More stories

  • in

    The ecological roles of bacterial chemotaxis

    Wadhwa, N. & Berg, H. C. Bacterial motility: machinery and mechanisms. Nat. Rev. Microbiol. 20, 161–173 (2022). This recent review provides an excellent overview of the diversity in bacterial propulsion mechanisms.CAS 
    PubMed 

    Google Scholar 
    Burrows, L. L. Pseudomonas aeruginosa twitching motility: type IV pili in action. Annu. Rev. Microbiol. 66, 493–520 (2012).CAS 
    PubMed 

    Google Scholar 
    Dufrêne, Y. F. & Persat, A. Mechanomicrobiology: how bacteria sense and respond to forces. Nat. Rev. Microbiol. 18, 227–240 (2020).PubMed 

    Google Scholar 
    Jarrell, K. F. & McBride, M. J. The surprisingly diverse ways that prokaryotes move. Nat. Rev. Microbiol. 6, 466–476 (2008).CAS 
    PubMed 

    Google Scholar 
    Berg, H. C. E. coli in Motion (Springer, 2004).Bi, S. & Sourjik, V. Stimulus sensing and signal processing in bacterial chemotaxis. Curr. Opin. Microbiol. 45, 22–29 (2018).CAS 
    PubMed 

    Google Scholar 
    Parkinson, J. S., Hazelbauer, G. L. & Falke, J. J. Signaling and sensory adaptation in Escherichia coli chemoreceptors: 2015 update. Trends Microbiol. 23, 257–266 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Porter, S. L., Wadhams, G. H. & Armitage, J. P. Signal processing in complex chemotaxis pathways. Nat. Rev. Microbiol. 9, 153–165 (2011).CAS 
    PubMed 

    Google Scholar 
    Colin, R. & Sourjik, V. Emergent properties of bacterial chemotaxis pathway. Curr. Opin. Microbiol. 39, 24–33 (2017).CAS 
    PubMed 

    Google Scholar 
    Brumley, D. R. et al. Cutting through the noise: bacterial chemotaxis in marine microenvironments. Front. Mar. Sci. 7, 527 (2020).
    Google Scholar 
    Hein, A. M., Carrara, F., Brumley, D. R., Stocker, R. & Levin, S. A. Natural search algorithms as a bridge between organisms, evolution, and ecology. Proc. Natl Acad. Sci. USA 113, 9413–9420 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wong-Ng, J., Celani, A. & Vergassola, M. Exploring the function of bacterial chemotaxis. Curr. Opin. Microbiol. 45, 16–21 (2018).CAS 
    PubMed 

    Google Scholar 
    Colin, R., Ni, B., Laganenka, L. & Sourjik, V. Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol. Rev. 45, fuab038 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schweinitzer, T. & Josenhans, C. Bacterial energy taxis: a global strategy? Arch. Microbiol. 192, 507–520 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Somavanshi, R., Ghosh, B. & Sourjik, V. Sugar influx sensing by the phosphotransferase system of Escherichia coli. PLoS Biol. 14, e2000074 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Cremer, J. et al. Chemotaxis as a navigation strategy to boost range expansion. Nature 575, 658–663 (2019). This work uses a quantitative approach to describe the classic assay of bacterial growth and migration in soft agar, and elucidates the distinct roles of attractant and nutrient in colony expansion.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raina, J.-B., Fernandez, V., Lambert, B., Stocker, R. & Seymour, J. R. The role of microbial motility and chemotaxis in symbiosis. Nat. Rev. Microbiol. 17, 284–294 (2019). This study presents a comprehensive overview of the role of bacterial motility and chemotaxis in establishing and maintaining symbiotic relationships.CAS 
    PubMed 

    Google Scholar 
    Matilla, M. A. & Krell, T. The effect of bacterial chemotaxis on host infection and pathogenicity. FEMS Microbiol. Rev. 42, fux052 (2018). This work presents an extensive review of the role of bacterial motility and chemotaxis in host pathogenicity from plants to animals.
    Google Scholar 
    Perkins, A., Tudorica, D. A., Amieva, M. R., Remington, S. J. & Guillemin, K. Helicobacter pylori senses bleach (HOCl) as a chemoattractant using a cytosolic chemoreceptor. PLoS Biol. 17, e3000395 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tohidifar, P. et al. The unconventional cytoplasmic sensing mechanism for ethanol chemotaxis in Bacillus subtilis. mBio 11, e02177-20 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Kundu, P., Blacher, E., Elinav, E. & Pettersson, S. Our gut microbiome: the evolving inner self. Cell 171, 1481–1493 (2017).CAS 
    PubMed 

    Google Scholar 
    Azam, F. & Malfatti, F. Microbial structuring of marine ecosystems. Nat. Rev. Microbiol. 5, 782–791 (2007).CAS 
    PubMed 

    Google Scholar 
    Buchan, A., LeCleir, G. R., Gulvik, C. A. & González, J. M. Master recyclers: features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 12, 686–698 (2014).CAS 
    PubMed 

    Google Scholar 
    Savageau, M. A. Escherichia coli habitats, cell types and molecular mechanisms of gene control. Am. Nat. 122, 732–744 (1983).CAS 

    Google Scholar 
    Vorholt, J. A. Microbial life in the phyllosphere. Nat. Rev. Microbiol. 10, 828–840 (2012).CAS 
    PubMed 

    Google Scholar 
    Scharf, B. E., Hynes, M. F. & Alexandre, G. M. Chemotaxis signaling systems in model beneficial plant–bacteria associations. Plant. Mol. Biol. 90, 549–559 (2016).CAS 
    PubMed 

    Google Scholar 
    Stocker, R. & Seymour, J. R. Ecology and physics of bacterial chemotaxis in the ocean. Microbiol. Mol. Biol. Rev. 76, 792–812 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Datta, M. S., Sliwerska, E., Gore, J., Polz, M. F. & Cordero, O. X. Microbial interactions lead to rapid micro-scale successions on model marine particles. Nat. Commun. 7, 11965 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barbara, G. M. & Mitchell, J. G. Bacterial tracking of motile algae. FEMS Microbiol. Ecol. 44, 79–87 (2003).CAS 
    PubMed 

    Google Scholar 
    Garren, M. et al. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J. 8, 999–1007 (2014).CAS 
    PubMed 

    Google Scholar 
    Szurmant, H. & Ordal, G. W. Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol. Mol. Biol. Rev. 68, 301–319 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wuichet, K. & Zhulin, I. B. Origins and diversification of a complex signal transduction system in prokaryotes. Sci. Signal. 3, ra50 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Zehr, J. P., Weitz, J. S. & Joint, I. How microbes survive in the open ocean. Science 357, 646–647 (2017).CAS 
    PubMed 

    Google Scholar 
    McDougald, D., Rice, S. A., Barraud, N., Steinberg, P. D. & Kjelleberg, S. Should we stay or should we go: mechanisms and ecological consequences for biofilm dispersal. Nat. Rev. Microbiol. 10, 39–50 (2012).CAS 

    Google Scholar 
    Yawata, Y., Carrara, F., Menolascina, F. & Stocker, R. Constrained optimal foraging by marine bacterioplankton on particulate organic matter. Proc. Natl Acad. Sci. USA 117, 25571–25579 (2020). This study reveals that a marine bacterium foraging on particulate nutrient hotspots optimizes nutrient uptake using rapid switches between chemotactic and non-motile lifestyles.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paul, K., Nieto, V., Carlquist, W. C., Blair, D. F. & Harshey, R. M. The c-di-GMP binding protein YcgR controls flagellar motor direction and speed to affect chemotaxis by a “backstop brake” mechanism. Mol. Cell 38, 128–139 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fenchel, T. Microbial behavior in a heterogeneous world. Science 296, 1068–1071 (2002).CAS 
    PubMed 

    Google Scholar 
    Stocker, R. Marine microbes see a sea of gradients. Science 338, 628–633 (2012).CAS 

    Google Scholar 
    McDonald, D. E., Pethick, D. W., Mullan, B. P. & Hampson, D. J. Increasing viscosity of the intestinal contents alters small intestinal structure and intestinal growth, and stimulates proliferation of enterotoxigenic Escherichia coli in newly-weaned pigs. Br. J. Nutr. 86, 487–498 (2001).CAS 
    PubMed 

    Google Scholar 
    Berg, H. C. & Turner Movement of microorganisms in viscous environments. Nature 278, 349–351 (1979).CAS 
    PubMed 

    Google Scholar 
    Borer, B., Tecon, R. & Or, D. Spatial organization of bacterial populations in response to oxygen and carbon counter-gradients in pore networks. Nat. Commun. 9, 769 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Whitman, W. B., Coleman, D. C. & Wiebe, W. J. Prokaryotes: the unseen majority. Proc. Natl Acad. Sci. USA 95, 6578–6583 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raynaud, X. & Nunan, N. Spatial ecology of bacteria at the microscale in soil. PLoS ONE 9, e87217 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lindow, S. E. & Brandl, M. T. Microbiology of the phyllosphere. Appl. Env. Microbiol. 69, 9 (2003).
    Google Scholar 
    Fernandez, V. I., Yawata, Y. & Stocker, R. A foraging mandala for aquatic microorganisms. ISME J. 13, 563–575 (2019).PubMed 

    Google Scholar 
    Purcell, E. M. Life at low Reynolds number. Am. J. Phys. 45, 10 (1977).
    Google Scholar 
    Dusenbery, D. B. Living at Micro Scale: The Unexpected Physics of Being Small (Harvard Univ. Press, 2011).Phillips, R. & Milo, R. Cell Biology by the Numbers (Garland Science, 2015).Darnton, N. C., Turner, L., Rojevsky, S. & Berg, H. C. On torque and tumbling in swimming Escherichia coli. J. Bacteriol. 189, 1756–1764 (2007).CAS 
    PubMed 

    Google Scholar 
    Ryu, W. S., Berry, R. M. & Berg, H. C. Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio. Nature 403, 444–446 (2000).CAS 
    PubMed 

    Google Scholar 
    Chattopadhyay, S., Moldovan, R., Yeung, C. & Wu, X. L. Swimming efficiency of bacterium Escherichia coli. Proc. Natl Acad. Sci. USA 103, 13712–13717 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sowa, Y., Hotta, H., Homma, M. & Ishijima, A. Torque–speed relationship of the Na+-driven flagellar motor of Vibrio alginolyticus. J. Mol. Biol. 327, 1043–1051 (2003).CAS 
    PubMed 

    Google Scholar 
    Taylor, J. R. & Stocker, R. Trade-offs of chemotactic foraging in turbulent water. Science 338, 675–679 (2012).CAS 
    PubMed 

    Google Scholar 
    Govern, C. C. & ten Wolde, P. R. Optimal resource allocation in cellular sensing systems. Proc. Natl Acad. Sci. USA 111, 17486–17491 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sourjik, V. & Berg, H. C. Binding of the Escherichia coli response regulator CheY to its target measured in vivo by fluorescence resonance energy transfer. Proc. Natl Acad. Sci. USA 99, 12669–12674 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lan, G., Sartori, P., Neumann, S., Sourjik, V. & Tu, Y. The energy–speed–accuracy trade-off in sensory adaptation. Nat. Phys. 8, 422–428 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stouthamer, A. H. & Bettenhaussen, C. W. A continuous culture study of an ATPase-negative mutant of Escherichia coli. Arch. Microbiol. 113, 185–189 (1977).CAS 
    PubMed 

    Google Scholar 
    Macnab, R. M. in Escherichia coli and Salmonella Typhimurium: Cellular and Molecular Biology Vol. 1 (eds Nerdhardt, F. et al.) 732–759 (American Society for Microbiology, 1987).Kempes, C. P. et al. Drivers of bacterial maintenance and minimal energy requirements. Front. Microbiol. 8, 31 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Lynch, M. & Marinov, G. K. The bioenergetic costs of a gene. Proc. Natl Acad. Sci. USA 112, 15690–15695 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoehler, T. M. & Jørgensen, B. B. Microbial life under extreme energy limitation. Nat. Rev. Microbiol. 11, 83–94 (2013).CAS 
    PubMed 

    Google Scholar 
    Boehm, A. et al. Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141, 107–116 (2010).CAS 
    PubMed 

    Google Scholar 
    Fang, X. & Gomelsky, M. A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility: c-di-GMP-dependent flagellum rotation bias. Mol. Microbiol. 76, 1295–1305 (2010).CAS 
    PubMed 

    Google Scholar 
    Sathyamoorthy, R. et al. To hunt or to rest: prey depletion induces a novel starvation survival strategy in bacterial predators. ISME J. 15, 109–123 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Adler, J. & Templeton, B. The effect of environmental conditions on the motility of Escherichia coli. J. Gen. Microbiol. 46, 175–184 (1967).CAS 
    PubMed 

    Google Scholar 
    Berg, H. C. & Tedesco, P. M. Transient response to chemotactic stimuli in Escherichia coli. Proc. Natl Acad. Sci. USA 72, 3235–3239 (1975).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mitchell, J. G. The influence of cell size on marine bacterial motility and energetics. Microb. Ecol. 22, 227–238 (1991).CAS 
    PubMed 

    Google Scholar 
    Castro-Sowinski, S., Burdman, S., Matan, O. & Okon, Y. in Plastics from Bacteria Vol. 14 (ed. Chen, G. G.-Q.) 39–61 (Springer, 2010).Walter, J. M., Greenfield, D., Bustamante, C. & Liphardt, J. Light-powering Escherichia coli with proteorhodopsin. Proc. Natl Acad. Sci. USA 104, 2408–2412 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gude, S. et al. Bacterial coexistence driven by motility and spatial competition. Nature 578, 588–592 (2020). This work presents evidence for a trade-off between motility and growth, which supports bacterial diversity through spatial segregation.CAS 
    PubMed 

    Google Scholar 
    Ni, B., Colin, R., Link, H., Endres, R. G. & Sourjik, V. Growth-rate dependent resource investment in bacterial motile behavior quantitatively follows potential benefit of chemotaxis. Proc. Natl Acad. Sci. USA 117, 595–601 (2020). This work systematically compares the cost and benefit of chemotaxis in spatially extended and well-mixed environments.CAS 
    PubMed 

    Google Scholar 
    Li, M. & Hazelbauer, G. L. Cellular stoichiometry of the components of the chemotaxis signaling complex. J. Bacteriol. 186, 3687–3694 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Neumann, S., Hansen, C. H., Wingreen, N. S. & Sourjik, V. Differences in signalling by directly and indirectly binding ligands in bacterial chemotaxis. EMBO J. 29, 3484–3495 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Akashi, H. & Gojobori, T. Metabolic efficiency and amino acid composition in the proteomes of Escherichia coli and Bacillus subtilis. Proc. Natl Acad. Sci. USA 99, 3695–3700 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Basan, M. et al. Overflow metabolism in Escherichia coli results from efficient proteome allocation. Nature 528, 99–104 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ni, B. et al. Evolutionary remodeling of bacterial motility checkpoint control. Cell Rep. 18, 866–877 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fraebel, D. T. et al. Environment determines evolutionary trajectory in a constrained phenotypic space. eLife 6, e24669 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Honda, T. et al. Coordination of gene expression with cell size enables Escherichia coli to efficiently maintain motility across conditions. Preprint at bioRxiv https://doi.org/10.1101/2021.05.12.443892 (2021).Article 

    Google Scholar 
    Zampieri, M., Hörl, M., Hotz, F., Müller, N. F. & Sauer, U. Regulatory mechanisms underlying coordination of amino acid and glucose catabolism in Escherichia coli. Nat. Commun. 10, 3354 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zhao, Z. et al. Frequent pauses in Escherichia coli flagella elongation revealed by single cell real-time fluorescence imaging. Nat. Commun. 9, 1885 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Zhuang, X. et al. Live‐cell fluorescence imaging reveals dynamic production and loss of bacterial flagella. Mol. Microbiol. 114, 279–291 (2020).CAS 
    PubMed 

    Google Scholar 
    Chevance, F. F. V. & Hughes, K. T. Coordinating assembly of a bacterial macromolecular machine. Nat. Rev. Microbiol. 6, 455–465 (2008). This work presents a classic overview of the gene regulatory pathway that controls flagella assembly in Gram-negative bacteria.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amsler, C. D., Cho, M. & Matsumura, P. Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth. J. Bacteriol. 175, 6238–6244 (1993).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lopes, J. G. & Sourjik, V. Chemotaxis of Escherichia coli to major hormones and polyamines present in human gut. ISME J. 12, 2736–2747 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, J. et al. Biphasic chemotaxis of Escherichia coli to the microbiota metabolite indole. Proc. Natl Acad. Sci. USA 117, 6114–6120 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Matz, C. & Jürgens, K. High motility reduces grazing mortality of planktonic bacteria. Appl. Environ. Microbiol. 71, 921–929 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cummings, L. A., Wilkerson, W. D., Bergsbaken, T. & Cookson, B. T. In vivo, fliC expression by Salmonella enterica serovar Typhimurium is heterogeneous, regulated by ClpX, and anatomically restricted. Mol. Microbiol. 61, 795–809 (2006).CAS 
    PubMed 

    Google Scholar 
    Yuan, J. & Berg, H. C. Ultrasensitivity of an adaptive bacterial motor. J. Mol. Biol. 425, 1760–1764 (2013).CAS 
    PubMed 

    Google Scholar 
    Lestas, I., Vinnicombe, G. & Paulsson, J. Fundamental limits on the suppression of molecular fluctuations. Nature 467, 174–178 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frankel, N. W. et al. Adaptability of non-genetic diversity in bacterial chemotaxis. eLife 3, e03526 (2014).PubMed Central 

    Google Scholar 
    Goldbeter, A. & Koshland, D. E. An amplified sensitivity arising from covalent modification in biological systems. Proc. Natl Acad. Sci. USA 78, 6840–6844 (1981).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waite, A. J. et al. Non‐genetic diversity modulates population performance. Mol. Syst. Biol. 12, 895 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Fu, X. et al. Spatial self-organization resolves conflicts between individuality and collective migration. Nat. Commun. 9, 2177 (2018). This sophisticated microfluidic study reveals that a chemotactic population may travel as a cohesive unit despite strong phenotypic heterogeneity within the population.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Long, Z., Quaife, B., Salman, H. & Oltvai, Z. N. Cell–cell communication enhances bacterial chemotaxis toward external attractants. Sci. Rep. 7, 12855 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Laganenka, L., Colin, R. & Sourjik, V. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat. Commun. 7, 12984 (2016). This study demonstrates that bacteria may chase self-generated gradients by producing quorum-sensing molecules.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Park, S. et al. Influence of topology on bacterial social interaction. Proc. Natl Acad. Sci. USA 100, 13910–13915 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phan, T. V. et al. Bacterial route finding and collective escape in mazes and fractals. Phys. Rev. X 10, 031017 (2020).CAS 

    Google Scholar 
    Waite, A. J., Frankel, N. W. & Emonet, T. Behavioral variability and phenotypic diversity in bacterial chemotaxis. Annu. Rev. Biophys. 47, 595–616 (2018). This work presents a review of the mechanisms underlying behavioural variation in bacterial chemotaxis and the consequences for chemotactic performance.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ackermann, M. A functional perspective on phenotypic heterogeneity in microorganisms. Nat. Rev. Microbiol. 13, 497–508 (2015).CAS 
    PubMed 

    Google Scholar 
    Bódi, Z. et al. Phenotypic heterogeneity promotes adaptive evolution. PLoS Biol. 15, e2000644 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Seymour, J. R., Amin, S. A., Raina, J.-B. & Stocker, R. Zooming in on the phycosphere: the ecological interface for phytoplankton–bacteria relationships. Nat. Microbiol. 2, 17065 (2017).CAS 
    PubMed 

    Google Scholar 
    Weber, L., Gonzalez‐Díaz, P., Armenteros, M. & Apprill, A. The coral ecosphere: a unique coral reef habitat that fosters coral–microbial interactions. Limnol. Oceanogr. 64, 2373–2388 (2019).CAS 

    Google Scholar 
    Salek, M. M., Carrara, F., Fernandez, V., Guasto, J. S. & Stocker, R. Bacterial chemotaxis in a microfluidic T-maze reveals strong phenotypic heterogeneity in chemotactic sensitivity. Nat. Commun. 10, 1877 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Ford, R. M. & Lauffenburger, D. A. Measurement of bacterial random motility and chemotaxis coefficients: II. Application of single-cell-based mathematical model. Biotechnol. Bioeng. 37, 661–672 (1991).CAS 
    PubMed 

    Google Scholar 
    Lambert, B. S., Fernandez, V. I. & Stocker, R. Motility drives bacterial encounter with particles responsible for carbon export throughout the ocean. Limnol. Oceanogr. Lett. 4, 113–118 (2019).
    Google Scholar 
    Słomka, J., Alcolombri, U., Secchi, E., Stocker, R. & Fernandez, V. I. Encounter rates between bacteria and small sinking particles. N. J. Phys. 22, 043016 (2020).
    Google Scholar 
    Hein, A. M. & Martin, B. T. Information limitation and the dynamics of coupled ecological systems. Nat. Ecol. Evol. 4, 82–90 (2020).PubMed 

    Google Scholar 
    Kiorboe, T., Grossart, H.-P., Ploug, H. & Tang, K. Mechanisms and rates of bacterial colonization of sinking aggregates. Appl. Environ. Microbiol. 68, 3996–4006 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viswanathan, G. M. et al. Optimizing the success of random searches. Nature 401, 911–914 (1999).CAS 
    PubMed 

    Google Scholar 
    Korobkova, E., Emonet, T., Vilar, J. M. G., Shimizu, T. S. & Cluzel, P. From molecular noise to behavioural variability in a single bacterium. Nature 428, 574–578 (2004).CAS 
    PubMed 

    Google Scholar 
    Tu, Y. & Grinstein, G. How white noise generates power-law switching in bacterial flagellar motors. Phys. Rev. Lett. 4, 208101 (2005).
    Google Scholar 
    Huo, H., He, R., Zhang, R. & Yuan, J. Swimming Escherichia coli explore the environment by Lévy walk. Appl. Environ. Microbiol. 87, e02429–20 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keegstra, J. M. et al. Phenotypic diversity and temporal variability in a bacterial signaling network revealed by single-cell FRET. eLife 6, e27455 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Colin, R. & Sourjik, V. Multiple sources of slow activity fluctuations in a bacterial chemosensory network. eLife 6, e26796 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Karin, O. & Alon, U. Temporal fluctuations in chemotaxis gain implements a simulated tempering strategy for efficient navigation in complex environments. SSRN Electron. J. 24, 102796 (2021).CAS 

    Google Scholar 
    Carey, J. N. et al. Regulated stochasticity in a bacterial signaling network permits tolerance to a rapid environmental change. Cell 173, 196–207.e14 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kamino, K., Keegstra, J. M., Long, J., Emonet, T. & Shimizu, T. S. Adaptive tuning of cell sensory diversity without changes in gene expression. Sci. Adv. 6, eabc1087 (2020). This study shows that a bacterial population increases chemotactic bed-hedging when environmental signals are unavailable, but suppresses the sensory diversity when a traceable signal is presented.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bassler, B. L. & Losick, R. Bacterially speaking. Cell 125, 237–246 (2006).CAS 
    PubMed 

    Google Scholar 
    Mukherjee, S. & Bassler, B. L. Bacterial quorum sensing in complex and dynamically changing environments. Nat. Rev. Microbiol. 17, 371–382 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Budrene, E. O. & Berg, H. C. Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376, 49–53 (1995).CAS 
    PubMed 

    Google Scholar 
    Ben-Jacob, E., Cohen, I. & Levine, H. Cooperative self-organization of microorganisms. Adv. Phys. 49, 395–554 (2000).CAS 

    Google Scholar 
    Adler, J. Chemotaxis in bacteria. Science 153, 708–716 (1966).CAS 
    PubMed 

    Google Scholar 
    Keller, E. F. & Segel, L. A. Model for chemotaxis. J. Theor. Biol. 30, 225–234 (1971).CAS 
    PubMed 

    Google Scholar 
    Saragosti, J. et al. Directional persistence of chemotactic bacteria in a traveling concentration wave. Proc. Natl Acad. Sci. USA 108, 16235–16240 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mattingly & Emonet, T. The balancing act of growth and expansion. Nature 575, 602–603 (2019).CAS 
    PubMed 

    Google Scholar 
    Liu, W., Cremer, J., Li, D., Hwa, T. & Liu, C. An evolutionarily stable strategy to colonize spatially extended habitats. Nature 575, 664–668 (2019). This study reveals that chemotactic strains selected for different speeds of range expansion in semi-solid agar can stably coexist.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hui, S. et al. Quantitative proteomic analysis reveals a simple strategy of global resource allocation in bacteria. Mol. Syst. Biol. 11, 784 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Maser, A., Peebo, K., Vilu, R. & Nahku, R. Amino acids are key substrates to Escherichia coli BW25113 for achieving high specific growth rate. Res. Microbiol. 171, 185–193 (2020).CAS 
    PubMed 

    Google Scholar 
    Yang, Y. et al. Relation between chemotaxis and consumption of amino acids in bacteria. Mol. Microbiol. 96, 1272–1282 (2015). This study is a pioneering work on the relation between chemotaxis and metabolism, where the relationship between amino acid uptake preference and chemotactic affinity in E. coli and B. subtilis is studied.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cadotte, M. W. et al. On testing the competition–colonization trade-off in a multispecies assemblage. Am. Nat. 168, 704–709 (2006).PubMed 

    Google Scholar 
    Amarasekare, P. Competitive coexistence in spatially structured environments: a synthesis. Ecol. Lett. 6, 1109–1122 (2003).
    Google Scholar 
    Levins, R. & Culver, D. Regional coexistence of species and competition between rare species. Proc. Natl Acad. Sci. USA 68, 1246–1248 (1971).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yawata, Y. et al. Competition–dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. Proc. Natl Acad. Sci. USA 111, 5622–5627 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Narla, A. V., Cremer, J. & Hwa, T. A traveling-wave solution for bacterial chemotaxis with growth. Proc. Natl Acad. Sci. USA 118, e2105138118 (2021). This work develops a comprehensive mathematical framework describing migrating bands of bacteria driven by growth and chemotaxis that is applicable to many environments.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bassler, B. L., Gibbons, P. J., Yu, C. & Roseman, S. Chemotaxis to chitin oligosaccharides by Vibrio furnissi. J. Biol. Chem. 266, 24268–24275 (1991).CAS 
    PubMed 

    Google Scholar 
    Konishi, H., Hio, M., Kobayashi, M., Takase, R. & Hashimoto, W. Bacterial chemotaxis towards polysaccharide pectin by pectin-binding protein. Sci. Rep. 10, 3977 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alcolombri, U. et al. Sinking enhances the degradation of organic particles by marine bacteria. Nat. Geosci. 14, 775–780 (2021).CAS 

    Google Scholar 
    D’Souza, G. G., Povolo, V. R., Keegstra, J. M., Stocker, R. & Ackermann, M. Nutrient complexity triggers transitions between solitary and colonial growth in bacterial populations. ISME J. 1, 1 (2021).
    Google Scholar 
    Nesper, J. et al. Cyclic di-GMP differentially tunes a bacterial flagellar motor through a novel class of CheY-like regulators. eLife 6, e28842 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Basan, M. et al. A universal trade-off between growth and lag in fluctuating environments. Nature 584, 470–474 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, J. et al. A distinct growth physiology enhances bacterial growth under rapid nutrient fluctuations. Nat. Commun. 12, 3662 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cordero, O. X. & Datta, M. S. Microbial interactions and community assembly at microscales. Curr. Opin. Microbiol. 31, 227–234 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Rusconi, R., Garren, M. & Stocker, R. Microfluidics expanding the frontiers of microbial ecology. Annu. Rev. Biophys. 43, 65–91 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lambert, B. S. et al. A microfluidics-based in situ chemotaxis assay to study the behaviour of aquatic microbial communities. Nat. Microbiol. 2, 1344–1349 (2017).CAS 
    PubMed 

    Google Scholar 
    Clerc, E. E., Raina, J.-B., Lambert, B. S., Seymour, J. & Stocker, R. In situ chemotaxis assay to examine microbial behavior in aquatic ecosystems. J. Vis. Exp. 159, e61062 (2020).
    Google Scholar 
    Pleška, M., Jordan, D., Frentz, Z., Xue, B. & Leibler, S. Nongenetic individuality, changeability, and inheritance in bacterial behavior. Proc. Natl Acad. Sci. USA 118, e2023322118 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Figueroa-Morales, N. et al. 3D spatial exploration by E. coli echoes motor temporal variability. Phys. Rev. X 10, 021004 (2020).CAS 

    Google Scholar 
    Hazelbauer, G. L. Bacterial chemotaxis: the early years of molecular studies. Annu. Rev. Microbiol. 66, 285–303 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Adler, J., Hazelbauer, G. L. & Dahl, M. M. Chemotaxis toward sugars in Escherichia coli. J. Bacteriol. 115, 824–847 (1973).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mesibov, R. & Adler, J. Chemotaxis toward amino acids in Escherichia coli. J. Bacteriol. 112, 12 (1972).
    Google Scholar 
    Dekel, E. & Alon, U. Optimality and evolutionary tuning of the expression level of a protein. Nature 436, 588–592 (2005).CAS 
    PubMed 

    Google Scholar 
    Erickson, D. W. et al. A global resource allocation strategy governs growth transition kinetics of Escherichia coli. Nature 551, 119–123 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Berg, H. C. & Purcell, E. M. Physics of chemoreception. Biophys. J. 20, 193–219 (1977).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mora, T. & Wingreen, N. S. Limits of sensing temporal concentration changes by single cells. Phys. Rev. Lett. 104, 248101 (2010).PubMed 

    Google Scholar 
    Brumley, D. R. et al. Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proc. Natl Acad. Sci. USA 116, 10792–10797 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mattingly, H. H., Kamino, K., Machta, B. B. & Emonet, T. Escherichia coli chemotaxis is information limited. Nat. Phys. 17, 1426–1431 (2021).CAS 
    PubMed 

    Google Scholar 
    Clausznitzer, D., Micali, G., Neumann, S., Sourjik, V. & Endres, R. G. Predicting chemical environments of bacteria from receptor signaling. PLoS Comput. Biol. 10, e1003870 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Flores, M., Shimizu, T. S., ten Wolde, P. R. & Tostevin, F. Signaling noise enhances chemotactic drift of E. coli. Phys. Rev. Lett. 109, 148101 (2012).PubMed 

    Google Scholar 
    Okubo, A. & Levin, S. A. Diffusion and Ecological Problems: Modern Perspectives Vol. 14 (Springer, 2001).Fisher, R. A. The wave of advance of advantageous genes. Ann. Eugen. 7, 355–369 (1937).
    Google Scholar 
    Kolmogorov, A., Petrovskii, I. & Piskunov, N. Study of a diffusion equation that is related to the growth of a quality of matter and its application to a biological problem. Mosc. Univ. Math. Bull. 1, 1–26 (1937).
    Google Scholar 
    Giometto, A., Rinaldo, A., Carrara, F. & Altermatt, F. Emerging predictable features of replicated biological invasion fronts. Proc. Natl Acad. Sci. USA 111, 297–301 (2014).CAS 
    PubMed 

    Google Scholar 
    Gandhi, S. R., Yurtsev, E. A., Korolev, K. S. & Gore, J. Range expansions transition from pulled to pushed waves as growth becomes more cooperative in an experimental microbial population. Proc. Natl Acad. Sci. USA 113, 6922–6927 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Painter, K. J. Mathematical models for chemotaxis and their applications in self-organisation phenomena. J. Theor. Biol. 481, 162–182 (2019).PubMed 

    Google Scholar  More

  • in

    Intra- and inter-spatial variability of meiofauna in hadal trenches is linked to microbial activity and food availability

    Danovaro, R., Snelgrove, P. V. & Tyler, P. Challenging the paradigms of deep-sea ecology. Trends Ecol. Evol. 29, 465–475 (2014).PubMed 

    Google Scholar 
    Smith, C. R., Hoover, D. J. & Doan, S. E. Phytodetritus at the abyssal seafloor across 10° of latitude in the central equatorial Pacific. Oceanogr. Lit. Rev. 4, 318 (1997).
    Google Scholar 
    Buesseler, K. O. et al. Revisiting carbon flux through the ocean’s twilight zone. Science 316, 567–570 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rex, M. A. et al. Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar. Ecol. Prog. Ser. 317, 1–8 (2006).ADS 

    Google Scholar 
    Clough, L. M., Renaud, P. E. & Ambrose, W. G. Jr. Impacts of water depth, sediment pigment concentration, and benthic macrofaunal biomass on sediment oxygen demand in the western Arctic Ocean. Can. J. Fish. Aquat. Sci. 62, 1756–1765 (2005).CAS 

    Google Scholar 
    Gorska, B., Soltwedel, T., Schewe, I. & Wlodarska-Kowalczuk, M. Bathymetric trends in biomass size spectra, carbon demand, and production of Arctic benthos (76–5561 m, Fram Strait). Prog. Oceanogr. 186, 102370 (2020).
    Google Scholar 
    Stratmann, T. et al. The BenBioDen database, a global database for meio-, macro- and megabenthic biomass and densities. Sci. Data 7, 206 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Glud, R. N. Oxygen dynamics of marine sediments. Mar. Biol. Res. 4, 243–289 (2008).
    Google Scholar 
    Zeppilli, D. et al. Characteristics of meiofauna in extreme marine ecosystems: a review. Mar. Biodivers. 48, 35–71 (2018).
    Google Scholar 
    Rosli, N., Leduc, D., Rowden, A. A. & Probert, P. K. Review of recent trends in ecological studies of deep-sea meiofauna, with focus on patterns and processes at small to regional spatial scales. Mar. Biodivers. 48, 13–34 (2018).
    Google Scholar 
    Schratzberger, M. & Ingels, J. Meiofauna matters: the roles of meiofauna in benthic ecosystems. J. Exp. Mar. Biol. Ecol. 502, 12–25 (2018).
    Google Scholar 
    Berg, P., Rysgaard, S., Funch, P. & Sejr, M. K. Effects of bioturbation on solutes and solids in marine sediments. Aquat. Microb. Ecol. 26, 81–94 (2001).
    Google Scholar 
    Aller, R. C. & Aller, J. Y. Meiofauna and solute transport in marine muds. Limnol. Oceanogr. 37, 1018–1033 (1992).ADS 
    CAS 

    Google Scholar 
    Leduc, D. et al. Comparison between infaunal communities of the deep floor and edge of the Tonga Trench: possible effects of differences in organic matter supply. Deep Sea Res. Part Oceanogr. Res. Pap. 116, 264–275 (2016).ADS 

    Google Scholar 
    Schmidt, C. & Martínez Arbizu, P. Unexpectedly higher metazoan meiofauna abundances in the Kuril-Kamchatka Trench compared to the adjacent abyssal plains. Deep Sea Res. Part II Top. Stud. Oceanogr. 111, 60–75 (2015).ADS 
    CAS 

    Google Scholar 
    Danovaro, R., Gambi, C. & DellaCroce, N. Meiofauna hotspot in the Atacama Trench, eastern south Pacific Ocean. Deep Sea Res. Part Oceanogr. Res. Pap. 49, 843–857 (2002).ADS 
    CAS 

    Google Scholar 
    Ichino, M. C. et al. The distribution of benthic biomass in hadal trenches: a modelling approach to investigate the effect of vertical and lateral organic matter transport to the seafloor. Deep Sea Res. Part Oceanogr. Res. Pap. 100, 21–33 (2015).ADS 
    CAS 

    Google Scholar 
    Shirayama, Y. The abundance of deep-sea meiobenthos in the western pacific in relation to environmental-factors. Oceanol. Acta 7, 113–121 (1984).
    Google Scholar 
    Leduc, D. & Rowden, A. A. Nematode communities in sediments of the Kermadec Trench, Southwest Pacific Ocean. Deep Sea Res. Part Oceanogr. Res. Pap. 134, 23–31 (2018).ADS 

    Google Scholar 
    Brandt, A., Brix, S., Riehl, T. & Malyutina, M. Biodiversity and biogeography of the abyssal and hadal Kuril-Kamchatka trench and adjacent NW Pacific deep-sea regions. Prog. Oceanogr. 181, 102232 (2020).
    Google Scholar 
    Schmidt, C., Escobar Wolf, K., Lins, L., Martínez Arbizu, P. & Brandt, A. Meiofauna abundance and community patterns along a transatlantic transect in the Vema Fracture Zone and in the hadal zone of the Puerto Rico trench. Deep Sea Res. Part II Top. Stud. Oceanogr. 148, 223–235 (2018).ADS 

    Google Scholar 
    Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M. & Priede, I. G. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol. Evol. 25, 190–197 (2010).PubMed 

    Google Scholar 
    Jamieson, A. J. Ecology of deep oceans: hadal trenches. eLS https://doi.org/10.1002/9780470015902.a0023606 (2011).Article 

    Google Scholar 
    Stewart, H. A. & Jamieson, A. J. Habitat heterogeneity of hadal trenches: Considerations and implications for future studies. Prog. Oceanogr. 161, 47–65 (2018).ADS 

    Google Scholar 
    Wenzhöfer, F. et al. Benthic carbon mineralization in hadal trenches: Assessment by in situ O2 microprofile measurements. Deep Sea Res. Part Oceanogr Res Pap. 116, 276–286 (2016).ADS 

    Google Scholar 
    Glud, R. N. et al. Hadal trenches are dynamic hotspots for early diagenesis in the deep sea. Commun. Earth Environ. 2, 1–8 (2021).ADS 

    Google Scholar 
    Glud, R. N. et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6, 284–288 (2013).ADS 
    CAS 

    Google Scholar 
    Xu, Y. et al. Distribution, source, and burial of sedimentary organic carbon in Kermadec and Atacama Trenches. J. Geophys. Res. Biogeosciences 126, e2020JG006189 (2021).ADS 
    CAS 

    Google Scholar 
    Itou, M., Matsumura, I. & Noriki, S. A large flux of particulate matter in the deep Japan Trench observed just after the 1994 Sanriku-Oki earthquake. Deep Sea Res. Part Oceanogr. Res. Pap. 47, 1987–1998 (2000).ADS 
    CAS 

    Google Scholar 
    Oguri, K. et al. Hadal disturbance in the Japan Trench induced by the 2011 Tohoku-Oki Earthquake. Sci. Rep. 3, 1–6 (2013).
    Google Scholar 
    Luo, M. et al. Benthic carbon mineralization in hadal trenches: insights from in situ determination of benthic oxygen consumption. Geophys. Res. Lett. 45, 2752–2760 (2018).ADS 
    CAS 

    Google Scholar 
    Itoh, M. et al. Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuril and Ryukyu trenches, western North Pacific Ocean. Deep Sea Res. Part Oceanogr. Res. Pap. 58, 86–97 (2011).ADS 

    Google Scholar 
    Tietjen, J. H., Deming, J. W., Rowe, G. T., Macko, S. & Wilke, R. J. Meiobenthos of the hatteras abyssal plain and Puerto Rico trench: abundance, biomass and associations with bacteria and particulate fluxes. Deep Sea Res. Part Oceanogr. Res. Pap. 36, 1567–1577 (1989).ADS 

    Google Scholar 
    Richardson, M. D., Briggs, K. B., Bowles, F. A. & Tietjen, J. H. A depauperate benthic assemblage from the nutrient-poor sediments of the Puerto Rico Trench. Deep Sea Res. Part Oceanogr. Res. Pap. 42, 351–364 (1995).ADS 

    Google Scholar 
    Tietjen, J. H. Ecology of deep-sea nematodes from the Puerto Rico trench area and Hatteras Abyssal plain. Deep Sea Res. Part Oceanogr. Res. Pap. 36, 1579–1594 (1989).ADS 

    Google Scholar 
    Shirayama, Y. & Kojima, S. Abundance of deep-sea meiobenthos off Sanriku, Northeastern Japan. J. Oceanogr. 50, 109–117 (1994).
    Google Scholar 
    Ingels, J. et al. Preferred use of bacteria over phytoplankton by deep-sea nematodes in polar regions. Mar. Ecol. Prog. Ser. 406, 121–133 (2010).ADS 
    CAS 

    Google Scholar 
    Guilini, K., Oevelen, D. V., Soetaert, K., Middelburg, J. J. & Vanreusela, A. Nutritional importance of benthic bacteria for deep-sea nematodes from the Arctic ice margin: Results of an isotope tracer experiment. Limnol. Oceanogr. 55, 1977–1989 (2010).ADS 
    CAS 

    Google Scholar 
    Moens, T., Verbeeck, L., de Maeyer, A., Swings, J. & Vincx, M. Selective attraction of marine bacterivorous nematodes to their bacterial food. Mar. Ecol. Prog. Ser. 176, 165–178 (1999).ADS 

    Google Scholar 
    Schmidt, C., Sattarova, V. V., Katrynski, L. & Arbizu, P. M. New insights from the deep: Meiofauna in the Kuril-Kamchatka Trench and adjacent abyssal plain. Prog. Oceanogr. 173, 192–207 (2019).ADS 

    Google Scholar 
    Behrenfeld, M. J. & Falkowski, P. G. Photosynthetic rates derived from satellite-based chlorophyll concentration. Limnol. Oceanogr. 42, 1–20 (1997).ADS 
    CAS 

    Google Scholar 
    Neira, C., Sellanes, J., Levin, L. A. & Arntz, W. E. Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep Sea Res. Part Oceanogr. Res. Pap. 48, 2453–2472 (2001).ADS 
    CAS 

    Google Scholar 
    Soltwedel, T. Metazoan meiobenthos along continental margins: a review. Prog. Oceanogr. 46, 59–84 (2000).ADS 

    Google Scholar 
    Rowe, G. T., Sibuet, M., Deming, J., Tietjen, J. & Khripounoff, A. Organic carbon turnover time in deep-sea benthos. Prog. Oceanogr. 24, 141–160 (1990).ADS 

    Google Scholar 
    Tselepides, A. et al. Organic matter composition of the continental shelf and bathyal sediments of the Cretan Sea (NE Mediterranean). Prog. Oceanogr. 46, 311–344 (2000).ADS 

    Google Scholar 
    Hansen, J. & Josefson, A. Pools of chlorophyll and live planktonic diatoms in aphotic marine sediments. Mar. Biol. 139, 289–299 (2001).CAS 

    Google Scholar 
    Hargraves, P. E. & French, S. Survival characteristics of marine diatom resting spores. in JOURNAL OF PHYCOLOGY vol. 11 6–6 (PHYCOLOGICAL SOC AMER INC 810 EAST 10TH ST, LAWRENCE, KS 66044, 1975).Schauberger, C. et al. Spatial variability of prokaryotic and viral abundances in the Kermadec and Atacama Trench regions. Limnol. Oceanogr. 66(6), 2095–2109 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Oevelen, D. et al. Carbon flows in the benthic food web at the deep-sea observatory HAUSGARTEN (Fram Strait). Deep Sea Res. Part Oceanogr. Res. Pap. 58, 1069–1083 (2011).ADS 

    Google Scholar 
    Heip, C. H. R. et al. The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (NE Atlantic). Deep Sea Res. Part II Top. Stud. Oceanogr. 48, 3223–3243 (2001).ADS 
    CAS 

    Google Scholar 
    Rowe, G. T. et al. Comparative biomass structure and estimated carbon flow in food webs in the deep Gulf of Mexico. Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 2699–2711 (2008).ADS 
    CAS 

    Google Scholar 
    Baguley, J. G., Montagna, P. A., Hyde, L. J. & Rowe, G. T. Metazoan meiofauna biomass, grazing, and weight-dependent respiration in the Northern Gulf of Mexico deep sea. Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 2607–2616 (2008).ADS 
    CAS 

    Google Scholar 
    Maciute, A. et al. A microsensor-based method for measuring respiration of individual nematodes. Methods Ecol. Evol. 12(10), 1841–1847. https://doi.org/10.1111/2041-210X.13674 (2021).
    Article 

    Google Scholar 
    Montagna, P. A. In situ measurement of meiobenthic grazing rates on sediment bacteria and edaphic diatoms. (1984).Danovaro, R. Detritus-Bacteria-Meiofauna interactions in a seagrass bed (Posidonia oceanica) of the NW Mediterranean. Mar. Biol. 127, 1–13 (1996).CAS 

    Google Scholar 
    Pape, E., van Oevelen, D., Moodley, L., Soetaert, K. & Vanreusel, A. Nematode feeding strategies and the fate of dissolved organic matter carbon in different deep-sea sedimentary environments. Deep Sea Res. Part Oceanogr. Res. Pap. 80, 94–110 (2013).ADS 
    CAS 

    Google Scholar 
    Wieser, W. Beziehungen zwischen Mundhöhlengestalt, Ernährungsweise und Vorkommen bei freilebenden mari- nen Nematoden. Ark. För Zool. 2, 439–484 (1953).
    Google Scholar 
    Moens, T. & Vincx, M. Observations on the feeding ecology of estuarine nematodes. J. Mar. Biol. Assoc. U. K. 77, 211–227 (1997).
    Google Scholar 
    Moens, T. et al. Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and a pulse-chase experiment. Polar Biol. 31, 1–13 (2007).
    Google Scholar 
    Ingels, J., Kiriakoulakis, K., Wolff, G. A. & Vanreusel, A. Nematode diversity and its relation to the quantity and quality of sedimentary organic matter in the deep Nazaré Canyon, Western Iberian Margin. Deep Sea Res. Part Oceanogr. Res. Pap. 56, 1521–1539 (2009).ADS 
    CAS 

    Google Scholar 
    Gambi, C., Vanreusel, A. & Danovaro, R. Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean). Deep Sea Res. Part Oceanogr. Res. Pap. 50, 103–117 (2003).ADS 

    Google Scholar 
    Vanhove, S., Vermeeren, H. & Vanreusel, A. Meiofauna towards the South Sandwich Trench (750–6300 m), focus on nematodes. Deep Sea Res. Part II Top Stud. Oceanogr. 51, 1665–1687 (2004).ADS 

    Google Scholar 
    Jumars, P. A. & Hessler, R. R. Hadal community structure: implications from the Aleutian Trench. J. Mar. Res. 34, 547–560 (1976).
    Google Scholar 
    Kim, D.-S. & Min, W.-G. Meiobenthic communities in extreme deep-sea environment. Korean J. Fish. Aquat. Sci. 39, 203–213 (2006).
    Google Scholar 
    Wenzhöfer, F. The Expedition SO261 of the Research Vessel SONNE to the Atacama Trench in the Pacific Ocean in 2018. Berichte Zur Polar- Meeresforsch. Rep. Polar Mar. Res. 729, 111. https://doi.org/10.2312/BzPM_0729_2019 (2019).Article 

    Google Scholar 
    Scholl, D. W., Christensen, M. N., von Huene, R. & Marlow, M. S. Peru-Chile trench sediments and sea-floor spreading. Geol. Soc. Am. Bull. 81, 1339–1360 (1970).ADS 

    Google Scholar 
    Fisher, R. L. & Raitt, R. W. Topography and structure of the Peru-Chile trench. In Deep Sea Research and Oceanographic Abstracts vol. 9 423–443 (Elsevier, 1962).Bandy, O. L. & Rodolfo, K. S. Distribution of foraminifera and sediments, Peru-Chile Trench area. In Deep Sea Research and Oceanographic Abstracts vol. 11 817–837 (Elsevier, 1964).Lutz, M. J., Caldeira, K., Dunbar, R. B. & Behrenfeld, M. J. Seasonal rhythms of net primary production and particulate organic carbon flux to depth describe the efficiency of biological pump in the global ocean. J. Geophys. Res. Oceans https://doi.org/10.1029/2006JC003706 (2007).Article 

    Google Scholar 
    Carrie, J., Sanei, H. & Stern, G. Standardisation of Rock-Eval pyrolysis for the analysis of recent sediments and soils. Org. Geochem. 46, 38–53 (2012).CAS 

    Google Scholar 
    Shuman, F. R. & Lorenzen, C. J. Quantitative degradation of chlorophyll by a marine herbivore 1. Limnol. Oceanogr. 20, 580–586 (1975).ADS 
    CAS 

    Google Scholar 
    Glud, R. N. et al. In situ microscale variation in distribution and consumption of 2: a case study from a deep ocean margin sediment (Sagami Bay, Japan). Limnol. Oceanogr. 54, 1–12 (2009).ADS 
    CAS 

    Google Scholar 
    Revsbech, N. P. An oxygen microelectrode with a guard cathode. Linnol. Oceanogr. 34, 474–487 (1989).ADS 
    CAS 

    Google Scholar 
    Berg, P., Risgaard-Petersen, N. & Rysgaard, S. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43, 1500–1510 (1998).ADS 
    CAS 

    Google Scholar 
    Feller, R. J. & Warwick, R. M. Energetics. in Feller, R.J. and Warwick, R.M. (1988) Energetics. In: Higgins, R.P. and Thiel, H., (eds.) Introduction to the study of meiofauna. Smithsonian Institution Press, Washington, D.C, pp. 181–196. (eds. Higgins, R. P. & Thiel, H.) 181–196 (Smithsonian Institution Press, 1988).Mahaut, M.-L., Sibuet, M. & Shirayama, Y. Weight-dependent respiration rates in deep-sea organisms. Deep Sea Res. Part Oceanogr. Res. Pap. 42, 1575–1582 (1995).ADS 

    Google Scholar  More

  • in

    Phylogenomic analyses highlight innovation and introgression in the continental radiations of Fagaceae across the Northern Hemisphere

    Sun, J. et al. Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia. Sci. Rep. 4, 7463 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tiffney, B. H. Perspectives on the origin of the floristic similarity between eastern Asia and eastern North America. J. Arnold Arbor. Harv. Univ. 66, 73–94 (1985).
    Google Scholar 
    Tiffney, B. H. The Eocene North Atlantic land bridge: its importance in Tertiary and modern phytogeography of the Northern Hemisphere. J. Arnold Arbor. Harv. Univ. 66, 243–273 (1985).
    Google Scholar 
    Donoghue, M. J. A phylogenetic perspective on the distribution of plant diversity. Proc. Natl Acad. Sci. USA 105, 11549–11555 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edwards, E. J. et al. Convergence, consilience, and the evolution of temperate deciduous forests. Am. Nat. 190, S87–S104 (2017).PubMed 

    Google Scholar 
    Segovia, R. A. et al. Freezing and water availability structure the evolutionary diversity of trees across the Americas. Sci. Adv. 6, eaaz5373 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tiffney, B. H. & Manchester, S. R. The use of geological and paleontological evidence in evaluating plant phylogeographic hypotheses in the Northern Hemisphere Tertiary. Int. J. Plant Sci. 162, S3–S17 (2001).
    Google Scholar 
    Tierney, J. E. et al. Past climates inform our future. Science 370, eaay3701 (2020).CAS 
    PubMed 

    Google Scholar 
    Axelrod, D. I. Biogeography of oaks in the Arcto-Tertiary province. Ann. Mo. Bot. Gard. 70, 629–657 (1983).
    Google Scholar 
    Axelrod, D. I., Ai-Shehbaz, I. & Raven, P. H. History of the Modern Flora of China. (Springer, 1996).Cavender-Bares, J. Diversification, adaptation, and community assembly of the American oaks (Quercus), a model clade for integrating ecology and evolution. N. Phytol. 221, 669–692 (2019).
    Google Scholar 
    Delcourt, H. R. & A., D. P. North American Terrestrial Vegetation. (Cambridge University Press, 2000).Olson, J. S., Watts, J. A. & Allison, L. J. Carbon in Live Vegetation of Major World Ecosystems (1983).Soepadmo, E. Flora Malesiana Series I. Vol. 7 (Noordhoff International Publishing, 1972).Vogt, K. A. et al. Review of root dynamics in forest ecosystems grouped by climate, climatic forest type and species. Plant Soil 187, 159–219 (1996).CAS 

    Google Scholar 
    Whitmore, T. C. Tropical Rain Forest of the Far East. (Oxford University Press, 1984).Zhu, H. Ecological and biogeographical studies on the tropical rain forest of south Yunnan, SW China with a special reference to its relation with rain forests of tropical Asia. J. Biogeogr. 24, 647–662 (1997).
    Google Scholar 
    Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 116, 23163–23168 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, F., Kohler, A., Murat, C., Veneault-Fourrey, C. & Hibbett, D. S. Unearthing the roots of ectomycorrhizal symbioses. Nat. Rev. Microbiol. 14, 760–773 (2016).CAS 
    PubMed 

    Google Scholar 
    Smith, S. E. & Read, D. J. Mycorrhizal Symbiosis, 2nd edn. (Academic Press, 1997).Abrahamson, W. G. & Melika, G. Gall-inducing insects (Cynipinae) provide insights into plant systematic relationships. Am. J. Bot. 85, 111–111 (1998).
    Google Scholar 
    Raman, A. Nutritional diversity in gall-inducing insects and their evolutionary relationships with flowering plants. Int. J. Ecol. Environ. Sci. 22, 133–143 (1996).
    Google Scholar 
    Stone, G. N. et al. Extreme host plant conservatism during at least 20 million years of host plant pursuit by oak gallwasps. Evolution 63, 854–869 (2009).CAS 
    PubMed 

    Google Scholar 
    Johnson, W. C. & Webb, T. The role of bluejays (Cyanocitta cristata L.) in the postglacial dispersal of fagaceous trees in eastern North America. J. Biogeogr. 16, 561–571 (1989).
    Google Scholar 
    Koenig, W. D. & Haydock, J. Oaks, acorns, and the geographical ecology of acorn woodpeckers. J. Biogeogr. 26, 159–165 (1999).
    Google Scholar 
    Payne, J. & Francis, C. M. A Field Guide to the Mammals of Borneo. (Sabah Society with World Wildlife Fund Malaysia, 1985).Steele, M. A. Oak Seed Dispersal. (The Johns Hopkins University Press, 2021).Vander Wall, S. B. The evolutionary ecology of nut dispersal. Bot. Rev. 67, 74–117 (2001).
    Google Scholar 
    Vander Wall, S. B. How plants manipulate the scatter-hoarding behaviour of seed-dispersing animals. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 365, 989–997 (2010).
    Google Scholar 
    Barrón, E. et al. in Oaks physiological ecology. Exploring the functional diversity of genus Quercus L. (eds. Eustaquio Gil-Pelegrín, José Javier Peguero-Pina, & Domingo Sancho-Knapik) 39–105 (Springer International Publishing, 2017).Crepet, W. L. & Nixon, K. C. Earliest megafossil evidence of Fagaceae: Phylogenetic and biogeographic implications. Am. J. Bot. 76, 842–855 (1989).
    Google Scholar 
    Denk, T. & Grimm, G. W. Significance of pollen characteristics for infrageneric classification and phylogeny in Quercus (Fagaceae). Int. J. Plant Sci. 170, 926–940 (2009).
    Google Scholar 
    Denk, T., Grímsson, F. & Zetter, R. Fagaceae from the early Oligocene of Central Europe: Persisting new world and emerging old world biogeographic links. Rev. Palaeobot. Palynol. 169, 7–20 (2012).
    Google Scholar 
    Grímsson, F., Grimm, G. W., Zetter, R. & Denk, T. Cretaceous and Paleogene Fagaceae from North America and Greenland: Evidence for a Late Cretaceous split between Fagus and the remaining Fagaceae. Acta Palaeobotanica 56, 247–305 (2016).
    Google Scholar 
    Jones, J. H. Evolution of the Fagaceae: the implications of foliar features. Ann. Mo. Bot. Gard. 73, 228–275 (1986).
    Google Scholar 
    Manchester, S. R. Biogeographical relationships of North American Tertiary floras. Ann. Mo. Bot. Gard. 86, 472–522 (1999).
    Google Scholar 
    Sadowski, E. M., Schmidt, A. R. & Denk, T. Staminate inflorescences with in situ pollen from Eocene Baltic amber reveal high diversity in Fagaceae (oak family). Willdenowia 50, 405–517 (2020).
    Google Scholar 
    Bouchal, J., Zetter, R., Grimsson, F. & Denk, T. Evolutionary trends and ecological differentiation in early Cenozoic Fagaceae of western North America. Am. J. Bot. 101, 1332–1349 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Naryshkina, N. N. & Evstigneeva, T. A. Fagaceae in the Eocene palynoflora of the south of primorskii region: New data on taxonomy and morphology. Paleontol. J. 54, 429–439 (2020).
    Google Scholar 
    Sadowski, E.-M., Hammel, J. U. & Denk, T. Synchrotron X-ray imaging of a dichasium cupule of Castanopsis from Eocene Baltic amber. Am. J. Bot. 105, 2025–2036 (2018).PubMed 

    Google Scholar 
    Gandolfo, M. A., Nixon, K. C., Crepet, W. L. & Grimaldi, D. A. A late Cretaceous fagalean inflorescence preserved in amber from New Jersey. Am. J. Bot. 105, 1424–1435 (2018).PubMed 

    Google Scholar 
    Hipp, A. L. et al. Genomic landscape of the global oak phylogeny. N. Phytol. 226, 1198–1212 (2020).CAS 

    Google Scholar 
    Wilf, P., Nixon, K. C., Gandolfo, M. A. & Cuneo, N. R. Eocene Fagaceae from Patagonia and Gondwanan legacy in Asian rainforests. Science 364, eaaw5139 (2019).CAS 
    PubMed 

    Google Scholar 
    Petit, R. J. & Hampe, A. Some evolutionary consequences of being a tree. Annu. Rev. Ecol., Evol. Syst. 37, 187–214 (2006).
    Google Scholar 
    Smith, S. A. & Donoghue, M. J. Rates of molecular evolution are linked to life history in flowering plants. Science 322, 86–89 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boucher, F. C., Verboom, G. A., Musker, S. & Ellis, A. G. Plant size: A key determinant of diversification? N. Phytol. 216, 24–31 (2017).
    Google Scholar 
    Parins-Fukuchi, C., Stull, G. W. & Smith, S. A. Phylogenomic conflict coincides with rapid morphological innovation. Proc. Natl Acad. Sci. USA 118, e2023058118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Denk, T., Grimm, G. W., Manos, P. S., Deng, M. & Hipp, A. L. in Oaks Physiological Ecology. Exploring the Functional Diversity of Genus Quercus L. Vol. 7 Tree Physiology (eds. GilPelegrin, E., PegueroPina, J. J., & SanchoKnapik, D.) 13–38 (Springer International Publishing Ag, Gewerbestrasse 11, Cham, Ch-6330, Switzerland, 2017).Deng, M., Jiang, X. L., Hipp, A. L., Manos, P. S. & Hahn, M. Phylogeny and biogeography of East Asian evergreen oaks (Quercus section Cyclobalanopsis; Fagaceae): Insights into the Cenozoic history of evergreen broad-leaved forests in subtropical Asia. Mol. Phylogen. Evol. 119, 170–181 (2018).
    Google Scholar 
    Hipp, A. L. et al. Sympatric parallel diversification of major oak clades in the Americas and the origins of Mexican species diversity. N. Phytol. 217, 439–452 (2018).CAS 

    Google Scholar 
    Crowl, A. A. et al. Uncovering the genomic signature of ancient introgression between white oak lineages (Quercus). N. Phytol. 226, 1158–1170 (2020).CAS 

    Google Scholar 
    Hauser, D. A., Keuter, A., McVay, J. D., Hipp, A. L. & Manos, P. S. The evolution and diversification of the red oaks of the California Floristic Province (Quercus section Lobatae, series Agrifoliae). Am. J. Bot. 104, 1581–1595 (2017).PubMed 

    Google Scholar 
    McVay, J. D., Hauser, D., Hipp, A. L. & Manos, P. S. Phylogenomics reveals a complex evolutionary history of lobed-leaf white oaks in western North America. Genome 60, 733–742 (2017).PubMed 

    Google Scholar 
    McVay, J. D., Hipp, A. L. & Manos, P. S. A genetic legacy of introgression confounds phylogeny and biogeography in oaks. Proc. R. Soc. B. 284, 20170300 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Manos, P. S., Doyle, J. J. & Nixon, K. C. Phylogeny, biogeography, and processes of molecular differentiation in Quercus subgenus Quercus (Fagaceae). Mol. Phylogen. Evol. 12, 333–349 (1999).CAS 

    Google Scholar 
    Pham, K. K., Hipp, A. L., Manos, P. S. & Cronn, R. C. A time and a place for everything: phylogenetic history and geography as joint predictors of oak plastome phylogeny. Genome 60, 720–732 (2017).PubMed 

    Google Scholar 
    Simeone, M. C. et al. Plastome data reveal multiple geographic origins of Quercus Group Ilex. PeerJ 4, e1897 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Oh, S.-H. & Manos, P. S. Molecular phylogenetics and cupule evolution in Fagaceae as inferred from nuclear CRABS CLAW sequences. Taxon 57, 434–451 (2008).
    Google Scholar 
    Renne, P. R. et al. Time scales of critical events around the Cretaceous-Paleogene boundary. Science 339, 684–687 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Koenen, E. J. M. et al. The origin of the Legumes is a complex paleopolyploid phylogenomic tangle closely associated with the Cretaceous–Paleogene (K–Pg) mass extinction event. Syst. Biol. 70, 508–526 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, W. et al. Menispermaceae and the diversification of tropical rainforests near the Cretaceous-Paleogene boundary. N. Phytol. 195, 470–478 (2012).
    Google Scholar 
    Suh, A., Smeds, L. & Ellegren, H. The dynamics of incomplete lineage sorting across the ancient adaptive radiation of Neoavian birds. PLoS Biol. 13, e1002224 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Feng, Y. J. et al. Phylogenomics reveals rapid, simultaneous diversification of three major clades of Gondwanan frogs at the Cretaceous-Paleogene boundary. Proc. Natl Acad. Sci. USA 114, E5864–E5870 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alfaro, M. E. et al. Explosive diversification of marine fishes at the Cretaceous-Palaeogene boundary. Nat. Ecol. Evol. 2, 688–696 (2018).PubMed 

    Google Scholar 
    Meredith, R. W. et al. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334, 521–524 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Martinez, I. & Gonzalez-Taboada, F. Seed dispersal patterns in a temperate forest during a mast event: performance of alternative dispersal kernels. Oecologia 159, 389–400 (2009).ADS 
    PubMed 

    Google Scholar 
    Larson-Johnson, K. Phylogenetic investigation of the complex evolutionary history of dispersal mode and diversification rates across living and fossil Fagales. N. Phytol. 209, 418–435 (2016).CAS 

    Google Scholar 
    Xiang, X. G. et al. Large-scale phylogenetic analyses reveal fagalean diversification promoted by the interplay of diaspores and environments in the Paleogene. Perspect. Plant Ecol. Evol. Syst. 16, 101–110 (2014).
    Google Scholar 
    Casanovas-Vilar, I. et al. Oldest skeleton of a fossil flying squirrel casts new light on the phylogeny of the group. Elife 7, e39270 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Huchon, D. et al. Rodent phylogeny and a timescale for the evolution of glires: Evidence from an extensive taxon sampling using three nuclear genes. Mol. Biol. Evol. 19, 1053–1065 (2002).CAS 
    PubMed 

    Google Scholar 
    Upham, N. S., Esselstyn, J. A. & Jetz, W. Inferring the mammal tree: Species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS Biol. 17, e3000494 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roth, V. L. & Mercer, J. M. The Effects of Cenozoic Global Change on Squirrel Phylogeny. Science 299, 1568–1572 (2003).ADS 
    PubMed 

    Google Scholar 
    Jonsson, K. A. et al. A supermatrix phylogeny of corvoid passerine birds (Ayes: Corvides). Mol. Phylogen. Evol. 94, 87–94 (2016).
    Google Scholar 
    Prum, R. O. et al. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526, 569–573 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Benz, B. W., Robbins, M. B. & Peterson, A. T. Evolutionary history of woodpeckers and allies (Aves: Picidae): Placing key taxa on the phylogenetic tree. Mol. Phylogen. Evol. 40, 389–399 (2006).CAS 

    Google Scholar 
    Lutzoni, F. et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat. Commun. 9, 5451 (2018).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bonfante, P. & Genre, A. Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat. Commun. 1, 48 (2010).ADS 
    PubMed 

    Google Scholar 
    Miyauchi, S. et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat. Commun. 11, 5125 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Varga, T. et al. Megaphylogeny resolves global patterns of mushroom evolution. Nat. Ecol. Evol. 3, 668–678 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Yang, Y. Y., Qu, X. J., Zhang, R., Stull, G. W. & Yi, T. S. Plastid phylogenomic analyses of Fagales reveal signatures of conflict and ancient chloroplast capture. Mol. Phylogen. Evol. 163, 107232 (2021).
    Google Scholar 
    Whittemore, A. T. & Schaal, B. A. Interspecific gene flow in sympatric oaks. Proc. Natl Acad. Sci. USA 88, 2540–2544 (1991).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kremer, A. & Hipp, A. L. Oaks: an evolutionary success story. N. Phytol. 226, 987–1011 (2020).
    Google Scholar 
    Petit, R. et al. Chloroplast DNA variation in European white oaks phylogeography and patterns of diversity based on data from over 2600 populations. Ecol. Manag. 176, 595–599 (2003).
    Google Scholar 
    Petit, R. et al. Chloroplast DNA footprints of postglacial recolonization by oaks. Proc. Natl Acad. Sci. USA 94, 9996–10001 (1997).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petit, R. J. & Excoffier, L. Gene flow and species delimitation. Trends Ecol. Evol. 24, 386–393 (2009).PubMed 

    Google Scholar 
    Premoli, A. C., Mathiasen, P., Cristina Acosta, M. & Ramos, V. A. Phylogeographically concordant chloroplast DNA divergence in sympatric Nothofagus s.s. How deep can it be? N. Phytol. 193, 261–275 (2012).CAS 

    Google Scholar 
    Tsuda, Y., Semerikov, V., Sebastiani, F., Vendramin, G. G. & Lascoux, M. Multispecies genetic structure and hybridization in the Betula genus across Eurasia. Mol. Ecol. 26, 589–605 (2017).PubMed 

    Google Scholar 
    Zhang, B. W. et al. Phylogenomics reveals an ancient hybrid origin of the persian walnut. Mol. Biol. Evol. 36, 2451–2461 (2019).CAS 

    Google Scholar 
    Bock, R. Witnessing genome evolution: experimental reconstruction of endosymbiotic and horizontal gene transfer. Annu. Rev. Genet. 51, 1–22 (2017).CAS 
    PubMed 

    Google Scholar 
    Hill, W. G. Disequilibrium among several linked neutral genes in finite population: II. Variances and covariances of disequilibria. Theor. Popul. Biol. 6, 184–198 (1974).CAS 
    PubMed 
    MATH 

    Google Scholar 
    Huerta-Sanchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, Y. et al. Megabase-scale presence-absence variation with Tripsacum origin was under selection during maize domestication and adaptation. Genome Biol. 22, 237 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, X. et al. The history and evolution of the Denisovan-EPAS1 haplotype in Tibetans. Proc. Natl Acad. Sci. USA 118, e2020803118 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cavender-Bares, J., Gonzalez-Rodriguez, A., Pahlich, A., Koehler, K. & Deacon, N. Phylogeography and climatic niche evolution in live oaks (Quercus series Virentes) from the tropics to the temperate zone. J. Biogeogr. 38, 962–981 (2011).
    Google Scholar 
    Chen, D. et al. Phylogeography of Quercus variabilis based on chloroplast DNA sequence in East Asia: multiple glacial refugia and mainland-migrated island populations. PLoS ONE 7, e47268 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Plomion, C. et al. Oak genome reveals facets of long lifespan. Nat. Plants 4, 440–452 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leroy, T. et al. Adaptive introgression as a driver of local adaptation to climate in European white oaks. N. Phytol. 226, 1171–1182 (2020).
    Google Scholar 
    O’Donnell, S. T., Fitz-Gibbon, S. T. & Sork, V. L. Ancient introgression between distantly related White Oaks (Quercus sect. Quercus) shows evidence of climate-associated asymmetric gene exchange. J. Hered. 112, 663–670 (2021).PubMed 

    Google Scholar 
    Nagamitsu, T., Uchiyama, K., Izuno, A., Shimizu, H. & Nakanishi, A. Environment-dependent introgression from Quercus dentata to a coastal ecotype of Quercus mongolica var. crispula in northern Japan. N. Phytol. 226, 1018–1028 (2020).CAS 

    Google Scholar 
    Maxwell, L. M., Walsh, J., Olsen, B. J. & Kovach, A. I. Patterns of introgression vary within an avian hybrid zone. BMC Ecol. Evol. 21, 14 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Hewitt, G. M. Hybrid zones-natural laboratories for evolutionary studies. Trends Ecol. Evol. 3, 158–167 (1988).CAS 
    PubMed 

    Google Scholar 
    Gernandt, D. S., Resendiz Arias, C., Terrazas, T., Aguirre Dugua, X. & Willyard, A. Incorporating fossils into the Pinaceae tree of life. Am. J. Bot. 105, 1329–1344 (2018).CAS 
    PubMed 

    Google Scholar 
    Rose, J. P., Toledo, C. A. P., Lemmon, E. M., Lemmon, A. R. & Sytsma, K. J. Out of sight, out of mind: Widespread nuclear and plastid-nuclear discordance in the flowering plant genus Polemonium (Polemoniaceae) suggests widespread historical gene flow despite limited nuclear signal. Syst. Biol. 70, 162–180 (2021).CAS 
    PubMed 

    Google Scholar 
    Truffaut, L. et al. Fine-scale species distribution changes in a mixed oak stand over two successive generations. N. Phytol. 215, 126–139 (2017).CAS 

    Google Scholar 
    Petit, R. J., Bodénès, C., Ducousso, A., Roussel, G. & Kremer, A. Hybridization as a mechanism of invasion in oaks. N. Phytol. 161, 151–164 (2003).
    Google Scholar 
    Sork, V. L. et al. Phylogeny and introgression of California scrub White Oaks (Quercus section Quercus). Int. Oaks J. 27, 61–74 (2016).
    Google Scholar 
    Quang, N. D., Ikeda, S. & Harada, K. Nucleotide variation in Quercus crispula Blume. Heredity (Edinb.) 101, 166–174 (2008).CAS 

    Google Scholar 
    Graham, A. The role of land bridges, ancient environments, and migrations in the assembly of the North American flora. J. Syst. Evol. 56, 405–429 (2018).
    Google Scholar 
    Suarez-Gonzalez, A., Lexer, C. & Cronk, Q. C. B. Adaptive introgression: a plant perspective. Biol. Lett. 14, e47268 (2018).
    Google Scholar 
    Abbott, R. J., Barton, N. H. & Good, J. M. Genomics of hybridization and its evolutionary consequences. Mol. Ecol. 25, 2325–2332 (2016).PubMed 

    Google Scholar 
    Goulet, B. E., Roda, F. & Hopkins, R. Hybridization in plants: Old ideas, new techniques. Plant Physiol. 173, 65–78 (2017).CAS 
    PubMed 

    Google Scholar 
    Mitchell, N. et al. Correlates of hybridization in plants. Evol. Lett. 3, 570–585 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Payseur, B. A. & Rieseberg, L. H. A genomic perspective on hybridization and speciation. Mol. Ecol. 25, 2337–2360 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bodenes, C. et al. Comparative mapping in the Fagaceae and beyond with EST-SSRs. BMC Plant Biol. 12, 153 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cannon, C. H. & Petit, R. J. The oak syngameon: More than the sum of its parts. N. Phytol. 226, 978–983 (2020).
    Google Scholar 
    Chen, S. C., Cannon, C. H., Kua, C. S., Liu, J. J. & Galbraith, D. W. Genome size variation in the Fagaceae and its implications for trees. Tree Genet. Genom. 10, 977–988 (2014).
    Google Scholar 
    Kremer, A. et al. Genomics of Fagaceae. Tree Genet. Genom. 8, 583–610 (2012).
    Google Scholar 
    Neale, D. B., Martinez-Garcia, P. J., De La Torre, A. R., Montanari, S. & Wei, X. X. Novel insights into tree biology and genome evolution as revealed through genomics. Annu. Rev. Plant Biol. 68, 457–483 (2017).CAS 
    PubMed 

    Google Scholar 
    Staton, M. et al. Substantial genome synteny preservation among woody angiosperm species: Comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes. BMC Genomics 16, 744 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Manos, P. S. & Stanford, A. M. The historical biogeography of Fagaceae: tracking the tertiary history of temperate and subtropical forests of the Northern Hemisphere. Int. J. Plant Sci. 162, S77–S93 (2001).
    Google Scholar 
    Salojarvi, J. et al. Genome sequencing and population genomic analyses provide insights into the adaptive landscape of silver birch. Nat. Genet. 49, 904–912 (2017).CAS 
    PubMed 

    Google Scholar 
    Mishra, B. et al. A reference genome of the European beech (Fagus sylvatica L.). Gigascience 7, giy063 (2018).ADS 
    PubMed Central 

    Google Scholar 
    Xing, Y. et al. Hybrid de novo genome assembly of Chinese chestnut (Castanea mollissima). Gigascience 8, giz112 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Sork, V. L. et al. High-quality genome and methylomes illustrate features underlying evolutionary success of oaks. Preprint at bioRxiv https://doi.org/10.1101/2021.04.09.439191 (2021).Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Camacho, C. et al. BLAST plus: architecture and applications. BMC Bioinforma. 10, 421 (2009).
    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at http://arxiv.org/abs/1303.3997v2 (2013).McKenna, A. et al. The genome analysis toolkit: A MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bertels, F., Silander, O. K., Pachkov, M., Rainey, P. B. & van Nimwegen, E. Automated reconstruction of whole-genome phylogenies from short-sequence reads. Mol. Biol. Evol. 31, 1077–1088 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haudry, A. et al. An atlas of over 90,000 conserved noncoding sequences provides insight into crucifer regulatory regions. Nat. Genet. 45, 891–898 (2013).CAS 
    PubMed 

    Google Scholar 
    Hupalo, D. & Kern, A. D. Conservation and functional element discovery in 20 angiosperm plant genomes. Mol. Biol. Evol. 30, 1729–1744 (2013).CAS 
    PubMed 

    Google Scholar 
    Dierckxsens, N., Mardulyn, P. & Smits, G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45, e18 (2017).PubMed 

    Google Scholar 
    Qu, X. J., Moore, M. J., Li, D. Z. & Yi, T. S. PGA: A software package for rapid, accurate, and flexible batch annotation of plastomes. Plant Methods 15, 50 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Kearse, M. et al. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. Mafft multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ronquist, F. et al. Mrbayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Lanfear, R., Frandsen, P. B., Wright, A. M., Senfeld, T. & Calcott, B. Partitionfinder 2: New methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Mol. Biol. Evol. 34, 772–773 (2017).CAS 
    PubMed 

    Google Scholar 
    Akaike, H. New look at statistical-model identification. Ieee Trans. Autom. Control AC19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Zhang, C., Rabiee, M., Sayyari, E. & Mirarab, S. ASTRAL-III: Polynomial time species tree reconstruction from partially resolved gene trees. BMC Bioinforma. 19, 153 (2018).
    Google Scholar 
    Chifman, J. & Kubatko, L. Quartet inference from SNP data under the coalescent model. Bioinformatics 30, 3317–3324 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    PAUP*. Phylogenetic analysis using parsimony (* and other methods). v. Version 4. (Sinauer Associates, Sunderland, 2003).Yang, Z. PAML 4: Phylogenetic analysis by maximum likelihood. Mol. Biol. Evol. 24, 1586–1591 (2007).CAS 
    PubMed 

    Google Scholar 
    dos Reis, M. & Yang, Z. Approximate likelihood calculation on a phylogeny for bayesian estimation of divergence times. Mol. Biol. Evol. 28, 2161–2172 (2011).PubMed 

    Google Scholar 
    Chen, D. et al. Divergence time estimation of Galliformes based on the best gene shopping scheme of ultraconserved elements. BMC Ecol. Evol. 21, 209 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, S. A., Brown, J. W. & Walker, J. F. So many genes, so little time: A practical approach to divergence-time estimation in the genomic era. PLoS ONE 13, e0197433 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Johns, C. A., Toussaint, E. F. A., Breinholt, J. W. & Kawahara, A. Y. Origin and macroevolution of micro-moths on sunken Hawaiian Islands. Proc. R. Soc. B. 285, 20181047 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Rabosky, D. L. et al. BAMMtools: An R package for the analysis of evolutionary dynamics on phylogenetic trees. Methods Ecol. Evol. 5, 701–707 (2014).
    Google Scholar 
    Salichos, L., Stamatakis, A. & Rokas, A. Novel information theory-based measures for quantifying incongruence among phylogenetic trees. Mol. Biol. Evol. 31, 1261–1271 (2014).CAS 
    PubMed 

    Google Scholar 
    Smith, S. A., Moore, M. J., Brown, J. W. & Yang, Y. Analysis of phylogenomic datasets reveals conflict, concordance, and gene duplications with examples from animals and plants. BMC Evol. Biol. 15, 150 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Xia, X. H., Xie, Z., Salemi, M., Chen, L. & Wang, Y. An index of substitution saturation and its application. Mol. Phylogen. Evol. 26, 1–7 (2003).CAS 

    Google Scholar 
    Xia, X. DAMBE7: New and improved tools for data analysis in molecular biology and evolution. Mol. Biol. Evol. 35, 1550–1552 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McInerney, J. O. GCUA: general codon usage analysis. Bioinformatics 14, 372–373 (1998).CAS 
    PubMed 

    Google Scholar 
    Folk, R. A., Mandel, J. R. & Freudenstein, J. V. Ancestral gene flow and parallel organellar genome capture result in extreme phylogenomic discord in a lineage of angiosperms. Syst. Biol. 66, 320–337 (2017).CAS 
    PubMed 

    Google Scholar 
    Sukumaran, J. & Holder, M. T. DendroPy: A Python library for phylogenetic computing. Bioinformatics 26, 1569–1571 (2010).CAS 
    PubMed 

    Google Scholar 
    Olave, M., Avila, L. J., Sites, J. W., Morando, M. & Freckleton, R. Detecting hybridization by likelihood calculation of gene tree extra lineages given explicit models. Methods Ecol. Evol. 9, 121–133 (2017).
    Google Scholar 
    Than, C. & Nakhleh, L. Species tree inference by minimizing deep coalescences. PLoS Comp. Biol. 5, e1000501 (2009).ADS 
    MathSciNet 

    Google Scholar 
    Malinsky, M., Matschiner, M. & Svardal, H. Dsuite – Fast D-statistics and related admixture evidence from VCF files. Mol. Ecol. Resour. 21, 584–595 (2021).PubMed 

    Google Scholar 
    Durand, E. Y., Patterson, N., Reich, D. & Slatkin, M. Testing for ancient admixture between closely related populations. Mol. Biol. Evol. 28, 2239–2252 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Solis-Lemus, C. & Ane, C. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genet. 12, e1005896 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Solis-Lemus, C., Bastide, P. & Ane, C. Phylonetworks: A package for phylogenetic networks. Mol. Biol. Evol. 34, 3292–3298 (2017).CAS 
    PubMed 

    Google Scholar 
    Hejase, H. A. & Liu, K. J. A scalability study of phylogenetic network inference methods using empirical datasets and simulations involving a single reticulation. BMC Bioinforma. 17, 422 (2016).
    Google Scholar 
    Shen, X. X., Hittinger, C. T. & Rokas, A. Contentious relationships in phylogenomic studies can be driven by a handful of genes. Nat. Ecol. Evol. 1, 126 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Browning, B. L. & Browning, S. R. Improving the accuracy and efficiency of identity-by-descent detection in population data. Genetics 194, 459–471 (2013).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Norway spruce postglacial recolonization of Fennoscandia

    Lindquist, B. The main varieties of Picea abies (L.) Karst. In Europe, with a contribution to the theory of a forest vegetation in Scandinavia during the last Pleistocene glaciation. Acta Horti Bergiani 14, 249–342 (1948).
    Google Scholar 
    Parducci, L. et al. Glacial survival of boreal trees in northern Scandinavia. Science 335, 1083–1086 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Parducci, L. et al. Response to comment on “Glacial survival of boreal trees in Northern Scandinavia.”. Science 338, 9–10 (2012).
    Google Scholar 
    Birks, H. H. et al. Comment on “Glacial survival of boreal trees in Northern Scandinavia.”. Science 338, 9–11 (2012). 2012.
    Google Scholar 
    Chen, J. et al. Genomic data provide new insights on the demographic history and the extent of recent material transfers in Norway spruce. Evolut. Appl. 12, 1539–1551 (2019).
    Google Scholar 
    Giesecke, T. & Bennett, K. D. The Holocene spread of Picea abies (L.) Karst. in Fennoscandia and adjacent areas. J. Biogeogr. 31, 1523–1548 (2004).
    Google Scholar 
    Latałowa, M. & van der Knaap, W. O. Late Quaternary expansion of Norway spruce Picea abies (L.) Karst. in Europe according to pollen data. Quat. Sci. Rev. 25, 2780–2805 (2006).ADS 

    Google Scholar 
    Brewer, S. et al. Late-glacial and Holocene European pollen data. J. Maps 13, 921–928 (2017).
    Google Scholar 
    Heikkilä, M., Fontana, S. L. & Seppä, H. Rapid Lateglacial tree population dynamics and ecosystem changes in the eastern Baltic region. J. Quat. Sci. 24, 802–815 (2009).
    Google Scholar 
    Giesecke, T., Brewer, S., Finsinger, W., Leydet, M. & Bradshaw, R. H. W. Patterns and dynamics of European vegetation change over the last 15,000 years. J. Biogeogr. 44, 1441–1456 (2017).
    Google Scholar 
    Segerström, U. & Von Stedingk, H. Early-Holocene spruce, Picea abies (L.) Karst., in west central Sweden as revealed by pollen analysis. Holocene 13, 897–906 (2003).ADS 

    Google Scholar 
    Kullman, L. New and Firm Evidence for Mid-Holocene Appearance of Piceaa abies in the Scandes Mountains, Sweden. J. Ecol. 83, 439 (1995).
    Google Scholar 
    Kullman, L. Boreal tree taxa in the central Scandes during the Late-Glacial: Implications for Late-Quaternary forest history. J. Biogeogr. 29, 1117–1124 (2002).
    Google Scholar 
    Öberg, L. & Kullman, L. Ancient Subalpine Clonal Spruces (Picea abies): Sources of Postglacial Vegetation History in the Swedish Scandes. Arctic 64, 183–196 (2011).
    Google Scholar 
    Paus, A., Velle, G. & Berge, J. The Lateglacial and early Holocene vegetation and environment in the Dovre mountains, central Norway, as signalled in two Lateglacial nunatak lakes. Quat. Sci. Rev. 30, 1780–1796 (2011).ADS 

    Google Scholar 
    Birks, H. H., Larsen, E. & Birks, H. J. B. Did tree-Betula, Pinus and Picea survive the last glaciation along the west coast of Norway? A review of the evidence, in light of Kullman (2002). J. Biogeogr. 32, 461–1471 (2005).
    Google Scholar 
    Tollefsrud, M. M. et al. Genetic consequences of glacial survival and postglacial colonization in Norway spruce: Combined analysis of mitochondrial DNA and fossil pollen. Mol. Ecol. 17, 4134–4150 (2008).CAS 
    PubMed 

    Google Scholar 
    Tsuda, Y. et al. The extent and meaning of hybridization and introgression between Siberian spruce (Picea obovata) and Norway spruce (Picea abies): cryptic refugia as stepping stones to the west? Mol. Ecol. 25, 2773–2789 (2016).CAS 
    PubMed 

    Google Scholar 
    Hughes, A. L. C., Gyllencreutz, R., Lohne, Ø. S., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1–45 (2016).
    Google Scholar 
    Gowan, E. J. et al. A new global ice sheet reconstruction for the past 80 000 years. Nat. Commun. 12, 1199 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lemdahl, G. & Berglund, B. E. Senglaciala granskogar i Sydsverige? [Late glacial spruce forests in southern Sweden?]. Sven. Botanisk Tidskr. 99, 183–186 (2005).
    Google Scholar 
    Hicks, S. When no pollen does not mean no trees. Vegetation Hist. Archaeobotany 15, 253–261 (2006).
    Google Scholar 
    Birks, H. H., Larsen, E. & Birks, H. J. B. On the presence of late-glacial trees in western Norway and the Scandes: A further comment. J. Biogeogr. 33, 376–377 (2006).
    Google Scholar 
    Kullman, L. Ecological tree line history and palaeoclimate – review of megafossil evidence from the Swedish Scandes. Boreas 42, 555–567 (2013).
    Google Scholar 
    Giesecke, T. Changing Plant Distributions and Abundances. In: S. A. Elias (ed.) The encyclopedia of quaternary science, vol 3, pp. 854– 860. Elsevier, Amsterdam, NL (2013).Tollefsrud, M. M. et al. Combined analysis of nuclear and mitochondrial markers provide new insight into the genetic structure of North European Picea abies. Heredity 102, 549–562 (2009).CAS 
    PubMed 

    Google Scholar 
    Edwards, M. E., Armbruster, W. S. & Elias, S. E. Constraints on post-glacial boreal tree expansion out of far-northern refugia. Glob. Ecol. Biogeogr. 23, 1198–1208 (2014).
    Google Scholar 
    Li, L., et al. Teasing apart the joint effect of demography and natural selection in the birth of a contact zone. bioRxiv https://doi.org/10.1101/2022.01.11.475794 (2022).Parducci, L. et al. Ancient plant DNA in lake sediments. N. Phytologist 214, 924–942 (2017).CAS 

    Google Scholar 
    Alsos, I. G. et al. Plant DNA metabarcoding of lake sediments: How does it represent the contemporary vegetation. PLoS ONE 13, e0195403 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Naydenov, K., Senneville, S., Beaulieu, J., Tremblay, F. & Bousquet, J. Glacial vicariance in Eurasia: Mitochondrial DNA evidence from Scots pine for a complex heritage involving genetically distinct refugia at mid-northern latitudes and in Asia Minor. BMC Evolut. Biol. 7, 233 (2007).
    Google Scholar 
    Kullman, L. Palaeoecological, Biogeographical and Palaeoclimatological Implications of Early Holocene Immigration of Larix sibirica Ledeb. into the Scandes Mountains, Sweden. Glob. Ecol. Biogeogr. Lett. 7, 181 (1998).
    Google Scholar 
    Kullman, L. Early postglacial appearance of tree species in northern Scandinavia: review and perspective. Quat. Sci. Rev. 27, 2467–2472 (2008).ADS 

    Google Scholar 
    Suyama, Y. & Matsuki, Y. MIG-seq: An effective PCR-based method for genome-wide single-nucleotide polymorphism genotyping using the next-generation sequencing platform. Sci. Rep. 5, 16963 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zale, R. et al. Growth of plants on the Late Weichselian ice-sheet during Greenland interstadial-1? Quat. Sci. Rev. 185, 222–229 (2018).ADS 

    Google Scholar 
    Kylander, M. E., Klaminder, J., Wohlfarth, B. & Löwemark, L. Geochemical responses to paleoclimatic changes in southern Sweden since the late glacial: the Hässeldala Port lake sediment record. J. Paleolimnol. 50, 57–70 (2013).ADS 

    Google Scholar 
    Ampel, L., Kylander, M. E., Steinthorsdottir, M. & Wohlfarth, B. Abrupt climate change and early lake development – the Lateglacial diatom flora at Hässeldala Port, southeastern Sweden. Boreas 44, 94–102 (2015).
    Google Scholar 
    Wohlfarth, B. et al. Hässeldala – a key site for Last Termination climate events in northern Europe. Boreas 46, 143–161 (2017).
    Google Scholar 
    Wohlfarth, B. et al. Climate and environment in southwest Sweden 15.5–11.3 cal. ka BP. Boreas 47, 687–710 (2018).
    Google Scholar 
    Parducci, L., et al. Shotgun environmental DNA, pollen, and macrofossil analysis of lateglacial lake sediments from southern Sweden. Front. Ecol. Evol., 7, 189 (2019).Nilsson, T. Die pollenanalytische zonengliederung der spät- und postglazialen bildungen schonens. GFF 57, 385–562 (1935).
    Google Scholar 
    Lindbladh, M. När granen kom till byn några tankar kring granens invandring i södra Sverige. Sven. Botanisk Tidskr. 98, 249–262 (2004).
    Google Scholar 
    Schenk, F. et al. Floral evidence for high summer temperatures in southern Scandinavia during 15–11 cal ka BP. Quat. Sci. Rev. 233, 106243 (2020).
    Google Scholar 
    Nikolov, N., & Helmisaari, H. Silvics of the circumpolar boreal forest tree species. In A Systems Analysis of the Global Boreal Forest (pp. 13–84). Cambridge University Press (1992).Wohlfarth, B. Ice-free conditions in Sweden during Marine Oxygen Isotope Stage 3? Boreas 39, 377–398 (2010).
    Google Scholar 
    Sarala, P., Väliranta, M., Eskola, T. & Vaikutiené, G. First physical evidence for forested environment in the Arctic during MIS 3. Sci. Rep. 6, 29054 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Svenning, J.-C., Normand, S. & Kageyama, M. Glacial refugia of temperate trees in Europe: insights from species distribution modelling. J. Ecol. 96, 1117–1127 (2008).
    Google Scholar 
    Wang, X., Bernhardsson, C. & Ingvarsson, P. K. Demography and Natural Selection Have Shaped Genetic Variation in the Widely Distributed Conifer Norway Spruce (Picea abies). Genome Biol. Evolution 12, 3803–3817 (2020).
    Google Scholar 
    Binney, H. A. et al. The distribution of late-Quaternary woody taxa in northern Eurasia: evidence from a new macrofossil database. Quat. Sci. Rev. 28, 2445–2464 (2009).ADS 

    Google Scholar 
    Krüger, S., Dörfler, W., Bennike, O. & Wolters, S. Life in Doggerland – palynological investigations of the environment of prehistoric hunter-gatherer societies in the North Sea Basin. EG – Quat. Sci. J. 66, 3–13 (2017).
    Google Scholar 
    Alsos, I. G. et al. Last Glacial Maximum environmental conditions at Andøya, northern Norway; evidence for a northern ice-edge ecological “hotspot.”. Quat. Sci. Rev. 239, 106364 (2020).
    Google Scholar 
    Alsos, I. G. et al. Frequent Long-Distance Plant Colonization in the Changing Arctic. Science 316, 1606–1609 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Epp, L. S. et al. New environmental metabarcodes for analysing soil DNA: Potential for studying past and present ecosystems. Mol. Ecol. 21, 1821–1833 (2012).CAS 
    PubMed 

    Google Scholar 
    Capo, E. et al. Lake Sedimentary DNA Research on Past Terrestrial and Aquatic Biodiversity: Overview and Recommendations. Quaternary 4, 6 (2021).
    Google Scholar 
    Kullman, L. Immigration of Picea abies into North-Central Sweden. New evidence of regional expansion and tree-limit evolution. Nord. J. Bot. 21, 39–54 (2001).
    Google Scholar 
    Dabney, J., Meyer, M. & Pääbo, S. Ancient DNA damage. Cold Spring Harb. Perspect. Biol. 5, a012567 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Ficetola, G. F. et al. Replication levels, false presences, and the estimation of the presence/absence from eDNA metabarcoding data. Mol. Ecol. Resour. 15, 543–556 (2015).CAS 
    PubMed 

    Google Scholar 
    Nystedt, B. et al. The Norway spruce genome sequence and conifer genome evolution. Nature 497, 579–584 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Genomics (2013) arXiv:1303.3997Chang, C. C. et al. Second-generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Patterson, N., Price, A. L. & Reich, D. Population structure and eigenanalysis. PLoS Genet. 2, 2074–2093 (2006).CAS 

    Google Scholar 
    Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Weir, B. S. & Cockerham, C. C. Estimating F-Statistics for the Analysis of Population Structure. Evolution 38, 1358 (1984).CAS 
    PubMed 

    Google Scholar 
    Pembleton, L. W., Cogan, N. O. I. & Forster, J. W. StAMPP: An R package for calculation of genetic differentiation and structure of mixed-ploidy level populations. Mol. Ecol. Resour. 13, 946–952 (2013).CAS 
    PubMed 

    Google Scholar 
    Karney, C. F. F. Algorithms for geodesics. J. Geod. 87, 43–55 (2013).ADS 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing https://www.r-project.org/ (2020).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016). More

  • in

    The hardy Hawaiian corals that could thrive in warming seas

    .readcube-buybox { display: none !important;}

    Some species of coral might be able to adapt to a world altered by climate change, at least if countries curb their greenhouse-gas emissions1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-022-00719-x

    ReferencesMcLachlan, R. H. et al. Sci. Rep. 12, 3712 (2022).PubMed 
    Article 

    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    Discovery of a Ni2+-dependent guanidine hydrolase in bacteria
    Article 09 MAR 22

    Rewilding Argentina: lessons for the 2030 biodiversity targets
    Comment 07 MAR 22

    How itchy vicuñas remade a vast wilderness
    Research Highlight 04 MAR 22

    Jobs

    Postdoctoral Research Fellow

    Center for Genomic Medicine (CGM), MGH
    Boston, MA, United States

    wiss. Mitarbeiter/in (m/w/d)

    Technische Universität Dresden (TU Dresden)
    01069 Dresden, Germany

    Doctoral Candidate (PhD student) in Hybrid Satellite-Terrestrial Connectivity Solutions for Emerging IoT/MTC Systems

    Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
    Luxembourg, Luxembourg

    Research Associate (Postdoc) in Artificial Intelligence for Space Applications

    Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg
    Luxembourg, Luxembourg More

  • in

    Permafrost peat carbon approaching a climatic tipping point

    Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.This is a summary of: Fewster, R. E. et al. Imminent loss of climate space for permafrost peatlands in Europe and Western Siberia. Nat. Clim. Change https://doi.org/10.1038/s41558-022-01296-7 (2022). More

  • in

    Imminent loss of climate space for permafrost peatlands in Europe and Western Siberia

    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).CAS 

    Google Scholar 
    Davy, R. & Outten, S. The Arctic surface climate in CMIP6: status and developments since CMIP5. J. Clim. 33, 8047–8068 (2020).
    Google Scholar 
    Voigt, C. et al. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw. Glob. Change Biol. 25, 1746–1764 (2019).
    Google Scholar 
    Swindles, G. T. et al. The long-term fate of permafrost peatlands under rapid climate warming. Sci. Rep. 5, 17951 (2015).CAS 

    Google Scholar 
    Du, R. et al. The role of peat on permafrost thaw based on field observations. Catena 208, 105772 (2022).CAS 

    Google Scholar 
    Chaudhary, N. et al. Modelling past and future peatland carbon dynamics across the pan-Arctic. Glob. Change Biol. 26, 4119–4133 (2020).
    Google Scholar 
    Müller, J. & Joos, F. Committed and projected future changes in global peatlands—continued transient model simulations since the Last Glacial Maximum. Biogeosciences 18, 3657–3687 (2021).
    Google Scholar 
    Seppälä, M. Synthesis of studies of palsa formation underlining the importance of local environmental and physical characteristics. Quatern. Res. 75, 366–370 (2011).
    Google Scholar 
    Karjalainen, O. et al. High potential for loss of permafrost landforms in a changing climate. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abafd5 (2020).Fan, X., Duan, Q., Shen, C., Wu, Y. & Xing, C. Global surface air temperatures in CMIP6: historical performance and future changes. Environ. Res. Lett. 15, 104056 (2020).
    Google Scholar 
    Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).
    Google Scholar 
    Zoltai, S. & Tarnocai, C. Properties of a wooded palsa in northern Manitoba. Arct. Alp. Res. 3, 115–129 (1971).
    Google Scholar 
    Minke, M., Donner, N., Karpov, N. S., de Klerk, P. & Joosten, H. Distribution, diversity, development and dynamics of polygon mires: examples from Northeast Yakutia (Siberia). Peatl. Int. 1, 36–40 (2007).
    Google Scholar 
    O’Neill, H. B., Wolfe, S. A. & Duchesne, C. New ground ice maps for Canada using a paleogeographic modelling approach. Cryosphere 13, 753–773 (2019).
    Google Scholar 
    Fronzek, S., Luoto, M. & Carter, T. R. Potential effect of climate change on the distribution of palsa mires in subarctic Fennoscandia. Clim. Res. 32, 1–12 (2006).
    Google Scholar 
    Luoto, M., Fronzek, S. & Zuidhoff, F. S. Spatial modelling of palsa mires in relation to climate in northern Europe. Earth Surf. Process. Landf. 29, 1373–1387 (2004).
    Google Scholar 
    Peregon, A., Maksyutov, S., Kosykh, N. P. & Mironycheva-Tokareva, N. P. Map-based inventory of wetland biomass and net primary production in Western Siberia. J. Geophys. Res. Biogeosci. 113, G01007 (2008).
    Google Scholar 
    Terentieva, I., Lapshina, E. D., Sabrekov, A. F., Maksyutov, S. S. & Glagolev, M. V. Mapping of West Siberian wetland complexes using landsat imagery: implications for methane emissions. Biogeosciences 13, 4615–4626 (2016).CAS 

    Google Scholar 
    Zoltai, S., Siltanen, R. M. & Johnson, J. D. A Wetland Data Base for the Western Boreal, Subarctic, and Arctic Regions of Canada (Natural Resources Canada, Canadian Forest Service, 2000).Fewster, R. E. et al. Drivers of Holocene palsa distribution in North America. Quat. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106337 (2020).Parviainen, M. & Luoto, M. Climate envelopes of mire complex types in Fennoscandia. Geogr. Ann. A 89, 137–151 (2007).
    Google Scholar 
    Aalto, J., Harrison, S. & Luoto, M. Statistical modelling predicts almost complete loss of major periglacial processes in northern Europe by 2100. Nat. Commun. 8, 515 (2017).
    Google Scholar 
    Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
    Google Scholar 
    Brunner, L. et al. Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth Syst. Dyn. 11, 995–1012 (2020).
    Google Scholar 
    O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
    Google Scholar 
    Aalto, J., Venäläinen, A., Heikkinen, R. K. & Luoto, M. Potential for extreme loss in high‐latitude Earth surface processes due to climate change. Geophys. Res. Lett. 41, 3914–3924 (2014).
    Google Scholar 
    Halsey, L. A., Vitt, D. H. & Zoltai, S. C. Disequilibrium response of permafrost in boreal continental western Canada to climate change. Climatic Change 30, 57–73 (1995).
    Google Scholar 
    Camill, P. & Clark, J. S. Climate change disequilibrium of boreal permafrost peatlands caused by local processes. Am. Nat. 151, 207–222 (1998).CAS 

    Google Scholar 
    Borge, A. F., Westermann, S., Solheim, I. & Etzelmüller, B. Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years. Cryosphere 11, 1–16 (2017).
    Google Scholar 
    Åkerman, H. J. & Johansson, M. Thawing permafrost and thicker active layers in sub‐arctic Sweden. Permafr. Periglac. Process. 19, 279–292 (2008).
    Google Scholar 
    Olvmo, M., Holmer, B., Thorsson, S., Reese, H. & Lindberg, F. Sub-arctic palsa degradation and the role of climatic drivers in the largest coherent palsa mire complex in Sweden (Vissátvuopmi), 1955–2016. Sci. Rep. 10, 8937 (2020).CAS 

    Google Scholar 
    Payette, S., Delwaide, A., Caccianiga, M. & Beauchemin, M. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett. 31, L18208 (2004).
    Google Scholar 
    Treat, C. C. et al. Effects of permafrost aggradation on peat properties as determined from a pan‐Arctic synthesis of plant macrofossils. J. Geophys. Res. Biogeosci. 121, 78–94 (2016).CAS 

    Google Scholar 
    Dearborn, K. D., Wallace, C. A., Patankar, R. & Baltzer, J. L. Permafrost thaw in boreal peatlands is rapidly altering forest community composition. J. Ecol. 109, 1452–1467 (2021).CAS 

    Google Scholar 
    Olefeldt, D. & Roulet, N. T. Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. J. Geophys. Res. Biogeosci. 117, G01005 (2012).
    Google Scholar 
    Burd, K., Estop-Aragonés, C., Tank, S. E. & Olefeldt, D. Lability of dissolved organic carbon from boreal peatlands: interactions between permafrost thaw, wildfire, and season. Can. J. Soil Sci. 100, 503–515 (2020).
    Google Scholar 
    Klaminder, J., Yoo, K., Rydberg, J. & Giesler, R. An explorative study of mercury export from a thawing palsa mire. J. Geophys. Res. Biogeosci. 113, G04034 (2008).
    Google Scholar 
    Luoto, M. & Seppälä, M. Thermokarst ponds as indicators of the former distribution of palsas in Finnish Lapland. Permafr. Periglac. Process. 14, 19–27 (2003).
    Google Scholar 
    Vitt, D. H., Halsey, L. A. & Zoltai, S. C. The changing landscape of Canada’s western boreal forest: the current dynamics of permafrost. Can. J. For. Res. 30, 283–287 (2000).
    Google Scholar 
    Turetsky, M., Wieder, R., Vitt, D., Evans, R. & Scott, K. The disappearance of relict permafrost in boreal North America: effects on peatland carbon storage and fluxes. Glob. Change Biol. 13, 1922–1934 (2007).
    Google Scholar 
    Jorgenson, M. T. et al. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 40, 1219–1236 (2010).
    Google Scholar 
    Magnússon, R. Í. et al. Rapid vegetation succession and coupled permafrost dynamics in Arctic thaw ponds in the Siberian lowland tundra. J. Geophys. Res. Biogeosci. 125, e2019JG005618 (2020).
    Google Scholar 
    Zoltai, S. Permafrost distribution in peatlands of west-central Canada during the Holocene warm period 6000 years bp. Géogr. Phys. Quat. 49, 45–54 (1995).
    Google Scholar 
    Seppälä, M. An expermental study of the formation of palsas. In Proc. 4th Canadian Permafrost Conference (ed. French, H. M.) 36–42 (National Research Council of Canada, Ottawa, 1982).Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).
    Google Scholar 
    Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).
    Google Scholar 
    Thurner, M. et al. Carbon stock and density of northern boreal and temperate forests. Glob. Ecol. Biogeogr. 23, 297–310 (2014).
    Google Scholar 
    Seppälä, M. The origin of palsas. Geogr. Ann. A 68, 141–147 (1986).
    Google Scholar 
    Mamet, S. D., Chun, K. P., Kershaw, G. G., Loranty, M. M. & Peter Kershaw, G. Recent increases in permafrost thaw rates and areal loss of palsas in the western Northwest Territories, Canada. Permafr. Periglac. Process. 28, 619–633 (2017).
    Google Scholar 
    Camill, P. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Climatic Change 68, 135–152 (2005).CAS 

    Google Scholar 
    Quinton, W. L. & Baltzer, J. The active-layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada). Hydrol. J. 21, 201–220 (2013).
    Google Scholar 
    Turetsky, M. R., Wieder, R. K. & Vitt, D. H. Boreal peatland C fluxes under varying permafrost regimes. Soil Biol. Biochem. 34, 907–912 (2002).CAS 

    Google Scholar 
    Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6, 950–953 (2016).
    Google Scholar 
    Myers‐Smith, I. H. & Hik, D. S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 106, 547–560 (2018).
    Google Scholar 
    Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9, 3041 (2018).
    Google Scholar 
    Gibson, C. M., Estop-Aragonés, C., Flannigan, M., Thompson, D. K. & Olefeldt, D. Increased deep soil respiration detected despite reduced overall respiration in permafrost peat plateaus following wildfire. Environ. Res. Lett. 14, 125001 (2019).CAS 

    Google Scholar 
    Estop-Aragonés, C. et al. Respiration of aged soil carbon during fall in permafrost peatlands enhanced by active layer deepening following wildfire but limited following thermokarst. Environ. Res. Lett. 13, 085002 (2018).
    Google Scholar 
    Treat, C. C. et al. Predicted vulnerability of carbon in permafrost peatlands with future climate change and permafrost thaw in western Canada. J. Geophys. Res. Biogeosci. 126, e2020JG005872 (2021).CAS 

    Google Scholar 
    Jones, M. C. et al. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Glob. Change Biol. 23, 1109–1127 (2017).
    Google Scholar 
    Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).CAS 

    Google Scholar 
    Heffernan, L., Estop‐Aragonés, C., Knorr, K. H., Talbot, J. & Olefeldt, D. Long‐term impacts of permafrost thaw on carbon storage in peatlands: deep losses offset by surficial accumulation. J. Geophys. Res. Biogeosci. 125, e2019JG005501 (2020).CAS 

    Google Scholar 
    Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907–913 (2018).CAS 

    Google Scholar 
    Qiu, C. et al. The role of northern peatlands in the global carbon cycle for the 21st century. Glob. Ecol. Biogeogr. 29, 956–973 (2020).
    Google Scholar 
    Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
    Google Scholar 
    Hugelius, G. et al. Maps of Northern Peatland Extent, Depth, Carbon Storage and Nitrogen Storage Version 1.0 (Bolin Centre for Climate Research, 2020); https://doi.org/10.17043/hugelius-2020Brownrigg, R. mapdata: Extra Map Databases. R version 2.3.0 https://CRAN.R-project.org/package=mapdata (2018).Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob. Change Biol. 19, 589–603 (2013).
    Google Scholar 
    Pissart, A. Palsas, lithalsas and remnants of these periglacial mounds: a progress report. Prog. Phys. Geog. 26, 605–621 (2002).
    Google Scholar 
    Wolfe, S. A., Stevens, C. W., Gaanderse, A. J. & Oldenborger, G. A. Lithalsa distribution, morphology and landscape associations in the Great Slave Lowland, Northwest Territories, Canada. Geomorphology 204, 302–313 (2014).
    Google Scholar 
    Lara, M. J., Nitze, I., Grosse, G. & McGuire, A. D. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska. Sci. Data 5, 180058 (2018).
    Google Scholar 
    Jorgenson, M. T. & Grunblatt, J. Landscape-Level Ecological Mapping of Northern Alaska and Field Site Photography (Arctic Landscape Conservation Cooperative, U.S. Fish & Wildlife Service, 2013).Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).
    Google Scholar 
    ESRI. ArcMap v.10.6.1 (Environmental Systems Research Institute, 2018).Brown, J., Ferrians, O. Jr, Heginbottom, J. A. & Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions (US Geological Survey, 1997).QGIS v.3.12 (QGIS Association, 2020); https://qgis.orgHugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3 (2013).
    Google Scholar 
    Everett, K. R. in Developments in Soil Science Vol. 11 (eds Wilding, L. P. et al.) 1–53 (Elsevier, 1983).Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2020).CAS 

    Google Scholar 
    Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 7 (IPCC, Cambridge Univ. Press, 2021).Flynn, C. M. & Mauritsen, T. On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmos. Chem. Phys. 20, 7829–7842 (2020).CAS 

    Google Scholar 
    Morris, P. J. et al. Global peatland initiation driven by regionally asynchronous warming. Proc. Natl Acad. Sci. USA 115, 4851–4856 (2018).CAS 

    Google Scholar 
    Latombe, G. et al. Comparison of spatial downscaling methods of general circulation model results to study climate variability during the Last Glacial Maximum. Geosci. Model Dev. 11, 2563–2579 (2018).
    Google Scholar 
    Galar, M., Fernández, A., Barrenechea, E., Bustince, H. & Herrera, F. An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 44, 1761–1776 (2011).
    Google Scholar 
    Petrucci, C. J. A primer for social worker researchers on how to conduct a multinomial logistic regression. J. Soc. Serv. Res. 35, 193–205 (2009).
    Google Scholar 
    Fronzek, S. et al. Evaluating sources of uncertainty in modelling the impact of probabilistic climate change on sub-arctic palsa mires. Nat. Hazards Earth Syst. Sci. 11, 2981–2995 (2011).
    Google Scholar 
    Aalto, J. & Luoto, M. Integrating climate and local factors for geomorphological distribution models. Earth Surf. Process. Landf. 39, 1729–1740 (2014).
    Google Scholar 
    Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).
    Google Scholar 
    Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Google Scholar 
    Anisimov, O. A. & Nelson, F. E. Permafrost zonation and climate change in the northern hemisphere: results from transient general circulation models. Climatic Change 35, 241–258 (1997).
    Google Scholar 
    Armstrong, R. A. When to use the Bonferroni correction. Ophthalm. Physiol. Opt. 34, 502–508 (2014).
    Google Scholar 
    Menard, S. Standards for standardized logistic regression coefficients. Soc. Forces 89, 1409–1428 (2011).
    Google Scholar 
    Powers, D. M. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. Mach. Learn. Technol. 2, 37–63 (2011).
    Google Scholar 
    Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133, 225–245 (2000).
    Google Scholar  More

  • in

    Slaked lime improves growth, antioxidant capacity and reduces Cd accumulation of peanut (Arachis hypogaea L.) under Cd stress

    Soil pH, biomass and Cd content of peanutSoil pHFigure 1 shows that, in this study, application of slaked lime significantly increased soil pH in nearly all growth stages (p  C1200  > C900  > C600  > C300  > C0. Among the soil characteristics, soil pH is considered as an important index that impact Cd uptake by crops, since pH can obviously affect the speciation and solubility of Cd in soil liquids15. The use of slaked lime can neutralize excessive H+ concentrations in soil solutions and decrease Cd solubility33, but there were no observable differences among the different growth stages.Figure 1Effects of slaked lime application on soil pH values. The values are means (± SD) of three replicates. Bar groups with different capital letters indicate significant differences (p  More