Long-distance, synchronized and directional fall movements suggest migration in Arctic hares on Ellesmere Island (Canada)
Jeltsch, F. et al. Integrating movement ecology with biodiversity research—Exploring new avenues to address spatiotemporal biodiversity dynamics. Mov. Ecol. 1, 6 (2013).PubMed
PubMed Central
Google Scholar
Dingle, H. Migration: The Biology of Life on the Move Migration (Oxford University Press, 2014).Joly, K. et al. Longest terrestrial migrations and movements around the world. Sci. Rep. 9, 15333 (2019).ADS
PubMed
PubMed Central
Google Scholar
Lundberg, J. & Moberg, F. Mobile link organisms and ecosystem functioning: Implications for ecosystem resilience and management. Ecosystems 6, 0087–0098 (2003).
Google Scholar
Bauer, S. & Hoye, B. J. Migratory animals couple biodiversity and ecosystem functioning worldwide. Science 344, 1242552 (2014).CAS
PubMed
Google Scholar
Nifong, J. C., Layman, C. A. & Silliman, B. R. Size, sex and individual-level behaviour drive intrapopulation variation in cross-ecosystem foraging of a top-predator. J. Anim. Ecol. 84, 35–48 (2015).PubMed
Google Scholar
Giroux, M.-A. et al. Benefiting from a migratory prey: Spatio-temporal patterns in allochthonous subsidization of an arctic predator. J. Anim. Ecol. 81, 533–542 (2012).PubMed
Google Scholar
Allen, A. M. & Singh, N. J. Linking movement ecology with wildlife management and conservation. Front. Ecol. Evol. 3, 155 (2016).
Google Scholar
Bunnefeld, N. et al. A model-driven approach to quantify migration patterns: Individual, regional and yearly differences. J. Anim. Ecol. 80, 466–476 (2011).PubMed
Google Scholar
Teitelbaum, C. S. & Mueller, T. Beyond migration: Causes and consequences of nomadic animal movements. Trends Ecol. Evol. 34, 569–581 (2019).PubMed
Google Scholar
Berg, J. E., Hebblewhite, M., St. Clair, C. C. & Merrill, E. H. Prevalence and mechanisms of partial migration in ungulates. Front. Ecol. Evol. 7, 325 (2019).
Google Scholar
Avgar, T., Street, G. & Fryxell, J. M. On the adaptive benefits of mammal migration. Can. J. Zool. 92, 481–490 (2014).
Google Scholar
Barbour, M. G. & Billings, W. D. North American Terrestrial Vegetation (Cambridge University Press, 2000).
Google Scholar
Smith, S. L., Throop, J. & Lewkowicz, A. G. Recent changes in climate and permafrost temperatures at forested and polar desert sites in northern Canada. Can. J. Earth Sci. 49, 914–924 (2012).ADS
Google Scholar
Lévesque, E. Plant Distribution and Colonization in Extreme Polar Deserts, Ellesmere Island, Canada (University of Toronto, 1997).
Google Scholar
Bliss, L. C., Svoboda, J. & Bliss, D. I. Polar deserts, their plant cover and plant production in the Canadian High Arctic. Holarctic Ecol. 7, 305–324 (1984).
Google Scholar
Berteaux, D. et al. Effects of changing permafrost and snow conditions on tundra wildlife: Critical places and times. Arctic Sci. 3, 65–90 (2017).
Google Scholar
Duchesne, D., Gauthier, G. & Berteaux, D. Habitat selection, reproduction and predation of wintering lemmings in the Arctic. Oecologia 167, 967–980 (2011).ADS
PubMed
Google Scholar
Fuglei, E., Blanchet, M.-A., Unander, S., Ims, R. A. & Pedersen, Å. Ø. Hidden in the darkness of the Polar night: A first glimpse into winter migration of the Svalbard rock ptarmigan. Wildl. Biol. 2017, SP1 (2017).
Google Scholar
Schmidt, N. M. et al. Ungulate movement in an extreme seasonal environment: Year-round movement patterns of high-arctic muskoxen. Wildl. Biol. 22, 253–267 (2016).
Google Scholar
Berteaux, D. & Lai, S. Walking on water: Terrestrial mammal migrations in the warming Arctic. Anim. Migr. 8, 65–73 (2021).
Google Scholar
Gnanadesikan, G. E., Pearse, W. D. & Shaw, A. K. Evolution of mammalian migrations for refuge, breeding, and food. Ecol. Evol. 7, 5891–5900 (2017).PubMed
PubMed Central
Google Scholar
Best, T. L. & Henry, T. H. Lepus arcticus. Mamm. Species 1–9 (1994).Dalerum, F. et al. Exploring the diet of arctic wolves (Canis lupus arctos) at their northern range limit. Can. J. Zool. 96, 277–281 (2018).
Google Scholar
Mech, L. D. Annual arctic wolf pack size related to arctic hare numbers. Arctic 60, 309–311 (2007).
Google Scholar
Small, R. J., Keith, L. B. & Barta, R. M. Demographic responses of Arctic hares Lepus arcticus placed on two predominantly forested islands in Newfoundland. Ecography 15, 161–165 (1992).
Google Scholar
Small, R. J., Keith, L. B. & Barta, R. M. Dispersion of introduced arctic hares (Lepus arcticus) on islands off Newfoundland’s south coast. Can. J. Zool. 69, 2618–2623 (1991).
Google Scholar
Hearn, B. J., Keith, L. B. & Rongstad, O. J. Demography and ecology of the arctic hare (Lepus arcticus) in southwestern Newfoundland. Can. J. Zool. 65, 852–861 (1987).
Google Scholar
Harper, F. The Mammals of Keewatin Vol. 12 (Miscellaneaous Publications, Museum of Natural History, University of Kansas, 1956).
Google Scholar
Dalerum, F. et al. Spatial variation in Arctic hare (Lepus arcticus) populations around the Hall Basin. Polar Biol. 40, 2113–2118 (2017).
Google Scholar
Fraser, K. C. et al. Tracking the conservation promise of movement ecology. Front. Ecol. Evol. 6, 150 (2018).
Google Scholar
CAFF. Arctic Biodiversity Assessment. Status and trends in Arctic biodiversity. Conservation of Arctic Flora and Fauna, Akureyri (2013).Desjardins, É. et al. Survey of the vascular plants of Alert (Ellesmere Island, Canada), a polar desert at the northern tip of the Americas. CheckList 17, 181–225 (2021).
Google Scholar
Keith, L. B., Meslow, E. C. & Rongstad, O. J. Techniques for snowshoe hare population studies. J. Wildl. Manag. 32, 801–812 (1968).
Google Scholar
Davidson, S. C. et al. Ecological insights from three decades of animal movement tracking across a changing Arctic. Science 370, 712–715 (2020).ADS
CAS
PubMed
Google Scholar
Wikelski, M., Davidson, S. C. & Kays, R. Movebank: Archive, analysis and sharing of animal movement data. Hosted by the Max Planck Institute of Animal Behavior. http://www.movebank.org (2021).Berteaux, D. Data from: Study ‘Arctic hare Alert—Argos tracking’. MoveBank Data Repository https://doi.org/10.5441/001/1.d5d912c4 (2021).Article
Google Scholar
R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2021).Christin, S., St-Laurent, M.-H. & Berteaux, D. Evaluation of Argos telemetry accuracy in the High-Arctic and implications for the estimation of home-range size. PLoS One 10, e0141999 (2015).PubMed
PubMed Central
Google Scholar
QGIS Association. QGIS Geographic Information System (2021).Harris, S. et al. Home-range analysis using radio-tracking data? A review of problems and techniques particularly as applied to the study of mammals. Mamm. Rev. 20, 97–123 (1990).
Google Scholar
Le Corre, M., Dussault, C. & Côté, S. D. Detecting changes in the annual movements of terrestrial migratory species: Using the first-passage time to document the spring migration of caribou. Mov. Ecol. 2, 19 (2014).PubMed
PubMed Central
Google Scholar
Nicholson, K. L., Arthur, S. M., Horne, J. S., Garton, E. O. & Vecchio, P. A. D. Modeling caribou movements: Seasonal ranges and migration routes of the central Arctic herd. PLoS One 11, e0150333 (2016).PubMed
PubMed Central
Google Scholar
Nelson, M. E., Mech, L. D. & Frame, P. F. Tracking of white-tailed deer migration by global positioning system. J. Mammal. 85, 505–510 (2004).
Google Scholar
Singh, N. J. & Ericsson, G. Changing motivations during migration: Linking movement speed to reproductive status in a migratory large mammal. Biol. Lett. 10, 20140379 (2014).PubMed
PubMed Central
Google Scholar
Jakes, A. F. et al. Classifying the migration behaviors of pronghorn on their northern range. J. Wildl. Manag. 82, 1229–1242 (2018).
Google Scholar
Bates, D., Maechler, M., Bolker, B. & Walker, S. lme4: Linear mixed-effects models using Eigen and S4. (2015).Duong, T. ks: Kernel density estimation and kernel discriminant analysis for multivariate data in R. J. Stat. Softw. 21, 1–16 (2007).
Google Scholar
Gitzen, R. A., Millspaugh, J. J. & Kernohan, B. J. Bandwidth selection for fixed-kernel analysis of animal utilization distributions. J. Wildl. Manag. 70, 1334–1344 (2006).
Google Scholar
Austin, R. E. et al. Patterns of at-sea behaviour at a hybrid zone between two threatened seabirds. Sci. Rep. 9, 14720 (2019).ADS
PubMed
PubMed Central
Google Scholar
Gillis, E. A. & Krebs, C. J. Natal dispersal of snowshoe hares during a cyclic population increase. J. Mammal. 80, 933–939 (1999).
Google Scholar
Dahl, F. & Willebrand, T. Natal dispersal, adult home ranges and site fidelity of mountain hares (Lepus timidus) in the boreal forest of Sweden. Wildl. Biol. 11, 309–317 (2005).
Google Scholar
Angerbjörn, A. & Flux, J. E. C. Lepus timidus. Mamm. Species 495, 1–11 (1995).
Google Scholar
Smith, G. W., Stoddart, L. C. & Knowlton, F. F. Long-distance movements of black-tailed jackrabbits. J. Wildl. Manag. 66, 463 (2002).
Google Scholar
Cote, J. et al. Behavioural synchronization of large-scale animal movements—Disperse alone, but migrate together?. Biol. Rev. 92, 1275–1296 (2017).PubMed
Google Scholar
Bauer, S., McNamara, J. M. & Barta, Z. Environmental variability, reliability of information and the timing of migration. Proc. R. Soc. B 287, 20200622 (2020).PubMed
PubMed Central
Google Scholar
Couzin, I. D. Collective animal migration. Curr. Biol. 28, R976–R980 (2018).CAS
PubMed
Google Scholar
Lai, S. et al. Unsuspected mobility of Arctic hares revealed by longest journey ever recorded in a lagomorph. Ecology 103(3), e3620 https://doi.org/10.1002/ecy.3620 (2022).PubMed
Google Scholar
Abrahms, B. et al. Suite of simple metrics reveals common movement syndromes across vertebrate taxa. Mov. Ecol. 5, 12 (2017).PubMed
PubMed Central
Google Scholar
Chapman, B. B., Brönmark, C., Nilsson, J. -Å. & Hansson, L.-A. The ecology and evolution of partial migration. Oikos 120, 1764–1775 (2011).
Google Scholar
Singh, N. J., Börger, L., Dettki, H., Bunnefeld, N. & Ericsson, G. From migration to nomadism: Movement variability in a northern ungulate across its latitudinal range. Ecol. Appl. 22, 2007–2020 (2012).PubMed
Google Scholar
Bastille-Rousseau, G. et al. Flexible characterization of animal movement pattern using net squared displacement and a latent state model. Mov. Ecol. 4, 15 (2016).PubMed
PubMed Central
Google Scholar
Mueller, T. & Fagan, W. F. Search and navigation in dynamic environments—From individual behaviors to population distributions. Oikos 117, 654–664 (2008).
Google Scholar
Krebs, C. J., Boonstra, R. & Boutin, S. Using experimentation to understand the 10-year snowshoe hare cycle in the boreal forest of North America. J. Anim. Ecol. 87, 87–100 (2018).PubMed
Google Scholar
Reid, N. & Harrison, A. Post-release GPS tracking of hand-reared Irish hare Lepus timidus hibernicus leverets, Slemish, Co. Antrim, Northern Ireland. J. Wildl. Rehabil. 31, 25 (2011).
Google Scholar
Weterings, M. J. A. et al. Strong reactive movement response of the medium-sized European hare to elevated predation risk in short vegetation. Anim. Behav. 115, 107–114 (2016).
Google Scholar
Krebs, C. J., Boutin, S. & Boonstra, R. Ecosystem Dynamics of the Boreal Forest: The Kluane Project (Oxford University Press, 2001).
Google Scholar
Feierabend, D. & Kielland, K. Movements, activity patterns, and habitat use of snowshoe hares (Lepus americanus) in interior Alaska. J. Mammal. 95, 525–533 (2014).
Google Scholar
Levänen, R., Pohjoismäki, J. L. O. & Kunnasranta, M. Home ranges of semi-urban brown hares (Lepus europaeus) and mountain hares (Lepus timidus) at northern latitudes. Ann. Zool. Fenn. 56, 107–120 (2019).
Google Scholar
Nathan, R. et al. A movement ecology paradigm for unifying organismal movement research. Proc. Natl. Acad. Sci. U.S.A. 105, 19052–19059 (2008).ADS
CAS
PubMed
PubMed Central
Google Scholar
Abrahms, B. et al. Emerging perspectives on resource tracking and animal movement ecology. Trends Ecol. Evol. 36, 308–320 (2021).PubMed
Google Scholar
France, R. L. The Lake Hazen trough: A late winter oasis in a polar desert. Biol. Conserv. 63, 149–151 (1993).
Google Scholar
Jenkins, D. A., Campbell, M., Hope, G., Goorts, J. & McLoughlin, P. Recent trends in abundance of Peary caribou (Rangifer tarandus pearyi) and muskoxen (Ovibos moschatus) in the Canadian Arctic Archipelago, Nunavut 233.Mech, L. Proportion of calves and adult muskoxen, Ovibos moschatus killed by gray wolves, Canis lupus, in July on Ellesmere Island (USGS Northern Prairie Wildlife Research Center, 2010).
Google Scholar
Gunn, A., Miller, F., Barry, S. & Buchan, A. A near-total decline in caribou on Prince of Wales, Somerset, and Russell Islands, Canadian Arctic. Arctic 59, 1–13 (2006).
Google Scholar
Edwards, J. Diet shifts in moose due to predator avoidance. Oecologia 60, 185–189 (1983).ADS
PubMed
Google Scholar
Gustine, D. D., Parker, K. L., Lay, R. J., Gillingham, M. P. & Heard, D. C. Calf survival of woodland caribou in a multi-predator ecosystem. Wildl. Monogr. 165, 1–32 (2006).
Google Scholar
Klein, D. & Bay, C. Diet selection by vertebrate herbivores in the High Arctic of Greenland. Ecography 14, 152–155 (1991).
Google Scholar
Parks Canada. Resource Description and Analysis—Ellesmere Island National Park Reserve Vol. 1 (Natural Resource Conservation Section, Parks Canada, Department of Canadian Heritage, 1994).
Google Scholar
Parks Canada. Quttinirpaaq National Park of Canada: Management plan 76. https://www.pc.gc.ca/en/pn-np/nu/quttinirpaaq/info/index/gestion-management-2009 (2009).Winkler, D. W. et al. Cues, strategies, and outcomes: How migrating vertebrates track environmental change. Mov. Ecol. 2, 10 (2014).
Google Scholar
Robinson, R. et al. Travelling through a warming world: Climate change and migratory species. Endang. Species Res. 7, 87–99 (2009).ADS
Google Scholar More