Transgenerational effects of grandparental and parental diets combine with early-life learning to shape adaptive foraging phenotypes in Amblyseius swirskii
Avital, E. & Jablonka, E. Animal Traditions: Behavioural Inheritance in Evolution. (Cambridge University Press, 2000).Bonduriansky, R. & Day, T. Nongenetic inheritance and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst. 40, 103–125 (2009).
Google Scholar
Mousseau, T. A. & Fox, C. W. Maternal Effects as Adaptations. (Oxford University Press, 1998).Mousseau, T. A. & Fox, C. W. The adaptive significance of maternal effects. Trends Ecol. Evol. 13, 403–407 (1998b).CAS
PubMed
Google Scholar
Jablonka, E. & Lamb, M. J. Evolution in four dimensions. Genetic, Epigenetic, Behavioral and Symbolic Variation in the History of Life. Revised Edition. (MIT Press, 2014).Uller, T. Developmental plasticity and the evolution of parental effects. Trends Ecol. Evol. 23, 432–438 (2018).
Google Scholar
Bell, A. M. & Hellmann, J. K. An integrative framework for understanding the mechanisms and multigenerational consequences of transgenerational plasticity. Annu. Rev. Ecol. Evol. Syst. 50, 97–118 (2019).
Google Scholar
Marshall, D. J. & Uller, T. When is a maternal effect adaptive? Oikos 116, 1957–1963 (2007).
Google Scholar
Yin, J., Zhou, M., Lin, Z., Li, Q. Q. & Zhang, Y.-Y. Transgenerational effects benefit offspring across diverse environments: a meta-analysis in plants and animals. Ecol. Lett. 22, 1976–1986 (2019).PubMed
Google Scholar
Wolf, J. B. & Wade, M. J. What are maternal effects (and what are they not)? Philos. Trans. R. Soc. B 364, e1115 (2008).
Google Scholar
Kilner, R. M. et al. Parental effects alter the adaptive value of an adult behavioural trait. eLife 4, e07340 (2015).PubMed
PubMed Central
Google Scholar
McNamara, J. M., Dall, S. R. X., Hammerstein, P. & Leimar, O. Detection vs. selection: integration of genetic, epigenetic and environmental cues in fluctuating environments. Ecol. Lett. 19, 1267–1276 (2016).PubMed
Google Scholar
Deas, J. B., Blondel, L. & Extavour, C. G. Ancestral and offspring nutrition interact to affect life-history traits in Drosophila melanogaster. Proc. R. Soc. B 286, 20182778 (2019).CAS
PubMed
PubMed Central
Google Scholar
Stamps, J. A. & Bell, A. M. Combining information from parental and personal experiences: simple processes generate diverse outcomes. PLoS ONE 16, e0250540 (2021).CAS
PubMed
PubMed Central
Google Scholar
Agrawal, A. A., Laforsch, C. & Tollrian, R. Transgenerational induction of defences in animals and plants. Nature 401, 60–63 (1999).CAS
Google Scholar
Remy, J. J. Stable inheritance of an acquired behavior in Caenorhabditis elegans. Curr. Biol. 20, R877–R878 (2010).CAS
PubMed
Google Scholar
Shama, L. N. S. & Wegner, K. M. Grandparental effects in marine sticklebacks: transgenerational plasticity across multiple generations. J. Evol. Biol. 27, 2297–2307 (2014).CAS
PubMed
Google Scholar
Crocker, K. C. & Hunter, M. D. Environmental causes and transgenerational consequences of ecdysteroid hormone provisioning in Acheta domesticus. J. Insect Physiol. 109, 69–78 (2018).CAS
PubMed
Google Scholar
Sarker, G. & Peleg-Raibstein, D. Maternal overnutrition induces long-term cognitive deficits across several generations. Nutrients 11, 7 (2019).CAS
Google Scholar
Hellmann, J. K., Carlsson, E. R. & Bell, A. M. Sex-specific plasticity across generations II: grandpaternal effects are lineage specific and sex specific. J. Anim. Ecol. 89, 2800–2819 (2020).PubMed
PubMed Central
Google Scholar
Mahaq, O. The effects of dietary edible bird nest supplementation on learning and memory functions of multigenerational mice. Brain Behav. 10, e01817 (2020).PubMed
PubMed Central
Google Scholar
Ranade, S. C. et al. Different types of nutritional deficiencies affect different domains of spatial memory function checked in a radial arm maze. Neuroscience 152, 859–866 (2008).CAS
PubMed
Google Scholar
De Souza, A. S., Fernandes, F. S., do Carmo, T. & das Gracas, M. Effects of maternal malnutrition and postnatal nutritional rehabilitation on brain fatty acids, learning, and memory. Nutr. Rev. 69, 132–144 (2011).PubMed
Google Scholar
Munch, K. L. et al. Maternal effects impact decision-making in a viviparous lizard. Biol. Lett. 14, 20170556 (2018).PubMed
PubMed Central
Google Scholar
Li, C. et al. The learning ability and memory retention of broiler breeders: 2 transgenerational effects of reduced balanced protein diet on reward-based learning. Animal 13, 1260–1268 (2019).CAS
PubMed
Google Scholar
Boogert, N. J., Zimmer, C. & Spencer, K. A. Pre- and post-natal stress have opposing effects on social information use. Biol. Lett. 9, 20121088 (2013).PubMed
PubMed Central
Google Scholar
Xia, S.-Z., Liu, L., Feng, C.-H. & Guo, A.-K. Nutritional effects on operant visual learning in Drosophila melanogaster. Physiol. Behav. 62, 263–271 (1997).CAS
PubMed
Google Scholar
Eaton, L., Edmonds, E. J., Henry, T. B., Snellgrove, D. L. & Sloman, K. A. Mild maternal stress disrupts associative learning and increases aggression in offspring. Horm. Behav. 71, 10–15 (2015).CAS
PubMed
Google Scholar
Costa, C. P. et al. Care-giver identity impacts offspring development and performance in an annually social bumble bee. BMC Ecol. Evol. 21, 20 (2021).PubMed
PubMed Central
Google Scholar
Roche, D. P., McGhee, K. E. & Bell, A. M. Maternal predator-exposure has lifelong consequences for offspring learning in three-spined sticklebacks. Biol. Lett. 8, 932–935 (2012).PubMed
PubMed Central
Google Scholar
Feng, S., McGhee, K. E. & Bell, A. M. Effect of maternal predator exposure on the ability of stickleback offspring to generalize a learned colour-reward association. Anim. Behav. 107, 61–69 (2015).PubMed
PubMed Central
Google Scholar
Ghio, S. C., Leblanc, A. B., Audet, C. & Aubin-Horth, N. Effects of maternal stress and cortisol exposure at the egg stage on learning, boldness and neophobia in brook trout. Behaviour 153, 1639–1663 (2016).
Google Scholar
Tariel, J., Plenet, S. & Luquet, E. How do developmental and parental exposures to predation affect personality and immediate behavioural plasticity in the snail Physa acuta? Proc. R. Soc. B 287, 20201761 (2020).PubMed
PubMed Central
Google Scholar
Dinh, H. et al. Transgenerational effects of parental diet on offspring development and disease resistance in flies. Front. Ecol. Evol. 9, 606993 (2021).
Google Scholar
Bilkó, A., Altbäcker, V. & Hudson, R. Transmission of food preference in the rabbit: The means of information transfer. Physiol. Behav. 56, 907–912 (1994).PubMed
Google Scholar
Oostindjer, M., Bolhuis, J. E., van den Brand, H., Roura, E. & Kemp, B. Prenatal flavor exposure affects growth, health and behavior of newly weaned piglets. Physiol. Behav. 99, 579–586 (2010).CAS
PubMed
Google Scholar
Wells, D. L. & Hepper, P. G. Prenatal olfactory learning in the domestic dog. Anim. Behav. 72, 681–686 (2006).
Google Scholar
Hepper, P. G. Fetal memory: does it exist? What does it do? Acta Paediatr. 85, 16–20 (1996).
Google Scholar
Gowri, V., Dion, E., Viswanath, A., Monteiro Piel, F. & Monteiro, A. Transgenerational inheritance of learned preferences for novel host plant odors in Bicyclus anynana butterflies. Evolution 73, 2401–2414 (2019).CAS
PubMed
Google Scholar
Peralta-Quesada, P. C. & Schausberger, P. Prenatal chemosensory learning by the predatory mite Neoseiulus californicus. PLoS ONE 7, e53229 (2012).PubMed
PubMed Central
Google Scholar
Nieberding, C. M., van Dyck, H. & Chittka, L. Adaptive learning in non-social insects: from theory to field work, and back. Curr. Opin. Insect Sci. 27, 75–81 (2018).PubMed
Google Scholar
Momen, F. M. & El Saway, S. A. Biology and fee18lopemenviour of the predatory mite Amblyseius swirskii (Acari: Phytoseiidae). Acarologia 33, 199–204 (1993).
Google Scholar
Wimmer, D., Hoffmann, D. & Schausberger, P. Prey suitability of Western flower thrips, Frankliniella occidentalis, and onion thrips, Thrips tabaci, for the predatory mite Amblyseius swirskii. Biocontrol Sci. Technol. 18, 533–542 (2008).
Google Scholar
Vangansbeke, D. et al. Supplemental food for Amblyseius swirskii in the control of thrips: feeding friend or foe? Pest Manag. Sci. 72, 466–473 (2016).CAS
PubMed
Google Scholar
Delisle, J. F., Brodeur, J. & Shipp, L. Evaluation of various types of supplemental food for two species of predatory mites, Amblyseius swirskii and Neoseiulus cucumeris (Acari: Phytoseiidae). Exp. Appl. Acarol. 65, 483–494 (2015).CAS
PubMed
Google Scholar
Christiansen, I. C., Szin, S. & Schausberger, P. Benefit-cost trade-offs of early learning in foraging predatory mites Amblyseius swirskii. Sci. Rep. 6, 23571 (2016).CAS
PubMed
PubMed Central
Google Scholar
Schausberger, P., Davaasambuu, U., Saussure, S. & Christiansen, I. C. Categorizing experience-based foraging plasticity in mites: age dependency, primacy effects and memory persistence. R. Soc. Open Sci. 5, 172110 (2018).PubMed
PubMed Central
Google Scholar
Seiter, M. & Schausberger, P. Constitutive and operational variation of learning in foraging predatory mites. PLoS ONE 11, e0166334 (2016).PubMed
PubMed Central
Google Scholar
Schausberger, P., Seiter, M. & Raspotnig, G. Innate and learned responses of foraging predatory mites to polar and non-polar fractions of thrips’ chemical cues. Biol. Control 151, 104371 (2020).CAS
Google Scholar
Seiter, M. & Schausberger, P. Maternal intraguild predation risk affects offspring anti-predator behavior and learning in mites. Sci. Rep. 5, 15046 (2015).CAS
PubMed
PubMed Central
Google Scholar
Williams, Z. M. Transgenerational influence of sensorimotor training on offspring behavior and its neural basis in Drosophila. Neurobiol. Learn. Mem. 131, 166–175 (2016).PubMed
Google Scholar
Jahanbazi, M., Sedaratian-Jahromi, A. & Ghane-Jahromi, M. Comparative study of predation, preference and switching behaviors of two predatory mite Neoseiulus californicus and Amblyseius swirskii (Acari: Phytoseiidae). Int. J. Pest Manag. https://doi.org/10.1080/09670874.2021.1944699 (2021).Margulies, C., Tully, T. & Dubnau, J. Deconstructing memory in Drosophila. Curr. Biol. 15, R700–R713 (2005).CAS
PubMed
PubMed Central
Google Scholar
Mery, F. & Kawecki, T. J. A cost of long-term memory in Drosophila. Science 308, 1148 (2005).CAS
PubMed
Google Scholar
Schausberger, P., Walzer, A., Hoffmann, D. & Rahmani, H. Food imprinting revisited: early learning in foraging predatory mites. Behaviour 147, 883–897 (2010).
Google Scholar
Schausberger, P. & Peneder, S. Non-associative versus associative learning by foraging predatory mites. BMC Ecol. 17, 2 (2017).PubMed
PubMed Central
Google Scholar
Stephens, D. W. & Krebs, J. R. Foraging Theory. (Princeton University Press, 1986).Mendel, D. & Schausberger, P. Diet-dependent intraguild predation between the predatory mites Neoseiulus californicus and Neoseiulus cucumeris. J. Appl. Entomol. 135, 311–319 (2011).
Google Scholar
Somer, R. A. & Thummel, C. S. Epigenetic inheritance of metabolic state. Curr. Opin. Genet. Dev. 27, 43–47 (2014).CAS
PubMed
Google Scholar
Bonduriansky, R. & Crean, A. J. What are condition-transfer effects and how can they be detected? Methods Ecol. Evol. 9, 450–456 (2018).
Google Scholar
Engqvist, L. & Reinhold, K. Adaptive parental effects and how to estimate them: a comment to Bonduriansky and Crean. Methods Ecol. Evol. 9, 457–459 (2018).
Google Scholar
Melis, R. et al. Effect of freezing and drying processes on the molecular traits of edible yellow mealworm. Innov. Food Sci. Emerg. Technol. 48, 138–149 (2018).CAS
Google Scholar
Singh, Y., Cullere, M., Kovitvadhi, A., Chundang, P. & Dalle Zotte, A. Effect of different killing methods on physicochemical traits, nutritional characteristics, in vitro human digestibility and oxidative stability during storage of the house cricket (Acheta domesticus L.). Innov. Food Sci. Emerg. Technol. 65, 102444 (2020).CAS
Google Scholar
Grafen, A. On the uses of data on lifetime reproductive success. Philos. Trans. R. Soc. B 363, 1635–1645 (1988).
Google Scholar
Monaghan, P. Early growth conditions, phenotypic development and environmental change. Philos. Trans. R. Soc. B 363, 1635–1645 (2008).
Google Scholar
English, S., Fawcett, T. W., Higginson, A. D., Trimmer, P. C. & Uller, T. Adaptive use of information during growth can explain long-term effects of early life experiences. Am. Nat. 187, 620–632 (2016).PubMed
Google Scholar
Miller, R. R. & Polack, C. W. Sources of maladaptive behavior in ‘normal’ organisms. Behav. Process. 154, 4–12 (2018).
Google Scholar
Schausberger, P. Inter-and intraspecific predation on immatures by adult females in Euseius finlandicus, Typhlodromus pyri and Kampimodromus aberrans (Acari, Phytoseiidae). Exp. Appl. Acarol. 21, 131–150 (1997).
Google Scholar
Walzer, A. & Schausberger, P. Non-consumptive effects of predatory mites on thrips and its host plant. Oikos 118, 934–940 (2009).
Google Scholar
Walzer, A., Paulus, H. & Schausberger, P. Ontogenetic shifts in intraguild predation on thrips by phytoseiid mites: the relevance of body size and diet specialization. Bull. Entomol. Res. 94, 577–588 (2004).CAS
PubMed
Google Scholar
Vangansbeke, D., Duarte, M. V. A. & De Clercq, P. Cold-born killers: exploiting temperature-size rule enhances predation capacity of a predatory mite. Pest Manag. Sci. 76, 1841–1846 (2020).CAS
PubMed
Google Scholar
Krantz, G. W. & Walter, D. E. A Manual of Acarology 3rd edn (Texas Tech University Press, 2008).Croft, B. A., Luh, H.-K. & Schausberger, P. Larval size relative to larval feeding, cannibalism of larvae, egg or adult female size and larval–adult setal patterns among 13 phytoseiid mite species. Exp. Appl. Acarol. 23, 599–610 (1999).
Google Scholar More