More stories

  • in

    Newly initiated carbon stock, organic soil accumulation patterns and main driving factors in the High Arctic Svalbard, Norway

    Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).Article 

    Google Scholar 
    Raynolds, M. K. et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 232, 111297 (2019).ADS 
    Article 

    Google Scholar 
    Danell, K. What Is the Arctic? In Which Ways Is the Arctic Different? In Arctic Ecology (ed. Thomas, D. N.) 1–22 (University of Helsinki, 2021).
    Google Scholar 
    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cycles 23(2), 1–11. https://doi.org/10.1029/2008GB003327 (2009).CAS 
    Article 

    Google Scholar 
    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. U.S.A. 117(34), 20438–20446. https://doi.org/10.1073/pnas.1916387117 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24(9), 1028–1042. https://doi.org/10.1177/0959683614538073 (2014).ADS 
    Article 

    Google Scholar 
    Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Chang. 8(10), 907–913. https://doi.org/10.1038/s41558-018-0271-1 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Yu, Z., Beilman, D. W. & Jones, M. C. Sensitivity of Northern Peatland carbon dynamics to holocene climate change. Carbon Cycl. Northern Peatl. C https://doi.org/10.1029/2008GM000822 (2009).Article 

    Google Scholar 
    Svendsen, J. & Mangerud, J. Paleoclimatic inferences from glacial fluctuations on Svalbard during the last 20 000 years. Clim. Dyn. 6(3–4), 213–220. https://doi.org/10.1007/BF00193533 (1992).Article 

    Google Scholar 
    Farnsworth, W. R. et al. Holocene glacial history of Svalbard: Status, perspectives and challenges. Earth Sci. Rev. 208(April), 103249. https://doi.org/10.1016/j.earscirev.2020.103249 (2020).CAS 
    Article 

    Google Scholar 
    D’Andrea, W. J. et al. Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology 40(11), 1007–1010. https://doi.org/10.1130/G33365.1 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Miller, G. H., Landvik, J. Y., Lehman, S. J. & Southon, J. R. Episodic Neoglacial snowline descent and glacier expansion on Svalbard reconstructed from the 14C ages of ice-entombed plants. Quatern. Sci. Rev. 155, 67–78. https://doi.org/10.1016/j.quascirev.2016.10.023 (2017).ADS 
    Article 

    Google Scholar 
    Røthe, T. O. et al. Arctic Holocene glacier fluctuations reconstructed from lake sediments at Mitrahalvøya, Spitsbergen. Quatern. Sci. Rev. 109, 111–125. https://doi.org/10.1016/j.quascirev.2014.11.017 (2015).Article 

    Google Scholar 
    van der Bilt, W. G. M. et al. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard. Quatern. Sci. Rev. 126, 201–218. https://doi.org/10.1016/j.quascirev.2015.09.003 (2015).ADS 
    Article 

    Google Scholar 
    Allaart, L. et al. Glacial history of the Åsgardfonna Ice Cap, NE Spitsbergen, since the last glaciation. Quatern. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106717 (2021).Article 

    Google Scholar 
    Humlum, O. et al. Late-Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes. Holocene 15(3), 396–407. https://doi.org/10.1191/0959683605hl817rp (2005).ADS 
    Article 

    Google Scholar 
    Yang, Z., Yang, W., Yuan, L., Wang, Y. & Sun, L. Evidence for glacial deposits during the Little Ice Age in Ny-Alesund, western Spitsbergen. J. Earth Syst. Sci. https://doi.org/10.1007/s12040-019-1274-7 (2020).Article 

    Google Scholar 
    AMAP – ARCTIC MONITORING AND ASSESSMENT PROGRAMME. (2019). Arctic Climate Change Update 2019: An update to key findings of Snow, Water, Ice, and Permafrost in the Arctic (SWIPA) 2017. Assessment Report, 12. https://www.amap.no/documents/doc/amap-climate-change-update-2019/1761.Nordli, Ø. et al. Polar Res. 39, 3614. https://doi.org/10.33265/polar.v39.3614 (2020).Article 

    Google Scholar 
    Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E. & Skaugen, T. E. Temperature and precipitation development at svalbard 1900–2100. Adv. Meteorol. 2011, 1–14. https://doi.org/10.1155/2011/893790 (2011).Article 

    Google Scholar 
    Van Der Knaap, W. O. (1988). A pollen diagram from Broggerhalvoya, Spitsbergen: changes in vegetation and environment from ca. 4400 to ca. 800 BP. Arctic & Alpine Research, 20(1), 106–116. Doi: https://doi.org/10.2307/1551703Rozema, J. et al. A vegetation, climate and environment reconstruction based on palynological analyses of high arctic tundra peat cores (5000–6000 years BP) from Svalbard. Plant Ecol. 182(1–2), 155–173. https://doi.org/10.1007/s11258-005-9024-0 (2006).Article 

    Google Scholar 
    Nakatsubo, T. et al. Carbon accumulation rate of peatland in the High Arctic, Svalbard: Implications for carbon sequestration. Polar Sci. 9(2), 267–275. https://doi.org/10.1016/j.polar.2014.12.002 (2015).ADS 
    Article 

    Google Scholar 
    Magnússon, B., Magnússon, S. & Fridriksson, S. (2009). Developments in plant colonization and succession on Surtsey during 1999–2008. Surtsey Res. pp. 57–76.Zwolicki, A., Zmudczyńska-Skarbek, K. M., Iliszko, L. & Stempniewicz, L. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol. 36(3), 363–372. https://doi.org/10.1007/s00300-012-1265-5 (2013).Article 

    Google Scholar 
    Leblans, N. I. W. et al. Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island Surtsey. Biogeosciences 11(22), 6237–6250. https://doi.org/10.5194/bg-11-6237-2014 (2014).ADS 
    Article 

    Google Scholar 
    Zmudczyńska-Skarbek, K. et al. Transfer of ornithogenic influence through different trophic levels of the Arctic terrestrial ecosystem of Bjørnøya (Bear Island), Svalbard. Soil Biol. Biochem. 115, 475–489. https://doi.org/10.1016/j.soilbio.2017.09.008 (2017).CAS 
    Article 

    Google Scholar 
    Hodkinson, I. D., Coulson, S. J. & Webb, N. R. Community assembly along proglacial chronosequences in the high arctic: vegetation and soil development in north-west Svalbard. J. Ecol. 91(4), 651–663. https://doi.org/10.1046/j.1365-2745.2003.00786.x (2003).Article 

    Google Scholar 
    Ravolainen, V. et al. High Arctic ecosystem states: Conceptual models of vegetation change to guide long-term monitoring and research. Ambio 49(3), 666–677. https://doi.org/10.1007/s13280-019-01310-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van der Wal, R. & Brooker, R. W. Mosses mediate grazer impacts on grass abundance in arctic ecosystems. Funct. Ecol. 18(1), 77–86. https://doi.org/10.1111/j.1365-2435.2004.00820.x (2004).Article 

    Google Scholar 
    Vanderpuye, A. W., Elvebakk, A. & Nilsen, L. Plant communities along environmental gradients of high-arctic mires in Sassendalen Svalbard. J. Veg. Sci. 13(6), 875–884. https://doi.org/10.1111/j.1654-1103.2002.tb02117.x (2002).Article 

    Google Scholar 
    Le Moullec, M., Pedersen, Å. Ø., Stien, A., Rosvold, J. & Hansen, B. B. A century of conservation: the ongoing recovery of svalbard reindeer. J. Wildl. Manag. 83(8), 1676–1686. https://doi.org/10.1002/jwmg.21761 (2019).Article 

    Google Scholar 
    Garfelt-Paulsen, I. M. et al. Don’t go chasing the ghosts of the past: habitat selection and site fidelity during calving in an Arctic ungulate. Wildl. Biol. https://doi.org/10.2981/wlb.00740 (2021).Article 

    Google Scholar 
    Moreau, M., Mercier, D., Laffly, D. & Roussel, E. Impacts of recent paraglacial dynamics on plant colonization: a case study on Midtre Lovénbreen foreland, Spitsbergen (79°N). Geomorphology 95(1–2), 48–60. https://doi.org/10.1016/j.geomorph.2006.07.031 (2008).ADS 
    Article 

    Google Scholar 
    Moreau, M., Laffly, D. & Brossard, T. Recent spatial development of Svalbard strandflat vegetation over a period of 31 years. Polar Res. 28(3), 364–375. https://doi.org/10.1111/j.1751-8369.2009.00119.x (2009).Article 

    Google Scholar 
    Wietrzyk, P., Wȩgrzyn, M. & Lisowska, M. Vegetation diversity and selected abiotic factors influencing the primary succession process on the foreland of Gåsbreen Svalbard. Pol. Polar Res. 37(4), 493–509. https://doi.org/10.1515/popore-2016-0026 (2016).Article 

    Google Scholar 
    Divine, D. et al. Thousand years of winter surface air temperature variations in Svalbard and northern norway reconstructed from ice-core data. Polar Res. 30(SUPPL.1), 1–12. https://doi.org/10.3402/polar.v30i0.7379 (2011).ADS 
    Article 

    Google Scholar 
    Van Pelt, W. et al. A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018). Cryosphere 13(9), 2259–2280. https://doi.org/10.5194/tc-13-2259-2019 (2019).ADS 
    Article 

    Google Scholar 
    Johansen, B. E., Karlsen, S. R. & Tømmervik, H. Vegetation mapping of Svalbard utilising Landsat TM/ETM+ data. Polar Rec. 48(1), 47–63. https://doi.org/10.1017/S0032247411000647 (2012).Article 

    Google Scholar 
    Norwegian Polar Institute. Available online at: https://npolar.no (2021).Norwegian Meteorological Institute. Available online at: https://seklima.met.no (2019).Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468(November), 129–141. https://doi.org/10.1016/j.palaeo.2016.11.039 (2017).Article 

    Google Scholar 
    Estop-Aragonés, C. et al. Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands. Soil Biol. Biochem. 118, 115–129. https://doi.org/10.1016/j.soilbio.2017.12.010 (2018).CAS 
    Article 

    Google Scholar 
    Blaauw, M., Christen, J. A. & Aquino-Lopez, M. A. rplum: Bayesian Age-Depth Modelling of Cores Dated by Pb-210. R package version 0.2.2. https://CRAN.R-project.org/package=rplum (2021).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020).Heiri, O., Lotter, A. F. & Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 25(1), 101–110. https://doi.org/10.1023/A:1008119611481 (2001).ADS 
    Article 

    Google Scholar 
    Booth, R. K., Lamentowicz, M. & Charman, D. J. Preparation and analysis of testate amoebae in peatland palaeoenvironmental studies. Mires and Peat 7(2), 1–7 (2010).
    Google Scholar 
    Charman, D., Hendon, D. & Woodland, W. A. The Identification of Testate Amoebae (Protozoa: Rhizopoda) in Peats (Quaternary Research Association, 2000).
    Google Scholar 
    Siemensma, F. J. Microworld, world of Amoeboid Organisms. World-Wide Electronic Publication, Kortenhoef, the Netherlands. Available online at: https://www.arcella.nl (2019).Payne, R. J. & Mitchell, E. A. D. How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J. Paleolimnol. 42(4), 483–495. https://doi.org/10.1007/s10933-008-9299-y (2009).ADS 
    Article 

    Google Scholar 
    Swindles, G. T. et al. Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data. Q. Sci. Rev. 120, 107–117. https://doi.org/10.1016/j.quascirev.2015.04.019 (2015).ADS 
    Article 

    Google Scholar 
    Amesbury, M. J. et al. Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quatern. Sci. Rev. 152, 132–151. https://doi.org/10.1016/j.quascirev.2016.09.024 (2016).ADS 
    Article 

    Google Scholar 
    Amesbury, M. J. et al. Towards a Holarctic synthesis of peatland testate amoeba ecology: Development of a new continental-scale palaeohydrological transfer function for North America and comparison to European data. Quatern. Sci. Rev. 201, 483–500. https://doi.org/10.1016/j.quascirev.2018.10.034 (2018).ADS 
    Article 

    Google Scholar 
    Zhang, H. et al. Testate amoeba as palaeohydrological indicators in the permafrost peatlands of north-east European Russia and Finnish Lapland. J. Quat. Sci. 32(7), 976–988. https://doi.org/10.1002/jqs.2970 (2017).Article 

    Google Scholar 
    Sim, T. G. et al. Pathways for Ecological Change in Canadian High Arctic Wetlands Under Rapid Twentieth Century Warming. Geophys. Res. Lett. 46(9), 4726–4737. https://doi.org/10.1029/2019GL082611 (2019).ADS 
    Article 

    Google Scholar 
    Elmendorf, S. C. et al. Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecol. Lett. 15(2), 164–175. https://doi.org/10.1111/j.1461-0248.2011.01716.x (2012).Article 
    PubMed 

    Google Scholar 
    Lupascu, M. et al. High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nat. Clim. Chang. 4(1), 51–55. https://doi.org/10.1038/nclimate2058 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Bjorkman, A. D. et al. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio 49(3), 678–692. https://doi.org/10.1007/s13280-019-01161-6 (2020).MathSciNet 
    Article 
    PubMed 

    Google Scholar 
    Egli, M., Mavris, C., Mirabella, A. & Giaccai, D. Soil organic matter formation along a chronosequence in the Morteratsch proglacial area (Upper Engadine, Switzerland). CATENA 82(2), 61–69. https://doi.org/10.1016/j.catena.2010.05.001 (2010).CAS 
    Article 

    Google Scholar 
    Prach, K. & Rachlewicz, G. Succession of vascular plants in front of retreating glaciers in central Spitsbergen. Polish Polar Research 33(4), 319–328. https://doi.org/10.2478/v10183-012-0022-3 (2012).Article 

    Google Scholar 
    Låg, J. Special Peat Formations in Svalbard. Acta Agric. Scand. 30(2), 205–210. https://doi.org/10.1080/00015128009435267 (1980).Article 

    Google Scholar 
    Serebryannyy, L. P., Tishkov, A. A., Malyasova, Y. S., Solomina, O. N. & Il’ves, E. O.,. Reconstruction of the development of vegetation in Arctic high latitudes. Polar Geogr. Geol. 9(4), 308–320. https://doi.org/10.1080/10889378509377261 (1985).Article 

    Google Scholar 
    Surova, T. G., Troitskiy, L. S., Skobeyeva, Y. I. & Punning, Y. M. K. Glacioclimatic conditions in the european arctic in the late holocene. Polar Geogr. Geol. 11(1), 50–57. https://doi.org/10.1080/10889378709377310 (1987).Article 

    Google Scholar 
    Surova, T. G., Troitskiy, L. S., Skobeyeva, Y. I. & Troitskiy, Y. M. K. Changes in glacioclimatic conditions on svalbard during the subboreal period. Polar Geogr. Geol. 12(3), 221–226. https://doi.org/10.1080/10889378809377366 (1988).Article 

    Google Scholar 
    Låg, J. Peat Accumulation in Steep Hills at Alkhornet Spitsbergen. Acta Agric. Scand. 40(3), 217–219. https://doi.org/10.1080/00015129009438554 (1990).Article 

    Google Scholar 
    Oliva, M. et al. Sedimentological characteristics of ice-wedge polygon terrain in adventdalen (Svalbard) environmental and climatic implications for the late Holocene. Solid Earth 5(2), 901–914. https://doi.org/10.5194/se-5-901-2014 (2014).ADS 
    Article 

    Google Scholar 
    Van der Knaap, W. O. Past Vegetation and Reindeer on Edgeoya (Spitsbergen) Between c. 7900 and c. 3800 BP, Studied by Means of Peat Layers and Reindeer Faecal Pellets. J. Biogeogr. 16(4), 379. https://doi.org/10.2307/2845229 (1989).Article 

    Google Scholar 
    Røthe, T. O., Bakke, J., Støren, E. W. N. & Bradley, R. S. Reconstructing holocene glacier and climate fluctuations from lake sediments in Vårfluesjøen Northern Spitsbergen. Front. Earth Sci. 6(July), 1–20. https://doi.org/10.3389/feart.2018.00091 (2018).Article 

    Google Scholar 
    Alsos, I. G. et al. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: assessing the resilience of arctic flora to Holocene climate change. Holocene 26(4), 627–642. https://doi.org/10.1177/0959683615612563 (2016).ADS 
    Article 

    Google Scholar 
    Klimowicz, Z., Melke, J. & Uziak, S. Peat soils in the Bellsund region Spitsbergen. Pol. Polar Res. 18(1), 25–39 (1997).
    Google Scholar 
    Yang, Z. et al. Total photosynthetic biomass record between 9400 and 2200 BP and its link to temperature changes at a High Arctic site near Ny-Ålesund Svalbard. Polar Biol. 42(5), 991–1003. https://doi.org/10.1007/s00300-019-02493-5 (2019).Article 

    Google Scholar 
    Vickers, H. et al. Changes in greening in the high arctic: insights from a 30-year AVHRR max NDVI dataset for Svalbard. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/11/10/105004 (2016).Article 

    Google Scholar 
    Van Der Knaap, W. O. Human influence on natural Arctic vegetation in the 17th century and climatic change since AD 1600 in northwest Spitsbergen: a paleobotanical study. Arct. Alp. Res. 17(4), 371–387. https://doi.org/10.2307/1550863 (1985).Article 

    Google Scholar 
    Martín-Moreno, R., Allende Álvarez, F. & Hagen, J. O. ‘Little Ice Age’ glacier extent and subsequent retreat in Svalbard archipelago. Holocene 27(9), 1379–1390. https://doi.org/10.1177/0959683617693904 (2017).ADS 
    Article 

    Google Scholar 
    Rachlewicz, G., Szczuziński, W. & Ewertowski, M. Post-“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen Svalbard. Pol. Polar Res. 28(3), 159–186 (2007).
    Google Scholar 
    Matthews, J. A. & Whittaker, R. J. Vegetation succession on the storbreen glacier foreland, Jotunheimen, Norway : a review. Arct. Alp. Res. 19(4), 385–395 (1987).Article 

    Google Scholar 
    Beyens, L. & Chardez, D. Evidence from testate amoebae for changes in some local hydrological conditions between c. 5000 BP and c. 3800 BP on Edgeøya (Svalbard). Polar Res. 5(2), 165–169. https://doi.org/10.1111/j.1751-8369.1987.tb00619.x (1987).Article 

    Google Scholar 
    Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/10/9/094011 (2015).Article 

    Google Scholar 
    Isaksen, K., Benestad, R. E., Harris, C. & Sollid, J. L. Recent extreme near-surface permafrost temperatures on Svalbard in relation to future climate scenarios. Geophys. Res. Lett. 34(17), 1–5. https://doi.org/10.1029/2007GL031002 (2007).Article 

    Google Scholar 
    Cable, S., Elberling, B. & Kroon, A. Holocene permafrost history and cryostratigraphy in the High-Arctic Adventdalen Valley, central Svalbard. Boreas 47(2), 423–442. https://doi.org/10.1111/bor.12286 (2018).Article 

    Google Scholar 
    König, M., Kohler, J. & Nuth, C. Glacier Area Outlines–Svalbard, v1.0, http://data.npolar.no/dataset/89f430f8-862f-11e2-8036-005056ad0004 Delivered by CryoClim service (2013).Box, J. E. et al. Key indicators of Arctic climate change: 1917–2017. Environ. Res. Lett. 14(4), 045010. https://doi.org/10.1088/1748-9326/aafc1b (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhang, H. et al. Decreased carbon accumulation feedback driven by climate-induced drying of two southern boreal bogs over recent centuries. Glob. Change Biol. 26(4), 2435–2448. https://doi.org/10.1111/gcb.15005 (2020).ADS 
    Article 

    Google Scholar 
    Szymański, W., Wojtuń, B., Stolarczyk, M., Siwek, J. & Waścińska, J. Organic carbon and nutrients (N, P) in surface soil horizons in a non-glaciated catchment SW Spitsbergen. Pol. Polar Res. 37(1), 49–66. https://doi.org/10.1515/popore-2016-0006 (2016).Article 

    Google Scholar 
    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11(23), 6573–6593. https://doi.org/10.5194/bg-11-6573-2014 (2014).ADS 
    Article 

    Google Scholar 
    Palmtag, J. et al. Storage, landscape distribution, and burial history of soil organic matter in contrasting areas of continuous permafrost. Arct. Antarct. Alp. Res. 47(1), 71–88. https://doi.org/10.1657/AAAR0014-027 (2015).Article 

    Google Scholar 
    Siewert, M. B. et al. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution. J. Geophys. Res. Biogeosci. 120, 1973–1994 (2015).CAS 
    Article 

    Google Scholar 
    Wojcik, R., Palmtag, J., Hugelius, G., Weiss, N. & Kuhry, P. Land cover and landform-based upscaling of soil organic carbon stocks on the Brøgger Peninsula, Svalbard. Arct. Antarct. Alp. Res. 51(1), 40–57. https://doi.org/10.1080/15230430.2019.1570784 (2019).Article 

    Google Scholar 
    Yoshitake, S. et al. Vegetation development and carbon storage on a glacier foreland in the High Arctic, Ny-Ålesund Svalbard. Polar Sci. 5(3), 391–397. https://doi.org/10.1016/j.polar.2011.03.002 (2011).ADS 
    Article 

    Google Scholar 
    Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475(7357), 489–492. https://doi.org/10.1038/nature10283 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cooper, E. J., Dullinger, S. & Semenchuk, P. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci. 180(1), 157–167. https://doi.org/10.1016/j.plantsci.2010.09.005 (2011).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    A global microbiome survey of vineyard soils highlights the microbial dimension of viticultural terroirs

    Bokulich, N. A. et al. Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to regional wine characteristics. MBio, https://doi.org/10.1128/mBio.00631-16 (2016).Zohary, D. The Domestication of the Grapevine Vitis Vinifera L. in the Near East (Chapter 2) in The Origins and Ancient History of Wine (eds McGovern, P. E., Katz, S. H. & Fleming, S. J.) 21–28. (Routledge, 2003).Whalen, P. ‘Insofar as the ruby wine seduces them’: cultural strategies for selling wine in inter-war Burgundy. Contemp. Eur. Hist. 18, 67–98 (2009).
    Google Scholar 
    Østerlie, M. & Wicklund, T. In Nutritional and Health Aspects of Food in Nordic Countries (eds Bar, E., Wirtanen, G. & Veslemøy Andersen, V.) Ch. 2 (Elsevier Inc., 2018).Planète Terroirs. The future needs terroirs. https://planeteterroirs.org/ (2010).California Wine-Growing Regions, https://discovercaliforniawines.com/wine-map-winery-directory/Agricultura, M. D. E. & Ambiente. Compendio informativo en relación con las DOPs/IGPs y terminos tradicionales de vino, las indicaciones geograficas de bebidas espirituosas, y las indicaciones geograficas de productos vitivinicolas aromatizados. https://www.mapa.gob.es/es/alimentacion/temas/calidad-diferenciada/relaciondisposicionesdopseigpsdevinosbbeevinosaromatiz_tcm30-432336.pdf (2016).Ballantyne, D., Terblanche, N. S., Lecat, B. & Chapuis, C. Old world and new world wine concepts of terroir and wine: perspectives of three renowned non-French wine makers. J. Wine Res. 30, 122–143 (2019).
    Google Scholar 
    OIV. Resolution OIV/VITI 333/2010, definition of vitivinicultural “terroir”. https://www.oiv.int/public/medias/379/viti-2010-1-en.pdf (2010).Belda, I., Zarraonaindia, I., Perisin, M., Palacios, A. & Acedo, A. From vineyard soil to wine fermentation: microbiome approximations to explain the ‘terroir’ Concept. Front. Microbiol. 8, 1–12 (2017).
    Google Scholar 
    Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. MBio 6, 1–10 (2015).CAS 

    Google Scholar 
    Burns, K. N. et al. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by vineyard management. Soil Biol. Biochem. 103, 337–348 (2016).CAS 

    Google Scholar 
    Bokulich, N. A., Joseph, C. M. L., Allen, G., Benson, A. K. & Mills, D. A. Next-generation sequencing reveals significant bacterial diversity of botrytized wine. PLoS ONE 7, 3–12 (2012).
    Google Scholar 
    Portillo, M., del, C., Franquès, J., Araque, I., Reguant, C. & Bordons, A. Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). Int. J. Food Microbiol. 219, 56–63 (2016).
    Google Scholar 
    Mezzasalma, V. et al. Grape microbiome as a reliable and persistent signature of field origin and environmental conditions in Cannonau wine production. PLoS ONE 12, 1–20 (2017).
    Google Scholar 
    Hermans, S. M. et al. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome 8, 1–13 (2020).
    Google Scholar 
    OIV. Functional biodiversity in the vineyard. https://www.oiv.int/public/medias/6367/functional-biodiversity-in-the-vineyard-oiv-expertise-docume.pdf (2018).Ortiz-Álvarez, R. et al. Network properties of local fungal communities reveal the anthropogenic disturbance consequences of farming practices in vineyard soils. mSystems 6, e00344-21 (2021).Knight, S., Klaere, S., Fedrizzi, B. & Goddard, M. R. Regional microbial signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir. Sci. Rep. 5, 1–10 (2015).
    Google Scholar 
    Belda, I. et al. Unraveling the enzymatic basis of wine ‘flavorome’: a phylo-functional study of wine related yeast species. Front. Microbiol. 7, 1–13 (2016).
    Google Scholar 
    Gilbert, J. A., van der Lelie, D. & Zarraonaindia, I. Microbial terroir for wine grapes. Proc. Natl Acad. Sci. USA 111, 5–6 (2014).CAS 
    PubMed 

    Google Scholar 
    Belda, I. et al. Microbiomics to Define Wine Terroir (Chapter: 3.32) in Comprehensive Foodomics (Ed. Cifuentes, A.) 438–451 (Elsevier, 2021).Van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378 (2016).Altieri, M. A. In Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes (1999).Brussaard, L., de Ruiter, P. C. & Brown, G. G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 121, 233–244 (2007).Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).Wei, Y. J. et al. High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China. PLoS ONE 13, 1–17 (2018).
    Google Scholar 
    Liao, J., Xu, Q., Xu, H. & Huang, D. Natural farming improves soil quality and alters microbial diversity in a cabbage field in Japan. Sustain 11, 1–16 (2019).
    Google Scholar 
    Yan, J. et al. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma 319, 194–203 (2018).CAS 

    Google Scholar 
    Qiao, Q. et al. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci. Rep. 7, 1–10 (2017).
    Google Scholar 
    Pacchioni, R. G. et al. Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil. Microbiologyopen 3, 299–315 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ishaq, S. L. et al. Impact of cropping systems, soil inoculum, and plant species identity on soil bacterial community structure. Microb. Ecol. 73, 417–434 (2017).CAS 
    PubMed 

    Google Scholar 
    Verkley, G. J. M., Da Silva, M., Wicklow, D. T. & Crous, P. W. Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Stud. Mycol. 50, 323–335 (2004).
    Google Scholar 
    Thomma, B. P. H. J. Alternaria spp.: from general saprophyte to specific parasite. Mol. Plant Pathol. 4, 225–236 (2003).CAS 
    PubMed 

    Google Scholar 
    Mašínová, T. et al. Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microbiol. Ecol. 93, 1–10 (2017).
    Google Scholar 
    Chen, J., Xu, L., Liu, B. & Liu, X. Taxonomy of Dactylella complex and Vermispora. III. A new genus Brachyphoris and revision of Vermispora. Fungal Divers. 26, 127–142 (2014).Burns, K. N. et al. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features. Soil Biol. Biochem. 91, 232–247 (2015).Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl Acad. Sci. USA 111, 139–148 (2014).
    Google Scholar 
    Castañeda, L. E. & Barbosa, O. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ 5, e3098 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Coller, E. et al. Microbiome of vineyard soils is shaped by geography and management. Microbiome 7, 1–15 (2019).
    Google Scholar 
    Zhou, J. et al. Wine terroir and the soil bacteria: an amplicon sequencing–based assessment of the Barossa Valley and its sub-regions. Front. Microbiol. 11, 1–15 (2021).
    Google Scholar 
    Price, C. A. et al. Testing the metabolic theory of ecology. Ecol. Lett. 15, 1465–1474 (2012).PubMed 

    Google Scholar 
    Jenerette, G. D., Scott, R. L. & Huxman, T. E. Whole ecosystem metabolic pulses following precipitation events. Funct. Ecol. 22, 924–930 (2008).
    Google Scholar 
    Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 1–9 (2019).
    Google Scholar 
    Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D. & Kursar, T. A. Are tropical fungal endophytes hyperdiverse? Ecol. Lett. 3, 267–274 (2000).
    Google Scholar 
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1052–1053 (2014).
    Google Scholar 
    Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bintrim, S. B., Donohue, T. J., Handelsman, J., Roberts, G. P. & Goodman, R. M. Molecular phylogeny of Archaea from soil. Proc. Natl Acad. Sci. USA 94, 277–282 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon, H. M., Dodsworth, J. A. & Goodman, R. M. Crenarchaeota colonize terrestrial plant roots. Environ. Microbiol. 2, 495–505 (2000).CAS 
    PubMed 

    Google Scholar 
    Buckley, D. H., Graber, J. R. & Schmidt, T. M. Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl. Environ. Microbiol. 64, 4333–4339 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch-Osmolovskaya, L. & Schleper, C. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol. 5, 787–797 (2003).CAS 
    PubMed 

    Google Scholar 
    Kemnitz, D., Kolb, S. & Conrad, R. High abundance of Crenarchaeota in a temperate acidic forest soil. FEMS Microbiol. Ecol. 60, 442–448 (2007).CAS 
    PubMed 

    Google Scholar 
    Zhalnina, K. et al. Ca. nitrososphaera and bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front. Microbiol. 4, 1–13 (2013).
    Google Scholar 
    Barata, A., Malfeito-Ferreira, M. & Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 153, 243–259 (2012).CAS 
    PubMed 

    Google Scholar 
    Yurkov, A. M. Yeasts of the soil—obscure but precious. Yeast 35, 369–378 (2018).CAS 
    PubMed 

    Google Scholar 
    Kachalkin, A. V., Abdullabekova, D. A., Magomedova, E. S., Magomedov, G. G. & Chernov, I. Y. Yeasts of the vineyards in Dagestan and other regions. Microbiology 84, 425–432 (2015).CAS 

    Google Scholar 
    Čadež, N., Zupan, J. & Raspor, P. The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res. 10, 619–630 (2010).PubMed 

    Google Scholar 
    Comitini, F. & Ciani, M. Influence of fungicide treatments on the occurrence of yeast flora associated with wine grapes. Ann. Microbiol. 58, 489–493 (2008).
    Google Scholar 
    Kepler, R. M., Maul, J. E. & Rehner, S. A. Managing the plant microbiome for biocontrol fungi: examples from Hypocreales. Curr. Opin. Microbiol. 37, 48–53 (2017).CAS 
    PubMed 

    Google Scholar 
    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).CAS 
    PubMed 

    Google Scholar 
    Liu, D. & Howell, K. Community succession of the grapevine fungal microbiome in the annual growth cycle. Environ. Microbiol. 23, 1842–1857 (2021).CAS 
    PubMed 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Bacteria found in soil. Science 325, 320–325 (2018).
    Google Scholar 
    Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).Alonso, A. et al. Looking at the origin: Some insights into the general and fermentative microbiota of vineyard soils. Fermentation 5, 1–15 (2019).
    Google Scholar 
    OIV. Resolution OIV-VITI 655-2021. OIV recommendations about valuation and importance of microbial biodiversity in a sustainable vitiviniculture context. https://www.oiv.int/public/medias/8097/en-oiv-viti-655-2021.pdf (2021).Vishnivetskaya, T. A. et al. Commercial DNA extraction kits impact observed microbial community composition in permafrost samples. FEMS Microbiol. Ecol. 87, 217–230 (2014).CAS 
    PubMed 

    Google Scholar 
    Gobbi, A. et al. Quantitative and qualitative evaluation of the impact of the G2 enhancer, bead sizes and lysing tubes on the bacterial community composition during DNA extraction from recalcitrant soil core samples based on community sequencing and qPCR. PLoS One 14, e0200979 (2019).Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ 37, 852–857 (2018).Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems 3, e00021-18 (2018).Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).
    Google Scholar 
    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).Chen, H. VennDiagram: generate high-resolution Venn and Euler plots. R. Packag. Version 1, 1 (2018).
    Google Scholar 
    Salonen, A., Salojärvi, J., Lahti, L. & de Vos, W. M. The adult intestinal core microbiota is determined by analysis depth and health status. Clin. Microbiol. Infect. 18, 16–20 (2012).CAS 
    PubMed 

    Google Scholar 
    Martín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat. Model. 15, 134–158 (2015).
    Google Scholar 
    Oksanen, J. et al. vegan: community ecology package. R package version 2.4-3. Vienna R Found. Stat. Comput. Sch. (2016).Wright, M. N. & Ziegler, A. Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).Team, R. C. R: a language and environment for statistical computing. (2019).Henschel, A., Anwar, M. Z. & Manohar, V. Comprehensive meta-analysis of ontology annotated 16S rRNA profiles identifies beta diversity clusters of environmental bacterial communities. PLoS Comput. Biol. 11, 1–24 (2015).
    Google Scholar 
    Lozupone, C. A. et al. Meta-analyses of studies of the human microbiota. Genome Res. 23, 1704–1714 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl Acad. Sci. USA 104, 11436–11440 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pauvert, C. et al. Bioinformatics matters: the accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecol. 41, 23–33 (2019).Gobbi, A., Kyrkou, I., Filippi, E., Ellegaard-Jensen, L. & Hansen, L. H. Seasonal epiphytic microbial dynamics on grapevine leaves under biocontrol and copper fungicide treatments. Sci. Rep. 10, 681 (2020).Engelbrektson, A. et al. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J. 4, 642–647 (2010).CAS 
    PubMed 

    Google Scholar 
    Willis, A. D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 10, 2407 (2019). More

  • in

    Validation of leaf area index measurement system based on wireless sensor network

    Study areaWith the advanced observational techniques, abundant data accumulation, and ability to carry on multi-scale experiments, the Huailai Remote Sensing Station and around (for short Huailai Station), located in Huailai, Hebei province, China (40.349°N, 115.785°E), becomes one of the ideal study areas for the observation and validation of the LAI27. The Huailai Station is mainly covered by corn and some weeds. So, we mainly use LAIS to monitor the growth cycle of corn (in April 2015, we submitted an application for plant collection permission to Huailai Remote Sensing Station and obtained approval.)Huailai WSN vegetation monitoring system includes 6 sets of monitoring equipment, and its distribution is shown in Fig. 1 as follows, in which red dot represents LAIS Node, purple frame represents MODIS pixel, red frame represents observation area. The observation system is designed for the application of remote sensing pixel scale authenticity tests. The observation scale is a 1 km MODIS pixel on the pixel scale, and the actual coverage area is 2 km * 1.5 km. The six sets of equipment cover the core area of the test station and the surrounding typical growth plot, which is a good representative of the 1 km pixel scale.Figure 1Equipment distribution of WSN vegetation monitoring network in Huailai (red dot represents LAIS Node; purple frame represents the footprint of a MODIS pixel.Full size imageEach piece of equipment consists of two cameras which were only one camera with two different angles in previous work23 set up at a height of 2.5–4 m above the ground (Fig. 2), one for vertical downward observation and the other for inclined observation, which can take canopy photos regularly every day at its fixed position. The observation system obtained the photos of the corn canopy from May to August, but the corn did not grow in August. Therefore, in this study, we selected the photos taken by the vertical observation camera of the corn sample plot in the experimental station from May to July 2015.Figure 2The design of the LAIS node.Full size imageRelated work—data acquisitionData collection using LAISThe data collection complies with the plant guidelines statement: “LAI-2000 Plant Canopy Analyzer Instrution Manual” (Supplementary Information 2) (https://www.licor.com/env/, Last visit time: 21 October 2021). Existing facilities such as the high poles and the wireless sensor network in the experimental station have proved convenient for the installation of the LAI measurement system. LAIS uses the GEO001 digital serial camera that is suitable for a variety of embedded image acquisition modes. The specification of the camera includes: the total field of view is 120°, the maximum image size is 2176 * 1920 (approximately 5 million pixels), mounted at a height of 3 m, the spatial resolution at ground level is about 3 mm. The acquired image is simultaneously stored in a flash card in two formats: the JPEG format merits in less file size thus suitable for quick wireless transfer; the RAW format, which is the user data in our analysis, contains 3 channel binary image in 10 bits bit-depth. Compared to our previous work, an important new feature of this camera is the programmable cut-off filter. As we know, unlike scientific sensor which has the precise spectral response to each band, the digital camera is cheap and can only acquire the so-called RGB image. Usual digital cameras have one NIR cut-off filter to exclude the near-infrared light. The GEO001 camera, which was a commercial camera produced by Zhongshan Yunteng Photographic Equipment Co., Ltd, has two cut-off filters: one is the NIR cut-off filter, another is a blue cut-off filter. Switching on the NIR cut-off filter results in an ordinary color image as in a usual household digital camera. While the blue cut-off filter is switched on and NIR cut-off filter is switched off, near-infrared light is allowed to reach the detector array and blue light is blocked, resulting in false-color images as in Fig. 3b. Adding near-infrared light can increase illumination in the shadow area, and blocking blue light can alleviate the disturbance of sun glint, so, switching to a blue cut-off filter helps to improve the image quality when the direct sunlight is strong such as around noon time.Figure 3Three images on July 2 of site 1: (a) and (c) are true-color images obtained at 05:31 a.m. and 6:32 p.m., and (b) is a false-color image when the blue filter is removed at 1:28 p.m.Full size imageTo acquire an image in the best illumination condition and avoid the influence of rain or other unsuitable weather, the image acquisition device based on WSN was set up to acquire images three times per day: 5:30 a.m., 1:30 p.m., and 6:30 p.m. According to our experience, when the canopy is open (sparse vegetation), usually images acquired at 6:30 p.m. are the best for classification because the direct sunlight is weak; when the canopy is closed (dense vegetation), the illumination on the soil background is very poor in all time, and classification is difficult. So, the camera is programmed to switch to a blue cut-off filter when acquiring images at 1:30 p.m., while the images acquired at other times were with NIR cut-off filter, resulting in true color images, as shown in Fig. 3.LAILLW data and LAI2000 dataTo evaluate the accuracy of the improved finite length averaging method proposed in this study, a field experiment was carried out to measure LAI by manual sampling (Supplementary Information 3,4). A field sampling scheme covering the corn growing season (late May to early July) was designed (Supplementary Information 1). The LAI of corn in the experimental area was measured by the quadrat harvesting method, and the validation data of LAI of corn in each growth period were obtained. Considering the rapid growth of the corn, the sampling experiment period was set as 1 week, but due to the actual work in summer and the influence of rainfall, six effective measurements were carried out in the field experiment: May 30, June 7, June 13, June 20, July 4 and July 16.The LAILLW method, which is also known as the shape factor method, involves outdoor and indoor measurements. The formulas are:$${text{L}} = {text{S}}*{text{N}}$$
    (1)
    $${text{f}} = {{text{S}} /{left( {sumlimits_{i = 1}^m {{text{len}}*{text{wid}}} } right)}}$$
    (2)

    where L represents the leaf area index, S refers to the area of a single plant, and N refers to the number of plants in a unit area. The shape factor ƒ is the ratio of the S to the value multiplied by the length and width of all leaves in the plant.To reduce measurement errors, 10 plants were selected in the sample, and the length and width of each leaf on each corn were recorded with a ruler. To obtain the shape factor, representative corn plants were cut next to the sample (not in the image coverage area) and the true area of each leaf was obtained by software, and the shape factor was derived from this23. Through the length and width of 10 strains measured in the field, and the shape factor obtained, the total leaf area of 10 corns can be calculated, and the average leaf area of one plant is finally obtained. The LAI value under the LAILLW method is obtained.Using the difference between the solar radiation values of the upper and lower canopies, the LAI2000 canopy analyzer can obtain LAI and set up a corresponding point folder to save the measured data for subsequent collation. 10 measurement points were selected for each site, and the average value was the final result for each site. To reduce the effects of the solar altitude angle on measurement accuracy, the experiments were repeated every two hours.To make it easier to record the date of data acquisition, the data were summarized in the order day of the year (DOY). For example, 30 May 2015 is the 150th day in the year and its DOY is 150. The DOY information of data acquisition using the LAILLW method and LAI2000 is specifically shown in Table 1.Table 1 The DOY information of data acquisition using the LAILLW and LAI2000.Full size tableMODIS LAI dataMODIS leaf area index data was downloaded from the United States Geological Survey (https://modis.gsfc.nasa.gov/data/dataprod/mod15.php), named MCD15A2Hv006. It is an 8-day composite dataset with a 500-m pixel size. The algorithm chooses the best pixel available from all the acquisitions of both MODIS sensors located on NASA’s Terra and Aqua satellites from within the 8 days.In the comparison of MODIS LAI data, as the pixel of the satellite product is in 500 m resolution, it is not recommended to directly compare single node LAIS measurement with the MODIS LAI product because of the scale mismatch. Though complicated upscaling approaches have been discussed and implemented in Huailai station for other parameters28, it is not the purpose of this study So, we simply averaged the LAI in all the LAIS nodes to compare to the average MODIS LAI product in the 3 * 3 nearest pixels (1.5 km * 1.5 km), referred to as MODIS LAI_Mean in a later context, which approximately covers the area of all LAIS nodes. Time matching was carried out by selecting the date of the MODIS product closest to the date of the handheld LAI2000 measurement. The following Table 2 is obtained by taking 3 * 3 pixels closest to the LAIS Nodes.Table 2 MODIS leaf area index of 3 * 3 pixels around Huailai experimental station.Full size tableImproved LAIS methodsIn previous work, we have deployed sensors and cameras, and also have an automatic image processing and preliminary method of calculating LAI23. Figure 4 is a flow chart of our work. The previous articles focused on hardware and system implementation but did not pay much attention to performance. On this basis, we upgrade the image classification method and LAI calculation method, which will be explained in detail below.Figure 4Flow chart of leaf area index measurement system based on WSN.Full size imageImage preprocessing and classification methodsBecause of weather-related factors such as water vapor and dust or inaccurate exposure, a small number of the photographs are not clear. Besides, some of the image data cannot be decoded because of unstable communications and other factors. Therefore, it is necessary to check and select the photographs that meet the processing requirements before binary image processing. Currently, the selection process is carried out by human visual inspection based on the following principles: (1) when the canopy is open (sparse vegetation), the image at 6:30 p.m. is preferred, when the vegetation the canopy is closed (sparse vegetation), the image at 1:30 p.m. is preferred; (2) if the preferred image is not clear, other clear image acquired on the same day should be used; if all the images are not clear, then this day is marked as a failure.If we decided to use the image acquired at 1:30 p.m. It is also necessary to convert it from a false-color image to a true-color-like image (as shown in Fig. 3b) in which the leaves are shown in green color. The conversion is carried out by multiplying the vector of DN (digital number) of 3 bands with a coefficient matrix which is provided by the camera manufacturer. Another preprocessing is to choose the near nadir-view area of the image for further processing. As the off-nadir-view area of the image is subject to large geometric distortion as well as saturation of fraction of vegetation cover (FVC), they are not used in this study. The images are clipped to an ROI (region of interest) of about 2 * 2 square meters in ground area, with a maximum view zenith angle less than 30°.The study of the color spatial distributions of the crop images is helpful for the classification of the images and extraction of the image information. The color of the image pixel is the most direct and effective element that can be used to describe the image29. Because the red–green–blue (RGB) color space has the characteristic of a clear and convenient expression of information. When corn leaves are small, the crops in the fields are sparse, and most of them are soil background in the images. The soil in a lower hue is similar to the corn in terms of R and B components, while it has an overlap with the corn in G components when soil is in a higher hue. This makes it difficult to classify sparse corn scenes only by RGB space, so it is necessary to consider the characteristics of hue, luminosity, and saturation (HLS) spatial components.Statistical analysis showed that the component values of the crop leave in the RGB color space were in the ranges of G  > R and G  > B while the corresponding values for the soil follow the law that B  More

  • in

    Genetic and morphological variation of Vespa velutina nigrithorax which is an invasive species in a mountainous area

    Kim, J. K., Choi, M. B. & Moon, T. Y. Occurrence of Vespa velutina Lepeletier from Korea, and a revised key for Korean Vespa species (Hymenoptera: Vespidae). Entomol. Res. 36, 112–115 (2006).
    Google Scholar 
    Choi, M. B., Martin, S. J. & Lee, J. W. Distribution, spread, and impact of the invasive hornet Vespa velutina in South Korea. J. Asia-Pac. Entomol. 15, 473–477 (2012).
    Google Scholar 
    Do, Y. et al. Quantitative analysis of research topics and public concern on V. velutina as invasive species in Asian and European countries. Entomol. Res. 49, 456–461 (2019).
    Google Scholar 
    Kwon, O. & Choi, M. B. Interspecific hierarchies from aggressiveness and body size among the invasive alien hornet, Vespa velutina nigrithorax, and five native hornets in South Korea. PLoS ONE 15, e0226934 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Choi, M. B. Foraging behavior of an invasive alien hornet (Vespa velutina) at Apis mellifera hives in Korea: Foraging duration and success. Entomol. Res. 51, 143–148 (2021).
    Google Scholar 
    Turchi, L. & Derijard, B. Options for the biological and physical control of Vespa velutina nigrithorax (Hym.: Vespidae) in Europe: A review. J. Appl. Entomol. 142, 553–562 (2018).CAS 

    Google Scholar 
    Bessa, A. S., Carvalho, J., Gomes, A. & Santarém, F. Climate and land-use drivers of invasion: Predicting the expansion of Vespa velutina nigrithorax into the Iberian Peninsula. Insect Conserv. Divers. 9, 27–37 (2016).
    Google Scholar 
    Rodríguez-Flores, M. S., Seijo-Rodríguez, A., Escuredo, O. & del Carmen Seijo-Coello, M. Spreading of Vespa velutina in northwestern Spain: Influence of elevation and meteorological factors and effect of bait trapping on target and non-target living organisms. J. Pest Sci. 92, 557–565 (2019).
    Google Scholar 
    Robinet, C., Darrouzet, E. & Suppo, C. Spread modelling: A suitable tool to explore the role of human-mediated dispersal in the range expansion of the yellow-legged hornet in Europe. Int. J. Pest Manag. 65, 258–267 (2019).
    Google Scholar 
    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32 (1991).
    Google Scholar 
    Ellstrand, N. C. & Elam, D. R. Population genetic consequences of small population size: Implications for plant conservation. Annu. Rev. Ecol. Evol. Syst. 24, 217–242 (1993).
    Google Scholar 
    Young, A., Boyle, T. & Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11, 413–418 (1996).CAS 
    PubMed 

    Google Scholar 
    Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl. Acad. Sci. 101, 8998–9002 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dudley, R. The Biomechanics of Insect Flight: Form, Function, Evolution (Princeton University Press, 2002).
    Google Scholar 
    Porporato, M., Manino, A., Laurino, D. & Demichelis, D. Vespa velutina Lepeletier (Hymenoptera Vespidae): A first assessment 2 years after its arrival in Italy. Redia 97, 189–194 (2014).
    Google Scholar 
    Sauvard, D., Imbault, V. & Darrouzet, É. Flight capacities of yellow-legged hornet (Vespa velutina nigrithorax, Hymenoptera: Vespidae) workers from an invasive population in Europe. PLoS ONE 13, e0198597 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Monceau, K., Bonnard, O., Moreau, J. & Thiéry, D. Spatial distribution of Vespa velutina individuals hunting at domestic honeybee hives: Heterogeneity at a local scale. Insect Sci. 21, 765–774 (2014).PubMed 

    Google Scholar 
    Choi, M. B., Lee, S. A., Suk, H. Y. & Lee, J. W. Microsatellite variation in colonizing populations of yellow-legged Asian hornet, Vespa velutina nigrithorax, South Korea. Entomol. Res. 43, 208–214 (2013).
    Google Scholar 
    Jeong, J. S. et al. Tracing the invasion characteristics of the yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), in Korea using newly detected variable mitochondrial DNA sequences. J. Asia-Pac. Entomol. 24(2), 135–147 (2021).MathSciNet 

    Google Scholar 
    Villemant, C. et al. Predicting the invasion risk by the alien bee-hawking Yellow-legged hornet Vespa velutina nigrithorax across Europe and other continents with niche models. Biol. Conserv. 144, 2142–2150 (2011).
    Google Scholar 
    Kishi, S. & Goka, K. Review of the invasive yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), in Japan and its possible chemical control. Appl. Entomol. Zool. 52, 361–368 (2017).
    Google Scholar 
    Arca, M. et al. Development of microsatellite markers for the yellow-legged Asian hornet, Vespa velutina, a major threat for European bees. Conserv. Genet. Resour. 4, 283–286 (2012).
    Google Scholar 
    Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Res. 8, 103–106 (2008).
    Google Scholar 
    Peakall, P. & Smouse, R. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    Oksanen, J. et al. The vegan package. 10, 719 (2007).Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, S. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. Resour. 14, 2611–2620 (2005).CAS 

    Google Scholar 
    Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waraniak, J. M., Fisher, J. D., Purcell, K., Mushet, D. M. & Stockwell, C. A. Landscape genetics reveal broad and fine-scale population structure due to landscape features and climate history in the northern leopard frog (Rana pipiens) in North Dakota. Ecol. Evol. 9, 1041–1060 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Rohlf, F. J. tpsDig, version 2.10. http://life.bio.sunysb.edu/morph/index.html (2006).Zimmermann, G. et al. Geometric morphometrics of carapace of Macrobrachium australe (Crustacea: Palaemonidae) from Reunion Island. Acta Zool. 93, 492–500 (2012).
    Google Scholar  More

  • in

    Cultural diversity through the lenses of ecology

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Forest structure determines nest box use by Central European boreal owls

    Mikusiński, G., Roberge, J. M. & Fuller, R. J. Ecology and Conservation of Forest Birds (Cambridge University Press, 2018).Book 

    Google Scholar 
    Newton, I. The role of nest sites in limiting the numbers of hole-nesting birds: a review. Biol. Conserv. 70, 265–276. https://doi.org/10.1016/0006-3207(94)90172-4 (1994).Article 

    Google Scholar 
    Korpimäki, E. & Hakkarainen, H. The Boreal Owl: Ecology, Behaviour and Conservation of a Forest-Dwelling Predator (Cambridge University Press, 2012).Book 

    Google Scholar 
    Glutz von Blotzheim, U. N. & Bauer, K. M. Handbuch der Vögel Mitteleuropas. Band 9. (Akademische Verlagsgesellschaft, 1980).Newton, I. Population Limitation in Birds (Academic press, 1998).
    Google Scholar 
    Moning, C. & Müller, J. Environmental key factors and their thresholds for the avifauna of temperate montane forests. For. Ecol. Manag. 256, 1198–1208. https://doi.org/10.1016/j.foreco.2008.06.018 (2008).Article 

    Google Scholar 
    Walankiewicz, W., Czeszczewik, D., Stański, T., Sahel, M. & Ruczyński, I. Tree cavity resources in spruce-pine managed and protected stands of the Białowieża Forest, Poland. Nat. Areas J. 34, 423–428. https://doi.org/10.3375/043.034.0404 (2014).Article 

    Google Scholar 
    Lambrechts, M. M. et al. The design of artificial nestboxes for the study of secondary hole-nesting birds: a review of methodological inconsistencies and potential biases. Acta Ornithol. 45, 1–26. https://doi.org/10.3161/000164510X516047 (2010).Article 

    Google Scholar 
    Lambrechts, M. M. et al. Nest box design for the study of diurnal raptors and owls is still an overlooked point in ecological, evolutionary and conservation studies: a review. J. Ornithol. 153, 23–34. https://doi.org/10.1007/s10336-011-0720-3 (2012).Article 

    Google Scholar 
    Zárybnická, M., Kubizňák, P., Šindelář, J. & Hlaváč, V. Smart nest box: a tool and methodology for monitoring of cavity-dwelling animals. Methods Ecol. Evol. 7, 483–492. https://doi.org/10.1111/2041-210X.12509 (2016).Article 

    Google Scholar 
    Kubizňák, P. et al. Designing network-connected systems for ecological research and education. Ecosphere 10(6), e02761. https://doi.org/10.1002/ecs2.2761 (2019).Article 

    Google Scholar 
    Mänd, R., Tilgar, V., Lõhmus, A. & Leivits, A. Providing nest boxes for hole-nesting birds—Does habitat matter?. Biodivers. Conserv. 14, 1823–1840. https://doi.org/10.1007/s10531-004-1039-7 (2005).Article 

    Google Scholar 
    König, C. & Weick, F. Owls of the World 2nd ed. (Christopher Helm, 2008).
    Google Scholar 
    Morelli, F., Benedetti, Y., Møller, A. P. & Fuller, R. A. Measuring avian specialization. Ecol. Evol. 9, 8378–8386. https://doi.org/10.1002/ece3.5419 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ševčík, R., Riegert, J., Šťastný, K., Zárybnický, J. & Zárybnická, M. The effect of environmental variables on owl distribution in Central Europe: A case study from the Czech Republic. Ecol. Inform. 64, 101375. https://doi.org/10.1016/j.ecoinf.2021.101375 (2021).Article 

    Google Scholar 
    Brambilla, M. et al. Species interactions and climate change: How the disruption of species co-occurrence will impact on an avian forest guild. Glob. Change Biol. 26, 1212–1224. https://doi.org/10.1111/gcb.14953 (2020).ADS 
    Article 

    Google Scholar 
    Hayward, G. D., Hayward, P. H. & Garton, E. O. Ecology of boreal owl in the northern Rocky-Mountains, USA. Wildl. Monogr. 124, 3–59 (1993).
    Google Scholar 
    Zárybnická, M., Riegert, J. & Šťastný, K. The role of Apodemus mice and Microtus voles in the diet of the Tengmalm’s owl in Central Europe. Popul. Ecol. 55, 353–361. https://doi.org/10.1007/s10144-013-0367-4 (2013).Article 

    Google Scholar 
    Zárybnická, M., Sedláček, O., Salo, P., Šťastný, K. & Korpimäki, E. Reproductive responses of temperate and boreal Tengmalm’s owl Aegolius funereus populations to spatial and temporal variation in prey availability. Ibis 157, 369–383. https://doi.org/10.1111/ibi.12244 (2015).Article 

    Google Scholar 
    Mossop, D. H. The importance of old growth refugia in the Yukon boreal forest to cavity-nesting owls in Biology and Conservation of Owls of the Northern Hemisphere (eds. Duncan, J. R., Johnson, D. H. & Nicholls, T. H.) 584–586 (Forest Service General Technical Report GTR-NC-190, 1997).Domahidi, Z., Nielsen, S., Bayne, E. & Spence, J. Boreal owl (Aegolius funereus) and northern saw-whet owl (Aegolius acadicus) breeding records in managed boreal forests. Can. Field-Nat. 134, 125–131. https://doi.org/10.22621/cfn.v134i2.2146 (2020).Whitman, J. S. Diets of nesting boreal owls, Aegolius funereus, in western interior Alaska. Can. Field-Nat. 115, 476–479 (2001).
    Google Scholar 
    Whitman, J. S. Post-fledging estimation of annual productivity in boreal owls based on prey detritus mass. J. Raptor Res. 42, 58–60. https://doi.org/10.3356/JRR-06-88.1 (2008).Article 

    Google Scholar 
    Anderson, A. G. Wildfire impacts on nest provisioning and survival of Alaskan boreal owls. Master thesis, Miami University, Ohio (2017).Hayward, G. D., Steinhorst, R. K. & Hayward, P. H. Monitoring boreal owl populations with nest boxes: sample size and cost. J. Wildl. Manage. 56, 777–785. https://doi.org/10.2307/3809473 (1992).Article 

    Google Scholar 
    Koopman, M. E., McDonald, D. B. & Hayward, G. D. Microsatellite analysis reveals genetic monogamy among female boreal owls. J. Raptor Res. 41, 314–318. https://doi.org/10.3356/0892-1016(2007)41[314:MARGMA]2.0.CO;2 (2007).Article 

    Google Scholar 
    Fang, Y., Tang, S.-H., Gu, Y. & Sun, Y.-H. Conservation of Tengmalm’s owl and Sichuan wood owl in Lianhuashan Mountain, Gansu, China. Ardea 97, 649–649. https://doi.org/10.5253/078.097.0437 (2009).Article 

    Google Scholar 
    Löfgren, O., Hörnfeldt, B. & Carlsson, B. Site tenacity and nomadism in Tengmalm’s owl (Aegolius funereus (L.)) in relation to cyclic food production. Oecologia 69, 321–326. https://doi.org/10.1007/BF00377051 (1986).ADS 
    Article 
    PubMed 

    Google Scholar 
    Hörnfeldt, B. & Nyholm, N. E. I. Breeding performance of Tengmalm’s owl in a heavy metal pollution gradient. J. Appl. Ecol. 33, 377–386. https://doi.org/10.2307/2404759 (1996).Article 

    Google Scholar 
    Hipkiss, T., Hörnfeldt, B., Eklund, U. & Berlin, S. Year-dependent sex-biased mortality in supplementary-fed Tengmalm’s owl nestlings. J. Anim. Ecol. 71, 693–699. https://doi.org/10.1046/j.1365-2656.2002.t01-1-00635.x (2002).Article 

    Google Scholar 
    Hipkiss, T., Gustafsson, J., Eklund, U. & Hörnfeldt, B. Is the long-term decline of boreal owls in Sweden caused by avoidance of old boxes?. J. Raptor Res. 47, 15–20. https://doi.org/10.3356/JRR-11-91.1 (2013).Article 

    Google Scholar 
    Korpimäki, E. Selection for nest-hole shift and tactics of breeding dispersal in Tengmalm’s owl Aegolius funereus. J. Anim. Ecol. 56, 185–196. https://doi.org/10.2307/4808 (1987).Article 

    Google Scholar 
    Drdáková-Zárybnická, M. Breeding biology of the Tengmalm’s owl (Aegolius funereus) in air-pollution damaged areas of the Krušné hory Mts. Sylvia 39, 35–51 (2003).
    Google Scholar 
    Zárybnická, M., Riegert, J., Kloubec, B. & Obuch, J. The effect of elevation and habitat cover on nest box occupancy and diet composition of boreal owls Aegolius funereus. Bird Study 64, 222–231. https://doi.org/10.1080/00063657.2017.1316236 (2017).Article 

    Google Scholar 
    Zárybnická, M., Kloubec, B., Obuch, J. & Riegert, J. Fledgling productivity in relation to diet composition of Tengmalm’s owl Aegolius funereus in Central Europe. Ardeola 62, 163–171. https://doi.org/10.13157/arla.62.1.2015.163 (2015).Article 

    Google Scholar 
    Kloubec, B. Breeding of Tengmalm’s owls (Aegolius funereus) in nest-boxes in Šumava Mts.: a summary from the years 1978–2002. Buteo 13, 75–86 (2003).
    Google Scholar 
    Flousek, J. Ochrana sov v Krkonošském národním parku in Sovy 1986 (eds. Sitko, J. & Trpák, P.) 33–34 (Státní ústav památkové péče a ochrany přírody, Přerov, 1988).Ravussin, P.-A. et al. Quel avenir pour la Chouette de Tengmalm Aegolius funereus dans le massif du Jura? Bilan de trente années de suivi. Nos Oiseaux 62, 5–28 (2015).
    Google Scholar 
    Schelper, W. Zur Brutbiologie, Ernährung und Populationsdynamik des Rauhfusskauzes Aegolius funereus im Kaufunger Wald (Südniedersachsen). Vogelkundliche Berichte aus Niedersachsen 21, 33–53 (1989).
    Google Scholar 
    Schwerdtfeger, O. The dispersion dynamics of Tengmalm’s owl Aegolius funereus in Central Europe in Raptor Conservation Today (eds. Meyburg, B. U. & Chancellor, R. C.) 543–550 (World Working Group on Birds of Prey and Pica Press, 1994).Hunke, W. Versuch eine Population des Raufußkauzes Aegolius funereus durch Anbringen von Nistkästen in den Jahren 1980 bis 2010 zu fördern. Charadrius 47, 93–101 (2011).
    Google Scholar 
    Mezzavilla, F. & Lombardo, S. Indagini sulla biologia riproduttiva della civetta capogrosso Aegolius funereus: anni 1987–2012 in Atti Secondo Convegno Italiano Rapaci Diurni e Notturni Vol. 3 (eds. Mezzavilla, F. & Scarton, F.) 261–270 (Associazione Faunisti Veneti, Quaderni Faunistici, 2013).Rajković, D. Diet composition and prey diversity of Tengmalm’s owl Aegolius funereus (Linnaeus, 1758; Aves: Strigidae) in central Serbia during breeding. Turk. J. Zool. 42, 346–351. https://doi.org/10.3906/zoo-1709-28 (2018).Article 

    Google Scholar 
    Zárybnická, M., Riegert, J. & Šťastný, K. Non-native spruce plantations represent a suitable habitat for Tengmalm’s owl (Aegolius funereus) in the Czech Republic, Central Europe. J. Ornithol. 156, 457–468. https://doi.org/10.1007/s10336-014-1145-6 (2015).Article 

    Google Scholar 
    Kopáček, J. & Veselý, J. Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmos. Environ. 39, 2179–2188. https://doi.org/10.1016/j.atmosenv.2005.01.002 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Kloubec, B., Hora, J. & Šťastný, K. (eds.). Ptáci jižních Čech (Jihočeský kraj, 2015).Ševčík, R., Riegert, J., Šindelář, J. & Zárybnická, M. Vocal activity of the Central European boreal owl population in relation to varying environmental conditions. Ornis Fenn. 96, 1–12 (2019).
    Google Scholar 
    Savický, J. AM Services – Play Spectrogram Screens v. 4v7 (Czech Republic, 2009).Korpimäki, E. Diet of breeding Tengmalm’s owls Aegolius funereus: long-term changes and year-to-year variation under cyclic food conditions. Ornis Fenn. 65, 21–30 (1988).
    Google Scholar 
    Kouba, M. et al. Home range size of Tengmalm’s owl during breeding in Central Europe is determined by prey abundance. PLoS ONE 12, e0177314. https://doi.org/10.1371/journal.pone.0177314 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zárybnická, M., Sedláček, O. & Korpimäki, E. Do Tengmalm’s owls alter parental feeding effort under varying conditions of main prey availability?. J. Ornithol. 150, 231–237. https://doi.org/10.1007/s10336-008-0342-6 (2009).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).ter Braak, C. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, version 5.10. (Microcomputer Power, 2018).Kosiński, Z. & Kempa, M. Density, distribution and nest-sites of woodpeckers Picidae, in a managed forest of Western Poland. Pol. J. Ecol. 55, 519–533 (2007).
    Google Scholar 
    Miller, K. E. Nest-site limitation of secondary cavity-nesting birds in even-age southern pine forests. Wilson J. Ornithol. 122, 126–134. https://doi.org/10.1676/07-130.1 (2010).Article 

    Google Scholar 
    Sonerud, G. A. Nest hole shift in Tengmalm’s owl Aegolius funereus as defence against nest predation involving long-term memory in the predator. J. Anim. Ecol. 54, 179–192. https://doi.org/10.2307/4629 (1985).Article 

    Google Scholar 
    Sonerud, G. A. Reduced predation by pine martens on nests of Tengmalm’s owl in relocated boxes. Anim. Behav. 37, 332–334. https://doi.org/10.1016/0003-3472(89)90122-X (1989).Article 

    Google Scholar 
    Sonerud, G. A. Win – and stay, but not too long: cavity selection by boreal owls to minimize nest predation by pine marten. J. Ornithol. 162, 839–855. https://doi.org/10.1007/s10336-021-01876-y (2021).Article 

    Google Scholar 
    Korpimäki, E. Does nest-hole quality, poor breeding success or food depletion drive the breeding dispersal of Tengmalm’s owls?. J. Anim. Ecol. 62, 606–613. https://doi.org/10.2307/5382 (1993).Article 

    Google Scholar 
    Hruška, F. The boreal owl (Aegolius funereus) – breeding distribution, numbers, ringing results and notes on the breeding biology and feeding ecology of this species in the central part of the Jihlavské vrchy Hills. Crex 38, 112–150 (2020).
    Google Scholar 
    Broughton, R. et al. Nest-site competition between bumblebees (Bombidae), social wasps (Vespidae) and cavity-nesting birds in Britain and the Western Palearctic. Bird Study 62, 427–437. https://doi.org/10.1080/00063657.2015.1046811 (2015).Article 

    Google Scholar 
    Pawlikowski, T. & Pawlikowski, K. Nesting interactions of the social wasp Dolichovespula saxonica [F.] (Hymenoptera: Vespinae) in wooden nest boxes for birds in the forest reserve „Las Piwnicki” in the Chełmno Land (Northern Poland). Ecol. Quest. 13, 67–72. https://doi.org/10.2478/v10090-010-0017-9 (2010).Langowska, A., Ekner-Grzyb, A., Skórka, P., Tobółka, M. & Tryjanowski, P. Nest-site tenacity and dispersal patterns of Vespa crabro colonies located in bird nest-boxes. Sociobiology 56, 375–382 (2010).
    Google Scholar 
    Meyer, W. Mit welchem Erfolg nutzt der Rauhfusskauz Aegolius funereus (L.) Natruhölen und Nistkästen zur Brut. Vogelwelt 124, 325–331 (2003).
    Google Scholar 
    López, B. C. et al. Nest-box use by boreal owls (Aegolius funereus) in the Pyrenees Mountains in Spain. J. Raptor Res. 44, 40–49. https://doi.org/10.3356/JRR-09-32.1 (2010).ADS 
    Article 

    Google Scholar 
    Zárybnická, M., Riegert, J. & Kouba, M. Indirect food web interactions affect predation of Tengmalm’s owls Aegolius funereus nests by pine martens Martes martes according to the alternative prey hypothesis. Ibis 157, 459–467. https://doi.org/10.1111/ibi.12265 (2015).Article 

    Google Scholar 
    Zárybnická, M. & Vojar, J. Effect of male provisioning on the parental behavior of female boreal owls Aegolius funereus. Zool. Stud. 52, 36. https://doi.org/10.1186/1810-522X-52-36 (2013).Article 

    Google Scholar 
    Llambías, P. & Fernandez, G. Effects of nestboxes on the breeding biology of southern house wrens Troglodytes aedon bonariae in the southern temperate zone. Ibis 151, 113–121. https://doi.org/10.1111/j.1474-919X.2008.00868.x (2009).Article 

    Google Scholar 
    Vrezec, A. Breeding density and altitudinal distribution of the Ural, tawny, and boreal owls in North Dinaric Alps (Central Slovenia). J. Raptor Res. 37, 55–62 (2003).
    Google Scholar  More

  • in

    The Terrific Skink bite force suggests insularity as a likely driver to exceptional resource use

    Case, T. J., Bolger, D. T. & Richman, A. D. Reptilian extinctions: The last ten thousand years. In Conservation Biology (eds Fiedler, P. L. & Jain, S. K.) 91–125 (Springer, 1992).
    Google Scholar 
    Shivanna, K. R. The sixth mass extinction crisis and its impact on biodiversity and human welfare. Resonance 25, 93–109 (2020).
    Google Scholar 
    Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M. & Palmer, T. M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, (2015)Lawler, J. J. et al. Conservation science: A 20-year report card. Front. Ecol. Environ. 4, 473–480 (2006).
    Google Scholar 
    Sodhi, N. S., Brook, B. W. & Bradshaw, C. J. A. Tropical Conservation Biology (Wiley-Blackwell, 2007).
    Google Scholar 
    Scheffers, B. R., Yong, D. L., Harris, J. B. C., Giam, X. & Sodhi, N. S. The world’s rediscovered species: Back from the brink?. PLoS ONE 6, 1–8 (2011).
    Google Scholar 
    Ineich I. Bocourt’s terrific skink, Phoboscincus bocourti Brocchi, 1876 (Squamata, Scincidae, Lygosominae). In 7. Biodiversity studies in New Caledonia.Mémoires du Muséum National d’Histoire Naturelle (ed. Grancolas, P.) vol. 198, 149–174, Muséum National d’Histoire Naturelle, (2009).Holden, M. & Ineich, I. scinque terrifiant terrifié. Le Courrier de la Nat. 312, 4 (2018).
    Google Scholar 
    Sadlier, R. A., Deuss, M., Bauer, A. M. & Jourdan, H. Kuniesaurus albiauris, a new genus and species of scincid lizard from the Île des Pins, New Caledonia, with comments on the diversity and affinities of the region’s lizard fauna. Pac. Sci. 73, 123–141 (2019).Bauer, A. M. & Sadlier, R. A. Lizard discoveries and rediscoveries in the New Caledonian region. In Flores, O., Ah-Peng, C., & Wilding, N. Island Biology 2019. Third International Conference on Island Ecology, Evolution and Conservation: Book of Abstracts. Island Biology 2019, Jul 2019, Saint Denis, France. 2020. ffhal-02633975v2 243 (2019).Ineich, I., Sadlier, R. A., Bauer, A. M., Jackman, T. R. & Smith, S. A. Bocourt’s terrific skink, Phoboscincus bocourti (Brocchi, 1876), and the monophyly of the genus Phoboscincus Greer, 1974. In Zoologia Neocaledonica 8. Biodiversity studies in New Caledonia. Mémoires du Muséum National d’Histoire Naturelle (eds Guilbert, E. et al.) 69–78 Muséum National d’Histoire naturelle, (2014).
    Google Scholar 
    Caut, S., Holden, M., Jowers, M. J., Boistel, R. & Ineich, I. Is Bocourt’s terrific skink really so terrific? Trophic myth and reality. PLoS One 8, e78638 (2013).Sagonas, K. et al. Insularity affects head morphology, bite force and diet in a Mediterranean lizard. Biol. J. Linn. Soc. 112, 469–484 (2014).
    Google Scholar 
    Tseng, W.-H. et al. Opsin gene expression regulated by testosterone level in a sexually dimorphic lizard. Sci. Rep. 8, 16055 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avramo, V. et al. Evaluating the island effect on phenotypic evolution in the Italian wall lizard, Podarcis siculus (Reptilia: Lacertidae). Biol. J. Linn. Soc. 132, 655–665 (2021).
    Google Scholar 
    Siliceo-Cantero, H. H., Benítez-Malvido, J. & Suazo-Ortuño, I. Insularity effects on the morphological space and sexual dimorphism of a tropical tree lizard in western Mexico. J. Zool. 311, 277–285 (2020).
    Google Scholar 
    Pérez-Mellado, V. & Corti, C. Dietary adaptations and herbivory in lacertid lizards of the genus Podarcis from western Mediterranean islands (Reptilia: Sauria). Bonner Zool. Beiträge 44, 193–220 (1993).
    Google Scholar 
    Castilla, A. M., Vanhooydonck, B. & Catenazzi, A. Feeding behavior of the Columbretes lizard Podarcis atrata, in relation to the marine species, Ligia italica (Isopoda, Crustaceae). Belgian J. Zool. 138, 146–148 (2008).
    Google Scholar 
    Castilla, A. M. & Herrel, A. The scorpion Buthus occitanus as a profitable prey for the endemic lizard Podarcis atrata in the volcanic Columbretes islands (Mediterranean, Spain). J. Arid Environ. 73, 378–380 (2009).ADS 

    Google Scholar 
    Van Damme, R. Evolution of herbivory in lacertid lizards: Effects of insularity and body size. J. Herpetol. 33, 663 (1999).
    Google Scholar 
    Pafilis, P., Meiri, S., Foufopoulos, J. & Valakos, E. Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften 96, 1107–1113 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    D’Amore, D. C. et al. Increasing dietary breadth through allometry: Bite forces in sympatric Australian skinks. Herpetol. Notes 11, 179–187 (2018).
    Google Scholar 
    Taverne, M. et al. Proximate and ultimate drivers of variation in bite force in the insular lizards Podarcis melisellensis and Podarcis sicula. Biol. J. Linn. Soc. 131, 88–108 (2020).
    Google Scholar 
    Kingsolver, J. G. & Pfennig, D. W. Patterns and power of phenotypic selection in nature. Bioscience 57, 561–572 (2007).
    Google Scholar 
    Itescu, Y., Foufopoulos, J., Pafilis, P. & Meiri, S. The diverse nature of island isolation and its effect on land bridge insular faunas. Glob. Ecol. Biogeogr. 29, 262–280 (2020).
    Google Scholar 
    Polis, G. A. & Hurd, S. D. Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am. Nat. 147, 396–423 (1996).
    Google Scholar 
    Donihue, C. M., Brock, K. M., Foufopoulos, J. & Herrel, A. Feed or fight: Testing the impact of food availability and intraspecific aggression on the functional ecology of an island lizard. Funct. Ecol. 30, 566–575 (2016).
    Google Scholar 
    Runemark, A., Sagonas, K. & Svensson, E. I. Ecological explanations to island gigantism: Dietary niche divergence, predation, and size in an endemic lizard. Ecology 96, 2077–2092 (2015).PubMed 

    Google Scholar 
    Verwaijen, D., Van Damme, R. & Herrel, A. Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards. Funct. Ecol. 16, 842–850 (2002).
    Google Scholar 
    Herrel, A., O’Reilly, J. C. & Richmond, A. M. Evolution of bite performance in turtles. J. Evol. Biol. 15, 1083–1094 (2002).
    Google Scholar 
    Herrel, A., Vanhooydonck, B., Joachim, R. & Irschick, D. J. Frugivory in polychrotid lizards: Effects of body size. Oecologia 140, 160–168 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Vanhooydonck, B. & Van Damme, R. Omnivory in lacertid lizards: Adaptive evolution or constraint?. J. Evol. Biol. 17, 974–984 (2004).CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Podos, J., Huber, S. K. & Hendry, A. P. Bite performance and morphology in a population of Darwin’s finches: Implications for the evolution of beak shape. Funct. Ecol. 19, 43–48 (2005).
    Google Scholar 
    Herrel, A., Podos, J., Huber, S. K. & Hendry, A. P. Evolution of bite force in Darwin’s finches: A key role for head width. J. Evol. Biol. 18, 669–675 (2005).CAS 
    PubMed 

    Google Scholar 
    Aguirre, L. F., Herrel, A., Van Damme, R. & MatThysen, E. The implications of food hardness for diet in bats. Funct. Ecol. 17, 201–212 (2003).
    Google Scholar 
    Herrel, A. & Holanova, V. Cranial morphology and bite force in Chamaeleolis lizards—Adaptations to molluscivory?. Zoology 111, 467–475 (2008).PubMed 

    Google Scholar 
    Greer, A. E. Distribution of maximum snout-vent length among species of scincid lizards. J. Herpetol. 35, 383 (2001).
    Google Scholar 
    Burggren, W. W. & McMahon, B. R. Biology of the Land Crabs, Cambridge University Press, (1988).
    Google Scholar 
    Grubb, P. Ecology of terrestrial decapod crustaceans on Aldabra. Philos. Trans. R. Soc. Lond. B Biol. Sci. 260, 411–416 (1971)Wineski, L. E. & Gans, C. Morphological basis of the feeding mechanics in the shingle-back lizard Trachydosaurus rugosus (Scincidae, Reptilia). J. Morphol. 181, 271–295 (1984).CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Verstappen, M. & De Vree, F. Modulatory complexity of the feeding repertoire in scincid lizards. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 184, 501–518 (1999).Herrel, A., Aerts, P. & De Vree, F. Ecomorphology of the lizard feeding apparatus: A modelling approach. Neth. J. Zool. 48, 1–25 (1998).
    Google Scholar 
    Hartnoll, R. G. Evolution, systematics, and geographical distribution. In Biology of the Land Crabs (eds Burggren, W. W. & McMahon, B. R.) 6–54, (Cambridge University Press, 1988).
    Google Scholar 
    Ben-David, M. & Schell, D. M. Mixing models in analyses of diet using multiple stable isotopes: A response. Oecologia 127, 180–184 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Caut, S., Angulo, E. & Courchamp, F. Caution on isotopic model use for analyses of consumer diet. Can. J. Zool. 86, 438–445 (2008).CAS 

    Google Scholar 
    Warne, R. W., Gilman, C. A. & Wolf, B. O. Tissue-carbon incorporation rates in lizards: Implications for ecological studies using stable isotopes in terrestrial ectotherms. Physiol. Biochem. Zool. 83, 608–617 (2010).PubMed 

    Google Scholar 
    Steinitz, R., Lemm, J. M., Pasachnik, S. A. & Kurle, C. M. Diet-tissue stable isotope (Δ13C and Δ15N) discrimination factors for multiple tissues from terrestrial reptiles. Rapid Commun. Mass Spectrom. 30, 9–21 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lattanzio, M. & Miles, D. Stable carbon and nitrogen isotope discrimination and turnover in a small-bodied insectivorous lizard. Isot. Environ. Health Stud. 52, 673–681 (2016).CAS 

    Google Scholar 
    Durso, A. M., Smith, G. D., Hudson, S. B. & French, S. S. Stoichiometric and stable isotope ratios of wild lizards in an urban landscape vary with reproduction, physiology, space and time. Conserv. Physiol. 8, 1–14 (2020).
    Google Scholar 
    Warne, R. W. & Wolf, B. O. Nitrogen stable isotope turnover and discrimination in lizards. Rapid Commun. Mass Spectrom. 35, e9030 (2021).Aerts, P., De Vree, F. & Herrel, A. Ecomorphology of the lizard feeding apparatus: A modelling approach. Neth. J. Zool. 48, 1–25 (1997).
    Google Scholar 
    Herrel, A., Schaerlaeken, V., Meyers, J. J., Metzger, K. A. & Ross, C. F. The evolution of cranial design and performance in squamates: Consequences of skull-bone reduction on feeding behavior. Integr. Comp. Biol. 47, 107–117 (2007).PubMed 

    Google Scholar 
    Beuttner, A. & Koch, C. Analysis of diet composition and morphological characters of the Peruvian lizard Microlophus stolzmanni (Squamata: Tropiduridae). Phyllomedusa J. Herpetol. 18, 47–62 (2019).
    Google Scholar 
    Herrel, A., Aerts, P. & Vree, D. Static biting in lizards: Functional morphology of the temporal ligaments. J. Zool. 244, 135–143 (1998).
    Google Scholar 
    Greer, A. The genetic relationships of the scincid lizard genus Leiolopisma and its relatives. Aust. J. Zool. Suppl. Ser. 22, 1–67 (1974).
    Google Scholar 
    Shirley, M. H., Carr, A. N., Nestler, J. H., Vliet, K. A. & Brochu, C. A. Systematic revision of the living African slender-snouted crocodiles (Mecistops Gray, 1844). Zootaxa 4504, 151 (2018).PubMed 

    Google Scholar 
    Yoshioka, S. & Kimura, T. What does the red-eared slider eat on the tidal flats? Comparing the diet of the invasive alien species Trachemys scripta elegans inhabiting the tidal flat and freshwaters. Jpn. J. Benthol. 72, 83–93 (2018).
    Google Scholar 
    Bernal, S. & Magda, S. Análisis de los contenidos estomacales de las tortugas y cachirres de la Reserva Natural Privada de la Sociedad Civil Bojonawi (Puerto Carreño, Vichada). (Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 2020).Murphy, J. C. Homalopsid Snakes, Evolution in the Mud (Krieger Publishing Company, 2007).
    Google Scholar 
    Chen, P. Z. An observation of crab predation by a Gerard’s water snake, Gerarda prevostiana (Reptilia: Squamata: Homalopsidae) in the wild at Sungei Buloh, Singapore. Nat. Singap. 3, 195–197 (2010).
    Google Scholar 
    Jayne, B. C., Voris, H. K. & Ng, P. K. L. Snake circumvents constraints on prey size. Nature 418, 143–143 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jayne, B. C., Voris, H. K. & Ng, P. K. L. How big is too big? Using crustacean-eating snakes (Homalopsidae) to test how anatomy and behaviour affect prey size and feeding performance. Biol. J. Linn. Soc. 123, 636–650 (2018).
    Google Scholar 
    Murphy, J. C. & Voris, H. K. Aquatic snakes with crustacean-eating habits elude herpetologists for two centuries. Litt. Serpentium 22, 107–114 (2002).
    Google Scholar 
    Voris, H. K. & Murphy, J. C. The prey and predators of Homalopsine snakes. J. Nat. Hist. 36, 1621–1632 (2002).
    Google Scholar 
    Wai-Neng, L. & Melville, D. S. Notes on the feeding of Enhydris bennetti (Gray) (Reptilia, Squamata, Colubridae) in Hong Kong. Mem. Hong Kong Nat. Hist. Soc. 19, 117 (2020).
    Google Scholar 
    López-Hurtado, Y., García-Padrón, L. Y., González, A., Díaz, L. M. & Rodríguez-Cabrera, T. M. Notes on the feeding habits of the Caribbean watersnake, Tretanorhinus variabilis (Dipsadidae). Reptil. Amphib. 27, 147–153 (2020).
    Google Scholar 
    Gripshover, N. D. & Jayne, B. C. Crayfish eating in snakes: Testing how anatomy and behavior affect prey size and feeding performance. Integr. Org. Biol. 3, 1–16 (2021).
    Google Scholar 
    Naish, D. The Madagascan skink Amphiglossus eats crabs. Sci. Am. Blog Netw. https://blogs.scientificamerican.com/tetrapod-zoology/the-madagascan-skink-amphiglossus-eats-crabs/ (2016).Hediger, H. Beitrag zur herpetologie und zoogeographie Neu Britanniens und einiger umliegender gebiete. Zool. Jahrbücher. Abteilung für Syst. Geogr. und Biol. der Tiere 65, 441–582 (1934).McCoy, M. W. Reptiles of the Solomon Islands, (Pensoft Publishers, 2006).
    Google Scholar 
    Huang, W. S. Ecology and reproductive patterns of the littoral skink Emoia atrocostata on an East Asian tropical rainforest island. Zool. Stud. 50, 506–512 (2011).
    Google Scholar 
    Anderson, C. Decapod crustacean species of Aride Island, Seychelles. Phelsuma 2(12), 36–49 (1994).
    Google Scholar 
    Paulay, G. & Starmer, J. Evolution, insular restriction, and extinction of oceanic land crabs, exemplified by the loss of an endemic Geograpsus in the Hawaiian Islands. PLoS ONE 6, e19916 (2011).Cleuren, J., Aerts, P. & de Vree, F. Bite and joint force analysis in Caiman crocodilus. Belgian J. Zool. 125, 79–94 (1995).
    Google Scholar 
    Meyers, J. J., Nishikawa, K. C. & Herrel, A. The evolution of bite force in horned lizards: The influence of dietary specialization. J. Anat. 232, 214–226 (2018).PubMed 

    Google Scholar 
    Van Damme, R., De Vree, F. & Herrel, A. Sexual dimorphism of head size in Podarcis hispanica atrata: Testing the dietary divergence hypothesis by bite force analysis. Neth. J. Zool. 46, 253–262 (1995).
    Google Scholar 
    Gröning, F. et al. The importance of accurate muscle modelling for biomechanical analyses: A case study with a lizard skull. J. R. Soc. Interface 10, 1–10 (2013).
    Google Scholar 
    Vanhooydonck, B., Boistel, R., Fernandez, V. & Herrel, A. Push and bite: Trade-offs between burrowing and biting in a burrowing skink (Acontias percivali). Biol. J. Linn. Soc. 102, 91–99 (2011).
    Google Scholar 
    Handschuh, S. et al. Cranial kinesis in the miniaturised lizard Ablepharus kitaibelii (Squamata: Scincidae). J. Exp. Biol. 222, 1–15 (2019).
    Google Scholar 
    Le Guilloux, M. et al. Trade-offs between burrowing and biting force in fossorial scincid lizards?. Biol. J. Linn. Soc. 130, 310–319 (2020).
    Google Scholar 
    Herrel, A, Spithoven, L., Van Damme, R. & De Vree, F. Sexual dimorphism of head size in Gallotia galloti: Testing the niche divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–297 (1999).
    Google Scholar 
    Herrel, A., De Grauw, E. & Lemos-Espinal, J. A. Head shape and bite performance in xenosaurid lizards. J. Exp. Zool. 290, 101–107 (2001).CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Petrochic, S. & Draud, M. Sexual dimorphism, bite force and diet in the diamondback terrapin. J. Zool. 304, 217–224 (2018).
    Google Scholar  More

  • in

    Post-lockdown changes of age-specific susceptibility and its correlation with adherence to social distancing measures

    Stochastic age-specific transmission modelWe formulate a stochastic age-specific transmission model in the general Susceptible(S)-Exposed(E)-Reported(I)-Unreported(U)-Recovered(R) framework. For a particular age group (i) at time (t-1) ((i=1) corresponding to the 0–17 years, (i=2) to 18–44, (i=3) to 45–64 and (i=4) to 65+), we have$$begin{array}{l}{S}_{i}(t)= {S}_{i}(t-1)-{n}_{S{E}_{i}}(t)\ {E}_{i}(t)= {E}_{i}(t-1)+{n}_{S{E}_{i}}(t)-\ {n}_{E{I}_{i}}(t)-{n}_{E{U}_{i}}(t)\ {I}_{i}(t)= {I}_{i}(t-1)+{n}_{E{I}_{i}}(t)-{n}_{I{R}_{i}}(t)\ {U}_{i}(t)= {U}_{i}(t-1)+{n}_{E{U}_{i}}(t)-{n}_{U{R}_{i}}(t)\ {R}_{i}(t)= {R}_{i}(t-1)+{n}_{I{R}_{i}}(t)+{n}_{U{R}_{i}}(t),end{array}$$
    (1)
    where ({n}_{{XY}_{i}}(t)) represents number of transitions between a class X and class Y for age group (i) at time (t).The number of transitions from the susceptible to exposed class for group (i) at time (t) is modelled by$$begin{aligned}{n}_{S{E}_{i}}(t)&sim Poi({S}_{i}(t-1)times {gamma }_{i}(t)times \ & quad sum_{j=1}beta (t)times {c}_{j,i}(t)times {{I}_{j}(t-1)+{U}_{j}(t-1)}).end{aligned}$$
    (2)
    Here, (beta (t)) denotes the average infectiousness of an infectious individual and ({c}_{j,i}(t)) is the average number of contacts per day made by age group (j) to (i). Also note that the product (beta (t)times {c}_{j,i}(t)) may represent age-specific transmissibility (of age group (j)) accounting for contacts. We allow and infer two change points of (beta (t)) (one potentially correlates to changes due to the implementation of lockdown and another one to changes due to the lifting of lockdown), i.e.,$$beta left(tright)=left{begin{array}{ll}{beta }_{0},&quad if; tle {T}_{1}\ {beta }_{1}={omega }_{1}times {beta }_{0},&quad if ;{T}_{1}{T}_{2},end{array}right.$$
    (3)
    where ({T}_{1}) and ({T}_{2}) are the two change points to be inferred (({T}_{2}ge {T}_{1})). ({gamma }_{i}(t)) denotes the susceptibility of group (i) relative to the oldest age group (i.e., ({gamma }_{4}=1)), which is also allowed to change proportionally after lifting the lockdown. Note that ({gamma }_{i}(t)) implicitly incorporates any behavioral effects (e.g., potential reduction of risk of getting infection due to facemask wearing). Transitions between other classes are modelled as:$$begin{aligned}{n}_{E{U}_{i}}(t)sim & Bin({n}_{S{E}_{i}}(t-{D}_{EU}),{p}_{{U}_{i}}(t-{D}_{EU}))\ {n}_{E{I}_{i}}(t)=& {n}_{S{E}_{i}}(t-{D}_{EI})-{n}_{E{U}_{i}}(t)\ {n}_{I{R}_{i}}(t)=& {n}_{E{I}_{i}}(t-{D}_{IR})\ {n}_{U{R}_{i}}(t)=& {n}_{E{U}_{i}}(t-{D}_{UR}),end{aligned}$$
    (4)
    where ({D}_{EI}), ({D}_{EU}), ({D}_{IR}) and ({D}_{UR}) denote the mean waiting times between the indicated two classes. We assume that ({D}_{EI})= ({D}_{EU})=7 days and ({D}_{IR})= ({D}_{UR})=14 days. ({p}_{{U}_{i}}(t)) represents probability that an infection is unreported at times (t) for age group (i), we assume$${p}_{{U}_{i}}(t)=1-frac{{e}^{{f}_{i}(t)}}{1+{e}^{{f}_{i}(t)}}.$$
    (5)
    ({f}_{i}(.)) is an increasing function with ({f}_{i}(t)={a}_{i}+{b}_{i}times t), where (-infty More