Inagaki, F., Takai, K., Kobayashi, H., Nealson, K. H. & Horikoshi, K. Sulfurimonas autotrophica gen. nov., sp. nov., a novel sulfur-oxidizing e-proteobacterium isolated from hydrothermal sediments in the Mid-Okinawa Trough. Int. J. Syst. Evol. Microbiol. 53, 1801â1805 (2003).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Timmer-Ten Hoor, A. A new type of thiosulphate oxidizing, nitrate reducing microorganism: Thiomicrospira denitrificans sp. nov. Neth. J. Sea Res. 9, 344â350 (1975).ArticleÂ
CASÂ
Google ScholarÂ
Cai, L., Shao, M. & Zhang, T. Non-contiguous finished genome sequence and description of Sulfurimonas hongkongensis sp. nov., a strictly anaerobic denitrifying, hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from marine sediment. Stand. Genom. Sci. 9, 1302â1310 (2014).ArticleÂ
Google ScholarÂ
Wang, S., Jiang, L., Liu, X., Yang, S. & Shao, Z. Sulfurimonas xiamenensis sp. nov. and Sulfurimonas lithotrophica sp. nov., hydrogen- and sulfur-oxidizing chemolithoautotrophs within the Epsilonproteobacteria isolated from coastal sediments, and an emended description of the genus Sulfurimonas. Int. J. Syst. Evol. Microbiol. 70, 2657â2663 (2020).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Takai, K. et al. Sulfurimonas paralvinellae sp. nov., a novel mesophilic, hydrogen- and sulfur-oxidizing chemolithoautotroph within the Epsilonproteobacteria isolated from a deep-sea hydrothermal vent polychaete nest, reclassification of Thiomicrospira denitrificans as Sulfurimonas denitrificans comb. nov. and emended description of the genus Sulfurimonas. Int. J. Syst. Evol. Microbiol. 56, 1725â1733 (2006).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Hu, Q., Wang, S., Lai, Q., Shao, Z. & Jiang, L. Sulfurimonas indica sp. nov., a hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a hydrothermal sulfide chimney in the Northwest Indian Ocean. Int. J. Syst. Evol. Microbiol. 71, 1466â5034 (2021).ArticleÂ
Google ScholarÂ
Wang, S. et al. Sulfurimonas sediminis sp. nov., a novel hydrogen- and sulfur-oxidizing chemolithoautotroph isolated from a hydrothermal vent at the Longqi system, southwestern Indian ocean. Antonie Van Leeuwenhoek 114, 813â822 (2021).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Wang, S. et al. Characterization of Sulfurimonas hydrogeniphila sp. nov., a novel bacterium predominant in deep-sea hydrothermal vents and comparative genomic analyses of the genus Sulfurimonas. Front. Microbiol. 12, 626705 (2021).Labrenz, M. et al. Sulfurimonas gotlandica sp. nov., a chemoautotrophic and psychrotolerant epsilonproteobacterium isolated from a pelagic redoxcline, and an emended description of the genus Sulfurimonas. Int. J. Syst. Evol. Microbiol. 63, 4141â4148 (2013).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Henkel, J. V. et al. Candidatus Sulfurimonas marisnigri sp. nov. and Candidatus Sulfurimonas baltica sp. nov., thiotrophic manganese oxide reducing chemolithoautotrophs of the class Campylobacteria isolated from the pelagic redoxclines of the Black Sea and the Baltic Sea. Syst. Appl. Microbiol. 44, 126155 (2021).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Ratnikova, N. M. et al. Sulfurimonas crateris sp. nov., a facultative anaerobic sulfur-oxidizing chemolithoautotrophic bacterium isolated from a terrestrial mud volcano. Int. J. Syst. Evol. Microbiol. 70, 487â492 (2020).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Han, Y. & Perner, M. The globally widespread genus Sulfurimonas: versatile energy metabolisms and adaptations to redox clines. Front. Microbiol. 6, 989 (2015).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
LĂłpez-garcĂa, P. et al. Bacterial diversity in hydrothermal sediment and epsilonproteobacterial dominance in experimental microcolonizers at the Mid-Atlantic Ridge. Environ. Microbiol. 5, 961â976 (2003).ArticleÂ
PubMedÂ
Google ScholarÂ
Nakagawa, S. et al. Distribution, phylogenetic diversity and physiological characteristics of epsilon-Proteobacteria in a deep-sea hydrothermal field. Environ. Microbiol. 7, 1619â1632 (2005).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Huber, J. A. et al. Isolated communities of Epsilonproteobacteria in hydrothermal vent fluids of the Mariana Arc seamounts. FEMS Microbiol. Ecol. 73, 538â549 (2010).CASÂ
PubMedÂ
Google ScholarÂ
Meier, D. V. et al. Niche partitioning of diverse sulfur-oxidizing bacteria at hydrothermal vents. ISME J. 11, 1545â1558 (2017).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Mino, S. et al. Endemicity of the cosmopolitan mesophilic chemolithoautotroph Sulfurimonas at deep-sea hydrothermal vents. ISME J. 11, 909â919 (2017).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Akerman, N. H., Butterfield, D. A., Huber, J. A., Huber, J. A. & Paul, J. B. Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Front. Microbiol. 4, 185 (2013).Rogge, A., Vogts, A., Voss, M. & Labrenz, M. Success of chemolithoautotrophic SUP05 and Sulfurimonas GD17 cells in pelagic Baltic Sea redox zones is facilitated by their lifestyles as K- and r -strategists. Environ. Microbiol. 19, 2495â2506 (2017).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
German, C. R. et al. Diverse styles of submarine venting on the ultraslow spreading Mid-Cayman Rise. Proc. Natl Acad. Sci. USA 107, 14020â14025 (2010).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Sylvan, J. B., Pyenson, B. C., Rouxel, O., German, C. R. & Edwards, K. J. Time-series analysis of two hydrothermal plumes at 9°50â N East Pacific Rise reveals distinct, heterogeneous bacterial populations. Geobiology 10, 178â192 (2012).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Perner, M. et al. In situ chemistry and microbial community compositions in five deep-sea hydrothermal fluid samples from Irina II in the Logatchev field. Environ. Microbiol. 15, 1551â1560 (2013).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Haalboom, S. et al. Patterns of (trace) metals and microorganisms in the Rainbow hydrothermal vent plume at the Mid-Atlantic Ridge. Biogeosciences 17, 2499â2519 (2020).ArticleÂ
CASÂ
Google ScholarÂ
Li, J. et al. Distribution and succession of microbial communities along the dispersal pathway of hydrothermal plumes on the Southwest Indian Ridge. Front. Mar. Sci. 7, 581381 (2020).ArticleÂ
Google ScholarÂ
Dick, G. J. et al. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Front. Microbiol. 4, 124 (2013).Dick, G. J. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat. Rev. Microbiol. 17, 271â283 (2019).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
German, C. R. & Seyfried, W. E. in Treatise on Geochemistry 2nd edn (eds Holland, H. D. & Turekian, K. K.), 8, 191â233 (Elsevier, 2014).Kadko, D., Baross, J. & Alt, J. The magnitude and global implications of hydrothermal flux. Geophys. Monogr. Ser. 91, 446â466 (1995).
Google ScholarÂ
German, C. R. et al. Volcanically hosted venting with indications of ultramafic influence at Aurora hydrothermal field on Gakkel Ridge. Nat. Commun. 13, 6517 (2022).Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725â731 (2017).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Konstantinidis, K. T., RossellĂł-mĂłra, R. & Amann, R. Uncultivated microbes in need of their own taxonomy. ISME J. 11, 2399â2406 (2017).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Murray, A. E. et al. Roadmap for naming uncultivated Archaea and Bacteria. Nat. Microbiol. 5, 987â994 (2020).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Eren, A. M. et al. Minimum entropy decomposition: unsupervised oligotyping for sensitive partitioning of high-throughput marker gene sequences. ISME J. 9, 968â979 (2015).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Dick, G. J. & Tebo, B. M. Microbial diversity and biogeochemistry of the Guaymas Basin deep-sea hydrothermal plume. Environ. Microbiol. 12, 1334â1347 (2010).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Lesniewski, R. A., Jain, S., Anantharaman, K., Schloss, P. D. & Dick, G. J. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME J. 6, 2257â2268 (2012).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Sheik, C. S. et al. Spatially resolved sampling reveals dynamic microbial communities in rising hydrothermal plumes across a back-arc basin. ISME J. 9, 1434â1445 (2014).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Reed, D. C. et al. Predicting the response of the deep-ocean microbiome to geochemical perturbations by hydrothermal vents. ISME J. 9, 1857â1869 (2015).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Han, Y. & Perner, M. The role of hydrogen for Sulfurimonas denitrificansâ metabolism. PLoS ONE 9, 8â14 (2014).
Google ScholarÂ
Ilbert, M. & Bonnefoy, V. Insight into the evolution of the iron oxidation pathways. Biochim. Biophys. Acta 1827, 161â175 (2013).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Yu, H. & Leadbetter, J. R. Bacterial chemolithoautotrophy via manganese oxidation. Nature 583, 453â458 (2020).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Andrews, S. C. Iron storage in bacteria. Adv. Microb. Physiol. 40, 281â351 (1998).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Pitcher, R. S. & Watmough, N. J. The bacterial cytochrome cbb 3 oxidases. Biochim. Biophys. Acta 1655, 388â399 (2004).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Sousa, F. L. et al. The superfamily of hemeâcopper oxygen reductases: types and evolutionary considerations. Biochim. Biophys. Acta 1817, 629â637 (2012).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Park, B. et al. Cultivation of autotrophic ammonia-oxidizing archaea from marine sediments in coculture with sulfur-oxidizing bacteria. Appl. Environ. Microbiol. 76, 7575â7587 (2010).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Fuchs, G. Alternative pathways of carbon dioxide fixation: insights into the early evolution of life? Annu. Rev. Microbiol. 65, 631â658 (2011).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Bayer, B. et al. Metabolic versatility of the nitrite-oxidizing bacterium Nitrospira marina and its proteomic response to oxygen-limited conditions. ISME J. 15, 1025â1039 (2021).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Yamamoto, M., Arai, H., Ishii, M. & Igarashi, Y. Role of two 2-oxoglutarate: ferredoxin oxidoreductases in Hydrogenobacter thermophilus under aerobic and anaerobic conditions. FEMS Microbiol. Lett. 263, 189â193 (2006).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Yamamoto, M., Ikeda, T., Arai, H., Ishii, M. & Igarashi, Y. Carboxylation reaction catalyzed by 2-oxoglutarate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus. Extremophiles 14, 79â85 (2010).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Berg, I. A. Ecological aspects of the distribution of different autotrophic CO2 fixation pathways. Appl. Environ. Microbiol. 77, 1925â1936 (2011).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
French, C. E., Bell, J. M. L. & Ward, F. B. Diversity and distribution of hemerythrin-like proteins in prokaryotes. FEMS Microbiol. Lett. 279, 131â145 (2008).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Isaza, C. E., Silaghi-dumitrescu, R., Iyer, R. B., Kurtz, D. M. & Chan, M. K. Structural basis for O2 sensing by the hemerythrin-like domain of a bacterial chemotaxis protein: substrate tunnel and fluxional n terminus. Biogeochemistry 45, 9023â9031 (2006).ArticleÂ
CASÂ
Google ScholarÂ
Kendall, J. J., Barrero-tobon, A. M., Hendrixson, D. R. & Kelly, D. J. Hemerythrins in the microaerophilic bacterium Campylobacter jejuni help protect key ironâsulphur cluster enzymes from oxidative damage. Environ. Microbiol. 16, 1105â1121 (2014).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Nariya, S. & Kalyuzhnaya, M. G. Hemerythrins enhance aerobic respiration in Methylomicrobium alcaliphilum 20Z R, a methane-consuming bacterium. FEMS Microbiol. Lett. 367, fnaa003 (2020).Sheng, Y. et al. Superoxide dismutases and superoxide reductases. Chem. Rev. 114, 3854â3918 (2014).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Anantharaman, K., Breier, J. A., Sheik, C. S. & Dick, G. J. Evidence for hydrogen oxidation and metabolic plasticity in widespread deep-sea sulfur-oxidizing bacteria. Proc. Natl Acad. Sci. USA 110, 330â335 (2013).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Dede, B. et al. Niche differentiation of sulfur-oxidizing bacteria (SUP05) in submarine hydrothermal plumes. ISME J. 16, 1479â1490 (2022).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Schlindwein, V. (ed.) The Expedition of the Research Vessel âPolarsternâ to the Antarctic in 2013 (ANT-XXIX/8). Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 672, 111 (2014); https://doi.org/10.2312/BzPM_0672_2014Boetius, A. The Expedition PS86 of the Research Vessel POLARSTERN to the Arctic Ocean in 2014. Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 685, 133 (2015); https://doi.org/10.2312/BzPM_0685_2015Boetius, A. & Purser, A. The Expedition PS101 of the Research Vessel POLARSTERN to the Arctic Ocean in 2016. Reports on polar and marine research, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research, 706, 230 (2017); https://doi.org/10.2312/BzPM_0706_2017Varliero, G., Bienhold, C., Schmid, F., Boetius, A. & Molari, M. Microbial diversity and connectivity in deep-sea sediments of the South Atlantic Polar Front. Front. Microbiol. 10, 665 (2019).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Pernthaler, A., Pernthaler, J. & Amann, R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094â3101 (2002).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Alm, E. W., Oerther, D. B., Larsen, N., Stahl, D. A. & Raskin, L. The oligonucleotide probe database. Appl. Environ. Microbiol. 62, 3557â3559 (1996).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Amann, R. I. et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56, 1919â1925 (1990).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Ludwig, W. et al. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363â1371 (2004).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, 590â596 (2013).ArticleÂ
Google ScholarÂ
Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).HassenrĂźck, C., Quast, C., Rapp, J. & Buttigieg, P. Amplicon (GitHub, accessed 15 April 2019); https://github.com/chassenr/NGS/tree/master/AMPLICONMahĂŠ, F., Rognes, T., Quince, C., de Vargas, C. & Dunthorn, M. Swarm: robust and fast clustering method for amplicon-based studies. PeerJ 2, e593 (2014).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Bushnell, B. BBMap: A Fast, Accurate, Splice-Aware Aligner. United States (2014). https://www.osti.gov/servlets/purl/1241166Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114â2120 (2014).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Kopylova, E., Noe, L. & Touzet, H. Sequence analysis SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211â3217 (2012).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Gruber-vodicka, H. R., Seah, B. K. & Pruesse, E. phyloFlash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. mSystems 5, e00920 (2020).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. https://doi.org/10.14806/ej.17.1.200 (2011).Zhang, J., Kobert, K., Fluori, T. & Stamatakis, A. PEAR: a fast and accurate Illumina Paired-End reAd mergeR. Bioinformatics 30, 614â620 (2014).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Pruesse, E., Peplies, J. & GlĂśckner, F. O. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823â1829 (2012).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Li, D., Liu, C., Luo, R., Sadakane, K. & Lam, T. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31, 1674â1676 (2015).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Nurk, S., Meleshko, D., Korobeynikov, A. & Pevzner, P. A. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27, 824â834 (2017).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Li, H. & Durbin, R. Fast and accurate short read alignment with BurrowsâWheeler transform. Bioinformatics 25, 1754â1760 (2009).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078â2079 (2009).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144â1146 (2014).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864â2868 (2017).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Varghese, N. J. et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 43, 6761â6771 (2015).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Eren, A. M. et al. Anviâo: an advanced analysis and visualization platform for âomics data. PeerJ 3, e1319 (2015).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Wheeler, T. J. & Eddy, S. R. nhmmer: DNA homology search with profile HMMs. Bioinformatics 29, 2487â2489 (2013).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996â1004 (2018).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59â60 (2015).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100â3108 (2007).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043â1055 (2015).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Chklovski, A., Parks, D. H., Woodcroft, B. J. & Tyson, G. W. CheckM2: a rapid, scalable and accurate tool for assessing microbial genome quality using machine learning. Preprint at bioRxiv https://doi.org/10.1101/2022.07.11.499243 (2022).Manni, M., Berkeley, M. R., Seppey, M. & Zdobnov, E. M. BUSCO: assessing genomic data quality and beyond. Curr. Protoc. 1, e323 (2021).ArticleÂ
PubMedÂ
Google ScholarÂ
Laslett, D. & Canback, B. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32, 11â16 (2004).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Seemann, T. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068â2069 (2014).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic Acids Res. 47, D427âD432 (2019).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Haft, D. H. et al. TIGRFAMs: a protein family resource for the functional identification of proteins. Nucleic Acids Res. 29, 41â43 (2001).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 248, 726â731 (2015).
Google ScholarÂ
Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33â36 (2000).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Kristensen, D. M. et al. A low-polynomial algorithm for assembling clusters of orthologous groups from intergenomic symmetric best matches. Bioinformatics 26, 1481â1487 (2010).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Krogh, A., Larsson, B., von Heijne, G. & Sonnhammer, E. L. L. Predicting transmembrane protein topology with a hidden markov model: application to complete genomes. J. Mol. Biol. 305, 567â580 (2001).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Søndergaard, D., Pedersen, C. N. S. & Greening, C. HydDB: a web tool for hydrogenase classification and analysis. Sci. Rep. 6, 34212 (2016).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Garber, A. I. et al. FeGenie: a comprehensive tool for the identification of iron genes and iron gene neighborhoods in genome and metagenome assemblies. Front. Microbiol. 11, 37 (2020).Passardi, F. et al. PeroxiBase: the peroxidase database. Phytochemistry 68, 1605â1611 (2007).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Lucchetti-miganeh, C., Goudenège, D., Thybert, D., Salbert, G. & Barloy-hubler, F. SORGOdb: superoxide reductase gene ontology curated database. BMC Microbiol. 11, 105 (2011).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Bray, N. L., Pimentel, H., Melsted, P. & Pachter, L. Near-optimal probabilistic RNA-seq quantification. Nat. Biotechnol. 34, 4â8 (2016).
Google ScholarÂ
Li, B. & Dewey, C. N. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinformatics 12, 323 (2011).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Steinegger, M. & SĂśding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026â1028 (2017).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M. & Tanabe, M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44, D457âD462 (2016).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Mistry, J. et al. Pfam: the protein families database in 2021. Nucleic Acids Res. 49, D412âD419 (2021).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Tu, Q., Lin, L., Cheng, L., Deng, Y. & He, Z. NCycDB: a curated integrative database for fast and accurate metagenomic profiling of nitrogen cycling genes. Bioinformatics 35, 1040â1048 (2019).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Li, H. et al. A cross-species alignment tool (CAT). BMC Bioinformatics 8, 349 (2007).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Vasimuddin, M., Misra, S., Li, H. & Aluru, S. Efficient architecture-aware acceleration of BWA-MEM for multicore systems. In 2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), Rio de Janeiro, Brazil, 314â324, doi: 10.1109/IPDPS.2019.00041 (2019); https://ieeexplore.ieee.org/document/8820962Putri, G. H., Anders, S., Pyl, P. T., Pimanda, J. E. & Zanini, F. Analysing high-throughput sequencing data in Python with HTSeq 2.0. Bioinformatics 38, 2943â2945 (2022).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772â780 (2013).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for selection of phylogenetic informative regions from multiple sequence alignments. BMC Evol. Biol. 10, 210 (2010).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Jalili, V. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update. Nucleic Acids Res. 48, 395â402 (2020).ArticleÂ
Google ScholarÂ
Trifinopoulos, J., Nguyen, L.-T., von Haeseler, A. & Minh, B. Q. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 44, W232âW235 (2016).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587â589 (2017).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Berger, S. A., Krompass, D. & Stamatakis, A. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Syst. Biol. 60, 291â302 (2011).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2, W256âW259 (2019).ArticleÂ
Google ScholarÂ
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792â1797 (2004).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
van Dongen, S. & Abreu-goodger, C. in Bacterial Molecular Networks: Methods and Protocols, Methods in Molecular Biology (eds van Helden, J. et al.) 281â295 (Springer, 2012).Altschup, S. F., Gish, W., Pennsylvania, T. & Park, U. Basic local alignment search tool. J. Mol. Biol. 215, 403â410 (1990).ArticleÂ
Google ScholarÂ
Nguyen, L., Schmidt, H. A., Haeseler, A., Von & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268â274 (2014).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Chernomor, O., von Haeseler, A. & Minh, B. Q. Terrace aware data structure for phylogenomic inference from supermatrices. Syst. Biol. 65, 997â1008 (2016).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Delmont, T. O. & Eren, A. M. Linking pangenomes and metagenomes: the Prochlorococcus metapangenome. PeerJ 6, e4320 (2018).ArticleÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Jensen, L. J. et al. eggNOG: automated construction and annotation of orthologous groups of genes. Nucleic Acids Res. 36, 250â254 (2008).ArticleÂ
Google ScholarÂ
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357â360 (2012).ArticleÂ
CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.6-4. https://CRAN.R-project.org/package=vegan (2022).Robinson, M. D., Mccarthy, D. J. & Smyth, G. K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139â140 (2010).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Reiner-Benaim, A. FDR control by the BH procedure for two-sided correlated tests with implications to gene expression data analysis. Biom. J. 49, 107â126 (2007).ArticleÂ
PubMedÂ
Google ScholarÂ
Villanueva, R. A. M. & Chen, Z. J. ggplot2: elegant graphics for data analysis (2nd ed.). Meas. Interdiscip. Res. Perspect. 17, 160â167 (2019).Diepenbroek, M. et al. Towards an integrated biodiversity and ecological research data management and archiving platform: the German Federation for the Curation of Biological Data (GFBio). In Informatik 2014 â Big Data Komplexität meistern Proc. 232 (eds PlĂśdereder, E. et al.) 1711â1725 (Gesellschaft fĂźr Informatik, 2014).Schmidt, K., Koschinsky, A., Garbe-SchĂśnberg, D., de Carvalho, L. M. & Seifert, R. Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: temporal and spatial investigation. Chem. Geol. 242, 1â21 (2007).ArticleÂ
CASÂ
Google ScholarÂ
Perner, M. et al. The influence of ultramafic rocks on microbial communities at the Logatchev hydrothermal field, located 15 degrees N on the Mid-Atlantic Ridge. FEMS Microbiol. Ecol. 61, 97â109 (2007).ArticleÂ
CASÂ
PubMedÂ
Google ScholarÂ
Douville, E. et al. The rainbow vent fluids (36°14âN, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chem. Geol. 184, 37â48 (2002).ArticleÂ
CASÂ
Google ScholarÂ
Ji, F. et al. Geochemistry of hydrothermal vent fluids and its implications for subsurface processes at the active Longqi hydrothermal field, Southwest Indian Ridge. Deep Sea Res. I 122, 41â47 (2017).ArticleÂ
CASÂ
Google Scholar More