More stories

  • in

    Integrating remote sensing with ecology and evolution to advance biodiversity conservation

    Díaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411 (2020).PubMed 

    Google Scholar 
    Soto-Navarro, C. A. et al. Towards a multidimensional biodiversity index for national application. Nat. Sustain. 4, 933–942 (2021).Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 5, 896–906 (2021).PubMed 

    Google Scholar 
    Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641–7646 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Girardello, M. et al. Global synergies and trade-offs between multiple dimensions of biodiversity and ecosystem services. Sci. Rep. 9, 5636 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Chaplin-Kramer, R. et al. Global modeling of nature’s contributions to people. Science 366, 255–258 (2019).CAS 
    PubMed 

    Google Scholar 
    Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sens. Ecol. Conserv. 2, 122–131 (2016).
    Google Scholar 
    Paganini, M., Leidner, A. K., Geller, G., Turner, W. & Wegmann, M. The role of space agencies in remotely sensed essential biodiversity variables. Remote Sens. Ecol. Conserv. 2, 132–140 (2016).
    Google Scholar 
    O’Connor, B. et al. Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv. 1, 19–28 (2015).
    Google Scholar 
    Skidmore, A. K. et al. Environmental science: agree on biodiversity metrics to track from space. Nature 523, 403–405 (2015).CAS 
    PubMed 

    Google Scholar 
    Reddy, C. S. et al. Remote sensing enabled essential biodiversity variables for biodiversity assessment and monitoring: technological advancement and potentials. Biodivers. Conserv. 30, 1–14 (2021).
    Google Scholar 
    Vihervaara, P. et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 10, 43–59 (2017).
    Google Scholar 
    Luque, S., Pettorelli, N., Vihervaara, P. & Wegmann, M. Improving biodiversity monitoring using satellite remote sensing to provide solutions towards the 2020 conservation targets. Methods Ecol. Evol. 9, 1784–1786 (2018).
    Google Scholar 
    Moritz, C. Applications of mitochondrial DNA analysis in conservation: a critical review. Mol. Ecol. 3, 401–411 (1994).CAS 

    Google Scholar 
    Graham, C. H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A. T. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 19, 497–503 (2004).PubMed 

    Google Scholar 
    Czyż, E. A. et al. Intraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time series. Ecol. Evol. 10, 7419–7430 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Guillén-Escribà, C. et al. Remotely sensed between-individual functional trait variation in a temperate forest. Ecol. Evol. 11, 10834–10867 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    PubMed 

    Google Scholar 
    Shaw, R. G. & Etterson, J. R. Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. New Phytol. 195, 752–765 (2012).PubMed 

    Google Scholar 
    Wang, Z. et al. Foliar functional traits from imaging spectroscopy across biomes in the eastern North America. New Phytol. 228, 494–511 (2020).PubMed 

    Google Scholar 
    Poorter, L. et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89, 1908–1920 (2008).CAS 
    PubMed 

    Google Scholar 
    Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109–126 (2009).
    Google Scholar 
    Gao, Q. et al. Stimulation of soil respiration by elevated CO2 is enhanced under nitrogen limitation in a decade-long grassland study. Proc. Natl Acad. Sci. USA 117, 33317–33324 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).PubMed 

    Google Scholar 
    Hoffmann, A. A. & Sgrò, C. M. Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed? Integr. Zool. 13, 355–371 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Marshall, C. R. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat. 171, 726–742 (2008).PubMed 

    Google Scholar 
    Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434–441 (2010).PubMed 

    Google Scholar 
    Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl Acad. Sci. USA 103, 632–636 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elith, J. et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29, 129–151 (2006).
    Google Scholar 
    Zipkin, E. F. et al. Addressing data integration challenges to link ecological processes across scales. Front. Ecol. Environ. 19, 30–38 (2021).
    Google Scholar 
    Cavender-Bares, J. et al. BII-Implementation: the causes and consequences of plant biodiversity across scales in a rapidly changing world. Res. Ideas Outcomes 7, e63850 (2021).
    Google Scholar 
    Hwang, D. et al. A data integration methodology for systems biology. Proc. Natl Acad. Sci. USA 102, 17296–17301 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    O’Malley, M. A. & Soyer, O. S. The roles of integration in molecular systems biology. Stud. Hist. Philos. Sci. C 43, 58–68 (2012).
    Google Scholar 
    Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).von Humboldt, A. & Bonpland, A. Essai sur la Géographie des Plantes, Accompagné d’un Tableau Physique des Régions Equinoxiales (Levrault & Schoell, 1807).Darwin, C. On the Origin of Species by Means of Natural Selection 6th edn (with corrections and additions to 1872) (John Murray, 1888).Braun, E. L. Deciduous Forests of Eastern North America (Hafner Publishing Company, 1967).Slik, J. W. F. et al. Phylogenetic classification of the world’s tropical forests. Proc. Natl Acad. Sci. USA 115, 1837 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637–19643 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310–1324 (2010).PubMed 

    Google Scholar 
    Cavender-Bares, J., Ackerly, D., Hobbie, S. & Townsend, P. Evolutionary legacy effects on ecosystems: biogeographic origins, plant traits, and implications for management in the era of global change. Annu. Rev. Ecol. Evol. Syst. 47, 433–462 (2016).
    Google Scholar 
    Crisp, M. D., Arroyo, M. T. K., Cook, L. G., Gandolfo, M. A. & Jordan, G. J. Phylogenetic biome conservatism on a global scale. Nature 458, 754–756 (2009).CAS 
    PubMed 

    Google Scholar 
    Forrestel, E. J., Donoghue, M. J. & Smith, M. D. Convergent phylogenetic and functional responses to altered fire regimes in mesic savanna grasslands of North America and South Africa. New Phytol. 203, 1000–1011 (2014).PubMed 

    Google Scholar 
    Auler, A. S. & Smart, P. L. Late quaternary paleoclimate in semiarid northeastern Brazil from U-series dating of travertine and water-table speleothems. Quat. Res. 55, 159–167 (2001).CAS 

    Google Scholar 
    Cheng, H. et al. Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4, 1411 (2013).PubMed 

    Google Scholar 
    Ledru, M.-P. et al. The last 50,000 years in the Neotropics (Southern Brazil): evolution of vegetation and climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 239–257 (1996).
    Google Scholar 
    Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6, 361–375 (2005).CAS 
    PubMed 

    Google Scholar 
    Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).CAS 
    PubMed 

    Google Scholar 
    Beck, P. S. A. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6, 045501 (2011).
    Google Scholar 
    Kokaly, R. F., Asner, G. P., Ollinger, S. V., Martin, M. E. & Wessman, C. A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 113, S78–S91 (2009).
    Google Scholar 
    Graham, C. H. et al. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37, 711–719 (2014).
    Google Scholar 
    Carnaval, A. C., Hickerson, M. J., Haddad, C. F., Rodrigues, M. T. & Moritz, C. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323, 785–789 (2009).CAS 
    PubMed 

    Google Scholar 
    Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carnaval, A. C. et al. Prediction of phylogeographic endemism in an environmentally complex biome. Proc. R. Soc. B 281, 20141461 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Forest, F., Crandall, K. A., Chase, M. W. & Faith, D. P. Phylogeny, extinction and conservation: embracing uncertainties in a time of urgency. Philos. Trans. R. Soc. Lond. B 370, 20140002 (2015).
    Google Scholar 
    Faith, D. P. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. Philos. Trans. R. Soc. Lond. B 370, 20140011 (2015).
    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).
    Google Scholar 
    Lavorel, S. et al. Assessing functional diversity in the field—methodology matters! Funct. Ecol. 22, 134–147 (2008).
    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).PubMed 

    Google Scholar 
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Google Scholar 
    Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125–1140 (2008).
    Google Scholar 
    Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821–827 (2004).CAS 
    PubMed 

    Google Scholar 
    Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730–13734 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dahlin, K. M., Asner, G. P. & Field, C. B. Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proc. Natl Acad. Sci. USA 110, 6895–6900 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kattge, J. et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol. 26, 119–188 (2020).PubMed 

    Google Scholar 
    Enquist, B., Condit, R., Peet, R., Schildhauer, M. & Thiers, B. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ 4, e2615v2612 (2016).
    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).PubMed 

    Google Scholar 
    Asner, G. P., Martin, R. E., Anderson, C. B. & Knapp, D. E. Quantifying forest canopy traits: imaging spectroscopy versus field survey. Remote Sens. Environ. 158, 15–27 (2015).
    Google Scholar 
    Fajardo, A. & Siefert, A. Phenological variation of leaf functional traits within species. Oecologia 180, 951–959 (2016).PubMed 

    Google Scholar 
    Townsend, P. A., Foster, J. R., Chastain, R. A. Jr. & Currie, W. S. Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS. Geosci. Remote Sens. IEEE Trans. 41, 1347–1354 (2003).
    Google Scholar 
    Féret, J. B., Gitelson, A. A., Noble, S. D. & Jacquemoud, S. PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 193, 204–215 (2017).
    Google Scholar 
    Berger, K. et al. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Int. J. Appl. Earth Obs. Geoinf. 92, 102174 (2020).
    Google Scholar 
    Jacquemoud, S. & Ustin, S. Leaf Optical Properties (Cambridge Univ. Press, 2019).Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853–858 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffman, M., Koenig, K., Bunting, G., Costanza, J. & Williams, K. J. Biodiversity hotspots (version 2016.1). Zenodo https://doi.org/10.5281/zenodo.3261807 (2016).Folke, C. et al. Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc. 15, 20 (2010).
    Google Scholar 
    Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336–340 (2015).CAS 
    PubMed 

    Google Scholar 
    Peterson, G., Allen, C. & Holling, C. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6–18 (1998).
    Google Scholar 
    MacDougall, A. S., McCann, K. S., Gellner, G. & Turkington, R. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 494, 86–89 (2013).CAS 
    PubMed 

    Google Scholar 
    Duncan, B. N. et al. Space‐based observations for understanding changes in the Arctic‐Boreal Zone. Rev. Geophys. 58, e2019RG000652 (2020).
    Google Scholar 
    Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A. & Tesler, N. Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. CATENA 71, 76–83 (2007).
    Google Scholar 
    Meng, Y. et al. Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series. Ecol. Inform. 57, 101064 (2020).
    Google Scholar 
    Wilson, A. M., Latimer, A. M. & Silander, J. A. Climatic controls on ecosystem resilience: postfire regeneration in the Cape Floristic Region of South Africa. Proc. Natl Acad. Sci. USA 112, 9058 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xie, Z. et al. Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multi-decadal hydroclimatic extremes. J. Hydrol. 543, 818–831 (2016).Allen, C. R. et al. Quantifying spatial resilience. J. Appl. Ecol. 53, 625–635 (2016).
    Google Scholar 
    Lausch, A. et al. Understanding and assessing vegetation health by in situ species and remote-sensing approaches. Methods Ecol. Evol. 9, 1799–1809 (2018).
    Google Scholar 
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).CAS 
    PubMed 

    Google Scholar 
    Faruk, A., Belabut, D., Ahmad, N., Knell, R. J. & Garner, T. W. J. Effects of oil-palm plantations on diversity of tropical anurans. Conserv. Biol. 27, 615–624 (2013).PubMed 

    Google Scholar 
    Yue, S., Brodie, J. F., Zipkin, E. F. & Bernard, H. Oil palm plantations fail to support mammal diversity. Ecol. Appl. 25, 2285–2292 (2015).PubMed 

    Google Scholar 
    Dislich, C. et al. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biol. Rev. Camb. Philos. Soc. 92, 1539–1569 (2017).PubMed 

    Google Scholar 
    Slingsby, J. A., Moncrieff, G. R. & Wilson, A. M. Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics. ISPRS J. Photogramm. Remote Sens. 166, 15–25 (2020).
    Google Scholar 
    Spasojevic, M. J. et al. Scaling up the diversity–resilience relationship with trait databases and remote sensing data: the recovery of productivity after wildfire. Glob. Change Biol. 22, 1421–1432 (2016).
    Google Scholar 
    van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed 

    Google Scholar 
    Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol. 5, 46–54 (2021).PubMed 

    Google Scholar 
    Schweiger, A. K. et al. Coupling spectral and resource-use complementarity in experimental grassland and forest communities. Proc. R. Soc. B 288, 20211290 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443–451 (2009).PubMed 

    Google Scholar 
    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).CAS 
    PubMed 

    Google Scholar 
    Isbell, F., Tilman, D., Reich, P. B. & Clark, A. T. Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nat. Ecol. Evol. 3, 1533–1538 (2019).PubMed 

    Google Scholar 
    Walters, M. & Scholes, R. The GEO Handbook on Biodiversity Observation Networks (Springer, 2017).Kühl, H. S. et al. Effective biodiversity monitoring needs a culture of integration. One Earth 3, 462–474 (2020).
    Google Scholar 
    Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 57, 395–408 (2015).
    Google Scholar 
    Thompson, B. K., Olden, J. D. & Converse, S. J. Mechanistic invasive species management models and their application in conservation. Conserv. Sci. Pract. 3, e533 (2021).
    Google Scholar 
    Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827–832 (2015).CAS 
    PubMed 

    Google Scholar 
    Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978–7985 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McKey, D. et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl Acad. Sci. USA 107, 7823–7828 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bush, M. B. et al. A 6900-year history of landscape modification by humans in lowland Amazonia. Quat. Sci. Rev. 141, 52–64 (2016).
    Google Scholar 
    Wright, J. L. et al. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and Central Brazilian savannas. Glob. Change Biol. 27, 136–150 (2021).
    Google Scholar 
    Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol. 5, 273–284 (2021).PubMed 

    Google Scholar 
    Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Ann. Rev. Environ. Res. 39, 125–159 (2014).Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850–2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425–5464 (2020).CAS 

    Google Scholar 
    Verburg, P. H., Erb, K.-H., Mertz, O. & Espindola, G. Land system science: between global challenges and local realities. Curr. Opin. Environ. Sustain. 5, 433–437 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).
    Google Scholar 
    Burke, M., Driscoll, A., Lobell, D. B. & Ermon, S. Using satellite imagery to understand and promote sustainable development. Science 371, eabe8628 (2021).CAS 
    PubMed 

    Google Scholar 
    Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369, eaay4497 (2020).Trounstine, J. The geography of inequality: how land use regulation produces segregation. Am. Political Sci. Rev. 114, 443–455 (2020).
    Google Scholar 
    Su, S., Pi, J., Xie, H., Cai, Z. & Weng, M. Community deprivation, walkability, and public health: highlighting the social inequalities in land use planning for health promotion. Land Use Policy 67, 315–326 (2017).
    Google Scholar 
    Coomes, O. T., Takasaki, Y. & Rhemtulla, J. M. Forests as landscapes of social inequality tropical forest cover and land distribution among shifting cultivators. Ecol. Soc. 21, 20 (2016).Watmough, G. R. et al. Socioecologically informed use of remote sensing data to predict rural household poverty. Proc. Natl Acad. Sci. USA 116, 1213 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verburg, P. H. et al. Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene 12, 29–41 (2015).
    Google Scholar 
    Bickenbach, F., Bode, E., Nunnenkamp, P. & Söder, M. Night lights and regional GDP. Rev. World Econ. 152, 425–447 (2016).
    Google Scholar 
    Mayer, A. et al. Applying the human appropriation of net primary production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union. Ecosyst. Serv. 51, 101344 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. Urban Green Space Analysis on UBC Vancouver Campus: Integrating Virtual Gaming Technology to Map Cultural Use and Biodiversity Value of Urban Green Space (Univ. British Columbia, 2021).Ghaffarian, S., Roy, D., Filatova, T. & Kerle, N. Agent-based modelling of post-disaster recovery with remote sensing data. Int. J. Disaster Risk Reduct. 60, 102285 (2021).
    Google Scholar 
    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).PubMed 

    Google Scholar 
    Zeng, Y. et al. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain. 3, 795–798 (2020).
    Google Scholar 
    Mirza, M. U., Xu, C., Bavel, B. V., van Nes, E. H. & Scheffer, M. Global inequality remotely sensed. Proc. Natl Acad. Sci. USA 118, e1919913118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kavvada, A. et al. Towards delivering on the Sustainable Development Goals using Earth observations. Remote Sens. Environ. 247, 111930 (2020).
    Google Scholar 
    Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121–149 (1998).
    Google Scholar 
    Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 992 (2009).
    Google Scholar 
    Madritch, M. D. et al. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales. Philos. Trans. R. Soc. B 369, 20130194 (2014).
    Google Scholar 
    Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 30, 357–363 (2015).PubMed 

    Google Scholar 
    Cline, L. C. et al. Resource availability underlies the plant–fungal diversity relationship in a grassland ecosystem. Ecology 99, 204–216 (2018).PubMed 

    Google Scholar 
    Wardle, D. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629–1633 (2004).CAS 
    PubMed 

    Google Scholar 
    Meier, C. L. & Bowman, W. D. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc. Natl Acad. Sci. USA 105, 19780–19785 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gold, K. M. et al. Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato. Remote Sens. 12, 286 (2020).Serbin, S. P., Singh, A., McNeil, B. E., Kingdon, C. C. & Townsend, P. A. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol. Appl. 24, 1651–1669 (2014).
    Google Scholar 
    Fisher, J. B., Perakalapudi, N. V., Turner, B. L., Schimel, D. S. & Cusack, D. F. Sci. Rep. 10, 6725 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).PubMed 

    Google Scholar 
    Meireles, J. E., O’Meara, B. & Cavender-Bares, J. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 155–172 (Springer, 2020).Kothari, S. et al. Community-wide consequences of variation in photoprotective physiology among prairie plants. Photosynthetica 56, 455–467 (2018).CAS 

    Google Scholar 
    Anderegg, L. D. L. et al. Representing plant diversity in land models: an evolutionary approach to make “functional types” more functional. Glob. Change Biol., https://doi.org/10.1111/gcb.16040 (2022).Cavender-Bares, J. M. et al. Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments. Ecol. Monogr., https://doi.org/10.1002/ecm.1488 (2021).Niemann, K. O., Quinn, G., Stephen, R., Visintini, F. & Parton, D. Hyperspectral remote sensing of mountain pine beetle with an emphasis on previsual assessment. Can. J. Remote Sens. 41, 191–202 (2015).
    Google Scholar 
    Chu, H. et al. Soil microbial biogeography in a changing world: recent advances and future perspectives. mSystems 5, e00803–e00819 (2020).King, G. M. Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes. Trends Microbiol. 19, 75–84 (2011).CAS 
    PubMed 

    Google Scholar 
    Singh, A. K., Sisodia, A., Sisodia, V. & Padhi, M. in New and Future Developments in Microbial Biotechnology and Bioengineering (eds. Singh, J. S. & Singh, D. P.) 57–68 (Elsevier, 2019).Eviner, V. T. Plant traits that influence ecosystem processes vary independently among species. Ecology 85, 2215–2229 (2004).
    Google Scholar 
    Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065–1071 (2008).PubMed 

    Google Scholar 
    Paneque-Gálvez, J. et al. High overlap between traditional ecological knowledge and forest conservation found in the Bolivian Amazon. Ambio 47, 908–923 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Hilbert, M. The bad news is that the digital access divide is here to stay: domestically installed bandwidths among 172 countries for 1986–2014. Telecommun. Policy 40, 567–581 (2016).
    Google Scholar 
    Prados, A. I. et al. Impact of the ARSET program on use of remote-sensing data. ISPRS Int. J. Geo-Inf. 8, 261 (2019).Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369–374 (2018).
    Google Scholar 
    Chase, A. S. Z., Chase, D. & Chase, A. Ethics, new colonialism, and lidar data: a decade of lidar in Maya archaeology. J. Comput. Appl. Archaeol. 3, 51–62 (2020).
    Google Scholar 
    Carrino, T. A., Crósta, A. P., Toledo, C. L. B. & Silva, A. M. Hyperspectral remote sensing applied to mineral exploration in southern Peru: a multiple data integration approach in the Chapi Chiara gold prospect. Int. J. Appl. Earth Obs. Geoinf. 64, 287–300 (2018).
    Google Scholar 
    Scafutto, R. D. P. M., de Souza Filho, C. R. & de Oliveira, W. J. Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: implications for onshore exploration and monitoring. ISPRS J. Photogramm. Remote Sens. 128, 146–157 (2017).
    Google Scholar 
    Turner, W. Sensing biodiversity. Science 346, 301–302 (2014).CAS 
    PubMed 

    Google Scholar 
    Ustin, S. L. & Middleton, E. M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 10, 1 (2021).Randin, C. F. et al. Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sens. Environ. 239, 111626 (2020).
    Google Scholar 
    Geller, G. N. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender Bares, J. et al.) 519–526 (Springer, 2020).Asner, G. P. & Martin, R. E. Spectranomics: emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob. Ecol. Conserv. 8, 212–219 (2016).
    Google Scholar 
    Schneider, F. D. et al. Towards mapping the diversity of canopy structure from space with GEDI. Environ. Res. Lett. 15, 115006 (2020).
    Google Scholar 
    Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302–4315 (2017).
    Google Scholar 
    Green, R. O. et al. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 65, 227–248 (1998).
    Google Scholar 
    Hook, S. & Fisher, J. ECO3ETPTJPL v001 ECOSTRESS Evapotranspiration PT-JPL Daily L3 Global 70 m https://doi.org/10.5067/ECOSTRESS/ECO3ETPTJPL.001 (LP DAAC, accessed 8 December 2021).Turner, A. J. et al. A double peak in the seasonality of California’s photosynthesis as observed from space. Biogeosciences 17, 405–422 (2020).CAS 

    Google Scholar 
    Radeloff, V. C. et al. The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. Remote Sens. Environ. 222, 204–214 (2019).
    Google Scholar 
    Crameri, F. Scientific colour-maps. Zenodo https://doi.org/10.5281/zenodo.1287763 (2018).Li, X. & Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sensing 11, 2563 (2019).Keil, P. & Chase, J. M. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 3, 390–399 (2019).PubMed 

    Google Scholar 
    Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 116, G04021 (2011).Boonman, C. C. F. et al. Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr. 29, 1034–1051 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933–938 (2001).
    Google Scholar 
    Beck, H. E. et al. Present and future Köppen–Geiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl Acad. Sci. USA 117, 9906 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lausch, A. et al. Linking Earth Observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives. Ecol. Indic. 70, 317–339 (2016).
    Google Scholar 
    Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. 8, 1441 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Rocchini, D. et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecol. Inform. 5, 318–329 (2010).
    Google Scholar 
    Schneider, F. D., Ferraz, A. & Schimel, D. Watching Earth’s interconnected systems at work. Eos, https://doi.org/10.1029/2019EO136205 (2019).Laliberté, E., Schweiger, A. K. & Legendre, P. Partitioning plant spectral diversity into alpha and beta components. Ecol. Lett. 23, 370–380 (2020).PubMed 

    Google Scholar 
    Wang, R. & Gamon, J. A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 231, 111218 (2019).
    Google Scholar 
    Féret, J.-B. & Asner, G. P. Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy. Ecol. Appl. 24, 1289–1296 (2014).PubMed 

    Google Scholar 
    Dubayah, R. et al. The Global Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earth’s forests and topography. Sci. Remote Sens. 1, 100002 (2020).
    Google Scholar 
    Omasa, K., Hosoi, F. & Konishi, A. 3D lidar imaging for detecting and understanding plant responses and canopy structure. J. Exp. Bot. 58, 881–898 (2007).CAS 
    PubMed 

    Google Scholar 
    Bae, S. et al. Radar vision in the mapping of forest biodiversity from space. Nat. Commun. 10, 4757 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Stavros, E. N. et al. ISS observations offer insights into plant function. Nat. Ecol. Evol. 1, 0194 (2017).Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 182, 173–176 (2015).
    Google Scholar 
    Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277–278 (2013).CAS 
    PubMed 

    Google Scholar 
    Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539–551 (2019).PubMed 

    Google Scholar 
    Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531–1540 (2018).PubMed 

    Google Scholar 
    Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93, 600–625 (2018).PubMed 

    Google Scholar 
    Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).PubMed 

    Google Scholar 
    Fretwell, P. T. & Trathan, P. N. Penguins from space: faecal stains reveal the location of emperor penguin colonies. Glob. Ecol. Biogeogr. 18, 543–552 (2009).
    Google Scholar 
    Davies, A. B. & Asner, G. P. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol. Evol. 29, 681–691 (2014).PubMed 

    Google Scholar 
    Paz, A. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 255–266 (Springer International Publishing, 2020).Pinto-Ledezma, J. N. & Cavender-Bares, J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep. 11, 16448 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Papeş, M., Tupayachi, R., Martínez, P., Peterson, A. T. & Powell, G. V. N. Using hyperspectral satellite imagery for regional inventories: a test with tropical emergent trees in the Amazon Basin. J. Veg. Sci. 21, 342–354 (2010).
    Google Scholar 
    Wang, Z. et al. Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sens. Environ. 221, 405–416 (2019).
    Google Scholar  More

  • in

    Antennae of psychodid and sphaerocerid flies respond to a high variety of floral scent compounds of deceptive Arum maculatum L.

    Raguso, R. A. Wake up and smell the roses: the ecology and evolution of floral scent. Annu. Rev. Ecol. Evol. Syst. 39, 549–569 (2008).
    Google Scholar 
    Knudsen, J. T., Eriksson, R., Gershenzon, J. & Ståhl, B. Diversity and distribution of floral scent. Bot. Rev. 72, 1–120 (2006).
    Google Scholar 
    Hadacek, F. & Weber, M. Club-shaped organs as additional osmophores within the Sauromatum inflorescence: odour analysis, ultrastructural changes and pollination aspects. Plant Biol. 4, 367–383 (2002).CAS 

    Google Scholar 
    Schlumpberger, B. O. & Raguso, R. A. Geographic variation in floral scent of Echinopsis ancistrophora (Cactaceae); evidence for constraints on hawkmoth attraction. Oikos 117, 801–814 (2008).
    Google Scholar 
    Gfrerer, E. et al. Floral scents of a deceptive plant are hyperdiverse and under population-specific phenotypic selection. Front. Plant Sci. 12, https://doi.org/10.3389/fpls.2021.719092 (2021).Primante, C. & Dötterl, S. A syrphid fly uses olfactory cues to find a non-yellow flower. J. Chem. Ecol. 36, 1207–1210 (2010).CAS 
    PubMed 

    Google Scholar 
    Knauer, A. C. & Schiestl, F. P. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol. Lett. 18, 135–143 (2015).CAS 
    PubMed 

    Google Scholar 
    Theis, N. Fragrance of Canada thistle (Cirsium arvense) attracts both floral herbivores and pollinators. J. Chem. Ecol. 32, 917–927 (2006).CAS 
    PubMed 

    Google Scholar 
    Bouwmeester, H., Schuurink, R. C., Bleeker, P. M. & Schiestl, F. The role of volatiles in plant communication. Plant J. 100, 892–907 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schiestl, F. P. et al. Orchid pollination by sexual swindle. Nature 399, 421–422 (1999).CAS 

    Google Scholar 
    Schäffler, I. et al. Diacetin, a reliable cue and private communication channel in a specialized pollination system. Sci. Rep. 5, 1–11 (2015).
    Google Scholar 
    Castañeda-Zárate, M., Johnson, S. D. & van der Niet, T. Food reward chemistry explains a novel pollinator shift and vestigialization of long floral spurs in an orchid. Curr. Biol. 31, 238–246 (2021).PubMed 

    Google Scholar 
    Dötterl, S., David, A., Boland, W., Silberbauer-Gottsberger, I. & Gottsberger, G. Evidence for behavioral attractiveness of methoxylated aromatics in a dynastid scarab beetle-pollinated Araceae. J. Chem. Ecol. 38, 1539–1543 (2012).PubMed 

    Google Scholar 
    Maia, A. C. D. et al. The key role of 4-methyl-5-vinylthiazole in the attraction of scarab beetle pollinators: a unique olfactory floral signal shared by Annonaceae and Araceae. J. Chem. Ecol. 38, 1072–1080 (2012).CAS 
    PubMed 

    Google Scholar 
    Stamm, P., Etl, F., Maia, A. C. D., Dötterl, S. & Schulz, S. Synthesis, absolute configurations, and biological activities of floral scent compounds from night-blooming Araceae. J. Org. Chem. 86, 5245–5254 (2021).CAS 
    PubMed 

    Google Scholar 
    Jürgens, A., Wee, S. L., Shuttleworth, A. & Johnson, S. D. Chemical mimicry of insect oviposition sites: a global analysis of convergence in angiosperms. Ecol. Lett. 16, 1157–1167 (2013).PubMed 

    Google Scholar 
    Zito, P., Sajeva, M., Raspi, A. & Dötterl, S. Dimethyl disulfide and dimethyl trisulfide: so similar yet so different in evoking biological responses in saprophilous flies. Chemoecology 24, 261–267 (2014).CAS 

    Google Scholar 
    El-Sayed, A. M. The Pherobase: database of pheromones and semiochemicals. https://www.pherobase.com (2021).Kite, G. C. The floral odour of Arum maculatum. Biochem. Syst. Ecol. 23, 343–354 (1995).CAS 

    Google Scholar 
    Chartier, M., Pélozuelo, L. & Gibernau, M. Do floral odor profiles geographically vary with the degree of specificity for pollinators? Investigation in two sapromyophilous Arum species (Araceae). Ann. Soc. Entomol. Fr. 47, 71–77 (2011).
    Google Scholar 
    Chartier, M., Pélozuelo, L., Buatois, B., Bessière, J. M. & Gibernau, M. Geographical variations of odour and pollinators, and test for local adaptation by reciprocal transplant of two European Arum species. Funct. Ecol. 27, 1367–1381 (2013).
    Google Scholar 
    Marotz-Clausen, G. et al. Incomplete synchrony of inflorescence scent and temperature patterns in Arum maculatum L. (Araceae). Phytochemistry 154, 77–84 (2018).Szenteczki, M. A. et al. Spatial and temporal heterogeneity in pollinator communities maintains within-species floral odour variation. Oikos 130, 1487–1499 (2021).
    Google Scholar 
    Espíndola, A., Pellissier, L. & Alvarez, N. Variation in the proportion of flower visitors of Arum maculatum along its distributional range in relation with community-based climatic niche analyses. Oikos 120, 728–734 (2011).
    Google Scholar 
    Laina, D. et al. Local insect availability partly explains geographical differences in floral visitor assemblages of Arum maculatum L. (Araceae). Front. Plant Sci. 13, https://doi.org/10.3389/fpls.2022.838391 (2022).Tonnoir, A. L. A synopsis of the British Psychodidae (Dipt.) with descriptions of new species. Trans. Soc. Br. Entomol. 7, 21–64 (1940).Roháček, J., Beck-Haug, I. & Dobat, K. Sphaeroceridae associated with flowering Arum maculatum (Araceae) in the vicinity of Tübingen, SW-Germany (Insecta: Diptera). Senckenb. Biol. 71, 259–268 (1990).
    Google Scholar 
    Sayers, T. D. J., Steinbauer, M. J., Farnier, K. & Miller, R. E. Dung mimicry in Typhonium (Araceae): explaining floral trait and pollinator divergence in a widespread species complex and a rare sister species. Bot. J. Linn. Soc. 193, 375–401 (2020).
    Google Scholar 
    Gibernau, M., Macquart, D. & Przetak, G. Pollination in the genus Arum: a review. Aroideana 27, 148–166 (2004).
    Google Scholar 
    Kakishima, S. & Okuyama, Y. Pollinator assemblages of Arisaema heterocephalum subsp. majus (Araceae), a critically endangered species endemic to Tokunoshima Island, Central Ryukyus. Bull. Natl. Mus. Nat. Sci., Ser. B 44, 173–179 (2018).Urru, I. et al. Pollination strategies in Cretan Arum lilies. Biol. J. Linn. Soc. 101, 991–1001 (2010).
    Google Scholar 
    Diaz, A. & Kite, G. C. A comparison of the pollination ecology of Arum maculatum and Arum italicum in England. Watsonia 24, 171–181 (2002).
    Google Scholar 
    Lack, A. J. & Diaz, A. The pollination of Arum maculatum L.: a historical review and new observations. Watsonia 18, 333–342 (1991).Kite, G. C. et al. Inflorescence odours and pollinators of Arum and Amorphophallus (Araceae). in Reproductive Biology (eds. Owens, S. J. & Rudall, P. J.) 295–315 (Kew Royal Botanic Gardens, 1998).Laurence, B. R. The larval inhabitants of cow pats. J. Anim. Ecol. 23, 234–260 (1954).
    Google Scholar 
    Wagner, R. Zur Kenntnis der Psychodidenfauna des Allgäus. Nachrichtenblatt der Bayer. Entomol. 26, 23–28 (1977).
    Google Scholar 
    Satchell, G. H. The ecology of the British species of Psychoda (Diptera: Psychodidae). Ann. Appl. Biol. 34, 611–621 (1947).CAS 
    PubMed 

    Google Scholar 
    Withers, P. & O’Connor, J. P. A preliminary account of the Irish species of moth fly (Diptera: Psychodidae). Proc. R. Ir. Acad. B. 92, 61–77 (1992).
    Google Scholar 
    Dormont, L., Jay-Robert, P., Bessière, J. M., Rapior, S. & Lumaret, J. P. Innate olfactory preferences in dung beetles. J. Exp. Biol. 213, 3177–3186 (2010).CAS 
    PubMed 

    Google Scholar 
    Sládeček, F. X. J., Dötterl, S., Schäffler, I., Segar, S. T. & Konvicka, M. Succession of dung-inhabiting beetles and flies reflects the succession of dung-emitted volatile compounds. J. Chem. Ecol. 47, 433–443 (2021).PubMed 

    Google Scholar 
    Scheven, H. J. GC/MS Untersuchungen des Appendixduftes blühender Pflanzen von Arum maculatum L. und Arum italicum MILLER; Nachweis der attraktiven Wirkung der Duftbestandteile Indol, Humulen und p-Kresol auf Psychoda phalaenoides L. (Philipps-Universität Marburg, 1994).Schiestl, F. P. & Marion-Poll, F. Detection of physiologically active flower volatiles using gas chromatography coupled with electroantennography. in Analysis of Taste and Aroma (eds. Jackson, J. F. & Linskens, H. F.) 173–198 (Springer Berlin Heidelberg, 2002).Jhumur, U. S., Dötterl, S. & Jürgens, A. Electrophysiological and behavioural responses of mosquitoes to volatiles of Silene otites (Caryophyllaceae). Arthropod. Plant. Interact. 1, 245–254 (2007).
    Google Scholar 
    Heiduk, A. et al. Ceropegia sandersonii mimics attacked honeybees to attract kleptoparasitic flies for pollination. Curr. Biol. 26, 1–7 (2016).
    Google Scholar 
    Suinyuy, T. N., Donaldson, J. S. & Johnson, S. D. Geographical matching of volatile signals and pollinator olfactory responses in a cycad brood-site mutualism. Proc. R. Soc. B Biol. Sci. 282, (2015). http://doi.org/10.1098/rspb.2015.2053Dötterl, S. et al. Nursery pollination by a moth in Silene latifolia: The role of odours in eliciting antennal and behavioural responses. New Phytol. 169, 707–718 (2005).
    Google Scholar 
    Schiestl, F. P. et al. The chemistry of sexual deception in an orchid-wasp pollination system. Science 80(302), 437–438 (2003).
    Google Scholar 
    Stensmyr, M. C. et al. Rotting smell of dead-horse arum florets. Nature 420, 625–626 (2002).CAS 
    PubMed 

    Google Scholar 
    Lukas, K., Harig, T., Schulz, S., Hadersdorfer, J. & Dötterl, S. Flowers of European pear release common and uncommon volatiles that can be detected by honey bee pollinators. Chemoecology 29, 211–223 (2019).
    Google Scholar 
    Bermadinger-Stabentheiner, E. & Stabentheiner, A. Dynamics of thermogenesis and structure of epidermal tissues in inflorescences of Arum maculatum. New Phytol. 131, 41–50 (1995).PubMed 

    Google Scholar 
    Dötterl, S., Füssel, U., Jürgens, A. & Aas, G. 1,4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J. Chem. Ecol. 31, 2993–2998 (2005).PubMed 

    Google Scholar 
    Dötterl, S. et al. Linalool and lilac aldehyde/alcohol in flower scents. Electrophysiological detection of lilac aldehyde stereoisomers by a moth. J. Chromatogr. A 1113, 231–238 (2006).Brandt, K. et al. Subtle chemical variations with strong ecological significance: stereoselective responses of male orchid bees to stereoisomers of carvone epoxide. J. Chem. Ecol. 45, 464–473 (2019).CAS 
    PubMed 

    Google Scholar 
    Zito, P., Dötterl, S. & Sajeva, M. Floral volatiles in a sapromyiophilous plant and their importance in attracting house fly pollinators. J. Chem. Ecol. 41, 340–349 (2015).CAS 
    PubMed 

    Google Scholar 
    Kováts, E. & Weisz, P. Über den Retentionsindex und seine Verwendung zur Aufstellung einer Polaritätsskala für Lösungsmittel. Berichte der Bunsengesellschaft für Phys. Chem. 69, 812–820 (1965).
    Google Scholar 
    Dougherty, M. J., Guerin, P. M., Ward, R. D. & Hamilton, J. G. C. Behavioural and electrophysiological responses of the phlebotomine sandfly Lutzomyia longipalpis (Diptera: Psychodidae) when exposed to canid host odour kairomones. Physiol. Entomol. 24, 251–262 (1999).CAS 

    Google Scholar 
    Sant’Ana, A. L., Eiras, A. E. & Cavalcante, R. R. Electroantennographic responses of the Lutzomyia (Lutzomyia) longipalpis (Lutz and Neiva) (Diptera: Psychodidae) to 1-octen-3-ol. Neotrop. Entomol. 31, 13–17 (2002).Adams, R. P. Identification of essential oil components by gas chromatography/mass spectrometry. (Allured Publishing Corporation, 2007).Johnson, S. D. & Jürgens, A. Convergent evolution of carrion and faecal scent mimicry in fly-pollinated angiosperm flowers and a stinkhorn fungus. S. Afr. J. Bot. 76, 796–807 (2010).CAS 

    Google Scholar 
    Thakeow, P., Angeli, S., Weißbecker, B. & Schütz, S. Antennal and behavioral responses of Cis boleti to fungal odor of Trametes gibbosa. Chem. Senses 33, 379–387 (2008).CAS 
    PubMed 

    Google Scholar 
    Junker, R. R. & Blüthgen, N. Floral scents repel facultative flower visitors, but attract obligate ones. Ann. Bot. 105, 777–782 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Junker, R. R. & Tholl, D. Volatile organic compound mediated interactions at the plant-microbe interface. J. Chem. Ecol. 39, 810–825 (2013).CAS 
    PubMed 

    Google Scholar 
    Abraham, J. et al. Behavioral and antennal responses of Drosophila suzukii (Diptera: Drosophilidae) to volatiles from fruit extracts. Environ. Entomol. 44, 356–367 (2015).CAS 
    PubMed 

    Google Scholar 
    Stökl, J. et al. Scent variation and hybridization cause the displacement of a sexually deceptive orchid species. Am. J. Bot. 95, 472–481 (2008).PubMed 

    Google Scholar 
    Salamanca, J., Souza, B., Lundgren, J. G. & Rodriguez-Saona, C. From laboratory to field: electro-antennographic and behavioral responsiveness of two insect predators to methyl salicylate. Chemoecology 27, 51–63 (2017).CAS 

    Google Scholar 
    Revel, N., Alvarez, N., Gibernau, M. & Espíndola, A. Investigating the relationship between pollination strategies and the size-advantage model in zoophilous plants using the reproductive biology of Arum cylindraceum and other European Arum species as case studies. Arthropod. Plant. Interact. 6, 35–44 (2012).
    Google Scholar  More

  • in

    Silicon improves ion homeostasis and growth of liquorice under salt stress by reducing plant Na+ uptake

    Zhao, S. et al. Regulation of plant responses to salt stress. Int. J. Mol. Sci. 22, 4609 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Acosta-Motos, J. R. et al. Plant responses to salt stress: Adaptive mechanisms. Agronomy-Basel 7, 18 (2017).
    Google Scholar 
    Munns, R. & Tester, M. Mechanisms of salinity tolerance. Annu. Rev. Plant Biol. 59, 651–681 (2008).CAS 
    PubMed 

    Google Scholar 
    Wu, H. H. Plant salt tolerance and Na+ sensing and transport. Crop J. 6, 215–225 (2018).
    Google Scholar 
    Ali, M. et al. Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiol. Biochem. 158, 208–218 (2021).CAS 
    PubMed 

    Google Scholar 
    Javaid, T., Farooq, M. A., Akhtar, J., Saqib, Z. A. & Anwar-ul-Haq, M. Silicon nutrition improves growth of salt-stressed wheat by modulating flows and partitioning of Na+, Cl- and mineral ions. Plant Physiol. Biochem. 141, 291–299 (2019).CAS 
    PubMed 

    Google Scholar 
    Zelm, E. V., Zhang, Y. X. & Testerink, C. Salt tolerance mechanisms of plants. Annu. Rev. Plant Biol. 71, 403–433 (2020).PubMed 

    Google Scholar 
    Kumar, P. et al. Potassium: A key modulator for cell homeostasis. J. Biotechnol. 324, 198–210 (2020).CAS 
    PubMed 

    Google Scholar 
    Ahmad, P., Ahanger, M. A., Alam, P., Alyemeni, M. N. & Ashraf, M. Silicon (Si) supplementation alleviates NaCl toxicity in mung bean [Vigna radiata (L.) Wilczek] through the modifications of physio-biochemical attributes and key antioxidant enzymes. J. Plant Growth Regul. 38, 1–13 (2018).
    Google Scholar 
    Chiappero, J. et al. Antioxidant status of medicinal and aromatic plants under the influence of growth-promoting rhizobacteria and osmotic stress. Ind. Crops Prod. 167, 113541 (2021).CAS 

    Google Scholar 
    Conceicao, S. S. et al. Silicon modulates the activity of antioxidant enzymes and nitrogen compounds in sunflower plants under salt stress. Arch. Agron. Soil Sci. 65, 1237–1247 (2019).CAS 

    Google Scholar 
    Etesami, H. & Jeong, B. R. Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol. Environ. Saf. 147, 881–896 (2018).CAS 
    PubMed 

    Google Scholar 
    Epstein, E. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50, 641–664 (1999).CAS 
    PubMed 

    Google Scholar 
    Epstein, E. The anomaly of silicon in plant biology. Proc. Natl. Acad. Sci. U S A 91, 11–17 (1994).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jadhao, K. R., Bansal, A. & Rout, G. R. Silicon amendment induces synergistic plant defense mechanism against pink stem borer (Sesamia inferens Walker.) in finger millet (Eleusine coracana Gaertn.). Sci. Rep. 10, 15 (2020).
    Google Scholar 
    Li, Z. C. et al. Silicon enhancement of estimated plant biomass carbon accumulation under abiotic and biotic stresses. A meta-analysis. Agron. Sustain. Dev. 38, 19 (2018).CAS 

    Google Scholar 
    Yan, G. C. et al. Silicon improves rice salinity resistance by alleviating ionic toxicity and osmotic constraint in an organ-specific pattern. Front. Plant Sci. 11, 12 (2020).
    Google Scholar 
    Farouk, S., Elhindi, K. M. & Alotaibi, M. A. Silicon supplementation mitigates salinity stress on Ocimum basilicum L. via improving water balance, ion homeostasis, and antioxidant defense system. Ecotoxicol. Environ. Saf. 206, 11 (2020).
    Google Scholar 
    Yin, J. L. et al. Silicon enhances the salt tolerance of cucumber through increasing polyamine accumulation and decreasing oxidative damage. Ecotoxicol. Environ. Saf. 169, 8–17 (2019).CAS 
    PubMed 

    Google Scholar 
    Hurtado, A. C. et al. Different methods of silicon application attenuate salt stress in sorghum and sunflower by modifying the antioxidative defense mechanism. Ecotoxicol. Environ. Saf. 203, 11 (2020).
    Google Scholar 
    Gaur, S. et al. Fascinating impact of silicon and silicon transporters in plants: A review. Ecotoxicol. Environ. Saf. 202, 12 (2020).
    Google Scholar 
    Vandegeer, R. K. et al. Silicon deposition on guard cells increases stomatal sensitivity as mediated by K(+)efflux and consequently reduces stomatal conductance. Physiol. Plant 171, 358–370 (2021).CAS 
    PubMed 

    Google Scholar 
    Lina, et al. Silicon-mediated changes in polyamines participate in silicon-induced salt tolerance in Sorghum bicolor L.. Plant Cell Environ. 39, 245–258 (2016).
    Google Scholar 
    Hassanvand, F., Nejad, A. R. & Fanourakis, D. Morphological and physiological components mediating the silicon-induced enhancement of geranium essential oil yield under saline conditions. Ind. Crops Prod. 134, 19–25 (2019).CAS 

    Google Scholar 
    Altuntas, O., Dasgan, H. Y. & Akhoundnejad, Y. Silicon-induced salinity tolerance improves photosynthesis, leaf water status, membrane stability, and growth in pepper (Capsicum annuum L.). HortScience 53, 1820–1826 (2018).CAS 

    Google Scholar 
    Coskun, D. et al. The controversies of silicon’s role in plant biology. New Phytol. 221, 67–85 (2019).PubMed 

    Google Scholar 
    Jiang, M. Y. et al. An “essential herbal medicine”-licorice: A review of phytochemicals and its effects in combination preparations. J. Ethnopharmacol. 249, 14 (2020).
    Google Scholar 
    Zhang, X. Y. et al. Inhibition effect of glycyrrhiza polysaccharide (GCP) on tumor growth through regulation of the gut microbiota composition. J. Pharmacol. Sci. 137, 324–332 (2018).CAS 
    PubMed 

    Google Scholar 
    Baltina, L. A. et al. Glycyrrhetinic acid derivatives as Zika virus inhibitors: Synthesis and antiviral activity in vitro. Bioorg. Med. Chem. 41, 116204 (2021).CAS 
    PubMed 

    Google Scholar 
    Zhao, Z. Y. et al. Glycyrrhizic ccid nanoparticles as antiviral and anti-inflammatory agents for COVID-19 treatment. ACS Appl. Mater. Interfaces 13, 20995–21006 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lu, J. H., Lv, X., Wu, L. & Li, X. Y. Germination responses of three medicinal licorices to saline environments and their suitable ecological regions. Acta Pratacul. Sin. 22, 198–205 (2013).
    Google Scholar 
    Geng, G. Q. & Xie, X. R. Effect of drought and salt stress on the physiological and biochemical characteristics of Glycyrrhiza uralensis. Pratacult. Sci. 35, 113–120 (2018).
    Google Scholar 
    Cui, J. J., Zhang, X. H., Li, Y. T., Zhou, D. & Zhang, E. H. Effect of silicon addition on seedling morphological and physiological indicators of Glycyrrhiza uralensis under salt stress. Acta Pratacul. Sin. 24, 214–220 (2015).
    Google Scholar 
    Zhang, W. J. et al. Silicon alleviates salt and drought stress of Glycyrrhiza uralensis plants by improving photosynthesis and water status. Biol. Plant. 64, 302–313 (2020).CAS 

    Google Scholar 
    Zhang, W. J. et al. Silicon promotes growth and root yield of Glycyrrhiza uralensis under salt and drought stresses through enhancing osmotic adjustment and regulating antioxidant metabolism. Crop Prot. 107, 1–11 (2018).
    Google Scholar 
    Chen, D. Q. et al. Silicon moderated the K deficiency by improving the plant-water status in sorghum. Sci. Rep. 6, 14 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Cui, J. J., Zhang, E. H., Zhang, X. H. & Wang, Q. Silicon alleviates salinity stress in licorice (Glycyrrhiza uralensis) by regulating carbon and nitrogen metabolism. Sci. Rep. 11, 12 (2021).
    Google Scholar 
    Lichtenthaler, H. K. & Wellburn, A. R. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Analysis 11, 591–592 (1983).CAS 

    Google Scholar 
    Yan, K., Wu, C. W., Zhang, L. H. & Chen, X. B. Contrasting photosynthesis and photoinhibition in tetraploid and its autodiploid honeysuckle (Lonicera japonica Thunb.) under salt stress. Front. Plant Sci. 6, 9 (2015).
    Google Scholar 
    Li, H. S. Principles and Techniques of Plant Physiological and Biochemical Experiments (Higher Education Press, 2000).
    Google Scholar 
    Bradford, M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248–254 (1976).CAS 
    PubMed 

    Google Scholar 
    Lutts, S., Kinet, J. M. & Bouharmont, J. NaCl-induced senescence in leaves of rice (Oryza sativa L) cultivars differing in salinity resistance. Ann. Bot. 78, 389–398 (1996).CAS 

    Google Scholar 
    Havir, E. A. & Mchale, N. A. Biochemical and developmental characterization of multiple forms of catalase in tobacco leaves. Plant Physiol. 84, 450–455 (1987).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rizwan, M. et al. Mechanisms of silicon-mediated alleviation of drought and salt stress in plants: A review. Environ. Sci. Pollut. Res. 22, 15416–15431 (2015).CAS 

    Google Scholar 
    Al-Huqail, A. A., Alqarawi, A. A., Hashem, A., Malik, J. A. & Abd Allah, E. F. Silicon supplementation modulates antioxidant system and osmolyte accumulation to balance salt stress in Acacia gerrardii Benth. Saudi J. Biol. Sci. 26, 1856–1864 (2019).CAS 
    PubMed 

    Google Scholar 
    Hurtado, A. C. et al. Silicon application induces changes C:N: P stoichiometry and enhances stoichiometric homeostasis of sorghum and sunflower plants under salt stress. Saudi J. Biol. Sci. 27, 3711–3719 (2020).
    Google Scholar 
    Zhang, X. H., Zhang, W. J., Lang, D. Y., Cui, J. J. & Li, Y. T. Silicon improves salt tolerance of Glycyrrhiza uralensis Fisch by ameliorating osmotic and oxidative stresses and improving phytohormonal balance. Environ. Sci. Pollut. Res. 25, 25916–25932 (2018).CAS 

    Google Scholar 
    Liang, W. J., Ma, X. L., Wan, P. & Liu, L. Y. Plant salt-tolerance mechanism: A review. Biochem. Biophys. Res. Commun. 495, 286–291 (2018).CAS 
    PubMed 

    Google Scholar 
    Tester, M. & Davenport, R. Na+ tolerance and Na+ transport in higher plants. Ann. Bot. 91, 503–527 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khan, W. U. D. et al. Silicon nutrition mitigates salinity stress in maize by modulating ion accumulation, photosynthesis, and antioxidants. Photosynthetica 56, 1047–1057 (2018).CAS 

    Google Scholar 
    Zahoor, R. et al. Potassium fertilizer improves drought stress alleviation potential in cotton by enhancing photosynthesis and carbohydrate metabolism. Environ. Exp. Bot. 137, 73–83 (2017).CAS 

    Google Scholar 
    Hurtado, A. C. et al. Silicon alleviates sodium toxicity in sorghum and sunflower plants by enhancing ionic homeostasis in roots and shoots and increasing dry matter accumulation. SILICON 13, 475–486 (2021).CAS 

    Google Scholar 
    Yan, G. C. et al. Silicon alleviates salt stress-induced potassium deficiency by promoting potassium uptake and translocation in rice (Oryza sativa L.). J. Plant Physiol. 258, 7 (2021).
    Google Scholar 
    Dhiman, P. et al. Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiol. Biochem. 162, 110–123 (2021).CAS 
    PubMed 

    Google Scholar 
    Bosnic, P., Bosnic, D., Jasnic, J. & Nikolic, M. Silicon mediates sodium transport and partitioning in maize under moderate salt stress. Environ. Exp. Bot. 155, 681–687 (2018).CAS 

    Google Scholar 
    Alamri, S. et al. Silicon-induced postponement of leaf senescence is accompanied by modulation of antioxidative defense and ion homeostasis in mustard (Brassica juncea) seedlings exposed to salinity and drought stress. Plant Physiol. Biochem. 157, 47–59 (2020).CAS 
    PubMed 

    Google Scholar 
    Ahmad, P. et al. Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front. Plant Sci. 7, 1–11 (2016).
    Google Scholar 
    Zhu, Y. X. et al. Silicon confers cucumber resistance to salinity stress through regulation of proline and cytokinins. Plant Physiol. Biochem. 156, 209–220 (2020).CAS 
    PubMed 

    Google Scholar  More

  • in

    First titanosaur dinosaur nesting site from the Late Cretaceous of Brazil

    Carballido, J. L. et al. A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs. Proc. R. Soc. B Biol. Sci. 284, 20171219 (2017).
    Google Scholar 
    Hechenleitner, E. M. et al. Two Late Cretaceous sauropods reveal titanosaurian dispersal across South America. Commun. Biol. 3, 622 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Otero, A., Carballido, J. L., Salgado, L., Canudo, I. & Garrido, A. C. Report of a giant titanosaur sauropod from the Upper Cretaceous of Neuquén Province, Argentina. Cretaceous Res. 122, 104754 (2021).
    Google Scholar 
    Sander, P. M. et al. Biology of the sauropod dinosaurs: The evolution of gigantism. Biol. Rev. 86, 117–155 (2011).PubMed 

    Google Scholar 
    Gorscak, E. & O’Connor, P. M. A new African titanosaurian sauropod dinosaur from the middle Cretaceous Galula Formation (Mtuka Member), Rukwa Rift Basin, southwestern Tanzania. PLoS One 14, e0211412 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Poropat, S. F. et al. Second specimen of the Late Cretaceous Australian sauropod dinosaur Diamantinasaurus matildae provides new anatomical information on the skull and neck of early titanosaurs. Zool. J. Linn. Soc. 192, 610–674 (2021).
    Google Scholar 
    González Riga, B. J. et al. An overview of the appendicular skeletal anatomy of South American titanosaurian sauropods, with definition of a newly recognized clade. An. Acad. Bras. Ciênc. 91, e20180374 (2019).
    Google Scholar 
    Gorscak, E. & O’connor, P. M. Time-calibrated models support congruency between Cretaceous continental rifting and titanosaurian evolutionary history. Biol. Lett. 12, 20151047 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Pérez Moreno, A., Carballido, J. L., Otero, A., Salgado, L. & Calvo, J. O. The axial skeleton of Rinconsaurus caudamirus (Sauropoda: Titanosauria) from the Late Cretaceous of Patagonia, Argentina. Ameghiniana 59, 1–46 (2022).
    Google Scholar 
    Chiappe, L. M., Jackson, F., Coria, R. A. & Dingus, L. Nesting titanosaurs from Auca Mahuevo and adjacent sites. In The Sauropods: Evolution and Paleobiology (eds Curry Rogers, K. A. & Wilson, J. A.) 285–302 (University of California Press, 2005).
    Google Scholar 
    Hechenleitner, E. M., Grellet-Tinner, G. & Fiorelli, L. E. What do giant titanosaur dinosaurs and modern Australasian megapodes have in common?. PeerJ 3, e1341 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Cojan, I., Renard, M. & Emmanuel, L. Palaeoenvironmental reconstruction of dinosaur nesting sites based on a geochemical approach to eggshells and associated palaeosols (Maastrichtian, Provence Basin, France). Palaeogeogr. Palaeoclimatol. Palaeoecol. 191, 111–138 (2003).
    Google Scholar 
    Grellet-Tinner, G., Codrea, V., Folie, A., Higa, A. & Smith, T. First evidence of reproductive adaptation to “island effect” of a dwarf Cretaceous Romanian titanosaur, with embryonic integument in ovo. PLoS One 7(3), e32051 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khosla, A. & Lucas, S. Late Cretaceous dinosaur eggs and eggshells of peninsular India. Top. Geobiol. 51, 1–295 (2020).
    Google Scholar 
    Vila, B., Galobart, A., Oms, O., Poza, B. & Bravo, A. M. Assessing the nesting strategies of Late Cretaceous titanosaurs: 3-D clutch geometry from a new megaloolithid egg site. Lethaia 43, 197–208 (2009).
    Google Scholar 
    Chiappe, L. M. et al. Sauropod dinosaur embryos from the Late Cretaceous of Patagonia. Nature 396, 258–261 (1998).ADS 
    CAS 

    Google Scholar 
    Salgado, L. et al. Upper Cretaceous dinosaur nesting sites of Río Negro (Salitral Ojo de Agua and Salinas de Trapalco-Salitral de Santa Rosa), Northern Patagonia, Argentina. Cretaceous Res. 28, 392–404 (2007).
    Google Scholar 
    Salgado, L., Magalhães Ribeiro, C. M., García, R. A. & Fernández, M. A. Late Cretaceous megaloolithid eggs from Salitral de Santa Rosa (Río Negro, Patagonia, Argentina): Inferences on the titanosaurian reproductive biology. Ameghiniana 46, 605–620 (2009).
    Google Scholar 
    Grellet-Tinner, G. & Fiorelli, L. E. A new Argentinean nesting site showing neosauropod dinosaur reproduction in a Cretaceous hydrothermal environment. Nat. Commun. 1, 32 (2010).ADS 
    PubMed 

    Google Scholar 
    Hechenleitner, E. M. et al. A new Upper Cretaceous titanosaur nesting site from La Rioja (NW Argentina), with implications for titanosaur nesting strategies. Palaeontology 59, 433–446 (2016).
    Google Scholar 
    Kundrát, M. et al. Specialized craniofacial anatomy of a titanosaurian embryo from Argentina. Curr. Biol. 30, 4263–4269 (2020).PubMed 

    Google Scholar 
    Chiappe, L. M., Salgado, L. & Coria, R. A. Embryonic skulls of titanosaur sauropod dinosaurs. Science 293, 2444–2446 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Grellet-Tinner, G., Chiappe, L. M., Norell, M. & Bottjer, D. Dinosaur eggs and nesting behaviors: A paleobiological investigation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 232, 294–321 (2006).
    Google Scholar 
    Coria, R. A. & Chiappe, L. M. Embryonic skin from Late Cretaceous sauropods (Dinosauria) of Auca Mahuevo, Patagonia, Argentina. J. Paleontol. 81, 1528–1532 (2007).
    Google Scholar 
    Leuzinger, L. et al. Life and reproduction of titanosaurians: Isotopic hallmark of mid-palaeolatitude eggshells and its significance for body temperature, diet, and nesting. Chem. Geol. 583, 120452 (2021).ADS 
    CAS 

    Google Scholar 
    Faccio, G. Dinosaurian eggs from the upper Cretaceous of Uruguay. In Dinosaur Eggs and Babies (eds Carpenter, K. et al.) 47–53 (Cambridge University Press, 1994).
    Google Scholar 
    Vianey-Liaud, M., Hirsch, K., Sahni, A. & Sigé, B. Late Cretaceous Peruvian eggshells and their relationships with Laurasian and Eastern Gondwanian material. Geobios 30, 75–90 (1997).
    Google Scholar 
    Magalhães Ribeiro, C. M. Microstructural analysis of dinosaur eggshells from Bauru Basin (Late Cretaceous), Minas Gerais, Brasil. In First International Symposium on Dinosaur Eggs and Babies (eds Bravo, A. M. & Reyes, T.) 117–122 (Isona I Conca Dellà Catalonia, 2000).
    Google Scholar 
    Magalhães Ribeiro, C. M. Ovo e fragmentos de cascas de ovos de dinossauros, provenientes de região de Peirópolis, Uberaba, Minas Gerais. Arq. Mus. Nac. 60, 223–228 (2002).
    Google Scholar 
    Grellet-Tinner, G. & Zaher, H. Taxonomic identification of the Megaloolithidae egg and eggshells from Cretaceous Bauru Basin (Minas Gerais, Brazil): Comparison with the Auca Mahuevo (Argentina) titanosaurid eggs. Papéis Avulsos Zool. 47, 105–112 (2007).
    Google Scholar 
    Martinelli, A. G. & Teixeira, V. P. A. The Late Cretaceous vertebrate record from the Bauru Group in the Triângulo Mineiro, southeastern Brazil. Bol. Geol. Minero 126, 129–158 (2015).
    Google Scholar 
    Soares, M. V. T. et al. Sedimentology of a distributive fluvial system: The Serra da Galga Formation, a new lithostratigraphic unit (Upper Cretaceous, Bauru Basin, Brazil). Geol. J. 56, 951–975 (2021).
    Google Scholar 
    Soares, M. V. T. et al. Landscape and depositional controls on palaeosols of a distributive fluvial system (Upper Cretaceous, Brazil). Sedim. Geol. 409, 105774 (2020).
    Google Scholar 
    Martinelli, A. G. et al. Palaeoecological implications of an Upper Cretaceous tetrapod burrow (Bauru Basin; Peirópolis, Minas Gerais, Brazil). Palaeogeogr. Palaeoclimatol. Palaeoecol. 528, 147–159 (2019).
    Google Scholar 
    Grellet-Tinner, G., Chiappe, L. M. & Coria, R. A. Eggs of titanosaurid sauropods from the Upper Cretaceous of Auca Mahuevo (Argentina). Can. J. Earth Sci. 41, 949–960 (2004).ADS 

    Google Scholar 
    Wilson, J. A., Mohabey, D. M., Peters, S. E. & Head, J. J. Predation upon hatchling dinosaurs by a new snake from the Late Cretaceous of India. PLoS Biol. 8, e1000322 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Garcia, G. & Vianey-Liaud, M. Nouvelles données sur les coquilles d’œufs de dinosaures Megaloolithidae du Sud de la France: Systématique et variabilité intraspécifique. C. R. Acad. Sci. A. 332, 185–191 (2001).
    Google Scholar 
    Vianey-Liaud, M., Khosla, A. & Garcia, G. Relationships between European and Indian dinosaur eggs and eggshells of the oofamily Megaloolithidae. J. Vertebr. Paleontol. 23, 575–585 (2003).
    Google Scholar 
    Campos, D. A., Kellner, A. W. A., Bertini, R. J. & Santucci, R. M. On a titanosaurid (Dinosauria, Sauropoda) vertebral column from the Bauru Group, Late Cretaceous of Brazil. Arq. Mus. Nac. 63, 565–593 (2005).
    Google Scholar 
    Kellner, A. W. A., Campos, D. A. & Trotta, M. N. F. Description of a titanosaurid caudal series from the Bauru Group, Late Cretaceous of Brazil. Arq. Mus. Nac. 63, 529–564 (2005).
    Google Scholar 
    Machado, E. B., Avilla, L. S., Nava, W. R., Campos, D. A. & Kellner, A. W. A. A new titanosaur sauropod from the Late Cretaceous of Brazil. Zootaxa 3701, 301–321 (2013).PubMed 

    Google Scholar 
    Silva Junior, J. C. G. et al. Reassessment of Aeolosaurus maximus, a titanosaur dinosaur from the Late Cretaceous of Southeastern Brazil. Hist. Biol. 34, 402–411 (2022).
    Google Scholar 
    Bandeira, K. L. N. et al. A new giant Titanosauria (Dinosauria: Sauropoda) from the Late Cretaceous Bauru Group, Brazil. PLoS One 11, e0163373 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Pearce, J. M. Philopatry: A return to origins. Auk 124, 1085–1087 (2007).
    Google Scholar 
    Kokko, H. & López-Sepulcre, A. From individual dispersal to species ranges: Perspectives for a changing world. Science 313, 789–791 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Basilici, G., Hechenleitner, E. M., Fiorelli, L. E., Dal Bó, P. F. & Mountney, N. P. Preservation of titanosaur egg clutches in Upper Cretaceous cumulative palaeosols (Los Llanos Formation, La Rioja, Argentina). Palaeogeogr. Palaeoclimatol. Palaeoecol. 482, 83–102 (2017).
    Google Scholar 
    Mueller-Töwe, I. J., Sander, P. M., Schüller, H. & Thies, D. Hatching and infilling of dinosaur eggs as revealed by computed tomography. Palaeontogr. Abt. A 267, 119–168 (2002).
    Google Scholar 
    Paganelli, C. V. The physics of gas exchange across the avian eggshell. Am. Zool. 20, 329–338 (1980).
    Google Scholar 
    Grellet-Tinner, G., Fiorelli, L. E. & Salvador, R. B. Water vapor conductance of the Lower Cretaceous dinosaurian eggs from Sanagasta, La Rioja, Argentina: Paleobiological and paleoecological implications for South American faveoloolithid and megaloolithid eggs. Palaios 27, 35–47 (2012).ADS 

    Google Scholar 
    Grellet-Tinner, G. Phylogenetic interpretation of eggs and eggshells: Implications for phylogeny of Palaeognathae. Alcheringa 30, 141–182 (2006).
    Google Scholar 
    Mikhailov, K. E., Bray, E. S. & Hirsch, K. F. Parataxonomy of fossil egg remains (Veterovata): Principles and applications. J. Vertebr. Paleontol. 16, 763–769 (1996).
    Google Scholar 
    Nys, Y., Gautron, J., Garcia-Ruiz, J. M. & Hincke, M. T. Avian eggshell mineralization: Biochemical and functional characterization of matrix proteins. C. R. Palevol 3, 549–562 (2004).
    Google Scholar 
    Fernández, M. S., Passalacqua, K., Arias, J. I. & Arias, J. L. Partial biomimetic reconstitution of avian eggshell formation. J. Struct. Biol. 148, 1–10 (2004).PubMed 

    Google Scholar 
    Arias, J. L. & Fernández, M. S. Biomimetic processes through the study of mineralized shells. Mater. Charact. 50, 189–195 (2003).CAS 

    Google Scholar 
    Arias, J. L., Mann, K., Nys, Y., Garcia Ruiz, J. M. & Fernández, M. S. Eggshell growth and matrix macromolecules. In Handbook of Biomineralization (ed. Baeuerlein, E.) 309–328 (Wiley, 2007).
    Google Scholar 
    Chien, Y.-C., Hincke, M. T., Vali, H. & Mckee, M. D. Ultrastructural matrix–mineral relationships in avian eggshell, and effects of osteopontin on calcite growth in vitro. J. Struct. Biol. 163, 84–99 (2008).CAS 
    PubMed 

    Google Scholar 
    Hincke, M. T. et al. The eggshell: Structure, composition and mineralization. Front. Biosci. 17, 1266–1280 (2012).CAS 

    Google Scholar 
    Stapane, L. et al. Avian eggshell formation reveals a new paradigm for vertebrate mineralization via vesicular amorphous calcium carbonate. J. Biol. Chem. 295, 15853–15869 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Norell, M. A. et al. A theropod dinosaur embryo and the affinities of the Flaming Cliffs dinosaur eggs. Science 266, 779–782 (1994).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Araújo, R. et al. Filling the gaps of dinosaur eggshell phylogeny: Late Jurassic Theropod clutch with embryos from Portugal. Sci. Rep. 3, 1924 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xing, L. et al. An exquisitely preserved in-ovo theropod dinosaur embryo sheds light on avian-like prehatching postures. iScience 103516, 24 (2021).
    Google Scholar 
    Sato, T., Cheng, Y.-N., Wu, X.-C., Zelenitsky, D. K. & Hsiao, Y.-F. A pair of shelled eggs inside a female dinosaur. Science 308, 375 (2005).CAS 
    PubMed 

    Google Scholar 
    Norell, M. A., Clark, J. M. & Chiappe, L. M. A nesting dinosaur. Nature 378, 774–776 (1995).ADS 
    CAS 

    Google Scholar 
    Dong, Z. M. & Currie, P. J. On the discovery of an oviraptorid skeleton on a nest of eggs at Bayan Mandahu, Inner Mongolia, People’s Republic of China. Can. J. Earth Sci. 33, 631–636 (1996).ADS 

    Google Scholar  More

  • in

    The Chengjiang Biota inhabited a deltaic environment

    Hou, X., et al. The Cambrian fossils of Chengjiang, China: the flowering of early animal life. 316p., (Wiley Blackwell, Second Edition, 2017).Zhao, F., Zhu, M. & Hu, S. Community structure and composition of the Cambrian Chengjiang biota. Sci. China Earth Sci. 53, 1784–1799 (2010).ADS 

    Google Scholar 
    Yang, X. et al. A juvenile-rich palaeocommunity of the lower Cambrian Chengjiang biota sheds light on palaeo-boom or palaeo-bust environments. Nat. Ecol. Evol. 5, 1082–1090 (2021).PubMed 

    Google Scholar 
    Ma, X., Hou, X., Edgecombe, G. D. & Strausfeld, N. J. Complex brain and optic lobes in an early Cambrian arthropod. Nature 490, 258–261 (2012).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Saleh, F. et al. Taphonomic bias in exceptionally preserved biotas. Earth Planet. Sci. Lett. 529, 115873 (2020).CAS 

    Google Scholar 
    Saleh, F. et al. A novel tool to untangle the ecology and fossil preservation knot in exceptionally preserved biotas. Earth Planet. Sci. Lett. 569, 117061 (2021).CAS 

    Google Scholar 
    Harper, D. A. et al. The Sirius Passet Lagerstätte of North Greenland: a remote window on the Cambrian explosion. J. Geol. Soc. 176, 1023–1037 (2019).ADS 

    Google Scholar 
    Nanglu, K., Caron, J. B. & Gaines, R. R. The Burgess Shale paleocommunity with new insights from Marble Canyon, British Columbia. Paleobiology 46, 58–81 (2020).
    Google Scholar 
    Tanaka, G., Hou, X., Ma, X., Edgecombe, G. D. & Strausfeld, N. J. Chelicerate neural ground pattern in a Cambrian great appendage arthropod. Nature 502, 364–367 (2013).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Cong, P., Ma, X., Hou, X., Edgecombe, G. D. & Strausfeld, N. J. Brain structure resolves the segmental affinity of anomalocaridid appendages. Nature 513, 538–542 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Liu, Y., Ortega-Hernández, J., Zhai, D. & Hou, X. A reduced labrum in a Cambrian great-appendage euarthropod. Curr. Biol. 30, 3057–3061 (2020).CAS 
    PubMed 

    Google Scholar 
    Liu, Y. et al. Computed tomography sheds new light on the affinities of the enigmatic euarthropod Jianshania furcatus from the early Cambrian Chengjiang biota. BMC Evol. Biol. 20, 1–17 (2020).
    Google Scholar 
    Gabbott, S. E., Hou, X.-G., Norry, M. J. & Siveter, D. J. Preservation of Early Cambrian animals of the Chengjiang biota. Geology 32, 901–904 (2004).CAS 
    ADS 

    Google Scholar 
    Gaines, R. R. et al. Mechanism for Burgess Shale-type preservation. Proc. Natl. Acad. Sci. 109, 5180–5184 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Forchielli, A., Steiner, M., Kasbohm, J., Hu, S. & Keupp, H. Taphonomic traits of clay-hosted early Cambrian Burgess Shale-type fossil Lagerstätten in South China. Palaeogeogr, Palaeoclimatol. Palaeoecol. 398, 59–85 (2014).
    Google Scholar 
    Ma, X., Edgecombe, G. D., Hou, X., Goral, T. & Strausfeld, N. J. Preservational pathways of corresponding brains of a Cambrian euarthropod. Curr. Biol. 25, 2969–2975 (2015).CAS 
    PubMed 

    Google Scholar 
    Hammarlund, E. U. et al. Early Cambrian oxygen minimum zone-like conditions at Chengjiang. Earth Planet. Sci. Lett. 475, 160–168 (2017).CAS 
    ADS 

    Google Scholar 
    Qi, C. et al. Influence of redox conditions on animal distribution and soft-bodied fossil preservation of the Lower Cambrian Chengjiang Biota. Palaeogeogr. Palaeoclimatol. Palaeoecol. 507, 180–187 (2018).
    Google Scholar 
    Saleh, F., Daley, A. C., Lefebvre, B., Pittet, B. & Perrillat, J. P. Biogenic iron preserves structures during fossilization: a hypothesis: iron from decaying tissues may stabilize their morphology in the fossil record. BioEssays 42, 1900243 (2020).CAS 

    Google Scholar 
    Daley, A. C. et al. Insights into soft-part preservation from the Early Ordovician Fezouata Biota. Earth Sci. Rev. 213, 103464 (2021).
    Google Scholar 
    Pu, X. C., et al. Cambrian lithofacies, paleogeography and mineralization in south China, Geological Publishing House, Beijing, 191 p. (1992).Zhu, M. Y., Zhang, J. M. & Li, G. X. Sedimentary environments of the early Cambrian Chengjiang biota: sedimentology of the Yu’anshan Formation in Chengjiang County, eastern Yunnan. Acta Palaeontol. Sin. 40, 80–105 (2001).
    Google Scholar 
    Babcock, L. E. & Zhang, W. Stratigraphy, palaeontology, and depositional setting of the Chengjiang Lagerstätte (Lower Cambrian), Yunnan, China. Palaeoworld 13, 66–86 (2001).
    Google Scholar 
    Babcock, L. E., Zhang, W. & Leslie, S. A. The Chengjiang biota: record of the Early Cambrian diversification of life and clues to exceptional preservation of fossils. GSA Today 11, 4–9 (2001).
    Google Scholar 
    MacKenzie, L. A., Hofmann, M. H., Junyuan, C. & Hinman, N. W. Stratigraphic controls of soft-bodied fossil occurrences in the Cambrian Chengjiang Biota Lagerstätte, Maotianshan Shale, Yunnan Province, China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 420, 96–115 (2015).
    Google Scholar 
    Chen, J. Y. & Lindström, M. A lower Cambrian soft-bodied fauna from Chengjiang, Yunnan, China. Geologiska Föreningen i Stockholm Förhandlingar 113, 79–81 (1991).
    Google Scholar 
    Jin, Y. G., Wang, H. Y. & Wang, W. Palaeoecological aspect of branchiopods from Chiungchussu Formation of Early Cambrian Age, Eastern Yunnan, China. Palaeoecol. China 1, 25–47 (1991).CAS 

    Google Scholar 
    Hu, S. Taphonomy and palaeoecology of the Early Cambrian Chengjiang Biota from eastern Yunnan, China. Berl. Paläobiologische Abhandlungen 7, 189 (2005).ADS 

    Google Scholar 
    Schieber, J., Southard, J. & Thaisen, K. Accretion of mudstone beds from migrating floccule ripples. Science 318, 1760–1763 (2007).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Lamb, M. P., Myrow, P. M., Lukens, C., Houck, K. & Strauss, J. Deposits from wave-influenced turbidity currents: Pennsylvanian Minturn Formation, Colorado, USA. J. Sediment. Res. 78, 480–498 (2008).ADS 

    Google Scholar 
    Baas, J. H., Best, J. L., Peakall, J. & Wang, M. A phase diagram for turbulent, transitional, and laminar clay suspension flows. J. Sediment. Res. 79, 162–183 (2009).ADS 

    Google Scholar 
    Plint, A. G. & Macquaker, J. H. Bedload Transport of Mud Across a Wide, Storm-Influenced Ramp: Cenomanian–Turonian Kaskapau Formation, Western Canada Foreland Basin—Reply. J. Sediment. Res. 83, 1200–1201 (2013).
    Google Scholar 
    Bohacs, K. M., Lazar, O. R. & Demko, T. M. Parasequence types in shelfal mudstone strata—Quantitative observations of lithofacies and stacking patterns, and conceptual link to modern depositional regimes. Geology 42, 131–134 (2014).ADS 

    Google Scholar 
    Lazar, O. R., Bohacs, K. M., Macquaker, J. H., Schieber, J. & Demko, T. M. Capturing key attributes of fine-grained sedimentary rocks in outcrops, cores, and thin sections: nomenclature and description guidelines. J. Sediment. Res. 85, 230–246 (2015).CAS 
    ADS 

    Google Scholar 
    Wheatcroft, R. A. Oceanic flood sedimentation: a new perspective. Continent. Shelf Res. 20, 2059–2066 (2000).ADS 

    Google Scholar 
    Wright, L. D. & Friedrichs, C. T. Gravity-driven sediment transport on continental shelves: a status report. Continent. Shelf Res. 26, 2092–2107 (2006).ADS 

    Google Scholar 
    Bhattacharya, J. P. & MacEachern, J. A. Hyperpycnal rivers and prodeltaic shelves in the Cretaceous seaway of North America. J. Sediment. Res. 79, 184–209 (2009).ADS 

    Google Scholar 
    Ichaso, A. A. & Dalrymple, R. W. Tide-and wave-generated fluid mud deposits in the Tilje Formation (Jurassic), offshore Norway. Geology 37, 539–542 (2009).ADS 

    Google Scholar 
    Schieber, J. Experimental testing of the transport-durability of shale lithics and its implications for interpreting the rock record. Sediment. Geol. 331, 162–169 (2016).ADS 

    Google Scholar 
    Zavala, C. & Arcuri, M. Intrabasinal and extrabasinal turbidites: Origin and distinctive characteristics. Sediment. Geol. 337, 36–54 (2016).ADS 

    Google Scholar 
    Boulesteix, K., Poyatos-Moré, M., Hodgson, D. M., Flint, S. S. & Taylor, K. G. Fringe or background: characterizing deep-water mudstones beyond the basin-floor fan sandstone pinchout. J. Sediment. Res. 90, 1678–1705 (2020).ADS 

    Google Scholar 
    Dumas, S. & Arnott, R. W. C. Origin of hummocky and swaley cross-stratification—the controlling influence of unidirectional current strength and aggradation rate. Geology 34, 1073–1076 (2006).ADS 

    Google Scholar 
    Perillo, M. M. et al. A unified model for bedform development and equilibrium under unidirectional, oscillatory and combined‐flows. Sedimentology 61, 2063–2085 (2014).
    Google Scholar 
    Jelby, M. E., Grundvåg, S. A., Helland‐Hansen, W., Olaussen, S. & Stemmerik, L. Tempestite facies variability and storm‐depositional processes across a wide ramp: Towards a polygenetic model for hummocky cross‐stratification. Sedimentology 67, 742–781 (2020).
    Google Scholar 
    Collins, D. S., Johnson, H. D., Allison, P. A., Guilpain, P. & Damit, A. R. Coupled ‘storm‐flood’depositional model: application to the Miocene–Modern Baram Delta Province, north‐west Borneo. Sedimentology 64, 1203–1235 (2017).
    Google Scholar 
    Dillinger, A., Vaucher, R. & Haig, D. W. Refining the depositional model of the lower Permian Carynginia Formation in the northern Perth Basin: anatomy of an ancient mouth bar. Aust. J. Earth Sci. 69, 135–151 (2022).CAS 
    ADS 

    Google Scholar 
    Zavala, C. Hyperpycnal (over density) flows and deposits. J. Palaeogeogr. 9, 1–21 (2020).
    Google Scholar 
    Lin, W. & Bhattacharya, J. P. Storm‐flood‐dominated delta: a new type of delta in stormy oceans. Sedimentology 68, 1109–1136 (2021).
    Google Scholar 
    MacEachern, J. A., Raychaudhuri, I. & Pemberton, S. G. Stratigraphic applications of the Glossifungites ichnofacies: delineating discontinuities in the rock record. In Applications of Ichnology to Petroleum Exploration: a Core Workshop, ed. S.G. Pemberton. Soc. Sediment. Geol. Core Workshop 17, 169–198 (1992).
    Google Scholar 
    Hubbard, S. M. & Shultz, M. R. Deep burrows in submarine fan-channel deposits of the Cerro Toro Formation (Cretaceous), Chilean Patagonia: implications for firmground development and colonization in the deep sea. Palaios 23, 223–232 (2008).ADS 

    Google Scholar 
    Buatois, L. A. & Mángano, M. G. Ichnology: organism-substrate interactions in space and time. Cambridge University Press (2011).Droser, M. L., Jensen, S. & Gehling, J. G. Trace fossils and substrates of the terminal Proterozoic–Cambrian transition: implications for the record of early bilaterians and sediment mixing. Proc. Natl Acad. Sci. 99, 12572–12576 (2002).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Droser, M. L., Jensen, S. & Gehlîng, J. G. Development of early Palaeozoic ichnofabrics: evidence from shallow marine siliciclastics. Geological Society, London, Special Publications 228, 383–396 (2004).Macquaker, J. H., Bentley, S. J. & Bohacs, K. M. Wave-enhanced sediment-gravity flows and mud dispersal across continental shelves: Reappraising sediment transport processes operating in ancient mudstone successions. Geology 38, 947–950 (2010).ADS 

    Google Scholar 
    Myrow, P. M., Fischer, W. & Goodge, J. W. Wave-modified turbidites: combined-flow shoreline and shelf deposits, Cambrian, Antarctica. J. Sediment. Res. 72, 641–656 (2002).CAS 
    ADS 

    Google Scholar 
    Mackay, D. A. & Dalrymple, R. W. Dynamic mud deposition in a tidal environment: the record of fluid-mud deposition in the Cretaceous Bluesky Formation, Alberta, Canada. J. Sediment. Res. 81, 901–920 (2011).ADS 

    Google Scholar 
    Birgenheier, L. P., Horton, B., McCauley, A. D., Johnson, C. L. & Kennedy, A. A depositional model for offshore deposits of the lower Blue Gate Member, Mancos Shale, Uinta Basin, Utah, USA. Sedimentology 64, 1402–1438 (2017).
    Google Scholar 
    Lobza, V. & Schieber, J. Biogenic sedimentary structures produced by worms in soupy, soft muds; observations from the Chattanooga Shale (Upper Devonian) and experiments. J. Sediment. Res. 69, 1041–1049 (1999).ADS 

    Google Scholar 
    Savrda, C. E. & Bottjer, D. J. Trace-fossil model for reconstruction of paleo-oxygenation in bottom waters. Geology 14, 3–6 (1986).CAS 
    ADS 

    Google Scholar 
    Dashtgard, S. E., Snedden, J. W. & MacEachern, J. A. Unbioturbated sediments on a muddy shelf: hypoxia or simply reduced oxygen saturation? Palaeogeogr. Palaeoclimatol. Palaeoecol. 425, 128–138 (2015).
    Google Scholar 
    Dashtgard, S. E. & MacEachern, J. A. Unburrowed mudstones may record only slightly lowered oxygen conditions in warm, shallow basins. Geology 44, 371–374 (2016).ADS 

    Google Scholar 
    Pattison, S. A., Bruce Ainsworth, R. & Hoffman, T. A. Evidence of across‐shelf transport of fine‐grained sediments: turbidite‐filled shelf channels in the Campanian Aberdeen Member, Book Cliffs, Utah, USA. Sedimentology 54, 1033–1064 (2007).ADS 

    Google Scholar 
    Buatois, L. A. et al. Sedimentological and ichnological signatures of changes in wave, river and tidal influence along a Neogene tropical deltaic shoreline. Sedimentology 59, 1568–1612 (2012).CAS 
    ADS 

    Google Scholar 
    Vaucher, R. et al. Tectonic controls on late Cambrian-Early Ordovician deposition in Cordillera Oriental (Northwest Argentina). Int. J. Earth Sci. 109, 1897–1920 (2020).CAS 

    Google Scholar 
    Paz, M. et al. Bottomset and foreset sedimentary processes in the mixed carbonate-siliciclastic Upper Jurassic-Lower Cretaceous Vaca Muerta Formation, Picún Leufú Area, Argentina. Sediment. Geol. 389, 161–185 (2019).CAS 
    ADS 

    Google Scholar 
    Zavala, C. et al. Deltas: a new classification expanding Bates’s concepts. J. Palaeogeogr. 10, 1–15 (2021).
    Google Scholar 
    Davies, N. S. & Gibling, M. R. Cambrian to Devonian evolution of alluvial systems: the sedimentological impact of the earliest land plants. Earth-Sci. Rev. 98, 171–200 (2010).ADS 

    Google Scholar 
    McMahon, W. J. & Davies, N. S. Evolution of alluvial mudrock forced by early land plants. Science 359, 1022–1024 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    MacEachern, J. A., Bann, K. L., Bhattacharya, J. P. & Howell Jr, C. D. Ichnology of deltas: organism responses to the dynamic interplay of rivers, waves, storms, and tides. In River Deltas — Concepts, Models, and Examples: SEPM (eds Bhattacharya, J. P. & Giosan, L.), 49–85 (Special Publication, 2005).Buatois, L. A. & Mángano, M. G. Recurrent patterns and processes: the significance of ichnology in evolutionary paleoecology. In The trace-fossil record of major evolutionary events (eds Mángano, M. G. & Buatois, L. A.), Vol. 2, 449–473, Mesozoic and Cenozoic (Topics in Geobiology 40, 2016).Buatois, L. A. & Mángano, M. G. The other biodiversity record: Innovations in animal-substrate interactions through geologic time. GSA Today 28, 4–10 (2018).
    Google Scholar 
    Thayer, C. W. Biological bulldozers and the evolution of marine benthic communities. Science 203, 458–461 (1979).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Thayer C. W. Sediment-mediated biological disturbance and the evolution of the marine benthos. In: Tevesz M. J. S., McCall P. L. (eds) Biotic interactions in recent and fossil benthic communities. Plenum, Zeitschr (1983).Buatois, L. A., et al. The Mesozoic marine revolution. In The trace-fossil record of major evolutionary events, (eds Mángano, M. G. & Buatois, L. A.), Vol. 40, 19–134. Mesozoic and Cenozoic (Topics in Geobiology, 2016).Gougeon, R. C., Mángano, M. G., Buatois, L. A., Narbonne, G. M. & Laing, B. A. Early Cambrian origin of the shelf sediment mixed layer. Nat. Commun. 9, 1909 (2018).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Herbers, D. S., MacNaughton, R. B., Timmer, E. R., Gingras, M. K. & Hubbard, S. Sedimentology and ichnology of an Early-Middle Cambrian storm-influenced barred shoreface succession, Colville Hills, Northwest territories. Bull. Can. Petrol. Geol. 64, 538–554 (2016).
    Google Scholar 
    Jensen, S. Trace fossils from the Lower Cambrian Mickwitzia sandstone, south-central Sweden. Foss. Strat. 42, 1–111 (1997).
    Google Scholar 
    Mángano, M. G. & Buatois, L. A. Decoupling of body-plan diversification and ecological structuring during the Ediacaran-Cambrian transition: Evolutionary and geobiological feedbacks. Proc. R. Soc. B. 281, 1–9 (2014).
    Google Scholar 
    Gaines, R. R. Burgess Shale-type preservation and its distribution in space and time. In Reading and Writing of the Fossil Record: Preservational Pathways to Exceptional Fossilization, (eds Laflamme, M., Schiffbauer, J. D. & Darroch, S. A. F.) Vol. 20, 123–146 (Paleontol. Soc. Pap. 2014).Enright, O. G. B., Minter, N. J., Sumner, E. J., Mángano, M. G. & Buatois, L. A. Flume experiments reveal flows in the Burgess Shale can sample and transport organisms across substantial distances. Commun. Earth Environ. 2, 1–7 (2021).
    Google Scholar 
    Daily, B., Moore, P. S. & Rust, B. R. Terrestrial‐marine transition in the Cambrian rocks of Kangaroo Island, South Australia. Sedimentology 27, 379–399 (1980).ADS 

    Google Scholar 
    Buatois, L. A., Mángano, M. G. & Pattison, S. A. Ichnology of prodeltaic hyperpycnite–turbidite channel complexes and lobes from the Upper Cretaceous Prairie Canyon Member of the Mancos Shale, Book Cliffs, Utah, USA. Sedimentology 66, 1825–1860 (2019).
    Google Scholar 
    Serra, F., Balseiro, D., Vaucher, R. & Waisfeld, B. G. Structure of Trilobite communities along a delta-marine gradient (lower Ordovician; Northwestern Argentina). Palaios 36, 39–52 (2021).ADS 

    Google Scholar 
    Saleh, F. et al. Storm-induced community dynamics in the Fezouata Biota (Lower Ordovician, Morocco). Palaios 33, 535–541 (2018).ADS 

    Google Scholar 
    Saleh, F. et al. Large trilobites in a stress-free Early Ordovician environment. Geol. Mag. 158, 261–270 (2021).ADS 

    Google Scholar 
    Tabb, D. C. & Jones, A. C. Effect of Hurricane Donna on the aquatic fauna of North Florida Bay. Trans. Am. Fish. Soc. 91, 375–378 (1962).
    Google Scholar 
    Barry, J. P. & Dayton, P. K. Physical heterogeneity and the organization of marine communities. In Ecological heterogeneity pp. 270–320. (Springer, New York, NY 1991).Shu, D. G., Zhang, X. L. & Chen, L. Reinterpretation of Yunnanozoon as the earliest known hemichordate. Nature 380, 428–430 (1996).CAS 
    ADS 

    Google Scholar 
    Russell, M. P. Echinoderm responses to variation in salinity. Adv. Mar. Biol. 66, 171–212 (2013).PubMed 

    Google Scholar 
    Zhao, Y. et al. Kaili Biota: a taphonomic window on diversification of metazoans from the basal Middle Cambrian: Guizhou, China. Acta Geol. Sin. 79, 751–765 (2005).
    Google Scholar  More

  • in

    Paternal transmission of migration knowledge in a long-distance bird migrant

    Alerstam, T., Hedenström, A. & Åkesson, S. Long‐distance migration: evolution and determinants. Oikos 103, 247–260 (2003).Article 

    Google Scholar 
    Newton, I. The migration ecology of birds (Elsevier, London, 2008).Putman, N. F. et al. An inherited magnetic map guides ocean navigation in juvenile Pacific salmon. Curr. Biol. 24, 446–450 (2014).CAS 
    Article 

    Google Scholar 
    Jesmer, B. R. et al. Is ungulate migration culturally transmitted? Evidence of social learning from translocated animals. Science 361, 1023–1025 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Milner-Gulland, E. J., Fryxell, J. M. & Sinclair, A. R. (Eds.) Animal migration: a synthesis (Oxford University Press, New York, 2011).Conradt, L. & Roper, T. J. Consensus decision making in animals. Trends Ecol. Evol. 20, 449–456 (2005).Article 

    Google Scholar 
    Couzin, I. D., Krause, J., Franks, N. R. & Levin, S. A. Effective leadership and decision-making in animal groups on the move. Nature 433, 513–516 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Vansteelant, W. M. G., Kekkonen, J. & Byholm, P. Wind conditions and geography shape the first outbound migration of juvenile honey buzzards and their distribution across sub-Saharan Africa. Proc. R. Soc. B 284, 20170387 (2017).Article 

    Google Scholar 
    Flack, A., Nagy, M., Fiedler, W., Couzin, I. D. & Wikelski, M. From local collective behavior to global migratory patterns in white storks. Science 360, 911–914 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Chernetsov, N., Berthold, P. & Querner, U. Migratory orientation of first-year white storks (Ciconia ciconia): inherited information and social interactions. J. Exp. Biol. 207, 937–943 (2004).Article 

    Google Scholar 
    Mueller, T., O’Hara, R. B., Converse, S. J., Urbanek, R. P. & Fagan, W. F. Social learning of migratory performance. Science 341, 999–1002 (2013).ADS 
    CAS 
    Article 

    Google Scholar 
    Whiten, A. Cultural evolution in animals. Annu. Rev. Ecol. Evol. Syst. 50, 27–48 (2019).Article 

    Google Scholar 
    Whitehead, H. & Rendell, L. The Cultural Lives of Whales and Dolphins (Chicago University Press, Chicago, 2015).Franks, N. R. & Richardson, T. Teaching in tandem-running ants. Nature 439, 153–153 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Thornton, A. & McAuliffe, K. Teaching in wild meerkats. Science 313, 227–229 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Cramp, S. (Ed.) The birds of the Western Palearctic. Vol. IV. Terns to woodpeckers (Oxford University Press, New York, 1985).Méndez, V. et al. Paternal effects in the initiation of migratory behaviour in birds. Sci. Rep. 11, 2782 (2021).ADS 
    Article 

    Google Scholar 
    Olson, V. A., Liker, A., Freckleton, R. P. & Székely, T. Parental conflict in birds: comparative analyses of offspring development, ecology and mating opportunities. Proc. R. Soc. B 275, 301–307 (2008).CAS 
    Article 

    Google Scholar 
    Ledwoń, M. & Neubauer, G. Offspring desertion and parental care in the Whiskered Tern Chlidonias hybrida. Ibis 159, 860–872 (2017).Article 

    Google Scholar 
    Arnqvist, G. & Rowe, L. Sexual conflict (Princeton University Press, New York, 2005).Goodenough, K. S. & Patton, R. T. Satellite telemetry reveals strong fidelity to migration routes and wintering grounds for the gull-billed tern (Gelochelidon nilotica). Waterbirds 42, 400–410 (2019).Article 

    Google Scholar 
    Gu, Z. et al. Climate-driven flyway changes and memory-based long-distance migration. Nature 591, 259–264 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Baert, J. M. et al. Resource predictability drives interannual variation in migratory behavior in a long-lived bird. Behav. Ecol. arab132, https://doi.org/10.1093/beheco/arab132 (2021).Papageorgiou, D. & Farine, D. R. Group size and composition influence collective movement in a highly social terrestrial bird. eLife 9, e59902 (2020).CAS 
    Article 

    Google Scholar 
    Caro, T. M. & Hauser, M. D. Is there teaching in nonhuman animals? Q. Rev. Biol. 67, 151–174 (1992).CAS 
    Article 

    Google Scholar 
    Thornton, A. & Raihani, N. J. The evolution of teaching. Anim. Behav. 75, 1823–1836 (2008).Article 

    Google Scholar 
    Riedman, M. L. The evolution of alloparental care and adoption in mammals and birds. Q. Rev. Biol. 57, 405–435 (1982).Article 

    Google Scholar 
    Sheppard, C. E. et al. Decoupling of genetic and cultural inheritance in a wild mammal. Curr. Biol. 28, 1846–1850 (2018).CAS 
    Article 

    Google Scholar 
    Åkesson, S. & Helm, B. Endogenous programs and flexibility in bird migration. Front. Ecol. Evol. 8, 1–20 (2020).Article 

    Google Scholar 
    Sasaki, T. & Biro, D. Cumulative culture can emerge from collective intelligence in animal groups. Nat. Commun. 8, 1–6 (2017).ADS 
    Article 

    Google Scholar 
    Whiten, A., Ayala, F. J., Feldman, M. W. & Laland, K. N. The extension of biology through culture. Proc. Natl Acad. Sci. USA 114, 7775–7781 (2017).CAS 
    Article 

    Google Scholar 
    Aplin, L. M. Culture and cultural evolution in birds: a review of the evidence. Anim. Behav. 147, 179–187 (2019).Article 

    Google Scholar 
    Laland, K. N., Toyokawa, W. & Oudman, T. Animal learning as a source of developmental bias. Evol. Dev. 22, 126–142 (2020).Article 

    Google Scholar 
    Sergio, F. et al. Individual improvements and selective mortality shape lifelong migratory performance. Nature 515, 410–413 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Guttal, V. & Couzin, I. D. Social interactions, information use, and the evolution of collective migration. Proc. Natl Acad. Sci. USA 107, 16172–16177 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Oudman, T. et al. Young birds switch but old birds lead: how barnacle geese adjust migratory habits to environmental change. Front. Ecol. Evol. 7, 106–120 (2020).Article 

    Google Scholar 
    Pearson, R. G. et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Chang 4, 217–221 (2014).ADS 
    Article 

    Google Scholar 
    Vickery, J. A. The decline of Afro-Palaearctic migrants and an assessment of potential causes. Ibis 156, 1–22 (2014).Article 

    Google Scholar 
    Thaxter, C. B. et al. A trial of three harness attachment methods and their suitability for long-term use on Lesser Black-backed Gulls and Great Skuas. Ringing Migr. 29, 65–76 (2014).Article 

    Google Scholar 
    Byholm, P., Beal, M., Isaksson, N., Lötberg, U. & Åkesson, S. Data from: paternal transmission of migration knowledge in a long-distance bird migrant. Movebank Data Repos. https://doi.org/10.5441/001/1.352qf1cv (2022).Article 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, Vienna, 2020). https://www.R-project.org/. More

  • in

    Measuring protected-area effectiveness using vertebrate distributions from leech iDNA

    This section provides an overview of methods. The Supplementary Information provides additional detailed descriptions of the leech collections, laboratory processing, bioinformatics pipeline, and site-occupancy modelling. Code for our bioinformatics pipeline is available at Ji72 and Yu73. Code for our site-occupancy modelling and analysis is available at Baker et al.74.Leech collectionsSamples were collected during the rainy season, from July to September 2016, by park rangers from the Ailaoshan Forestry Bureau. The nature reserve is divided into 172 non-overlapping patrol areas defined by the Yunnan Forestry Survey and Planning Institute. These areas range in size from 0.5 to 12.5 km2 (mean 3.9 ± sd 2.5 km2), in part reflecting accessibility (smaller areas tend to be more rugged). These patrol areas pre-existed our study, and are used in the administration of the reserve. The reserve is divided into six parts, which are managed by six cities or autonomous counties (NanHua, ChuXiong, JingDong, ZhenYuan, ShuangBai, XinPing) which assign patrol areas to the villages within their jurisdiction based on proximity. The villages establish working groups to carry out work within the patrol areas. Thus, individual park rangers might change every year, but the patrol areas and the villages responsible for them are fixed.Each ranger was supplied with several small bags containing tubes filled with RNAlater preservative. Rangers were asked to place any leeches they could collect opportunistically during their patrols (e.g. from the ground or clothing) into the tubes, in exchange for a one-off payment of RMB 300 ( ~USD 45) for participation, plus RMB 100 if they caught one or more leeches. Multiple leeches could be placed into each tube, but the small tube sizes generally required the rangers to use multiple tubes for their collections.A total of 30,468 leeches were collected in 3 months by 163 rangers across all 172 patrol areas. When a bag of tubes contained  More

  • in

    Spatio-temporal patterns of multi-trophic biodiversity and food-web characteristics uncovered across a river catchment using environmental DNA

    Whittaker, R. H. Vegetation of the Siskiyou mountains, Oregon and California. Ecol. Monogr. 30, 279–338 (1960).
    Google Scholar 
    Wilson, R. J., Thomas, C. D., Fox, R., Roy, D. B. & Kunin, W. E. Spatial patterns in species distributions reveal biodiversity change. Nature 432, 393–396 (2004).CAS 
    PubMed 

    Google Scholar 
    Newbold, T. et al. Global effects of land use on local terrestrial biodiversity. Nature 520, 45–50 (2015).CAS 
    PubMed 

    Google Scholar 
    Ings, T. C. et al. Ecological networks—beyond food webs. J. Anim. Ecol. 78, 253–269 (2009).PubMed 

    Google Scholar 
    Dunne, J. A. & Williams, R. J. Cascading extinctions and community collapse in model food webs. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 364, 1711–1723 (2009).
    Google Scholar 
    Leclère, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551–556 (2020).PubMed 

    Google Scholar 
    Vellend, M. The Theory of Ecological Communities Vol. 57 229 (Princeton University Press, 2016).Altermatt, F. Diversity in riverine metacommunities: a network perspective. Aquat. Ecol. 47, 365–377 (2013).
    Google Scholar 
    Peterson, E. E. et al. Modelling dendritic ecological networks in space: an integrated network perspective. Ecol. Lett. 16, 707–719 (2013).PubMed 

    Google Scholar 
    Tonkin, J. D. et al. The role of dispersal in river network metacommunities: patterns, processes, and pathways. Freshw. Biol. 63, 141–163 (2018).
    Google Scholar 
    Muneepeerakul, R. et al. Neutral metacommunity models predict fish diversity patterns in Mississippi-Missouri basin. Nature 453, 220–222 (2008).CAS 
    PubMed 

    Google Scholar 
    Besemer, K. et al. Headwaters are critical reservoirs of microbial diversity for fluvial networks. Proc. Biol. Sci. 280, 20131760 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Finn, D. S., Bonada, N., Múrria, C. & Hughes, J. M. Small but mighty: headwaters are vital to stream network biodiversity at two levels of organization. J. North Am. Benthol. Soc. 30, 963–980 (2011).
    Google Scholar 
    Altermatt, F., Seymour, M. & Martinez, N. River network properties shape α-diversity and community similarity patterns of aquatic insect communities across major drainage basins. J. Biogeogr. 40, 2249–2260 (2013).
    Google Scholar 
    Harvey, E., Gounand, I., Fronhofer, E. A. & Altermatt, F. Disturbance reverses classic biodiversity predictions in river-like landscapes. Proc. R. Soc. B: Biol. Sci. 285, 20182441 (2018).
    Google Scholar 
    Tylianakis, J. M., Laliberté, E., Nielsen, A. & Bascompte, J. Conservation of species interaction networks. Biol. Conserv. 143, 2270–2279 (2010).
    Google Scholar 
    Thompson, R. M. et al. Food webs: reconciling the structure and function of biodiversity. Trends Ecol. Evol. 27, 689–697 (2012).PubMed 

    Google Scholar 
    Woodward, G. & Hildrew, A. G. Food web structure in riverine landscapes. Freshw. Biol. 47, 777–798 (2002).
    Google Scholar 
    Williams, R. J. & Martinez, N. D. Limits to trophic levels and omnivory in complex food webs: theory and data. Am. Nat. 163, 458–468 (2004).PubMed 

    Google Scholar 
    Thompson, R. M. & Townsend, C. R. The effect of seasonal variation on the community structure and food-web attributes of two streams: implications for food-web science. Oikos 87, 75–88 (1999).
    Google Scholar 
    Wood, S. A., Russell, R., Hanson, D., Williams, R. J. & Dunne, J. A. Effects of spatial scale of sampling on food web structure. Ecol. Evol. 5, 3769–3782 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Tylianakis, J. M. & Morris, R. J. Ecological networks across environmental gradients. Annu. Rev. Ecol., Evolution, Syst. 48, 25–48 (2017).
    Google Scholar 
    Romanuk, T. N. et al. The structure of food webs along river networks. Ecography 29, 3–10 (2006).
    Google Scholar 
    Olivier, P. et al. Exploring the temporal variability of a food web using long‐term biomonitoring data. Ecography 42, 2107–2121 (2019).
    Google Scholar 
    Poisot, T., Canard, E., Mouillot, D., Mouquet, N. & Gravel, D. The dissimilarity of species interaction networks. Ecol. Lett. 15, 1353–1361 (2012).PubMed 

    Google Scholar 
    Delmas, E. et al. Analysing ecological networks of species interactions. Biol. Rev. Camb. Philos. Soc. https://doi.org/10.1111/brv.12433 (2018).Article 
    PubMed 

    Google Scholar 
    Tavares-Cromar, A. F. & Williams, D. D. The importance of temporal resolution in food web analysis: Evidence from a detritus-based stream. Ecol. Monogr. 66, 91–113 (1996).
    Google Scholar 
    Poisot, T., Stouffer, D. B. & Gravel, D. Beyond species: why ecological interaction networks vary through space and time. Oikos 124, 243–251 (2015).
    Google Scholar 
    Thomsen, P. F. & Willerslev, E. Environmental DNA—an emerging tool in conservation for monitoring past and present biodiversity. Biol. Conserv. 183, 4–18 (2015).
    Google Scholar 
    Deiner, K., Fronhofer, E. A., Mächler, E., Walser, J.-C. & Altermatt, F. Environmental DNA reveals that rivers are conveyer belts of biodiversity information. Nat. Commun. 7, 12544 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dunne, J. A. In Ecological Networks: Linking Structure and Dynamics (eds. Pascual, J. A. & Dunne, J. A.) 27–86 (University Press, 2006).Neff, F. et al. Changes in plant-herbivore network structure and robustness along land-use intensity gradients in grasslands and forests. Sci Adv 7, eabf3985 (2021).O’Connor, M. J. et al. Unveiling the food webs of tetrapods across Europe through the prism of the Eltonian niche. J. Biogeogr. 47, 181–192 (2020).
    Google Scholar 
    Pellissier, L. et al. Comparing species interaction networks along environmental gradients. Biol. Rev. Camb. Philos. Soc. 93, 785–800 (2018).PubMed 

    Google Scholar 
    Saravia, L. A. et al. Ecological network assembly: how the regional metaweb influences local food webs. BioRxiv, https://doi.org/10.1101/340430 (2021).Blackman, R. C. et al. Mapping biodiversity hotspots of fish communities in subtropical streams through environmental DNA. Sci. Rep. 4, e65352 (2021).
    Google Scholar 
    Baselga, A. & Orme, C. D. L. betapart: an R package for the study of beta diversity: Betapart package. Methods Ecol. Evol. 3, 808–812 (2012).
    Google Scholar 
    Seymour, M. et al. Executing multi-taxa eDNA ecological assessment via traditional metrics and interactive networks. Sci. Total Environ. 729, 138801 (2020).CAS 
    PubMed 

    Google Scholar 
    D’Alessandro, S. & Mariani, S. Sifting environmental DNA metabarcoding data sets for rapid reconstruction of marine food webs. Fish Fish 22, 822–833 (2021).
    Google Scholar 
    Zhang, Y. et al. Holistic pelagic biodiversity monitoring of the Black Sea via eDNA metabarcoding approach: From bacteria to marine mammals. Environ. Int. 135, 105307 (2020).PubMed 

    Google Scholar 
    Altermatt, F. et al. Uncovering the complete biodiversity structure in spatial networks: the example of riverine systems. Oikos 129, 607–618 (2020).
    Google Scholar 
    Widder, S. et al. Fluvial network organization imprints on microbial co-occurrence networks. Proc. Natl Acad. Sci. USA 111, 12799–12804 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seymour, M. et al. Environmental DNA provides higher resolution assessment of riverine biodiversity and ecosystem function via spatio-temporal nestedness and turnover partitioning. Commun. Biol. 4, 512 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mächler, E. et al. Assessing different components of diversity across a river network using eDNA. Environ. DNA 1, 290–301 (2019).
    Google Scholar 
    Peralta-Maraver, I., López-Rodríguez, M. J. & de Figueroa, J. M. T. Structure, dynamics and stability of a Mediterranean river food web. Mar. Freshw. Res. 68, 484–495 (2017).
    Google Scholar 
    Woodward, G. et al. Ecological networks in a changing climate. Ecol. Netw. 42, 71–138 (2010).
    Google Scholar 
    Kondoh, M., Kato, S. & Sakato, Y. Food webs are built up with nested subwebs. Ecology 91, 3123–3130 (2010).PubMed 

    Google Scholar 
    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The River Continuum Concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).
    Google Scholar 
    Power, M. E. & Dietrich, W. E. Food webs in river networks. Ecol. Res. https://doi.org/10.1046/j.0912-3814.2002.00503.x (2002).Montoya, D., Yallop, M. L. & Memmott, J. Functional group diversity increases with modularity in complex food webs. Nat. Commun. 6, 7379 (2015).CAS 
    PubMed 

    Google Scholar 
    Gravel, D., Albouy, C. & Thuiller, W. The meaning of functional trait composition of food webs for ecosystem functioning. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 371, 20150268 (2016).Ruppert, K. M., Kline, R. J. & Rahman, M. S. Past, present, and future perspectives of environmental DNA (eDNA) metabarcoding: a systematic review in methods, monitoring, and applications of global eDNA. Glob. Ecol. Conserv. 17, e00547 (2019).
    Google Scholar 
    Carraro, L., Mächler, E., Wüthrich, R. & Altermatt, F. Environmental DNA allows upscaling spatial patterns of biodiversity in freshwater ecosystems. Nat. Commun. 11, 3585 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Barnes, M. A. & Turner, C. R. The ecology of environmental DNA and implications for conservation genetics. Conserv. Genet. 17, 1–17 (2016).CAS 

    Google Scholar 
    Bista, I. et al. Annual time-series analysis of aqueous eDNA reveals ecologically relevant dynamics of lake ecosystem biodiversity. Nat. Commun. 8, 14087 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Erickson, R. A., Merkes, C. M., Jackson, C. A., Goforth, R. R. & Amberg, J. J. Seasonal trends in eDNA detection and occupancy of bigheaded carps. J. Gt. Lakes Res. 43, 762–770 (2017).
    Google Scholar 
    Troth, C. R., Sweet, M. J., Nightingale, J. & Burian, A. Seasonality, DNA degradation and spatial heterogeneity as drivers of eDNA detection dynamics. Sci. Total Environ. 768, 144466 (2021).CAS 
    PubMed 

    Google Scholar 
    Thalinger, B. et al. The effect of activity, energy use, and species identity on environmental DNA shedding of freshwater fish. Front. Ecol. Evolution 9, 73 (2021).
    Google Scholar 
    Kelly, R. P., Port, J. A., Yamahara, K. M. & Crowder, L. B. Using environmental DNA to census marine fishes in a large mesocosm. PLoS ONE 9, e86175 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Leray, M. et al. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents. Front. Zool. 10, 34 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Geller, J., Meyer, C., Parker, M. & Hawk, H. Redesign of PCR primers for mitochondrial cytochrome c oxidase subunit I for marine invertebrates and application in all-taxa biotic surveys. Mol. Ecol. Resour. 13, 851–861 (2013).CAS 
    PubMed 

    Google Scholar 
    Liu, C. M. et al. BactQuant: An enhanced broad-coverage bacterial quantitative real-time PCR assay. BMC Microbiol. 12, 56 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mansfeldt, C. et al. Microbial community shifts in streams receiving treated wastewater effluent. Sci. Total Environ. 709, 135727 (2020).CAS 
    PubMed 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 
    PubMed 

    Google Scholar 
    Andrews, S. FASTQC A Quality Control tool for High Throughput Sequence Data (Babraham Institute, 2015).Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Hänfling, B. et al. Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Mol. Ecol. 25, 3101–3119 (2016).PubMed 

    Google Scholar 
    Csárdi, G. & Nepusz, T. The igraph software package for complex network research. Int. J. Complex Syst. 1695, 1–9 (2006).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package 2.5-6. https://CRAN.Rproject.org/package=vegan (2019).Tachet, H., Bournaud, M., Richoux, P. & Usseglio-Polatera, P. Invertébrés d’eau douce—systématique, biologie, écologie (CNRS Editions, 2010).Schmidt-Kloiber, A. & Hering, D. www.freshwaterecology.info—an online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecol. Indic. 53, 271–282 (2015).Newton, R. J., Jones, S. E., Eiler, A., McMahon, K. D. & Bertilsson, S. A guide to the natural history of freshwater lake bacteria. Microbiol. Mol. Biol. Rev. 75, 14–49 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fortuna, M. A. et al. Nestedness versus modularity in ecological networks: two sides of the same coin? J. Anim. Ecol. 79, 811–817 (2010).PubMed 

    Google Scholar 
    Johnson, S., Domínguez-García, V., Donetti, L. & Muñoz, M. A. Trophic coherence determines food-web stability. Proc. Natl Acad. Sci. USA 111, 17923–17928 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wootton, K. L. Omnivory and stability in freshwater habitats: Does theory match reality? Freshw. Biol. 62, 821–832 (2017).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw., Artic. 82, 1–26 (2017).
    Google Scholar 
    Lenth, R. V. Estimated Marginal Means, aka Least-Squares Means [R package emmeans version 1.6.1] (2021).RStudio Team RStudio: Integrated development for R. RStudio, PBC, Boston, MA. R version 4.0.4 Retrieved from http://www.rstudio.com/ (2021) More