Oldest leaf mine trace fossil from East Asia provides insight into ancient nutritional flow in a plant–herbivore interaction
Connor, E. F. & Taverner, M. P. The evolution and adaptive significance of the leaf-mining habit. Oikos 79, 6–25. https://doi.org/10.2307/3546085 (1997).Article
 Google Scholar 
 Hespenheide, H. A. Bionomics of leaf-mining insects. Annu. Rev. Entomol. 36, 535–560. https://doi.org/10.1146/annurev.en.36.010191.002535 (1991).Article 
 Google Scholar 
 Kato, M. Structure, organization, and response of a species-rich parasitoid community to host leafminer population dynamics. Oecologia 97, 17–25 (1994).ADS 
 Article 
 Google Scholar 
 López, R., Carmona, D., Vincini, A. M., Monterubbianesi, G. & Caldiz, D. Population dynamics and damage caused by the leafminer Liriomyza huidobrensis Blanchard (Diptera: Agromyzidae), on seven potato processing varieties grown in temperate environment. Neotrop. Entomol. 39, 108–114. https://doi.org/10.1590/S1519-566X2010000100015 (2010).Article 
 PubMed 
 Google Scholar 
 Lopez-Vaamonde, C., Godfray, H. C. J. & Cook, J. M. Evolutionary dynamics of host-plant use in a genus of leaf-mining moths. Evolution 57, 1804–1821. https://doi.org/10.1111/j.0014-3820.2003.tb00588.x (2003).Article 
 PubMed 
 Google Scholar 
 Lopez-Vaamonde, C. et al. Fossil-calibrated molecular phylogenies reveal that leaf-mining moths radiated millions of years after their host plants. J. Evol. Biol. 19, 1314–1326. https://doi.org/10.1111/j.1420-9101.2005.01070.x (2006).CAS 
 Article 
 PubMed 
 Google Scholar 
 Scheffer, S. J., Lewis, M. L., Hébert, J. B. & Jacobsen, F. Diversity and host plant-use in North American Phytomyza Holly Leafminers (Diptera: Agromyzidae): Colonization, divergence, and specificity in a host-associated radiation. Ann. Entomol. Soc. Am. 114, 59–69. https://doi.org/10.1093/aesa/saaa034 (2021).CAS 
 Article 
 Google Scholar 
 Tooker, J. F. & Giron, D. The evolution of endophagy in herbivorous insects. Front. Plant Sci. 11, 581816. https://doi.org/10.3389/fpls.2020.581816 (2020).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Hawkins, B. A. Pattern and Process in Host-Parasitoid Interactions (Cambridge University Press, 1994).Book 
 Google Scholar 
 Novotny, V. & Basset, Y. Host specificity of insect herbivores in tropical forests. Proc. R. Soc. B Biol. Sci. 272, 1083–1090. https://doi.org/10.1098/rspb.2004.3023 (2005).Article 
 Google Scholar 
 Lewis, O. T. et al. Structure of a diverse tropical forest insect-parasitoid community. J. Anim. Ecol. 71, 855–873. https://doi.org/10.1046/j.1365-2656.2002.00651.x (2002).Article 
 Google Scholar 
 Hirao, T. & Murakami, M. Quantitative food webs of lepidopteran leafminers and their parasitoids in a Japanese deciduous forest. Ecol. Res. 23, 159–168. https://doi.org/10.1007/s11284-007-0351-6 (2008).Article 
 Google Scholar 
 Pocock, M. J. O., Evans, D. M. & Memmott, J. The robustness and restoration of a network of ecological networks. Science 335, 973–977. https://doi.org/10.1126/science.1214915 (2012).ADS 
 CAS 
 Article 
 PubMed 
 Google Scholar 
 Leppänen, S. A., Altenhofer, E., Liston, A. D. & Nyman, T. Phylogenetics and evolution of host-plant use in leaf-mining sawflies (Hymenoptera: Tenthredinidae: Heterarthrinae). Mol. Phylogenet. Evol. 64, 331–341. https://doi.org/10.1016/j.ympev.2012.04.005 (2012).Article 
 PubMed 
 Google Scholar 
 Doorenweerd, C., Van Nieukerken, E. J. & Menken, S. B. J. A global phylogeny of leafmining Ectoedemia moths (Lepidoptera: Nepticulidae): Exploring host plant family shifts and allopatry as drivers of speciation. PLoS ONE 10, 1–20. https://doi.org/10.1371/journal.pone.0119586 (2015).CAS 
 Article 
 Google Scholar 
 Nakadai, R. & Kawakita, A. Phylogenetic test of speciation by host shift in leaf cone moths (Caloptilia) feeding on maples (Acer). Ecol. Evol. 6, 4958–4970. https://doi.org/10.1002/ece3.2266 (2016).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Opler, P. A. Fossil lepidopterous leaf mines demonstrate the age of some insect-plant relationships. Science 179, 1321–1323. https://doi.org/10.1126/science.179.4080.1321 (1973).ADS 
 CAS 
 Article 
 PubMed 
 Google Scholar 
 Labandeira, C. C., Dilcher, D. L., Davis, D. R. & Wagner, D. L. Ninety-seven million years of angiosperm-insect association: Paleobiological insights into the meaning of coevolution. Proc. Natl. Acad. Sci. U. S. A. 91, 12278–12282. https://doi.org/10.1073/pnas.91.25.12278 (1994).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Winkler, I. S., Labandeira, C. C., Wappler, T. & Wilf, P. Distinguishing Agromyzidae (Diptera) leaf mines in the fossil record: New taxa from the Paleogene of North America and Germany and their evolutionary implications. J. Paleontol. 84, 935–954. https://doi.org/10.1666/09-163.1 (2010).Article 
 Google Scholar 
 van Nieukerken, E. J., Doorenweerd, C., Hoare, R. J. B. & Davis, D. R. Revised classification and catalogue of global Nepticulidae and Opostegidae (Lepidoptera, Nepticuloidea). Zookeys 2016, 65–246. https://doi.org/10.3897/zookeys.628.9799 (2016).Article 
 Google Scholar 
 Maccracken, S. A., Sohn, J.-C., Miller, I. M. & Labandeira, C. C. A new Late Cretaceous leaf mine Leucopteropsa spiralae gen. et sp. nov. (Lepidoptera: Lyonetiidae) represents the first confirmed fossil evidence of the Cemiostominae. J. Syst. Palaeontol. 19, 131–144. https://doi.org/10.1080/14772019.2021.1881177 (2021).Article 
 Google Scholar 
 Wilf, P., Labandeira, C. C., Johnson, K. R. & Ellis, B. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 313, 1112–1115. https://doi.org/10.1126/science.1129569 (2006)ADS 
 CAS 
 Article 
 PubMed 
 Google Scholar 
 Donovan, M. P., Wilf, P., Labandeira, C. C., Johnson, K. R. & Peppe, D. J. Novel insect leaf-mining after the end-Cretaceous extinction and the demise of Cretaceous leaf miners, Great Plains, USA. PLoS ONE 9, e103542. https://doi.org/10.1371/journal.pone.0103542 (2014).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Donovan, M. P., Iglesias, A., Wilf, P., Labandeira, C. C. & Cúneo, N. R. Rapid recovery of Patagonian plant–insect associations after the end-Cretaceous extinction. Nat. Ecol. Evol. 1, 0012. https://doi.org/10.1038/s41559-016-0012 (2017).Article 
 Google Scholar 
 Donovan, M. P., Wilf, P., Iglesias, A., Cúneo, N. R. & Labandeira, C. C. Persistent biotic interactions of a Gondwanan conifer from Cretaceous Patagonia to modern Malesia. Commun. Biol. 3, 708. https://doi.org/10.1038/s42003-020-01428-9 (2020).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Labandeira, C. C. The four phases of plant-arthropod associations in deep time. Geol. Acta 4, 409–438. https://doi.org/10.1344/105.000000344 (2006).Article 
 Google Scholar 
 Labandeira, C. C. Silurian to Triassic plant and hexapod clades and their associations: new data, a review, and interpretations. Arthropod Syst. Phylogen. 64, 53–94 (2006).
 Google Scholar 
 Wakita, K., Nakagawa, T., Sakata, M., Tanaka, N. & Oyama, N. Phanerozoic accretionary history of Japan and the western Pacific margin. Geol. Mag. https://doi.org/10.1017/s0016756818000742 (2018).Article 
 Google Scholar 
 Katayama, M. Stratigraphical study on the Mine Series. J. Geol. Soc. Jpn. 46, 127–141. https://doi.org/10.5575/geosoc.46.127 (1939).Article 
 Google Scholar 
 Maeda, H. & Oyama, N. Stratigraphy and fossil assemblages of the Triassic Mine Group and Jurassic Toyora Group in western Yamaguchi Prefecture. J. Geol. Soc. Japan 125, 585–594. https://doi.org/10.5575/geosoc.2019.0020 (2019).Article 
 Google Scholar 
 Aizawa, J. Fossil insect-bearing strata of the Triassic Mine Group, Yamaguchi Prefecture. Bull. Kitakyushu Mus. Nat. Hist. Hum. Hist. Ser. A 10, 91–98 (1991).
 Google Scholar 
 Oyama, N. & Maeda, H. Madygella humioi sp. nov. from the Upper Triassic Mine Group, Southwest Japan: The oldest record of a sawfly (Hymenoptera: Symphyta) in East Asia. Paleontol. Res. 24, 64–71 (2020).Article 
 Google Scholar 
 Fujiyama, I. Mesozoic insect fauna of East Asia part 1. Introduction and upper Triassic faunas. Bull. Natl. Sci. Mus. 16, 331–386 (1973).
 Google Scholar 
 Fujiyama, I. Late Triassic insects from Mine, Yamaguchi, Japan, Part 1. Odonata. Bull. Natl. Sci. Mus. Tokyo Ser. C 17, 49–56 (1991).
 Google Scholar 
 Ueda, K. A Triassic fossil of scorpion fly from Mine, Japan. Bull. Kitakyushu Mus. Nat. Hist. Hum. Hist. Ser. Ser. A 10, 99–103 (1991).
 Google Scholar 
 Takahashi, F., Ishida, H., Nohara, M., Doi, E. & Taniguchi, S. Occurrence of insect fossils from the Late Triassic Mine Group. Bull. Mine City Mus. Yamaguchi Prefect. Jpn. 13, 1–27 (1997).CAS 
 Google Scholar 
 Kametaka, M. Provenance of the Upper Triassic mine group Southwest Japan. J. Geol. Soc. Jpn. 105, 651–667 (1999).CAS 
 Article 
 Google Scholar 
 Takahashi, E. & Mikami, T. Triassic. In Geology of Yamaguchi Prefecture (ed. Yamaguchi Museum) 93–108 (Yamaguchi Museum, 1975).Kiminami, K. Atsu Group and Mine Group. In Monograph on Geology of Japan 6, Chugoku Region (ed. Geological Society of Japan) 85–88 (Asakura Publishing Co., Ltd., 2009).Naito, G. Plant Fossils from the Mine Group (Mine City Education Comittee, 2000).
 Google Scholar 
 Kimura, T. Geographical distribution of Palaeozoic and Mesozoic plants in East and Southeast Asia. Hist. Biogeogr. Plate Tecton. Evol. Jpn. East Asia 1982, 135–200 (1987).
 Google Scholar 
 Kimura, T., Naito, G. & Ohana, T. Baiera cf. furcata (Lindley and Hutton) Braun from the Carnic Momonoki Formation, Japan. Bull. Natl. Sci. Mus. 9, 91–114 (1983).
 Google Scholar 
 Katagiri, T. Pallaviciniites oishii (comb. Nov.), a thalloid liverwort from the Late Triassic of Japan. Bryologist 118, 245–251. https://doi.org/10.1639/0007-2745-118.3.245 (2015).Article 
 Google Scholar 
 Kustatscher, E. et al. Flora of the Late Triassic. In The Late Triassic World, Topics in Geobiology, Vol. 46 (ed. Tanner, L. H.) 545–622 (Springer, 2018). https://doi.org/10.1007/978-3-319-68009-5_13.Oyama, N., Yukawa, H. & Maeda, H. Mesozoic insect fossils of Japan: Significance of the Upper Triassic insect fauna of the Mine Group, Yamaguchi Pref. Bull. Mine City Mus. Yamaguchi Prefect. Jpn. 33, 1–13 (2020).
 Google Scholar 
 Shcherbakov, D. E., Lukashevich, E. D. & Blagoderov, V. Triassic Diptera and initial radiation of the order. Int. J. Dipterol. Res. 6, 75–115 (1995).
 Google Scholar 
 Krzemiński, W. & Krzemińska, E. Triassic Diptera: Descriptions, revisions and phylogenetic relations. Acta Zool. Cracov. 46, 153–184 (2003).
 Google Scholar 
 Blagoderov, V., Grimaldi, D. A. & Fraser, N. C. How time flies for flies: Diverse Diptera from the Triassic of Virginia and early radiation of the order. Am. Mus. Novit. 3572, 1–39. https://doi.org/10.1206/0003-0082(2007)509[1:HTFFFD]2.0.CO;2 (2007).Article 
 Google Scholar 
 Lukashevich, E. D., Przhiboro, A. A., Marchal-Papier, F. & Grauvogel-Stamm, L. The oldest occurrence of immature Diptera (Insecta), Middle Triassic France. Ann. la Société Entomol. Fr. 46, 4–22. https://doi.org/10.1080/00379271.2010.10697636 (2010).Article 
 Google Scholar 
 Schmidt, A. R. et al. Arthropods in amber from the Triassic Period. Proc. Natl. Acad. Sci. 109, 14796–14801. https://doi.org/10.1073/pnas.1208464109 (2012).ADS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Lara, M. B. & Lukashevich, E. D. The first Triassic dipteran (Insecta) from South America, with review of Hennigmatidae. Zootaxa 3710, 81–92. https://doi.org/10.11646/zootaxa.3710.1.6 (2013).Article 
 PubMed 
 Google Scholar 
 Kimura, T. & Ohana, T. Some fossil ferns from the Middle Carnic Momonoki Formation, Yamaguchi prefecture, Japan. Bull. Natl. Sci. Mus. Ser. C Geol. Paleontol. 6, 73–92 (1980).
 Google Scholar 
 Hering, E. M. Biology of the Leaf Miners https://doi.org/10.1007/978-94-015-7196-8. (Springer, 1951).Book 
 Google Scholar 
 Kirichenko, N. et al. Systematics of Phyllocnistis leaf-mining moths (Lepidoptera, Gracillariidae) feeding on dogwood (Cornus spp.) in Northeast Asia, with the description of three new species. Zookeys 2018, 79–118. https://doi.org/10.3897/zookeys.736.20739 (2018).Article 
 Google Scholar 
 Cerdeña, J. et al. Phyllocnistis furcata sp. nov.: A new species of leaf-miner associated with Baccharis (Asteraceae) from Southern Peru (Lepidoptera, Gracillariidae). Zookeys 2020, 121–145. https://doi.org/10.3897/zookeys.996.53958 (2020).Article 
 Google Scholar 
 Elb, P. M., Melo-de-Pinna, G. F. & de Menezes, N. L. Morphology and anatomy of leaf miners in two species of Commelinaceae (Commelina diffusa Burm. F. and Floscopa glabrata (Kunth) Hassk). Acta Bot. Brasilica 24, 283–287. https://doi.org/10.1590/S0102-33062010000100030 (2010).Article 
 Google Scholar 
 Vasco, A., Moran, R. C. & Ambrose, B. A. The evolution, morphology, and development of fern leaves. Front. Plant Sci. 4, 1–16. https://doi.org/10.3389/fpls.2013.00345 (2013).Article 
 Google Scholar 
 Eiseman, C. Leafminers of North America. (Charley Eiseman, 2019).Yang, J., Wang, X., Duffy, K. & Dai, X. A preliminary world checklist of fern-mining insects. Biodivers. Data J. 9, e62839. https://doi.org/10.3897/BDJ.9.e62839 (2021).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Ding, Q., Labandeira, C. C. & Ren, D. Biology of a leaf miner (Coleoptera) on Liaoningocladus boii (Coniferales) from the Early Cretaceous of northeastern China and the leaf-mining biology of possible insect culprit clades. Arthropod Syst. Phylogen. 72, 281–308 (2014).
 Google Scholar 
 Boucher, S. Revision of the Canadian species of Amauromyza Hendel (Diptera: Agromyzidae). Can. Entomol. 144, 733–757. https://doi.org/10.4039/tce.2012.80 (2012).Article 
 Google Scholar 
 Scheirs, J., Vandevyvere, I. & De Bruyn, L. Influence of monocotyl leaf anatomy on the feeding pattern of a grass-mining agromyzid (Diptera). Ann. Entomol. Soc. Am. 90, 646–654 (1997).Article 
 Google Scholar 
 Boucher, S. Leaf-miner flies (Diptera: Agromyzidae). In Encyclopedia of Entomology (ed. Capinera J. L.) 2163–2169 (Springer, 2008). https://doi.org/10.1007/978-1-4020-6359-6.Eiseman, C. S. New rearing records for muscoid leafminers (Diptera: Anthomyiidae, Scathophagidae) in the United States. Proc. Entomol. Soc. Wash. 120, 25–50. https://doi.org/10.4289/0013-8797.120.1.25 (2018).Article 
 Google Scholar 
 Meikle, A. A. The insects associated with bracken. Agric. Prog. 14, 58–61 (1937).
 Google Scholar 
 Lawton, J. H. The structure of the arthropod community on bracken. Bot. J. Linn. Soc. 73, 187–216. https://doi.org/10.1111/j.1095-8339.1976.tb02022.x (1976).Article 
 Google Scholar 
 Lawton, J. H., MacGarvin, M. & Heads, P. A. Effects of altitude on the abundance and species richness of insect herbivores on bracken. J. Anim. Ecol. 56, 147–160. https://doi.org/10.2307/4805 (1987).Article 
 Google Scholar 
 Cooper-Driver, Gi. A. Insect-fern associations. Entomol. Exp. Appl. 24, 310–316. https://doi.org/10.1111/j.1570-7458.1978.tb02787.x (1978).Article 
 Google Scholar 
 Eiseman, C. S. Further Nearctic rearing records for phytophagous muscoid flies (Diptera: Anthomyiidae, Scathophagidae). Proc. Entomol. Soc. Washingt. 122, 595–603. https://doi.org/10.4289/0013-8797.122.3.595 (2020).Article 
 Google Scholar 
 Santos, M. G. & Maia, V. C. A synopsis of fern galls in Brazil. Biota Neotrop. 18, e20180513. https://doi.org/10.1590/1676-0611-BN-2018-0513 (2018).Article 
 Google Scholar 
 Peters, R. S. et al. Evolutionary history of the Hymenoptera. Curr. Biol. 27, 1013–1018. https://doi.org/10.1016/j.cub.2017.01.027 (2017). CAS 
 Article 
 PubMed 
 Google Scholar 
 Ronquist, F. et al. A total-evidence approach to dating with fossils, applied to the early radiation of the Hymenoptera. Syst. Biol. 61, 973–999. https://doi.org/10.1093/sysbio/sys058 (2012).Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Needham, J. G., Frost, S. W. & Tothill, B. H. Leaf-Mining Insects (Waverly Press, 1928).
 Google Scholar 
 Smith, D. R., Eiseman, C. S., Charney, N. D. & Record, S. A new Nearctic Scolioneura (Hymenoptera, Tenthredinidae) mining leaves of Vaccinium (Ericaceae). J. Hymenopt. Res. 43, 1–8. https://doi.org/10.3897/JHR.43.4546 (2015).Article 
 Google Scholar 
 Zheng, D. et al. Middle-Late Triassic insect radiation revealed by diverse fossils and isotopic ages from China. Sci. Adv. 4, eaat1380. https://doi.org/10.1126/sciadv.aat1380 (2018).ADS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Zhang, S. Q. et al. Evolutionary history of Coleoptera revealed by extensive sampling of genes and species. Nat. Commun. 9, 1–11. https://doi.org/10.1038/s41467-017-02644-4 (2018).ADS 
 CAS 
 Article 
 Google Scholar 
 McKenna, D. D. et al. The evolution and genomic basis of beetle diversity. Proc. Natl. Acad. Sci. 116, 24729–24737. https://doi.org/10.1073/pnas.1909655116 (2019).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Gimmel, M. L. & Ferro, M. L. General overview of saproxylic Coleoptera. In Saproxylic Insects, Zoological Monographs, Vol. 1 (ed. Ulyshen, M. D.) 51–128 (Springer, 2018). https://doi.org/10.1007/978-3-319-75937-1_2.Labandeira, C. C., Anderson, J. M. & Anderson, H. M. Expansion of arthropod herbivory in Late Triassic South Africa: The Molteno Biota, Aasvoëlberg 411 site and developmental biology of a gall. In The Late Triassic World, Topics in Geobiology Vol. 46 (ed. Tanner, L. H.) 623–719 (Springer International Publishing AG, 2018).Chapter 
 Google Scholar 
 Fiebrig, K. Eine Schaum bildende Käferlarve Pachyschelus spec. (Bupr. Sap.) Die Ausscheidung von Kautschuk aus der Nahrung und dessen Verwertung zu Schutzzwecken (auch bei Rhynchoten). Z. f. Wiss. Insektenbiol. 4, 333–339 (1908).
 Google Scholar 
 Bruch, C. Metamórfosis de Pachyschelus undularius (Burm.). Physis 3, 30–36 (1917).
 Google Scholar 
 Hering, E. M. Neotropische Buprestiden-Minen. Arb. Physiol. Angew. Entomol. 9, 241–249 (1942).
 Google Scholar 
 Kogan, M. Contribuição ao conhecimento da sistemática e biologia de buprestídeos minadores do gênero Pachyschelus Solier, 1833: (Coleoptera, Buprestidae). Mem. Inst. Oswaldo Cruz 61, 429–457 (1963).CAS 
 Article 
 Google Scholar 
 Kawahara, A. Y. et al. Phylogenomics reveals the evolutionary timing and pattern of butterflies and moths. Proc. Natl. Acad. Sci. 116, 22657–22663. https://doi.org/10.1073/pnas.1907847116 (2019).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Van Eldijk, T. J. B. et al. A Triassic-Jurassic window into the evolution of lepidoptera. Sci. Adv. 4, e1701568. https://doi.org/10.1126/sciadv.1701568 (2018).ADS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Sohn, J. C., Labandeira, C. C., Davis, D. & Mitter, C. An annotated catalog of fossil and subfossil Lepidoptera (Insecta: Holometabola) of the world. Zootaxa. https://doi.org/10.11646/zootaxa.3286.1.1 (2012).Doorenweerd, C., Van Nieukerken, E. J., Sohn, J. C. & Labandeira, C. C. A revised checklist of Nepticulidae fossils (Lepidoptera) indicates an Early Cretaceous origin. Zootaxa 3963, 295–334. https://doi.org/10.11646/zootaxa.3963.3.2 (2015).Article 
 PubMed 
 Google Scholar 
 Kawahara, A. Y. et al. A molecular phylogeny and revised higher-level classification for the leaf-mining moth family Gracillariidae and its implications for larval host-use evolution. Syst. Entomol. 42, 60–81. https://doi.org/10.1111/syen.12210 (2017).Article 
 Google Scholar 
 Mazumdar, J. Phytoliths of pteridophytes. S. Afr. J. Bot. 77, 10–19. https://doi.org/10.1016/j.sajb.2010.07.020 (2011).Article 
 Google Scholar 
 Trembath-Reichert, E., Wilson, J. P., McGlynn, S. E. & Fischer, W. W. Four hundred million years of silica biomineralization in land plants. Proc. Natl. Acad. Sci. U. S. A. 112, 5449–5454 https://doi.org/10.1073/pnas.1500289112 (2015).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Hunt, J. W., Dean, A. P., Webster, R. E., Johnson, G. N. & Ennos, A. R. A novel mechanism by which silica defends grasses against herbivory. Ann. Bot. 102, 653–656. https://doi.org/10.1093/aob/mcn130 (2008).CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Reynolds, O. L., Keeping, M. G. & Meyer, J. H. Silicon-augmented resistance of plants to herbivorous insects: A review. Ann. Appl. Biol. 155, 171–186. https://doi.org/10.1111/j.1744-7348.2009.00348.x (2009).CAS 
 Article 
 Google Scholar 
 Edwards, N. P. et al. Leaf metallome preserved over 50 million years. Metallomics 6, 774–782. https://doi.org/10.1039/C3MT00242J (2014).CAS 
 Article 
 PubMed 
 Google Scholar 
 Müller, A. H. Über Hyponome fossiler und rezenter Insekten, erster Beitrag. Freib. Forschungsh. C 366, 7–27 (1982).
 Google Scholar 
 Beck, A. L. & Labandeira, C. C. Early Permian insect folivory on a gigantopterid-dominated riparian flora from north-central Texas. Palaeogeogr. Palaeoclimatol. Palaeoecol. 142, 139–173. https://doi.org/10.1016/S0031-0182(98)00060-1 (1998).Article 
 Google Scholar 
 Jarzembowski, E. A. The oldest plant-insect interaction in Croatia: Carboniferous evidence. Geol. Croat. 65(3), 387–392. https://doi.org/10.4154/GC.2012.28 (2002).Article 
 Google Scholar 
 Donovan, M. P. & Lucas, S. G. Insect herbivory on the Late Pennsylvanian Kinney Brick Quarry Flora, New Mexico, USA. Kinney Brick Quarry Lagerstätte. N. M. Mus. Nat. Hist. Sci. Bull. 84, 193–207 (2021).Potonié, R. Ueber das Rothliegende des Thüringer Waldes. Theil II: Die Flora des Rothliegenden von Thüringen. Abh. Preuss. Geol. Landesanst. 9, 1–298 (1893).
 Google Scholar 
 Potonié, R. Mitteilungen über mazerierte kohlige Pflanzenfossilien. Z. Bot. 13, 79–88 (1921).Adami-Rodrigues, K. A., Iannuzzi, R. & Pinto, I. D. Permian plant-insect interactions from a Gondwana flora of southern Brazil. Foss. Strat. 51, 106–126 (2004).
 Google Scholar 
 Krassilov, V. A. & Karasev, E. First evidence of plant–arthropod interaction at the Permian–Triassic boundary in the Volga Basin European Russia. Alavesia 2, 247–252 (2008).
 Google Scholar 
 Labandeira, C. C., Wilf, P., Johnson, K. & Marsh, F. Guide to insect (and other) damage types on compressed plant fossils. Version 3.0. Smithson. Institution, Washington, DC 25 (2007).Scott, A. C., Anderson, J. M. & Anderson, H. M. Evidence of plant-insect interactions in the Upper Triassic Molteno formation of South Africa. J. Geol. Soc. London. 161, 401–410. https://doi.org/10.1144/0016-764903-118 (2004).Article 
 Google Scholar 
 Tillyard, R. J. Mesozoic Insects of Queensland No. 9. Orthoptera, and Additions to the Protorthoptera, Odonata, Hemiptera, and Planipennia. Proc. Linn. Soc. N. S. W. 47, 447–470 (1922).
 Google Scholar 
 Rozefelds, A. C. & Sobbe, I. Problematic insect leaf mines from the Upper Triassic Ipswich Coal Measures of Southeastern Queensland Australia. Alcheringa 11, 51–57 (1987).Article 
 Google Scholar 
 Wappler, T., Kustatscher, E. & Dellantonio, E. Plant-insect interactions from Middle Triassic (late Ladinian) of Monte Agnello (Dolomites, N-Italy)-Initial pattern and response to abiotic environmental pertubations. PeerJ 2015, e921. https://doi.org/10.7717/peerj.921 (2015).Article 
 Google Scholar 
 Meller, B., Ponomarenko, A. G., Vasilenko, D. V., Fischer, T. C. & Aschauer, B. First beetle elytra, abdomen (Coleoptera) and a mine trace from Lunz (Carnian, Late Triassic, Lunz-am-See, Austria) and their taphonomical and evolutionary aspects. Palaeontology 54, 97–110. https://doi.org/10.1111/j.1475-4983.2010.01009.x (2011).Article 
 Google Scholar 
 Vassilenko, D. V. Traces of plant-arthropod interactions from Madygen (Triassic, Kyrgyzstan): Preliminary data. Sovremennaya paleontologia: klassicheskie i noveishie metody 9–16 (2009).Zherikhin, V. V. Insect Trace Fossils. In History of Insects (ed. Rasnitsyn A. P., Quicke, D. L.) 303–324 (Kluwer Academic Publishers, 2010).Schindelin, J. et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 9, 676–682. https://doi.org/10.1038/nmeth.2019 (2012).CAS 
 Article 
 PubMed 
 Google Scholar 
 Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Book 
Google Scholar More
 
 
