More stories

  • in

    Dozens of unidentified bat species likely live in Asia — and could host new viruses

    NEWS
    29 March 2022

    Dozens of unidentified bat species likely live in Asia — and could host new viruses

    Study suggests some 40% of horseshoe bats in the region have yet to be formally described.

    Smriti Mallapaty

    Smriti Mallapaty

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    There could be more species of horseshoe bat than previously thought.Credit: Chien Lee/Nature Picture Library

    A genomic analysis suggests that there are probably dozens of unknown species of horseshoe bats in southeast Asia1. Horseshoe bats (Rhinolophidae) are considered the reservoir of many zoonotic viruses — which jump from animals to people — including the close relatives of the viruses that caused severe acute respiratory syndrome and COVID-19. Identifying bat species correctly might help pinpoint geographical hotspots with a high risk of zoonotic disease, says Shi Zhengli, a virologist at the Wuhan Institute of Virology in China. “This work is important,” she says. The study was published in Frontiers in Ecology and Evolution on 29 March.Better identification of unknown bat species could also support the search for the origins of SARS-CoV-2 by narrowing down where to look for bats that may harbour close relatives of the virus, says study co-author Alice Hughes, a conservation biologist at the University of Hong Kong. The closest known relatives of SARS-CoV-2 have been found in Rhinolophus affinis bats in Yunnan province, in southwestern China2, and in three species of horseshoe bat in Laos3.Cryptic speciesHughes wanted to better understand the diversity of bats in southeast Asia and find standardized ways of identifying them. So she and her colleagues captured bats in southern China and southeast Asia between 2015 and 2020. They took measurements and photographs of the bats’ wings and noseleaf — “the funky set of tissue around their nose”, as Hughes describes it — and recorded their echolocation calls. They also collected a tiny bit of tissue from the bats’ wings to extract genetic data.To map the bats’ genetic diversity, the team used mitochondrial DNA sequences from 205 of their captured animals, and another 655 sequences from online databases — representing a total of 11 species of Rhinolophidae. As a general rule, the greater the difference between two bats’ genomes, the more likely the animals represent genetically distinct groups, and therefore different species.The researchers found that each of the 11 species were probably actually multiple species, possibly including dozens of hidden species across the whole sample. Hidden, or ‘cryptic’, species are animals that seem to belong to the same species but are actually genetically distinct. For example, the genetic diversity of Rhinolophus sinicus suggests that the group could be six separate species. Overall, they estimated that some 40% of the species in Asia have not been formally described.“It’s a sobering number, but not terribly surprising,” says Nancy Simmons, a curator at the American Museum of Natural History in New York City. Rhinolophid bats are a complex group and there has been only a limited sampling of the animals, she says.However, relying on mitochondrial DNA could mean that the number of hidden species is an overestimate. That is because mitochondrial DNA is inherited only from the mother, so could be missing important genetic information, says Simmons. Still, the study could lead to a burst of research into naming new bat species in the region, she says.Further evidenceThe findings corroborate other genetic research suggesting that there are many cryptic species in southeast Asia, says Charles Francis, a biologist at the Canadian Wildlife Service, Environment and Climate Change Canada, in Ottawa, who studies bats in the region. But, he says, the estimates are based on a small number of samples.Hughes’ team used the morphological and acoustic data to do a more detailed analysis of 190 bats found in southern China and Vietnam and found that it supported their finding that many species had not been identified in those regions. The study makes a strong argument for “the use of multiple lines of evidence when delineating species”, says Simmons.Hughes says her team also found that the flap of tissue just above the bats’ nostrils, called the sella, could be used to identify species without the need for genetic data. Gábor Csorba, a taxonomist at the Hungarian Natural History Museum in Budapest, says this means that hidden species could be identified without doing intrusive morphology studies or expensive DNA analyses.

    doi: https://doi.org/10.1038/d41586-022-00776-2

    ReferencesChornelia, A., Jianmei, L. & Hughes, A. C. Front. Ecol. Evol. 10, 854509 (2022).Article 

    Google Scholar 
    Zhou, P. et al. Nature 579, 270–273 (2020).PubMed 
    Article 

    Google Scholar 
    Temmam, S. et al. Nature https://doi.org/10.1038/s41586-022-04532-4 (2022).PubMed 
    Article 

    Google Scholar 
    Download references

    Subjects

    SARS-CoV-2

    Virology

    Ecology

    Latest on:

    SARS-CoV-2

    Time is running out for COVID vaccine patent waivers
    Editorial 29 MAR 22

    Global vaccination must be swifter
    Comment 28 MAR 22

    A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic
    Article 28 MAR 22

    Virology

    Time is running out for COVID vaccine patent waivers
    Editorial 29 MAR 22

    A TMPRSS2 inhibitor acts as a pan-SARS-CoV-2 prophylactic and therapeutic
    Article 28 MAR 22

    Global vaccination must be swifter
    Comment 28 MAR 22

    Ecology

    The marine biologist whose photography pastime became a profession
    Career Column 25 MAR 22

    Subaqueous foraging among carnivorous dinosaurs
    Article 23 MAR 22

    Where are Earth’s oldest trees? Far from prying eyes
    Research Highlight 22 MAR 22

    Jobs

    Co-Leader, Cancer Biology and Evolution Program

    H. Lee Moffitt Cancer Center & Research Institute
    Tampa, FL, United States

    Postdoctoral Position

    Schepens Eye Research Institute, MEEI
    Boston, MA, United States

    Assistant Professor in Medical Science

    Karolinska Institutet (KI)
    Stokholm, Sweden

    Postdoctoral fellowship in RNA biology and transcription in the Gregersen Group at Department of Cellular and Molecular Medicine (ICMM)

    University of Copenhagen (UCPH)
    Copenhagen, Denmark More

  • in

    Diel activity patterns of two distinct populations of Aedes aegypti in Miami, FL and Brownsville, TX

    Our results show that the average diel activity patterns of Ae. aegypti populations in both Miami, FL and in Brownsville, TX were very similar; they both had two peaks, one in the early morning and the other in the evening, and the average host-seeking peaks are between 7:00 and 8:00 and between 19:00 and 20:00 (Fig. 4). Similar observations were previously reported by several investigators3,4,10,11,12 and the bimodal diel activity pattern is the most frequently reported for Ae. aegypti populations worldwide. However, variations between peak activity have been detected between populations. In East Africa, for instance, Trpis et al.3 reported peak activity at 7:00 and at 19:00, whereas McClelland10 reported peak activity two or three hours after sunrise (9:00 or 10:00) and one or two hours before sunset (17:00 or 16:00). Similarly, in the United States, Smith et al.7 observed a bimodal diel activity pattern for Ae. aegypti, but the evening peak was earlier, between 17:00 and 19:00. Despite these variations, the spacing of the peaks is similar in all these studies despite the fact that these studies were conducted in ecologically and climatically diverse locations.The activity patterns observed at site 3 in Brownsville (Fig. 2) and at site 1 in Miami (Fig. 1) were trimodal. In Brownsville, the trimodal activity peaks were between 6:30 and 7:30, 9:30 and 10:30, and 18:30 and 19:30 (Fig. 2), and in Miami the trimodal peaks were between 7:00 and 8:00, 9:00 and 10:00 and between 19:00 and 20:00 (Fig. 1). Interestingly, the timing of the third peak was similar in both Brownsville site 3 and Miami site 1 suggesting similar underlying factors despite geographic distance, different ecology, and different climate. Brownsville, Texas, is in the Lower Rio Grande Alluvial Floodplain ecoregion. The climate is humid subtropical and urbanization has removed most of the indigenous palm trees and floodplain forests vegetation (https://www.epa.gov/sites/default/files/2018-05/documents/brownsvilletx.pdf). Miami is in the Tropical Florida Ecoregion. Similar to Brownsville, Texas, urbanization and agriculture has replaced most of the indigenous Pine Rockland vegetation. Trimodal biting patterns for Ae. aegypti have been observed before in Trinidad by Chadee and Martinez4, but the middle peak was observed at 11:00 which is half an hour to an hour later than what we observed in Miami and Brownsville, respectively (Figs. 1 and 2). While the morning and evening peaks coincide with human outdoor activity, the middle peak occurs during high heat conditions and the factors that lead to this peak or its importance in the epidemiology of Ae. aegypti-borne arboviral diseases are currently not known. The studies by McClelland13 observed multiple activity peaks in an East African population of Ae. aegypti. The significance of the different activity patterns to the epidemiology of Ae. aegypti-borne arboviral diseases are currently unknown and we think they need more investigation especially since Ae. aegypti-borne arboviral infections have been rising in the recent past14,15.We observed that the host-seeking activity peaks were consistent between 5:45 and 7:30 and between 18:00 and 20:45 (Figs. 1 and 2). These observations are important in planning and conducting control operations directed at the adult Ae. aegypti female populations. During the 2016 Zika outbreak, there was no specific information on the host-seeking activity patterns of Ae. aegypti in Miami Dade County and the adulticide treatment implemented as part of an integrated approach targeted the morning activity16. The integrated approach effectively reduced the vector population and interrupted the transmission of the Zika virus; however, it highlighted the need for site-specific information on the diel activity patterns of Ae. aegypti in Miami Dade County in particular and the CONUS in general. There have been sporadic Ae. aegypti-borne arboviral disease outbreaks in Miami Dade County, FL and the city of Brownsville, TX17,18,19,20,21, in the future we will be better prepared to conduct effective adulticide applications with the current knowledge of the diel activity patterns of Ae. aegypti in these areas. Furthermore, we are now better equipped to educate the public on how to minimize exposure to Ae. aegypti-borne arboviral diseases by avoiding outdoor activities during peak biting activity periods.In our studies, we used BG-Sentinel 2 traps and monitored them every hour, twenty-four hours a day over 96 h, a method with some similarities to that used by Smith et al.7. In the past, diel biting activity studies were carried out using human landing catches following the methods primarily established by Haddow22. To our knowledge, only two studies have previously used sampling procedures not based on human landing catches to study the biting activity patterns of Ae. aegypti; the study by Ortega-Lopez et al.6 used mosquito electrocuting traps, and the study by Smith et al.7 used a mechanical rotator mosquito trap. In the present study, the use of BG-Sentinel II traps had the advantage that it was specifically designed to capture female host-seeking Ae. aegypti8,9. In addition, attached BG-Counter devices can keep track of the number of mosquitoes captured per specified unit time and environmental conditions, and store the information in a cloud server. However, the BG-Sentinel 2 traps collected a wide variety of mosquito species, (Table 1), and to keep track of specific species captured each hour, we had to monitor them every hour.Overall, we present data on the diel activity of Ae. aegypti populations in two cities in the southern United States. In both cities the activity patterns were bimodal; there were peaks of activity in the mornings and the evenings. The significance of these observations is that these peaks can be targeted to improve the effectiveness of adulticide treatments aimed at controlling Ae. aegypti adult populations. Using BG-Sentinel 2 traps eliminates individual variations associated with human landing catches and the associated danger of infections from wild mosquitoes especially during ongoing outbreaks. More

  • in

    An integrative re-evaluation of Typhlatya shrimp within the karst aquifer of the Yucatán Peninsula, Mexico

    Bauer-Gottwein, P. et al. Review: The Yucatán Peninsula karst aquifer, Mexico. Hydrogeol. J. 19, 507–524 (2011).ADS 

    Google Scholar 
    Back, W., Hanshaw, B. B., Herman, J. S. & van Driel, J. N. Differential dissolution of a Pleistocene reef in the ground-water mixing zone of coastal Yucatan, Mexico. Geology 14, 137–140 (1986).ADS 

    Google Scholar 
    Coke, J. G. Underwater caves of the Yucatan Peninsula. In Encyclopedia of Caves (ed. Coke, J. G.) (Elsevier, 2019).
    Google Scholar 
    Smart, P. L. et al. Cave development on the Caribbean coast of the Yucatan Peninsula, Quintana Roo, Mexico. In Perspectives on Karst Geomorphology, Hydrology, and Geochemistry—A Tribute Volume to Derek C. Ford and William B. White Vol. 404 (eds Harmon, R. S. & Wicks, C. M.) (Geological Society of America, 2006).
    Google Scholar 
    Moore, W. S. The subterranean estuary: A reaction zone of ground water and sea water. Mar. Chem. 65, 111 (1999).CAS 

    Google Scholar 
    Moore, W. S. & Joye, S. B. Saltwater intrusion and submarine groundwater discharge: Acceleration of biogeochemical reactions in changing coastal aquifers. Front. Earth Sci. https://doi.org/10.3389/feart.2021.600710 (2021).Article 

    Google Scholar 
    Beddows, P. A., Smart, P. L., Whitaker, F. F. & Smith, S. L. Decoupled fresh-saline groundwater circulation of a coastal carbonate aquifer: Spatial patterns of temperature and specific electrical conductivity. J. Hydrol. 346, 18–32 (2007).ADS 

    Google Scholar 
    Perry, E., Velazquez-Oliman, G. & Marin, L. The Hydrogeochemistry of the Karst aquifer system of the northern Yucatan Peninsula, Mexico. Int. Geol. Rev. 44, 191 (2002).
    Google Scholar 
    Kovacs, S. E. et al. Hurricane ingrid and tropical storm hanna’s effects on the salinity of the coastal aquifer, Quintana Roo, Mexico. J. Hydrol. 551, 703 (2017).ADS 

    Google Scholar 
    Schmitter-Soto, J. J. et al. Hydrogeochemical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico). Hydrobiologia 467, 215–228 (2002).CAS 

    Google Scholar 
    Brankovits, D. et al. Methane-and dissolved organic carbon-fueled microbial loop supports a tropical subterranean estuary ecosystem. Nat. Commun. 8, 1–3 (2017).ADS 
    CAS 

    Google Scholar 
    Bishop, R. E. et al. ‘Anchialine’ redefined as a subterranean estuary in a crevicular or cavernous geological setting. J. Crustac. Biol. 35, 511–514 (2015).
    Google Scholar 
    Angyal, D., Simões, N. & Mascaró, M. Uptaded checklist, historical overview and illustrated guide to the stygobiont Malacostraca (Arthropoda: Crustacea) species of Yucatan (Mexico). Subterran. Biol. 36, 83–108 (2020).
    Google Scholar 
    Angyal, D. et al. New distribution records of subterranean crustaceans from cenotes in Yucatan (Mexico). ZooKeys 911, 21–49 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Álvarez, F., Iliffe, T. M., Benítez, S., Brankovits, D. & Villalobos, J. L. New records of anchialine fauna from the Yucatan Peninsula, Mexico. Check List 11, 1–10 (2015).
    Google Scholar 
    van Hengstum, P. J., Cresswell, J. N., Milne, G. A. & Iliffe, T. M. Development of anchialine cave habitats and karst subterranean estuaries since the last ice age. Sci. Rep. 9, 1–10 (2019).
    Google Scholar 
    Holthuis, L. Caridean shrimps found in land-locked saltwater pools at four Indo-West Pacific localities (Sinai Peninsula, Funafuti Atoll, Maui and Hawaii Islands), with the description of one new genus and four new species. Zool. Verhandelingen 128, 1–48 (1973).
    Google Scholar 
    Iliffe, T. M. & Kornicker, L. S. Worldwide diving discoveries of living fossil animals from the depths of anchialine and marine caves. Smithson. Contrib. Mar. Sci. https://doi.org/10.5479/si.01960768.38.1 (2009).Article 

    Google Scholar 
    Calderón-Gutiérrez, F. et al. Mexican anchialine fauna—With emphasis in the high biodiversity cave El Aerolito. Reg. Stud. Mar. Sci. 9, 43–55 (2017).
    Google Scholar 
    Creaser, E. P. Crustaceans from Yucatan. In The Cenotes of Yucatan. A Zoological and Hydrografic Survey (eds Pearse, A. S. et al.) 117–132 (Carnegie Institution of Washington, 1936).
    Google Scholar 
    Botello, A. et al. Historical biogeography and phylogeny of Typhlatya cave shrimps (Decapoda: Atyidae) based on mitochondrial and nuclear data. J. Biogeogr. 40, 594–607 (2013).
    Google Scholar 
    Jurado-Rivera, J. A. et al. Phylogenetic evidence that both ancient vicariance and dispersal have contributed to the biogeographic patterns of anchialine cave shrimps. Sci. Rep. 7, 1–11 (2017).CAS 

    Google Scholar 
    SEMARNAT. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección eigera—Especies nativas de México de flora y fauna silvestres—Categorías de riesgo y especificaciones para su eigera, eigera o cambio—Lista de especies en riesgo. Diario Oficial de la Federación (2010).Hobbs, H. H. III. & Hobbs, H. H. Jr. On the troglobitic shrimps of the Yucatan Peninsula, Mexico (Decapoda: Atyidae and Palaemonidae). Smithson. Contrib. Zool. 240, 1–23 (1976).
    Google Scholar 
    Álvarez, F., Iliffe, T. M. & Villalobos, J. L. New species of the genus Typhlatya (Decapoda: Atyidae) from anchialine caves in Mexico, the Bahamas, and Honduras. J. Crustac. Biol. 25, 81–94 (2005).
    Google Scholar 
    Chace, F. A. & Manning, R. B. Two new caridean shrimps, one representing a new family, from marine pools on Ascension Island (Crustacea: Decapoda: Natantia). Smithson. Contrib. Zool. https://doi.org/10.5479/si.00810282.131 (1972).Article 

    Google Scholar 
    Buhay, J. E. & Crandall, K. A. Taxonomic revision of cave crayfish in the Genus Cambarus, subgenus Aviticambarus (Decapoda: Cambaridae) with descriptions of two new species, C. speleocoopi and C. laconensis, endemic to Alabama, U.S.A.. J. Crustac. Biol. 29, 121 (2009).
    Google Scholar 
    Juan, C., Guzik, M. T., Jaume, D. & Cooper, S. J. B. Evolution in caves: Darwin’s “wrecks of ancient life” in the molecular era. Mol. Ecol. 19, 3865–3880 (2010).PubMed 

    Google Scholar 
    Zakšek, V., Sket, B. & Trontelj, P. Phylogeny of the cave shrimp Troglocaris: Evidence of a young connection between Balkans and Caucasus. Mol. Phylogenet. Evol. 42, 223–235 (2007).PubMed 

    Google Scholar 
    Hunter, R. L., Webb, M. S., Iliffe, T. M. & Alvarado Bremer, J. R. Phylogeny and historical biogeography of the cave-adapted shrimp genus Typhlatya (Atyidae) in the Caribbean Sea and western Atlantic. J. Biogeogr. 35, 65–75 (2008).
    Google Scholar 
    von Rintelen, K. et al. Drawn to the dark side: A molecular phylogeny of freshwater shrimps (Crustacea: Decapoda: Caridea: Atyidae) reveals frequent cave invasions and challenges current taxonomic hypotheses. Mol. Phylogenet. Evol. 63, 82–96 (2012).
    Google Scholar 
    Bracken, H. D., de Grave, S. & Felder, D. L. Phylogeny of the infraorder caridea based on mitochondrial and nuclear genes (Crustacea). In Decapod Crustacean Phylogenetics (eds Martin, J. W. et al.) (Taylor and Francis/CRC Press, 2009).
    Google Scholar 
    Porter, M. L., Pérez-Losada, M. & Crandall, K. A. Model-based multi-locus estimation of decapod phylogeny and divergence times. Mol. Phylogenet. Evol. 37, 355 (2005).CAS 
    PubMed 

    Google Scholar 
    Webb, M. S. Intraspecific Relationships Among the Stygobitic Shrimp, Typhlatya mitchelli, by Analyzing Sequence Data from Mitochondrial DNA (Texas A&M University, 2003).
    Google Scholar 
    Benson, D. A., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Wheeler, D. L. GenBank. Nucleic Acids Res. 36, D25 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Bridge, P. D., Roberts, P. J., Spooner, B. M. & Panchal, G. On the unreliability of published DNA sequences. New Phytol. 160, 43 (2003).CAS 
    PubMed 

    Google Scholar 
    Fritz, U., Vargas-Ramírez, M. & Široký, P. Phylogenetic position of Pelusios williamsi and a critique of current GenBank procedures (Reptilia: Testudines: Pelomedusidae). Amphibia-Reptilia 33, 150 (2012).
    Google Scholar 
    Li, X. et al. Detection of potential problematic Cytb gene sequences of fishes in GenBank. Front. Genet. 9, 30 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Tixier, M.-S., Hernandes, F. A., Guichou, S. & Kreiter, S. The puzzle of DNA sequences of Phytoseiidae (Acari: Mesostigmata) in the public GenBank database. Invertebr. Syst. 25, 389–406 (2011).CAS 

    Google Scholar 
    Vilgalys, R. Taxonomic misidentification in public DNA databases. New Phytol. 160, 4–5 (2003).CAS 
    PubMed 

    Google Scholar 
    Chavez-Diaz, J. M. Variación genética de las especies del genero Typhlatya (Decapoda: Atyidae) en sistemas aquilinos de la eigera de Yucatán, Mexico.Kambesis, P. N. & Coke, J. G. Overview of the controls on Eogenetic Cave and Karst development in Quintana Roo, Mexico. In Coastal Karst Landforms, Coastal Research Library Vol. 5 (eds Lace, M. & Mylroie, J.) (Springer, 2013).
    Google Scholar 
    Benítez, S., Illife, T. M., Quiroz-Martínez, B. & Álvarez, F. How is the anchialine fauna distributed within a cave? A study of the Ox Bel Ha System, Yucatan Peninsula, Mexico. Subterr. Biol. 31, 15–28 (2019).
    Google Scholar 
    Chávez-Solís, E. M., Rosas, C., Rodriguez Fuentes, G. & Mascaró, M. Ecophysiology of cave shrimps (Atyidae: Typhlatya); linking salinity tolerance with distribution patterns in anchialine caves of the Yucatan Peninusla. (In prep).Chávez-Solís, E. M., Solís, C., Simões, N. & Mascaró, M. Distribution patterns, carbon sources and niche partitioning in cave shrimps (Atyidae: Typhlatya). Sci. Rep. 10, 1–16 (2020).
    Google Scholar 
    Sanz, S. & Platvoet, D. New perspectives on the evolution of the genus Typhlatya (Crustacea). Contrib. Zool. 65, 79 (1995).
    Google Scholar 
    Jugovic, J., Prevorčnik, S., Blejec, A. & Sket, B. Morphological differentiation in the cave shrimps Troglocaris (Crustacea: Decapoda: Atyidae) of the Dinaric karst—A consequence of geographical isolation or adaptation?. J. Zool. Syst. Evol. Res. 49, 185–195 (2011).
    Google Scholar 
    Sarda, F. & Demestre, M. Shortening of the Rostrum and Rostral Variability in Aristeus antennatus (Risso, 1816) (Decapoda: Aristeidae). J. Crustac. Biol. 9, 570–577 (1989).
    Google Scholar 
    Martin, J. W. & Wicksten, M. K. Review and redescription of the freshwater atyid shrimp Genus Syncaris Holmes, 1900, in California. J. Crustac. Biol. 24, 447 (2004).
    Google Scholar 
    Chace, F. A. Jr. A new cave shrimp from Cuba. Proc. N. Engl. Zoöl. Club 19, 99–102 (1942).
    Google Scholar 
    Buden, D. W. & Fleder, D. L. Cave shrimps in the Caicos Islands. Proc. Biol. Soc. Wash. 90, 108–115 (1975).
    Google Scholar 
    van Hengstum, P. J., Reinhardt, E. G., Beddows, P. A. & Gabriel, J. J. Environmental reconstruction of a Mexican flooded cave system: Evidence for climate—Forced changes to the local freshwater lens. Quat. Sci. Rev. 29, 2788–2798 (2010).ADS 

    Google Scholar 
    van Hengstum, P. J., Scott, D. B., Gröcke, D. R. & Charette, M. A. Sea level controls sedimentation and environments in coastal caves and sinkholes. Mar. Geol. 286, 35–50 (2011).ADS 

    Google Scholar 
    Gabriel, J. J. et al. Palaeoenvironmental evolution of cenote Aktun Ha (Carwash) on the Yucatan Peninsula, Mexico and its response to eigera sea-level rise. J. Paleolimnol. 42, 199–213 (2009).ADS 

    Google Scholar 
    Moritsch, M. M., Pakes, M. J. & Lindberg, D. R. How might sea level change affect arthropod biodiversity in anchialine caves: A comparison of Remipedia and Atyidae taxa (Arthropoda: Altocrustacea)?. Org. Divers. Evol. 14, 225–235 (2014).
    Google Scholar 
    Mejía-Ortíz, L. M., Pakes, J., Zarza-González, E., Hartnoll, R. G. & López-Mejía, M. Morphological adaptations to anchialine environments in species of five shrimp families (Barbouria yanezi, Agostocaris bozanici, Procaris eigera, Calliasmata nohochi and Typhlatya pearsei). Crustaceana 86(5), 578–593 (2013).
    Google Scholar 
    Pindell, J. L. et al. A plate-kinematic framework for models of Caribbean evolution. Tectonophysics 155, 121 (1988).ADS 

    Google Scholar 
    Pitman, W. C. III., Cande, S. C., LaBrecque, J. & Pindell, J. L. Fragmentation of Gondwana: The separation of Africa from South America. In Biological Relationships Between Africa and South America (ed. Goldblatt, P.) 15–34 (Yale University Press, 1993).
    Google Scholar 
    Chakrabarty, P. Systematics and historical biogeography of Greater Antillean Cichlidae. Mol. Phylogenet. Evol. 39, 619–627 (2006).PubMed 

    Google Scholar 
    Gonzalez, B. C. et al. Genetic spatial structure of an anchialine cave annelid indicates connectivity within—But not between—Islands of the Great Bahama Bank. Mol. Phylogenet. Evol. 109, 259 (2017).PubMed 

    Google Scholar 
    Sommer, M. Late Cretaceous to Miocene Tectonic Reconstruction of the Northwestern Caribbean: Regional Analysis of Cuban Geology (Universität Greifswald, 2009).
    Google Scholar 
    Ramos, E. L. Geological summary of the Yucatan Peninsula. In The Gulf of Mexico and the Caribbean (eds Nairn, A. E. M. & Stehli, F. G.) (Springer, 1975).
    Google Scholar 
    Hart, C. W., Manning, R. B. & Iliffe, T. M. The fauna of Atlantic marine caves: Evidence of dispersal by sea floor spreading while maintaining ties to deep waters. Proc. Biol. Soc. Wash 98, 288–292 (1985).
    Google Scholar 
    Craft, J. D. et al. Islands under islands: The phylogeography and evolution of Halocaridina rubra Holthuis, 1963 (Crustacean: Decapoda: Atyidae) in the Hawaiian archipelago. Limnol. Oceanogr. 53, 675 (2008).ADS 

    Google Scholar 
    Vázquez-Domínguez, E. & Arita, H. T. The Yucatan peninsula: Biogeographical history 65 million years in the making. Ecography 33(2), 212–2019 (2010).
    Google Scholar 
    Quintana Roo Speleological Survey (2022). https://caves.org/project/qrss/qrlong.htm.Sommer, M. Late Cretaceous to Miocene tectonic reconstruction of the northwestern Caribbean: regional analysis of Cuban geology. Universität Greifswald. (2009).Gold, D. P. et al. The biostratigraphic record of Cretaceous to Paleogene tectono-eustatic relative sea-level change in Jamaica. J. S. Am. Earth Sci. https://doi.org/10.1016/j.jsames.2018.06.011 (2018).Article 

    Google Scholar 
    Suárez-Morales, E. Historical biogeography and distribution of the freshwater calanoid copepods (Crustacea: Copepoda) of the Yucatan Peninsula Mexico. J. Biogeogr. 30, 1851 (2003).
    Google Scholar 
    Suarez-Morales, E., Reid, J. W., Fiers, F. & Iliffe, T. M. Historical biogeography and distribution of the freshwater cyclopine copepods (Copepoda, Cyclopoida, Cyclopinae) of the Yucatan Peninsula, Mexico. J. Biogeogr. 31, 1051 (2004).
    Google Scholar 
    Arroyave, J., Martinez, C. M., Martínez-Oriol, F. H., Sosa, E. & Alter, S. E. Regional-scale aquifer hydrogeology as a driver of phylogeographic structure in the Neotropical catfish Rhamdia guatemalensis (Siluriformes: Heptapteridae) from cenotes of the Yucatán Peninsula, Mexico. Freshw. Biol. 66, 332–348 (2021).CAS 

    Google Scholar 
    Guimarais, M. et al. The conservational state of coastal ecosystems on the mexican caribbean coast: Environmental guidelines for their management. Sustainability 13, 2738 (2021).
    Google Scholar 
    Hillebrand, H., Jacob, U. & Leslie, H. M. Integrative research perspectives on marine conservation. Philos. Trans. R. Soc. B 375, 20190444 (2020).
    Google Scholar 
    Price, S. A. & Schmitz, L. A promising future for integrative biodiversity research: an increased role of scale-dependency and functional biology. Philos. Trans. R. Soc. B 371, 20150228 (2016).CAS 

    Google Scholar 
    IUCN 2021. The IUCN Red List of Threatened Species. Version 2021-1 (2021). https://www.iucnredlist.org.Kantun Manzano, C., Arcega-Cabrera, F., Derrien, M., Noreña-Barroso, E. & Herrera-Silveira, J. Submerged groundwater discharges as source of fecal material in protected karstic coastal areas. Geofluids 2018, 1–11 (2018).
    Google Scholar 
    Arcega-Cabrera, F., Velázquez-Tavera, N., Fargher, L., Derrien, M. & Noreña-Barroso, E. Fecal sterols, seasonal variability, and probable sources along the ring of cenotes, Yucatan, Mexico. J. Contam. Hydrol. 168, 41 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Brown, A. L., Reinhardt, E. G., van Hengstum, P. J. & Pilarczyk, J. E. A Coastal Yucatan Sinkhole records intense hurricane events. J. Coast. Res. 294, 418 (2014).
    Google Scholar 
    Graillot, D. et al. Coupling groundwater modeling and biological indicators for identifying river/aquifer exchanges. Springerplus. https://doi.org/10.1186/2193-1801-3-68 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parmar, T. K., Rawtani, D. & Agrawal, Y. K. Bioindicators: The natural indicator of environmental pollution. Front. Life Sci. 9, 110 (2016).CAS 

    Google Scholar 
    Scheffer, M., Carpenter, S. R., Dakos, V. & van Nes, E. H. Generic indicators of ecological resilience: Inferring the chance of a critical transition. Annu. Rev. Ecol. Evol. Syst. 46, 145 (2015).
    Google Scholar 
    Devitt, T. J., Wright, A. M., Cannatella, D. C. & Hillis, D. M. Species delimitation in endangered groundwater salamanders: Implications for aquifer management and biodiversity conservation. Proc. Natl. Acad. Sci. 116(7), 2624 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montagna, P. A., Palmer, T. A. & Pollack, J. Hydrological Changes and Estuarine Dynamics. Springerbriefs in Environmental Science Vol. 8 (Springer, 2013).
    Google Scholar 
    Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: Concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171 (2011).PubMed 

    Google Scholar 
    Katoh, K. & Toh, H. Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26, 1899 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, M. A., Pfeiffer, W. & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In 2010 Gateway Computing Environments Workshop (GCE) (2010). https://doi.org/10.1109/GCE.2010.5676129.Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32(1), 268–274 (2015).CAS 

    Google Scholar 
    Ronquist, F. et al. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior summarization in Bayesian phylogenetics using tracer 1.7. Syst. Biol. 67, 901 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A. FigTree v1.4.3 (2009). http://tree.bio.ed.ac.uk/software/figtree/.Bouckaert, R. et al. BEAST 2: A software platform for bayesian evolutionary analysis. PLoS Comput. Biol. 10(4), e1003537 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Neall, V. E. & Trewick, S. A. The age and origin of the Pacific islands: A geological overview. Philos. Trans. R. Soc. B Biol. Sci. 363, 3293 (2008).
    Google Scholar 
    Revell, L. J. Phytools: An R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217 (2012).
    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pennell, M. W. et al. geiger v2.0: An expanded suite of methods for fitting macroevolutionary models to phylogenetic trees. Bioinformatics 30, 2216 (2014).CAS 
    PubMed 

    Google Scholar 
    Rstudio Team. Rstudio: Integrated Development for R (Rstudio, 2020).
    Google Scholar 
    Bollback, J. P. SIMMAP: Stochastic character mapping of discrete traits on phylogenies. BMC Bioinform. https://doi.org/10.1186/1471-2105-7-88 (2006).Article 

    Google Scholar 
    QGIS Development Team. Open Source Geospatial Foundation Project (QGIS Geographic Information System, 2020).
    Google Scholar 
    Fujisawa, T. & Barraclough, T. G. Delimiting species using single-locus data and the generalized mixed yule coalescent approach: A revised method and evaluation on simulated data sets. Syst. Biol. 62, 707–724 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Kapli, P. et al. Multi-rate Poisson tree processes for single-locus species delimitation under maximum likelihood and Markov chain Monte Carlo. Bioinformatics 33, 1630–1638 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bouckaert, R. & Drummond, A. bModelTest: Bayesian phylogenetic site model averaging and model comparison. BMC Evol. Biol. 17, 42 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ezard, T., Fujisawa, T. & Barraclough, T. G. Splits: Species’ Limits by Threshold Statistics. R Package Version 1.11: r29 (2009) More

  • in

    Intra- and interpopulation transposition of mobile genetic elements driven by antibiotic selection

    Poirel, L. et al. Tn125-related acquisition of blaNDM-like genes in Acinetobacter baumannii. Antimicrob. Agents Chemother. 56, 1087–1089 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, R. et al. The global distribution and spread of the mobilized colistin resistance gene mcr-1. Nat. Commun. 9, 1179 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Clark, N. C., Weigel, L. M., Patel, J. B. & Tenover, F. C. Comparison of Tn1546-like elements in vancomycin-resistant Staphylococcus aureus isolates from Michigan and Pennsylvania. Antimicrob. Agents Chemother. 49, 470–472 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Partridge, S. R., Kwong, S. M., Firth, N. & Jensen, S. O. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, e00088-17 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Stokes, H. W. & Gillings, M. R. Gene flow, mobile genetic elements and the recruitment of antibiotic resistance genes into Gram-negative pathogens. FEMS Microbiol. Rev. 35, 790–819 (2011).CAS 

    Google Scholar 
    Ghaly, T. M. & Gillings, M. R. Mobile DNAs as ecologically and evolutionarily independent units of life. Trends Microbiol. 26, 904–912 (2018).CAS 

    Google Scholar 
    Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499, 219–222 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown-Jaque, M., Calero-Cáceres, W. & Muniesa, M. Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid https://doi.org/10.1016/j.plasmid.2015.01.001 (2015).Frantzeskakis, L. et al. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics 19, 381 (2018).Scott, K. P. The role of conjugative transposons in spreading antibiotic resistance between bacteria that inhabit the gastrointestinal tract. Cell. Mol. Life Sci. 59, 2071–2082 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pezzella, C., Ricci, A., DiGiannatale, E., Luzzi, I. & Carattoli, A. Tetracycline and streptomycin resistance genes, transposons, and plasmids in Salmonella enterica isolates from animals in Italy. Antimicrob. Agents Chemother. 48, 903–908 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bengtsson-Palme, J., Boulund, F., Fick, J., Kristiansson, E. & Larsson, D. G. Shotgun metagenomics reveals a wide array of antibiotic resistance genes and mobile elements in a polluted lake in India. Front. Microbiol. 5, 648 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Imchen, M. & Kumavath, R. Shotgun metagenomics reveals a heterogeneous prokaryotic community and a wide array of antibiotic resistance genes in mangrove sediment. FEMS Microbiol. Ecol. 96, fiaa173 (2020).CAS 

    Google Scholar 
    Zhang, T., Zhang, X.-X. & Ye, L. Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS ONE 6, e26041 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hu, H. et al. Novel plasmid and its variant harboring both a blaNDM-1 gene and type IV secretion system in clinical isolates of Acinetobacter lwoffii. Antimicrob. Agents Chemother. 56, 1698–1702 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smet, A. et al. Complete nucleotide sequence of CTX-M-15-plasmids from clinical Escherichia coli isolates: insertional events of transposons and insertion sequences. PLoS ONE 5, e11202 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Revilla, C. et al. Different pathways to acquiring resistance genes illustrated by the recent evolution of IncW plasmids. Antimicrob. Agents Chemother. 52, 1472–1480 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poirel, L., Dortet, L., Bernabeu, S. & Nordmann, P. Genetic features of blaNDM-1-positive Enterobacteriaceae. Antimicrob. Agents Chemother. 55, 5403–5407 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Toleman, M. A., Spencer, J., Jones, L. & Walsh, T. R. blaNDM-1 is a chimera likely constructed in Acinetobacter baumannii. Antimicrob. Agents Chemother. 56, 2773–2776 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonnin, R. A., Poirel, L. & Nordmann, P. New Delhi metallo-β-lactamase-producing Acinetobacter baumannii: a novel paradigm for spreading antibiotic resistance genes. Future Microbiol. 9, 33–41 (2014).CAS 

    Google Scholar 
    Waterman, P. E. et al. Bacterial peritonitis due to Acinetobacter baumannii sequence type 25 with plasmid-borne New Delhi metallo-β-lactamase in Honduras. Antimicrob. Agents Chemother. 57, 4584–4586 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McGann, P. et al. Detection of New Delhi metallo-β-lactamase (encoded by blaNDM-1) in Acinetobacter schindleri during routine surveillance. J. Clin. Microbiol. 51, 1942–1944 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jiang, X. et al. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. Commun. 8, 15784 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spanogiannopoulos, P., Waglechner, N., Koteva, K. & Wright, G. D. A rifamycin inactivating phosphotransferase family shared by environmental and pathogenic bacteria. Proc. Natl Acad. Sci. USA 111, 7102–7107 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, J. et al. Marine sediment bacteria harbor antibiotic resistance genes highly similar to those found in human pathogens. Microb. Ecol. 65, 975–981 (2013).CAS 

    Google Scholar 
    D’Costa, V. M. et al. Antibiotic resistance is ancient. Nature 477, 457–461 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Van Goethem, M. W. et al. A reservoir of ‘historical’ antibiotic resistance genes in remote pristine Antarctic soils. Microbiome 6, 40 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Mindlin, S., Soina, V. S., Petrova, M. A. & Gorlenko, Zh. M. Isolation of antibiotic resistance bacterial strains from Eastern Siberia permafrost sediments. Genetika 44, 36–44 (2008).CAS 

    Google Scholar 
    Cohen, S. N. Transposable genetic elements and plasmid evolution. Nature 263, 731–738 (1976).CAS 

    Google Scholar 
    Wright, G. D. Environmental and clinical antibiotic resistomes, same only different. Curr. Opin. Microbiol. 51, 57–63 (2019).CAS 

    Google Scholar 
    von Wintersdorff, C. J. et al. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Front. Microbiol. 7, 173 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Rankin, D. J., Rocha, E. P. C. & Brown, S. P. What traits are carried on mobile genetic elements, and why? Heredity (Edinb) https://doi.org/10.1038/hdy.2010.24 (2011).Kottara, A., Hall, J. P., Harrison, E. & Brockhurst, M. A. Variable plasmid fitness effects and mobile genetic element dynamics across Pseudomonas species. FEMS Microbiol. Ecol. 94, fix172 (2018).
    Google Scholar 
    Hall, J. P., Wood, A. J., Harrison, E. & Brockhurst, M. A. Source–sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. Proc. Natl Acad. Sci. USA 113, 8260–8265 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hall, J. P. J., Williams, D., Paterson, S., Harrison, E. & Brockhurst, M. A. Positive selection inhibits gene mobilisation and transfer in soil bacterial communities. Nat. Ecol. Evol. 1, 1348–1353 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Naumann, T. A. & Reznikoff, W. S. Tn5 transposase with an altered specificity for transposon ends. J. Bacteriol. 184, 233–240 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, H. et al. Increased plasmid copy number is essential for Yersinia T3SS function and virulence. Science 353, 492–495 (2016).CAS 

    Google Scholar 
    Sandegren, L. & Andersson, D. I. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat. Rev. Microbiol. 7, 578–588 (2009).CAS 

    Google Scholar 
    Dimitriu, T., Mathews, A. C. & Buckling, A. Increased copy number couples the evolution of plasmid horizontal transmission and plasmid-encoded antibiotic resistance. Proc. Natl Acad. Sci. USA 118, e2107818118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    De Lorenzo, V., Herrero, M., Jakubzik, U. & Timmis, K. N. Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J. Bacteriol. 172, 6568–6572 (1990).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lichtenstein, C. & Brenner, S. Site-specific properties of Tn7 transposition into the E. coli chromosome. Mol. Gen. Genet. 183, 380–387 (1981).CAS 

    Google Scholar 
    Bethke, J. H. et al. Environmental and genetic determinants of plasmid mobility in pathogenic Escherichia coli. Sci. Adv. 6, eaax3173 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mahillon, J. & Chandler, M. Insertion sequences. Microbiol. Mol. Biol. Rev. 62, 725–774 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Siguier, P., Perochon, J., Lestrade, L., Mahillon, J. & Chandler, M. ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res. 34, D32–D36 (2006).CAS 

    Google Scholar 
    Seelke, R. W., Kline, B. C., Trawick, J. D. & Ritts, G. D. Genetic studies of F plasmid maintenance genes involved in copy number control, incompatability, and partitioning. Plasmid 7, 163–179 (1982).CAS 

    Google Scholar 
    Baba, T. et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2, 2006.0008 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Watve, M. M., Dahanukar, N. & Watve, M. G. Sociobiological control of plasmid copy number in bacteria. PLoS ONE 5, e9328 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Lehtinen, S. et al. Horizontal gene transfer rate is not the primary determinant of observed antibiotic resistance frequencies in Streptococcus pneumoniae. Sci. Adv. 6, eaaz6137 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ubeda, C. et al. Antibiotic-induced SOS response promotes horizontal dissemination of pathogenicity island-encoded virulence factors in staphylococci. Mol. Microbiol. 56, 836–844 (2005).CAS 

    Google Scholar 
    Beaber, J. W., Hochhut, B. & Waldor, M. K. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427, 72–74 (2004).CAS 

    Google Scholar 
    al‐Masaudi, S. B., Day, M. & Russell, A. D. Effect of some antibiotics and biocides on plasmid transfer in Staphylococcus aureus. J. Appl. Bacteriol. 71, 239–243 (1991).
    Google Scholar 
    Nichols, B. P. & Guay, G. G. Gene amplification contributes to sulfonamide resistance in Escherichia coli. Antimicrob. Agents Chemother. 33, 2042–2048 (1989).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Normark, S., Edlund, T., Grundström, T., Bergström, S. & Wolf-Watz, H. Escherichia coli K-12 mutants hyperproducing chromosomal beta-lactamase by gene repetitions. J. Bacteriol. 132, 912–922 (1977).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zienkiewicz, M., Kern-Zdanowicz, I., Carattoli, A., Gniadkowski, M. & Cegłowski, P. Tandem multiplication of the IS 26-flanked amplicon with the blaSHV-5 gene within plasmid p1658/97. FEMS Microbiol. Lett. 341, 27–36 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matthews, P. R. & Stewart, P. R. Amplification of a section of chromosomal DNA in methicillin-resistant Staphylococcus aureus following growth in high concentrations of methicillin. J. Gen. Microbiol. 134, 1455–1464 (1988).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sun, S., Berg, O. G., Roth, J. R. & Andersson, D. I. Contribution of gene amplification to evolution of increased antibiotic resistance in Salmonella typhimurium. Genetics 182, 1183–1195 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andersson, D. I. & Hughes, D. Gene amplification and adaptive evolution in bacteria. Annu. Rev. Genet. 43, 167–195 (2009).CAS 

    Google Scholar 
    Nicoloff, H., Perreten, V. & Levy, S. B. Increased genome instability in Escherichia coli lon mutants: relation to emergence of multiple-antibiotic-resistant (Mar) mutants caused by insertion sequence elements and large tandem genomic amplifications. Antimicrob. Agents Chemother. 51, 1293–1303 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertini, A. et al. Multicopy blaOXA-58 gene as a source of high-level resistance to carbapenems in Acinetobacter baumannii. Antimicrob. Agents Chemother. 51, 2324–2328 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knapp, C. W. et al. Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures. Environ. Sci. Technol. 42, 5348–5353 (2008).CAS 

    Google Scholar 
    San Millan, A., Escudero, J. A., Gifford, D. R., Mazel, D. & MacLean, R. C. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat. Ecol. Evol. 1, 10 (2016).
    Google Scholar 
    Rodriguez-Beltran, J. et al. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nat. Ecol. Evol. 2, 873–881 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Rodríguez-Beltrán, J., DelaFuente, J., León-Sampedro, R., MacLean, R. C. & San Millán, Á. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat. Rev. Microbiol. 19, 347–359 (2021).
    Google Scholar 
    Frost, L. S., Leplae, R., Summers, A. O. & Toussaint, A. Mobile genetic elements: the agents of open source evolution. Nat. Rev. Microbiol. 3, 722–732 (2005).CAS 

    Google Scholar 
    You, L., Hoonlor, A. & Yin, J. Modeling biological systems using Dynetica—a simulator of dynamic networks. Bioinformatics 19, 435–436 (2003).CAS 

    Google Scholar 
    Afgan, E. et al. The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2018 update. Nucleic Acids Res. 46, W537–W544 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wingett, S. W. & Andrews, S. FastQ Screen: a tool for multi-genome mapping and quality control. F1000Res. 7, 1338 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Blankenberg, D. et al. Manipulation of FASTQ data with Galaxy. Bioinformatics 26, 1783–1785 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, T., Heger, A. & Sudbery, I. UMI-tools: modeling sequencing errors in unique molecular identifiers to improve quantification accuracy. Genome Res. 27, 491–499 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Squid adjust their body color according to substrate

    Endler, J. A. Interactions between predators and prey. In Behavioural Ecology: An Evolutionary Approach 3rd edn (eds Krebs, J. R. & Davies, N. B.) 169–196 (Blackwell, 1991).
    Google Scholar 
    Stevens, M. & Merilaita, S. Animal camouflage: Current issues and new perspectives. Philos. Trans. R Soc. Lond. B 364, 423–427 (2009).
    Google Scholar 
    Stevens, M. & Merilaita, S. Animal camouflage: Function and mechanisms. In Animal Camouflage: Mechanisms and Function (eds Stevens, M. & Merilaita, S.) 1–17 (Cambridge University Press, 2011).
    Google Scholar 
    Reiter, S. & Laurent, G. Visual perception and cuttlefish camouflage. Curr. Opin. Neurobiol. 260, 47–54 (2020).
    Google Scholar 
    Cott, H. B. Adaptive Coloration in Animals (Methuen, 1940).
    Google Scholar 
    Cloney, R. A. & Florey, E. Ultrastructure of cephalopod chromatophore organs. Z. Zellforsch. Mikrosk. Anat. 89, 250–280 (1968).CAS 
    PubMed 

    Google Scholar 
    Borrelli, L., Gherardi, F. & Fiorito, G. A. Catalogue of Body Patterning in Cephalopoda (Firenze University Press, 2006).
    Google Scholar 
    Reiter, S. et al. Elucidating the control and development of skin patterning in cuttlefish. Nature 562, 361–366 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbosa, A., Allen, J. J., Mäthger, L. M. & Hanlon, R. T. Cuttlefish use visual cues to determine arm postures for camouflage. Proc. R Soc. B Biol. Sci. 279, 84–90 (2012).
    Google Scholar 
    Hanlon, R. T. Cephalopod dynamic camouflage. Curr. Biol. 17, R400-404 (2007).CAS 
    PubMed 

    Google Scholar 
    Hill, A. V. & Solandt, D. Y. Myograms from the chromatophores of Sepia. J. Physiol. Lond. 83, 13–14 (1935).
    Google Scholar 
    Williams, T. L. et al. Dynamic pigmentary and structural coloration within cephalopod chromatophore organs. Nat. Commun. 10, 1–5 (2019).
    Google Scholar 
    Hanlon, R. T. et al. Rapid adaptive camouflage in cephalopods. In Animal Camouflage: Mechanisms and Functions (eds Stevens, M. & Merilaita, S.) 145–163 (Cambridge Univ Press, 2011).
    Google Scholar 
    Hanlon, R. T. & Messenger, J. B. Adaptive coloration in young cuttlefish (Sepia officinalis L.): The morphology and development of body patterns and their relation to behavior. Philos. Trans. R Soc. Lond. B 320, 437–487 (1988).ADS 

    Google Scholar 
    Ferguson, G., Messenger, J. B. & Budelmann, B. Gravity and light influence the countershading reflexes of the cuttlefish Sepia officinalis. J. Exp. Biol. 191, 247–256 (1994).CAS 
    PubMed 

    Google Scholar 
    Shohet, A. J., Baddeley, R. J., Anderson, J. C., Kelman, E. J. & Osorio, D. Cuttlefish responses to visual orientation of substrates, water flow and a model of motion camouflage. J. Exp. Biol. 209, 4717–4723 (2006).CAS 
    PubMed 

    Google Scholar 
    Barbosa, A. et al. Disruptive coloration in cuttlefish: A visual perception mechanism that regulates ontogenetic adjustment of skin patterning. J. Exp. Biol. 210, 1139–1147 (2007).PubMed 

    Google Scholar 
    Chiao, C. C., Chubb, C. & Hanlon, R. T. Interactive effects of size, contrast, intensity and configuration of background objects in evoking disruptive camouflage in cuttlefish. Vis. Res. 47, 2223–2235 (2007).PubMed 

    Google Scholar 
    Nakajima, R. & Ikeda, Y. A catalog of the chromatic, postural, and locomotor behaviors of the pharaoh cuttlefish (Sepia pharaonis) from Okinawa Island, Japan. Mar. Biodivers. 47, 735–753 (2017).
    Google Scholar 
    Packard, A. Chromatophore fields in the skin of the octopus. J. Physiol. 238, 38–40 (1974).
    Google Scholar 
    Caldwell, R. L., Ross, R., Rodaniche, A. F. & Huffard, C. L. Behavior and body patterns of the larger pacific striped octopus. PLoS ONE 10, e0134152 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gutnick, T., Shomrat, T., Mather, J. A. & Kuba, M. J. The cephalopod brain: Motion control, learning, and cognition. In Physiology of Molluscs: A Collection of Selected Reviews Vol. 2 (eds Salleudin, S. & Mukai, S.) 139–177 (Apple Academic Press, 2016).
    Google Scholar 
    Hanlon, R. T. & Messenger, J. B. Cephalopod Behaviour 2nd edn. (Cambridge University Press, 2018).
    Google Scholar 
    Cloney, R. & Brocco, S. Chromatophore organs, reflector cells, iridocytes, and leucophores. Am. Zool. 23, 581–592 (1983).
    Google Scholar 
    Mäthger, L. M. & Hanlon, R. T. Malleable skin coloration in cephalopods: Selective reflectance, transmission and absorbance of light by chromatophores and iridophores. Cell Tissue Res. 329, 179 (2007).PubMed 

    Google Scholar 
    Josef, N., Berenshtein, I., Fiorito, G., Sykes, A. V. & Shashar, N. Camouflage during movement in the European cuttlefish (Sepia officinalis). J. Exp. Biol. 218, 3391–3398 (2015).PubMed 

    Google Scholar 
    Josef, N. et al. Size matters: Observed and modeled camouflage response of European Cuttlefish (Sepia officinalis) to different substrate patch sizes during movement. Front. Physiol. 7, 671 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Poulton, E. B. The Colours of Animals: Their Meaning and Use, Especially Considered in the Case of Insects (D. Appleton, 1890).
    Google Scholar 
    Zhang, Y. & Richardson, J. S. Unidirectional prey–predator facilitation: Apparent prey enhance predators’ foraging success on cryptic prey. Biol. Lett. 3, 348–351 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Troscianko, T., Benton, C. P., Lovell, P. G., Tolhurst, D. J. & Pizlo, Z. Camouflage and visual perception. Philos. Trans. R Soc. B 364, 449–461 (2009).
    Google Scholar 
    Land, M. F. & Nilsson, D. E. Animal Eyes (Oxford University Press, 2012).
    Google Scholar 
    Cronin, T. W., Johnsen, S., Marshall, N. J. & Warrant, E. J. Visual Ecology (Princeton University Press, 2014).
    Google Scholar 
    Hanlon, R. T. & Messenger, J. B. Cephalopod Behaviour (Cambridge University Press, 1996).
    Google Scholar 
    Staudinger, M. D., Hanlon, R. T. & Juanes, F. Primary and secondary defences of squid to cruising and ambush fish predators: Variable tactics and their survival value. Anim. Behav. 81, 585–594 (2011).
    Google Scholar 
    Ferguson, G. P. & Messenger, J. B. A countershading reflex in cephalopods. Proc. R. Soc. B 243, 63–67 (1991).ADS 

    Google Scholar 
    Zylinski, S. & Johnsen, S. Mesopelagic cephalopods switch between transparency and pigmentation to optimize camouflage in the deep. Curr. Biol. 21, 1937–1941 (2011).CAS 
    PubMed 

    Google Scholar 
    Young, R. E. & Roper, C. F. E. Bioluminescent countershading in mid water animals: Evidence from living squid. Science 191, 1046–1048 (1976).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jereb, P. & Roper, C. F. E. Cephalopods of the World. An Annotated and Illustrated Catalogue of Cephalopod Species Known to Date. Myopsid and Oegopsid Squids Vol. 2 (FAO, 2010).
    Google Scholar 
    Okutani, T. Life history of the oval squid, Sepioteuthis lessoniana. Saibai Giken 13, 69–75 (1984) ((in Japanese)).
    Google Scholar 
    Segawa, S. Food consumption, food conversion and growth rates of the oval squid Sepioteuthis lessoniana by laboratory experiments. Nippon Suisan Gakkai Shi 56, 217–222 (1990).
    Google Scholar 
    Izuka, T., Segawa, S., Okutani, T. & Numachi, K. Evidence on the existence of three species in the oval squid Sepioteuthis lessoniana complex in Ishigaki Island, Okinawa, southwestern Japan, by isozyme analyses. Venus Jpn. J. Malacol/Kairuigaku Zasshi 53, 217–228 (1994).
    Google Scholar 
    Izuka, T. Biochemical study of the population heterogeneity and distribution of the oval squid Sepioteuthis lessoniana complex in southwestern Japan. Am. Malac. Bull. 12, 129–135 (1996).
    Google Scholar 
    Imai, H., & Aoki, M. Genetic diversity and genetic heterogeneity of bigfin reef squid “Sepioteuthis lessoniana” species complex in northwestern Pacific Ocean. in Analysis of Genetic Variation in Animals (Caliskan, M. ed). 151–166. (InTech, 2012).Cheng, S. H. et al. Molecular evidence for co-occurring cryptic lineages within the Sepioteuthis cf. lessoniana species complex in the Indian and Indo-West Pacific Oceans. Hydrobiologia 725, 165–188 (2014).CAS 

    Google Scholar 
    Tomano, S. et al. Contribution of Sepioteuthis sp. 1 and Sepioteuthis sp. 2 to oval squid fishery stocks in western Japan. Fish Sci 82, 585–596 (2016).CAS 

    Google Scholar 
    Okutani, T. Past, present and future studies on cephalopod diversity in tropical west Pacific. Phuket Mar. Biol. Center Res. Bull. 66, 39–50 (2005).
    Google Scholar 
    Lee, P. G., Turk, P. E., Yang, W. T. & Hanlon, R. T. Biological characteristics and biomedical applications of the squid Sepioteuthis lessoniana cultured through multiple generations. Biol. Bull. 186, 328–341 (1994).CAS 
    PubMed 

    Google Scholar 
    Nabhitabhata, J. & Ikeda, Y. Sepioteuthis lessoniana. In Cephalopod Culture (eds Iglesias, J. et al.) 315–347 (Springer, 2014).
    Google Scholar 
    Lajbner, Z. et al. Captive breeding of the oval squid (Aori-ika; Sepioteuthis sp.). in Cephalopod International Advisory Council Conference 2018, Book of Abstracts, St. Petersburg. 152. (2018)Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, i01 (2015).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org (R Foundation for Statistical Computing, 2019).RStudio Team. RStudio: Integrated Development for R. http://www.rstudio.com (RStudio, Inc., 2019)Kenward, M. & Roger, J. Small sample inference for fixed effects from restricted maximum likelihood. Biometrics 53, 983–997 (1997).CAS 
    PubMed 
    MATH 

    Google Scholar 
    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lin, C. Y., Tsai, Y. C. & Chiao, C. C. Quantitative analysis of dynamic body patterning reveals the grammar of visual signals during the reproductive behavior of the oval squid Sepioteuthis lessoniana. Front. Ecol. Evol. 5, 30 (2017).
    Google Scholar 
    Chung, W. S., Kurniawan, N. D. & Marshall, N. J. Toward an MRI-based mesoscale connectome of the squid brain. Iscience 23, 100816 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Messenger, J. B. Cephalopod chromatophores: Neurobiology and natural history. Biol. Rev. Camb. Philos. Soc. 76, 473–528 (2001).CAS 
    PubMed 

    Google Scholar 
    York, C. A. & Bartol, I. K. Anti-predator behavior of squid throughout ontogeny. J. Exp. Mar. Biol. Ecol. 480, 26–35 (2016).
    Google Scholar 
    Suzuki, M., Kimura, T., Ogawa, H., Hotta, K. & Oka, K. Chromatophore activity during natural pattern expression by the squid Sepioteuthis lessoniana: Contributions of miniature oscillation. PLoS ONE 6, e18244 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Y.C., Wang, W.C., & Grasse, B. Electrical coupling between chromatophore muscle fibers allows for versatile control of chromatophore expansion in squid. bioRxiv 2020.02.17.951715 (2020).Hadjisolomou, S. P., El-Haddad, R. W., Kloskowski, K., Chavarga, A. & Abramov, I. Quantifying the speed of chromatophore activity at the single-organ level in response to a visual startle stimulus in living, intact squid. Front. Physiol. 12, 675252. https://doi.org/10.3389/fphys.2021.675252 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Up for crabs: making a home for red-clawed crustaceans in Taiwan

    Download PDF

    This picture was taken at night in the coastal community of Dakenggu in Yilan County, which is just southeast of Taipei in Taiwan. I’m on the left, working with two other researchers to measure the body size of a red-clawed crab (Chiromantes haematocheir).An old man from the local community told me that years ago, during the breeding season, you could barely cross the road because of all the crabs. He said nobody knows where they all went. They’re an important memory for the local people, and part of the culture here.Habitat loss — especially resulting from the widespread use of concrete — seems to be driving the decline. I’m working with local people to create rocky microhabitats and artificial wetlands for the red-clawed crabs to live in. They’re important scavengers — eating dead animals and other organic matter, breaking it down and playing a key part in the nutrient cycle.Small organisms need our help — they can’t stand up for themselves. But in Taiwan, a lot of people think a coastal villa is more important than a few crabs. Corporations want to build luxury developments in our national parks, and authorities often approve them. I’ve seen so many intact habitats destroyed or covered in concrete.Crabs caught my interest because they were frequent visitors to my dormitory. National Sun Yat-sen University in Kaohsiung sits in a coastal buffer zone between a mountain and the ocean, and land hermit crabs (Coenobita cavipes) have to scurry through it on their way to breed.After watching habitat after habitat destroyed by overdevelopment, I’ve realized that just doing the science is not enough. It doesn’t matter how many papers you publish: you need to connect with people through education and communication. That’s why I decided to do my PhD in social science. And it’s why I believe conservation will be my life’s work.

    Nature 603, 962 (2022)
    doi: https://doi.org/10.1038/d41586-022-00810-3

    Related Articles

    The ancient whale from my Egyptian home town

    A partridge in hand on the Spanish steppe

    ‘I have to use a torch and watch my step’: netting seabirds at night

    Subjects

    Careers

    Ecology

    Environmental sciences

    Latest on:

    Careers

    Afghanistan’s girls’ schools can — and must — stay open. There is no alternative
    Editorial 28 MAR 22

    The marine biologist whose photography pastime became a profession
    Career Column 25 MAR 22

    How the career path to principal investigator is narrowing
    Career News 24 MAR 22

    Ecology

    The marine biologist whose photography pastime became a profession
    Career Column 25 MAR 22

    Subaqueous foraging among carnivorous dinosaurs
    Article 23 MAR 22

    Where are Earth’s oldest trees? Far from prying eyes
    Research Highlight 22 MAR 22

    Environmental sciences

    The size of the land carbon sink in China
    Matters Arising 16 MAR 22

    Are there limits to economic growth? It’s time to call time on a 50-year argument
    Editorial 16 MAR 22

    Landmark treaty on plastic pollution must put scientific evidence front and centre
    Editorial 08 MAR 22

    Jobs

    Postdoctoral position in decision-making in aging and Alzheimer’s disease

    University of Minnesota (UMN)
    Minneapolis, MN, United States

    Postdoctoral Fellowship (Translational Cardiovascular Medicine)

    University of Alberta (U of A)
    Edmonton, Alberta, Canada

    Higher Scientific Officer – Protein production, purification and biophysics

    Institute of Cancer Research (ICR)
    London, United Kingdom

    POSTDOCTORAL FELLOWSHIPS on Neurobiology of Overgrowth syndromes

    Inserm-Université Paris Cité
    Paris, France More

  • in

    Water shifts the balance of coexistence

    van der Putten, W. H. et al. J. Ecol. 101, 265–276 (2013).Article 

    Google Scholar 
    Smith-Ramesh, L. M. & Reynolds, H. L. J. Veg. Sci. 28, 484–494 (2017).Article 

    Google Scholar 
    De Long, J. R., Fry, E. L., Veen, G. & Kardol, P. Funct. Ecol. 33, 118–128 (2019).Article 

    Google Scholar 
    Pugnaire, F. I. et al. Sci. Adv. 5, eaaz1834 (2019).CAS 
    Article 

    Google Scholar 
    Dudenhöffer, J.-H., Luecke, N. C. & Crawford, K. M. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01700-7 (2022).Article 

    Google Scholar 
    Bever, J. D., Westover, K. M. & Antonovics, J. J. Ecol. 85, 561–573 (1997).Article 

    Google Scholar 
    Crawford, K. M. et al. Ecol. Lett. 22, 1274–1284 (2019).Article 

    Google Scholar 
    Dudenhöffer, J., Ebeling, A., Klein, A., Wagg, C. & Farrer, E. J. Ecol. 106, 230–241 (2018).Article 

    Google Scholar 
    Kandlikar, G. S., Johnson, C. A., Yan, X., Kraft, N. J. B. & Levine, J. M. Ecol. Lett. 22, 1178–1191 (2019).PubMed 

    Google Scholar 
    Nguyen, N. H. et al. Fungal Ecol. 20, 241–248 (2016).Article 

    Google Scholar 
    Rudgers, J. A. et al. Annu. Rev. Ecol. Evol. Syst. 51, 561–586 (2020).Article 

    Google Scholar 
    Ke, P.-J., Zee, P. C. & Fukami, T. New Phytol. 231, 1546–1558 (2021).CAS 
    Article 

    Google Scholar  More

  • in

    DNA barcoding and phylogeography of the Hoplias malabaricus species complex

    Cardoso, Y. P. et al. A continental-wide molecular approach unraveling mtDNA diversity and geographic distribution of the Neotropical genus Hoplias. PLoS ONE 13(8), e0202024. https://doi.org/10.1371/journal.pone.0202024 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertollo, L. A. C., Born, G. G., Dergam, J. A., Fenocchio, A. S. & Moreira-Filho, O. A biodiversity approach in the Neotropical Erythrinidae fish, Hoplias malabaricus: Karyotypic survey, geographic distribution of karyomorphs and cytotaxonomic considerations. Chrom. Res. 8(7), 603–613 (2000).CAS 
    Article 

    Google Scholar 
    Oyakawa, O. T. Family Erythrinidae (Trahiras). in Check list of the freshwater fishes of South and Central America (Reis, R. E., Kullander, S. O. & Ferraris, C.). Edipucrs 238–240 (Porto Alegre, 2003).Dagosta, F. C. P. & de Pinna, M. C. C. The fishes of the Amazon: distribution and biogeographical patterns, with a comprehensive list of species. Bull. Am. Museum Nat. Hist. 431, 1–163 (2019).
    Google Scholar 
    Da Rosa, R., Vicari, M. R., Dias, A. L. & Giuliano-Caetano, L. New insights into the biogeographic and Karyotypic Evolution of Hoplias Malabaricus. Zebrafish 11(3), 198–206. https://doi.org/10.1089/zeb.2013.0953 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Santos, U. et al. Molecular and karyotypic phylogeography in the neotropical Hoplias malabaricus (Erythrinidae) fish in eastern Brazil. J. Fish Biol. 75(9), 2326–2343. https://doi.org/10.1111/j.1095-8649.2009.02489.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Blanco, D. R., Lui, R. L., Bertollo, L. A. C., Diniz, D. & Filho, O. M. Characterization of invasive fish species in a river transposition region: Evolutionary chromosome studies in the genus Hoplias (Characiformes, Erythrinidae). Rev. Fish Biol. Fish. 20(1), 1–8. https://doi.org/10.1007/s11160-009-9116-3 (2010).Article 

    Google Scholar 
    Jacobina, U. P. et al. DNA barcode sheds light on systematics and evolution of neotropical freshwater trahiras. Genetica 146, 505. https://doi.org/10.1007/s10709-018-0043-x (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Marques, D. F., Santos, F. A., da Silva, S. S., Sampaio, I. & Rodrigues, L. R. R. Cytogenetic and DNA barcoding reveals high divergence within the trahira, Hoplias malabaricus (Characiformes: Erythrinidae) from the lower Amazon River. Neotrop. Ichthyol. 11(2), 459–466. https://doi.org/10.1590/S1679-62252013000200015 (2013).Article 

    Google Scholar 
    Paz, F. P. C., Batista, J. S. & Porto, J. I. R. DNA barcodes of rosy tetras and allied species (Characiformes: Characidae: Hyphessobrycon) from the Brazilian Amazon Basin. PLoS ONE 9(5), e98603. https://doi.org/10.1371/journal.pone.0098603 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Guimarães, K. L. A., de Sousa, M. P. A., Ribeiro, F. R. V., Porto, J. I. R. & Rodrigues, L. R. R. DNA barcoding of fish fauna from low order streams of Tapajós River basin. PLoS ONE 13(12), e0209430. https://doi.org/10.1371/journal.pone.0209430 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Machado, V. N. et al. One thousand DNA barcodes of piranhas and pacus reveal geographic structure and unrecognized diversity in the Amazon. Sci. Rep. 8, 8387. https://doi.org/10.1038/s41598-018-26550-x (2018).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hebert, P. D. N., Cywinska, A., Ball, S. L. & Dewaard, J. R. Biological identifications through DNA barcodes. Philos. Trans. R. Soc. B 270(1512), 313–321. https://doi.org/10.1098/rspb.2002.2218 (2003).CAS 
    Article 

    Google Scholar 
    Pugedo, M. L., de Andrade Neto, F. R., Pessali, T. C., Birindelli, J. L. O. & Carvalho, D. C. Integrative taxonomy supports new candidate fish species in a poorly studied neotropical region: the Jequitinhonha River Basin. Genetica 144(3), 1–9. https://doi.org/10.1007/s10709-016-9903-4 (2016).Article 

    Google Scholar 
    Rosso, J. J. et al. Integrative taxonomy reveals a new species of the Hoplias malabaricus species complex (Teleostei: Erythrinidae). Ichthyol. Explor. Freshw. 1, 1–18. https://doi.org/10.23788/IEF-1076 (2018).Article 

    Google Scholar 
    Azpelicueta, M. M., Benítez, M., Aichino, D. & Mendez, C. M. D. A new species of the genus Hoplias (Characiformes, Erythrinidae), a tararira from the lower Paraná River, in Missiones, Argentina. Acta Zool. Lilloana 59(1–2), 71–82 (2015).
    Google Scholar 
    Rosso, J. J. et al. A new species of the Hoplias malabaricus species complex (Characiformes: Erythrinidae) from the La Plata River basin. Cybium 40(3), 199–208 (2016).
    Google Scholar 
    Cardoso, Y. P. & Montoya-Burgos, J. I. Unexpected diversity in the catfish Pseudancistrus brevispinis reveals dispersal routes in a Neotropical center of endemism: The Guyanas Region. Mol. Ecol. 18(5), 947–964. https://doi.org/10.1111/j.1365-294X.2008.04068.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hoorn, C., Wesselingh, F. P., Hovikoski, J. & Guerrero, J. The development of the Amazonian mega-wetland (Miocene; Brazil, Colombia, Peru, Bolivia). Amazon. Landsc. Species Evol. https://doi.org/10.1002/9781444306408.ch8 (2010).Article 

    Google Scholar 
    Albert, J. S. & Reis, R. E. Introduction to neotropical freshwaters. In Historical Biogeography of Neotropical Freshwater Fishes (eds Albert, J. S. & Reis, R. E.) 3–19 (University of California Press, 2011).
    Google Scholar 
    Leys, M., Keller, I., Räsänen, K., Gattolliat, J.-L. & Robinson, C. T. Distribution and population genetic variation of cryptic species of the Alpine mayfly Baetis alpinus (Ephemeroptera: Baetidae) in the Central Alps. BMC Evol. Biol. https://doi.org/10.1186/s12862-016-0643-y (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aljanabi, S. M. & Martinez, I. Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res. 25(22), 4692–4693 (1997).CAS 
    Article 

    Google Scholar 
    Vitorino, C. A., Oliveira, R. C. C., Margarido, V. P. & Venere, P. C. Genetic diversity of Arapaima gigas (Schinz, 1822) (Osteoglossiformes: Arapaimidae) in the Araguaia-Tocantins basin estimated by ISSR marker. Neotrop. Ichthyol. 13, 557–568. https://doi.org/10.1590/1982-0224-20150037 (2015).Article 

    Google Scholar 
    Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R. & Hebert, P. D. N. DNA barcoding Australia’s fish species. Philos. Trans. R. Soc. B 359, 1847–1857. https://doi.org/10.1098/srtb.2005.1716 (2005).Article 

    Google Scholar 
    Dunn, I. S. & Blattner, F. R. Sharons 36 to 40: Multienzyme, high capacity, recombination deficient replacement vectors with polylinkers and polystuffers. Nucleic Acids Res. 15, 2677–2698 (1987).CAS 
    Article 

    Google Scholar 
    Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22(22), 4673–4680 (1994).CAS 
    Article 

    Google Scholar 
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552. https://doi.org/10.1093/oxfordjournals.molbev.a026334 (2000).CAS 
    Article 

    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. N. DNA-Based registry for all animal species: The Barcode Index Number (BIN) system. PLoS ONE 8(7), e66213. https://doi.org/10.1371/journal.pone.0066213 (2013).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pons, J. et al. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Syst. Biol. 55(4), 595–609. https://doi.org/10.1080/10635150600852011 (2006).Article 
    PubMed 

    Google Scholar 
    Fujisawa, T. & Barraclough, T. G. Delimiting species using single-locus data and the generalized mixed yule coalescent approach: A revised method and evaluation on simulated data sets. Syst. Biol. 62(5), 707–724. https://doi.org/10.1093/sysbio/syt033 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Puillandre, N., Lambert, A., Brouillet, S. & Achaz, G. ABGD, automatic barcode gap discovery for primary species delimitation. Mol. Ecol. 21(8), 1864–1877. https://doi.org/10.1111/j.1365-294X.2011.05239.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Drummond, A. & Rambaut, A. BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evol. Biol. 7, 214. https://doi.org/10.1186/1471-2148-7-214 (2007).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Posada, D. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. 25, 1253–1256. https://doi.org/10.1093/molbev/msn083 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (2017).Ezard, T., Fujisawa, T. & Barraclough, T. splits: Species Limits by Threshold Statistics. R package version 1.0–19/r52. https://R-Forge.R-project.org/projects/splits/ (2017).Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).Article 

    Google Scholar 
    Bermingham, E., McCafferty, S. S. & Martin, A. P. Fish biogeography and molecular clocks: Perspectives from the Panamanian Isthmus. In Molecular Systematics of Fishes (eds Kocher, T. D. & Stepien, C. A.) 113–128 (Academic Press, 1997).Chapter 

    Google Scholar 
    Thomaz, A. T., Malabarba, L. R., Bonatto, S. L. & Knowles, L. L. Testing the effect of palaeodrainages versus habitat stability on genetic divergence in riverine systems: Study of a Neotropical fish of the Brazilian coastal Atlantic Forest. J. Biogeogr. 42, 2389–2401. https://doi.org/10.1111/jbi.12597 (2015).Article 

    Google Scholar 
    Kimura, M. A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120 (1980).ADS 
    CAS 
    Article 

    Google Scholar 
    Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549. https://doi.org/10.1093/molbev/msy096 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guillot, G., Renaud, S., Ledevin, R., Michaux, J. & Claude, J. A unifying model for the analysis of phenotypic, genetic and geograhic data. Syst. Biol. 61(6), 897–911. https://doi.org/10.1093/sysbio/sys038 (2012).Article 
    PubMed 

    Google Scholar 
    Excoffier, L., Laval, G. & Schneider, S. Arlequin: A Software for Population Data Analysis. Version 3.1. http://cmpg.unibe.ch/software/arlequin3 (2007).Wright, S. Evolution and the genetics of populations: Variability within and among natural populations. Univ. Chicago 4, 580 (1978).
    Google Scholar 
    Rozas, J. et al. DnaSP 6: DNA sequence polymorphism analysis of large datasets. Mol. Biol. Evol. 34, 3299–3302. https://doi.org/10.1093/molbev/msx248 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bandelt, H. J., Forster, P. & Röhl, A. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16(1), 37–48 (1999).CAS 
    Article 

    Google Scholar 
    Leigh, J. W. & Bryant, D. POPART: Full-feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116. https://doi.org/10.1111/2041-210X.12410 (2015).Article 

    Google Scholar 
    Tajima, F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585–595 (1989).CAS 
    Article 

    Google Scholar 
    Fu, Y. X. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915–925 (1997).CAS 
    Article 

    Google Scholar 
    Austin, M. P. Continuum concept, ordination methods, and niche theory. Annu. Rev. Ecol. Syst. 16(1), 39–61. https://doi.org/10.1146/annurev.es.16.110185.000351 (1985).MathSciNet 
    Article 

    Google Scholar 
    Graham, A., Atkinson, P. & Danson, F. Spatial analysis for epidemiology. Acta Trop. 91(3), 219–225. https://doi.org/10.1016/j.actatropica.2004.05.001 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 190(3–4), 231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026 (2006).Article 

    Google Scholar 
    Guimarães, K. L. A., Rosso, J. J., Souza, M. F. B., de Astarloa, J. M. D. & Rodrigues, L. R. R. Integrative taxonomy reveals disjunct distribution and first record of Hoplias misionera (Characiformes: Erythrinidae) in the Amazon River basin: Morphological, DNA barcoding and cytogenetic considerations. Neotrop. Ichthyol. 19(2), e200110. https://doi.org/10.1590/1982-0224-2020-0110 (2021).Article 

    Google Scholar 
    Queiroz, L. J. et al. Evolutionary units delimitation and continental multilocus phylogeny of the hyperdiverse catfish genus Hypostomus. Mol. Phylogenet. Evol. 145, 106711. https://doi.org/10.1016/j.ympev.2019.106711 (2020).Article 

    Google Scholar 
    Phillips, J. D., Gillis, D. J. & Hanner, R. H. Incomplete estimates of genetic diversity within species: Implications for DNA barcoding. Ecol. Evol. https://doi.org/10.1002/ece3.4757 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blaxter, M. L. The promise of a DNA taxonomy. Philos. Trans. R. Soc. B. 359(1444), 669–679. https://doi.org/10.1098/rstb.2003.1447 (2004).CAS 
    Article 

    Google Scholar 
    Nwani, C. D. et al. DNA barcoding discriminates freshwater fishes from southeastern Nigeria and provides river system-level phylogeographic resolution within some species. Mitochondrial DNA 22(1), 43–51. https://doi.org/10.3109/19401736.2010.536537 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Aguirre, W. E., Shervette, V. R., Navarrete, R., Calle, P. & Agorastos, S. Morphological and genetic divergence of Hoplias microlepis (Characiformes: Erythrinidae) in rivers and artificial impoundments of Western Ecuador. Copeia 2013(2), 312–323. https://doi.org/10.1643/ci-12-083 (2013).Article 

    Google Scholar 
    Pires, W. M. M., Barros, M. C. & Fraga, E. C. DNA Barcoding unveils cryptic lineages of Hoplias malabaricus from Northeastern Brazil. Braz. J. Biol. 81(4), 917–927. https://doi.org/10.1590/1519-6984.231598 (2020).Article 

    Google Scholar 
    Souza, F. H. S. et al. interspecific genetic differences and historical demography in South American Arowanas (Osteoglossiformes, Osteoglossidae, Osteoglossum). Genes 10(9), 693. https://doi.org/10.3390/genes10090693 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Torati, L. S. et al. Genetic diversity and structure in Arapaima gigas populations from Amazon and Araguaia-Tocantins river basins. BMC Genet. https://doi.org/10.1186/s12863-018-0711-y (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lovejoy, N. R. & Araujo, M. L. G. Molecular systematics, biogeography and population structure of Neotropical freshwater needlefishes of the genus Potamorrhaphis. Mol. Ecol. 9(3), 259–268. https://doi.org/10.1046/j.1365-294x.2000.00845.x (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mabesoone, J. M. Sedimentary Basins of Northeast Brazil (Federal University of Pernambuco, 1994).
    Google Scholar 
    Haffer, J. & Prance, G. T. Impulsos climáticos da evolução na Amazônia durante o Cenozóico: Sobre a teoria dos Refúgios da diferenciação biótica. Estudos Avançados USP 46, 175–208. https://doi.org/10.1590/S0103-40142002000300014 (2002).Article 

    Google Scholar 
    Riker, S. R. L., Lima, F. J. C., Motta, M. B. Evidências de glaciação Pleistocênica na Amazônia Brasileira. Anais do 14° Simpósio de Geologia da Amazônia, Sociedade Brasileira de Geologia 15–18 (2015).Albert, J. S., Val, P. & Hoorn, C. The changing course of the Amazon River in the Neogene: Center stage for Neotropical diversification. Neotrop. Ichthyol. 16(3), e180033. https://doi.org/10.1590/1982-0224-20180033 (2018).Article 

    Google Scholar 
    Lundberg, J. G. et al. The stage for Neotropical fish diversification: a history of tropical South American rivers. (eds. Malabarba, L. R., Reis, R. E., Vari, R. P., Lucena, Z. M., Lucena, C. A. S. Phylogeny and classification of Neotropical fishes). Edipucrs 13–48 (1998).Hubert, N. & Renno, J. F. Historical biogeography of South American freshwater fishes. J. Biogeogr. 33(8), 1414–1436. https://doi.org/10.1111/j.1365-2699.2006.01518.x (2006).Article 

    Google Scholar 
    Farias, I. P. & Hrbek, T. Patterns of diversification in the discus fishes (Symphysodon spp. Cichlidae) of the Amazon basin. Mol. Phylogenet. Evol. 49, 32–43. https://doi.org/10.1016/j.ympev.2008.05.033 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Tagliacollo, V. A., Bernt, M. J., Craig, J. M., Oliveira, C. & Albert, J. S. Model-based total evidence phylogeny of Neotropical electric knifefishes (Teleostei, Gymnoti-formes). Mol. Phylogenet. Evol. 95, 20–33. https://doi.org/10.1016/j.ympev.2015.11.007 (2015).Article 
    PubMed 

    Google Scholar 
    Hutchinson, G. E. Concluding remarks. Cold Spring Harbor Symposium. Quant. Biol. 22, 415–427 (1957).Article 

    Google Scholar 
    Wiens, J. J. & Graham, C. H. Niche conservatism: Inte-grating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).Article 

    Google Scholar 
    McNyset, K. M. Ecological niche conservatism in North American freshwater fishes. Biol. J. Lin. Soc. 96, 282–295 (2009).Article 

    Google Scholar 
    Silva, W. C., Marceniuk, A. P., Sales, J. B. L. & Araripe, J. Early pleistocene lineages of Bagre bagre (Linnaeus, 1766) (Siluriformes: Ariidae), from the Atlantic coast of South America, with insights into the demography and biogeography of the species. Neotrop. Ichthyol. https://doi.org/10.1590/1982-0224-20150184 (2016).Article 

    Google Scholar 
    Lemopoulos, A. & Covain, R. Biogeography of the freshwater fishes of the Guianas using a partitioned parsimony analysis of endemicity with reappraisal of ecoregional boundaries. Cladistics 35(2019), 106–124. https://doi.org/10.1111/cla.12341 (2018).Article 
    PubMed 

    Google Scholar 
    Hoorn, C. Marine incursions and the influence of Andean tectonics on the Miocene depositional history of northwestern Amazonia: Results of a palynostratigraphic study. Palaeogeogr. Palaeoclimatol. Palaeoecol. 105, 267–309. https://doi.org/10.1016/0031-0182(93)90087-Y (1993).Article 

    Google Scholar 
    Hoorn, C., Guerreiro, J. & Sarmiento, G. Andean tectonics as a cause for changing drainage patterns in Miocene Northern South America. Geology 23(3), 237–240. https://doi.org/10.1130/0091-7613(1995)023%3c0237:ATAACF%3e2.3.CO;2 (1995).ADS 
    Article 

    Google Scholar 
    Ribeiro, A. C. Tectonic history and the biogeography of the freshwater fishes from the coastal drainages of eastern Brazil: An example of faunal evolution associated with a divergent continental margin. Neotrop. Ichthyol. 4(2), 225–246. https://doi.org/10.1590/S1679-62252006000200009 (2006).Article 

    Google Scholar 
    Lovejoy, N. R., Albert, J. S. & Crampton, W. G. R. Miocene marine incursions and marine/freshwater transitions: Evidence from Neotropical fishes. J. S. Am. Earth Sci. 21(1–2), 5–13. https://doi.org/10.1016/j.jsames.2005.07.009 (2006).Article 

    Google Scholar  More