More stories

  • in

    Identifying conservation technology needs, barriers, and opportunities

    Pimm, S. L. et al. Emerging technologies to conserve biodiversity. Trends Ecol. Evol. 30, 685–696 (2015).Article 

    Google Scholar 
    Marvin, D. C. et al. Integrating technologies for scalable ecology and conservation. Glob. Ecol. Conserv. 7, 262–275 (2016).Article 

    Google Scholar 
    Wall, J., Wittemyer, G., Klinkenberg, B. & Douglas-Hamilton, I. Novel opportunities for wildlife conservation and research with real-time monitoring. Ecol. Appl. 24, 593–601 (2014).Article 

    Google Scholar 
    Snaddon, J., Petrokofsky, G., Jepson, P. & Willis, K. J. Biodiversity technologies: tools as change agents. Biol. Lett. 9, 20121029 (2013).Article 

    Google Scholar 
    Pettorelli, N., Safi, K., Turner, W. Satellite remote sensing, biodiversity research and conservation of the future. Philos. Trans. R. Soc. B Biol. Sci. 369, 20130190 (2014).Ripperger, S. P. et al. Thinking small: Next-generation sensor networks close the size gap in vertebrate biologging. PLOS Biol. 18, e3000655 (2020).CAS 
    Article 

    Google Scholar 
    Xu, H., Wang, K., Vayanos, P. & Tambe, M. Strategic coordination of human patrollers and mobile sensors with signaling for security games. 8 (2018).Liu, Y. et al. AI for Earth: Rainforest conservation by acoustic surveillance. 2 (2019).Joppa, L. N. Technology for nature conservation: an industry perspective. Ambio 44, 522–526 (2015).Article 

    Google Scholar 
    Koh, L. P. & Wich, S. A. Dawn of drone ecology: low-cost autonomous aerial vehicles for conservation. Trop. Conserv. Sci. 5, 121–132 (2012).Article 

    Google Scholar 
    Hahn, N. et al. Unmanned aerial vehicles mitigate human–elephant conflict on the borders of Tanzanian Parks: a case study. Oryx 51, 513–516 (2017).Article 

    Google Scholar 
    Pomerantz, A. et al. Real-time DNA barcoding in a rainforest using nanopore sequencing: opportunities for rapid biodiversity assessments and local capacity building. GigaScience 7, (2018).Van Doren, B. M. & Horton, K. G. A continental system for forecasting bird migration. Science 361, 1115–1118 (2018).ADS 
    Article 

    Google Scholar 
    Howson, P. Building trust and equity in marine conservation and fisheries supply chain management with blockchain. Mar. Policy 115, 103873 (2020).Article 

    Google Scholar 
    Speaker, T. et al. A global community-sourced assessment of the state of conservation technology. Conserv. Biol. cobi. https://doi.org/10.1111/cobi.13871 (2022).Article 

    Google Scholar 
    Pearce, J. M. Building research equipment with free Open-Source Hardware. Science 337, 1303–1304 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Gibb, R., Browning, E., Glover-Kapfer, P. & Jones, K. E. Emerging opportunities and challenges for passive acoustics in ecological assessment and monitoring. Methods Ecol. Evol. 10, 169–185 (2019).Article 

    Google Scholar 
    current constraints and future priorities for development. Glover-Kapfer, P., Soto-Navarro, C. A. & Wearn, O. R. Camera-trapping version 3.0. Remote Sens. Ecol. Conserv. 5, 209–223 (2019).Article 

    Google Scholar 
    Norouzzadeh, M. S. et al. Automatically identifying, counting, and describing wild animals in camera-trap images with deep learning. Proc. Natl. Acad. Sci. 115, E5716–E5725 (2018).CAS 
    Article 

    Google Scholar 
    Berger-Tal, O. & Lahoz-Monfort, J. J. Conservation technology: the next generation. Conserv. Lett. 11, 1–6 (2018).Article 

    Google Scholar 
    Hill, A. P. et al. AudioMoth: Evaluation of a smart open acoustic device for monitoring biodiversity and the environment. Methods Ecol. Evol. 9, 1199–1211 (2018).Article 

    Google Scholar 
    Zárybnická, M., Kubizňák, P., Šindelář, J. & Hlaváč, V. Smart nest box: a tool and methodology for monitoring of cavity-dwelling animals. Methods Ecol. Evol. 7, 483–492 (2016).Article 

    Google Scholar 
    Kalmár, G. et al. Animal-Borne Anti-Poaching System. in Proceedings of the 17th Annual International Conference on Mobile Systems, Applications, and Services 91–102 (ACM, 2019). https://doi.org/10.1145/3307334.3326080.Weise, F. J. et al. Lions at the gates: Trans-disciplinary design of an early warning system to improve human-lion coexistence. Front. Ecol. Evol. 6, 242 (2019).Article 

    Google Scholar 
    Beery, S., Van Horn, G. & Perona, P. Recognition in Terra Incognita. in Proceedings of the European Conference on Computer Vision (ECCV) (eds. Ferrari, V., Hebert, M., Sminchisescu, C. & Weiss, Y.) 472–489 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-030-01270-0_28.Crego, R. D., Masolele, M. M., Connette, G. & Stabach, J. A. Enhancing animal movement analyses: spatiotemporal matching of animal positions with remotely sensed data using google earth engine and R. Remote Sens. 13, 4154 (2021).ADS 
    Article 

    Google Scholar 
    Gorelick, N. et al. Google earth engine: Planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 202, 18–27 (2017).ADS 
    Article 

    Google Scholar 
    Vulcan. EarthRanger. https://earthranger.com.Ahumada, J. A. et al. Wildlife insights: A platform to maximize the potential of camera trap and other passive sensor wildlife data for the planet. Environ. Conserv. 47, 1–6 (2020).MathSciNet 
    Article 

    Google Scholar 
    Lahoz-Monfort, J. J. et al. A call for international leadership and coordination to realize the potential of conservation technology. Bioscience 69, 823–832 (2019).Article 

    Google Scholar 
    Group Gets – AudioMoth. https://groupgets.com/manufacturers/open-acoustic-devices/products/audiomoth.Kulits, P., Wall, J., Bedetti, A., Henley, M. & Beery, S. ElephantBook: A semi-automated human-in-the-loop system for elephant re-identification. in ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS) 88–98 (ACM, 2021). https://doi.org/10.1145/3460112.3471947.Pardo, L. E. et al. Snapshot Safari: A large-scale collaborative to monitor Africa’s remarkable biodiversity. South Afr. J. Sci. 117, (2021).Iacona, G. et al. Identifying technology solutions to bring conservation into the innovation era. Front. Ecol. Environ. 17, 591–598 (2019).Article 

    Google Scholar 
    Cooper, R. G. What’s next?: After stage-gate. Res.-Technol. Manag. 57, 20–31 (2014).ADS 

    Google Scholar 
    Cooper, R. G. The drivers of success in new-product development. Ind. Mark. Manag. 76, 36–47 (2019).Article 

    Google Scholar 
    Pearce, J. M. The case for open source appropriate technology. Environ. Dev. Sustain. 14, 425–431 (2012).Article 

    Google Scholar 
    Mair, J., Battilana, J. & Cardenas, J. Organizing for society: A typology of social entrepreneuring models. J. Bus. Ethics 111, 353–373 (2012).Article 

    Google Scholar 
    Meissner, D. Public-private partnership models for science, technology, and innovation cooperation. J. Knowl. Econ. 10, 1341–1361 (2019).Article 

    Google Scholar 
    Likert, R. A technique for the measurement of attitudes. Arch. Psychol. 22, 1–55.Mayer, A. L. & Wellstead, A. M. Questionable survey methods generate a questionable list of recommended articles. Nat. Ecol. Evol. 2, 1336–1337 (2018).Article 

    Google Scholar 
    Archie, K. M., Dilling, L., Milford, J. B. & Pampel, F. C. Climate Change and Western Public Lands: a Survey of U.S. Federal Land Managers on the Status of Adaptation Efforts. Ecol. Soc. 17 (2012).Jimenez, M. F. et al. Underrepresented faculty play a disproportionate role in advancing diversity and inclusion. Nat. Ecol. Evol. 3, 1030–1033 (2019).Article 

    Google Scholar 
    Christensen, R. ordinal – Regression Models for Ordinal Data. R package version 2019.12-10. (2019).R Core Team. R: A language and environment for statistical computing. (2020).Arnold, T. W. Uninformative parameters and model selection using Akaike’s information criterion. J. Wildl. Manag. 74, 1175–1178 (2010).Article 

    Google Scholar 
    QSR International Pty Ltd. Nvivo 12 Pro. (2020).Glesne, C. Making words fly: Developing understanding through interviewing. Becom. Qual. Res. Introd. 3, (2006).Creswell, J. W. & Creswell, J. D. Research design: Qualitative, quantitative, and mixed methods approaches. (Sage publications 2017). More

  • in

    Assessment of deep convolutional neural network models for species identification of forensically-important fly maggots based on images of posterior spiracles

    Of which at the third instar, the external morphology of larvae is quite similar; thus, the morphological identification used to differentiate between its genera or species, generally includes cephalophalyngeal skeleton, anterior spiracle, and posterior spiracles. The morphology of the posterior spiracle is one of the important characteristics for identification. A typical morphology of the posterior spiracle of third stage larvae was shown in Fig. 2. Based on studying under light microscopy, the posterior spiracle of M. domestica was clearly distinguished from the others. On the other hand, the morphology of the posterior spiracle of C. megacephala and A. rufifacies was quite similar. For C. megacephala and C. rufifacies, the peritreme, a structure encircling the three spiracular openings (slits), was incomplete and slits were straight as shown Fig. 2A,B, respectively. The complete peritreme encircling three slits was found in L. cuprina and M. domestica as shown in Fig. 2C,D, respectively. However, only the slits of M. domestica were sinuous like the M-letter (Fig. 2D). Their morphological characteristics found in this study were like the descriptions in the previous reports23,24,25.Figure 2Morphology of posterior spiracles of four different fly species after inverting the image colors; (A) Chrysomya (Achoetandrus) ruffifacies, (B) Chrysomya megacephala, (C) Lucilia cuprina, (D) Musca domestica.Full size imageFor model training, four of the CNN models used for species-level identification of fly maggots provided 100% accuracy rates and 0% loss. Number of parameter (#Params), model speed, model size, macro precision, macro recall, f1-score, and support value were also presented in Table 1. The result demonstrated that the AlexNet model provided the best performance in all indicators when compared among four models. The AlexNet model used the least number of parameters while the Resnet101 model used the most. For model speed, the AlexNet model provided the fastest speed, while the Densenet161 model provided the slowest speed. For the model size, the AlexNet model was the smallest, while the Resnet101 model was the largest which corresponded to the number of parameters used. Macro precision, macro recall, f1-score and support value of all models were the same.Table 1 Comparison of model size, speed, and performances of each studied model (The text in bold indicates the best value in each category).Full size tableAs the training results presented in the supplementary data (Fig. S1), all models provided 100% accuracy and 0% loss in the early stage of training ( More

  • in

    European-wide forest monitoring substantiate the neccessity for a joint conservation strategy to rescue European ash species (Fraxinus spp.)

    Hill, L. et al. The£ 15 billion cost of ash dieback in Britain. Curr. Biol. 29(9), R315–R316 (2019).CAS 
    PubMed 

    Google Scholar 
    Pliûra, A. & Heuertz, M. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Common Ash (Fraxinus excelsior) (Bioversity International, 2003).
    Google Scholar 
    Dufour, S. & Piégay, H. Geomorphological controls of Fraxinus excelsior growth and regeneration in floodplain forests. Ecology 89(1), 205–215 (2008).CAS 
    PubMed 

    Google Scholar 
    Mitchell, R. J. et al. Ash dieback in the UK: a review of the ecological and conservation implications and potential management options. Biol. Conserv. 175, 95–109 (2014).
    Google Scholar 
    Przybył, K. Fungi associated with necrotic apical parts of Fraxinus excelsior shoots. For. Pathol. 32(6), 387–394 (2002).
    Google Scholar 
    Vasaitis, R., & Enderle, R. Dieback of European ash (Fraxinus spp.)-consequences and guidelines for sustainable management. Dieback of European ash (Fraxinus spp.). Report on COST Action FP1103 FRAXBACK. ISBN978-91-576-8696-1. (SLU Swedish University of Agricultural Sciences, 2017).Børja, I. et al. Ash dieback in Norway-current situation. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 166–175 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Ghelardini, L. et al. From the Alps to the Apennines: Possible spread of ash dieback in Mediterranean areas. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 140–149 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Marçais, B., Husson, C., Godart, L. & Cael, O. Influence of site and stand factors on Hymenoscyphus fraxineus-induced basal lesions. Plant. Pathol. 65(9), 1452–1461 (2016).
    Google Scholar 
    Queloz, V., Hopf, S., Schoebel, C. N., Rigling, D. & Gross, A. Ash dieback in Switzerland: History and scientific achievements. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 68–78 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Orton, E. S. et al. Population structure of the ash dieback pathogen, Hymenoscyphus fraxineus, in relation to its mode of arrival in the UK. Plant. Pathol. 67(2), 255–264 (2018).CAS 
    PubMed 

    Google Scholar 
    Enderle, R., Stenlid, J. & Vasaitis, R. An overview of ash (Fraxinus spp.) and the ash dieback disease in Europe. CAB Rev. 14, 1–12 (2019).
    Google Scholar 
    Heinze, B., Tiefenbacher, H., Litschauer, R. & Kirisits, T. Ash dieback in Austria: History, current situation and outlook. in Dieback of European Ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management, 33–52 (2017).Coker, T. L. et al. Estimating mortality rates of European ash (Fraxinus excelsior) under the ash dieback (Hymenoscyphus fraxineus) epidemic. Plants People Planet 1(1), 48–58 (2019).
    Google Scholar 
    Cleary, M., Nguyen, D., Stener, L. G., Stenlid, J., & Skovsgaard, J. P. Ash and ash dieback in Sweden: A review of disease history, current status, pathogen and host dynamics, host tolerance and management options in forests and landscapes. Dieback of European Ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management, 195–208 (2017).Stocks, J. J., Buggs, R. J. & Lee, S. J. A first assessment of Fraxinus excelsior (common ash) susceptibility to Hymenoscyphus fraxineus (ash dieback) throughout the British Isles. Sci. Rep. 7(1), 1–7 (2017).
    Google Scholar 
    Díaz-Yáñez, O. et al. The invasive forest pathogen Hymenoscyphus fraxineus boosts mortality and triggers niche replacement of European ash (Fraxinus excelsior). Sci. Rep. 10(1), 1–10 (2020).
    Google Scholar 
    Enderle, R., Metzler, B., Riemer, U. & Kändler, G. Ash dieback on sample points of the national forest inventory in south-western Germany. Forests 9(1), 25 (2018).
    Google Scholar 
    Klesse, S. et al. Spread and severity of ash dieback in Switzerland: Tree characteristics and landscape features explain varying mortality probability. Front. For. Glob. Change 4, 18 (2021).
    Google Scholar 
    Timmermann, V., Potočić, N., Ognjenović, M. & Kirchner, T. Tree crown condition in 2020. In Forest Condition in Europe: The 2021 Assessment ICP Forests Technical Report under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention) (eds Michel, A. et al.) (Thünen Institute, 2021).
    Google Scholar 
    Chumanová, E. et al. Predicting ash dieback severity and environmental suitability for the disease in forest stands. Scand. J. For. Res. 34(4), 254–266 (2019).
    Google Scholar 
    Solheim, H. & Hietala, A. M. Spread of ash dieback in Norway. Balt. For. 23(1), 1–6 (2017).
    Google Scholar 
    Kjær, E. D. et al. Genetics of ash dieback resistance in a restoration context: Experiences from Denmark. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 106–114 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Madsen, C. L. et al. Combined progress in symptoms caused by Hymenoscyphus fraxineus and Armillaria species, and corresponding mortality in young and old ash trees. For. Ecol. Manage. 491, 119177 (2021).
    Google Scholar 
    Trapiello, E., Schoebel, C. N. & Rigling, D. Fungal community in symptomatic ash leaves in Spain. Balt. For. 23(1), 68–73 (2017).
    Google Scholar 
    Grosdidier, M., Ioos, R. & Marçais, B. Do higher summer temperatures restrict the dissemination of Hymenoscyphus fraxineus in France?. For. Pathol. 48(4), e12426. https://doi.org/10.1111/efp.12426 (2018).Article 

    Google Scholar 
    Stroheker, S., Queloz, V. & Nemesio-Gorriz, M. First report of Hymenoscyphus fraxineus causing ash dieback in Spain. New Dis. Rep. 44(2), e12054 (2021).
    Google Scholar 
    Chandelier, A., Gerarts, F., San Martin, G., Herman, M. & Delahaye, L. Temporal evolution of collar lesions associated with ash dieback and the occurrence of Armillaria in Belgian forests. For. Pathol. 46(4), 289–297. https://doi.org/10.1111/efp.12258 (2016).Article 

    Google Scholar 
    Gross, A., Holdenrieder, O., Pautasso, M., Queloz, V. & Sieber, T. N. H ymenoscyphus pseudoalbidus, the causal agent of E uropean ash dieback. Mol. Plant Pathol. 15(1), 5–21 (2014).CAS 
    PubMed 

    Google Scholar 
    Clark, J. & Webber, J. The ash resource and the response to ash dieback in Great Britain. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 228–237 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Dandy, N., Marzano, M., Porth, E. F., Urquhart, J. & Potter, C. Who has a stake in ash dieback? A conceptual framework for the identification and categorisation of tree health stakeholders. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 15–26 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Kjær, E. D., McKinney, L. V., Nielsen, L. R., Hansen, L. N. & Hansen, J. K. Adaptive potential of ash (Fraxinus excelsior) populations against the novel emerging pathogen Hymenoscyphus pseudoalbidus. Evol. Appl. 5(3), 219–228 (2012).PubMed 

    Google Scholar 
    Plumb, W. J. et al. The viability of a breeding programme for ash in the British Isles in the face of ash dieback. Plants People Planet 2(1), 29–40 (2020).
    Google Scholar 
    Evans, M. R. Will natural resistance result in populations of ash trees remaining in British woodlands after a century of ash dieback disease?. R. Soc. Open Sci. 6(8), 190908 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buggs, R. J. A. Changing perceptions of tree resistance research. Plants People Planet 2, 2–4. https://doi.org/10.1002/ppp3.10089 (2020).Article 

    Google Scholar 
    Tomlinson, I. & Potter, C. ‘Too little, too late’? Science, policy and Dutch Elm Disease in the UK. J. Hist. Geogr. 36(2), 121–131 (2010).
    Google Scholar 
    Kelly, L. J. et al. Convergent molecular evolution among ash species resistant to the emerald ash borer. Nat. Ecol. Evol. 4, 1116–1128. https://doi.org/10.1038/s41559-020-1209-3 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sollars, E. S. et al. Genome sequence and genetic diversity of European ash trees. Nature 541(7636), 212–216 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stocks, J. J. et al. Genomic basis of European ash tree resistance to ash dieback fungus. Nat. Ecol. Evol. 3(12), 1686–1696 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Volkovitsh, M. G., Bieńkowski, A. O. & Orlova-Bienkowskaja, M. J. Emerald ash borer approaches the borders of the european union and kazakhstan and is confirmed to infest European ash. Forests 12(6), 691 (2021).
    Google Scholar 
    Eichhorn, J. et al. Part IV: Visual Assessment of Crown Condition and Damaging Agents. in Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. (Thünen Institute of Forest Ecosystems, 2016). Annex http://www.icp-forests.org/manual.htm.Koontz, M. J., Latimer, A. M., Mortenson, L. A., Fettig, C. J. & North, M. P. Cross-scale interaction of host tree size and climatic water deficit governs bark beetle-induced tree mortality. Nat. Commun. 12(1), 1–13 (2021).
    Google Scholar 
    Taccoen, A. et al. Climate change impact on tree mortality differs with tree social status. For. Ecol. Manage. 489, 119048 (2021).
    Google Scholar 
    Therneau, T. A Package for Survival Analysis in R. https://cran.r-project.org/web/packages/survival/vignettes/survival.pdf. Accessed 26 May 2021Godaert, L. et al. Prognostic factors of inhospital death in elderly patients: A time-to-event analysis of a cohort study in Martinique (French West Indies). BMJ Open 8(1), e018838 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Sargeran, K., Murtomaa, H., Safavi, S. M. R., Vehkalahti, M. M. & Teronen, O. Survival after diagnosis of cancer of the oral cavity. Br. J. Oral Maxillofac. Surg. 46(3), 187–191 (2008).PubMed 

    Google Scholar 
    Cox, D. R. Regression models and life-tables. J. R. Stat. Soc. B 34(2), 187–202 (1972).MathSciNet 
    MATH 

    Google Scholar 
    Aalen, O. O. A linear regression model for the analysis of life times. Stat. Med. 8(8), 907–925 (1989).CAS 
    PubMed 

    Google Scholar 
    Therneau, T. M., & Grambsch, P. M. The cox model. In Modeling survival data: extending the Cox model, pp. 39–77. (Springer, 2000).Neumann, M., Mues, V., Moreno, A., Hasenauer, H. & Seidl, R. Climate variability drives recent tree mortality in Europe. Glob. Change Biol. 23(11), 4788–4797 (2017).ADS 

    Google Scholar 
    Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11(1), 1–8 (2020).
    Google Scholar 
    Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 113, D20 (2008).
    Google Scholar 
    R Development Core Team. RStudio, R: A Language and Environment for Statistical Computing (R Development Core Team, 2017).Holt, C. C. Forecasting Trends and Season-Als by Exponentially Weighted Averages. (Carnegie Institute of Technology, Pittsburgh ONR memorandum no. 52, 1957)Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27(3), 1–22 (2008).
    Google Scholar  More

  • in

    Validation of leaf area index measurement system based on wireless sensor network

    Study areaWith the advanced observational techniques, abundant data accumulation, and ability to carry on multi-scale experiments, the Huailai Remote Sensing Station and around (for short Huailai Station), located in Huailai, Hebei province, China (40.349°N, 115.785°E), becomes one of the ideal study areas for the observation and validation of the LAI27. The Huailai Station is mainly covered by corn and some weeds. So, we mainly use LAIS to monitor the growth cycle of corn (in April 2015, we submitted an application for plant collection permission to Huailai Remote Sensing Station and obtained approval.)Huailai WSN vegetation monitoring system includes 6 sets of monitoring equipment, and its distribution is shown in Fig. 1 as follows, in which red dot represents LAIS Node, purple frame represents MODIS pixel, red frame represents observation area. The observation system is designed for the application of remote sensing pixel scale authenticity tests. The observation scale is a 1 km MODIS pixel on the pixel scale, and the actual coverage area is 2 km * 1.5 km. The six sets of equipment cover the core area of the test station and the surrounding typical growth plot, which is a good representative of the 1 km pixel scale.Figure 1Equipment distribution of WSN vegetation monitoring network in Huailai (red dot represents LAIS Node; purple frame represents the footprint of a MODIS pixel.Full size imageEach piece of equipment consists of two cameras which were only one camera with two different angles in previous work23 set up at a height of 2.5–4 m above the ground (Fig. 2), one for vertical downward observation and the other for inclined observation, which can take canopy photos regularly every day at its fixed position. The observation system obtained the photos of the corn canopy from May to August, but the corn did not grow in August. Therefore, in this study, we selected the photos taken by the vertical observation camera of the corn sample plot in the experimental station from May to July 2015.Figure 2The design of the LAIS node.Full size imageRelated work—data acquisitionData collection using LAISThe data collection complies with the plant guidelines statement: “LAI-2000 Plant Canopy Analyzer Instrution Manual” (Supplementary Information 2) (https://www.licor.com/env/, Last visit time: 21 October 2021). Existing facilities such as the high poles and the wireless sensor network in the experimental station have proved convenient for the installation of the LAI measurement system. LAIS uses the GEO001 digital serial camera that is suitable for a variety of embedded image acquisition modes. The specification of the camera includes: the total field of view is 120°, the maximum image size is 2176 * 1920 (approximately 5 million pixels), mounted at a height of 3 m, the spatial resolution at ground level is about 3 mm. The acquired image is simultaneously stored in a flash card in two formats: the JPEG format merits in less file size thus suitable for quick wireless transfer; the RAW format, which is the user data in our analysis, contains 3 channel binary image in 10 bits bit-depth. Compared to our previous work, an important new feature of this camera is the programmable cut-off filter. As we know, unlike scientific sensor which has the precise spectral response to each band, the digital camera is cheap and can only acquire the so-called RGB image. Usual digital cameras have one NIR cut-off filter to exclude the near-infrared light. The GEO001 camera, which was a commercial camera produced by Zhongshan Yunteng Photographic Equipment Co., Ltd, has two cut-off filters: one is the NIR cut-off filter, another is a blue cut-off filter. Switching on the NIR cut-off filter results in an ordinary color image as in a usual household digital camera. While the blue cut-off filter is switched on and NIR cut-off filter is switched off, near-infrared light is allowed to reach the detector array and blue light is blocked, resulting in false-color images as in Fig. 3b. Adding near-infrared light can increase illumination in the shadow area, and blocking blue light can alleviate the disturbance of sun glint, so, switching to a blue cut-off filter helps to improve the image quality when the direct sunlight is strong such as around noon time.Figure 3Three images on July 2 of site 1: (a) and (c) are true-color images obtained at 05:31 a.m. and 6:32 p.m., and (b) is a false-color image when the blue filter is removed at 1:28 p.m.Full size imageTo acquire an image in the best illumination condition and avoid the influence of rain or other unsuitable weather, the image acquisition device based on WSN was set up to acquire images three times per day: 5:30 a.m., 1:30 p.m., and 6:30 p.m. According to our experience, when the canopy is open (sparse vegetation), usually images acquired at 6:30 p.m. are the best for classification because the direct sunlight is weak; when the canopy is closed (dense vegetation), the illumination on the soil background is very poor in all time, and classification is difficult. So, the camera is programmed to switch to a blue cut-off filter when acquiring images at 1:30 p.m., while the images acquired at other times were with NIR cut-off filter, resulting in true color images, as shown in Fig. 3.LAILLW data and LAI2000 dataTo evaluate the accuracy of the improved finite length averaging method proposed in this study, a field experiment was carried out to measure LAI by manual sampling (Supplementary Information 3,4). A field sampling scheme covering the corn growing season (late May to early July) was designed (Supplementary Information 1). The LAI of corn in the experimental area was measured by the quadrat harvesting method, and the validation data of LAI of corn in each growth period were obtained. Considering the rapid growth of the corn, the sampling experiment period was set as 1 week, but due to the actual work in summer and the influence of rainfall, six effective measurements were carried out in the field experiment: May 30, June 7, June 13, June 20, July 4 and July 16.The LAILLW method, which is also known as the shape factor method, involves outdoor and indoor measurements. The formulas are:$${text{L}} = {text{S}}*{text{N}}$$
    (1)
    $${text{f}} = {{text{S}} /{left( {sumlimits_{i = 1}^m {{text{len}}*{text{wid}}} } right)}}$$
    (2)

    where L represents the leaf area index, S refers to the area of a single plant, and N refers to the number of plants in a unit area. The shape factor ƒ is the ratio of the S to the value multiplied by the length and width of all leaves in the plant.To reduce measurement errors, 10 plants were selected in the sample, and the length and width of each leaf on each corn were recorded with a ruler. To obtain the shape factor, representative corn plants were cut next to the sample (not in the image coverage area) and the true area of each leaf was obtained by software, and the shape factor was derived from this23. Through the length and width of 10 strains measured in the field, and the shape factor obtained, the total leaf area of 10 corns can be calculated, and the average leaf area of one plant is finally obtained. The LAI value under the LAILLW method is obtained.Using the difference between the solar radiation values of the upper and lower canopies, the LAI2000 canopy analyzer can obtain LAI and set up a corresponding point folder to save the measured data for subsequent collation. 10 measurement points were selected for each site, and the average value was the final result for each site. To reduce the effects of the solar altitude angle on measurement accuracy, the experiments were repeated every two hours.To make it easier to record the date of data acquisition, the data were summarized in the order day of the year (DOY). For example, 30 May 2015 is the 150th day in the year and its DOY is 150. The DOY information of data acquisition using the LAILLW method and LAI2000 is specifically shown in Table 1.Table 1 The DOY information of data acquisition using the LAILLW and LAI2000.Full size tableMODIS LAI dataMODIS leaf area index data was downloaded from the United States Geological Survey (https://modis.gsfc.nasa.gov/data/dataprod/mod15.php), named MCD15A2Hv006. It is an 8-day composite dataset with a 500-m pixel size. The algorithm chooses the best pixel available from all the acquisitions of both MODIS sensors located on NASA’s Terra and Aqua satellites from within the 8 days.In the comparison of MODIS LAI data, as the pixel of the satellite product is in 500 m resolution, it is not recommended to directly compare single node LAIS measurement with the MODIS LAI product because of the scale mismatch. Though complicated upscaling approaches have been discussed and implemented in Huailai station for other parameters28, it is not the purpose of this study So, we simply averaged the LAI in all the LAIS nodes to compare to the average MODIS LAI product in the 3 * 3 nearest pixels (1.5 km * 1.5 km), referred to as MODIS LAI_Mean in a later context, which approximately covers the area of all LAIS nodes. Time matching was carried out by selecting the date of the MODIS product closest to the date of the handheld LAI2000 measurement. The following Table 2 is obtained by taking 3 * 3 pixels closest to the LAIS Nodes.Table 2 MODIS leaf area index of 3 * 3 pixels around Huailai experimental station.Full size tableImproved LAIS methodsIn previous work, we have deployed sensors and cameras, and also have an automatic image processing and preliminary method of calculating LAI23. Figure 4 is a flow chart of our work. The previous articles focused on hardware and system implementation but did not pay much attention to performance. On this basis, we upgrade the image classification method and LAI calculation method, which will be explained in detail below.Figure 4Flow chart of leaf area index measurement system based on WSN.Full size imageImage preprocessing and classification methodsBecause of weather-related factors such as water vapor and dust or inaccurate exposure, a small number of the photographs are not clear. Besides, some of the image data cannot be decoded because of unstable communications and other factors. Therefore, it is necessary to check and select the photographs that meet the processing requirements before binary image processing. Currently, the selection process is carried out by human visual inspection based on the following principles: (1) when the canopy is open (sparse vegetation), the image at 6:30 p.m. is preferred, when the vegetation the canopy is closed (sparse vegetation), the image at 1:30 p.m. is preferred; (2) if the preferred image is not clear, other clear image acquired on the same day should be used; if all the images are not clear, then this day is marked as a failure.If we decided to use the image acquired at 1:30 p.m. It is also necessary to convert it from a false-color image to a true-color-like image (as shown in Fig. 3b) in which the leaves are shown in green color. The conversion is carried out by multiplying the vector of DN (digital number) of 3 bands with a coefficient matrix which is provided by the camera manufacturer. Another preprocessing is to choose the near nadir-view area of the image for further processing. As the off-nadir-view area of the image is subject to large geometric distortion as well as saturation of fraction of vegetation cover (FVC), they are not used in this study. The images are clipped to an ROI (region of interest) of about 2 * 2 square meters in ground area, with a maximum view zenith angle less than 30°.The study of the color spatial distributions of the crop images is helpful for the classification of the images and extraction of the image information. The color of the image pixel is the most direct and effective element that can be used to describe the image29. Because the red–green–blue (RGB) color space has the characteristic of a clear and convenient expression of information. When corn leaves are small, the crops in the fields are sparse, and most of them are soil background in the images. The soil in a lower hue is similar to the corn in terms of R and B components, while it has an overlap with the corn in G components when soil is in a higher hue. This makes it difficult to classify sparse corn scenes only by RGB space, so it is necessary to consider the characteristics of hue, luminosity, and saturation (HLS) spatial components.Statistical analysis showed that the component values of the crop leave in the RGB color space were in the ranges of G  > R and G  > B while the corresponding values for the soil follow the law that B  More

  • in

    Genetic and morphological variation of Vespa velutina nigrithorax which is an invasive species in a mountainous area

    Kim, J. K., Choi, M. B. & Moon, T. Y. Occurrence of Vespa velutina Lepeletier from Korea, and a revised key for Korean Vespa species (Hymenoptera: Vespidae). Entomol. Res. 36, 112–115 (2006).
    Google Scholar 
    Choi, M. B., Martin, S. J. & Lee, J. W. Distribution, spread, and impact of the invasive hornet Vespa velutina in South Korea. J. Asia-Pac. Entomol. 15, 473–477 (2012).
    Google Scholar 
    Do, Y. et al. Quantitative analysis of research topics and public concern on V. velutina as invasive species in Asian and European countries. Entomol. Res. 49, 456–461 (2019).
    Google Scholar 
    Kwon, O. & Choi, M. B. Interspecific hierarchies from aggressiveness and body size among the invasive alien hornet, Vespa velutina nigrithorax, and five native hornets in South Korea. PLoS ONE 15, e0226934 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Choi, M. B. Foraging behavior of an invasive alien hornet (Vespa velutina) at Apis mellifera hives in Korea: Foraging duration and success. Entomol. Res. 51, 143–148 (2021).
    Google Scholar 
    Turchi, L. & Derijard, B. Options for the biological and physical control of Vespa velutina nigrithorax (Hym.: Vespidae) in Europe: A review. J. Appl. Entomol. 142, 553–562 (2018).CAS 

    Google Scholar 
    Bessa, A. S., Carvalho, J., Gomes, A. & Santarém, F. Climate and land-use drivers of invasion: Predicting the expansion of Vespa velutina nigrithorax into the Iberian Peninsula. Insect Conserv. Divers. 9, 27–37 (2016).
    Google Scholar 
    Rodríguez-Flores, M. S., Seijo-Rodríguez, A., Escuredo, O. & del Carmen Seijo-Coello, M. Spreading of Vespa velutina in northwestern Spain: Influence of elevation and meteorological factors and effect of bait trapping on target and non-target living organisms. J. Pest Sci. 92, 557–565 (2019).
    Google Scholar 
    Robinet, C., Darrouzet, E. & Suppo, C. Spread modelling: A suitable tool to explore the role of human-mediated dispersal in the range expansion of the yellow-legged hornet in Europe. Int. J. Pest Manag. 65, 258–267 (2019).
    Google Scholar 
    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32 (1991).
    Google Scholar 
    Ellstrand, N. C. & Elam, D. R. Population genetic consequences of small population size: Implications for plant conservation. Annu. Rev. Ecol. Evol. Syst. 24, 217–242 (1993).
    Google Scholar 
    Young, A., Boyle, T. & Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11, 413–418 (1996).CAS 
    PubMed 

    Google Scholar 
    Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl. Acad. Sci. 101, 8998–9002 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dudley, R. The Biomechanics of Insect Flight: Form, Function, Evolution (Princeton University Press, 2002).
    Google Scholar 
    Porporato, M., Manino, A., Laurino, D. & Demichelis, D. Vespa velutina Lepeletier (Hymenoptera Vespidae): A first assessment 2 years after its arrival in Italy. Redia 97, 189–194 (2014).
    Google Scholar 
    Sauvard, D., Imbault, V. & Darrouzet, É. Flight capacities of yellow-legged hornet (Vespa velutina nigrithorax, Hymenoptera: Vespidae) workers from an invasive population in Europe. PLoS ONE 13, e0198597 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Monceau, K., Bonnard, O., Moreau, J. & Thiéry, D. Spatial distribution of Vespa velutina individuals hunting at domestic honeybee hives: Heterogeneity at a local scale. Insect Sci. 21, 765–774 (2014).PubMed 

    Google Scholar 
    Choi, M. B., Lee, S. A., Suk, H. Y. & Lee, J. W. Microsatellite variation in colonizing populations of yellow-legged Asian hornet, Vespa velutina nigrithorax, South Korea. Entomol. Res. 43, 208–214 (2013).
    Google Scholar 
    Jeong, J. S. et al. Tracing the invasion characteristics of the yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), in Korea using newly detected variable mitochondrial DNA sequences. J. Asia-Pac. Entomol. 24(2), 135–147 (2021).MathSciNet 

    Google Scholar 
    Villemant, C. et al. Predicting the invasion risk by the alien bee-hawking Yellow-legged hornet Vespa velutina nigrithorax across Europe and other continents with niche models. Biol. Conserv. 144, 2142–2150 (2011).
    Google Scholar 
    Kishi, S. & Goka, K. Review of the invasive yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), in Japan and its possible chemical control. Appl. Entomol. Zool. 52, 361–368 (2017).
    Google Scholar 
    Arca, M. et al. Development of microsatellite markers for the yellow-legged Asian hornet, Vespa velutina, a major threat for European bees. Conserv. Genet. Resour. 4, 283–286 (2012).
    Google Scholar 
    Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Res. 8, 103–106 (2008).
    Google Scholar 
    Peakall, P. & Smouse, R. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    Oksanen, J. et al. The vegan package. 10, 719 (2007).Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, S. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. Resour. 14, 2611–2620 (2005).CAS 

    Google Scholar 
    Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waraniak, J. M., Fisher, J. D., Purcell, K., Mushet, D. M. & Stockwell, C. A. Landscape genetics reveal broad and fine-scale population structure due to landscape features and climate history in the northern leopard frog (Rana pipiens) in North Dakota. Ecol. Evol. 9, 1041–1060 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Rohlf, F. J. tpsDig, version 2.10. http://life.bio.sunysb.edu/morph/index.html (2006).Zimmermann, G. et al. Geometric morphometrics of carapace of Macrobrachium australe (Crustacea: Palaemonidae) from Reunion Island. Acta Zool. 93, 492–500 (2012).
    Google Scholar  More

  • in

    Cultural diversity through the lenses of ecology

    Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain
    the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in
    Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles
    and JavaScript. More

  • in

    Forest structure determines nest box use by Central European boreal owls

    Mikusiński, G., Roberge, J. M. & Fuller, R. J. Ecology and Conservation of Forest Birds (Cambridge University Press, 2018).Book 

    Google Scholar 
    Newton, I. The role of nest sites in limiting the numbers of hole-nesting birds: a review. Biol. Conserv. 70, 265–276. https://doi.org/10.1016/0006-3207(94)90172-4 (1994).Article 

    Google Scholar 
    Korpimäki, E. & Hakkarainen, H. The Boreal Owl: Ecology, Behaviour and Conservation of a Forest-Dwelling Predator (Cambridge University Press, 2012).Book 

    Google Scholar 
    Glutz von Blotzheim, U. N. & Bauer, K. M. Handbuch der Vögel Mitteleuropas. Band 9. (Akademische Verlagsgesellschaft, 1980).Newton, I. Population Limitation in Birds (Academic press, 1998).
    Google Scholar 
    Moning, C. & Müller, J. Environmental key factors and their thresholds for the avifauna of temperate montane forests. For. Ecol. Manag. 256, 1198–1208. https://doi.org/10.1016/j.foreco.2008.06.018 (2008).Article 

    Google Scholar 
    Walankiewicz, W., Czeszczewik, D., Stański, T., Sahel, M. & Ruczyński, I. Tree cavity resources in spruce-pine managed and protected stands of the Białowieża Forest, Poland. Nat. Areas J. 34, 423–428. https://doi.org/10.3375/043.034.0404 (2014).Article 

    Google Scholar 
    Lambrechts, M. M. et al. The design of artificial nestboxes for the study of secondary hole-nesting birds: a review of methodological inconsistencies and potential biases. Acta Ornithol. 45, 1–26. https://doi.org/10.3161/000164510X516047 (2010).Article 

    Google Scholar 
    Lambrechts, M. M. et al. Nest box design for the study of diurnal raptors and owls is still an overlooked point in ecological, evolutionary and conservation studies: a review. J. Ornithol. 153, 23–34. https://doi.org/10.1007/s10336-011-0720-3 (2012).Article 

    Google Scholar 
    Zárybnická, M., Kubizňák, P., Šindelář, J. & Hlaváč, V. Smart nest box: a tool and methodology for monitoring of cavity-dwelling animals. Methods Ecol. Evol. 7, 483–492. https://doi.org/10.1111/2041-210X.12509 (2016).Article 

    Google Scholar 
    Kubizňák, P. et al. Designing network-connected systems for ecological research and education. Ecosphere 10(6), e02761. https://doi.org/10.1002/ecs2.2761 (2019).Article 

    Google Scholar 
    Mänd, R., Tilgar, V., Lõhmus, A. & Leivits, A. Providing nest boxes for hole-nesting birds—Does habitat matter?. Biodivers. Conserv. 14, 1823–1840. https://doi.org/10.1007/s10531-004-1039-7 (2005).Article 

    Google Scholar 
    König, C. & Weick, F. Owls of the World 2nd ed. (Christopher Helm, 2008).
    Google Scholar 
    Morelli, F., Benedetti, Y., Møller, A. P. & Fuller, R. A. Measuring avian specialization. Ecol. Evol. 9, 8378–8386. https://doi.org/10.1002/ece3.5419 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ševčík, R., Riegert, J., Šťastný, K., Zárybnický, J. & Zárybnická, M. The effect of environmental variables on owl distribution in Central Europe: A case study from the Czech Republic. Ecol. Inform. 64, 101375. https://doi.org/10.1016/j.ecoinf.2021.101375 (2021).Article 

    Google Scholar 
    Brambilla, M. et al. Species interactions and climate change: How the disruption of species co-occurrence will impact on an avian forest guild. Glob. Change Biol. 26, 1212–1224. https://doi.org/10.1111/gcb.14953 (2020).ADS 
    Article 

    Google Scholar 
    Hayward, G. D., Hayward, P. H. & Garton, E. O. Ecology of boreal owl in the northern Rocky-Mountains, USA. Wildl. Monogr. 124, 3–59 (1993).
    Google Scholar 
    Zárybnická, M., Riegert, J. & Šťastný, K. The role of Apodemus mice and Microtus voles in the diet of the Tengmalm’s owl in Central Europe. Popul. Ecol. 55, 353–361. https://doi.org/10.1007/s10144-013-0367-4 (2013).Article 

    Google Scholar 
    Zárybnická, M., Sedláček, O., Salo, P., Šťastný, K. & Korpimäki, E. Reproductive responses of temperate and boreal Tengmalm’s owl Aegolius funereus populations to spatial and temporal variation in prey availability. Ibis 157, 369–383. https://doi.org/10.1111/ibi.12244 (2015).Article 

    Google Scholar 
    Mossop, D. H. The importance of old growth refugia in the Yukon boreal forest to cavity-nesting owls in Biology and Conservation of Owls of the Northern Hemisphere (eds. Duncan, J. R., Johnson, D. H. & Nicholls, T. H.) 584–586 (Forest Service General Technical Report GTR-NC-190, 1997).Domahidi, Z., Nielsen, S., Bayne, E. & Spence, J. Boreal owl (Aegolius funereus) and northern saw-whet owl (Aegolius acadicus) breeding records in managed boreal forests. Can. Field-Nat. 134, 125–131. https://doi.org/10.22621/cfn.v134i2.2146 (2020).Whitman, J. S. Diets of nesting boreal owls, Aegolius funereus, in western interior Alaska. Can. Field-Nat. 115, 476–479 (2001).
    Google Scholar 
    Whitman, J. S. Post-fledging estimation of annual productivity in boreal owls based on prey detritus mass. J. Raptor Res. 42, 58–60. https://doi.org/10.3356/JRR-06-88.1 (2008).Article 

    Google Scholar 
    Anderson, A. G. Wildfire impacts on nest provisioning and survival of Alaskan boreal owls. Master thesis, Miami University, Ohio (2017).Hayward, G. D., Steinhorst, R. K. & Hayward, P. H. Monitoring boreal owl populations with nest boxes: sample size and cost. J. Wildl. Manage. 56, 777–785. https://doi.org/10.2307/3809473 (1992).Article 

    Google Scholar 
    Koopman, M. E., McDonald, D. B. & Hayward, G. D. Microsatellite analysis reveals genetic monogamy among female boreal owls. J. Raptor Res. 41, 314–318. https://doi.org/10.3356/0892-1016(2007)41[314:MARGMA]2.0.CO;2 (2007).Article 

    Google Scholar 
    Fang, Y., Tang, S.-H., Gu, Y. & Sun, Y.-H. Conservation of Tengmalm’s owl and Sichuan wood owl in Lianhuashan Mountain, Gansu, China. Ardea 97, 649–649. https://doi.org/10.5253/078.097.0437 (2009).Article 

    Google Scholar 
    Löfgren, O., Hörnfeldt, B. & Carlsson, B. Site tenacity and nomadism in Tengmalm’s owl (Aegolius funereus (L.)) in relation to cyclic food production. Oecologia 69, 321–326. https://doi.org/10.1007/BF00377051 (1986).ADS 
    Article 
    PubMed 

    Google Scholar 
    Hörnfeldt, B. & Nyholm, N. E. I. Breeding performance of Tengmalm’s owl in a heavy metal pollution gradient. J. Appl. Ecol. 33, 377–386. https://doi.org/10.2307/2404759 (1996).Article 

    Google Scholar 
    Hipkiss, T., Hörnfeldt, B., Eklund, U. & Berlin, S. Year-dependent sex-biased mortality in supplementary-fed Tengmalm’s owl nestlings. J. Anim. Ecol. 71, 693–699. https://doi.org/10.1046/j.1365-2656.2002.t01-1-00635.x (2002).Article 

    Google Scholar 
    Hipkiss, T., Gustafsson, J., Eklund, U. & Hörnfeldt, B. Is the long-term decline of boreal owls in Sweden caused by avoidance of old boxes?. J. Raptor Res. 47, 15–20. https://doi.org/10.3356/JRR-11-91.1 (2013).Article 

    Google Scholar 
    Korpimäki, E. Selection for nest-hole shift and tactics of breeding dispersal in Tengmalm’s owl Aegolius funereus. J. Anim. Ecol. 56, 185–196. https://doi.org/10.2307/4808 (1987).Article 

    Google Scholar 
    Drdáková-Zárybnická, M. Breeding biology of the Tengmalm’s owl (Aegolius funereus) in air-pollution damaged areas of the Krušné hory Mts. Sylvia 39, 35–51 (2003).
    Google Scholar 
    Zárybnická, M., Riegert, J., Kloubec, B. & Obuch, J. The effect of elevation and habitat cover on nest box occupancy and diet composition of boreal owls Aegolius funereus. Bird Study 64, 222–231. https://doi.org/10.1080/00063657.2017.1316236 (2017).Article 

    Google Scholar 
    Zárybnická, M., Kloubec, B., Obuch, J. & Riegert, J. Fledgling productivity in relation to diet composition of Tengmalm’s owl Aegolius funereus in Central Europe. Ardeola 62, 163–171. https://doi.org/10.13157/arla.62.1.2015.163 (2015).Article 

    Google Scholar 
    Kloubec, B. Breeding of Tengmalm’s owls (Aegolius funereus) in nest-boxes in Šumava Mts.: a summary from the years 1978–2002. Buteo 13, 75–86 (2003).
    Google Scholar 
    Flousek, J. Ochrana sov v Krkonošském národním parku in Sovy 1986 (eds. Sitko, J. & Trpák, P.) 33–34 (Státní ústav památkové péče a ochrany přírody, Přerov, 1988).Ravussin, P.-A. et al. Quel avenir pour la Chouette de Tengmalm Aegolius funereus dans le massif du Jura? Bilan de trente années de suivi. Nos Oiseaux 62, 5–28 (2015).
    Google Scholar 
    Schelper, W. Zur Brutbiologie, Ernährung und Populationsdynamik des Rauhfusskauzes Aegolius funereus im Kaufunger Wald (Südniedersachsen). Vogelkundliche Berichte aus Niedersachsen 21, 33–53 (1989).
    Google Scholar 
    Schwerdtfeger, O. The dispersion dynamics of Tengmalm’s owl Aegolius funereus in Central Europe in Raptor Conservation Today (eds. Meyburg, B. U. & Chancellor, R. C.) 543–550 (World Working Group on Birds of Prey and Pica Press, 1994).Hunke, W. Versuch eine Population des Raufußkauzes Aegolius funereus durch Anbringen von Nistkästen in den Jahren 1980 bis 2010 zu fördern. Charadrius 47, 93–101 (2011).
    Google Scholar 
    Mezzavilla, F. & Lombardo, S. Indagini sulla biologia riproduttiva della civetta capogrosso Aegolius funereus: anni 1987–2012 in Atti Secondo Convegno Italiano Rapaci Diurni e Notturni Vol. 3 (eds. Mezzavilla, F. & Scarton, F.) 261–270 (Associazione Faunisti Veneti, Quaderni Faunistici, 2013).Rajković, D. Diet composition and prey diversity of Tengmalm’s owl Aegolius funereus (Linnaeus, 1758; Aves: Strigidae) in central Serbia during breeding. Turk. J. Zool. 42, 346–351. https://doi.org/10.3906/zoo-1709-28 (2018).Article 

    Google Scholar 
    Zárybnická, M., Riegert, J. & Šťastný, K. Non-native spruce plantations represent a suitable habitat for Tengmalm’s owl (Aegolius funereus) in the Czech Republic, Central Europe. J. Ornithol. 156, 457–468. https://doi.org/10.1007/s10336-014-1145-6 (2015).Article 

    Google Scholar 
    Kopáček, J. & Veselý, J. Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmos. Environ. 39, 2179–2188. https://doi.org/10.1016/j.atmosenv.2005.01.002 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Kloubec, B., Hora, J. & Šťastný, K. (eds.). Ptáci jižních Čech (Jihočeský kraj, 2015).Ševčík, R., Riegert, J., Šindelář, J. & Zárybnická, M. Vocal activity of the Central European boreal owl population in relation to varying environmental conditions. Ornis Fenn. 96, 1–12 (2019).
    Google Scholar 
    Savický, J. AM Services – Play Spectrogram Screens v. 4v7 (Czech Republic, 2009).Korpimäki, E. Diet of breeding Tengmalm’s owls Aegolius funereus: long-term changes and year-to-year variation under cyclic food conditions. Ornis Fenn. 65, 21–30 (1988).
    Google Scholar 
    Kouba, M. et al. Home range size of Tengmalm’s owl during breeding in Central Europe is determined by prey abundance. PLoS ONE 12, e0177314. https://doi.org/10.1371/journal.pone.0177314 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zárybnická, M., Sedláček, O. & Korpimäki, E. Do Tengmalm’s owls alter parental feeding effort under varying conditions of main prey availability?. J. Ornithol. 150, 231–237. https://doi.org/10.1007/s10336-008-0342-6 (2009).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).ter Braak, C. & Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, version 5.10. (Microcomputer Power, 2018).Kosiński, Z. & Kempa, M. Density, distribution and nest-sites of woodpeckers Picidae, in a managed forest of Western Poland. Pol. J. Ecol. 55, 519–533 (2007).
    Google Scholar 
    Miller, K. E. Nest-site limitation of secondary cavity-nesting birds in even-age southern pine forests. Wilson J. Ornithol. 122, 126–134. https://doi.org/10.1676/07-130.1 (2010).Article 

    Google Scholar 
    Sonerud, G. A. Nest hole shift in Tengmalm’s owl Aegolius funereus as defence against nest predation involving long-term memory in the predator. J. Anim. Ecol. 54, 179–192. https://doi.org/10.2307/4629 (1985).Article 

    Google Scholar 
    Sonerud, G. A. Reduced predation by pine martens on nests of Tengmalm’s owl in relocated boxes. Anim. Behav. 37, 332–334. https://doi.org/10.1016/0003-3472(89)90122-X (1989).Article 

    Google Scholar 
    Sonerud, G. A. Win – and stay, but not too long: cavity selection by boreal owls to minimize nest predation by pine marten. J. Ornithol. 162, 839–855. https://doi.org/10.1007/s10336-021-01876-y (2021).Article 

    Google Scholar 
    Korpimäki, E. Does nest-hole quality, poor breeding success or food depletion drive the breeding dispersal of Tengmalm’s owls?. J. Anim. Ecol. 62, 606–613. https://doi.org/10.2307/5382 (1993).Article 

    Google Scholar 
    Hruška, F. The boreal owl (Aegolius funereus) – breeding distribution, numbers, ringing results and notes on the breeding biology and feeding ecology of this species in the central part of the Jihlavské vrchy Hills. Crex 38, 112–150 (2020).
    Google Scholar 
    Broughton, R. et al. Nest-site competition between bumblebees (Bombidae), social wasps (Vespidae) and cavity-nesting birds in Britain and the Western Palearctic. Bird Study 62, 427–437. https://doi.org/10.1080/00063657.2015.1046811 (2015).Article 

    Google Scholar 
    Pawlikowski, T. & Pawlikowski, K. Nesting interactions of the social wasp Dolichovespula saxonica [F.] (Hymenoptera: Vespinae) in wooden nest boxes for birds in the forest reserve „Las Piwnicki” in the Chełmno Land (Northern Poland). Ecol. Quest. 13, 67–72. https://doi.org/10.2478/v10090-010-0017-9 (2010).Langowska, A., Ekner-Grzyb, A., Skórka, P., Tobółka, M. & Tryjanowski, P. Nest-site tenacity and dispersal patterns of Vespa crabro colonies located in bird nest-boxes. Sociobiology 56, 375–382 (2010).
    Google Scholar 
    Meyer, W. Mit welchem Erfolg nutzt der Rauhfusskauz Aegolius funereus (L.) Natruhölen und Nistkästen zur Brut. Vogelwelt 124, 325–331 (2003).
    Google Scholar 
    López, B. C. et al. Nest-box use by boreal owls (Aegolius funereus) in the Pyrenees Mountains in Spain. J. Raptor Res. 44, 40–49. https://doi.org/10.3356/JRR-09-32.1 (2010).ADS 
    Article 

    Google Scholar 
    Zárybnická, M., Riegert, J. & Kouba, M. Indirect food web interactions affect predation of Tengmalm’s owls Aegolius funereus nests by pine martens Martes martes according to the alternative prey hypothesis. Ibis 157, 459–467. https://doi.org/10.1111/ibi.12265 (2015).Article 

    Google Scholar 
    Zárybnická, M. & Vojar, J. Effect of male provisioning on the parental behavior of female boreal owls Aegolius funereus. Zool. Stud. 52, 36. https://doi.org/10.1186/1810-522X-52-36 (2013).Article 

    Google Scholar 
    Llambías, P. & Fernandez, G. Effects of nestboxes on the breeding biology of southern house wrens Troglodytes aedon bonariae in the southern temperate zone. Ibis 151, 113–121. https://doi.org/10.1111/j.1474-919X.2008.00868.x (2009).Article 

    Google Scholar 
    Vrezec, A. Breeding density and altitudinal distribution of the Ural, tawny, and boreal owls in North Dinaric Alps (Central Slovenia). J. Raptor Res. 37, 55–62 (2003).
    Google Scholar  More

  • in

    Frequency-dependent Batesian mimicry maintains colour polymorphism in a sea snake population

    Van Gossum, H., Sherratt, T. N., Cordero-Rivera, A. & Córdoba-Aguilar, A. The evolution of sex-limited colour polymorphism. In Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research (ed. Córdoba-Aguilar, A.) 219–231 (Oxford University Press, 2008).
    Google Scholar 
    Hughes, J. M. & Jones, M. P. Shell colour polymorphism in a mangrove snail Littorina sp. (Prosobranchia: Littorinidae). Biol. J. Linn. Soc. 25, 365–378 (1985).
    Google Scholar 
    Sinervo, B., Bleay, C. & Adamopoulou, C. Social causes of correlational selection and the resolution of a heritable throat color polymorphism in a lizard. Evolution 55, 2040–2052 (2001).CAS 
    PubMed 

    Google Scholar 
    Westerman, E. L. et al. Does male preference play a role in maintaining female limited polymorphism in a Batesian mimetic butterfly? Behav. Process. 150, 47–58 (2018).CAS 

    Google Scholar 
    Vane-Wright, R. I. An integrated classification for polymorphism and sexual dimorphism in butterflies. J. Zool. 177, 329–337 (1975).
    Google Scholar 
    Timmermans, M. J., Srivathsan, A., Collins, S., Meier, R. & Vogler, A. P. Mimicry diversification in Papilio dardanus via a genomic inversion in the regulatory region of engrailed–invected. Proc. R. Soc. B 287, 20200443 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brodie, E. D. III. & Janzen, F. J. Experimental studies of coral snake mimicry: Generalized avoidance of ringed snake patterns by free-ranging avian predators. Funct. Ecol. 9, 186–190 (1995).
    Google Scholar 
    Banci, K. R., Eterovic, A., Marinho, P. S. & Marques, O. A. Being a bright snake: Testing aposematism and mimicry in a neotropical forest. Biotropica 52, 1229–1241 (2020).
    Google Scholar 
    Wüster, W. et al. Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc. R. Soc. B 271, 2495–2499 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Valkonen, J. K. & Mappes, J. Resembling a viper: Implications of mimicry for conservation of the endangered smooth snake. Conserv. Biol. 28, 1568–1574 (2014).PubMed 

    Google Scholar 
    Sinervo, B. & Lively, C. M. The rock–paper–scissors game and the evolution of alternative male strategies. Nature 380, 240–243 (1996).ADS 
    CAS 

    Google Scholar 
    Moon, R. M. & Kamath, A. Re-examining escape behaviour and habitat use as correlates of dorsal pattern variation in female brown anole lizards, Anolis sagrei (Squamata: Dactyloidae). Biol. J. Linn. Soc. 126, 783–795 (2019).
    Google Scholar 
    Le Rouzic, A., Hansen, T. F., Gosden, T. P. & Svensson, E. I. Evolutionary time-series analysis reveals the signature of frequency-dependent selection on a female mating polymorphism. Am. Nat. 185, E182–E196 (2015).PubMed 

    Google Scholar 
    Udyawer, V. et al. Future directions in the research and management of marine snakes. Front. Mar. Sci. 5, 399 (2018).
    Google Scholar 
    Goiran, C., Bustamante, P. & Shine, R. Industrial melanism in the seasnake Emydocephalus annulatus. Curr. Biol. 27, 2510–2513 (2017).CAS 
    PubMed 

    Google Scholar 
    Goiran, C., Brown, G. P. & Shine, R. Niche partitioning within a population of sea snakes is constrained by ambient thermal homogeneity and small prey size. Biol. J. Linn. Soc. 129, 644–651 (2020).
    Google Scholar 
    Shine, R., Shine, T. & Shine, B. Intraspecific habitat partitioning by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae): The effects of sex, body size, and colour pattern. Biol. J. Linn. Soc. 80, 1–10 (2003).
    Google Scholar 
    Udyawer, V., Goiran, C. & Shine, R. Peaceful coexistence between people and deadly wildlife: why are recreational users of the ocean so rarely bitten by sea snakes? People Nat. 3, 335–346 (2021).
    Google Scholar 
    Heatwole, H. Sea Snakes 2nd edn. (Krieger Publishing, 1999).
    Google Scholar 
    Shine, R., Shine, T. G., Brown, G. P. & Goiran, C. Life history traits of the sea snake Emydocephalus annulatus, based on a 17-yr study. Coral Reefs 39, 1407–1414 (2020).
    Google Scholar 
    Goiran, C., Dubey, S. & Shine, R. Effects of season, sex and body size on the feeding ecology of turtle-headed sea snakes (Emydocephalus annulatus) on IndoPacific inshore coral reefs. Coral Reefs 32, 527–538 (2013).ADS 

    Google Scholar 
    Olsson, M., Stuart-Fox, D. & Ballen, C. Genetics and evolution of colour patterns in reptiles. Semin. Cell Dev. Biol. 24, 529–541 (2013).PubMed 

    Google Scholar 
    Shine, R., Brischoux, F. & Pile, A. J. A seasnake’s colour affects its susceptibility to algal fouling. Proc. R. Soc. B 277, 2459–2464 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).
    Google Scholar 
    Packard, G. C. & Boardman, T. J. The misuse of ratios, indices, and percentages in ecophysiological research. Physiol. Zool. 61, 1–9 (1988).
    Google Scholar 
    Lukoschek, V. & Shine, R. Sea snakes rarely venture far from home. Ecol. Evol. 2, 1113–1121 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Shine, R. All at sea: Aquatic life modifies mate-recognition modalities in sea snakes (Emydocephalus annulatus, Hydrophiidae). Behav. Ecol. Sociobiol. 57, 591–598 (2005).
    Google Scholar 
    Shine, R., Shine, T. G., Brown, G. P. & Goiran, C. Population dynamics of the sea snake Emydocephalus annulatus (Elapidae, Hydrophiinae). Sci. Rep. 11, 20701 (2021).ADS 

    Google Scholar 
    Rancurel, P. & Intes, A. Le requin tigre, Galeocerdo cuvieri Lacepede, des eaux neocaledoniennes examen des contenus stomacaux. Tethys 10, 195–199 (1982).
    Google Scholar 
    Heatwole, H. Predation on sea snakes. In The Biology of Sea Snakes (ed. Dunson, W. A.) 233–250 (University Park Press, 1975).
    Google Scholar 
    Ineich, I. & Laboute, P. Les serpents marins de Nouvelle-Calédonie (IRD éditions, 2002).
    Google Scholar 
    Kerford, M. R., Wirsing, A. J., Heithaus, M. R. & Dill, L. M. Danger on the rise: diurnal tidal state mediates an exchange of food for safety by the bar-bellied sea snake Hydrophis elegans. Mar. Ecol. Progr. Ser. 358, 289–294 (2008).ADS 

    Google Scholar 
    Masunaga, G., Kosuge, T., Asai, N. & Ota, H. Shark predation of sea snakes (Reptilia: Elapidae) in the shallow waters around the Yaeyama Islands of the southern Ryukyus, Japan. Mar. Biodivers. Rec. 1, e96 (2008).
    Google Scholar 
    Wirsing, A. J. & Heithaus, M. R. Olive-headed sea snakes Disteria major shift seagrass microhabitats to avoid shark predation. Mar. Ecol. Progr. Ser. 387, 287–293 (2009).ADS 

    Google Scholar 
    Goiran, C. & Shine, R. The ability of damselfish to distinguish between dangerous and harmless sea snakes. Sci. Rep. 10, 1377 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Norman, M. D., Finn, J. & Tregenza, T. Dynamic mimicry in an Indo-Malayan octopus. Proc. R. Soc. B 268, 1755–1758 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pernetta, J. C. Observations on the habits and morphology of the sea snake Laticauda colubrina (Schneider) in Fiji. Can. J. Zool. 55, 1612–1619 (1977).
    Google Scholar 
    Randall, J. E. A review of mimicry in marine fishes. Zool. Stud. 44, 299–328 (2005).
    Google Scholar 
    Dudgeon, C. L. & White, W. T. First record of potential Batesian mimicry in an elasmobranch: Juvenile zebra sharks mimic banded sea snakes? Mar. Freshw. Res. 63, 545–551 (2012).
    Google Scholar 
    Sullivan Caldwell, G. & Wolff Rubinoff, R. Avoidance of venomous sea snakes by naive herons and egrets. Auk 100, 195–198 (1983).
    Google Scholar 
    Sanders, K. L., Malhotra, A. & Thorpe, R. S. Evidence for a Müllerian mimetic radiation in Asian pitvipers. Proc. R. Soc. B 273, 1135–1141 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raveendran, D. K., Deepak, V., Smith, E. N. & Smart, U. A new colour morph of Calliophis bibroni (Squamata: Elapidae) and evidence for Müllerian mimicry in Tropical Indian coral snakes. Herpetol. Notes 10, 209–217 (2017).
    Google Scholar  More