DĂaz, S. et al. Set ambitious goals for biodiversity and sustainability. Science 370, 411 (2020).PubMedÂ
Google ScholarÂ
Soto-Navarro, C. A. et al. Towards a multidimensional biodiversity index for national application. Nat. Sustain. 4, 933â942 (2021).Skidmore, A. K. et al. Priority list of biodiversity metrics to observe from space. Nat. Ecol. Evol. 5, 896â906 (2021).PubMedÂ
Google ScholarÂ
Brum, F. T. et al. Global priorities for conservation across multiple dimensions of mammalian diversity. Proc. Natl Acad. Sci. USA 114, 7641â7646 (2017).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Girardello, M. et al. Global synergies and trade-offs between multiple dimensions of biodiversity and ecosystem services. Sci. Rep. 9, 5636 (2019).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Chaplin-Kramer, R. et al. Global modeling of natureâs contributions to people. Science 366, 255â258 (2019).CASÂ
PubMedÂ
Google ScholarÂ
Pettorelli, N. et al. Framing the concept of satellite remote sensing essential biodiversity variables: challenges and future directions. Remote Sens. Ecol. Conserv. 2, 122â131 (2016).
Google ScholarÂ
Paganini, M., Leidner, A. K., Geller, G., Turner, W. & Wegmann, M. The role of space agencies in remotely sensed essential biodiversity variables. Remote Sens. Ecol. Conserv. 2, 132â140 (2016).
Google ScholarÂ
OâConnor, B. et al. Earth observation as a tool for tracking progress towards the Aichi Biodiversity Targets. Remote Sens. Ecol. Conserv. 1, 19â28 (2015).
Google ScholarÂ
Skidmore, A. K. et al. Environmental science: agree on biodiversity metrics to track from space. Nature 523, 403â405 (2015).CASÂ
PubMedÂ
Google ScholarÂ
Reddy, C. S. et al. Remote sensing enabled essential biodiversity variables for biodiversity assessment and monitoring: technological advancement and potentials. Biodivers. Conserv. 30, 1â14 (2021).
Google ScholarÂ
Vihervaara, P. et al. How essential biodiversity variables and remote sensing can help national biodiversity monitoring. Glob. Ecol. Conserv. 10, 43â59 (2017).
Google ScholarÂ
Luque, S., Pettorelli, N., Vihervaara, P. & Wegmann, M. Improving biodiversity monitoring using satellite remote sensing to provide solutions towards the 2020 conservation targets. Methods Ecol. Evol. 9, 1784â1786 (2018).
Google ScholarÂ
Moritz, C. Applications of mitochondrial DNA analysis in conservation: a critical review. Mol. Ecol. 3, 401â411 (1994).CASÂ
Google ScholarÂ
Graham, C. H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A. T. New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol. Evol. 19, 497â503 (2004).PubMedÂ
Google ScholarÂ
CzyĆŒ, E. A. et al. Intraspecific genetic variation of a Fagus sylvatica population in a temperate forest derived from airborne imaging spectroscopy time series. Ecol. Evol. 10, 7419â7430 (2020).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
GuillĂ©n-EscribĂ , C. et al. Remotely sensed between-individual functional trait variation in a temperate forest. Ecol. Evol. 11, 10834â10867 (2021).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Hoffmann, A. A. & SgrĂČ, C. M. Climate change and evolutionary adaptation. Nature 470, 479â485 (2011).CASÂ
PubMedÂ
Google ScholarÂ
Shaw, R. G. & Etterson, J. R. Rapid climate change and the rate of adaptation: insight from experimental quantitative genetics. New Phytol. 195, 752â765 (2012).PubMedÂ
Google ScholarÂ
Wang, Z. et al. Foliar functional traits from imaging spectroscopy across biomes in the eastern North America. New Phytol. 228, 494â511 (2020).PubMedÂ
Google ScholarÂ
Poorter, L. et al. Are functional traits good predictors of demographic rates? Evidence from five neotropical forests. Ecology 89, 1908â1920 (2008).CASÂ
PubMedÂ
Google ScholarÂ
Cornwell, W. K. & Ackerly, D. D. Community assembly and shifts in plant trait distributions across an environmental gradient in coastal California. Ecol. Monogr. 79, 109â126 (2009).
Google ScholarÂ
Gao, Q. et al. Stimulation of soil respiration by elevated CO2 is enhanced under nitrogen limitation in a decade-long grassland study. Proc. Natl Acad. Sci. USA 117, 33317â33324 (2020).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Urban, M. C. et al. Improving the forecast for biodiversity under climate change. Science 353, aad8466 (2016).PubMedÂ
Google ScholarÂ
Hoffmann, A. A. & SgrĂČ, C. M. Comparative studies of critical physiological limits and vulnerability to environmental extremes in small ectotherms: how much environmental control is needed? Integr. Zool. 13, 355â371 (2018).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Marshall, C. R. A simple method for bracketing absolute divergence times on molecular phylogenies using multiple fossil calibration points. Am. Nat. 171, 726â742 (2008).PubMedÂ
Google ScholarÂ
Quental, T. B. & Marshall, C. R. Diversity dynamics: molecular phylogenies need the fossil record. Trends Ecol. Evol. 25, 434â441 (2010).PubMedÂ
Google ScholarÂ
Graham, C. H., Moritz, C. & Williams, S. E. Habitat history improves prediction of biodiversity in rainforest fauna. Proc. Natl Acad. Sci. USA 103, 632â636 (2006).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Elith, J. et al. Novel methods improve prediction of speciesâ distributions from occurrence data. Ecography 29, 129â151 (2006).
Google ScholarÂ
Zipkin, E. F. et al. Addressing data integration challenges to link ecological processes across scales. Front. Ecol. Environ. 19, 30â38 (2021).
Google ScholarÂ
Cavender-Bares, J. et al. BII-Implementation: the causes and consequences of plant biodiversity across scales in a rapidly changing world. Res. Ideas Outcomes 7, e63850 (2021).
Google ScholarÂ
Hwang, D. et al. A data integration methodology for systems biology. Proc. Natl Acad. Sci. USA 102, 17296â17301 (2005).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
OâMalley, M. A. & Soyer, O. S. The roles of integration in molecular systems biology. Stud. Hist. Philos. Sci. C 43, 58â68 (2012).
Google ScholarÂ
Summary for Policymakers of the Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES, 2019).von Humboldt, A. & Bonpland, A. Essai sur la GĂ©ographie des Plantes, AccompagnĂ© dâun Tableau Physique des RĂ©gions Equinoxiales (Levrault & Schoell, 1807).Darwin, C. On the Origin of Species by Means of Natural Selection 6th edn (with corrections and additions to 1872) (John Murray, 1888).Braun, E. L. Deciduous Forests of Eastern North America (Hafner Publishing Company, 1967).Slik, J. W. F. et al. Phylogenetic classification of the worldâs tropical forests. Proc. Natl Acad. Sci. USA 115, 1837 (2018).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Tingley, M. W., Monahan, W. B., Beissinger, S. R. & Moritz, C. Birds track their Grinnellian niche through a century of climate change. Proc. Natl Acad. Sci. USA 106, 19637â19643 (2009).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Wiens, J. J. et al. Niche conservatism as an emerging principle in ecology and conservation biology. Ecol. Lett. 13, 1310â1324 (2010).PubMedÂ
Google ScholarÂ
Cavender-Bares, J., Ackerly, D., Hobbie, S. & Townsend, P. Evolutionary legacy effects on ecosystems: biogeographic origins, plant traits, and implications for management in the era of global change. Annu. Rev. Ecol. Evol. Syst. 47, 433â462 (2016).
Google ScholarÂ
Crisp, M. D., Arroyo, M. T. K., Cook, L. G., Gandolfo, M. A. & Jordan, G. J. Phylogenetic biome conservatism on a global scale. Nature 458, 754â756 (2009).CASÂ
PubMedÂ
Google ScholarÂ
Forrestel, E. J., Donoghue, M. J. & Smith, M. D. Convergent phylogenetic and functional responses to altered fire regimes in mesic savanna grasslands of North America and South Africa. New Phytol. 203, 1000â1011 (2014).PubMedÂ
Google ScholarÂ
Auler, A. S. & Smart, P. L. Late quaternary paleoclimate in semiarid northeastern Brazil from U-series dating of travertine and water-table speleothems. Quat. Res. 55, 159â167 (2001).CASÂ
Google ScholarÂ
Cheng, H. et al. Climate change patterns in Amazonia and biodiversity. Nat. Commun. 4, 1411 (2013).PubMedÂ
Google ScholarÂ
Ledru, M.-P. et al. The last 50,000 years in the Neotropics (Southern Brazil): evolution of vegetation and climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 123, 239â257 (1996).
Google ScholarÂ
Brown, J. L., Hill, D. J., Dolan, A. M., Carnaval, A. C. & Haywood, A. M. PaleoClim, high spatial resolution paleoclimate surfaces for global land areas. Sci. Data 5, 180254 (2018).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6, 361â375 (2005).CASÂ
PubMedÂ
Google ScholarÂ
Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283â1287 (2006).CASÂ
PubMedÂ
Google ScholarÂ
Beck, P. S. A. & Goetz, S. J. Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences. Environ. Res. Lett. 6, 045501 (2011).
Google ScholarÂ
Kokaly, R. F., Asner, G. P., Ollinger, S. V., Martin, M. E. & Wessman, C. A. Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens. Environ. 113, S78âS91 (2009).
Google ScholarÂ
Graham, C. H. et al. The origin and maintenance of montane diversity: integrating evolutionary and ecological processes. Ecography 37, 711â719 (2014).
Google ScholarÂ
Carnaval, A. C., Hickerson, M. J., Haddad, C. F., Rodrigues, M. T. & Moritz, C. Stability predicts genetic diversity in the Brazilian Atlantic forest hotspot. Science 323, 785â789 (2009).CASÂ
PubMedÂ
Google ScholarÂ
Dynesius, M. & Jansson, R. Evolutionary consequences of changes in species geographical distributions driven by Milankovitch climate oscillations. Proc. Natl Acad. Sci. USA 97, 9115 (2000).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Carnaval, A. C. et al. Prediction of phylogeographic endemism in an environmentally complex biome. Proc. R. Soc. B 281, 20141461 (2014).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Soudzilovskaia, N. A. et al. Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. 10, 5077 (2019).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Forest, F., Crandall, K. A., Chase, M. W. & Faith, D. P. Phylogeny, extinction and conservation: embracing uncertainties in a time of urgency. Philos. Trans. R. Soc. Lond. B 370, 20140002 (2015).
Google ScholarÂ
Faith, D. P. Phylogenetic diversity, functional trait diversity and extinction: avoiding tipping points and worst-case losses. Philos. Trans. R. Soc. Lond. B 370, 20140011 (2015).
Google ScholarÂ
Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882â892 (2007).
Google ScholarÂ
Lavorel, S. et al. Assessing functional diversity in the fieldâmethodology matters! Funct. Ecol. 22, 134â147 (2008).
Google ScholarÂ
Petchey, O. L. & Gaston, K. J. Functional diversity: back to basics and looking forward. Ecol. Lett. 9, 741â758 (2006).PubMedÂ
Google ScholarÂ
Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Funct. Ecol. 16, 545â556 (2002).
Google ScholarÂ
Suding, K. N. et al. Scaling environmental change through the community-level: a trait-based response-and-effect framework for plants. Glob. Change Biol. 14, 1125â1140 (2008).
Google ScholarÂ
Wright, I. J. et al. The worldwide leaf economics spectrum. Nature 428, 821â827 (2004).CASÂ
PubMedÂ
Google ScholarÂ
Reich, P. B., Walters, M. B. & Ellsworth, D. S. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. USA 94, 13730â13734 (1997).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Dahlin, K. M., Asner, G. P. & Field, C. B. Environmental and community controls on plant canopy chemistry in a Mediterranean-type ecosystem. Proc. Natl Acad. Sci. USA 110, 6895â6900 (2013).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Kattge, J. et al. TRY plant trait databaseâenhanced coverage and open access. Glob. Chang. Biol. 26, 119â188 (2020).PubMedÂ
Google ScholarÂ
Enquist, B., Condit, R., Peet, R., Schildhauer, M. & Thiers, B. Cyberinfrastructure for an integrated botanical information network to investigate the ecological impacts of global climate change on plant biodiversity. PeerJ 4, e2615v2612 (2016).
Google ScholarÂ
DĂaz, S. et al. The global spectrum of plant form and function. Nature 529, 167â171 (2016).PubMedÂ
Google ScholarÂ
Asner, G. P., Martin, R. E., Anderson, C. B. & Knapp, D. E. Quantifying forest canopy traits: imaging spectroscopy versus field survey. Remote Sens. Environ. 158, 15â27 (2015).
Google ScholarÂ
Fajardo, A. & Siefert, A. Phenological variation of leaf functional traits within species. Oecologia 180, 951â959 (2016).PubMedÂ
Google ScholarÂ
Townsend, P. A., Foster, J. R., Chastain, R. A. Jr. & Currie, W. S. Application of imaging spectroscopy to mapping canopy nitrogen in the forests of the central Appalachian Mountains using Hyperion and AVIRIS. Geosci. Remote Sens. IEEE Trans. 41, 1347â1354 (2003).
Google ScholarÂ
FĂ©ret, J. B., Gitelson, A. A., Noble, S. D. & Jacquemoud, S. PROSPECT-D: towards modeling leaf optical properties through a complete lifecycle. Remote Sens. Environ. 193, 204â215 (2017).
Google ScholarÂ
Berger, K. et al. Retrieval of aboveground crop nitrogen content with a hybrid machine learning method. Int. J. Appl. Earth Obs. Geoinf. 92, 102174 (2020).
Google ScholarÂ
Jacquemoud, S. & Ustin, S. Leaf Optical Properties (Cambridge Univ. Press, 2019).Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. B. & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403, 853â858 (2000).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Hoffman, M., Koenig, K., Bunting, G., Costanza, J. & Williams, K. J. Biodiversity hotspots (version 2016.1). Zenodo https://doi.org/10.5281/zenodo.3261807 (2016).Folke, C. et al. Resilience thinking: integrating resilience, adaptability and transformability. Ecol. Soc. 15, 20 (2010).
Google ScholarÂ
Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).Hautier, Y. et al. Anthropogenic environmental changes affect ecosystem stability via biodiversity. Science 348, 336â340 (2015).CASÂ
PubMedÂ
Google ScholarÂ
Peterson, G., Allen, C. & Holling, C. Ecological resilience, biodiversity, and scale. Ecosystems 1, 6â18 (1998).
Google ScholarÂ
MacDougall, A. S., McCann, K. S., Gellner, G. & Turkington, R. Diversity loss with persistent human disturbance increases vulnerability to ecosystem collapse. Nature 494, 86â89 (2013).CASÂ
PubMedÂ
Google ScholarÂ
Duncan, B. N. et al. Spaceâbased observations for understanding changes in the ArcticâBoreal Zone. Rev. Geophys. 58, e2019RG000652 (2020).
Google ScholarÂ
Wittenberg, L., Malkinson, D., Beeri, O., Halutzy, A. & Tesler, N. Spatial and temporal patterns of vegetation recovery following sequences of forest fires in a Mediterranean landscape, Mt. Carmel Israel. CATENA 71, 76â83 (2007).
Google ScholarÂ
Meng, Y. et al. Analysis of ecological resilience to evaluate the inherent maintenance capacity of a forest ecosystem using a dense Landsat time series. Ecol. Inform. 57, 101064 (2020).
Google ScholarÂ
Wilson, A. M., Latimer, A. M. & Silander, J. A. Climatic controls on ecosystem resilience: postfire regeneration in the Cape Floristic Region of South Africa. Proc. Natl Acad. Sci. USA 112, 9058 (2015).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Xie, Z. et al. Landsat and GRACE observations of arid wetland dynamics in a dryland river system under multi-decadal hydroclimatic extremes. J. Hydrol. 543, 818â831 (2016).Allen, C. R. et al. Quantifying spatial resilience. J. Appl. Ecol. 53, 625â635 (2016).
Google ScholarÂ
Lausch, A. et al. Understanding and assessing vegetation health by in situ species and remote-sensing approaches. Methods Ecol. Evol. 9, 1799â1809 (2018).
Google ScholarÂ
Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108â1111 (2018).CASÂ
PubMedÂ
Google ScholarÂ
Faruk, A., Belabut, D., Ahmad, N., Knell, R. J. & Garner, T. W. J. Effects of oil-palm plantations on diversity of tropical anurans. Conserv. Biol. 27, 615â624 (2013).PubMedÂ
Google ScholarÂ
Yue, S., Brodie, J. F., Zipkin, E. F. & Bernard, H. Oil palm plantations fail to support mammal diversity. Ecol. Appl. 25, 2285â2292 (2015).PubMedÂ
Google ScholarÂ
Dislich, C. et al. A review of the ecosystem functions in oil palm plantations, using forests as a reference system. Biol. Rev. Camb. Philos. Soc. 92, 1539â1569 (2017).PubMedÂ
Google ScholarÂ
Slingsby, J. A., Moncrieff, G. R. & Wilson, A. M. Near-real time forecasting and change detection for an open ecosystem with complex natural dynamics. ISPRS J. Photogramm. Remote Sens. 166, 15â25 (2020).
Google ScholarÂ
Spasojevic, M. J. et al. Scaling up the diversityâresilience relationship with trait databases and remote sensing data: the recovery of productivity after wildfire. Glob. Change Biol. 22, 1421â1432 (2016).
Google ScholarÂ
van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602â1611 (2020).PubMedÂ
Google ScholarÂ
Williams, L. J. et al. Remote spectral detection of biodiversity effects on forest biomass. Nat. Ecol. Evol. 5, 46â54 (2021).PubMedÂ
Google ScholarÂ
Schweiger, A. K. et al. Coupling spectral and resource-use complementarity in experimental grassland and forest communities. Proc. R. Soc. B 288, 20211290 (2021).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Isbell, F. I., Polley, H. W. & Wilsey, B. J. Biodiversity, productivity and the temporal stability of productivity: patterns and processes. Ecol. Lett. 12, 443â451 (2009).PubMedÂ
Google ScholarÂ
Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591â596 (2001).CASÂ
PubMedÂ
Google ScholarÂ
Isbell, F., Tilman, D., Reich, P. B. & Clark, A. T. Deficits of biodiversity and productivity linger a century after agricultural abandonment. Nat. Ecol. Evol. 3, 1533â1538 (2019).PubMedÂ
Google ScholarÂ
Walters, M. & Scholes, R. The GEO Handbook on Biodiversity Observation Networks (Springer, 2017).KĂŒhl, H. S. et al. Effective biodiversity monitoring needs a culture of integration. One Earth 3, 462â474 (2020).
Google ScholarÂ
Sasaki, T., Furukawa, T., Iwasaki, Y., Seto, M. & Mori, A. S. Perspectives for ecosystem management based on ecosystem resilience and ecological thresholds against multiple and stochastic disturbances. Ecol. Indic. 57, 395â408 (2015).
Google ScholarÂ
Thompson, B. K., Olden, J. D. & Converse, S. J. Mechanistic invasive species management models and their application in conservation. Conserv. Sci. Pract. 3, e533 (2021).
Google ScholarÂ
Lewis, S. L., Edwards, D. P. & Galbraith, D. Increasing human dominance of tropical forests. Science 349, 827â832 (2015).CASÂ
PubMedÂ
Google ScholarÂ
Ellis, E. C. et al. Used planet: a global history. Proc. Natl Acad. Sci. USA 110, 7978â7985 (2013).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
McKey, D. et al. Pre-Columbian agricultural landscapes, ecosystem engineers, and self-organized patchiness in Amazonia. Proc. Natl Acad. Sci. USA 107, 7823â7828 (2010).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Bush, M. B. et al. A 6900-year history of landscape modification by humans in lowland Amazonia. Quat. Sci. Rev. 141, 52â64 (2016).
Google ScholarÂ
Wright, J. L. et al. Sixteen hundred years of increasing tree cover prior to modern deforestation in Southern Amazon and Central Brazilian savannas. Glob. Change Biol. 27, 136â150 (2021).
Google ScholarÂ
Boivin, N. & Crowther, A. Mobilizing the past to shape a better Anthropocene. Nat. Ecol. Evol. 5, 273â284 (2021).PubMedÂ
Google ScholarÂ
Malhi, Y., Gardner, T. A., Goldsmith, G. R., Silman, M. R. & Zelazowski, P. Tropical forests in the Anthropocene. Ann. Rev. Environ. Res. 39, 125â159 (2014).Hurtt, G. C. et al. Harmonization of global land use change and management for the period 850â2100 (LUH2) for CMIP6. Geosci. Model Dev. 13, 5425â5464 (2020).CASÂ
Google ScholarÂ
Verburg, P. H., Erb, K.-H., Mertz, O. & Espindola, G. Land system science: between global challenges and local realities. Curr. Opin. Environ. Sustain. 5, 433â437 (2013).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Pendrill, F., Persson, U. M., Godar, J. & Kastner, T. Deforestation displaced: trade in forest-risk commodities and the prospects for a global forest transition. Environ. Res. Lett. 14, 055003 (2019).
Google ScholarÂ
Burke, M., Driscoll, A., Lobell, D. B. & Ermon, S. Using satellite imagery to understand and promote sustainable development. Science 371, eabe8628 (2021).CASÂ
PubMedÂ
Google ScholarÂ
Schell, C. J. et al. The ecological and evolutionary consequences of systemic racism in urban environments. Science 369, eaay4497 (2020).Trounstine, J. The geography of inequality: how land use regulation produces segregation. Am. Political Sci. Rev. 114, 443â455 (2020).
Google ScholarÂ
Su, S., Pi, J., Xie, H., Cai, Z. & Weng, M. Community deprivation, walkability, and public health: highlighting the social inequalities in land use planning for health promotion. Land Use Policy 67, 315â326 (2017).
Google ScholarÂ
Coomes, O. T., Takasaki, Y. & Rhemtulla, J. M. Forests as landscapes of social inequality tropical forest cover and land distribution among shifting cultivators. Ecol. Soc. 21, 20 (2016).Watmough, G. R. et al. Socioecologically informed use of remote sensing data to predict rural household poverty. Proc. Natl Acad. Sci. USA 116, 1213 (2019).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Verburg, P. H. et al. Land system science and sustainable development of the earth system: a global land project perspective. Anthropocene 12, 29â41 (2015).
Google ScholarÂ
Bickenbach, F., Bode, E., Nunnenkamp, P. & Söder, M. Night lights and regional GDP. Rev. World Econ. 152, 425â447 (2016).
Google ScholarÂ
Mayer, A. et al. Applying the human appropriation of net primary production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union. Ecosyst. Serv. 51, 101344 (2021).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Li, Y. Urban Green Space Analysis on UBC Vancouver Campus: Integrating Virtual Gaming Technology to Map Cultural Use and Biodiversity Value of Urban Green Space (Univ. British Columbia, 2021).Ghaffarian, S., Roy, D., Filatova, T. & Kerle, N. Agent-based modelling of post-disaster recovery with remote sensing data. Int. J. Disaster Risk Reduct. 60, 102285 (2021).
Google ScholarÂ
LeclĂšre, D. et al. Bending the curve of terrestrial biodiversity needs an integrated strategy. Nature 585, 551â556 (2020).PubMedÂ
Google ScholarÂ
Zeng, Y. et al. Environmental destruction not avoided with the Sustainable Development Goals. Nat. Sustain. 3, 795â798 (2020).
Google ScholarÂ
Mirza, M. U., Xu, C., Bavel, B. V., van Nes, E. H. & Scheffer, M. Global inequality remotely sensed. Proc. Natl Acad. Sci. USA 118, e1919913118 (2021).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Kavvada, A. et al. Towards delivering on the Sustainable Development Goals using Earth observations. Remote Sens. Environ. 247, 111930 (2020).
Google ScholarÂ
Hooper, D. U. & Vitousek, P. M. Effects of plant composition and diversity on nutrient cycling. Ecol. Monogr. 68, 121â149 (1998).
Google ScholarÂ
Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 992 (2009).
Google ScholarÂ
Madritch, M. D. et al. Imaging spectroscopy links aspen genotype with below-ground processes at landscape scales. Philos. Trans. R. Soc. B 369, 20130194 (2014).
Google ScholarÂ
Hobbie, S. E. Plant species effects on nutrient cycling: revisiting litter feedbacks. Trends Ecol. Evol. 30, 357â363 (2015).PubMedÂ
Google ScholarÂ
Cline, L. C. et al. Resource availability underlies the plantâfungal diversity relationship in a grassland ecosystem. Ecology 99, 204â216 (2018).PubMedÂ
Google ScholarÂ
Wardle, D. et al. Ecological linkages between aboveground and belowground biota. Science 304, 1629â1633 (2004).CASÂ
PubMedÂ
Google ScholarÂ
Meier, C. L. & Bowman, W. D. Links between plant litter chemistry, species diversity, and below-ground ecosystem function. Proc. Natl Acad. Sci. USA 105, 19780â19785 (2008).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Gold, K. M. et al. Hyperspectral measurements enable pre-symptomatic detection and differentiation of contrasting physiological effects of late blight and early blight in potato. Remote Sens. 12, 286 (2020).Serbin, S. P., Singh, A., McNeil, B. E., Kingdon, C. C. & Townsend, P. A. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol. Appl. 24, 1651â1669 (2014).
Google ScholarÂ
Fisher, J. B., Perakalapudi, N. V., Turner, B. L., Schimel, D. S. & Cusack, D. F. Sci. Rep. 10, 6725 (2020).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406â1423 (2015).PubMedÂ
Google ScholarÂ
Meireles, J. E., OâMeara, B. & Cavender-Bares, J. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 155â172 (Springer, 2020).Kothari, S. et al. Community-wide consequences of variation in photoprotective physiology among prairie plants. Photosynthetica 56, 455â467 (2018).CASÂ
Google ScholarÂ
Anderegg, L. D. L. et al. Representing plant diversity in land models: an evolutionary approach to make âfunctional typesâ more functional. Glob. Change Biol., https://doi.org/10.1111/gcb.16040 (2022).Cavender-Bares, J. M. et al. Remotely detected aboveground plant function predicts belowground processes in two prairie diversity experiments. Ecol. Monogr., https://doi.org/10.1002/ecm.1488 (2021).Niemann, K. O., Quinn, G., Stephen, R., Visintini, F. & Parton, D. Hyperspectral remote sensing of mountain pine beetle with an emphasis on previsual assessment. Can. J. Remote Sens. 41, 191â202 (2015).
Google ScholarÂ
Chu, H. et al. Soil microbial biogeography in a changing world: recent advances and future perspectives. mSystems 5, e00803âe00819 (2020).King, G. M. Enhancing soil carbon storage for carbon remediation: potential contributions and constraints by microbes. Trends Microbiol. 19, 75â84 (2011).CASÂ
PubMedÂ
Google ScholarÂ
Singh, A. K., Sisodia, A., Sisodia, V. & Padhi, M. in New and Future Developments in Microbial Biotechnology and Bioengineering (eds. Singh, J. S. & Singh, D. P.) 57â68 (Elsevier, 2019).Eviner, V. T. Plant traits that influence ecosystem processes vary independently among species. Ecology 85, 2215â2229 (2004).
Google ScholarÂ
Cornwell, W. K. et al. Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecol. Lett. 11, 1065â1071 (2008).PubMedÂ
Google ScholarÂ
Paneque-GĂĄlvez, J. et al. High overlap between traditional ecological knowledge and forest conservation found in the Bolivian Amazon. Ambio 47, 908â923 (2018).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Hilbert, M. The bad news is that the digital access divide is here to stay: domestically installed bandwidths among 172 countries for 1986â2014. Telecommun. Policy 40, 567â581 (2016).
Google ScholarÂ
Prados, A. I. et al. Impact of the ARSET program on use of remote-sensing data. ISPRS Int. J. Geo-Inf. 8, 261 (2019).Garnett, S. T. et al. A spatial overview of the global importance of Indigenous lands for conservation. Nat. Sustain. 1, 369â374 (2018).
Google ScholarÂ
Chase, A. S. Z., Chase, D. & Chase, A. Ethics, new colonialism, and lidar data: a decade of lidar in Maya archaeology. J. Comput. Appl. Archaeol. 3, 51â62 (2020).
Google ScholarÂ
Carrino, T. A., CrĂłsta, A. P., Toledo, C. L. B. & Silva, A. M. Hyperspectral remote sensing applied to mineral exploration in southern Peru: a multiple data integration approach in the Chapi Chiara gold prospect. Int. J. Appl. Earth Obs. Geoinf. 64, 287â300 (2018).
Google ScholarÂ
Scafutto, R. D. P. M., de Souza Filho, C. R. & de Oliveira, W. J. Hyperspectral remote sensing detection of petroleum hydrocarbons in mixtures with mineral substrates: implications for onshore exploration and monitoring. ISPRS J. Photogramm. Remote Sens. 128, 146â157 (2017).
Google ScholarÂ
Turner, W. Sensing biodiversity. Science 346, 301â302 (2014).CASÂ
PubMedÂ
Google ScholarÂ
Ustin, S. L. & Middleton, E. M. Current and near-term advances in Earth observation for ecological applications. Ecol. Process. 10, 1 (2021).Randin, C. F. et al. Monitoring biodiversity in the Anthropocene using remote sensing in species distribution models. Remote Sens. Environ. 239, 111626 (2020).
Google ScholarÂ
Geller, G. N. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender Bares, J. et al.) 519â526 (Springer, 2020).Asner, G. P. & Martin, R. E. Spectranomics: emerging science and conservation opportunities at the interface of biodiversity and remote sensing. Glob. Ecol. Conserv. 8, 212â219 (2016).
Google ScholarÂ
Schneider, F. D. et al. Towards mapping the diversity of canopy structure from space with GEDI. Environ. Res. Lett. 15, 115006 (2020).
Google ScholarÂ
Fick, S. E. & Hijmans, R. J. WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 37, 4302â4315 (2017).
Google ScholarÂ
Green, R. O. et al. Imaging spectroscopy and the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens. Environ. 65, 227â248 (1998).
Google ScholarÂ
Hook, S. & Fisher, J. ECO3ETPTJPL v001 ECOSTRESS Evapotranspiration PT-JPL Daily L3 Global 70 m https://doi.org/10.5067/ECOSTRESS/ECO3ETPTJPL.001 (LP DAAC, accessed 8 December 2021).Turner, A. J. et al. A double peak in the seasonality of Californiaâs photosynthesis as observed from space. Biogeosciences 17, 405â422 (2020).CASÂ
Google ScholarÂ
Radeloff, V. C. et al. The Dynamic Habitat Indices (DHIs) from MODIS and global biodiversity. Remote Sens. Environ. 222, 204â214 (2019).
Google ScholarÂ
Crameri, F. Scientific colour-maps. Zenodo https://doi.org/10.5281/zenodo.1287763 (2018).Li, X. & Xiao, J. Mapping photosynthesis solely from solar-induced chlorophyll fluorescence: a global, fine-resolution dataset of gross primary production derived from OCO-2. Remote Sensing 11, 2563 (2019).Keil, P. & Chase, J. M. Global patterns and drivers of tree diversity integrated across a continuum of spatial grains. Nat. Ecol. Evol. 3, 390â399 (2019).PubMedÂ
Google ScholarÂ
Simard, M., Pinto, N., Fisher, J. B. & Baccini, A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 116, G04021 (2011).Boonman, C. C. F. et al. Assessing the reliability of predicted plant trait distributions at the global scale. Glob. Ecol. Biogeogr. 29, 1034â1051 (2020).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Olson, D. M. et al. Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51, 933â938 (2001).
Google ScholarÂ
Beck, H. E. et al. Present and future KöppenâGeiger climate classification maps at 1-km resolution. Sci. Data 5, 180214 (2018).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Mokany, K. et al. Reconciling global priorities for conserving biodiversity habitat. Proc. Natl Acad. Sci. USA 117, 9906 (2020).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Lausch, A. et al. Linking Earth Observation and taxonomic, structural and functional biodiversity: local to ecosystem perspectives. Ecol. Indic. 70, 317â339 (2016).
Google ScholarÂ
Schneider, F. D. et al. Mapping functional diversity from remotely sensed morphological and physiological forest traits. Nat. Commun. 8, 1441 (2017).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Rocchini, D. et al. Remotely sensed spectral heterogeneity as a proxy of species diversity: recent advances and open challenges. Ecol. Inform. 5, 318â329 (2010).
Google ScholarÂ
Schneider, F. D., Ferraz, A. & Schimel, D. Watching Earthâs interconnected systems at work. Eos, https://doi.org/10.1029/2019EO136205 (2019).LalibertĂ©, E., Schweiger, A. K. & Legendre, P. Partitioning plant spectral diversity into alpha and beta components. Ecol. Lett. 23, 370â380 (2020).PubMedÂ
Google ScholarÂ
Wang, R. & Gamon, J. A. Remote sensing of terrestrial plant biodiversity. Remote Sens. Environ. 231, 111218 (2019).
Google ScholarÂ
FĂ©ret, J.-B. & Asner, G. P. Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy. Ecol. Appl. 24, 1289â1296 (2014).PubMedÂ
Google ScholarÂ
Dubayah, R. et al. The Global Ecosystem Dynamics Investigation: high-resolution laser ranging of the Earthâs forests and topography. Sci. Remote Sens. 1, 100002 (2020).
Google ScholarÂ
Omasa, K., Hosoi, F. & Konishi, A. 3D lidar imaging for detecting and understanding plant responses and canopy structure. J. Exp. Bot. 58, 881â898 (2007).CASÂ
PubMedÂ
Google ScholarÂ
Bae, S. et al. Radar vision in the mapping of forest biodiversity from space. Nat. Commun. 10, 4757 (2019).PubMedÂ
PubMed CentralÂ
Google ScholarÂ
Stavros, E. N. et al. ISS observations offer insights into plant function. Nat. Ecol. Evol. 1, 0194 (2017).Turner, W. et al. Free and open-access satellite data are key to biodiversity conservation. Biol. Conserv. 182, 173â176 (2015).
Google ScholarÂ
Pereira, H. M. et al. Essential biodiversity variables. Science 339, 277â278 (2013).CASÂ
PubMedÂ
Google ScholarÂ
Jetz, W. et al. Essential biodiversity variables for mapping and monitoring species populations. Nat. Ecol. Evol. 3, 539â551 (2019).PubMedÂ
Google ScholarÂ
Kissling, W. D. et al. Towards global data products of essential biodiversity variables on species traits. Nat. Ecol. Evol. 2, 1531â1540 (2018).PubMedÂ
Google ScholarÂ
Kissling, W. D. et al. Building essential biodiversity variables (EBVs) of species distribution and abundance at a global scale. Biol. Rev. 93, 600â625 (2018).PubMedÂ
Google ScholarÂ
Kays, R., Crofoot, M. C., Jetz, W. & Wikelski, M. Terrestrial animal tracking as an eye on life and planet. Science 348, aaa2478 (2015).PubMedÂ
Google ScholarÂ
Fretwell, P. T. & Trathan, P. N. Penguins from space: faecal stains reveal the location of emperor penguin colonies. Glob. Ecol. Biogeogr. 18, 543â552 (2009).
Google ScholarÂ
Davies, A. B. & Asner, G. P. Advances in animal ecology from 3D-LiDAR ecosystem mapping. Trends Ecol. Evol. 29, 681â691 (2014).PubMedÂ
Google ScholarÂ
Paz, A. et al. in Remote Sensing of Plant Biodiversity (eds. Cavender-Bares, J. et al.) 255â266 (Springer International Publishing, 2020).Pinto-Ledezma, J. N. & Cavender-Bares, J. Predicting species distributions and community composition using satellite remote sensing predictors. Sci. Rep. 11, 16448 (2021).CASÂ
PubMedÂ
PubMed CentralÂ
Google ScholarÂ
PapeĆ, M., Tupayachi, R., MartĂnez, P., Peterson, A. T. & Powell, G. V. N. Using hyperspectral satellite imagery for regional inventories: a test with tropical emergent trees in the Amazon Basin. J. Veg. Sci. 21, 342â354 (2010).
Google ScholarÂ
Wang, Z. et al. Mapping foliar functional traits and their uncertainties across three years in a grassland experiment. Remote Sens. Environ. 221, 405â416 (2019).
Google Scholar More