Antennae of psychodid and sphaerocerid flies respond to a high variety of floral scent compounds of deceptive Arum maculatum L.
Raguso, R. A. Wake up and smell the roses: the ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. Syst. 39, 549–569 (2008).
Google Scholar
Knudsen, J. T., Eriksson, R., Gershenzon, J. & Ståhl, B. Diversity and distribution of floral scent. Bot. Rev. 72, 1–120 (2006).
Google Scholar
Hadacek, F. & Weber, M. Club-shaped organs as additional osmophores within the Sauromatum inflorescence: odour analysis, ultrastructural changes and pollination aspects. Plant Biol. 4, 367–383 (2002).CAS
Google Scholar
Schlumpberger, B. O. & Raguso, R. A. Geographic variation in floral scent of Echinopsis ancistrophora (Cactaceae); evidence for constraints on hawkmoth attraction. Oikos 117, 801–814 (2008).
Google Scholar
Gfrerer, E. et al. Floral scents of a deceptive plant are hyperdiverse and under population-specific phenotypic selection. Front. Plant Sci. 12, https://doi.org/10.3389/fpls.2021.719092 (2021).Primante, C. & Dötterl, S. A syrphid fly uses olfactory cues to find a non-yellow flower. J. Chem. Ecol. 36, 1207–1210 (2010).CAS
PubMed
Google Scholar
Knauer, A. C. & Schiestl, F. P. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol. Lett. 18, 135–143 (2015).CAS
PubMed
Google Scholar
Theis, N. Fragrance of Canada thistle (Cirsium arvense) attracts both floral herbivores and pollinators. J. Chem. Ecol. 32, 917–927 (2006).CAS
PubMed
Google Scholar
Bouwmeester, H., Schuurink, R. C., Bleeker, P. M. & Schiestl, F. The role of volatiles in plant communication. Plant J. 100, 892–907 (2019).CAS
PubMed
PubMed Central
Google Scholar
Schiestl, F. P. et al. Orchid pollination by sexual swindle. Nature 399, 421–422 (1999).CAS
Google Scholar
Schäffler, I. et al. Diacetin, a reliable cue and private communication channel in a specialized pollination system. Sci. Rep. 5, 1–11 (2015).
Google Scholar
Castañeda-Zárate, M., Johnson, S. D. & van der Niet, T. Food reward chemistry explains a novel pollinator shift and vestigialization of long floral spurs in an orchid. Curr. Biol. 31, 238–246 (2021).PubMed
Google Scholar
Dötterl, S., David, A., Boland, W., Silberbauer-Gottsberger, I. & Gottsberger, G. Evidence for behavioral attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated Araceae. J. Chem. Ecol. 38, 1539–1543 (2012).PubMed
Google Scholar
Maia, A. C. D. et al. The key role of 4-methyl-5-vinylthiazole in the attraction of scarab beetle pollinators: a unique olfactory floral signal shared by Annonaceae and Araceae. J. Chem. Ecol. 38, 1072–1080 (2012).CAS
PubMed
Google Scholar
Stamm, P., Etl, F., Maia, A. C. D., Dötterl, S. & Schulz, S. Synthesis, absolute configurations, and biological activities of floral scent compounds from night-blooming Araceae. J. Org. Chem. 86, 5245–5254 (2021).CAS
PubMed
Google Scholar
Jürgens, A., Wee, S. L., Shuttleworth, A. & Johnson, S. D. Chemical mimicry of insect oviposition sites: a global analysis of convergence in angiosperms. Ecol. Lett. 16, 1157–1167 (2013).PubMed
Google Scholar
Zito, P., Sajeva, M., Raspi, A. & Dötterl, S. Dimethyl disulfide and dimethyl trisulfide: so similar yet so different in evoking biological responses in saprophilous flies. Chemoecology 24, 261–267 (2014).CAS
Google Scholar
El-Sayed, A. M. The Pherobase: database of pheromones and semiochemicals. https://www.pherobase.com (2021).Kite, G. C. The floral odour of Arum maculatum. Biochem. Syst. Ecol. 23, 343–354 (1995).CAS
Google Scholar
Chartier, M., Pélozuelo, L. & Gibernau, M. Do floral odor profiles geographically vary with the degree of specificity for pollinators? Investigation in two sapromyophilous Arum species (Araceae). Ann. Soc. Entomol. Fr. 47, 71–77 (2011).
Google Scholar
Chartier, M., Pélozuelo, L., Buatois, B., Bessière, J. M. & Gibernau, M. Geographical variations of odour and pollinators, and test for local adaptation by reciprocal transplant of two European Arum species. Funct. Ecol. 27, 1367–1381 (2013).
Google Scholar
Marotz-Clausen, G. et al. Incomplete synchrony of inflorescence scent and temperature patterns in Arum maculatum L. (Araceae). Phytochemistry 154, 77–84 (2018).Szenteczki, M. A. et al. Spatial and temporal heterogeneity in pollinator communities maintains within-species floral odour variation. Oikos 130, 1487–1499 (2021).
Google Scholar
Espíndola, A., Pellissier, L. & Alvarez, N. Variation in the proportion of flower visitors of Arum maculatum along its distributional range in relation with community-based climatic niche analyses. Oikos 120, 728–734 (2011).
Google Scholar
Laina, D. et al. Local insect availability partly explains geographical differences in floral visitor assemblages of Arum maculatum L. (Araceae). Front. Plant Sci. 13, https://doi.org/10.3389/fpls.2022.838391 (2022).Tonnoir, A. L. A synopsis of the British Psychodidae (Dipt.) with descriptions of new species. Trans. Soc. Br. Entomol. 7, 21–64 (1940).Roháček, J., Beck-Haug, I. & Dobat, K. Sphaeroceridae associated with flowering Arum maculatum (Araceae) in the vicinity of Tübingen, SW-Germany (Insecta: Diptera). Senckenb. Biol. 71, 259–268 (1990).
Google Scholar
Sayers, T. D. J., Steinbauer, M. J., Farnier, K. & Miller, R. E. Dung mimicry in Typhonium (Araceae): explaining floral trait and pollinator divergence in a widespread species complex and a rare sister species. Bot. J. Linn. Soc. 193, 375–401 (2020).
Google Scholar
Gibernau, M., Macquart, D. & Przetak, G. Pollination in the genus Arum: a review. Aroideana 27, 148–166 (2004).
Google Scholar
Kakishima, S. & Okuyama, Y. Pollinator assemblages of Arisaema heterocephalum subsp. majus (Araceae), a critically endangered species endemic to Tokunoshima Island, Central Ryukyus. Bull. Natl. Mus. Nat. Sci., Ser. B 44, 173–179 (2018).Urru, I. et al. Pollination strategies in Cretan Arum lilies. Biol. J. Linn. Soc. 101, 991–1001 (2010).
Google Scholar
Diaz, A. & Kite, G. C. A comparison of the pollination ecology of Arum maculatum and Arum italicum in England. Watsonia 24, 171–181 (2002).
Google Scholar
Lack, A. J. & Diaz, A. The pollination of Arum maculatum L.: a historical review and new observations. Watsonia 18, 333–342 (1991).Kite, G. C. et al. Inflorescence odours and pollinators of Arum and Amorphophallus (Araceae). in Reproductive Biology (eds. Owens, S. J. & Rudall, P. J.) 295–315 (Kew Royal Botanic Gardens, 1998).Laurence, B. R. The larval inhabitants of cow pats. J. Anim. Ecol. 23, 234–260 (1954).
Google Scholar
Wagner, R. Zur Kenntnis der Psychodidenfauna des Allgäus. Nachrichtenblatt der Bayer. Entomol. 26, 23–28 (1977).
Google Scholar
Satchell, G. H. The ecology of the British species of Psychoda (Diptera: Psychodidae). Ann. Appl. Biol. 34, 611–621 (1947).CAS
PubMed
Google Scholar
Withers, P. & O’Connor, J. P. A preliminary account of the Irish species of moth fly (Diptera: Psychodidae). Proc. R. Ir. Acad. B. 92, 61–77 (1992).
Google Scholar
Dormont, L., Jay-Robert, P., Bessière, J. M., Rapior, S. & Lumaret, J. P. Innate olfactory preferences in dung beetles. J. Exp. Biol. 213, 3177–3186 (2010).CAS
PubMed
Google Scholar
Sládeček, F. X. J., Dötterl, S., Schäffler, I., Segar, S. T. & Konvicka, M. Succession of dung-inhabiting beetles and flies reflects the succession of dung-emitted volatile compounds. J. Chem. Ecol. 47, 433–443 (2021).PubMed
Google Scholar
Scheven, H. J. GC/MS Untersuchungen des Appendixduftes blühender Pflanzen von Arum maculatum L. und Arum italicum MILLER; Nachweis der attraktiven Wirkung der Duftbestandteile Indol, Humulen und p-Kresol auf Psychoda phalaenoides L. (Philipps-Universität Marburg, 1994).Schiestl, F. P. & Marion-Poll, F. Detection of physiologically active flower volatiles using gas chromatography coupled with electroantennography. in Analysis of Taste and Aroma (eds. Jackson, J. F. & Linskens, H. F.) 173–198 (Springer Berlin Heidelberg, 2002).Jhumur, U. S., Dötterl, S. & Jürgens, A. Electrophysiological and behavioural responses of mosquitoes to volatiles of Silene otites (Caryophyllaceae). Arthropod. Plant. Interact. 1, 245–254 (2007).
Google Scholar
Heiduk, A. et al. Ceropegia sandersonii mimics attacked honeybees to attract kleptoparasitic flies for pollination. Curr. Biol. 26, 1–7 (2016).
Google Scholar
Suinyuy, T. N., Donaldson, J. S. & Johnson, S. D. Geographical matching of volatile signals and pollinator olfactory responses in a cycad brood-site mutualism. Proc. R. Soc. B Biol. Sci. 282, (2015). http://doi.org/10.1098/rspb.2015.2053Dötterl, S. et al. Nursery pollination by a moth in Silene latifolia: The role of odours in eliciting antennal and behavioural responses. New Phytol. 169, 707–718 (2005).
Google Scholar
Schiestl, F. P. et al. The chemistry of sexual deception in an orchid-wasp pollination system. Science 80(302), 437–438 (2003).
Google Scholar
Stensmyr, M. C. et al. Rotting smell of dead-horse arum florets. Nature 420, 625–626 (2002).CAS
PubMed
Google Scholar
Lukas, K., Harig, T., Schulz, S., Hadersdorfer, J. & Dötterl, S. Flowers of European pear release common and uncommon volatiles that can be detected by honey bee pollinators. Chemoecology 29, 211–223 (2019).
Google Scholar
Bermadinger-Stabentheiner, E. & Stabentheiner, A. Dynamics of thermogenesis and structure of epidermal tissues in inflorescences of Arum maculatum. New Phytol. 131, 41–50 (1995).PubMed
Google Scholar
Dötterl, S., Füssel, U., Jürgens, A. & Aas, G. 1,4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J. Chem. Ecol. 31, 2993–2998 (2005).PubMed
Google Scholar
Dötterl, S. et al. Linalool and lilac aldehyde/alcohol in flower scents. Electrophysiological detection of lilac aldehyde stereoisomers by a moth. J. Chromatogr. A 1113, 231–238 (2006).Brandt, K. et al. Subtle chemical variations with strong ecological significance: stereoselective responses of male orchid bees to stereoisomers of carvone epoxide. J. Chem. Ecol. 45, 464–473 (2019).CAS
PubMed
Google Scholar
Zito, P., Dötterl, S. & Sajeva, M. Floral volatiles in a sapromyiophilous plant and their importance in attracting house fly pollinators. J. Chem. Ecol. 41, 340–349 (2015).CAS
PubMed
Google Scholar
Kováts, E. & Weisz, P. Über den Retentionsindex und seine Verwendung zur Aufstellung einer Polaritätsskala für Lösungsmittel. Berichte der Bunsengesellschaft für Phys. Chem. 69, 812–820 (1965).
Google Scholar
Dougherty, M. J., Guerin, P. M., Ward, R. D. & Hamilton, J. G. C. Behavioural and electrophysiological responses of the phlebotomine sandfly Lutzomyia longipalpis (Diptera: Psychodidae) when exposed to canid host odour kairomones. Physiol. Entomol. 24, 251–262 (1999).CAS
Google Scholar
Sant’Ana, A. L., Eiras, A. E. & Cavalcante, R. R. Electroantennographic responses of the Lutzomyia (Lutzomyia) longipalpis (Lutz and Neiva) (Diptera: Psychodidae) to 1-octen-3-ol. Neotrop. Entomol. 31, 13–17 (2002).Adams, R. P. Identification of essential oil components by gas chromatography/mass spectrometry. (Allured Publishing Corporation, 2007).Johnson, S. D. & Jürgens, A. Convergent evolution of carrion and faecal scent mimicry in fly-pollinated angiosperm flowers and a stinkhorn fungus. S. Afr. J. Bot. 76, 796–807 (2010).CAS
Google Scholar
Thakeow, P., Angeli, S., Weißbecker, B. & Schütz, S. Antennal and behavioral responses of Cis boleti to fungal odor of Trametes gibbosa. Chem. Senses 33, 379–387 (2008).CAS
PubMed
Google Scholar
Junker, R. R. & Blüthgen, N. Floral scents repel facultative flower visitors, but attract obligate ones. Ann. Bot. 105, 777–782 (2010).PubMed
PubMed Central
Google Scholar
Junker, R. R. & Tholl, D. Volatile organic compound mediated interactions at the plant-microbe interface. J. Chem. Ecol. 39, 810–825 (2013).CAS
PubMed
Google Scholar
Abraham, J. et al. Behavioral and antennal responses of Drosophila suzukii (Diptera: Drosophilidae) to volatiles from fruit extracts. Environ. Entomol. 44, 356–367 (2015).CAS
PubMed
Google Scholar
Stökl, J. et al. Scent variation and hybridization cause the displacement of a sexually deceptive orchid species. Am. J. Bot. 95, 472–481 (2008).PubMed
Google Scholar
Salamanca, J., Souza, B., Lundgren, J. G. & Rodriguez-Saona, C. From laboratory to field: electro-antennographic and behavioral responsiveness of two insect predators to methyl salicylate. Chemoecology 27, 51–63 (2017).CAS
Google Scholar
Revel, N., Alvarez, N., Gibernau, M. & Espíndola, A. Investigating the relationship between pollination strategies and the size-advantage model in zoophilous plants using the reproductive biology of Arum cylindraceum and other European Arum species as case studies. Arthropod. Plant. Interact. 6, 35–44 (2012).
Google Scholar More