reported vectorborne disease cases – United States and territories, 2004-2016. Morb. Mortal. Wk. Rep. 67, 496–501 (2018).Article 

    Google Scholar 
    World Malaria Report 2020: 20 Years of Global Progress and Challenges (WHO, 2020); https://apps.who.int/iris/handle/10665/337660Lambin, E. F., Tran, A., Vanwambeke, S. O., Linard, C. & Soti, V. Pathogenic landscapes: interactions between land, people, disease vectors, and their animal hosts. Int. J. Health Geogr. 9, 54 (2010).Article 

    Google Scholar 
    Shocket, M. S. et al. Transmission of West Nile and five other temperate mosquito-borne viruses peaks at temperatures between 23 °C and 26 °C. eLife 9, e58511 (2020).Article 
    CAS 

    Google Scholar 
    Kilpatrick, A. M. & Randolph, S. E. Drivers, dynamics, and control of emerging vector-borne zoonotic diseases. Lancet 380, 1946–1955 (2012).Article 

    Google Scholar 
    Franklinos, L. H. V., Jones, K. E., Redding, D. W. & Abubakar, I. The effect of global change on mosquito-borne disease. Lancet Infect. Dis. 19, e302–e312 (2019).Article 

    Google Scholar 
    Keys, P. W., Barnes, E. A. & Carter, N. H. A machine-learning approach to human footprint index estimation with applications to sustainable development. Environ. Res. Lett. 16, 044061 (2021).Article 

    Google Scholar 
    Venter, O. et al. Global terrestrial human footprint maps for 1993 and 2009. Sci. Data 3, 160067 (2016).Article 

    Google Scholar 
    Di Marco, M., Ferrier, S., Harwood, T. D., Hoskins, A. J. & Watson, J. E. M. Wilderness areas halve the extinction risk of terrestrial biodiversity. Nature 573, 582–585 (2019).Article 

    Google Scholar 
    Hill, J. E., DeVault, T. L., Wang, G. & Belant, J. L. Anthropogenic mortality in mammals increases with the human footprint. Front. Ecol. Environ. 18, 13–18 (2020).Article 

    Google Scholar 
    Elsen, P. R., Monahan, W. B. & Merenlender, A. M. Topography and human pressure in mountain ranges alter expected species responses to climate change. Nat. Commun. 11, 1974 (2020).Article 
    CAS 

    Google Scholar 
    Su, J., Yin, H. & Kong, F. Ecological networks in response to climate change and the human footprint in the Yangtze River Delta urban agglomeration, China. Landsc. Ecol. 36, 2095–2112 (2021).Article 

    Google Scholar 
    Hansen, A. J. et al. A policy-driven framework for conserving the best of Earth’s remaining moist tropical forests. Nat. Ecol. Evol. 4, 1377–1384 (2020).Article 

    Google Scholar 
    Dos Santos, C. V. B., da Paixão Sevá, A., Werneck, G. L. & Struchiner, C. J. Does deforestation drive visceral leishmaniasis transmission? A causal analysis. Proc. R. Soc. B 288, 20211537 (2021).Article 

    Google Scholar 
    MacDonald, A. J. & Mordecai, E. A. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc. Natl. Acad. Sci. USA 116, 22212–22218 (2019).Article 
    CAS 

    Google Scholar 
    Honório, N. A. et al. Dispersal of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in an urban endemic dengue area in the State of Rio de Janeiro, Brazil. Mem. Inst. Oswaldo Cruz 98, 191–198 (2003).Article 

    Google Scholar 
    Rodrigues, N. B. et al. Brazilian Aedes aegypti as a competent vector for multiple complex arboviral coinfections. J. Infect. Dis. 224, 101–108 (2021).Article 

    Google Scholar 
    Weinstein, J. S., Leslie, T. F. & von Fricken, M. E. Spatial associations between land use and infectious disease: Zika virus in Colombia. Int. J. Environ. Res. Public Health 17, E1127 (2020).Article 

    Google Scholar 
    Heukelbach, J., Alencar, C. H., Kelvin, A. A., de Oliveira, W. K. & Pamplona de Góes Cavalcanti, L. Zika virus outbreak in Brazil. J. Infect. Dev. Countr. 10, 116–120 (2016).Article 

    Google Scholar 
    Lowe, R. et al. The Zika virus epidemic in Brazil: from discovery to future implications. Int. J. Environ. Res. Public Health 15, E96 (2018).Article 

    Google Scholar 
    Alves, M. C. G. P., de Matos, M. R., de Lourdes Reichmann, M. & Dominguez, M. H. Estimation of the dog and cat population in the State of São Paulo. Rev. Saude Publica 39, 891–897 (2005).Article 

    Google Scholar 
    Mordecai, E. A. et al. Thermal biology of mosquito-borne disease. Ecol. Lett. 22, 1690–1708 (2019).Article 

    Google Scholar 
    Gage, K. L., Burkot, T. R., Eisen, R. J. & Hayes, E. B. Climate and vectorborne diseases. Am. J. Prev. Med. 35, 436–450 (2008).Article 

    Google Scholar 
    Doenças e Agravos de Notificação – 2007 em Diante (SINAN) (DATASUS, Ministério da Saúde do Brasil, 2021); https://datasus.saude.gov.br/acesso-a-informacao/doencas-e-agravos-de-notificacao-de-2007-em-diante-sinan/SIVEP – MALÁRIA Notificação de Casos (Ministério da Saúde do Brasil, 2021); http://200.214.130.44/sivep_malaria/R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2020); https://www.R-project.org/Sorichetta, A. et al. High-resolution gridded population datasets for Latin America and the Caribbean in 2010, 2015, and 2020. Sci. Data 2, 150045 (2015).Article 

    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).Article 

    Google Scholar 
    Souza at. al. Reconstructing three decades of land use and land cover changes in Brazilian biomes with Landsat archive and Earth Engine. Remote Sens. 12, https://doi.org/10.3390/rs12172735 (2020).Fountain-Jones, N. M. et al. How to make more from exposure data? An integrated machine learning pipeline to predict pathogen exposure. J. Anim. Ecol. 88, 1447–1461 (2019).Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).Article 

    Google Scholar 
    Genuer, R., Poggi, J.-M. & Tuleau-Malot, C. Variable selection using random forests. Pattern Recogn. Lett. 31, 2225–2236 (2010).Article 

    Google Scholar 
    Wei, T. et al. Package ‘corrplot’. Statistician 56, e24 (2017).
    Google Scholar 
    Ratner, B. The correlation coefficient: its values range between +1/−1, or do they? J. Target. Meas. Anal. Mark. 17, 139–142 (2009).Article 

    Google Scholar 
    Ishwaran, H. & Kogalur, U. B. Fast unified random forests for survival, regression, and classification (RF-SRC) (2019).O’Brien, R. & Ishwaran, H. A random forests quantile classifier for class imbalanced data. Pattern Recognit. 90, 232–249 (2019).Article 

    Google Scholar 
    Silge, J. & Mahoney, M. spatialsample: spatial resampling infrastructure. R version 0.2.1 (2023).Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–507 (2013).Article 
    CAS 

    Google Scholar 
    Weaver, S. C. & Forrester, N. L. Chikungunya: evolutionary history and recent epidemic spread. Antivir. Res. 120, 32–39 (2015).Article 
    CAS 

    Google Scholar 
    Puntasecca, C. J., King, C. H. & LaBeaud, A. D. Measuring the global burden of chikungunya and Zika viruses: a systematic review. PLoS Negl. Trop. Dis. 15, e0009055 (2021).Article 

    Google Scholar 
    Baeza, A., Santos-Vega, M., Dobson, A. P. & Pascual, M. The rise and fall of malaria under land-use change in frontier regions. Nat. Ecol. Evol. 1, 108 (2017).Article 

    Google Scholar 
    de Araújo Pedrosa, F. & de Alencar Ximenes, R. A. Sociodemographic and environmental risk factors for American cutaneous leishmaniasis (ACL) in the State of Alagoas, Brazil. Am. J. Trop. Med. Hyg. 81, 195–201 (2009).Article 

    Google Scholar 
    Gonçalves, N. V. et al. Cutaneous leishmaniasis: spatial distribution and environmental risk factors in the state of Pará, Brazilian Eastern Amazon. J. Infect. Dev. Countr. 13, 939–944 (2019).Article 

    Google Scholar 
    Leishmaniasis (Pan American Health Organization, 2022); https://www.paho.org/en/topics/leishmaniasisHarhay, M. O., Olliaro, P. L., Costa, D. L. & Costa, C. H. N. Urban parasitology: visceral leishmaniasis in Brazil. Trends Parasitol. 27, 403–409 (2011).Article 

    Google Scholar  More

  • in

    Interannual variability in early life phenology is driven by climate and oceanic processes in two NE Atlantic flatfishes

    Cheung, W. W. L. et al. Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems. Nat. Clim. Change 3, 1–5 (2012).
    Google Scholar 
    Pilotto, F. et al. Meta-analysis of multidecadal biodiversity trends in Europe. Nat. Commun. 11, 3486 (2010).Article 
    ADS 

    Google Scholar 
    Ong, J. J. L. et al. Contrasting environmental drivers of adult and Juvenile growth in a marine fish: Implications for the effects of climate change. Sci. Rep. 5, 10859 (2015).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rijnsdorp, A. D., Peck, M. A., Engelhard, G. H., Moellmann, C. & Pinnegar, J. K. Resolving the effect of climate change on fish populations. ICES J. Mar. Sci. 66(7), 1570–1583 (2009).Article 

    Google Scholar 
    Pankhurst, N. W. & Munday, P. L. Effects of climate change on fish reproduction and early life history stages. Mar. Freshw. Res. 62(9), 1015 (2011).Article 
    CAS 

    Google Scholar 
    Ainsworth, C. H. et al. Potential impacts of climate change on Northeast Pacific marine foodwebs and fisheries. ICES J. Mar. Sci. 68, 1217–1229 (2011).Article 

    Google Scholar 
    Morrongiello, J. R., Horn, P. L., Ó Maolagáin, C. & Sutton, P. J. H. Synergistic effects of harvest and climate drive synchronous somatic growth within key New Zealand fisheries. Glob. Change Biol. 27(7), 1470–1484 (2021).Article 
    ADS 
    CAS 

    Google Scholar 
    Ottersen, G., Hjermann, D. O. & Stensenth, N. C. Changes in spawning stocks structure strengthen the link between climate and recruitment in a heavily fished cod (Gadus morhua) stock. Fish. Oceanogr. 15(3), 230–243 (2006).Article 

    Google Scholar 
    Cheung, W. W. L. & Oyinlola, M. A. Vulnerability of flatfish and their fisheries to climate change. J. Sea Res. 140, 1–10 (2018).Article 
    ADS 

    Google Scholar 
    Fedewa, E. J., Miller, J. A. & Hurst, T. P. Pre-settlement process of northern rock sole (Lepidopsetta polyxystra) in relation to interannual variability in the Gulf of Alaska. J. Sea Res. 111, 25–36 (2016).Article 
    ADS 

    Google Scholar 
    Cabral, H. N. et al. Relative importance of estuarine flatfish nurseries along the Portuguese coast. J. Sea Res. 57, 209–217 (2007).Article 
    ADS 

    Google Scholar 
    Martinho, F., van der Veer, H. W., Cabral, H. N. & Pardal, M. A. Juvenile nursery colonization patterns for the European flounder (Platichthys flesus): A latitudinal approach. J. Sea Res. 84, 61–69 (2013).Article 
    ADS 

    Google Scholar 
    Primo, A. L. et al. Contrasting links between growth and survival in the early life stages of two flatfish species. Estuar. Coast. Shelf Sci. 254, 107314 (2021).Article 

    Google Scholar 
    Vaz, A., Scarcella, G., Pardal, M. A. & Martinho, F. Water temperature gradients drive early life-history patterns of the common sole (Solea solea L.) in the Northeast Atlantic and Mediterranean. Aquat. Ecol. 53(5) (2019).Geffen, A., van der Veer, H. W. & Nash, R. The cost of metamorphosis in flatfishes. J. Sea Res. 58(1), 35–45 (2007).Article 
    ADS 

    Google Scholar 
    Cowen, R. K., Lwiza, K. M. M., Sponaugle, S., Paris, C. B. & Olson, D. B. Connectivity in marine populations: Open or closed?. Science 287, 857–859 (2000).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gillanders, B. M., Black, B. A., Meekan, M. G. & Morrison, M. A. Climatic effects on the growth of a temperate reef fish from the Southern Hemisphere: a biochronological approach. Mar. Biol. 159, 1327–1333 (2012).Article 

    Google Scholar 
    Treml, E. A., Ford, J. R., Black, K. P. & Swearer, S. E. Identifying the key biophysical drivers, connectivity outcomes, and metapopulation consequences of larval dispersal in the sea. Mov. Ecol. 3(1), 345 (2015).Article 

    Google Scholar 
    Gibson, R. N. Behaviour and the distribution of flatfishes. J. Sea Res. 37(1997), 241–256 (1997).Article 
    ADS 

    Google Scholar 
    Mellado-Cano, J., Barriopedro, D., García-Herrera, R., Trigo, R. M. & Hernández, A. Examining the North Atlantic Oscillation, East Atlantic Pattern, and jet variability since 1685. J. Clim. 32, 6285–6298 (2019).Article 
    ADS 

    Google Scholar 
    Tanner, S. E. et al. Marine regime shifts impact synchrony of deep-sea fish growth in the northeast Atlantic. Oikos 129(12), 1781–1794 (2020).Article 

    Google Scholar 
    Trigo, R. M., Osborn, T. J. & Corte-Real, J. M. The North Atlantic Oscillation influence on Europe: Climate impacts and associated physical mechanisms. Clim. Res. 20, 9–17 (2002).Article 

    Google Scholar 
    Leis, J. M. et al. Does fish larval dispersal differ between high and low latitudes?. Proc. R. Soc. B Biol. Sci. 280(1759), 20130327 (2013).Article 

    Google Scholar 
    Raventos, N., Torrado, H., Arthur, R., Alcoverro, T. & Macpherson, E. Temperature reduces fish dispersal as larvae grow faster to their settlement size. J. Anim. Ecol. 90(6), 1419–1432 (2021).Article 
    PubMed 

    Google Scholar 
    Santos, A. M. P. et al. Physical-biological interactions in the life history of small Pelagic Fish in the Western Iberia upwelling ecosystem. Prog. Oceanogr. 74(2), 192–209 (2007).Article 
    ADS 

    Google Scholar 
    Le Pape, O. & Bonhommeau, S. The food limitation hypothesis for juvenile marine fish. Fish Fish. 16(3), 373–398 (2015).Article 

    Google Scholar 
    Fox, C. et al. Birth-date selection in early life stage of plaice Pleuronectes platessa in the eastern Irish Sea (British Isles). Mar. Ecol. Prog. Ser. 345, 255–269 (2007).Article 
    ADS 

    Google Scholar 
    Joh, M. & Wada, A. Inter-annual and spatial difference in hatch date and settlement date distribution and planktonic larval duration in yellow striped flounder Pseudopleuronectes Herzensteini. J. Sea Res. 137, 26–34 (2018).Article 
    ADS 

    Google Scholar 
    Pinto, M. et al. Influence of oceanic and climate conditions on the early life history of European seabass Dicentrarchus labrax. Mar. Environ. Res. 169, 105362 (2021).Article 
    CAS 
    PubMed 

    Google Scholar 
    Morais, P., Dias, E., Babaluk, J. & Antunes, C. The migration patterns of the European flounder Platichthys flesus (Linnaeus, 1758) (Pleuronectidae, Pisces) at the southern limit of its distribution range: Ecological implications and fishery management. J. Sea Res. 65, 235–246 (2011).Article 
    ADS 

    Google Scholar 
    Lacroix, G., Maes, G. E., Bolle, L. J. & Volckaert, F. Modelling dispersal dynamics of the early life stages of a marine flatfish (Solea Solea L.). J. Sea Res. 84(C), 13–25 (2013).Article 
    ADS 

    Google Scholar 
    Tanner, S. E., Teles-Machado, A., Martinho, F., Peliz, A. & Cabral, H. N. Modelling larval dispersal Dynamics of common sole (Solea solea) along the western Iberian coast. Prog. Oceanogr. 156, 78–90 (2017).Article 
    ADS 

    Google Scholar 
    Amorim, E., Ramos, S., Elliott, M. & Bordalo, A. A. Immigration and early life stages recruitment of the European flounder (Platichthys flesus) to an estuarine nursery: The influence of environmental factors. J. Sea Res. 107(Part 1), 56–66 (2016).Article 
    ADS 

    Google Scholar 
    Vasconcelos, R. P., Reis-Santos, P., Costa, M. J. & Cabral, H. N. Connectivity between estuaries and marine environment: Integrating metrics to assess estuarine nursery function. Ecol. Indic. 11(5), 1123–1133 (2011).Article 

    Google Scholar 
    Orio, A. et al. Spatial contraction of demersal fish populations in a large marine ecosystem. J. Biogeogr. 46(3), 633–645 (2019).Article 

    Google Scholar 
    Peliz, A., Rosa, T. L., Santos, A. M. P. & Pissarra, J. L. Fronts, jets, and counter-flows in the Western Iberian upwelling system. J. Mar. Syst. 35, 61–77 (2002).Article 

    Google Scholar 
    Teles-Machado, A., Peliz, A., McWilliams, J. C., Dubert, J. & Le Cann, B. Circulation on the Northwestern Iberian Margin: Swoddies. Prog. Oceanogr 140, 116–133 (2016).Article 
    ADS 

    Google Scholar 
    Primo, A. L. et al. Colonization and nursery habitat use patterns of larval and juvenile flatfish species in a small temperate estuary. J. Sea. Res. 76(C), 126–134 (2013).Article 
    ADS 

    Google Scholar 
    Vasconcelos, R. P. et al. Evidence of estuarine nursery origin of five coastal fish species along the Portuguese coast through otolith elemental fingerprints. Estuar. Coast. Shelf Sci. 79, 317–327 (2008).Article 
    ADS 

    Google Scholar 
    du Sert, N. P. et al. The ARRIVAGE guidelines 2.0: updated guidelines for reporting animal research. J. Physiol. Lond. 598(18), 3793–3801 (2020).Article 

    Google Scholar 
    Trigo, R. M. et al. The impact of north atlantic wind and cyclone trends on European precipitation and significant wave height in the Atlantic. Ann. N. Y. Acad. Sci. 1146(1), 212–234 (2008).Article 
    ADS 
    PubMed 

    Google Scholar 
    Murase, H., Nagashima, H., Yonezaki, S., Matsukura, R. & Kitakado, T. Application of a generalized additive model (GAM) to reveal relationships between environmental factors and distributions of Pelagic Fish and Krill: a Case Study in Senday Bay, Japan. ICES J. Mar. Sci. 66(6), 1417–1424 (2009).Article 

    Google Scholar 
    Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 73(1), 3–36 (2011).Article 
    MathSciNet 
    MATH 

    Google Scholar 
    Tanner, S. E. et al. Regional climate, primary productivity and fish biomass drive growth cariation and population resilience in a small pelagic fish. Ecol. Indic. 103, 530–541 (2019).Article 

    Google Scholar 
    Almeida, J. R., Gravato, C. & Guilermino, L. Effects of temperature in juvenile Seabass (Dicentrarchus labrax L.) biomarker responses and behaviour: implications for environmental monitoring. Estuaries Coasts 38, 45–55 (2015).Article 
    CAS 

    Google Scholar 
    Sims, D. W., Wearmouth, V. J., Genner, M. J., Southward, A. J. & Hawkins, S. J. Low-temperature-driven early spawning migration of a temperate marine fish. J. Anim. Ecol. 73(2), 333–341 (2004).Article 

    Google Scholar 
    Faria, A. M., Muha, T., Morote, R. & Chicharro, M. A. Influence of starvation on the critical swimming behaviour of the Senegalensis sole (Solea senegalensis) and its relationship with RNA/DNA ratios during ontogeny. Sci. Mar. 75(1), 87–94 (2011).Article 
    CAS 

    Google Scholar 
    Downie, A. T., Illing, B., Faria, A. M. & Rummer, J. L. Swimming performance of marine fish larvae: review of a universal trait under ecological and environmental pressure. Rev. Fish Biol. Fish. 30, 93–108 (2020).Article 

    Google Scholar 
    Durant, J. M. et al. Contrasting effects of rising temperatures on trophic interactions in marine ecosystems. Na. Sci. Rep. 9(1), 15213 (2019).Article 
    ADS 

    Google Scholar 
    Stenseth, N. C. et al. Ecological effects of climate fluctuations. Science 297(5585), 1292–1296 (2002).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Harrington, A. M., Clark, K. F. & Hamlin, H. J. Expected ocean warming conditions significantly alter the transcriptone of developing postlarval American lobsters (Homarus americanus): Implications for energetic trade-offs. Comp. Biochem. Physiol. D Genom. Proteom. 36, 100716 (2020).CAS 

    Google Scholar 
    Pörtner, H. O. & Farrell, A. P. Ecology. Physiol. Clim. Change. Sci. 322(5902), 690–692 (2008).
    Google Scholar 
    Drinkwater, K. F. et al. On the processes linking climate to ecosystem changes. J. Mar. Syst. 79, 374–388 (2010).Article 

    Google Scholar 
    Alix, M., Kjesbu, O. S. & Anderson, K. C. From Gametogenesis to spawning: How climate-driven warming affects teleost reproductive biology. J. Fish Biol. 97(3), 607–632 (2020).Article 
    PubMed 

    Google Scholar 
    Conover, D. O. & Present, T. M. C. Countergradient variation in growth rate: compensation for length of the growing season among Atlantic silversides from different latitudes. Oceanologia 83, 316–324 (1990).ADS 

    Google Scholar 
    van de Wolfshaar, K. E., Barbut, L. & Lacroix, G. From spawning to first-year recruitment: the fate of Juvenile Sole Growth and survival under future climate conditions in the North Sea. ICES J. Mar. Sci. (2021).Cabral, H. et al. Contrasting impacts of climate change on connectivity and larval recruitment to estuarine nursery areas. Prog. Oceanogr. 196, 102608 (2011).Article 

    Google Scholar 
    Iglesias, I., Lorenzo, M. N. & Taboada, J. J. Seasonal predictability of the East Atlantic Pattern from sea surface temperatures. PLoS ONE 9(1), 86439–86448 (2014).Article 
    ADS 

    Google Scholar 
    Rodríguez-Puebla, C., Encinas, A. H., García-Casado, L. A. & Nieto, S. Trends in warm days and cold nights over the Iberian Peninsula: relationships to large-scale variables. Clim. Change 100(3), 667–684 (2010).Article 
    ADS 

    Google Scholar 
    Hurrell, J. W. & Van Loon, H. Decadal variations in climate associated with the North Atlantic oscillation. Clim. Change 36, 301–326 (1997).Article 

    Google Scholar 
    Henderson, P. A. & Seaby, R. M. The role of climate in determining the temporal variation in abundance, recruitment and growth of sole Solea solea in the Bristol Channel. JMBA 85, 197–204 (2005).
    Google Scholar 
    Rodwell, M. J., Rowell, D. P. & Folland, C. K. Oceanic forcing of the wintertime North Atlantic Oscillation and European Climate. Letters to Nature 398, 320–323 (1999).Article 
    ADS 
    CAS 

    Google Scholar 
    Hurrell, J. W. Decadal trends in the North Atlantic oscillation: Regional temperatures and precipitation. Sci. 269, 676–679 (1995).Article 
    ADS 
    CAS 

    Google Scholar 
    Avalos, M. R. et al. Comparing the foraging strategies of a seabird predator when recovering from drastic climatic event. Mar. Biol. 164, 48 (2017).Article 

    Google Scholar 
    Wang, C., Liu, H. & Lee, S. K. The record-breaking cold temperatures during the winter of 2009/2010 in the Northern Hemisphere. Atmos. Sci. Lett. 11(3), 161–168 (2010).Article 
    ADS 
    CAS 

    Google Scholar 
    Rodrigo, F. S. Exploring combined influences of Seasonal East Atlantic (EA) and North Atlantic Oscillation (NAO) on the temperature-precipitation relationship in the Iberian Peninsula. Geosciences 11(5), 211 (2021).Article 
    ADS 

    Google Scholar 
    Alvarez, I., Gommez-Gesteira, M., Decastro, M. & Dias, J. M. Spatiotemporal evolution of upwelling regime along the western coast of the Iberian Peninsula. J. Geophys. Res. Oceans 113(C7), C07020 (2008).Article 
    ADS 

    Google Scholar 
    Demarcq, H. Trends in primary production, Sea surface temperature and wind in upwelling systems (1998–2007). Prog. Oceanogr. 83(1), 376–385 (2009).Article 
    ADS 

    Google Scholar 
    Thorrold, S. R., Latkoczy, C., Swart, P. K. & Jones, C. M. Natal homing in a marine fish metapopulation. Science 291, 297–299 (2001).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar  More

  • in

    Pan-Arctic marine biodiversity and species co-occurrence patterns under recent climate

    Randelhoff, A. et al. Pan-Arctic ocean primary production constrained by turbulent nitrate fluxes. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00150 (2020).Article 

    Google Scholar 
    Wegner, C. et al. Variability in transport of terrigenous material on the shelves and the deep Arctic Ocean during the Holocene. Polar Res. https://doi.org/10.3402/polar.v%v.24964 (2015).Article 

    Google Scholar 
    Arrigo, K. R. & van Dijken, G. L. Continued increases in Arctic Ocean primary production. Prog. Oceanogr. 136, 60–70. https://doi.org/10.1016/j.pocean.2015.05.002 (2015).Article 
    ADS 

    Google Scholar 
    Lewis, K. M., van Dijken, G. L. & Arrigo, K. R. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production. Science 369, 198–202. https://doi.org/10.1126/science.aay8380 (2020).Article 
    CAS 
    PubMed 

    Google Scholar 
    Mueter, F. J. et al. Possible future scenarios in the gateways to the Arctic for Subarctic and Arctic marine systems: II. Prey resources, food webs, fish, and fisheries. ICES J. Mar. Sci. 78, 3017–3045. https://doi.org/10.1093/icesjms/fsab122 (2021).Article 

    Google Scholar 
    Alabia, I. D. et al. Multiple facets of marine biodiversity in the Pacific Arctic under future climate. Sci. Total Environ. 744, 140913. https://doi.org/10.1016/j.scitotenv.2020.140913 (2020).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    CAFF. Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. (Conservation of Arctic Flora and Fauna, Akureyri, Iceland, 2013).Stafford, K. M., Farley, E. V., Ferguson, M., Kuletz, K. J. & Levine, R. Northward range expansion of subarctic upper trophic level animals into the Pacific Arctic Region. Oceanography. 35, 158–166. https://doi.org/10.5670/oceanog.2022.101 (2022).Csapó, H. K., Grabowski, M. & Węsławski, J. M. Coming home—Boreal ecosystem claims Atlantic sector of the Arctic. Sci. Total Environ. 771, 144817. https://doi.org/10.1016/j.scitotenv.2020.144817 (2021).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Frainer, A. et al. Climate-driven changes in functional biogeography of Arctic marine fish communities. Proc. Natl. Acad. Sci. 114, 12202–12207. https://doi.org/10.1073/pnas.1706080114 (2017).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gordó-Vilaseca, C., Stephenson, F., Coll, M., Lavin, C. & Costello, M. J. Three decades of increasing fish biodiversity across the northeast Atlantic and the Arctic Ocean. Proc. Natl. Acad. Sci. 120, e2120869120. https://doi.org/10.1073/pnas.2120869120 (2023).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kalenitchenko, D., Joli, N., Potvin, M., Tremblay, J. -É. & Lovejoy, C. Biodiversity and species change in the arctic ocean: A view through the lens of nares strait. Front. Mar. Sci. https://doi.org/10.3389/fmars.2019.00479 (2019).Article 

    Google Scholar 
    Michel, C. et al. Arctic Ocean outflow shelves in the changing Arctic: A review and perspectives. Prog. Oceanogr. 139, 66–88. https://doi.org/10.1016/j.pocean.2015.08.007 (2015).Article 
    ADS 

    Google Scholar 
    Ribeiro, S. et al. Vulnerability of the North Water ecosystem to climate change. Nat. Commun. 12, 4475. https://doi.org/10.1038/s41467-021-24742-0 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: Why ecological interaction networks vary through space and time. Oikos 124, 243–251. https://doi.org/10.1111/oik.01719 (2015).Article 

    Google Scholar 
    Ratzke, C., Barrere, J. & Gore, J. Strength of species interactions determines biodiversity and stability in microbial communities. Nat. Ecol. Evolut. 4, 376–383. https://doi.org/10.1038/s41559-020-1099-4 (2020).Article 

    Google Scholar 
    Blanchet, F. G., Cazelles, K. & Gravel, D. Co-occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063. https://doi.org/10.1111/ele.13525 (2020).Article 
    PubMed 

    Google Scholar 
    Michael, E. L. Marine ecology and the coefficient of association: A plea in behalf of quantitative biology. J. Ecol. 8, 54–59. https://doi.org/10.2307/2255213 (1920).Article 

    Google Scholar 
    Gotelli, N. J., Graves, G. R. & Rahbek, C. Macroecological signals of species interactions in the Danish avifauna. Proc. Natl. Acad. Sci. 107, 5030–5035. https://doi.org/10.1073/pnas.0914089107 (2010).Article 
    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gotelli, N. J. & McCabe, D. J. Species co-occurrence: A meta-analysis of J. M. Diamond’s assembly rules model. Ecology 83, 2091–2096. https://doi.org/10.1890/0012-9658(2002)083[2091:SCOAMA]2.0.CO;2 (2002).Article 

    Google Scholar 
    Ulrich, W. Species co-occurrences and neutral models: Reassessing J. M. Diamond’s Assembly Rules. Oikos 107, 603–609 (2004).Article 

    Google Scholar 
    Kraan, C., Thrush, S. F. & Dormann, C. F. Co-occurrence patterns and the large-scale spatial structure of benthic communities in seagrass meadows and bare sand. BMC Ecol. 20, 37. https://doi.org/10.1186/s12898-020-00308-4 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tulloch, A. I. T., Chadès, I. & Lindenmayer, D. B. Species co-occurrence analysis predicts management outcomes for multiple threats. Nat. Ecol. Evolut. 2, 465–474. https://doi.org/10.1038/s41559-017-0457-3 (2018).Article 

    Google Scholar 
    Drinkwater, K. F. et al. Possible future scenarios for two major Arctic Gateways connecting Subarctic and Arctic marine systems: I. Climate and physical–chemical oceanography. ICES J. Mar. Sci. 78, 3046–3065. https://doi.org/10.1093/icesjms/fsab182 (2021).Article 

    Google Scholar 
    Pilfold, N. W., McCall, A., Derocher, A. E., Lunn, N. J. & Richardson, E. Migratory response of polar bears to sea ice loss: To swim or not to swim. Ecography 40, 189–199. https://doi.org/10.1111/ecog.02109 (2017).Article 

    Google Scholar 
    Chambault, P. et al. The impact of rising sea temperatures on an Arctic top predator, the narwhal. Sci. Rep. 10, 18678. https://doi.org/10.1038/s41598-020-75658-6 (2020).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perovich, D. et al. Arctic Report Card 2020: Sea Ice. https://doi.org/10.25923/n170-9h57 (2020).Post, E. et al. Ecological dynamics across the arctic associated with recent climate change. Science 325, 1355–1358. https://doi.org/10.1126/science.1173113 (2009).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Post, E. et al. Ecological consequences of sea-ice decline. Science 341, 519–524. https://doi.org/10.1126/science.1235225 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bienhold, C. et al. Effects of sea ice retreat and ocean warming on the Laptev Sea continental slope ecosystem (1993 vs 2012). Front. Mar. Sci. https://doi.org/10.3389/fmars.2022.1004959 (2022).Article 

    Google Scholar 
    Olafsdottir, A. H. et al. Geographical expansion of Northeast Atlantic mackerel (Scomber scombrus) in the Nordic Seas from 2007 to 2016 was primarily driven by stock size and constrained by low temperatures. Deep Sea Res. Part II 159, 152–168. https://doi.org/10.1016/j.dsr2.2018.05.023 (2019).Article 

    Google Scholar 
    MacKenzie, B. R., Payne, M. R., Boje, J., Høyer, J. L. & Siegstad, H. A cascade of warming impacts brings bluefin tuna to Greenland waters. Glob. Change Biol. 20, 2484–2491. https://doi.org/10.1111/gcb.12597 (2014).Article 
    ADS 

    Google Scholar 
    Alabia, I. D. et al. Distribution shifts of marine taxa in the Pacific Arctic under contemporary climate changes. Divers. Distrib. 24, 1583–1597. https://doi.org/10.1111/ddi.12788 (2018).Article 

    Google Scholar 
    Stewart, D. B. & Barber, D. G. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 1–38 (Springer Netherlands, 2010).Ferland, J., Gosselin, M. & Starr, M. Environmental control of summer primary production in the Hudson Bay system: The role of stratification. J. Mar. Syst. 88, 385–400. https://doi.org/10.1016/j.jmarsys.2011.03.015 (2011).Article 

    Google Scholar 
    Peacock, E., Derocher, A. E., Lunn, N. J. & Obbard, M. E. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 93–116 (Springer Netherlands, 2010).Chambellant, M. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 137–158 (Springer Netherlands, 2010).Mallory, M. L., Gaston, A. J., Gilchrist, H. G., Robertson, G. J. & Braune, B. M. in A Little Less Arctic: Top Predators in the World’s Largest Northern Inland Sea, Hudson Bay (eds Steven H. Ferguson, Lisa L. Loseto, & Mark L. Mallory) 179–195 (Springer Netherlands, 2010).Lone, K., Hamilton, C. D., Aars, J., Lydersen, C. & Kovacs, K. M. Summer habitat selection by ringed seals (Pusa hispida) in the drifting sea ice of the northern Barents Sea. Polar Res. https://doi.org/10.33265/polar.v38.3483 (2019).Article 

    Google Scholar 
    Jackson, R. et al. Holocene polynya dynamics and their interaction with oceanic heat transport in northernmost Baffin Bay. Sci. Rep. 11, 10095. https://doi.org/10.1038/s41598-021-88517-9 (2021).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stafford, K. M. et al. Beluga whales in the western Beaufort Sea: Current state of knowledge on timing, distribution, habitat use and environmental drivers. Deep Sea Res. Part II 152, 182–194. https://doi.org/10.1016/j.dsr2.2016.11.017 (2018).Article 

    Google Scholar 
    Kuletz, K. J. et al. Seasonal spatial patterns in seabird and marine mammal distribution in the eastern Chukchi and western Beaufort seas: Identifying biologically important pelagic areas. Prog. Oceanogr. 136, 175–200. https://doi.org/10.1016/j.pocean.2015.05.012 (2015).Article 
    ADS 

    Google Scholar 
    Polyakov, I. V. et al. Borealization of the Arctic Ocean in response to anomalous advection from sub-arctic seas. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.00491 (2020).Article 

    Google Scholar 
    Fossheim, M. et al. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 5, 673–677. https://doi.org/10.1038/nclimate2647 (2015).Article 
    ADS 

    Google Scholar 
    Ardyna, M. et al. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophys. Res. Lett. 41, 6207–6212. https://doi.org/10.1002/2014GL061047 (2014).Article 
    ADS 

    Google Scholar 
    Randelhoff, A. & Sundfjord, A. Short commentary on marine productivity at Arctic shelf breaks: Upwelling, advection and vertical mixing. Ocean Sci. 14, 293–300. https://doi.org/10.5194/os-14-293-2018 (2018).Article 
    ADS 

    Google Scholar 
    Bluhm, B. A. et al. The Pan-Arctic continental slope: sharp gradients of physical processes affect pelagic and benthic ecosystems. Front. Mar. Sci. https://doi.org/10.3389/fmars.2020.544386 (2020).Article 

    Google Scholar 
    Daase, M., Berge, J., Søreide, J. E. & Falk-Petersen, S. in Arctic Ecology (ed David N. Thomas) Ch. 9, 219–259 (Wiley, 2021).McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185. https://doi.org/10.1016/j.tree.2006.02.002 (2006).Article 
    PubMed 

    Google Scholar 
    Young, K. A. Asymmetric competition, habitat selection, and niche overlap in Juvenile Salmonids. Ecology 85, 134–149 (2004).Article 

    Google Scholar 
    Aguilera, M. A., Valdivia, N., Broitman, B. R., Jenkins, S. R. & Navarrete, S. A. Novel co-occurrence of functionally redundant consumers induced by range expansion alters community structure. Ecology 101, e03150. https://doi.org/10.1002/ecy.3150 (2020).Article 
    PubMed 

    Google Scholar 
    Usinowicz, J. & Levine, J. M. Species persistence under climate change: A geographical scale coexistence problem. Ecol. Lett. 21, 1589–1603. https://doi.org/10.1111/ele.13108 (2018).Article 
    PubMed 

    Google Scholar 
    Durant, J. M. et al. Contrasting effects of rising temperatures on trophic interactions in marine ecosystems. Sci. Rep. 9, 15213. https://doi.org/10.1038/s41598-019-51607-w (2019).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    García-Baquero, G. & Crujeiras, R. M. Can environmental constraints determine random patterns of plant species co-occurrence?. Ecol. Evol. 5, 1088–1099. https://doi.org/10.1002/ece3.1349 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bar-Massada, A. Complex relationships between species niches and environmental heterogeneity affect species co-occurrence patterns in modelled and real communities. Proc. R. Soc. B Biol. Sci. 282, 20150927. https://doi.org/10.1098/rspb.2015.0927 (2015).Article 

    Google Scholar 
    Overland, J. E., Wang, M., Walsh, J. E. & Stroeve, J. C. Future Arctic climate changes: Adaptation and mitigation time scales. Earth’s Future 2, 68–74. https://doi.org/10.1002/2013EF000162 (2014).Article 
    ADS 

    Google Scholar 
    Hirawake, T. et al. Response and biodiversity of Arctic ecosystems to environmental change: Findings from the ArCS project. Polar Sci. https://doi.org/10.1016/j.polar.2020.100533 (2020).Article 

    Google Scholar 
    Solan, M., Archambault, P., Renaud, P. E. & März, C. The changing Arctic Ocean: Consequences for biological communities, biogeochemical processes and ecosystem functioning. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 378, 20200266. https://doi.org/10.1098/rsta.2020.0266 (2020).Article 
    ADS 

    Google Scholar 
    Timmermans, M.-L. & Marshall, J. Understanding Arctic Ocean circulation: A review of ocean dynamics in a changing climate. J. Geophys. Res. Oceans. 125, e2018JC014378. https://doi.org/10.1029/2018JC014378 (2020).Article 
    ADS 

    Google Scholar 
    Reynolds, R. W. et al. Daily high-resolution-blended analyses for sea surface temperature. J. Clim. 20, 5473–5496. https://doi.org/10.1175/2007JCLI1824.1 (2007).Article 
    ADS 

    Google Scholar 
    Amante, C. & Eakins, B. W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M (2009).Lehodey, P., Murtugudde, R. & Senina, I. Bridging the gap from ocean models to population dynamics of large marine predators: A model of mid-trophic functional groups. Prog. Oceanogr. 84, 69–84. https://doi.org/10.1016/j.pocean.2009.09.008 (2010).Article 
    ADS 

    Google Scholar 
    Green, D. B. et al. Modelled mid-trophic pelagic prey fields improve understanding of marine predator foraging behaviour. Ecography 43, 1014–1026. https://doi.org/10.1111/ecog.04939 (2020).Article 

    Google Scholar 
    Pérez-Jorge, S. et al. Environmental drivers of large-scale movements of baleen whales in the mid-North Atlantic Ocean. Divers. Distrib. 26, 683–698. https://doi.org/10.1111/ddi.13038 (2020).Article 

    Google Scholar 
    Aiello-Lammens, M. E., Boria, R. A., Radosavljevic, A., Vilela, B. & Anderson, R. P. spThin: An R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38, 541–545. https://doi.org/10.1111/ecog.01132 (2015).Article 

    Google Scholar 
    Barbet-Massin, M., Jiguet, F., Albert, C. H. & Thuiller, W. Selecting pseudo-absences for species distribution models: How, where and how many?. Methods Ecol. Evol. 3, 327–338. https://doi.org/10.1111/j.2041-210X.2011.00172.x (2012).Article 

    Google Scholar 
    Thuiller, W., Georges D., Gueguen, M., Engler, R., & Breiner, F. biomod2: Ensemble Platform for species Distribution Modeling. R package version 3.5.1. http://CRAN.R-project.org/package=biomod2 (2021). Accessed on 15 January 2022.
    Baselga, A. & Orme, C. D. L. betapart: An R package for the study of beta diversity. Methods Ecol. Evol. 3, 808–812. https://doi.org/10.1111/j.2041-210X.2012.00224.x (2012).Article 

    Google Scholar 
    Griffith, D. M., Veech, J. A. & Marsh, C. J. cooccur: Probabilistic species co-occurrence analysis in R. J. Stat. Softw. Code Snippets 69, 1–17. https://doi.org/10.18637/jss.v069.c02 (2016).Article 

    Google Scholar 
    Veech, J. A. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260. https://doi.org/10.1111/j.1466-8238.2012.00789.x (2013).Article 

    Google Scholar 
    Abdi, A. M. et al. First assessment of the plant phenology index (PPI) for estimating gross primary productivity in African semi-arid ecosystems. Int. J. Appl. Earth Obs. Geoinf. 78, 249–260. https://doi.org/10.1016/j.jag.2019.01.018 (2019).Article 
    ADS 

    Google Scholar 
    Ban, S. S., Alidina, H. M., Okey, T. A., Gregg, R. M. & Ban, N. C. Identifying potential marine climate change Refugia: A case study in Canada’s Pacific marine ecosystems. Glob. Ecol. Conserv. 8, 41–54. https://doi.org/10.1016/j.gecco.2016.07.004 (2016).Article 

    Google Scholar 
    Alabia, I. D. et al. Marine biodiversity Refugia in a climate-sensitive subarctic shelf. Glob. Change Biol. 27, 3299–3311. https://doi.org/10.1111/gcb.15632 (2021).Article 

    Google Scholar 
    Alabia, I. D., Saitoh, S.-I., Igarashi, H., Ishikawa, Y. & Imamura, Y. Spatial habitat shifts of oceanic cephalopod (Ommastrephes bartramii) in oscillating climate. Remote Sensing. https://doi.org/10.3390/rs12030521 (2020).Article 

    Google Scholar  More

  • in

    A longer wood growing season does not lead to higher carbon sequestration

    Verkerk, P., et al. Forest products in the global bioeconomy. The role of forest products in the global bioeconomy—Enabling substitution by wood-based products and contributing to the Sustainable Development Goals (2022). https://doi.org/10.4060/cb7274enChen, J., Ter-Mikaelian, M. T., Ng, P. Q. & Colombo, S. J. Ontario’s managed forests and harvested wood products contribute to greenhouse gas mitigation from 2020 to 2100. For. Chron. 43, 269–282 (2018).
    Google Scholar 
    Howard, C., Dymond, C. C., Griess, V. C., Tolkien-Spurr, D. & van Kooten, G. C. Wood product carbon substitution benefits: A critical review of assumptions. Carbon Balance Manag. 16, 1–11 (2021).Article 

    Google Scholar 
    Eriksson, L. O. et al. Climate change mitigation through increased wood use in the European construction sector-towards an integrated modelling framework. Eur. J. For. Res. 131, 131–144 (2012).Article 

    Google Scholar 
    Pan, Y. et al. A large and persistent carbon sink in the world’s forests. Science (80-.) 333, 988–993 (2011).Article 
    ADS 
    CAS 

    Google Scholar 
    Chuine, I. Why does phenology drive species distribution?. Philos. Trans. R. Soc. B Biol. Sci. 365, 3149–3160 (2010).Article 

    Google Scholar 
    Silvestro, R. et al. From phenology to forest management: Ecotypes selection can avoid early or late frosts, but not both. For. Ecol. Manag. 436, 21–26 (2019).Article 

    Google Scholar 
    Buttò, V., Rossi, S., Deslauriers, A. & Morin, H. Is size an issue of time? Relationship between the duration of xylem development and cell traits. Ann. Bot. 123, 1257–1265 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cartenì, F. et al. The physiological mechanisms behind the earlywood-to-latewood transition: A process-based modeling approach. Front. Plant Sci. 9, 1053 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buttò, V., Rozenberg, P., Deslauriers, A., Rossi, S. & Morin, H. Environmental and developmental factors driving xylem anatomy and micro-density in black spruce. New Phytol. 230, 957–971 (2021).Article 
    PubMed 

    Google Scholar 
    Buttó, V. et al. Regionwide temporal gradients of carbon allocation allow for shoot growth and latewood formation in boreal black spruce. Glob. Ecol. Biogeogr. 30, 1657–1670 (2021).Article 

    Google Scholar 
    Rathgeber, C. B. K. et al. Anatomical, developmental and physiological bases of tree-ring formation in relation to environmental factors. In Stable Isotopes in Tree Rings Vol. 8 (eds Siegwolf, R. T. W. et al.) 61–99 (Springer, Cham, 2022).Chapter 

    Google Scholar 
    Dória, L. C., Sonsin-Oliveira, J., Rossi, S. & Marcati, C. R. Functional trade-offs in volume allocation to xylem cell types in 75 species from the Brazilian savanna Cerrado. Ann. Bot. 130, 445–456 (2022).Article 
    PubMed 

    Google Scholar 
    Rossi, S., Cairo, E., Krause, C. & Deslauriers, A. Growth and basic wood properties of black spruce along an alti-latitudinal gradient in Quebec, Canada. Ann. For. Sci. 72, 77–87 (2015).Article 

    Google Scholar 
    Shi, J. L., Riedl, B., Deng, J., Cloutier, A. & Zhang, S. Y. Impact of log position in the tree on mechanical and physical properties of black spruce medium-density fibreboard panels. Can. J. For. Res. 37, 866–873 (2007).Article 

    Google Scholar 
    Rathgeber, C. B. K., Decoux, V. & Leban, J. M. Linking intra-tree-ring wood density variations and tracheid anatomical characteristics in Douglas fir (Pseudotsuga menziesii (Mirb.) Franco). Ann. For. Sci. 63, 699–706 (2006).Article 

    Google Scholar 
    Cuny, H. E., Rathgeber, C. B. K., Frank, D., Fonti, P. & Fournier, M. Kinetics of tracheid development explain conifer tree-ring structure. New Phytol. 203, 1231–1241 (2014).Article 
    PubMed 

    Google Scholar 
    Wodzicki, T. J. & Zajaczkowski, S. Methodical problems in studies on seasonal production of cambial xylem derivatives. Acta Soc. Bot. Pol. 39, 519–520 (1970).
    Google Scholar 
    Silvestro, R. et al. Upscaling xylem phenology: Sample size matters. Ann. Bot. https://doi.org/10.1093/aob/mcac110 (2022).Article 
    PubMed 

    Google Scholar 
    Rossi, S., Girard, M. J. & Morin, H. Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production. Glob. Chang. Biol. 20, 2261–2271 (2014).Article 
    ADS 
    PubMed 

    Google Scholar 
    Gonsamo, A., Chen, J. M. & Ooi, Y. W. Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. Glob. Change Biol. 24, 2117–2128 (2018).Article 
    ADS 

    Google Scholar 
    Dow, C. et al. Warm springs alter timing but not total growth of temperate deciduous trees. Nature 608, 552–557 (2022).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Oribe, Y., Funada, R. & Kubo, T. Relationships between cambial activity, cell differentiation and the localization of starch in storage tissues around the cambium in locally heated stems of Abies sachalinensis (Schmidt) Masters. Trees Struct. Funct. 17, 185–192 (2003).Article 

    Google Scholar 
    Schrader, J. et al. Polar auxin transport in the wood-forming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc. Natl. Acad. Sci. USA 100, 10096–10101 (2003).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deslauriers, A., Huang, J. G., Balducci, L., Beaulieu, M. & Rossi, S. The contribution of carbon and water in modulating wood formation in black spruce saplings. Plant Physiol. 170, 2072–2084 (2016).Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Silvestro, R., Brasseur, S., Klisz, M., Mencuccini, M. & Rossi, S. Bioclimatic distance and performance of apical shoot extension: Disentangling the role of growth rate and duration in ecotypic differentiation. For. Ecol. Manag. 477, 118483 (2020).Article 

    Google Scholar 
    Perrin, M., Rossi, S. & Isabel, N. Synchronisms between bud and cambium phenology in black spruce: Early-flushing provenances exhibit early xylem formation. Tree Physiol. 37, 593–603 (2017).Article 
    PubMed 

    Google Scholar 
    Begum, S., Nakaba, S., Yamagishi, Y., Oribe, Y. & Funada, R. Regulation of cambial activity in relation to environmental conditions: Understanding the role of temperature in wood formation of trees. Physiol. Plant. 147, 46–54 (2013).Article 
    CAS 
    PubMed 

    Google Scholar 
    Kagawa, A., Sugimoto, A. & Maximov, T. C. 13CO2 pulse-labelling of photoassimilates reveals carbon allocation within and between tree rings. Plant Cell Environ. 29, 1571–1584 (2006).Article 
    CAS 
    PubMed 

    Google Scholar 
    Hansen, J. & Beck, E. The fate and path of assimilation products in the stem of 8-year-old Scots pine (Pinus sylvestris L.) trees. Trees 4, 16–21 (1990).Article 

    Google Scholar 
    Fu, P. L., Grießinger, J., Gebrekirstos, A., Fan, Z. X. & Bräuning, A. Earlywood and latewood stable carbon and oxygen isotope variations in two pine species in Southwestern China during the recent decades. Front. Plant Sci. 7, 2050 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anfodillo, T. et al. Widening of xylem conduits in a conifer tree depends on the longer time of cell expansion downwards along the stem. J. Exp. Bot. 63, 837–845 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Linares, J. C., Camarero, J. J. & Carreira, J. A. Plastic responses of Abies pinsapo xylogenesis to drought and competition. Tree Physiol. 29, 1525–1536 (2009).Article 
    PubMed 

    Google Scholar 
    Rossi, S., Morin, H. & Deslauriers, A. Causes and correlations in cambium phenology: Towards an integrated framework of xylogenesis. J. Exp. Bot. 63, 2117–2126 (2012).Article 
    CAS 
    PubMed 

    Google Scholar 
    Li, X. et al. Age dependence of xylogenesis and its climatic sensitivity in Smith fir on the south-eastern Tibetan Plateau. Tree Physiol. 33, 48–56 (2013).Article 
    ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rathgeber, C. B. K., Rossi, S. & Bontemps, J. D. Cambial activity related to tree size in a mature silver-fir plantation. Ann. Bot. 108, 429–438 (2011).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buttò, V. et al. Comparing the cell dynamics of tree-ring formation observed in microcores and as predicted by the Vaganov-Shashkin model. Front. Plant Sci. 11, 1268 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koga, S. & Zhang, S. Y. Relationships between wood density and annual growth rate components in balsam fir (Abies balsamea). Wood Fiber Sci. 34, 146–157 (2002).CAS 

    Google Scholar 
    Messier, C. et al. Functional ecology of advance regeneration in relation to light in boreal forests. Can. J. For. Res. 29, 812–823 (1999).Article 

    Google Scholar 
    Pothier, D., Elie, J. G., Auger, I., Mailly, D. & Gaudreault, M. Spruce budworm-caused mortality to balsam fir and black spruce in pure and mixed conifer stands. For. Sci. 58, 24–33 (2012).Article 

    Google Scholar 
    Paixao, C., Krause, C., Morin, H. & Achim, A. Wood quality of black spruce and balsam fir trees defoliated by spruce budworm: A case study in the boreal forest of Quebec, Canada. For. Ecol. Manag. 437, 201–210 (2019).Article 

    Google Scholar 
    Pretzsch, H., Biber, P., Schütze, G., Kemmerer, J. & Uhl, E. Wood density reduced while wood volume growth accelerated in Central European forests since 1870. For. Ecol. Manag. 429, 589–616 (2018).Article 

    Google Scholar 
    Reyer, C. et al. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann. For. Sci. 71, 211–225 (2014).Article 

    Google Scholar 
    Fang, J. et al. Evidence for environmentally enhanced forest growth. Proc. Natl. Acad. Sci. USA 111, 9527–9532 (2014).Article 
    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pretzsch, H., Biber, P., Schütze, G., Uhl, E. & Rötzer, T. Forest stand growth dynamics in Central Europe have accelerated since 1870. Nat. Commun. 5, 1–10 (2014).Article 

    Google Scholar 
    Gao, S. et al. An earlier start of the thermal growing season enhances tree growth in cold humid areas but not in dry areas. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01668-4 (2022).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soil Classification Working Group. The Canadian System of Soil Classification. (1998).Rossi, S., Anfodillo, T. & Menardi, R. Trephor: A new tool for sampling microcores from tree stems. IAWA J. 27, 89–97 (2006).Article 

    Google Scholar 
    Deslauriers, A., Morin, H. & Begin, Y. Cellular phenology of annual ring formation of Abies balsamea in the Quebec boreal forest (Canada). Can. J. For. Res. 33, 190–200 (2003).Article 

    Google Scholar 
    Rossi, S., Deslauriers, A. & Anfodillo, T. Assessment of cambial activity and xylogenesis by microsampling tree species: An example at the Alpine timberline. IAWA J. 27, 383–394 (2006).Article 

    Google Scholar 
    Filion, L. & Cournoyer, L. Variation in wood structure of eastern larch defoliated by the larch sawfly in subarctic Quebec, Canada. Can. J. For. Res. 25, 1263–1268 (1995).Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. (2015). More

  • in

    Larval rockfish growth and survival in response to anomalous ocean conditions

    Bindoff, N. L. et al. Changing ocean, marine ecosystems, and dependent communities. in IPCC special report on the ocean and cryosphere in a changing climate (eds. Pörtner, H.-O. et al.) (2019).Johnson, G. C. & Lyman, J. M. Warming trends increasingly dominate global ocean. Nat. Clim. Chang. 10, 757–761 (2020).ADS 

    Google Scholar 
    Doney, S. C. et al. Climate change impacts on marine ecosystems. Ann. Rev. Mar. Sci. 4, 11–37 (2012).PubMed 

    Google Scholar 
    Pinsky, M. L. & Mantua, N. J. Emerging adaptation approaches for climate- ready fisheries management. Oceanography 27, 146–159 (2014).
    Google Scholar 
    Bailey, K. M. & Houde, E. D. Predation on eggs and larvae of marine fishes and the recruitment problem. Adv. Mar. Biol. 25, 1–83 (1989).
    Google Scholar 
    Houde, E. D. Comparative growth, mortality, and energetics of marine fish larvae: temperature and implied latitudinal effects. Fish. Bull. 87, 471–495 (1989).
    Google Scholar 
    Wang, H., Shen, S., Chen, Y.-S., Kiang, Y.-K. & Heino, M. Life histories determine divergent population trends for fishes under climate warming. Nat. Commun. 11, 1–9 (2020).
    Google Scholar 
    Llopiz, J. K. et al. Early life history and fisheries oceanography: New questions in a changing world. Oceanography 27, 26–41 (2014).
    Google Scholar 
    Lasker, R. Field criteria for survival of anchovy larvae: The relation between inshore chlorophyll maximum layers and successful first feeding. Fish. Bull. 73, 453–462 (1975).
    Google Scholar 
    Cury, P. & Roy, C. Optimal environmental window and pelagic fish recruitment success in upwelling areas. Can. J. Fish. Aquat. Sci. 46, 670–680 (1989).
    Google Scholar 
    Iles, T. D. & Sinclair, M. Atlantic herring: Stock discreteness and abundance. Science 215, 627–633 (1982).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Houde, E. D. Fish early life dynamics and recruitment variability. Am. Fish. Soc. Symp. 2, 17–29 (1987).ADS 

    Google Scholar 
    Searcy, S. P. & Sponaugle, S. Selective mortality during the larval – juvenile transition in two coral reef fishes. Ecology 82, 2452–2470 (2001).
    Google Scholar 
    Shima, J. S. & Findlay, A. M. Pelagic larval growth rate impacts benthic settlement and survival of a temperate reef fish. Mar. Ecol. Prog. Ser. 235, 303–309 (2002).ADS 

    Google Scholar 
    Bakun, A. Global climate change and intensification of coastal ocean upwelling. Science 247(198), 201 (1990).ADS 

    Google Scholar 
    Snyder, M. A., Sloan, L., Diffenbaugh, N. & Bell, J. Future climate change and upwelling in the California Current. Geophys. Res. Lett. 30, 1823 (2003).ADS 

    Google Scholar 
    Bakun, A., Field, D. B., Redondo-Rodriguez, A. & Weeks, S. J. Greenhouse gas, upwelling-favorable winds, and the future of coastal ocean upwelling ecosystems. Glob. Chang. Biol. 16, 1213–1228 (2010).ADS 

    Google Scholar 
    Bakun, A. & Nelson, C. The seasonal cycle of wind-stress curl in subtropical eastern boundary current regions. J. Phys. Oceanogr. 21, 1815–1834 (1991).ADS 

    Google Scholar 
    Shanks, A. L. & Eckert, G. L. Population persistence of California Current fishes and benthic crustaceans: A marine drift paradox. Ecol. Monogr. 75, 505–524 (2005).
    Google Scholar 
    Cushing, D. H. Plankton production and year-class strength in fish populations: An update of the match/mismatch hypothesis. Adv. Mar. Biol. 26, 249–293 (1990).
    Google Scholar 
    Carr, M. H. Habitat selection and recruitment of an assemblage of temperate zone reef fishes. J. Exp. Mar. Bio. Ecol. 146, 113–137 (1991).
    Google Scholar 
    Asch, R. G. Climate change and decadal shifts in the phenology of larval fishes in the California Current ecosystem. Proc. Natl. Acad. Sci. U. S. A. 112, E4065–E4074 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Auth, T. D., Daly, E. A., Brodeur, R. D. & Fisher, J. L. Phenological and distributional shifts in ichthyoplankton associated with recent warming in the northeast Pacific Ocean. Glob. Chang. Biol. 24, 259–272 (2018).ADS 
    PubMed 

    Google Scholar 
    Sydeman, W. J. et al. Climate change and wind intensification in coastal upwelling ecosystems. Science 345, 77–80 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bond, N. A., Cronin, M. F., Freeland, H. & Mantua, N. Causes and impacts of the 2014 warm anomaly in the NE Pacific. Geophys. Res. Lett. 42, 3414–3420 (2015).ADS 

    Google Scholar 
    Cavole, A. et al. Biological impacts of the 2013–2015 warm water anomaly in the Northeast Pacific: Winner, losers, and the future. Oceanography 29, 273–285 (2016).
    Google Scholar 
    Lenarz, W. H. A history of California rockfish fisheries. In Proceeding of the International Rockfish Symposium. Anchorage, Alaska, Univ. of Alaska (1987).Brodeur, R. D., Buchanan, J. C. & Emmett, R. L. Pelagic and demersal fish predators on juvenile and adult forage fishes in the northern California Current: Spatial and temporal variations. CalCOFI Rep. 55, 96–116 (2014).
    Google Scholar 
    Mills, K. L., Laidig, T., Ralston, S. & Sydeman, W. J. Diets of top predators indicate pelagic juvenile rockfish (Sebastes spp.) abundance in the California Current System. Fish. Oceanogr. 16, 273–283 (2007).
    Google Scholar 
    Santora, J. A., Schroeder, I. D., Field, J. C., Wells, B. K. & Sydeman, W. J. Spatio-temporal dynamics of ocean conditions and forage taxa reveal regional structuring of seabird-prey relationships. Ecol. Appl. 24, 1730–1747 (2014).PubMed 

    Google Scholar 
    McClatchie, S. et al. Food limitation of sea lion pups and the decline of forage off central and southern California. R. Soc. Open Sci. 3, 150628 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Love, B. M. S., Yoklavich, M. & Thorsteinson, L. The Rockfishes of the Northeast Pacific (Univ of California Press, 2002).
    Google Scholar 
    Ralston, S. & Howard, D. F. On the development of year-class stength and cohort variability in two northern California rockfishes. Fish. Bull. 93, 710–720 (1995).
    Google Scholar 
    Wells, B. K. et al. Untangling the relationships among climate, prey, and top predators in an ocean ecosystem. Mar. Ecol. Prog. Ser. 364, 15–29 (2008).ADS 

    Google Scholar 
    Zabel, R. W., Levin, P. S., Tolimieri, N. & Mantua, N. J. Interactions between climate and population density in the episodic recruitment of bocaccio, Sebastes paucispinis, a Pacific rockfish. Fish. Oceanogr. 20, 294–304 (2011).
    Google Scholar 
    Peterson, W. T. et al. Applied fisheries oceanography: Ecosystem indicators of ocean conditions inform fisheries management in the California Current. Oceanography 27, 80–89 (2014).
    Google Scholar 
    Wheeler, S. G., Anderson, T. W., Bell, T. W., Morgan, S. G. & Hobbs, J. A. Regional productivity predicts individual growth and recruitment of rockfishes in a northern California upwelling system. Limnol. Oceanogr. 62, 754–767 (2016).ADS 

    Google Scholar 
    Ralston, S., Sakuma, K. M. & Field, J. C. Interannual variation in pelagic juvenile rockfish (Sebastes spp.) abundance – going with the flow. Fish. Oceanogr. 22, 288–308 (2013).
    Google Scholar 
    Schroeder, I. D. et al. Source water variability as a driver of rockfish recruitment in the california current ecosystem: Implications for climate change and fisheries management. Can. J. Fish. Aquat. Sci. 76, 950–960 (2019).CAS 

    Google Scholar 
    Ottmann, D., Grorud-Colvert, K., Huntington, B. & Sponaugle, S. Interannual and regional variability in settlement of groundfishes to protected and fished nearshore waters of Oregon, USA. Mar. Ecol. Prog. Ser. 598, 131–145 (2018).ADS 

    Google Scholar 
    Haggarty, D. R., Lotterhos, K. E. & Shurin, J. B. Young-of-the-year recruitment does not predict the abundance of older age classes in black rockfish in Barkley Sound, British Columbia. Canada. Mar. Ecol. Prog. Ser. 574, 113–126 (2017).ADS 

    Google Scholar 
    Checkley, D. M. & Barth, J. A. Patterns and processes in the California Current System. Prog. Oceanogr. 83, 49–64 (2009).ADS 

    Google Scholar 
    Jacox, M. G. et al. Forcing of multiyear extreme ocean temperatures that impacted California Current living marine resources in 2016. Bull. Am. Meteorol. Soc. 99, S27–S33 (2018).
    Google Scholar 
    Thompson, A. R. et al. Indicators of pelagic forage community shifts in the California Current Large Marine Ecosystem, 1998–2016. Ecol. Indic. 105, 215–228 (2019).
    Google Scholar 
    Du, X. & Peterson, W. T. Phytoplankton community structure in 2011–2013 compared to the extratropical warming event of 2014–2015. Geophys. Res. Lett. 45, 1534–1540 (2018).ADS 

    Google Scholar 
    Peterson, W. T. et al. The pelagic ecosystem in the Northern California Current off Oregon during the 2014–2016 warm anomalies within the context of the past 20 years. J. Geophys. Res. Ocean. 122, 7267–7290 (2017).ADS 

    Google Scholar 
    Brodeur, R. D., Auth, T. D. & Phillips, A. J. Major shifts in pelagic micronekton and macrozooplankton community structure in an upwelling ecosystem related to an unprecedented marine heatwave. Front. Mar. Sci. 6, 1–15 (2019).
    Google Scholar 
    Sutherland, K. R., Sorensen, H. L., Blondheim, O. N., Brodeur, R. D. & Galloway, A. W. E. Range expansion of tropical pyrosomes in the northeast Pacific Ocean. Ecology 99, 2397–2399 (2018).PubMed 

    Google Scholar 
    Brodeur, R. D., Hunsicker, M. E., Hann, A. & Miller, T. W. Effects of warming ocean conditions on feeding ecology of small pelagic fishes in a coastal upwelling ecosystem: A shift to gelatinous food sources. Mar. Ecol. Prog. Ser. 617–618, 149–163 (2019).ADS 

    Google Scholar 
    Bosley, K. L. et al. Feeding ecology of juvenile rockfishes off Oregon and Washington based on stomach content and stable isotope analyses. Mar. Biol. 161, 2381–2393 (2014).CAS 

    Google Scholar 
    Reilly, C. A., Echeverria, T. W. & Ralston, S. Interannual variation and overlap in the diets of pelagic juvenile rockfish (Genus: Sebastes) off central California. Fish. Bull. 90, 505–515 (1992).
    Google Scholar 
    Sumida, B. Y. & Moser, H. G. Food and feeding of bocaccio (Sebastes paucispinis) and comparison with Pacific hake (Merluccius productus) larvae in the California Current. Calif. Coop. Ocean. Fish. Investig. Reports 25, 112–118 (1984).
    Google Scholar 
    Auth, T. D., Brodeur, R. D., Soulen, H. L., Ciannelli, L. & Peterson, W. T. The response of fish larvae to decadal changes in environmental forcing factors off the Oregon coast. Fish. Oceanogr. 20, 314–328 (2011).
    Google Scholar 
    Frölicher, T. L. & Laufkötter, C. Emerging risks from marine heat waves. Nat. Commun. 9, 1–4 (2018).
    Google Scholar 
    Campana, S. E. Year-class strength and growth rate in young Atlantic cod Gadus morhua. Mar. Ecol. Prog. Ser. 135, 21–26 (1996).ADS 

    Google Scholar 
    Brander, K. Effects of environmental variability on growth and recruitment in cod (Gadus morhua) using a comparative approach. Oceanol. Acta 23, 485–496 (2000).
    Google Scholar 
    Sponaugle, S., Grorud-Colvert, K. & Pinkard, D. Temperature-mediated variation in early life history traits and recruitment success of the coral reef fish Thalassoma bifasciatum in the Florida Keys. Mar. Ecol. Prog. Ser. 308, 1–15 (2006).ADS 

    Google Scholar 
    Grorud-Colvert, K. & Sponaugle, S. Variability in water temperature affects trait-mediated survival of a newly settled coral reef fish. Oecologia 165, 675–686 (2011).ADS 
    PubMed 

    Google Scholar 
    Boehlert, G. W. & Yoklavich, M. M. Effects of temperature, ration, and fish size on the growth of juvenile black rockfish, Sebastes melanops. Environ. Biol. Fishes 8, 17–28 (1983).
    Google Scholar 
    Chin, B., Nakagawa, M. & Yamashita, Y. Effects of feeding and temperature on survival and growth of larval black rockfish Sebastes schlegeli in rearing conditions. Aquac. Sci. 55, 619–627 (2007).
    Google Scholar 
    Woodbury, D. & Ralston, S. Interannual variation in growth rates and back-calculated birthdate distributions of pelagic juvenile rockfishes (Sebastes spp.) off the central California coast. Fish. Bull. 89, 523–533 (1991).
    Google Scholar 
    Fennie, H., Sponaugle, S., Daly, E. & Brodeur, R. Prey tell: what quillback rockfish early life history traits reveal about their survival in encounters with juvenile coho salmon. Mar. Ecol. Prog. Ser. 650, 7–18 (2020).ADS 

    Google Scholar 
    Laidig, T. E., Chess, J. R. & Howard, D. F. Relationship between abundance of juvenile rockfishes (Sebastes spp.) and environmental variables documented off northern California and potential mechanisms for the covariation. Fish. Bull. 105, 39–48 (2007).
    Google Scholar 
    Robert, D., Castonguay, M. & Fortier, L. Early growth and recruitment in Atlantic mackerel Scomber scombrus: discriminating the effects of fast growth and selection for fast growth. Mar. Ecol. Prog. Ser. 337, 209–219 (2007).ADS 

    Google Scholar 
    Hare, J. A. & Cowen, R. K. Size, growth, development, and survival of the planktonic larvae of Pomatomus saltatrix (Pisces: Pomatomidae). Ecology 78, 2415–2431 (1997).
    Google Scholar 
    Takasuka, A., Aoki, I. & Mitani, I. Evidence of growth-selective predation on larval Japanese anchovy Engraulis japonicus in Sagami Bay. Mar. Ecol. Prog. Ser. 252, 223–238 (2003).ADS 

    Google Scholar 
    Anderson, J. T. A review of size dependent survival during pre-recruit stages of fishes in relation to recruitment. J. Northwest Atl. Fish. Sci. 8, 55–66 (1988).
    Google Scholar 
    Miller, T., Crowder, L. B., Rice, J. A. & Marschall, E. A. Larval size and recruitment mechanisms in fishes: toward a conceptual framework. Can. J. Fish. Aquat. Sci. 45, 1657–1670 (1988).
    Google Scholar 
    Chambers, R. C. & Leggett, W. C. Size and age at metamorphosis in marine fishes: analysis of laboratory-reared winter flounder (Pseudopieuronectes americanus) with a review of variation in other species. Can. J. Fish. Aquat. Sci. 44, 1936–1947 (1987).
    Google Scholar 
    Kashef, N., Sogard, S., Fisher, R. & Largier, J. Ontogeny of critical swimming speeds for larval and pelagic juvenile rockfishes (Sebastes spp., family Scorpaenidae). Mar. Ecol. Prog. Ser. 500, 231–243 (2014).ADS 

    Google Scholar 
    Paradis, A. R., Pepin, P. & Brown, J. A. Vulnerability of fish eggs and larvae to predation: review of the influence of the relative size of prey and predator. Can. J. Fish. Aquat. Sci. 53, 1226–1235 (1996).
    Google Scholar 
    Purcell, J. E. Predation on fish larvae and eggs by the hydromedusa Aequorea victoria at a herring spawning ground in British Columbia. Can. J. Fish. Aquat. Sci. 46, 1415–1427 (1989).
    Google Scholar 
    McLeod, I. M. & Clark, T. D. Limited capacity for faster digestion in larval coral reef fish at an elevated temperature. PLoS ONE 11, 1–13 (2016).
    Google Scholar 
    Takahashi, M., Checkley, D. M., Litz, M. N. C., Brodeur, R. D. & Peterson, W. T. Responses in growth rate of larval northern anchovy (Engraulis mordax) to anomalous upwelling in the northern California Current. Fish. Oceanogr. 21, 393–404 (2012).
    Google Scholar 
    Team, R. C. R: A language and environment for statistical computing. (2013).Brady, R. X., Alexander, M. A., Lovenduski, N. S. & Rykaczewski, R. R. Emergent anthropogenic trends in California Current upwelling. Geophys. Res. Lett. 44, 5044–5052 (2017).ADS 

    Google Scholar 
    Peterson, W. T. & Keister, J. E. Interannual variability in copepod community composition at a coastal station in the northern California Current: A multivariate approach. Deep Res. Part II Top. Stud. Oceanogr. 50, 2499–2517 (2003).ADS 

    Google Scholar 
    Ammann, A. J. SMURFs: Standard monitoring units for the recruitment of temperate reef fishes. J. Exp. Mar. Bio. Ecol. 299, 135–154 (2004).
    Google Scholar 
    Anderson, T. W. & Carr, M. H. BINCKE: A highly efficient net for collecting reef fishes. Environ. Biol. Fishes 51, 111–115 (1998).
    Google Scholar 
    Kilkenny, C., Browne, W., Cuthill, I. C., Emerson, M. & Altman, D. G. Animal research: Reporting in vivo experiments: The ARRIVE guidelines. Br. J. Pharmacol. 160, 1577–1579 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laidig, T. E. & Adams, P. B. Methods used to identify pelagic juvenile rockfish (Genus Sebastes) occuring along the coast of central California. NOAA Technical Memorandum NMFS (1991).Di Lorenzo, E. & Mantua, N. Multi-year persistence of the 2014/15 North Pacific marine heatwave. Nat. Clim. Chang. 6, 1042–1047 (2016).ADS 

    Google Scholar 
    Yoklavich, M. M. & Boehlert, G. W. Daily growth increments in otoliths of juvenile black rockfish, Sebastes melanops: An evaluation of autoradiography as a new method of validation. Fish. Bull. 85, 826–832 (1987).
    Google Scholar 
    Miller, J. A. & Shanks, A. L. Evidence for limited larval dispersal in black rockfish (Sebastes melanops): Implications for population structure and marine-reserve design. Can. J. Fish. Aquat. Sci. 61, 1723–1735 (2004).
    Google Scholar 
    Sponaugle, S. Daily otolith increments in the early stages of tropical fish. In Tropical Fish Otoliths: Information for Assessment, Management and Ecology (eds Green, B. et al.) 93–132 (Springer, 2009).
    Google Scholar 
    Laidig, T., Ralston, S. & Bence, J. R. Dynamics of growth in the early life history of shortbelly rockfish Sebastes jordani. Fish. Bull. 89, 611–621 (1991).
    Google Scholar 
    Thorrold, S. R. & Hare, J. A. Otolith applications in reef fish ecology. In Coral Reef Fishes: Dynamics and Diversity in a Complex Ecosystem (ed. Sale, P. F.) 243–264 (Academic Press, 2002).
    Google Scholar 
    Field, J. C., MacCall, A. D., Ralston, S., Love, M. S. & Miller, E. F. Bocaccionomics: The effectiveness of pre-recruit indices for assessment and management of bocaccio. Calif. Coop. Ocean. Fish. Investig. Reports 51, 77–90 (2010).
    Google Scholar 
    Carrascal, L. M., Galván, I. & Gordo, O. Partial least squares regression as an alternative to current regression methods used in ecology. Oikos 118, 681–690 (2009).
    Google Scholar  More