More stories

  • in

    Quantifying and categorising national extinction-risk footprints

    Previous studies have used number of species threats6,7, countryside species-area relationship1,3,17, and potentially disappeared fraction of species4 to quantify biodiversity loss. We introduce the non-normalised Species Threat Abatement and Restoration (nSTAR) metric as the quantifiable representation of biodiversity loss in our analysis, a unit-less, species-centred metric which relies on detailed information curated in the IUCN Red List of Threatened Species11. On its own, this metric can be used to support production-based accounting of the extinction risk of species and identify the most significant threats at a specific location to inform direct interventions26. However, once manipulated into a structure that allows it to be appended to a multi-region input–output (MRIO) table, an environmentally-extended MRIO can be created. This unlocks the power of consumption-based accounting of this extinction risk, connecting the direct environmental impact with the consumption which ultimately induces it.IUCN Red List of Threatened SpeciesThe IUCN Red List version 2020–211 provided information on extinction risk for over 122,000 species and details of the threats acting on those species, including the threat classification, scope, timing, and severity. The species scope was limited to comprehensively assessed terrestrial species, ensuring that only species which have been assessed across all countries were included, and thus eliminating any geographical bias introduced by incomplete assessments27. Species with an extinction risk category of Near Threatened (NT), Vulnerable (VU), Endangered (EN), or Critically Endangered (CR) were included. Three species were excluded to avoid double counting where two different extinction risk categories were provided for the same species, leaving 5295 amphibian, mammal, and bird species in scope.The information contained in the IUCN Red List regarding the threats facing each species is crucial, since many of these threats are attributable to economic activity28,29. Specialist assessors are required to assign one or more of 118 different threat classes to each species’ record, with additional documentation of the severity, scope and timing of each threat recommended, based on the impact of that threat on the species’ population30. To connect this threat information to economic sectors, a key requirement for input–output analysis, background information on threat classes was sourced from the IUCN Threats Classification Scheme version 3.229. Each threat was assessed for connection to each of the 6357 economic sectors classified in the UN Statistics Division Central Product Classification Standard31, based on the likelihood that activity associated with each sector directly contributes to the threat being assessed. As an example, the economic sectors associated with rice cultivation were allocated to the threats grouped under IUCN Threat Class 2.1—Annual & perennial non-timber crops. A total of 55 out of 118 threats were allocated to at least one economic sector, with higher-level threat classes excluded from this allocation if information was available for the associated lower-level threat classes to avoid double counting. Species threats driven by activity that cannot be attributed to an economic sector, such as invasive species, were not allocated to any sectors and as a result, the extinction-risk footprint does not necessarily represent the full magnitude of extinction risk for each species. While not all threats were allocated to an economic sector, all economic sectors were allocated to at least one threat. Further details on the connection of economic sectors to threats are available in Supplementary Note S5, which includes a link to the detailed 6357 × 118 binary concordance matrix used to execute these sector-threat allocations.The IUCN Red List also requires inclusion of a range map and habitat classification, which were combined with remote sensed land cover and elevation data to generate a high-resolution area of habitat (AOH) map for each in-scope species32,33. These maps, reapplied from Strassburg et al.34, were used to calculate the percentage of each species’ AOH present in each country.Quantifying biodiversity loss: the nSTAR metricThis detailed information from the IUCN Red List was used to calculate the nSTAR metric, which quantifies each threat’s impact, rather than just its presence, on each species. Adapted from the newly developed Species Threat Abatement and Restoration metric (STAR)26 by removing the normalisation step, the nSTAR metric, which has no units, was calculated for each species in two stages.First, a numeric representation of each species’ extinction risk category (Wi) was determined, following the equal steps methodology introduced by Butchart et al.35. Extinction risk categories of Data Deficient (DD) and Least Concern (LC) were assigned Wi = 0, Near Threatened (NT) was assigned Wi = 1, Vulnerable (VU) was assigned Wi = 2, Endangered (EN) was assigned Wi = 3, and Critically Endangered (CR) was assigned Wi = 4.Next, a Threat Impact score (TSij) for each threat (j) acting on a species (i) was determined based on the scope and severity information recorded for that threat, according to the values set out in Table 1, which are adapted from those proposed by Garnett et al.36. Reapplying the methodology of the STAR metric, where no value was recorded for the scope or severity of a threat, the median possible value for these were used, and only threats noted as Ongoing or Future were included. Further details on these methodological choices and sensitivity analyses to support them are available in Mair et al.26.Table 1 Numeric representation of threat information.Full size tableThe numeric nSTAR value for each species-threat combination (ij) was calculated by multiplying the value representing the species’ extinction risk category (Wi) by the Threat Impact score (TSij) for that threat:$${text{nSTAR}}_{ij} = W_{i} *TS_{ij}$$
    (1)
    The total nSTAR for species (i) can be calculated by multiplying the extinction risk category value (Wi) for that species by the sum of all Threat Impact scores for the species:$${text{nSTAR}}_{i} = W_{i} *(TS_{i1} + TS_{i2} + TS_{i3} + cdots + TS_{ij} )$$
    (2)
    Once calculated according to Eq. (1), the nSTARij value for each species-threat combination was allocated to economic sectors using the 6357 × 118 sector-threat concordance (available in Supplementary Note S5), which was normalised based on the economic size of each sector. Finally these nSTAR values, derived for each species-sector combination, were allocated to each country based on the country’s share of the AOH for that species, calculated from the intersection of the species’ AOH map with each country’s borders34.The nSTAR metric introduced here differs from the STAR metric from which it is adapted in that the normalisation step executed at this point in the STAR methodology is omitted. This ensures that the nSTAR metric is both additive and independent across all three dimensions of species, country, and economic sector, a necessary condition for use in input–output analysis. The STAR metric normalises the total value calculated in Eq. (2) to ensure that the total STAR value for any species is equal to Wi * 100, resulting in all species with the same extinction risk category being allocated the same STAR value regardless of the number of threats acting on them26. This normalisation facilitates the aggregation of the STAR metric by species taxonomy however it is problematic when aggregating the STAR metric by threat, since the STAR value attributed to each species-threat combination will be dependent not only on the characteristics of that threat, but also on the number and characteristics of other threats acting on the species. This dependence on more than one variable in the calculation of the STAR value for each species-threat combination means that it is not suitable for aggregation by threat and, by extension, economic sectors once the threat to sector allocation has been carried out.In order to provide a metric which can be aggregated and disaggregated across species, sector, and country hierarchies the nSTAR methodology excludes this normalisation step. Consistent with the STAR methodology, the nSTAR metric is calculated using numeric values only and therefore has no unit of measure26.Input–output analysisOnce calculated, the nSTAR metric was partnered with the global supply-chain data available in the 2013 Eora MRIO, chosen for its extensive coverage of 190 regions (189 countries and one ‘rest of world’ region) and between 26 and 1022 economic sectors in each country, depending on the level of detail in each country’s publicly available National Accounts12.A satellite block, or Q matrix, was created using the nSTAR values for 5295 species across 6357 economic sectors for 190 regions. This satellite block was then aggregated to match the sectoral structure of the Eora MRIO, a total of 14,839 country-sector combinations. A process flow diagram to illustrate the stages of data manipulation required to convert the IUCN Red List data to a satellite block ready for use with the Eora MRIO is included in Supplementary Fig. S5.The Eora MRIO provided the intermediate transaction matrix T, the final demand matrix Y, and the value-added matrix V. Consumption based footprints were calculated by connecting the nSTAR value captured in the satellite block Q to the final demand matrix Y following Leontief’s methodology9,10. Central to this methodology is the Leontief Inverse L, a concise mathematical representation of the interdependencies across all economic sectors, which is expressed as:$${mathbf{L}} = left( {{mathbf{I}}{-}{mathbf{A}}} right)^{{ – {1}}}$$
    (3)
    where I is an identity matrix with dimensions equal to the those of the intermediate transaction matrix T, and A is the direct requirements matrix, derived from the T matrix in a number of stages. First the total output vector x is calculated, then diagonalised, and the inverse calculated to derive ({widehat{mathbf{X}}}^{-1}), which returns the direct requirements matrix A when multiplied by T.Next the satellite block was converted into an intensity matrix q by multiplying Q by ({widehat{mathbf{X}}}^{-1}) to calculate the nSTAR value attributable to each dollar of total output produced by each sector. Once the q, L and Y matrices are available, the consumption extinction-risk footprint for a sector k (fk) can be calculated using Eq. (4):$${mathbf{f}}_{k} = {mathbf{q}}*{mathbf{L}}*{mathbf{Y}}_{k}$$
    (4)
    where Yk represents the final demand for that sector. Consumption extinction-risk footprint values were generated for each species-sector-country combination, a total of more than 78 million datapoints.Further matrix manipulation was used to calculate the country-level imported, exported, and domestic extinction-risk footprints. For each country the final demand matrix, Y, was separated into two matrices, Ydom, representing demand from that country for the economic sectors in that country, and Yoth, representing demand from all other countries for the economic sectors in that country. Next, the intensity matrix, q, was separated into two matrices, qdom, representing the nSTAR intensity for each of the species within that country’s borders, and qoth, representing the nSTAR intensity for all remaining species. The three sub-footprints for each country were calculated using Eqs. (5), (6) & (7). A simplified illustration of this methodology is included in Supplementary Fig. S3.$${mathbf{f}}_{dom} = {mathbf{q}}_{dom} *{mathbf{L}}*{mathbf{Y}}_{dom}$$
    (5)
    $${mathbf{f}}_{exp} = {mathbf{q}}_{dom} *{mathbf{L}}*{mathbf{Y}}_{oth}$$
    (6)
    $${mathbf{f}}_{imp} = {mathbf{q}}_{oth} *{mathbf{L}}*{mathbf{Y}}_{dom}$$
    (7)
    Imported, exported, and domestic extinction-risk footprints were calculated for 188 countries.LimitationsWhile very powerful in unravelling the intricacies of the global economy, there are limitations to the effectiveness of input–output analysis. Since it relies on National Accounts data, only activity which can be directly connected into reported economic activity is captured. This means that any activities that are not transacted within the boundaries of the formal economy, such as subsistence hunting and illegal logging, will be excluded unless they have been incorporated into the relevant country’s National Accounts data. The exclusion of threats due to their timing or non-economic classification (such as geological events, disease, and invasive species) resulted in a zero nSTAR value for 519 species, leaving 4776 species with a material nSTAR value. In addition, any limitations in the sector categorisations, their spatial and technological homogeneity, or assumptions included in the allocation of economic activity to sectors within the National Accounts data in each country will be propagated through to the footprint calculations. These limitations are common to consumption-based analyses5,6,7,17,25 and we do not further address them here.Further limitations exist with the use of the scope and severity data for each threat captured in the IUCN Red List, since this does not take into account interaction between threats, or between the severity and scope of an individual threat36. As a result, the impact from a single threat acting on a species may be overstated, and higher nSTAR values attributed to that species than would otherwise be warranted. In addition, any variations in the location, scope, or severity of threats acting across a species’ distribution range are not captured and thus the impact of different economic sectors may be over or under-represented26.There is a temporal displacement between the economic activity and the extinction risk used in this analysis. The extinction risk category assigned to each species is due to the cumulative sum of current and historical impacts acting on it, while the value of economic interactions used to trace this extinction risk through the global economy is based on one year of activity. This is typical of related approaches1,6, and may not introduce much uncertainty given that current economic activity is higher than at any time in history37. Nevertheless, there is no doubt that some current extinction risk is due to past economic activity and development of methods to incorporate this temporal dimension would be a valuable research avenue. More

  • in

    A prenatal acoustic signal of heat affects thermoregulation capacities at adulthood in an arid-adapted bird

    All procedures were approved by Deakin University Animal Ethics Committee (G06-2017), the Animal Ethics Committee of the University of Pretoria (protocol EC048-18) and the Research and Scientific Ethics Committee of the South African National Biodiversity Institute (P18/36). All experiments were performed in accordance with Australian guidelines and regulations for the use of animals in research. This study was conducted in compliance with the ARRIVE guidelines (https://arriveguidelines.org).Experimental acoustic treatments and housingExperimental birds were wild-derived zebra finches from an acoustic playback experiment previously presented in Mariette and Buchanan31. At laying (Feb–March 2014), eggs were collected from outdoor aviaries (Deakin University, Geelong, Australia), replaced by dummy eggs and placed in an artificial incubator at 37.5 °C and 60% relative humidity. After nine days, whole clutches were randomly assigned to one of two acoustic playback groups: treatment eggs were exposed to heat-calls (aka “incubation calls”) and controls to adult contact calls (i.e. tet calls), whilst both groups were also exposed to common nest-specific calls (i.e. whine calls) to ensure normal acoustic stimulation. Playbacks had 20 min of heat-calls or tet calls per 1h15, separated by silence and whine calls, and played from 9:30 a.m. to 6:30 p.m.31. To avoid any differences in incubation conditions, eggs and sound cards were swapped daily between incubators. After hatching, nestlings were reared in mixed or single-group broods, in the same outdoor aviaries (see Supplementary Material).At adulthood (March–April 2018), we tested 34 experimental birds (16 females and 18 males; 15 treatment and 19 control birds) at the end of their fourth summer. From February 2018, birds were moved to indoor cages for acclimation, at least 27 days before experimental trials, at a constant room temperature of 25 °C and day-night cycle of 12 h:12 h, and supplied with ad libitum finch seed mix, grit, cucumber and water. After three days, we implanted a temperature-sensitive passive integrated transponder (PIT) tag (Biomark, Boise ID, USA) subcutaneously into the bird’s flank. Subcutaneous PIT tags reduce the risk of injuries and generally yield Tb values similar to those obtained using intraperitoneally-injected tags in small birds such as the zebra finch62,63.Experimental heat exposure protocolAll birds were tested twice. Each individual’s second trial occurred on a different day than the first, with an average of 16 days between the two trials, but each bird was tested in the morning for one trial (~ 10:30 a.m.) and in the afternoon (~ 2:50 p.m.) for the other, in random order. On average, trials lasted 125 min (range: 93–151 min). The predicted mean digesta retention time for a 12 g bird is ~ 50 min64. Hence, to ensure birds were post-absorptive, they were fasted (but with ad-libitum water) for two hours before each trial, within auditory and visual contact of conspecifics. Birds were then weighed to measure the initial mass (massinit ± 0.01 g), before being placed individually in the metabolic chamber within a temperature-controlled cabinet. There were no significant difference in massinit between heat-call (12.04 ± 0.18 g) and control individuals (12.03 ± 0.15 g; t (60) = − 0.059, p = 0.953).During each trial, Ta in the metabolic chamber was gradually increased in a succession of “stages”. Trials started with Ta = 27 °C for 25 min or 45 min (for the first or second trial respectively), then Ta = 35 °C for 30 min (i.e. thermoneutrality54, followed by 20-min stages in succession at Ta = 40, 42 and 44 °C. Temperature transition took 1 (for 2 °C) to 6 min (for 8 °C increments).To “complete the trial”, individuals had to be able to remain in the chamber for 20 min at Ta = 44 °C. Bird behaviour in the chamber was monitored using two infrared video cameras by an experimenter (AP) blind to playback treatments. The trial was terminated early if the bird showed sustained escape behaviour, or reached a thermal endpoint (e.g., loss of balance or severe hyperthermia with Tb  > 45 °C16,52). Immediately after trial termination or completion, birds were taken out of the chamber and exposed to room temperature. They were then weighed (massend), given water on their bill, and transferred to the holding room at 25 °C in an individual cage with ad libitum seeds and water. After one hour, birds were weighed again (mass1h). No bird died during the trials.Thermoregulatory measurements and data processingWe used an open flow-through respirometry system to measure CO2 production and EWL, following Whitfield et al.52 and as commonly used to assess avian thermoregulation in the heat19,53,60. Dry air was pushed into a 1.5-L plastic metabolic chamber, maintained at low humidity levels ( More

  • in

    Herding then farming in the Nile Delta

    Butzer, K. W. Early Hydraulic Civilization in Egypt: a Study in Cultural Ecology (University of Chicago Press, Chicago, 1976).Said, R. The River Nile: Geology, Hydrology and Utilization (Pergamon Press, Oxford, 1993).Zeder, M. A. Domestication and early agriculture in the Mediterranean Basin: origins, diffusion, and impact. Proc. Natl Acad. Sci. USA 105, 11597–11604 (2008).CAS 
    Article 

    Google Scholar 
    Shirai, N. The Archaeology of the First Farmer-Herders in Egypt: New Insights into the Fayum Epipalaeolithic and Neolithic (Uni. Leiden Press, the Netherlands, 2010).Garcea, E. A. A. Multi-stage dispersal of Southwest Asian domestic livestock and the path of pastoralism in the Middle Nile Valley. Quat. Int. 412, 54–64 (2016).Article 

    Google Scholar 
    Wilson, P. Prehistoric settlement in the western Delta: a regional and local view from Sais (Sa el-Hagar). J. Egypt. Archaeol. 92, 75–126 (2006).Article 

    Google Scholar 
    Van Geel, B. Non-Pollen Palynomorphs. Smol J. P., Birks H. J. B., Last W. M., Bradley R. S., Alverson K. (eds) Tracking Environmental Change Using Lake Sediments. Developments in Paleoenvironmental Research, 3 (Springer, Dordrecht, 2002).Van Geel, B., Hallewas, J. P. & Pals, J. P. A Late Holocene deposit under the Westfriese Zeedijk near Nkhuizen (Prov. of N-Holland, The Netherlands): palaeoecological and archaeological aspects. Rev. Palaeobot. Palyno 38, 269–335 (1983).Article 

    Google Scholar 
    Van Geel, B. A paleoecological study of Holocene peat bog sections in Germany and the Netherlands. Rev. Palaeobot. Palyno 25, 1–120 (1978).Article 

    Google Scholar 
    Marinova, E. & Atanassova, J. Anthropogenic impact on vegetation and environment during the bronze age in the area of Lake Durankulak, NE Bulgaria: pollen, microscopic charcoal, non-pollen palynomorphs and plant macrofossils. Rev. Palaeobot. Palyno. 141, 165–178 (2006).Article 

    Google Scholar 
    Van Geel, B. et al. Diversity and ecology of tropical African fungal spores from a 25,000-year palaeoenvironmental record in southeastern Kenya. Rev. Palaeobot. Palynol. 164, 174–190 (2011).Article 

    Google Scholar 
    Gelorini, V., Verbeken, A., van Geel, B. B., Cocquyt, C. & Verschuren, D. Modern non-pollen palynomorphs from East African lake sediments. Rev. Palaeobot. Palyno 164, 143–173 (2011).Article 

    Google Scholar 
    Hillbrand, M., Geel, B. V., Hasenfratz, A., Hadorn, P. & Haas, J. N. Non-pollen palynomorphs show human-and livestock-induced eutrophication of Lake Nussbaumersee (Thurgau, Switzerland) since Neolithic times (3840 BC). Holocene 24, 559–568 (2014).Article 

    Google Scholar 
    Stanley, J. D. & Warne, A. G. Sea level and initiation of Predynastic culture in the Nile delta. Nature 363, 435–438 (1993).Article 

    Google Scholar 
    Pennington, B. T., Sturt, F., Wilson, P., Rowland, J. & Brown, A. G. The fluvial evolution of the Holocene Nile Delta. Quarter. Sci. Rev 170, 212–231 (2017).Article 

    Google Scholar 
    Negm, A. M., Saavedra O., & El-Adawy A. In The Handbook of Environmental Chemistry, 55 (Springer, 2017).Viste, E. & Sorteberg, A. The effect of moisture transport variability on Ethiopian summer precipitation. Int. J. Climatol. 33, 3106–3123 (2013).Article 

    Google Scholar 
    Revel, M., Colin, C., Bernasconi, S., Combourieu-Nebout, N. & Mascle, J. 21,000 years of Ethiopian African monsoon variability recorded in sediments of the western Nile deep-sea fan. Reg. Environ. Change 14, 1685–1696 (2014).Article 

    Google Scholar 
    Wijmstra, T. A., Smit, A., Van der Hammen, T. & Van Geel, B. Vegetational succession, fungal spores and short-term cycles in pollen diagrams from the Wietmarscher Moor. Acta Botanica Neerlandica 20, 401–410 (1971).Article 

    Google Scholar 
    Wilson, P. In The Nile Delta as a centre of cultural interactions between Upper Egypt and the Southern Levant in the 4th millennium BC, 299–318 (Poznań Archaeological Museum, Poznan, 2014).Zong, Y. Q. et al. Fire and flood management of coastal swamp enabled first rice paddy cultivation in east China. Nature 449, 459–462 (2007).CAS 
    Article 

    Google Scholar 
    Yang, S. et al. Modern pollen assemblages from cultivated rice fields and rice pollen morphology: application to a study of ancient land use and agriculture in the Pearl River delta, China. The Holocene 22, 1393–1404 (2012).Article 

    Google Scholar 
    He, K. et al. Middle-Holocene sea-level fluctuations interrupted the developing Hemudu Culture in the lower Yangtze River. China. Quarter. Sci. Rev. 188, 90–103 (2018).Article 

    Google Scholar 
    Edwards, K. J., Whittington, G., Robinson, M. & Richter, D. Palaeoenvironments, the archaeological record and cereal pollen detection at Clickimin, Shetland, Scotland. J. Archaeo. Sci. 32, 1741–1756 (2005).Article 

    Google Scholar 
    Andersen, S. T. Identification of Wild Grass and Cereal Pollen [fossil Pollen, Annulus Diameter, Surface Sculpturing], Aarbog, 69–92 (Danmarks Geologiske Undersoegelse, 1979).Tweddle, J. C., Edwards, K. J. & Fieller, N. R. Multivariate statistical and other approaches for the separation of cereal from wild Poaceae pollen using a large Holocene dataset. Veg. Hist. Archaeobot. 14, 15–30 (2005).Article 

    Google Scholar 
    Joly, C., Barille, L., Barreau, M., Mancheron, A. & Visset, L. Grain and annulus diameter as criteria for distinguishing pollen grains of cereals from wild grasses. Rev. Palaeobot. Palynol. 146, 221–233 (2007).Article 

    Google Scholar 
    Salgado-Labouriau, M. L. & Rinaldi, M. Palynology of Gramineae of the Venezuelan mountains. Grana Palynologica 29, 119–128 (1990).Article 

    Google Scholar 
    Josefsson, T., Ramqvist, P. H. & Rnberg, G. The history of early cereal cultivation in northernmost Fennoscandia as indicated by palynological research. Veg. Hist. Archaeobot. 23, 821–840 (2014).Article 

    Google Scholar 
    Zhao, X. S. et al. Climate-driven early agricultural origins and development in the Nile Delta. Egypt. J. Archaeo. Sci. 136, 105498 (2021).Article 

    Google Scholar 
    Willcox, G. The distribution, natural habitats and availability of wild cereals in relation to their domestication in the near east: multiple events, multiple centres. Veg. Hist. Archaeobot. 14, 534–541 (2005).Article 

    Google Scholar 
    Riemer, H. Barbara e. barich. People, water and grain: the beginnings of domestication in the Sahara and the Nile Valley, Roma 1998. Archol. Inf. 24, 117–119 (2014).
    Google Scholar 
    Arranz-Otaegui, A., Colledge, S., Zapata, L., Teira-Mayolini, L. C. & Juan, J. Regional diversity on the timing for the initial appearance of cereal cultivation and domestication in Southwest Asia. Proc. Natl Acad. Sci. USA 113, 201612797 (2016).Article 

    Google Scholar 
    Zohary, D., Hopf, M. & Weiss, E. Domestication of plants in the Old World (Oxford University Press, Oxford, 2012).Kvavadze, E. & Bitadze, N. L. Special issue: fresh insights into the palaeoecological and palaeoclimatological value of quaternary non-pollen palynomorphs || Fibres of Linum (flax), Gossypium (cotton) and animal wool as non-pollen palynomorphs in the Late Bronze Age burials of Saphar-Kharaba, southern Georgia. Veg. Hist. Archaeobot. 19, 479–494 (2010).Article 

    Google Scholar 
    Karg, S. New research on the cultural history of the useful plant Linum usitatissimum L. (flax), a resource for food and textiles for 8,000 years. Veg. Hist. Archaeobot. 20, 507–508 (2011).Article 

    Google Scholar 
    Zhao, X. S. et al. Holocene climate change and its influence on early agriculture in the Nile Delta, Egypt. Palaeogeogr. Palaeoclimatol. Palaeoecol. 547, 109702 (2020).Article 

    Google Scholar 
    Reimer, P. et al. The IntCal20 northern hemisphere radiocarbon age calibration curve (0–55 cal kBP). Radiocarbon 62, 725–757 (2020).CAS 
    Article 

    Google Scholar 
    Blaauw, M. & Christen, J. A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis. 6, 457–474 (2011).Article 

    Google Scholar 
    Moore, P. D., Webb, J. A. & Collison, M. E. Pollen analysis (Blackwell Scientific Publications, Oxford, UK, 1991).Kholeif, S. E. A. & Mudie, P. J. Palynological records of climate and oceanic conditions in the Late Pleistocene and Holocene of the Nile Cone, Southeastern Mediterranean, Egypt. Palynology 33, 1–24 (2009).Article 

    Google Scholar 
    Leroy, S. A. G. Palynological evidence of Azolla nilotica Dec. in recent Holocene of the eastern Nile Delta and palaeoenvironment. Veg. Hist. Archaeobot. 1, 43–52 (1992).Article 

    Google Scholar 
    Kholeif, S. E. A. Holocene paleoenvironmental change in inner continental shelf sediments, Southeastern Mediterranean, Egypt. J. Afr. Earth. Sci. 57, 143–153 (2010).CAS 
    Article 

    Google Scholar  More

  • in

    Cophylogeny and convergence shape holobiont evolution in sponge–microbe symbioses

    Hyman, L. H. The Invertebrates: Protozoa Through Ctenophora Vol. 1 (McGraw-Hill, 1940).Taylor, M. W., Radax, R., Steger, D. & Wagner, M. Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71, 295–347 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giles, E. C. et al. Bacterial community profiles in low microbial abundance sponges. FEMS Microbiol. Ecol. 83, 232–241 (2013).CAS 
    PubMed 

    Google Scholar 
    Gloeckner, V. et al. The HMA–LMA dichotomy revisited: an electron microscopical survey of 56 sponge species. Biol. Bull. 227, 78–88 (2014).PubMed 

    Google Scholar 
    Moitinho-Silva, L. et al. Predicting the HMA–LMA status in marine sponges by machine learning. Front. Microbiol. 8, 752 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Cárdenas, C. A. et al. High similarity in the microbiota of cold-water sponges of the genus Mycale from two different geographical areas. PeerJ 6, e4935 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Webster, N. S. & Taylor, M. W. Marine sponges and their microbial symbionts: love and other relationships. Environ. Microbiol. 14, 335–346 (2012).CAS 
    PubMed 

    Google Scholar 
    Freeman, C. J. et al. Microbial symbionts and ecological divergence of Caribbean sponges: a new perspective on an ancient association. ISME J. 14, 1571–1583 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Bell, J. J. et al. Climate change alterations to ecosystem dominance: how might sponge-dominated reefs function? Ecology 99, 1920–1931 (2018).PubMed 

    Google Scholar 
    Gardner, T. A., Côté, I. M., Gill, J. A., Grant, A. & Watkinson, A. R. Long-term region-wide declines in Caribbean corals. Science 301, 958–960 (2003).CAS 
    PubMed 

    Google Scholar 
    Lesser, M. P. Benthic–pelagic coupling on coral reefs: feeding and growth of Caribbean sponges. J. Exp. Mar. Biol. Ecol. 328, 277–288 (2006).
    Google Scholar 
    de Goeij, J. M., Lesser, M. P. & Pawlik, J. R. in Climate Change, Ocean Acidification and Sponges (eds Carballo, J. L. & Bell, J. J.) 373–410 (Springer, 2017); https://doi.org/10.1007/978-3-319-59008-0_8Pita, L., Rix, L., Slaby, B. M., Franke, A. & Hentschel, U. The sponge holobiont in a changing ocean: from microbes to ecosystems. Microbiome 6, 46 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Slaby, B. M., Hackl, T., Horn, H., Bayer, K. & Hentschel, U. Metagenomic binning of a marine sponge microbiome reveals unity in defense but metabolic specialization. ISME J. 11, 2465–2478 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Moitinho-Silva, L. et al. Revealing microbial functional activities in the Red Sea sponge Stylissa carteri by metatranscriptomics. Environ. Microbiol. 16, 3683–3698 (2014).CAS 
    PubMed 

    Google Scholar 
    Weisz, J. B., Lindquist, N. & Martens, C. S. Do associated microbial abundances impact marine demosponge pumping rates and tissue densities? Oecologia 155, 367–376 (2008).PubMed 

    Google Scholar 
    Poppell, E. et al. Sponge heterotrophic capacity and bacterial community structure in high- and low-microbial abundance sponges. Mar. Ecol. 35, 414–424 (2014).
    Google Scholar 
    McFall-Ngai, M. J. et al. Animals in a bacterial world, a new imperative for the life sciences. Proc. Natl Acad. Sci. USA 110, 3229–3236 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, A. E. Symbiosis as a general principle in eukaryotic evolution. Cold Spring Harb. Perspect. Biol. 6, a016113 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Moran, N. A. & Sloan, D. B. The hologenome concept: helpful or hollow? PLoS Biol. 13, e1002311 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Brooks, A. W., Kohl, K. D., Brucker, R. M., van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis: relationships and functional effects of microbial communities across host evolutionary history. PLoS Biol. 14, e2000225–e2000229 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    O’Brien, P. A. et al. Diverse coral reef invertebrates exhibit patterns of phylosymbiosis. ISME J. 14, 2211–2222 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Houwenhuyse, S., Stoks, R., Mukherjee, S. & Decaestecker, E. Locally adapted gut microbiomes mediate host stress tolerance. ISME J. 15, 2401–2414 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moeller, A. H. et al. Experimental evidence for adaptation to species-specific gut microbiota in house mice. mSphere 4, e00387-19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    van Opstal, E. J. & Bordenstein, S. R. Phylosymbiosis impacts adaptive traits in Nasonia wasps. mBio https://doi.org/10.1128/mBio.00887-19 (2019).Lim, S. J. & Bordenstein, S. R. An introduction to phylosymbiosis. Proc. R. Soc. B https://doi.org/10.1098/rspb.2019.2900 (2020).Pollock, F. J. et al. Coral-associated bacteria demonstrate phylosymbiosis and cophylogeny. Nat. Commun. https://doi.org/10.1038/s41467-018-07275-x (2018).Douglas, A. E. & Werren, J. H. Holes in the hologenome: why host–microbe symbioses are not holobionts. mBio 7, e02099 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hadfield, J. D., Krasnov, B. R., Poulin, R. & Nakagawa, S. A tale of two phylogenies: comparative analyses of ecological interactions. Am. Nat. 183, 174–187 (2014).PubMed 

    Google Scholar 
    Hill, M. S. et al. Reconstruction of family-level phylogenetic relationships within Demospongiae (Porifera) using nuclear encoded housekeeping genes. PLoS ONE 8, e50437 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Redmond, N. E. et al. Phylogeny and systematics of Demospongiae in light of new small-subunit ribosomal DNA (18S) sequences. Int. Comp. Biol. 53, 388–415 (2013).CAS 

    Google Scholar 
    Worheide, G. et al. in Advances in Marine Biology: Advances in Sponge Science Vol. 61 (eds Becerro, M. A. et al.) 1–78 (Elsevier, 2012).Schuster, A. et al. Divergence times in demosponges (Porifera): first insights from new mitogenomes and the inclusion of fossils in a birth–death clock model. BMC Evol. Biol. 18, 114 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Stanley, G. D. & Fautin, D. G. Paleontology and evolution. Orig. Mod. Corals Sci. 291, 1913–1914 (2001).CAS 

    Google Scholar 
    Brinkmann, C. M., Marker, A. & Kurtböke, D. I. An overview on marine sponge-symbiotic bacteria as unexhausted sources for natural product discovery. Diversity 9, 40 (2017).
    Google Scholar 
    Rust, M. et al. A multiproducer microbiome generates chemical diversity in the marine sponge Mycale hentscheli. Proc. Natl Acad. Sci. USA 117, 9508–9518 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Faulkner, D. J., Harper, M. K., Haygood, M. G., Salomon, C. E. & Schmidt, E. W. in Drugs from the Sea (ed. Fusetani, N.) 107–119 (Karger, 2000).Loh, T.-L. & Pawlik, J. R. Chemical defenses and resource trade-offs structure sponge communities on Caribbean coral reefs. Proc. Natl Acad. Sci. USA 111, 4151–4156 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pagel, M. Detecting correlated evolution on phylogenies—a general method for the comparative analysis of discrete characters. Proc. R. Soc. Lond. B 255, 37–45 (1994).
    Google Scholar 
    Easson, C. G. & Thacker, R. W. Phylogenetic signal in the community structure of host-specific microbiomes of tropical marine sponges. Front. Microbiol. 5, 532 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Thomas, T. et al. Diversity, structure and convergent evolution of the global sponge microbiome. Nat. Commun. 7, 11870 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schöttner, S. et al. Relationships between host phylogeny, host type and bacterial community diversity in cold-water coral reef sponges. PLoS ONE 8, e55505 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Robinson, D. R. & Foulds, L. R. Comparison of phylogenetic trees. Math. Biosci. 53, 131–147 (1981).
    Google Scholar 
    Gloor, G. B., Macklaim, J. M., Pawlowsky-Glahn, V. & Egozcue, J. J. Microbiome datasets are compositional: and this is not optional. Front. Microbiol. 8, 2224 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Apprill, A. The role of symbioses in the adaptation and stress responses of marine organisms. Annu. Rev. Mar. Sci. 12, 291–314 (2020).
    Google Scholar 
    Lesser, M. P., Slattery, M. & Mobley, C. Biodiversity and functional ecology of mesophotic coral reefs. Annu. Rev. Ecol. Evol. Syst. 49, 49–71 (2018).
    Google Scholar 
    Lipps, J. H. & Stanley, G. D. in Coral Reefs at the Crossroads (eds Hubbard, D. K. et al.) 175–196 (Springer, 2016); https://doi.org/10.1007/978-94-017-7567-0_8Macartney, K. J., Slattery, M. & Lesser, M. P. Trophic ecology of Caribbean sponges in the mesophotic zone. Limnol. Oceanogr. 66, 1113–1124 (2021).CAS 

    Google Scholar 
    McMurray, S. E., Stubler, A. D., Erwin, P. M., Finelli, C. M. & Pawlik, J. R. A test of the sponge-loop hypothesis for emergent Caribbean reef sponges. Mar. Ecol. Prog. Ser. 588, 1–14 (2018).CAS 

    Google Scholar 
    Olinger, L. K., Strangman, W. K., McMurray, S. E. & Pawlik, J. R. Sponges with microbial symbionts transform dissolved organic matter and take up organohalides. Front. Mar. Sci. 8, 665789 (2021).
    Google Scholar 
    Haas, A. F. et al. Effects of coral reef benthic primary producers on dissolved organic carbon and microbial activity. PLoS ONE 6, e27973 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-Baracaldo, P. Origin of marine planktonic cyanobacteria. Sci. Rep. 5, 17418 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Sanchez-Bracaldo, P., Ridgwell, A. & Raven, J. A. A neoproterozoic transition in the marine nitrogen cycle. Curr. Biol. 24, 652–657 (2014).
    Google Scholar 
    Falkowski, P. G. et al. The evolution of modern eukaryotic phytoplankton. Science 305, 354–360 (2004).CAS 
    PubMed 

    Google Scholar 
    Wang, D. et al. Coupling of ocean redox and animal evolution during the Ediacaran–Cambrian transition. Nat. Commun. 9, 2575 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bellwood, D. R., Goatley, C. H. R. & Bellwood, O. The evolution of fishes and corals on reefs: form, function and interdependence. Biol. Rev. 92, 878–901 (2017).PubMed 

    Google Scholar 
    Ehrlich, P. R. & Raven, P. H. Butterflies and plants: a study in coevolution. Evolution 18, 586–608 (1964).
    Google Scholar 
    Després, L., David, J.-P. & Gallet, C. The evolutionary ecology of insect resistance to plant chemicals. Trends Ecol. Evol. 22, 298–307 (2007).PubMed 

    Google Scholar 
    Richardson, K. L., Gold-Bouchot, G. & Schlenk, D. The characterization of cytosolic glutathione transferase from four species of sea turtles: loggerhead (Caretta caretta), green (Chelonia mydas), olive ridley (Lepidochelys olivacea), and hawksbill (Eretmochelys imbricata). Comp. Biochem. Physiol. C 150, 279–284 (2009).
    Google Scholar 
    Bayer, K., Jahn, M. T., Slaby, B. M., Moitinho-Silva, L. & Hentschel, U. Marine sponges as Chloroflexi hot spots: genomic insights and high-resolution visualization of an abundant and diverse symbiotic clade. mSystems 3, e00150-18 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Sachs, J. L., Skophammer, R. G., Bansal, N. & Stajich, J. E. Evolutionary origins and diversification of proteobacterial mutualists. Proc. R Soc. B https://doi.org/10.1098/rspb.2013.2146 (2014).Sachs, J. L., Skophammer, R. G. & Regus, J. U. Evolutionary transitions in bacterial symbiosis. Proc. Natl Acad. Sci. USA 108, 10800–10807 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seutin, G., White, B. N. & Boag, P. T. Preservation of avian blood and tissue samples for DNA analyses. Can. J. Zool. https://doi.org/10.1139/z91-013 (2011).Sunagawa, S. et al. Generation and analysis of transcriptomic resources for a model system on the rise: the sea anemone Aiptasia pallida and its dinoflagellate endosymbiont. BMC Genomics 10, 258 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Song, L. & Florea, L. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads. GigaScience 4, 48 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Grabherr, M. G. et al. Full-length transcriptome assembly from RNA-seq data without a reference genome. Nat. Biotechnol. 29, 644–652 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chevreux, B., Wetter, T. & Suhai, S. Genome sequence assembly using trace signals and additional sequence information. Comput. Sci. Biol. 99, 45–56 (1999).
    Google Scholar 
    Li, W. & Godzik, A. CD-HIT: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).CAS 

    Google Scholar 
    Francis, W. R. et al. The genome of the contractile demosponge Tethya wilhelma and the evolution of metazoan neural signalling pathways. Preprint at bioRxiv https://doi.org/10.1101/120998 (2017).Altschul, S. F. A protein alignment scoring system sensitive at all evolutionary distances. J. Mol. Evol. 36, 290–300 (1993).CAS 
    PubMed 

    Google Scholar 
    Srivastava, M. et al. The Amphimedon queenslandica genome and the evolution of animal complexity. Nature 466, 720–726 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simion, P. et al. A large and consistent phylogenomic dataset supports sponges as the sister group to all other animals. Curr. Biol. https://doi.org/10.1016/j.cub.2017.02.031 (2017).Katoh, K., Misawa, K., Kuma, K.-I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS 

    Google Scholar 
    Kalyaanamoorthy, S. et al. ModelFinder: fast model selection for accurate phylogenetic estimates. Nat. Methods 14, 587–589 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).CAS 

    Google Scholar 
    Nguyen, L.-T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 

    Google Scholar 
    Dohrmann, M. & Wörheide, G. Dating early animal evolution using phylogenomic data. Sci. Rep. 7, 3599 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, S. A. & O’Meara, B. C. treePL: divergence time estimation using penalized likelihood for large phylogenies. Bioinformatics 28, 2689–2690 (2012).CAS 
    PubMed 

    Google Scholar 
    Parada, A. E., Needham, D. M. & Fuhrman, J. A. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18, 1403–1414 (2016).CAS 
    PubMed 

    Google Scholar 
    Apprill, A., McNally, S., Parsons, R. & Weber, L. Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75, 129–137 (2015).
    Google Scholar 
    Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-5 (2019).Lahti, L. et al. Tools for Microbiome Analysis in R. Microbiome package version 1.17.2 https://github.com/microbiome/microbiome (2017).Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E. & Challenger, W. GEIGER: investigating evolutionary radiations. Bioinformatics 24, 129–131 (2008).CAS 
    PubMed 

    Google Scholar 
    Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).CAS 

    Google Scholar 
    Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
    Google Scholar 
    Kuhn, M. Building predictive models in R using the caret package. J. Stat. Softw. 28, 1–26 (2008).
    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Westbrook, A. et al. PALADIN: protein alignment for functional profiling whole metagenome shotgun data. Bioinformatics 33, 1473–1478 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waddell, B. & Pawlik, J. R. Defenses of Caribbean sponges against invertebrate predators. I. Assays with hermit crabs. Mar. Ecol. Prog. Ser. 195, 125–132 (2000).
    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: analyses of phylogenetics and evolution in R language. FEMS Microbiol. Ecol. 20, 289–290 (2004).CAS 

    Google Scholar 
    Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: the MCMCglmm R package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Nakagawa, S., Johnson, P. C. D. & Schielzeth, H. The coefficient of determination R2 and intra-class correlation coefficient from generalized linear mixed-effects models revisited and expanded. J. R. Soc. Interface 14, 20170213 (2017).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Artificial shelters provide suitable thermal habitat for a cold-blooded animal

    Ellis, E. C., Beusen, A. H. W. & Goldewijk, K. K. Anthropogenic Biomes: 10,000 BCE to 2015 CE. Land. 9(5), 129 (2020).Article 

    Google Scholar 
    Seto, K. C., Guneralp, B. & Hutyra, L. R. Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. PNAS. 109, 16083–8 (2012).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Doherty, T. S., Hays, G. C. & Driscoll, D. A. Human disturbance causes widespread disruption of animal movement. Nat. Ecol. Evol. 5, 513–519 (2021).PubMed 
    Article 

    Google Scholar 
    Frid, A. & Dill, L. Human-caused disturbance stimuli as a form of predation risk. Conserv. Ecol. 6, 11 (2002).
    Google Scholar 
    Rodgers, J. A. & Schwikert, S. T. Buffer-zone distances to protect foraging and loafing waterbirds from disturbance by personal watercraft and outboard-powered boats. Conserv. Bio. 16, 216–224 (2002).Article 

    Google Scholar 
    Constantine, R., Brunton, D. H. & Dennis, T. Dolphin-watching tour boats change bottlenose dolphin (Tursiops truncates) behaviour. Biol. Conserv. 117, 299–307 (2004).Article 

    Google Scholar 
    Gill, J. A., Sutherland, W. J. & Watkinson, A. R. A method to quantify the effects of human disturbance on animal populations. J. Appl. Ecol. 33, 786–792 (1996).Article 

    Google Scholar 
    King, J. M. & Heinen, J. T. An assessment of the behaviors of overwintering manatees as influenced by interactions with tourists at two sites in central Florida. Biol. Conserv 117, 227–234 (2004).Article 

    Google Scholar 
    Stockwell, C. A., Bateman, G. C. & Berger, J. Conflicts in national parks: A case study of helicopters and bighorn sheep time budgets at the Grand Canyon. Biol. Conserv 56, 317–328 (1991).Article 

    Google Scholar 
    Diamond, J. M. The design of a nature reserve system for Indone-Asian New Guinea. In Conservation Biology: The Science of Scarcity and Cliversity (ed. Soule, M.) 485–503 (Sinauer, Sunderland, Massachusetts, 1986).Ceballos, G., García, A. & Ehrlich, P. R. The sixth extinction crisis loss of animal populations and species. J. Cosmol. 8, 1821–1831 (2010).
    Google Scholar 
    Kerr, J. T. & Deguise, I. Habitat loss and the limits to endangered species recovery. Ecol. Lett. 7, 1163–1169 (2004).Article 

    Google Scholar 
    Mbora, D. N. M. & McPeek, M. A. Host density and human activities mediate increased parasite prevalence and richness in primates threatened by habitat loss and fragmentation. J. Anim. Ecol. 78, 210–218 (2009).PubMed 
    Article 

    Google Scholar 
    Low, T. The New Nature (Penguin Books Limited, 2003).
    Google Scholar 
    Baxter-Gilbert, J., Riley, J. L. & Measey, J. Fortune favors the bold toad: Urban-derived behavioral traits may provide advantages for invasive amphibian populations. Behav. Ecol. Sociobiol. 75, 130 (2021).Article 

    Google Scholar 
    Coleman, J. L. & Barclay, R. M. R. Prey availability and foraging activity of grassland bats in relation to urbanization. J. Mammal. 94, 1111–1122 (2013).Article 

    Google Scholar 
    Castellano, M. J. & Valone, T. J. Effects of livestock removal and perennial grass recovery on the lizards of a desertified arid grassland. J. Arid Environ. 66, 87e95 (2006).Article 

    Google Scholar 
    Huey, R. B. Temperature, physiology, and the ecology of reptiles. In Biology of the Reptilia (eds. Gans, C., & Pough, F.H.) Vol. 12. (Academic Press, London, 1982).White, D. et al. Assessing risks to biodiversity from future landscape change. Conserv. Biol. 11, 349360 (1997).Article 

    Google Scholar 
    Carpio, A. J., Oteros, J., Tortosa, F. S. & Guerrero-Casado, J. Land use and biodiversity patterns of the herpetofauna: The role of olive groves. Acta Oecol. 70, 103–111 (2016).Article 

    Google Scholar 
    Geyle, H. M., Tingley, R., Amey, A. P. & Chapple, D. G. Reptiles on the brink: Identifying the Australian terrestrial snake and lizard species most at risk of extinction. Pac. Conserv. Biol. 27, 3–12 (2021).Article 

    Google Scholar 
    Doherty, T. S. et al. Reptile responses to anthropogenic habitat modification: A global meta-analysis. Glob. Ecol. Biogeogr. 29(7), 1265–1279 (2020).Article 

    Google Scholar 
    Hu, Y., Doherty, T. S. & Jessop, T. S. How influential are squamate reptile traits in explaining population responses to environmental disturbances?. Wildl. Res. 47(3), 249–259 (2020).Article 

    Google Scholar 
    Poole, G. & Berman, C. An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environ. Manag. 27, 787–802 (2001).CAS 
    Article 

    Google Scholar 
    Tang, X. et al. Human activities enhance radiation forcing through surface albedo associated with vegetation in beijing. Remote Sens. 12(5), 837 (2020).Article 

    Google Scholar 
    Barna, A., Masum, A. K. M., Hossain, M. E., Bahadur, E.H. & Alam, M. S. A study on human activity recognition using gyroscope, accelerometer, temperature and humidity data. In 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), pp. 1–6 (2019).Moore, M. & Seigel, R. A. No place to nest or bask: Effects of human disturbance on the nesting and basking habits of yellow-blotched map turtles (Graptemys flavimaculata). J. Biol. Conserv. 130(3), 386–393 (2006).Article 

    Google Scholar 
    Bonnet, X., Naulleau, G. & Shine, R. The dangers of leaving home: Dispersal and mortality in snakes. Biol. Conserv. 89(1), 39–50 (1999).Article 

    Google Scholar 
    Haxton, T. Road mortality of Snapping Turtles, Chelydra serpentina, in central Ontario during their nesting period. Can. Field-Nat. 114(1), 106–110 (2000).
    Google Scholar 
    Koenig, J., Shine, R. & Shea, G. L. The ecology of an Australian reptile icon: How do blue-tongued lizards (Tiliqua scincoides) survive in suburbia?. Wildl. Res. 28(3), 214–227 (2001).Article 

    Google Scholar 
    Uetz, P. How many Reptile species?. Herpetol. Rev. 31, 13–15 (2000).
    Google Scholar 
    Todd, R. L., Steven, P., Rowland, G. & Oldham, G. Herpetological observations from field expeditions to North Karnataka and Southwest Maharashtra, India. Herpetol. Bull. 112, 17–37 (2010).
    Google Scholar 
    Sathish Kumar, V. M. The conservation of Indian Reptiles: An approach with molecular aspects. Reptile Rap. 14, 2–8 (2012).
    Google Scholar 
    Berryman, A. A. & Hawkins, B. A. The refuge as an integrating concept in ecology and evolution. Oikos. 115, 92–196 (2006).Article 

    Google Scholar 
    Webb, J. K., Pringle, R. M. & Shine, R. How do nocturnal snakes select diurnal retreat sites?. Copeia 2004, 919–925 (2004).Article 

    Google Scholar 
    Skinner, M. & Miller, N. Aggregation and social interaction in garter snakes (Thamnophis sirtalis sirtalis). Behav. Ecol. Sociobiol. 74, 51 (2020).Article 

    Google Scholar 
    Aubret, F. & Shine, R. Causes and consequences of aggregation by neonatal tiger snakes (Notechis scutatus, Elapidae). Austral Ecol. 34(2), 210–217 (2009).Article 

    Google Scholar 
    Myres, B. & Eells, M. Thermal aggregation in Boa constrictor. Herpetologica 24(1), 61–66 (1968).
    Google Scholar 
    Parrish, J. K. & Edelstein-keshet, L. Coinplexity, pattern, and evolutionary trade-offs in animal aggregation. Science 284, 99–101 (1999).CAS 
    PubMed 
    Article 

    Google Scholar 
    Trevesa, A. Theory and method in studies of vigilance and aggregation. Anim. Behav. 60, 711–722 (2000).Article 

    Google Scholar 
    Greene, H. W. Snakes (University of California Press, 1997).Book 

    Google Scholar 
    Huey, R. B., Peterson, C. R., Arnold, S. J. & Porter, W. P. Hot rocks and not-so-hot rocks: Retreat-site selection by garter snakes and its thermal consequences. Ecology 70, 931–944 (1989).Article 

    Google Scholar 
    Christian, K. & Weavers, B. Analysis of activity and energetics of the lizard Varanus rosenbergi. Copeia 1994, 289–295 (1994).Article 

    Google Scholar 
    Autumn, K. & de Nardo, D. F. Behavioural thermoregulation increases growth rate in nocturnal lizard. J. Herpetol. 29, 157–162 (1995).Article 

    Google Scholar 
    Milne, T., Bull, C. M. & Hutchinson, M. N. Use of burrows by the endangered pygmy blue-tongue lizard, Tiliqua adelaidensis (Scincidae). Wildl. Res. 30, 523–528 (2003).Article 

    Google Scholar 
    Sunday, J. M. et al. Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. PNAS. 111, 5610–5615 (2014).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Kearney, M., Shine, R. & Porter, W. P. The potential for behavioral thermoregulation to buffer ‘“cold-blooded”’ animals against climate warming. PNAS 106, 3835–3840 (2009).CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Stevenson, D. J., Dyer, K. J. & Willis-Stevenson, B. A. Survey and monitoring of the eastern indigo snake in georgia. Southeast. Nat. 2(3), 393–408 (2003).Article 

    Google Scholar 
    Zappalorti, R. T. & Reinert, H. K. Artificial refugia as a habitat-improvement strategy for snake conservation. Contrib. Herpetol. 11, 369–375 (1994).
    Google Scholar 
    Griffith, B., Scott, J. M., Carpenter, J. W. & Reed, C. Translocation as a species conservation tool: Status and strategy. Science 245, 477–480 (1989).CAS 
    PubMed 
    Article 

    Google Scholar 
    Mullin, S. J. Snakes Ecology and Conservation (eds. Stephen, J. M. & Richard, A. S.). (Cornell University Press, 2011).Lei, J., Booth, D. T. & Dwyer, R. G. Spatial ecology of yellow-spotted goannas adjacent to a sea turtle nesting beach. Aust. J. Zool. 65, 77–86 (2017).Article 

    Google Scholar 
    Ermi, Z. Snakes of China. (Anhui Science and Technology Press, 2006).Schulz, K. D. A Monograph of the Colubrid Snakes of the Genus Elaphe Fitzinger (Czech Republic, Koeltz Scientific Books, 1996).
    Google Scholar 
    Pallas, P. S. Reise durch verschiedene Provinzen des Russischen Reiches, Vol. 2. 744 (Kaiserl. Akad. Wiss., St. Petersburg, 1773).Auffenberg, W., Arian, Q. N. & Kurshid, N. Preferred habitat, home range and movement patterns of Varanus bengalensis in southern Pakistan. Mertensiella 2, 7–28 (1991).
    Google Scholar 
    McDiarmid, R. W. Reptile Biodiversity: Standard Methods for Inventory and Monitoring. (University of California Press, 2002).Riley, J. L., Baxter-gilbert, J. H. & Litzgus, J. D. A comparison of three external transmitter attachment methods for snakes. Wildl. Soc. Bull. 41(1), 132–139 (2017).Article 

    Google Scholar 
    Meine, C., & Archibald, G. The Cranes: Status Survey and Conservation Action Plan (IUCN, 1996).Mori, A. & Toda, M. Body temperature of subtropical snakes at night: How cold is their blood?. Curr. Herpetol. 37(2), 151–157 (2018).Article 

    Google Scholar 
    Crane, M., Silva, I., Marshall, B. M. & Strine, C. T. Lots of movement, little progress: A review of reptile home range literature. PeerJ 9, e11742 (2021).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Calabrese, J. M., Fleming, C. H. & Gurarie, E. ctmm: An R package for analyzing animal relocation data as a continuous-time stochastic process. Methods Ecol. Evol. 7, 1124–1132 (2016).Article 

    Google Scholar 
    Fleming, C. H. & Calabrese, J. M. A new kernel density estimator for accurate home-range and species-range area estimation. Methods Ecol. Evol. 8, 571–579 (2017).Article 

    Google Scholar 
    Fleming, C. H. et al. From fine-scale foraging to home ranges: A semivariance approach to identifying movement modes across spatiotemporal scales. Am. Nat. 183, 154–167 (2014).Article 

    Google Scholar 
    Fleming, C. H., Noonan, M. J., Medici, E. P. & Calabrese, J. M. Overcoming the challenge of small effective sample sizes in home-range estimation. Methods Ecol. Evol. 10, 1679–1689 (2019).Article 

    Google Scholar 
    Uhlenbeck, G. E. & Ornstein, L. S. On the theory of the Brownian motion. Phys. Rev. 36, 823 (1930).CAS 
    MATH 
    Article 

    Google Scholar 
    Bürkner, P. C. brms: An R package for Bayesian multilevel models using Stan. J. Stat. Softw. 80, 1–28 (2017).Article 

    Google Scholar 
    Bhattacharyya, A. On a measure of divergence between two statistical populations defined by their probability distributions. News Bull. Calcutta Math. Soc. 35, 99–109 (1943).MathSciNet 
    MATH 

    Google Scholar 
    Winner, K. et al. Statistical inference for home range overlap. Methods Ecol. Evol. 9, 1679–1691 (2018).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna (2016). http://www.R-project.org. Accessed September 2022.Calenge, A. The package ‘“adehabitat”’ for the R software: Tool for the analysis of space and habitat use by animals. Ecol. Modell. 197, 516–519 (2006).Article 

    Google Scholar 
    Manley, B. F. J., McDonald, L. L. & Thomas, D. L. Resource Selection by Animals: Statistical Design and Analysis for Field Studies (Chapman and Hall, 1993).Book 

    Google Scholar  More

  • in

    Rare species disproportionally contribute to functional diversity in managed forests

    Hooper, D. U. et al. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecol. Monogr. 75, 3–35 (2005).Article 

    Google Scholar 
    Schleuter, D., Daufresne, M., Massol, F. & Argillier, C. A user’s guide to functional diversity indices. Ecol. Monogr. 80, 469–484 (2010).Article 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. B Biol. Sci. 269, 1721–1727 (2002).Article 

    Google Scholar 
    Tilman, D. et al. The influence of functional diversity and composition on ecosystem processes. Science (80-. ). 277, 1300–1302 (1997).Díaz, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).Article 

    Google Scholar 
    Tilman, D. Functional diversity. in Encyclopedia of Biodiversity, Volume 3 (ed. Levin, S. A.) 109–120 (Academic Press, 2001).McGill, B. J., Enquist, B. J., Weiher, E. & Westoby, M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 21, 178–185 (2006).PubMed 
    Article 

    Google Scholar 
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).Article 

    Google Scholar 
    Petchey, O. L., Hector, A. & Gaston, K. J. How do different measures of functional diversity perform?. Ecology 85, 847–857 (2004).Article 

    Google Scholar 
    Cardinale, B. J. et al. Biodiversity loss and its impact on humanity. Nature 486, 59–67 (2012).CAS 
    Article 
    ADS 

    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).Article 

    Google Scholar 
    Halpern, B. S. & Floeter, S. R. Functional diversity responses to changing species richness in reef fish communities. Mar. Ecol. Prog. Ser. 364, 147–156 (2008).Article 
    ADS 

    Google Scholar 
    Seymour, C. L., Simmons, R. E., Joseph, G. S. & Slingsby, J. A. On bird functional diversity: Species richness and functional differentiation show contrasting responses to rainfall and vegetation structure in an arid landscape. Ecosystems 18, 971–984 (2015).Article 

    Google Scholar 
    Müller, J., Jarzabek-Müller, A., Bussler, H. & Gossner, M. M. Hollow beech trees identified as keystone structures for saproxylic beetles by analyses of functional and phylogenetic diversity. Anim. Conserv. 17, 154–162 (2014).Article 

    Google Scholar 
    Ulrich, W. et al. Species assortment or habitat filtering: A case study of spider communities on lake islands. Ecol. Res. 25, 375–381 (2010).Article 

    Google Scholar 
    Mouillot, D., Dumay, O. & Tomasini, J. A. Limiting similarity, niche filtering and functional diversity in coastal lagoon fish communities. Estuar. Coast. Shelf Sci. 71, 443–456 (2007).Article 
    ADS 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Should environmental filtering be abandoned?. Trends Ecol. Evol. 32, 429–437 (2017).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Flynn, D. F. B. et al. Loss of functional diversity under land use intensification across multiple taxa. Ecol. Lett. 12, 22–33 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Rader, R., Bartomeus, I., Tylianakis, J. M. & Laliberté, E. The winners and losers of land use intensification: Pollinator community disassembly is non-random and alters functional diversity. Divers. Distrib. 20, 908–917 (2014).Article 

    Google Scholar 
    Sol, D. et al. The worldwide impact of urbanisation on avian functional diversity. Ecol. Lett. 23, 962–972 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Bihn, J. H., Gebauer, G. & Brandl, R. Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology 91, 782–792 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Balestrieri, R. et al. A guild-based approach to assessing the influence of beech forest structure on bird communities. For. Ecol. Manage. 356, 216–223 (2015).Article 

    Google Scholar 
    Basile, M., Mikusiński, G. & Storch, I. Bird guilds show different responses to tree retention levels: A meta-analysis. Glob. Ecol. Conserv. 18, e00615 (2019).Article 

    Google Scholar 
    Czeszczewik, D. et al. Effects of forest management on bird assemblages in the Bialowieza Forest, Poland. iForest – Biogeosciences For. 8, 377–385 (2015).Article 

    Google Scholar 
    Wesołowski, T. Primeval conditions—What can we learn from them? Ibis (Lond. 1859). 149, 64–77 (2007).Paillet, Y. et al. Biodiversity differences between managed and unmanaged forests: meta-analysis of species richness in europe. Conserv. Biol. 24, 101–112 (2010).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Götzenberger, L. et al. Ecological assembly rules in plant communities-approaches, patterns and prospects. Biol. Rev. 87, 111–127 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Fox, J. W. & Kerr, B. Analyzing the effects of species gain and loss on ecosystem function using the extended Price equation partition. Oikos 121, 290–298 (2012).Article 

    Google Scholar 
    Fox, J. W. Using the Price Equations to partition the effects of biodiversity loss on ecosystem function. Ecology 87, 2687–2696 (2006).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Winfree, R. W., Fox, J., Williams, N. M., Reilly, J. R. & Cariveau, D. P. Abundance of common species, not species richness, drives delivery of a real-world ecosystem service. Ecol. Lett. 18, 626–635 (2015).PubMed 
    Article 

    Google Scholar 
    Storch, I. et al. Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multi‐scale approach. Ecol. Evol. ece3.6003 (2020) https://doi.org/10.1002/ece3.6003.Pommerening, A. & Murphy, S. T. A review of the history, definitions and methods of continuous cover forestry with special attention to afforestation and restocking. Forestry 77, 27–44 (2004).Article 

    Google Scholar 
    Bauhus, J., Puettmannn, K. J. & Kühne, C. Close-to-nature forest management in Europe: does it support complexity and adaptability of forest ecosystems? in Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change 187–213 (Routledge/The Earthscan Forest Library, 2013). https://doi.org/10.4324/9780203122808.Bauhus, J., Puettmannn, K. J. & Kühne, C. Is Close-to-Nature Forest Management in Europe Compatible with Managing Forests as Complex Adaptive Forest Ecosystems? in Managing Forests as Complex Adaptive Systems: Building Resilience to the Challenge of Global Change (eds. Messier, C., Puettmannn, K. J. & Coates, K. D.) 187–213 (Routledge/The Earthscan Forest Library, 2013).Balestrieri, R., Basile, M., Posillico, M., Altea, T. & Matteucci, G. Survey effort requirements for bird community assessment in forest habitats. Acta Ornithol. 52, 1–9 (2017).Article 

    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027 (2014).Article 

    Google Scholar 
    Laliberte, E. & Legendre, P. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299–305 (2010).PubMed 
    Article 

    Google Scholar 
    Gower, J. C. A general coefficient of similarity and some of its properties. Biometrics 27, 857 (1971).Article 

    Google Scholar 
    Kahl, T. & Bauhus, J. An index of forest management intensity based on assessment of harvested tree volume, tree species composition and dead wood origin. Nat. Conserv. 7, 15–27 (2014).Article 

    Google Scholar 
    Paillet, Y. et al. Quantifying the recovery of old-growth attributes in forest reserves: A first reference for France. For. Ecol. Manage. 346, 51–64 (2015).Article 

    Google Scholar 
    Burrascano, S., Lombardi, F. & Marchetti, M. Old-growth forest structure and deadwood: Are they indicators of plant species composition? A case study from central Italy. Plant Biosyst. 142, 313–323 (2008).Article 

    Google Scholar 
    Van Wagner, C. E. Practical aspects of the line intersect method. (Minister of Supply and Services Canada, 1982).Larrieu, L. et al. Tree related microhabitats in temperate and Mediterranean European forests: A hierarchical typology for inventory standardization. Ecol. Indic. 84, 194–207 (2018).Article 

    Google Scholar 
    Asbeck, T., Pyttel, P., Frey, J. & Bauhus, J. Predicting abundance and diversity of tree-related microhabitats in Central European montane forests from common forest attributes. For. Ecol. Manage. 432, 400–408 (2019).Article 

    Google Scholar 
    Paillet, Y. et al. The indicator side of tree microhabitats: A multi-taxon approach based on bats, birds and saproxylic beetles. J. Appl. Ecol. https://doi.org/10.1111/1365-2664.13181 (2018).Article 

    Google Scholar 
    Basile, M. et al. What do tree-related microhabitats tell us about the abundance of forest-dwelling bats, birds, and insects?. J. Environ. Manage. 264, 110401 (2020).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Wang, Q., Adiku, S., Tenhunen, J. & Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ. 94, 244–255 (2005).Article 
    ADS 

    Google Scholar 
    Rafique, R., Zhao, F., De Jong, R., Zeng, N. & Asrar, G. R. Global and regional variability and change in terrestrial ecosystems net primary production and NDVI: A model-data comparison. Remote Sens. 8, 1–16 (2016).Article 

    Google Scholar 
    Bates, D. et al. Package ‘lme4’. R Found. Stat. Comput. Vienna 12, (2014).Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer, New York, 2009). https://doi.org/10.1007/978-0-387-87458-6.Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level / Mixed) Regression Models. (2019).R Core Team. R: A language and environment for statistical computing. (2021).Mayfield, M. M. et al. What does species richness tell us about functional trait diversity? Predictions and evidence for responses of species and functional trait diversity to land-use change. Glob. Ecol. Biogeogr. 19, 423–431 (2010).
    Google Scholar 
    Pavoine, S. & Bonsall, M. B. Measuring biodiversity to explain community assembly: a unified approach. Biol. Rev. 86, 792–812 (2011).CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mayfield, M. M., Boni, M. F., Daily, G. C. & Ackerly, D. Species and functional diversity of natie and human-dominated plant communities. Ecology 86, 2365–2372 (2005).Article 

    Google Scholar 
    Holdaway, R. J. & Sparrow, A. D. Assembly rules operating along a primary riverbed-grassland successional sequence. J. Ecol. 94, 1092–1102 (2006).Article 

    Google Scholar 
    Matuoka, M. A., Benchimol, M., de Almeida-Rocha, J. M. & Morante-Filho, J. C. Effects of anthropogenic disturbances on bird functional diversity: A global meta-analysis. Ecol. Indic. 116, 106471 (2020).Article 

    Google Scholar 
    Leaver, J., Mulvaney, J., Ehlers-Smith, D. A., Ehlers-Smith, Y. C. & Cherry, M. I. Response of bird functional diversity to forest product harvesting in the Eastern Cape, South Africa. For. Ecol. Manage. 445, 82–95 (2019).Article 

    Google Scholar 
    Poos, M. S., Walker, S. C. & Jackson, D. A. Functional-diversity indices can be driven by methodological choices and species richness. Ecology 90, 341–347 (2009).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Mayfield, M. M., Boni, M. F., Daily, G. C. & Ackerly, D. Species and functional diversity of native and human-dominated plant communities. Ecology 86, 2365–2372 (2005).Article 

    Google Scholar 
    Tsianou, M. A. & Kallimanis, A. S. Different species traits produce diverse spatial functional diversity patterns of amphibians. Biodivers. Conserv. 25, 117–132 (2016).Article 

    Google Scholar 
    Gregory, R. D., Skorpilova, J., Vorisek, P. & Butler, S. An analysis of trends, uncertainty and species selection shows contrasting trends of widespread forest and farmland birds in Europe. Ecol. Indic. 103, 676–687 (2019).Article 

    Google Scholar 
    Peña, R. et al. Biodiversity components mediate the response to forest loss and the effect on ecological processes of plant–frugivore assemblages. Funct. Ecol. 34, 1257–1267 (2020).Article 

    Google Scholar 
    Chase, J. M., Blowes, S. A., Knight, T. M., Gerstner, K. & May, F. Ecosystem decay exacerbates biodiversity loss with habitat loss. Nature 584, 238–243 (2020).CAS 
    PubMed 
    Article 
    ADS 
    PubMed Central 

    Google Scholar 
    Fedrowitz, K. et al. Can retention forestry help conserve biodiversity? A meta-analysis. J. Appl. Ecol. 51, 1669–1679 (2014).PubMed 
    PubMed Central 
    Article 

    Google Scholar 
    Horák, J. et al. Green desert?: Biodiversity patterns in forest plantations. For. Ecol. Manage. 433, 343–348 (2019).Article 

    Google Scholar 
    Ameztegui, A. et al. Bird community response in mountain pine forests of the Pyrenees managed under a shelterwood system. For. Ecol. Manage. 407, 95–105 (2017).Article 

    Google Scholar 
    Basile, M., Balestrieri, R., de Groot, M., Flajšman, K. & Posillico, M. Conservation of birds as a function of forestry. Ital. J. Agron. 11, 42–48 (2016).
    Google Scholar 
    Uezu, A. & Metzger, J. P. Vanishing bird species in the Atlantic Forest: Relative importance of landscape configuration, forest structure and species characteristics. Biodivers. Conserv. 20, 3627–3643 (2011).Article 

    Google Scholar 
    Endenburg, S. et al. The homogenizing influence of agriculture on forest bird communities at landscape scales. Landsc. Ecol. 34, 1–15 (2019).Article 

    Google Scholar 
    Reif, J. et al. Changes in bird community composition in the Czech Republic from 1982 to 2004: Increasing biotic homogenization, impacts of warming climate, but no trend in species richness. J. Ornithol. 154, 359–370 (2013).Article 

    Google Scholar 
    Morelli, F. et al. Evidence of evolutionary homogenization of bird communities in urban environments across Europe. Glob. Ecol. Biogeogr. 25, 1284–1293 (2016).Article 

    Google Scholar 
    Devictor, V., Julliard, R., Couvet, D., Lee, A. & Jiguet, F. Functional homogenization effect of urbanization on bird communities. Conserv. Biol. 21, 741–751 (2007).PubMed 
    Article 

    Google Scholar 
    Doxa, A., Paracchini, M. L., Pointereau, P., Devictor, V. & Jiguet, F. Preventing biotic homogenization of farmland bird communities: The role of High Nature Value farmland. Agric. Ecosyst. Environ. 148, 83–88 (2012).Article 

    Google Scholar 
    Van Turnhout, C. A. M., Foppen, R. P. B., Leuven, R. S. E. W., Siepel, H. & Esselink, H. Scale-dependent homogenization: Changes in breeding bird diversity in the Netherlands over a 25-year period. Biol. Conserv. 134, 505–516 (2007).Article 

    Google Scholar 
    Clavero, M. & Brotons, L. Functional homogenization of bird communities along habitat gradients: Accounting for niche multidimensionality. Glob. Ecol. Biogeogr. 19, 684–696 (2010).
    Google Scholar 
    Gustafsson, L. et al. Retention as an integrated biodiversity conservation approach for continuous-cover forestry in Europe. Ambio 49, 85–97 (2020).PubMed 
    Article 

    Google Scholar 
    Lelli, C. et al. Biodiversity response to forest structure and management: Comparing species richness, conservation relevant species and functional diversity as metrics in forest conservation. For. Ecol. Manage. 432, 707–717 (2019).Article 

    Google Scholar 
    Aquilué, N., Messier, C., Martins, K. T., Dumais-Lalonde, V. & Mina, M. A simple-to-use management approach to boost adaptive capacity of forests to global uncertainty. For. Ecol. Manage. 481, (2021).Manes, F., Ricotta, C., Salvatori, E., Bajocco, S. & Blasi, C. A multiscale analysis of canopy structure in Fagus sylvatica L. and Quercus cerris L. old-growth forests in the Cilento and Vallo di Diano National Park. Plant Biosyst. 144, 202–210 (2010).Article 

    Google Scholar 
    Tscharntke, T. et al. Landscape moderation of biodiversity patterns and processes – eight hypotheses. Biol. Rev. 87, 661–685 (2012).PubMed 
    Article 
    PubMed Central 

    Google Scholar 
    Kirsch, J.-J. et al. The use of water-filled tree holes by vertebrates in temperate forests. Wildlife Biol. 2021, wlb.00786
    (2021). More

  • in

    Linking transcriptional dynamics of CH4-cycling grassland soil microbiomes to seasonal gas fluxes

    Canadell JG, Monteiro PMS, Costa, MH, Cotrim da Cunha L, Cox PM, Eliseev AV, et al. Global carbon and other biogeochemical cycles and feedbacks. In: Masson-Delmotte V, Zhai P, Pirani A, Connors SL, Péan C, Berger S, et al. editors. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press; 2021, in press.Rosentreter JA, Borges AV, Deemer BR, Holgerson MA, Liu S, Song C, et al. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat Geosci. 2021;14:225–30.CAS 

    Google Scholar 
    Saunois M, Stavert AR, Poulter B, Bousquet P, Canadell JG, Jackson RB, et al. The global methane budget 2000 – 2017. Earth Syst. Sci Data. 2020;12:1561–623.
    Google Scholar 
    Lamentowicz M, Gałka M, Pawlyta J, Lamentowicz Ł, Goslar T, Miotk-Szpiganowicz G. Climate change and human impact in the southern Baltic during the last millennium reconstructed from an ombrotrophic bog archive. Stud Quat. 2011;28:3–16.
    Google Scholar 
    Davidson NC. How much wetland has the world lost? Long-term and recent trends in global wetland area. Mar Freshw Res. 2014;65:934–41.
    Google Scholar 
    Oertel C, Matschullat J, Zurba K, Zimmermann F, Erasmi S. Greenhouse gas emissions from soils – a review. Geochemistry. 2016;76:327–52.CAS 

    Google Scholar 
    Liesack W, Schnell S, Revsbech NP. Microbiology of flooded rice paddies. FEMS Microbiol Rev. 2000;24:625–45.CAS 
    PubMed 

    Google Scholar 
    Conrad R. The global methane cycle: recent advances in understanding the microbial processes involved. Environ Microbiol Rep. 2009;1:285–92.CAS 
    PubMed 

    Google Scholar 
    Lyu Z, Shao N, Akinyemi T, Whitman WB. Methanogenesis. Curr Biol. 2018;28:R727–R732.CAS 
    PubMed 

    Google Scholar 
    Kurth JM, Nobu MK, Tamaki H, de Jonge N, Berger S, Jetten MSM, et al. Methanogenic archaea use a bacteria-like methyltransferase system to demethoxylate aromatic compounds. ISME J. 2021;15:3549–65.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mayumi D, Mochimaru H, Tamaki H, Yamamoto K, Yoshioka H, Suzuki Y, et al. Methane production from coal by a single methanogen. Science. 2016;354:222–6.CAS 
    PubMed 

    Google Scholar 
    Bridgham SD, Cadillo-Quiroz H, Keller JK, Zhuang Q. Methane emissions from wetlands: Biogeochemical, microbial, and modeling perspectives from local to global scales. Glob Chang Biol. 2013;19:1325–46.PubMed 

    Google Scholar 
    Narrowe AB, Borton MA, Hoyt DW, Smith GJ, Daly RA, Angle JC, et al. Uncovering the diversity and activity of methylotrophic methanogens in freshwater wetland soils. mSystems. 2019;4:e00320–19.PubMed 
    PubMed Central 

    Google Scholar 
    Zalman CA, Meade N, Chanton J, Kostka JE, Bridgham SD, Keller JK. Methylotrophic methanogenesis in Sphagnum-dominated peatland soils. Soil Biol Biochem. 2018;118:156–60.CAS 

    Google Scholar 
    Knief C. Diversity and habitat preferences of cultivated and uncultivated aerobic methanotrophic bacteria evaluated based on pmoA as molecular marker. Front Microbiol. 2015;6:1346.PubMed 
    PubMed Central 

    Google Scholar 
    Le Mer J, Roger P. Production, oxidation, emission and consumption of methane by soils: a review. Eur J Soil Biol. 2001;37:25–50.
    Google Scholar 
    Wieczorek AS, Drake HL, Kolb S. Organic acids and ethanol inhibit the oxidation of methane by mire methanotrophs. FEMS Microbiol Ecol. 2011;77:28–39.CAS 
    PubMed 

    Google Scholar 
    Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJM, et al. Nitrate- and nitrite-dependent anaerobic oxidation of methane. Environ Microbiol Rep. 2016;8:941–55.CAS 
    PubMed 

    Google Scholar 
    Cui M, Ma A, Qi H, Zhuang X, Zhuang G. Anaerobic oxidation of methane: An ‘active’ microbial process. Microbiol Open. 2015;4:1–11.
    Google Scholar 
    Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B. Archaea catalyze iron-dependent anaerobic oxidation of methane. Proc Natl Acad Sci USA. 2016;113:12792–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stiehl-Braun PA, Hartmann AA, Kandeler E, Buchmann N, Niklaus PA. Interactive effects of drought and N fertilization on the spatial distribution of methane assimilation in grassland soils. Glob Chang Biol 2011;17:2629–39.
    Google Scholar 
    Bodelier PLE, Meima-Franke M, Hordijk CA, Steenbergh AK, Hefting MM, Bodrossy L, et al. Microbial minorities modulate methane consumption through niche partitioning. ISME J. 2013;7:2214–28.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karbin S, Hagedorn F, Dawes MA, Niklaus PA. Treeline soil warming does not affect soil methane fluxes and the spatial micro-distribution of methanotrophic bacteria. Soil Biol Biochem. 2015;86:164–71.CAS 

    Google Scholar 
    Stiehl-Braun PA, Powlson DS, Poulton PR, Niklaus PA. Effects of N fertilizers and liming on the micro-scale distribution of soil methane assimilation in the long-term Park Grass experiment at Rothamsted. Soil Biol Biochem. 2011;43:1034–41.CAS 

    Google Scholar 
    Menyailo OV, Hungate BA, Abraham WR, Conrad R. Changing land use reduces soil CH4 uptake by altering biomass and activity but not composition of high-affinity methanotrophs. Glob Chang Biol. 2008;14:2405–19.
    Google Scholar 
    Ciais P, Sabine C, Bala G, Bopp L, Brovkin V, Canadell J, et al. Carbon and Other Biogeochemical Cycles. In: Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, et al. editors. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. New York, NY: Cambridge University Press; 2013, 465–570.Täumer J, Kolb S, Boeddinghaus RS, Wang H, Schöning I, Schrumpf M, et al. Divergent drivers of the microbial methane sink in temperate forest and grassland soils. Glob Chang Biol. 2021;27:929–40.PubMed 

    Google Scholar 
    Kolb S. The quest for atmospheric methane oxidizers in forest soils. Environ Microbiol Rep. 2009;1:336–46.CAS 
    PubMed 

    Google Scholar 
    Kolb S, Horn MA. Microbial CH4 and N2O consumption in acidic wetlands. Front Microbiol. 2012;3:78.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cai Y, Zheng Y, Bodelier PLE, Conrad R, Jia Z. Conventional methanotrophs are responsible for atmospheric methane oxidation in paddy soils. Nat Commun. 2016;7:11728.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dean JF, Middelburg JJ, Röckmann T, Aerts R, Blauw LG, Egger M, et al. Methane feedbacks to the global climate system in a warmer world. Rev Geophys. 2018;56:207–50.
    Google Scholar 
    Levy-Booth DJ, Giesbrecht IJW, Kellogg CTE, Heger TJ, D’Amore DV, Keeling PJ, et al. Seasonal and ecohydrological regulation of active microbial populations involved in DOC, CO2, and CH4 fluxes in temperate rainforest soil. ISME J. 2019;13:950–63.CAS 
    PubMed 

    Google Scholar 
    Lombard N, Prestat E, van Elsas JD, Simonet P. Soil-specific limitations for access and analysis of soil microbial communities by metagenomics. FEMS Microbiol Ecol. 2011;78:31–49.CAS 
    PubMed 

    Google Scholar 
    Carini P, Marsden PJ, Leff JW, Morgan EE, Strickland MS, Fierer N. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat Microbiol. 2016;2:16242.PubMed 

    Google Scholar 
    Blazewicz SJ, Barnard RL, Daly RA, Firestone MK. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 2013;7:2061–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sukenik A, Kaplan-Levy RN, Welch JM, Post AF. Massive multiplication of genome and ribosomes in dormant cells (akinetes) of Aphanizomenon ovalisporum (Cyanobacteria). ISME J. 2012;6:670–9.CAS 
    PubMed 

    Google Scholar 
    Schwartz E, Hayer M, Hungate BA, Koch BJ, McHugh TA, Mercurio W, et al. Stable isotope probing with 18O-water to investigate microbial growth and death in environmental samples. Curr Opin Biotechnol. 2016;41:14–18.CAS 
    PubMed 

    Google Scholar 
    Angel R, Conrad R. Elucidating the microbial resuscitation cascade in biological soil crusts following a simulated rain event. Environ Microbiol. 2013;15:2799–815.CAS 
    PubMed 

    Google Scholar 
    Papp K, Mau RL, Hayer M, Koch BJ, Hungate BA, Schwartz E. Quantitative stable isotope probing with H218O reveals that most bacterial taxa in soil synthesize new ribosomal RNA. ISME J. 2018;12:3043–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urich T, Lanzén A, Qi J, Huson DH, Schleper C, Schuster SC. Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One. 2008;3:e2527.PubMed 
    PubMed Central 

    Google Scholar 
    Peng J, Wegner CE, Liesack W. Short-term exposure of paddy soil microbial communities to salt stress triggers different transcriptional responses of key taxonomic groups. Front Microbiol. 2017;8:400.PubMed 
    PubMed Central 

    Google Scholar 
    Peng J, Wegner CE, Bei Q, Liu P, Liesack W. Metatranscriptomics reveals a differential temperature effect on the structural and functional organization of the anaerobic food web in rice field soil. Microbiome. 2018;6:169.PubMed 
    PubMed Central 

    Google Scholar 
    Abdallah RZ, Wegner CE, Liesack W. Community transcriptomics reveals drainage effects on paddy soil microbiome across all three domains of life. Soil Biol Biochem. 2019;132:131–42.CAS 

    Google Scholar 
    Gloor GB, Macklaim JM, Pawlowsky-Glahn V, Egozcue JJ. Microbiome datasets are compositional: and this is not optional. Front Microbiol. 2017;8:2224.PubMed 
    PubMed Central 

    Google Scholar 
    Moran MA, Satinsky B, Gifford SM, Luo H, Rivers A, Chan LK, et al. Sizing up metatranscriptomics. ISME J. 2013;7:237–43.CAS 
    PubMed 

    Google Scholar 
    Gifford SM, Sharma S, Rinta-Kanto JM, Moran MA. Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME J. 2011;5:461–72.PubMed 

    Google Scholar 
    Söllinger A, Tveit AT, Poulsen M, Noel SJ, Bengtsson M, Bernhardt J, et al. Holistic assessment of rumen microbiome dynamics through quantitative metatranscriptomics reveals multifunctional redundancy during key steps of anaerobic feed degradation. mSystems 2018;3:e00038–18.PubMed 
    PubMed Central 

    Google Scholar 
    Fischer M, Bossdorf O, Gockel S, Hänsel F, Hemp A, Hessenmöller D, et al. Implementing large-scale and long-term functional biodiversity research: the biodiversity exploratories. Basic Appl Ecol. 2010;11:473–85.
    Google Scholar 
    IUSS Working Group WRB. World reference base for soil resources 2014, update 2015 international soil classification system for naming soils and creating legends for soil maps. World Soil Resour Reports No 106. Rome: FAO; 2015.Vance ED, Brookes PC, Jenkinson DS. An extraction method for measuring soil microbial biomass C. Soil Biol Biochem. 1987;19:703–7.CAS 

    Google Scholar 
    Joergensen RG, Mueller T. The fumigation-extraction method to estimate soil microbial biomass: calibaration of the kEN value. Soil Biol Biochem. 1996;28:33–37.CAS 

    Google Scholar 
    Brookes PC, Landman A, Pruden G, Jenkinson DS. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem. 1985;17:837–42.CAS 

    Google Scholar 
    Bamminger C, Zaiser N, Zinsser P, Lamers M, Kammann C, Marhan S. Effects of biochar, earthworms, and litter addition on soil microbial activity and abundance in a temperate agricultural soil. Biol Fertil Soils. 2014;50:1189–1200.CAS 

    Google Scholar 
    Koch O, Tscherko D, Kandeler E. Seasonal and diurnal net methane emissions from organic soils of the Eastern Alps, Austria: Effects of soil temperature, water balance, and plant biomass. Arct Antarct Alp Res. 2007;39:438–48.
    Google Scholar 
    Tveit AT, Urich T, Svenning MM. Metatranscriptomic analysis of arctic peat soil microbiota. Appl Environ Microbiol. 2014;80:5761–72.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27:2957–63.PubMed 
    PubMed Central 

    Google Scholar 
    Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics. 2011;27:863–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kopylova E, Noé L, Touzet H. SortMeRNA: Fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics. 2012;28:3211–7.CAS 
    PubMed 

    Google Scholar 
    Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26:2460–1.CAS 
    PubMed 

    Google Scholar 
    Lanzén A, Jørgensen SL, Huson DH, Gorfer M, Grindhaug SH, Jonassen I, et al. CREST – Classification resources for environmental sequence tags. PLoS One. 2012;7:e49334.Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.CAS 
    PubMed 

    Google Scholar 
    Huson DH, Beier S, Flade I, Górska A, El-Hadidi M, Mitra S, et al. MEGAN community edition – interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol. 2016;12:e1004957.PubMed 
    PubMed Central 

    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2014;12:59–60.PubMed 

    Google Scholar 
    Dumont MG, Lüke C, Deng Y, Frenzel P. Classification of pmoA amplicon pyrosequences using BLAST and the lowest common ancestor method in MEGAN. Front Microbiol. 2014;5:34.PubMed Central 

    Google Scholar 
    R Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018.Oksanen J, Blanchet f. G, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community ecology package. 2020. R package version 2.5-7. https://CRAN.R-project.org/package=vegan.Graves S, Piepho H-P, Selzer L. multcompView: Visualizations of paired comparisons. 2019. R package version 0.1-8. https://CRAN.R-project.org/package=multcompView.Günther A, Barthelmes A, Huth V, Joosten H, Jurasinski G, Koebsch F, et al. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat Commun. 2020;11:1644.PubMed 
    PubMed Central 

    Google Scholar 
    IPCC Task Force on National Greenhouse Gas Inventories. Methodological guidance on lands with wet and drained soilds, and constructed wetlands for wastewater treatment. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. 2014.Tiemeyer B, Albiac Borraz E, Augustin J, Bechtold M, Beetz S, Beyer C, et al. High emissions of greenhouse gases from grasslands on peat and other organic soils. Glob Chang Biol. 2016;22:4134–49.PubMed 

    Google Scholar 
    Kirschbaum MUF. The temperature dependence of soil organic matter decomposition, and the effect of global warming on soil organic C storage. Soil Biol Biochem. 1995;27:753–60.CAS 

    Google Scholar 
    Knorr W, Prentice IC, House JI, Holland EA. Long-term sensitivity of soil carbon turnover to warming. Nature 2005;433:298–301.CAS 
    PubMed 

    Google Scholar 
    Dutaur L, Verchot LV. A global inventory of the soil CH4 sink. Glob Biogeochem Cycles. 2007;21:GB4013.
    Google Scholar 
    McDaniel MD, Saha D, Dumont MG, Hernández M, Adams MA. The effect of land-use change on soil CH4 and N2O fluxes: A global meta-analysis. Ecosystems. 2019;22:1424–43.CAS 

    Google Scholar 
    Gulledge J, Schimel JP. Moisture control over atmospheric CH4 consumption and CO2 production in diverse Alaskan soils. Soil Biol Biochem. 1998;30:1127–32.CAS 

    Google Scholar 
    Tveit AT, Urich T, Frenzel P, Svenning MM. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc Natl Acad Sci USA. 2015;112:E2507–E2516.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Conrad R. Methane production in soil environments – anaerobic biogeochemistry and microbial life between flooding and desiccation. Microorganisms 2020;8:881.CAS 
    PubMed Central 

    Google Scholar 
    Lyu Z, Lu Y. Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments. ISME J. 2018;12:411–23.PubMed 

    Google Scholar 
    Smith KS, Ingram-Smith C. Methanosaeta, the forgotten methanogen? Trends Microbiol. 2007;15:150–5.CAS 
    PubMed 

    Google Scholar 
    Whitman WB, Bowen TL, Boone DR. The methanogenic bacteria. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F editors. The prokaryotes: other major lineages of bacteria and the archaea. Berlin, Heidelberg: Springer; 2014, pp 123–63.Conrad R. Importance of hydrogenotrophic, aceticlastic and methylotrophic methanogenesis for methane production in terrestrial, aquatic and other anoxic environments: a mini review. Pedosphere. 2020;30:25–39.
    Google Scholar 
    Söllinger A, Urich T. Methylotrophic methanogens everywhere – physiology and ecology of novel players in global methane cycling. Biochem Soc Trans. 2019;47:1895–907.PubMed 

    Google Scholar 
    Yang S, Liebner S, Winkel M, Alawi M, Horn F, Dörfer C, et al. In-depth analysis of core methanogenic communities from high elevation permafrost-affected wetlands. Soil Biol Biochem. 2017;111:66–77.CAS 

    Google Scholar 
    Weil M, Wang H, Bengtsson M, Köhn D, Günther A, Jurasinski G, et al. Long-term rewetting of three formerly drained peatlands drives congruent compositional changes in pro- and eukaryotic soil microbiomes through environmental filtering. Microorganisms. 2020;8:550.CAS 
    PubMed Central 

    Google Scholar 
    Söllinger A, Seneca J, Dahl MB, Motleleng LL, Prommer J, Verbruggen E, et al. Down-regulation of the microbial protein biosynthesis machinery in response to weeks, years, and decades of soil warming. Sci Adv. 2022;8:eabm3230.PubMed 
    PubMed Central 

    Google Scholar 
    Luesken FA, Wu ML, Op den Camp HJM, Keltjens JT, Stunnenberg H, Francoijs KJ, et al. Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: Kinetic and transcriptional analysis. Environ Microbiol. 2012;14:1024–34.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baani M, Liesack W. Two isozymes of particulate methane monooxygenase with different methane oxidation kinetics are found in Methylocystis sp. strain SC2. Proc Natl Acad Sci. 2008;105:10203–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yimga MT, Dunfield PF, Ricke P, Heyer J, Liesack W. Wide distribution of a novel pmoA-like gene copy among type II methanotrophs, and its expression in Methylocystis strain SC2. Appl Environ Microbiol. 2003;69:5593–602.CAS 

    Google Scholar 
    Tveit AT, Hestnes AG, Robinson SL, Schintlmeister A, Dedysh SN, Jehmlich N, et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc Natl Acad Sci USA. 2019;116:8515–24.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freitag TE, Toet S, Ineson P, Prosser JI. Links between methane flux and transcriptional activities of methanogens and methane oxidizers in a blanket peat bog. FEMS Microbiol Ecol. 2010;73:157–65.CAS 
    PubMed 

    Google Scholar 
    Qin H, Tang Y, Shen J, Wang C, Chen C, Yang J, et al. Abundance of transcripts of functional gene reflects the inverse relationship between CH4 and N2O emissions during mid-season drainage in acidic paddy soil. Biol Fertil Soils. 2018;54:885–95.
    Google Scholar  More

  • in

    Impact of rice paddy agriculture on habitat usage of migratory shorebirds at the rice paddy scale in Korea

    Boere, G. C., Galbraith, C. A., Stroud, D. & Thompson, D. B. A. The conservation of waterbirds around the world in Waterbirds Around the World (ed. Boere, G. C., Galbraith, C. A. & Stroud, D. A.) 32–45 (The Stationery Office, Edinburgh, UK, 2007).Butchart, S. H. M. et al. Global biodiversity: Indicators of recent declines. Science 328, 1164–1168. https://doi.org/10.1126/science.1187512,Pubmed:20430971 (2010).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Nebel, S., Porter, J. L. & Kingsford, R. T. Long-term trends of shorebird populations in eastern Australia and impacts of freshwater extraction. Biol. Conserv. 141, 971–980. https://doi.org/10.1016/j.biocon.2008.01.017 (2008).Article 

    Google Scholar 
    MacKinnon, J., Verkuil, Y. I. & Murray, N. IUCN situation analysis on east and Southeast Asian intertidal habitats, with particular reference to the Yellow Sea (including the Bohai Sea). Occas. Pap. IUCN Species Surviv. Comm. 047, 70.Li, X. et al. Assessing changes of habitat quality for shorebirds in stopover sites: A case study in Yellow River Delta, China. Wetlands 39, 67–77. https://doi.org/10.1007/s13157-018-1075-9 (2019).Article 

    Google Scholar 
    Murray, N. J., Clemens, R. S., Phinn, S. R., Possingham, H. P. & Fuller, R. A. Tracking the rapid loss of tidal wetlands in the Yellow Sea. Front. Ecol. Environ. 12, 267–272. https://doi.org/10.1890/130260 (2014).Article 

    Google Scholar 
    Green, J. M. H., Sripanomyom, S., Giam, X. & Wilcove, D. S. The ecology and economics of shorebird conservation in a tropical human-modified landscape. J. Appl. Ecol. 52, 1483–1491. https://doi.org/10.1111/1365-2664.12508 (2015).Article 

    Google Scholar 
    Toral, G. M. & Figuerola, J. Unraveling the importance of rice fields for waterbird populations in Europe. Biodivers. Conserv. 19, 3459–3469. https://doi.org/10.1007/s10531-010-9907-9 (2010).Article 

    Google Scholar 
    Masero, J. A. Assessing alternative anthropogenic habitats for conserving waterbirds: salinas as buffer areas against the impact of natural habitat loss for shorebirds. Biodivers. Conserv. 12, 1157–1173. https://doi.org/10.1023/A:1023021320448 (2003).Article 

    Google Scholar 
    Athearn, N. D. et al. Variability in habitat value of commercial salt production ponds: implications for waterbird management and tidal marsh restoration planning. Hydrobiologia 697, 139–155. https://doi.org/10.1007/s10750-012-1177-y (2012).CAS 
    Article 

    Google Scholar 
    Navedo, J. G. et al. Agroecosystems and conservation of migratory waterbirds: Importance of coastal pastures and factors influencing their use by wintering shorebirds. Biodivers. Conserv. 22, 1895–1907. https://doi.org/10.1007/s10531-013-0516-2 (2013).Article 

    Google Scholar 
    Navedo, J. G., Fernández, G., Valdivia, N., Drever, M. C. & Masero, J. A. Identifying management actions to increase foraging opportunities for shorebirds at semi-intensive shrimp farms. J. Appl. Ecol. 54, 567–576. https://doi.org/10.1111/1365-2664.12735 (2017).Article 

    Google Scholar 
    Lawler, S. P. Rice fields as temporary wetlands: A review. Isr. J. Zool. 47, 513–528. https://doi.org/10.1560/X7K3-9JG8-MH2J-XGX1 (2001).Article 

    Google Scholar 
    Fasola, M. & Ruiz, X. The value of rice fields as substitutes for natural wetlands for waterbirds in the Mediterranean region. Waterbirds 19, 122–128. https://doi.org/10.2307/1521955 (1996).Article 

    Google Scholar 
    Elphick, C. S. Why study birds in rice fields?. Waterbirds 33, 1–7. https://doi.org/10.1675/063.033.s101 (2010).Article 

    Google Scholar 
    Lourenço, P. M. & Piersma, T. Stopover ecology of Black-tailed Godwits Limosa limosa limosa in Portuguese rice fields: A guide on where to feed in winter. Bird Study 55, 194–202. https://doi.org/10.1080/00063650809461522 (2008).Article 

    Google Scholar 
    Elphick, C. S. & Oring, L. W. Conservation implications of flooding rice fields on winter waterbird communities. Agric. Ecosyst. Environ. 94, 17–29. https://doi.org/10.1016/S0167-8809(02)00022-1 (2003).Article 

    Google Scholar 
    Maeda, T. Patterns of bird abundance and habitat use in rice fields of the Kanto Plain, central Japan. Ecol. Res. 16, 569–585. https://doi.org/10.1046/j.1440-1703.2001.00418.x (2001).Article 

    Google Scholar 
    Choi, S. H., Nam, H. K. & Yoo, J. C. Characteristics of population dynamics and habitat use of shorebirds in rice fields during spring migration. Korean J. Environ. Agric. 33, 334–343. https://doi.org/10.5338/KJEA.2014.33.4.334 (2014).Article 

    Google Scholar 
    Shuford, W. D., Humphrey, J. M. & Nur, N. Breeding status of the Black tern in California. West. Birds 32, 189–217 (2001).
    Google Scholar 
    Sánchez-Guzmán, J. M. et al. Identifying new buffer areas for conserving waterbirds in the Mediterranean basin: The importance of the rice fields in Extremadura, Spain. Biodivers. Conserv. 16, 3333–3344. https://doi.org/10.1007/s10531-006-9018-9 (2007).Article 

    Google Scholar 
    Rendón, M. A., Green, A. J., Aguilera, E. & Almaraz, P. Status, distribution and long-term changes in the waterbird community wintering in Doñana, south–west Spain. Biol. Conserv. 141, 1371–1388. https://doi.org/10.1016/j.biocon.2008.03.006 (2008).Article 

    Google Scholar 
    Ibáñez, C., Curcó, A., Riera, X., Ripoll, I. & Sánchez, C. Influence on birds of rice field management practices during the growing season: A review and an experiment. Waterbirds 33, 167–180. https://doi.org/10.1675/063.033.s113 (2010).Article 

    Google Scholar 
    Pierluissi, S. Breeding waterbirds in rice fields: A global review. Waterbirds 33, 123–132. https://doi.org/10.1675/063.033.0117 (2010).Article 

    Google Scholar 
    Day, J. H. & Colwell, M. A. Waterbird communities in rice fields subjected to different post-harvest treatments. Waterbirds 21, 185–197. https://doi.org/10.2307/1521905 (1998).Article 

    Google Scholar 
    Elphick, C. S. & Oring, L. W. Winter management of Californian rice fields for waterbirds. J. Appl. Ecol. 35, 95–108. https://doi.org/10.1046/j.1365-2664.1998.00274.x (1998).Article 

    Google Scholar 
    Manley, S. W., Kaminski, R. M., Reinecke, K. J. & Gerard, P. D. Waterbird foods in winter-managed ricefields in Mississippi. J. Wildl. Manag. 68, 74–83. https://doi.org/10.2193/0022-541X(2004)068[0074:WFIWRI]2.0.CO;2 (2004).Article 

    Google Scholar 
    Pernollet, C. A., Cavallo, F., Simpson, D., Gauthier-Clerc, M. & Guillemain, M. Seed density and waterfowl use of rice fields in Camargue, France. Jour. Wild. Mgmt 81, 96–111. https://doi.org/10.1002/jwmg.21167 (2017).Article 

    Google Scholar 
    Nam, H. K., Choi, S. H. & Yoo, J. C. Influence of foraging behaviors of shorebirds on habitat use in rice fields during spring migration. Korean J. Environ. Agric. 34, 178–185. https://doi.org/10.5338/KJEA.2015.34.3.35 (2015).Article 

    Google Scholar 
    Nam, H. K., Choi, S. H., Choi, Y. S. & Yoo, J. C. Patterns of waterbirds abundance and habitat use in rice fields. Korean J. Environ. Agr. 31, 359–367. https://doi.org/10.5338/KJEA.2012.31.4.359 (2012).Article 

    Google Scholar 
    Nam, H. K., Choi, Y. S., Choi, S. H. & Yoo, J. C. Distribution of waterbirds in rice fields and their use of foraging habitats. Waterbirds 38, 173–183. https://doi.org/10.1675/063.038.0206 (2015).Article 

    Google Scholar 
    Hua, N., Tan, K., Chen, Y. & Ma, Z. Key research issues concerning the conservation of migratory shorebirds in the Yellow Sea region. Bird Conserv. Int. 25, 38–52. https://doi.org/10.1017/S0959270914000380 (2015).Article 

    Google Scholar 
    Stroud, D. A. et al. The conservation and population status of the world’s waders at the turn of the millennium in. Waterbirds Around the World Conference 643–648 (The Stationery Office, Edinburgh, UK, 2006).Taft, O. W. & Haig, S. M. The value of agricultural wetlands as invertebrate resources for wintering shorebirds. Agric. Ecosyst. Environ. 110, 249–256. https://doi.org/10.1016/j.agee.2005.04.012 (2005).Article 

    Google Scholar 
    Strum, K. M. et al. Winter management of California’s rice fields to maximize waterbird habitat and minimize water use. Agric. Ecosyst. Environ. 179, 116–124. https://doi.org/10.1016/j.agee.2013.08.003 (2013).Article 

    Google Scholar 
    Dias, R. A., Blanco, D. E., Goijman, A. P. & Zaccagnini, M. E. Density, habitat use, and opportunities for conservation of shorebirds in rice fields in southeastern South America. Condor Ornithol. Appl. 116, 384–393. https://doi.org/10.1650/CONDOR-13-160.1 (2014).Article 

    Google Scholar 
    Golet, G. H. et al. Using ricelands to provide temporary shorebird habitat during migration. Ecol. Appl. 28, 409–426. https://doi.org/10.1002/eap.1658,Pubmed:29205645 (2018).Article 
    PubMed 

    Google Scholar 
    Choi, G., Nam, H. K., Son, S. J., Do, M. S. & Yoo, J. C. The impact of agricultural activities on habitat use by the Wood sandpiper and Common greenshank in rice fields. Ornithol. Sci. 20, 27–37. https://doi.org/10.2326/osj.20.27 (2021).Article 

    Google Scholar 
    Choi, S. H. & Nam, H. K. Flexible behavior of the Black-tailed godwit Limosa limosa is key to successful refueling during staging at rice paddy fields in Midwestern Korea. Zool. Sci. 37, 255–262. https://doi.org/10.2108/zs190120,Pubmed:32549539 (2020).Article 

    Google Scholar 
    Cole, M. L., Leslie, D. M. Jr. & Fisher, W. L. Habitat use by shorebirds at a stopover site in the southern Great Plains. Southwest. Nat. 47, 372–378. https://doi.org/10.2307/3672495 (2002).Article 

    Google Scholar 
    Rundle, W. D. & Fredrickson, L. H. Managing seasonally flooded impoundments for migrant rails and shorebirds. Wildl. Soc. Bull., 80–87 (1981).Taylor, D. M. & Trost, C. H. Use of lakes and reservoirs by migrating shorebirds in Idaho. Gr Basin Nat. 52, 179–184 (1992).
    Google Scholar 
    Hands, H. M., Ryan, M. R. & Smith, J. W. Migrant shorebird use of marsh, Moist-Soil, and flooded agricultural habitats. Wildl. Soc. Bull. 1973–2006(19), 457–464 (1991).
    Google Scholar 
    Skagen, S. K. & Knopf, F. L. Migrating shorebirds and habitat dynamics at a prairie wetland complex. Wilson Bull., 91–105 (1994).Weber, L. M. & Haig, S. M. Shorebird use of South Carolina managed and natural coastal wetlands. J. Wildl. Manag. 60, 73–82. https://doi.org/10.2307/3802042 (1996).Article 

    Google Scholar 
    Collazo, J. A., O’Harra, D. A. & Kelly, C. A. Accessible habitat for shorebirds: factors influencing its availability and conservation implications. Waterbirds, 13–24 (2002).Helmers, D.L. Shorebird Management Manual. Western Hemisphere Shorebird Reserve Network (Manomet Cntr for Conservation Sciences, Manomet, MA, 1992).Verkuil, Y., Koolhaas, A. & Van Der Winden, J. Wind effects on prey availability: how northward migrating waders use brackish and hypersaline lagoons in the Sivash, Ukraine. Neth. J. Sea Res. 31, 359–374. https://doi.org/10.1016/0077-7579(93)90053-U (1993).Article 

    Google Scholar 
    Davis, C. A. & Smith, L. M. Ecology and management of migrant shorebirds in the Playa Lakes Region of Texas. Wildl. Monogr., 3–45 (1998).Barter, M. Shorebirds of the Yellow Sea: Importance, threats and conservation status in Wetlands Int. Global Ser. Oceania 9, 5–13.Katayama, N., Baba, Y. G., Kusumoto, Y. & Tanaka, K. A review of post-war changes in rice farming and biodiversity in Japan. Agric. Syst. 132, 73–84. https://doi.org/10.1016/j.agsy.2014.09.001 (2015).Article 

    Google Scholar 
    Mukherjee, A. Adaptiveness of cattle egret’s (Bubulcus ibis) foraging. Zoos Print J. 15, 331–333 (2000). https://doi.org/10.11609/JoTT.ZPJ.15.10.331-3.Choi, Y. S., Kim, S. S. & Yoo, J. C. Feeding activity of cattle egrets and intermediate egrets at different stages of rice culture in Korea. J. Ecol. Environ. 33, 149–155. https://doi.org/10.5141/JEFB.2010.33.2.149 (2010).Article 

    Google Scholar 
    Katayama, N., Amano, T., Fujita, G. & Higuchi, H. Spatial overlap between the intermediate egret Egretta intermedia and its aquatic prey at two spatiotemporal scales in a rice paddy landscape. Zool. Stud. 51, 1105–1112 (2013).
    Google Scholar 
    Sebastián-González, E. & Green, A. J. Reduction of avian diversity in created versus natural and restored wetlands. Ecography 39, 1176–1184. https://doi.org/10.1111/ecog.01736 (2016).Article 

    Google Scholar 
    Walton, M. E. M. et al. A model for the future: ecosystem services provided by the aquaculture activities of Veta La Palma, Southern Spain. Aquaculture 448, 382–390. https://doi.org/10.1016/j.aquaculture.2015.06.017 (2015).Article 

    Google Scholar 
    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2014).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).Article 

    Google Scholar 
    Lüdecke, D. sjPlot: data visualization for statistics in social science. R package version 1.6.9. org/Package=sjPlot > (2016). http://CRAN.Rproject. More