Extinction, coextinction and colonization dynamics in plant–hummingbird networks under climate change
Schemske, D. W. in Foundations of Tropical Forest Biology (eds Chazdon, R. L. & Whitmore, T. C.) 163–173 (Univ. Chicago Press, 2002).Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).
Google Scholar
Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M. & Roy, K. Is there a latitudinal gradient in the importance of biotic interactions? Annu. Rev. Ecol. Evol. Syst. 40, 245–269 (2009).
Google Scholar
Schweiger, O., Settele, J., Kudrna, O., Klotz, S. & Kühn, I. Climate change can cause spatial mismatch of trophically interacting species. Ecology 89, 3472–3479 (2008).PubMed
Google Scholar
Hegland, S. J., Nielsen, A., Lázaro, A., Bjerknes, A.-L. & Totland, Ø. How does climate warming affect plant–pollinator interactions? Ecol. Lett. 12, 184–195 (2009).PubMed
Google Scholar
Walther, G.-R. Community and ecosystem responses to recent climate change. Philos. Trans. R. Soc. B 365, 2019–2024 (2010).
Google Scholar
Blois, J. L., Zarnetske, P. L., Fitzpatrick, M. C. & Finnegan, S. Climate change and the past, present and future of biotic interactions. Science 341, 499–504 (2013).CAS
PubMed
Google Scholar
Schleuning, M. et al. Ecological networks are more sensitive to plant than to animal extinction under climate change. Nat. Commun. 7, 13965 (2016).CAS
PubMed
PubMed Central
Google Scholar
Bascompte, J., García, M. B., Ortega, R., Rezende, E. L. & Pironon, S. Mutualistic interactions reshuffle the effects of climate change on plants across the tree of life. Sci. Adv. 5, eaav2539 (2019).PubMed
PubMed Central
Google Scholar
Memmott, J., Craze, P. G., Waser, N. M. & Price, M. V. Global warming and the disruption of plant–pollinator interactions. Ecol. Lett. 10, 710–717 (2007).PubMed
Google Scholar
Tylianakis, J. M., Didham, R. K., Bascompte, J. & Wardle, D. A. Global change and species interactions in terrestrial ecosystems. Ecol. Lett. 11, 1351–1363 (2008).PubMed
Google Scholar
Dalsgaard, B. et al. Specialization in plant–hummingbird networks is associated with species richness, contemporary precipitation and Quaternary climate-change velocity. PLoS ONE 6, e25891 (2011).CAS
PubMed
PubMed Central
Google Scholar
Dalsgaard, B. et al. Historical climate-change influences modularity and nestedness of pollination networks. Ecography 36, 1331–1340 (2013).
Google Scholar
Memmott, J., Waser, N. M. & Price, M. V. Tolerance of pollination networks to species extinctions. Proc. R. Soc. Lond. B 271, 2605–2611 (2004).
Google Scholar
Kaiser-Bunbury, C. N., Muff, S., Memmott, J., Müller, C. B. & Caflisch, A. The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecol. Lett. 13, 442–452 (2010).PubMed
Google Scholar
Dáttilo, W. et al. Unravelling Darwin’s entangled bank: architecture and robustness of mutualistic networks with multiple interaction types. Proc. R. Soc. B 283, 20161564 (2016).PubMed
PubMed Central
Google Scholar
Dalsgaard, B. et al. Trait evolution, resource specialization and vulnerability to plant extinctions among Antillean hummingbirds. Proc. R. Soc. B 285, 20172754 (2018).PubMed
PubMed Central
Google Scholar
Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).PubMed
Google Scholar
Rahbek, C. & Graves, G. R. Multiscale assessment of patterns of avian species richness. Proc. Natl Acad. Sci. USA 98, 4534–4539 (2001).CAS
PubMed
PubMed Central
Google Scholar
Rahbek, C. & Graves, G. R. Detection of macro-ecological patterns in South American hummingbirds is affected by spatial scale. Proc. R. Soc. Lond. B 267, 2259–2265 (2000).CAS
Google Scholar
Dalsgaard, B. et al. The influence of biogeographical and evolutionary histories on morphological trait-matching and resource specialization in mutualistic hummingbird–plant networks. Funct. Ecol. 35, 1120–1133 (2021).
Google Scholar
Sandel, B. et al. The influence of Late Quaternary climate-change velocity on species endemism. Science 334, 660–664 (2011).CAS
PubMed
Google Scholar
Scherrer, D. & Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 38, 406–416 (2011).
Google Scholar
Graves, G. R. & Rahbek, C. Source pool geometry and the assembly of continental avifaunas. Proc. Natl Acad. Sci. USA 102, 7871–7876 (2005).CAS
PubMed
PubMed Central
Google Scholar
IPCC Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects (eds Barros, V. R. et al.) (Cambridge Univ. Press, 2014).Hoegh-Guldberg, O. et al. in Special Report on Global Warming of 1.5 °C (eds Masson-Delmotte, V. et al.) 175–311 (IPCC, WMO, 2018).Watson, J. E. M., Iwamura, T. & Butt, N. Mapping vulnerability and conservation adaptation strategies under climate change. Nat. Clim. Change 3, 989–994 (2013).
Google Scholar
Martín González, A. M., Dalsgaard, B. & Olesen, J. M. Centrality measures and the importance of generalist species in pollination networks. Ecol. Complex. 7, 36–43 (2010).
Google Scholar
Burgos, E. et al. Why nestedness in mutualistic networks? J. Theor. Biol. 249, 307–313 (2007).PubMed
Google Scholar
Bersier, L.-F., Banašek-Richter, C. & Cattin, M.-F. Quantitative descriptors of food-web matrices. Ecology 83, 2394–2407 (2002).
Google Scholar
Thébault, E. & Fontaine, C. Stability of ecological communities and the architecture of mutualistic and trophic networks. Science 329, 853–856 (2010).PubMed
Google Scholar
Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279 (2010).
Google Scholar
Grass, I., Jauker, B., Steffan-Dewenter, I., Tscharntke, T. & Jauker, F. Past and potential future effects of habitat fragmentation on structure and stability of plant–pollinator and host–parasitoid networks. Nat. Ecol. Evol. 2, 1408–1417 (2018).PubMed
Google Scholar
Stouffer, D. B. & Bascompte, J. Compartmentalization increases food-web persistence. Proc. Natl Acad. Sci. USA 108, 3648–3652 (2011).CAS
PubMed
PubMed Central
Google Scholar
Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9 (2006).PubMed
PubMed Central
Google Scholar
Dormann, C. F. & Strauss, R. A method for detecting modules in quantitative bipartite networks. Methods Ecol. Evol. 5, 90–98 (2014).
Google Scholar
Bascompte, J., Jordano, P., Melián, C. J. & Olesen, J. M. The nested assembly of plant–animal mutualistic networks. Proc. Natl Acad. Sci. USA 100, 9383–9387 (2003).CAS
PubMed
PubMed Central
Google Scholar
Rahbek, C. et al. Humboldt’s enigma: what causes global patterns of mountain biodiversity? Science 365, 1108–1113 (2019).CAS
Google Scholar
Cracraft, J. Historical biogeography and patterns of differentiation within the South American avifauna: areas of endemism. Ornithol. Monogr. 36, 49–84 (1985).
Google Scholar
Hazzi, N. A., Moreno, J. S., Ortiz-Movliav, C. & Palacio, R. D. Biogeographic regions and events of isolation and diversification of the endemic biota of the tropical Andes. Proc. Natl Acad. Sci. USA 115, 7985–7990 (2018).CAS
PubMed
PubMed Central
Google Scholar
Jønsson, K. A. et al. Tracking animal dispersal: from individual movement to community assembly and global range dynamics. Trends Ecol. Evol. 31, 204–214 (2016).PubMed
Google Scholar
McGuire, J. A. et al. Molecular phylogenetics and the diversification of hummingbirds. Curr. Biol. 24, 910–916 (2014).CAS
PubMed
Google Scholar
Proctor, M., Yeo, P. & Lack, A. The Natural History of Pollination (HarperCollins, 1996).Simberloff, D. S. & Wilson, E. O. Experimental zoogeography of islands: the colonization of empty islands. Ecology 50, 278–296 (1969).
Google Scholar
Connor, E. F. & Simberloff, D. Species number and compositional similarity of the Galapagos flora and avifauna. Ecol. Monogr. 48, 219–248 (1978).
Google Scholar
Grant, P. R. & Abbott, I. Interspecific competition, island biogeography and null hypotheses. Evolution 34, 332–341 (1980).CAS
PubMed
Google Scholar
Thomas, C. D. Climate, climate change and range boundaries. Divers. Distrib. 16, 488–495 (2010).
Google Scholar
Almeida-Neto, M., Guimarães, P., Guimarães, P. R. Jr, Loyola, R. D. & Ulrich, W. A consistent metric for nestedness analysis in ecological systems: reconciling concept and measurement. Oikos 117, 1227–1239 (2008).
Google Scholar
Simmons, B. I. et al. Moving from frugivory to seed dispersal: incorporating the functional outcomes of interactions in plant–frugivore networks. J. Anim. Ecol. 87, 995–1007 (2018).PubMed
PubMed Central
Google Scholar
Benadi, G., Blüthgen, N., Hovestadt, T. & Poethke, H.-J. Contrasting specialization–stability relationships in plant–animal mutualistic systems. Ecol. Model. 258, 65–73 (2013).
Google Scholar
Beckett, S. J. Improved community detection in weighted bipartite networks. R. Soc. Open Sci. 3, 140536 (2016).PubMed
PubMed Central
Google Scholar
Sonne, J. et al. Ecological mechanisms explaining interactions within plant–hummingbird networks: morphological matching increases towards lower latitudes. Proc. R. Soc. B 287, 20192873 (2020).PubMed
PubMed Central
Google Scholar
Patefield, W. Algorithm AS 159: an efficient method of generating random R × C tables with given row and column totals. J. R. Stat. Soc. C 30, 91–97 (1981).
Google Scholar
Dalsgaard, B. et al. Opposed latitudinal patterns of network‐derived and dietary specialization in avian plant–frugivore interaction systems. Ecography 40, 1395–1401 (2017).
Google Scholar
Dormann, C. F., Gruber, B. & Fründ, J. Introducing the bipartite package: analysing ecological networks. R News 8, 8–11 (2008).Holt, B. G. et al. An update of Wallace’s zoogeographic regions of the world. Science 339, 74–78 (2013).CAS
PubMed
Google Scholar
Two-Minute Gridded Global Relief Data (ETOPO2) v. 2 (NOAA National Geophysical Data Center, 2006); https://doi.org/10.7289/V5J1012QJetz, W. & Rahbek, C. Geographic range size and determinants of avian species richness. Science 297, 1548–1551 (2002).CAS
PubMed
Google Scholar
Dobzhansky, T. Evolution in the tropics. Am. Sci. 38, 209–221 (1950).
Google Scholar
Currie, D. J., Francis, A. P. & Kerr, J. T. Some general propositions about the study of spatial patterns of species richness. Écoscience 6, 392–399 (1999).
Google Scholar
Hurlbert et al. The effect of energy and seasonality on avian species richness and community composition. Am. Nat. 161, 83–97 (2003).PubMed
Google Scholar
Karger, D. N. et al. Climatologies at high resolution for the Earth’s land surface areas. Sci. Data 4, 170122 (2017).PubMed
PubMed Central
Google Scholar
Mateo, R. G., Felicísimo, Á. M. & Muñoz, J. Effects of the number of presences on reliability and stability of MARS species distribution models: the importance of regional niche variation and ecological heterogeneity. J. Veg. Sci. 21, 908–922 (2010).
Google Scholar
Blonder, B. et al. Linking environmental filtering and disequilibrium to biogeography with a community climate framework. Ecology 96, 972–985 (2015).PubMed
Google Scholar
Vizentin-Bugoni, J., Debastiani, V. J., Bastazini, V. A. G., Maruyama, P. K. & Sperry, J. H. Including rewiring in the estimation of the robustness of mutualistic networks. Methods Ecol. Evol. 11, 106–116 (2020).
Google Scholar
Rahbek, C., Borregaard, M. K., Hermansen, B., Nogues-Bravo, D. & Fjeldså, J. Definition and Description of the Montane Regions of the World (Center for Macroecology, Evolution and Climate, 2019); https://macroecology.ku.dk/resources/mountain_regions/definition-and-description-of-the-montane-regions-of-the-world_kopi/Hothorn, T., Bretz, F. & Westfall, P. Simultaneous inference in general parametric models. Biom. J. 50, 346–363 (2008).PubMed
Google Scholar More
