More stories

  • in

    Frequency-dependent Batesian mimicry maintains colour polymorphism in a sea snake population

    Van Gossum, H., Sherratt, T. N., Cordero-Rivera, A. & Córdoba-Aguilar, A. The evolution of sex-limited colour polymorphism. In Dragonflies and Damselflies: Model Organisms for Ecological and Evolutionary Research (ed. Córdoba-Aguilar, A.) 219–231 (Oxford University Press, 2008).
    Google Scholar 
    Hughes, J. M. & Jones, M. P. Shell colour polymorphism in a mangrove snail Littorina sp. (Prosobranchia: Littorinidae). Biol. J. Linn. Soc. 25, 365–378 (1985).
    Google Scholar 
    Sinervo, B., Bleay, C. & Adamopoulou, C. Social causes of correlational selection and the resolution of a heritable throat color polymorphism in a lizard. Evolution 55, 2040–2052 (2001).CAS 
    PubMed 

    Google Scholar 
    Westerman, E. L. et al. Does male preference play a role in maintaining female limited polymorphism in a Batesian mimetic butterfly? Behav. Process. 150, 47–58 (2018).CAS 

    Google Scholar 
    Vane-Wright, R. I. An integrated classification for polymorphism and sexual dimorphism in butterflies. J. Zool. 177, 329–337 (1975).
    Google Scholar 
    Timmermans, M. J., Srivathsan, A., Collins, S., Meier, R. & Vogler, A. P. Mimicry diversification in Papilio dardanus via a genomic inversion in the regulatory region of engrailed–invected. Proc. R. Soc. B 287, 20200443 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brodie, E. D. III. & Janzen, F. J. Experimental studies of coral snake mimicry: Generalized avoidance of ringed snake patterns by free-ranging avian predators. Funct. Ecol. 9, 186–190 (1995).
    Google Scholar 
    Banci, K. R., Eterovic, A., Marinho, P. S. & Marques, O. A. Being a bright snake: Testing aposematism and mimicry in a neotropical forest. Biotropica 52, 1229–1241 (2020).
    Google Scholar 
    Wüster, W. et al. Do aposematism and Batesian mimicry require bright colours? A test, using European viper markings. Proc. R. Soc. B 271, 2495–2499 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Valkonen, J. K. & Mappes, J. Resembling a viper: Implications of mimicry for conservation of the endangered smooth snake. Conserv. Biol. 28, 1568–1574 (2014).PubMed 

    Google Scholar 
    Sinervo, B. & Lively, C. M. The rock–paper–scissors game and the evolution of alternative male strategies. Nature 380, 240–243 (1996).ADS 
    CAS 

    Google Scholar 
    Moon, R. M. & Kamath, A. Re-examining escape behaviour and habitat use as correlates of dorsal pattern variation in female brown anole lizards, Anolis sagrei (Squamata: Dactyloidae). Biol. J. Linn. Soc. 126, 783–795 (2019).
    Google Scholar 
    Le Rouzic, A., Hansen, T. F., Gosden, T. P. & Svensson, E. I. Evolutionary time-series analysis reveals the signature of frequency-dependent selection on a female mating polymorphism. Am. Nat. 185, E182–E196 (2015).PubMed 

    Google Scholar 
    Udyawer, V. et al. Future directions in the research and management of marine snakes. Front. Mar. Sci. 5, 399 (2018).
    Google Scholar 
    Goiran, C., Bustamante, P. & Shine, R. Industrial melanism in the seasnake Emydocephalus annulatus. Curr. Biol. 27, 2510–2513 (2017).CAS 
    PubMed 

    Google Scholar 
    Goiran, C., Brown, G. P. & Shine, R. Niche partitioning within a population of sea snakes is constrained by ambient thermal homogeneity and small prey size. Biol. J. Linn. Soc. 129, 644–651 (2020).
    Google Scholar 
    Shine, R., Shine, T. & Shine, B. Intraspecific habitat partitioning by the sea snake Emydocephalus annulatus (Serpentes, Hydrophiidae): The effects of sex, body size, and colour pattern. Biol. J. Linn. Soc. 80, 1–10 (2003).
    Google Scholar 
    Udyawer, V., Goiran, C. & Shine, R. Peaceful coexistence between people and deadly wildlife: why are recreational users of the ocean so rarely bitten by sea snakes? People Nat. 3, 335–346 (2021).
    Google Scholar 
    Heatwole, H. Sea Snakes 2nd edn. (Krieger Publishing, 1999).
    Google Scholar 
    Shine, R., Shine, T. G., Brown, G. P. & Goiran, C. Life history traits of the sea snake Emydocephalus annulatus, based on a 17-yr study. Coral Reefs 39, 1407–1414 (2020).
    Google Scholar 
    Goiran, C., Dubey, S. & Shine, R. Effects of season, sex and body size on the feeding ecology of turtle-headed sea snakes (Emydocephalus annulatus) on IndoPacific inshore coral reefs. Coral Reefs 32, 527–538 (2013).ADS 

    Google Scholar 
    Olsson, M., Stuart-Fox, D. & Ballen, C. Genetics and evolution of colour patterns in reptiles. Semin. Cell Dev. Biol. 24, 529–541 (2013).PubMed 

    Google Scholar 
    Shine, R., Brischoux, F. & Pile, A. J. A seasnake’s colour affects its susceptibility to algal fouling. Proc. R. Soc. B 277, 2459–2464 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).
    Google Scholar 
    Packard, G. C. & Boardman, T. J. The misuse of ratios, indices, and percentages in ecophysiological research. Physiol. Zool. 61, 1–9 (1988).
    Google Scholar 
    Lukoschek, V. & Shine, R. Sea snakes rarely venture far from home. Ecol. Evol. 2, 1113–1121 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Shine, R. All at sea: Aquatic life modifies mate-recognition modalities in sea snakes (Emydocephalus annulatus, Hydrophiidae). Behav. Ecol. Sociobiol. 57, 591–598 (2005).
    Google Scholar 
    Shine, R., Shine, T. G., Brown, G. P. & Goiran, C. Population dynamics of the sea snake Emydocephalus annulatus (Elapidae, Hydrophiinae). Sci. Rep. 11, 20701 (2021).ADS 

    Google Scholar 
    Rancurel, P. & Intes, A. Le requin tigre, Galeocerdo cuvieri Lacepede, des eaux neocaledoniennes examen des contenus stomacaux. Tethys 10, 195–199 (1982).
    Google Scholar 
    Heatwole, H. Predation on sea snakes. In The Biology of Sea Snakes (ed. Dunson, W. A.) 233–250 (University Park Press, 1975).
    Google Scholar 
    Ineich, I. & Laboute, P. Les serpents marins de Nouvelle-Calédonie (IRD éditions, 2002).
    Google Scholar 
    Kerford, M. R., Wirsing, A. J., Heithaus, M. R. & Dill, L. M. Danger on the rise: diurnal tidal state mediates an exchange of food for safety by the bar-bellied sea snake Hydrophis elegans. Mar. Ecol. Progr. Ser. 358, 289–294 (2008).ADS 

    Google Scholar 
    Masunaga, G., Kosuge, T., Asai, N. & Ota, H. Shark predation of sea snakes (Reptilia: Elapidae) in the shallow waters around the Yaeyama Islands of the southern Ryukyus, Japan. Mar. Biodivers. Rec. 1, e96 (2008).
    Google Scholar 
    Wirsing, A. J. & Heithaus, M. R. Olive-headed sea snakes Disteria major shift seagrass microhabitats to avoid shark predation. Mar. Ecol. Progr. Ser. 387, 287–293 (2009).ADS 

    Google Scholar 
    Goiran, C. & Shine, R. The ability of damselfish to distinguish between dangerous and harmless sea snakes. Sci. Rep. 10, 1377 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Norman, M. D., Finn, J. & Tregenza, T. Dynamic mimicry in an Indo-Malayan octopus. Proc. R. Soc. B 268, 1755–1758 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pernetta, J. C. Observations on the habits and morphology of the sea snake Laticauda colubrina (Schneider) in Fiji. Can. J. Zool. 55, 1612–1619 (1977).
    Google Scholar 
    Randall, J. E. A review of mimicry in marine fishes. Zool. Stud. 44, 299–328 (2005).
    Google Scholar 
    Dudgeon, C. L. & White, W. T. First record of potential Batesian mimicry in an elasmobranch: Juvenile zebra sharks mimic banded sea snakes? Mar. Freshw. Res. 63, 545–551 (2012).
    Google Scholar 
    Sullivan Caldwell, G. & Wolff Rubinoff, R. Avoidance of venomous sea snakes by naive herons and egrets. Auk 100, 195–198 (1983).
    Google Scholar 
    Sanders, K. L., Malhotra, A. & Thorpe, R. S. Evidence for a Müllerian mimetic radiation in Asian pitvipers. Proc. R. Soc. B 273, 1135–1141 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raveendran, D. K., Deepak, V., Smith, E. N. & Smart, U. A new colour morph of Calliophis bibroni (Squamata: Elapidae) and evidence for Müllerian mimicry in Tropical Indian coral snakes. Herpetol. Notes 10, 209–217 (2017).
    Google Scholar  More

  • in

    Residual characteristics and safety assessment of the insecticides spiromesifen and chromafenozide in lettuce and perilla

    Chemicals and materialsAnalytical standard ( > 99% purity) of spiromesifen, BSN2060-enol, and chromafenozide were purchased from AB Solution Co., Ltd., Hwaseong-si, Gyeonggi-do, Republic of Korea. HPLC grade water and acetonitrile were supplied by Merck, Darmstadt, Germany. QuEChERS kit (4.0 g magnesium sulfate, 1.0 g sodium chloride, 1.0 g sodium citrate tribasic dihydrate, 0.5 g disodium citrate sesquihydrate) were obtained from Phenomenex, California, USA. Individual stock solutions of the target compounds were prepared in acetonitrile and stored at − 20 °C before use.Field experimentsThe trials were carried out in a greenhouse farm during the season 2018 at two different sites (with approximately 24 km distance between both sites) located in Chuncheon and Hongcheon-gun, Gangwon-do, Republic of Korea following the method described by the Organization for Economic Co-operation and Development (OECD)38. The field test of lettuce (Latuca sativa L.) crop was conducted in Chuncheon city, and perilla (Perilla frutescens (L.) Britton) crop in Hongcheon city. The area of each field was divided into two plots (treatment and control). The treatment plots were further divided into three replicates (subplots 33 m2). The control plot was separated by a buffer zone of 3 m2 from the treated site. To minimize spray overlap, buffer zones (1 m) were set up between subplots. The commercial products of spiromesifen 20% SC diluted 2000 times and chromafenozide 5% EC diluted 1000 times were sprayed twice at 7-days intervals using an automatic sprayer. After the second spray samples (lettuce and perilla leaves) were collected from each subplot at 0 (2 h after spraying), 1, 3, 5, and 7 days according to the Korean RDA23 method. Thirty samples 1.0 kg each from the collected crop were placed in polyethylene bag and labeled. After collection, the samples were transported to the laboratory, where they were chopped and homogenized. The homogenized samples were kept frozen at − 20 °C until analysis.We confirm all plant samples used in the current work comply with the IUCN Policy Statement on Research Involving Species at Risk of Extinction and the Convention on the Trade in Endangered Species of Wild Fauna and Flora.Samples pretreatmentA QuEChERS method was used for the extraction of the targeted compounds from lettuce and perilla leaves. A 10 g of previously homogenized samples were weighed into a 50 mL polypropylene centrifuge tube and mixed with 10 mL of water followed by 10 mL of acetonitrile. The samples were shaken at 1500 rpm in a shaker machine for 10 min. Then commercial QuEChERS kit was added, and the mixtures were shaken vigorously for 2 min in a shaker. Subsequently, the samples were centrifuged at 3584 g-force for 10 min. After centrifugation, the supernatant was filtered with a 0.22 μm membrane filter and transferred into the glass vial for instrumental analysis.LC-MS/MS analysisQuantitative determination of the tested compounds was carried out by using HPLC system Dionex Ultimate 3000 (Thermo Science, USA) coupled with tandem mass spectrometry (MS/MS) (TSQ Quantum Access Max (Thermo Science, USA). Water (solvent A) and acetonitrile (solvent B) containing 0.1% formic acid and 5 mM ammonium format were used as mobile phase at a flow rate of 0.4 mL/min and injection volume 1.0 µL. To obtain desirable chromatographic peaks, two different instrumental conditions were used. The chromatographic separation of spiromesifen was separated by Capcell core-C18 (2.1 mm I.D. × 150 mm × 2.7 μm, Shiseido Co., Ltd., Tokyo, Japan) and BSN2060-enol was performed by C18 column (Poroshell 120 SB-Ag, 2.1 mm I.D. × 100 mm × 2.7-μm, Agilent Technologies, Santa Clara, California, USA) with a gradient elution as follows (mobile phase B%): 0.0 min, 5.0%; 2.0 min 5%; 2.5 min, 95%; 6.0 min, 95%; 6.5 min, 5.0%; 10 min, 5.0%. Likewise, chromafenozide was separated by C18 column (Imtakt Unison UK-C18, 2.0 mm I.D. × 100 mm × 3.0-μm, Imtakt, Portland, USA) with a gradient elution as follows (mobile phase B%): 0.0 min, 5%; 1.0 min, 5.0%; 1.5 min, 90%; 5.0 min, 90%; 7.0 min, 5.0%; 10 min, 5.0%. An MS/MS system (TSQ quantum ultra, Thermo Science, USA) equipped with an electrospray ionization source operating in positive mode (ESI+) was used. The MS/MS parameters and selected product ions are shown in supplementary Tables S2 and S3.The calculation of spiromesifen total residuesThe total residues in lettuce and perilla samples were calculated using Eq. (1)23.Total residues of spiromesifen (mg/kg) = spiromesifen + (BSN2060 residue × 1.36). The conversion factor was calculated as follow;$${1}.{36},{text{(conversion}},{text{factor)}} = frac{{370.49left( {{text{spiromesifen}},{text{MW}}} right)}}{{272.34{ }left( {{text{BSN}}2060,{text{MW}}} right)}}$$
    (1)
    where MW molecular weight.Initial deposition calculationThe initial residues of spiromesifen and chromafenozide deposition in lettuce and perilla leaves were calculated from 0-day according to Eq. (2) described by Kang et al.12 as follow;$${text{A }},({text{mg}}/{text{kg}}) = {text{B(mg}}/{text{kg)}} times frac{100}{{{text{C}}({text{% }})}} times frac{1}{{text{E}}} times 1000$$
    (2)
    A: Initial residue (mg/kg), B: Residues (mg/kg) on 0 day, C: active ingredients, E: dilution factor.Method validationThe analytical method was validated in terms of different performance criteria such as linearity, accuracy, precision, and method limit of quantitation (MLOQ). Matrix-matched standards were used to construct the calibration curve by evaporating (0.01, 0.05, 0.1, 0.2, 0.5, 0.7 and 1.0 mg/kg) working solution (1 mL) and re-dissolved in the extract of control sample. The linearity of the matrix-matched calibration curve was evaluated by the values of the correlation coefficient (R2). The accuracy and precision were obtained in terms of recovery (70–120%) and repeatability (n = 3). The recoveries were determined by spiking the analytes at two concentrations levels (0.1 mg/L) and (0.5 mg/L) in 10 g control samples and were quantified by comparing the response of analytes in samples with response in calibration standard solutions prepared in matrix. The repeatability expressed as the relative standard deviation (RSD) of the analyzed samples was calculated from three repetitions. The MLOQ was calculated by Eq. (3) taking into consideration the following factors: the instrument limit of detection, volume of extraction solvent, injection volume, dilution factor, and sample amount39,40.$${text{MLOQ}},{text{(mg}}/{text{kg)}} = {text{A(ng)}} times frac{{text{B(mL)}}}{{{text{C(}}upmu {text{L)}}}} times frac{{text{D}}}{{text{E(g)}}}$$
    (3)
    where A: instrument limit of detection, B: volume of extraction solvent, C: injection volume, D: dilution factor, E: sample amount.Half-life calculationThe dissipation patterns of spiromesifen and chromafenozide in lettuce and perilla leaves over time were found following the first-order kinetics model28. The half-life was determined by the following equation:$${text{C}}_{{text{t}}} = {text{C}}_{0} times {text{e}}^{{ – {text{kt}}}} ,{text{DT}}_{{{5}0}} = {text{ln2}}/{text{k}}$$where Ct is the concentration of the insecticide, C0 represents the initial residue concentration of insecticide, t is the time (days) after insecticide application, and k is the constant rate.Safety assessmentIn this study, the safety assessments (percent acceptable daily intake; %ADI) of the target insecticides that are consumed with lettuce and perilla leaves were calculated by the ratio of estimated daily intake (EDI) to acceptable daily intake (ADI). The EDI was calculated using insecticide concentration and average consumption of food commodities per person per day. In addition, the theoretical maximum daily intakes (TMDIs) of both insecticides were calculated using the maximum residue limits (MRLs) and average body weight (60 kg) of adults in Republic of Korea. TMDIs were calculated following the equation described by Kim et al.41.$$begin{aligned} & {text{ADI (mg}}/{text{person}}/{text{day)}} = {text{ADI}},({text{mg}}/{text{kg}}/{text{body weight}}/{text{day}}),{text{of target insecticide}} times {text{6}}0,({text{average body weight}}) \ & {text{EDI (mg}}/{text{kg}}/{text{person)}} = {text{concentration of target insecticide (mg}}/{text{kg)}} times {text{ daily food intake (g)}} \ & % {text{ADI}} = {text{EDI}}/{text{ADI}} times {text{1}}00 \ & {text{TMDI}}% = sum % {text{ADI of all registered crops}} \ end{aligned}$$ More

  • in

    Active hydrothermal vents in the Woodlark Basin may act as dispersing centres for hydrothermal fauna

    German, C. R. & Von Damm, K. L. Treatise on Geochemistry (eds Heinrich, D. H. & Karl, K. T.) 181–222 (Pergamon, 2003).Van Dover, C. The Ecology of Deep-Sea Hydrothermal Vents (Princeton University Press, 2000).Spiess, F. N. et al. East Pacific rise: Hot springs and geophysical experiments. Science 207, 1421–1433 (1980).CAS 

    Google Scholar 
    Haymon, R. M. et al. Hydrothermal vent distribution along the East Pacific Rise crest 9° 09’–54’ N and its relationship to magmatic and tectonic processes on fast-spreading mid-ocean ridges. Earth Planetary Sci. Lett. 104, 513–534 (1991).
    Google Scholar 
    Edmonds, H. N. et al. Discovery of abundant hydrothermal venting on the ultraslow-spreading Gakkel Ridge in the Arctic Ocean. Nature 421, 252–256 (2003).CAS 

    Google Scholar 
    German, C. R. et al. Hydrothermal activity and seismicity at Teahitia Seamount: Reactivation of the society islands hotspot? Front. Mar. Sci 7, 73 (2020).
    Google Scholar 
    de Ronde, C. E. J. et al. Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand. Earth Planetary Sci. Lett. 193, 359–369 (2001).
    Google Scholar 
    Ishibashi, J. & Urabe, T. Backarc Basins: Tectonics and Magmatism (ed Taylor, B.) 451–495 (Springer, 1995).Fouquet, Y. et al. Hydrothermal activity and metallogenesis in the Lau back-arc basin. Nature 349, 778–781 (1991).CAS 

    Google Scholar 
    Boschen, R. E., Rowden, A. A., Clark, M. R. & Gardner, J. P. A. Mining of deep-sea seafloor massive sulfides: A review of the deposits, their benthic communities, impacts from mining, regulatory frameworks, and management strategies. Ocean Coastal Manage. 84, 54–67 (2013).
    Google Scholar 
    Lisitsyn, A. P. et al. Active hydrothermal activity at Franklin Seamount, Western Woodlark Sea (Papua New Guinea). Int. Geol. Rev. 33, 914–929 (1991).
    Google Scholar 
    Laurila, T. E. et al. Tectonic and magmatic controls on hydrothermal activity in the Woodlark Basin: Hydrothermalism in the Woodlark Basin. Geochem. Geophys. Geosyst. 13, Q09006 (2012).Goodliffe, A. M. et al. Synchronous reorientation of the Woodlark Basin spreading center. Earth Planetary Sci. Lett. 146, 233–242 (1997).CAS 

    Google Scholar 
    Martínez, F., Taylor, B. & Goodliffe, A. M. Contrasting styles of seafloor spreading in the Woodlark Basin: Indications of rift-induced secondary mantle convection. J. Geophys. Res. 104, 12909–12926 (1999).
    Google Scholar 
    Taylor, B., Goodliffe, A., Martinez, F. & Hey, R. Continental rifting and initial sea-floor spreading in the Woodlark Basin. Nature 374, 534–537 (1995).CAS 

    Google Scholar 
    Schellart, W. P., Lister, G. S. & Toy, V. G. A Late Cretaceous and Cenozoic reconstruction of the Southwest Pacific region: Tectonics controlled by subduction and slab rollback processes. Earth-Sci. Rev. 76, 191–233 (2006).
    Google Scholar 
    Hall, R. Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: Computer-based reconstructions, model and animations. J. Asian Earth Sci. 20, 353–431 (2002).
    Google Scholar 
    Breusing, C. et al. Allopatric and sympatric drivers of speciation in Alviniconcha hydrothermal vent snails. Mol. Biol. Evol. 37, 3469–3484 (2020).CAS 

    Google Scholar 
    Ondréas, H., Scalabrin, C., Fouquet, Y. & Godfroy, A. Recent high-resolution mapping of Guaymas hydrothermal fields (Southern Trough). BSGF – Earth Sci. Bull. 189, 6 (2018).
    Google Scholar 
    Nakamura, K. et al. Water column imaging with multibeam echo-sounding in the mid-Okinawa Trough: Implications for distribution of deep-sea hydrothermal vent sites and the cause of acoustic water column anomaly. Geochem. J. 49, 579–596 (2015).CAS 

    Google Scholar 
    Xu, G., Jackson, D. R. & Bemis, K. G. The relative effect of particles and turbulence on acoustic scattering from deep sea hydrothermal vent plumes revisited. J. Acoust. Soc. Am. 141, 1446–1458 (2017).
    Google Scholar 
    Park, S.-H. et al. Petrogenesis of basalts along the eastern Woodlark spreading center, equatorial western Pacific. Lithos 316–317, 122–136 (2018).
    Google Scholar 
    Chadwick, J. et al. Arc lavas on both sides of a trench: Slab window effects at the Solomon Islands triple junction, SW Pacific. Earth Planetary Sci. Lett. 279, 293–302 (2009).CAS 

    Google Scholar 
    Fouquet, Y. et al. Geodiversity of Hydrothermal Processes Along the Mid-Atlantic Ridge and Ultramafic-Hosted Mineralization: A New Type of Oceanic Cu-Zn-Co-Au Volcanogenic Massive Sulfide Deposit (eds Rona, P. A., Devey, C. W., Dyment, J. & Murton, B. J.) Vol. 188, 321–367 (American Geophysical Union, 2010).Von Damm, K. et al. Chemistry of submarine hydrothermal solutions at 21N, East Pacific Rise. Geochim. Cosmochim. Acta 49, 2197–2220 (1985).
    Google Scholar 
    Seyfried, W. E. & Bischoff, J. L. Experimental seawater-basalt interaction at 300 °C, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals. Geochim. Cosmochim. Acta 45, 135–147 (1981).CAS 

    Google Scholar 
    Pester, N. J., Rough, M., Ding, K. & Seyfried, W. E. A new Fe/Mn geothermometer for hydrothermal systems: Implications for high-salinity fluids at 13°N on the East Pacific Rise. Geochim. Cosmochim. Acta https://doi.org/10.1016/j.gca.2011.08.043 (2011).Podowski, E. L., Moore, T. S., Zelnio, K. A., Luther, G. W. & Fisher, C. R. Distribution of diffuse flow megafauna in two sites on the Eastern Lau Spreading Center, Tonga. Deep Sea Res. Part I: Oceanogr. Res. Papers 56, 2041–2056 (2009).CAS 

    Google Scholar 
    Collins, P., Kennedy, R. & Van Dover, C. A biological survey method applied to seafloor massive sulphides (SMS) with contagiously distributed hydrothermal-vent fauna. Mar. Ecol. Prog. Ser. 452, 89–107 (2012).CAS 

    Google Scholar 
    Desbruyères, D., Hashimoto, J. & Fabri, M.-C. Composition and biogeography of hydrothermal vent communities in Western Pacific back-arc basins. Geophys. Monogr. Ser. 166, 215–234 (2006).Reid, W. D. K. et al. Spatial differences in East scotia ridge hydrothermal vent food webs: Influences of chemistry, microbiology, and predation on trophodynamics. PLoS One 8, e65553 (2013).CAS 

    Google Scholar 
    Van Audenhaege, L., Fariñas-Bermejo, A., Schultz, T. & Lee Van Dover, C. An environmental baseline for food webs at deep-sea hydrothermal vents in Manus Basin (Papua New Guinea). Deep Sea Res. Part I: Oceanogr. Res. Papers https://doi.org/10.1016/j.dsr.2019.04.018 (2019).Erickson, K. L., Macko, S. A. & Van Dover, C. L. Evidence for a chemoautotrophically based food web at inactive hydrothermal vents (Manus Basin). Deep-Sea Res. Part II: Top. Stud. Oceanogr. 56, 1577–1585 (2009).CAS 

    Google Scholar 
    Comeault, A., Stevens, C. J. & Juniper, S. K. Mixed photosynthetic-chemosynthetic diets in vent obligate macroinvertebrates at shallow hydrothermal vents on Volcano 1, South Tonga Arc—evidence from stable isotope and fatty acid analyses. Cahiers de Biologie Marine 51, 351–359 (2010).
    Google Scholar 
    Bennett, S. A., Dover, C. V., Breier, J. A. & Coleman, M. Effect of depth and vent fluid composition on the carbon sources at two neighboring deep-sea hydrothermal vent fields (Mid-Cayman Rise). Deep-Sea Res. Part I: Oceanogr. Res. Papers 104, 122–133 (2015).CAS 

    Google Scholar 
    Levin, L. A. et al. Hydrothermal vents and methane seeps: Rethinking the sphere of influence. Front. Marine Sci. 3, 1–23 (2016).
    Google Scholar 
    Hügler, M. & Sievert, S. M. Beyond the Calvin cycle: Autotrophic carbon fixation in the ocean. Annu. Rev. Mar. Sci. 3, 261–289 (2011).
    Google Scholar 
    Wang, X., Li, C., Wang, M. & Zheng, P. Stable isotope signatures and nutritional sources of some dominant species from the PACManus hydrothermal area and the Desmos caldera. PLoS One 13, e0208887 (2018).
    Google Scholar 
    Tunnicliffe, V. & Southward, A. J. Growth and breeding of a primitive stalked barnacle Leucolepas longa (Cirripedia: Scalpellomorpha: Eolepadidae: Neolepadinae) inhabiting a volcanic seamount off Papua New Guinea. J. Mar. Biol. Ass. 84, 121–132 (2004).
    Google Scholar 
    Auzende, J. M., Pelletier, B. & Lafoy, Y. Twin active spreading ridges in the North Fiji Basin (southwest Pacific). Geology 22, 63–66 (1994).
    Google Scholar 
    Parson, L. M. & Wright, I. C. The Lau-Havre-Taupo back-arc basin: A southward-propagating, multi-stage evolution from rifting to spreading. Tectonophysics 263, 1–22 (1996).
    Google Scholar 
    Thaler, A. D. et al. Comparative population structure of two deep-sea hydrothermal-vent-associated decapods (Chorocaris sp. 2 and Munidopsis lauensis) from Southwestern Pacific back-arc basins. PLoS One 9, e101345 (2014).
    Google Scholar 
    Lee, W.-K., Kim, S.-J., Hou, B. K., Van Dover, C. L. & Ju, S.-J. Population genetic differentiation of the hydrothermal vent crab Austinograea alayseae (Crustacea: Bythograeidae) in the Southwest Pacific Ocean. PLoS One 14, e0215829 (2019).CAS 

    Google Scholar 
    Plouviez, S. et al. Amplicon sequencing of 42 nuclear loci supports directional gene flow between South Pacific populations of a hydrothermal vent limpet. Ecol. Evol. https://doi.org/10.1002/ece3.5235 (2019).Tran Lu Y, A. et al. Fine-scale genomic patterns of connectivity in the deep sea hydrothermal gastropod Ifremeria nautilei over its species range using outlier scans and demo-genetic inferences. Mol. Ecol. (In Revision).Yearsley, J. M. & Sigwart, J. D. Larval transport modeling of deep-sea invertebrates can aid the search for undiscovered populations. PLoS One 6, e23063 (2011).CAS 

    Google Scholar 
    Mitarai, S., Watanabe, H., Nakajima, Y., Shchepetkin, A. F. & McWilliams, J. C. Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean. Proc. Natl Acad. Sci. USA 113, 2976–2981 (2016).CAS 

    Google Scholar 
    Marsh, L. et al. Microdistribution of faunal assemblages at deep-sea hydrothermal vents in the southern ocean. PLoS One 7, e48348 (2012).CAS 

    Google Scholar 
    Jollivet, D. et al. The Biospeedo cruise: A new survey of hydrothermal vents along the south East Pacific Rise from 7°24’ S to 21°33’ S. InterRidge News 13, 20–26 (2005).Girard, F. et al. Currents and topography drive assemblage distribution on an active hydrothermal edifice. Prog. Oceanogr. 187, 102397 (2020).
    Google Scholar 
    Hessler, R. R. & Lonsdale, P. F. Biogeography of Mariana Trough hydrothermal vent communities. Deep Sea Res. Part A. Oceanogr. Res. Papers 38, 185–199 (1991).
    Google Scholar 
    Fujikura, K. Biology and earth scientific investigation by the submersible ‘Shinkai 6500’ system of deep-sea hydrothermal and lithosphere in the Mariana back-arc basin. JAMSTEC J. Deep Sea Res. 13, 1–20 (1997).
    Google Scholar 
    Connelly, D. P. et al. Hydrothermal vent fields and chemosynthetic biota on the world’s deepest seafloor spreading centre. Nat. Commun. 3, 620 (2012).
    Google Scholar 
    Cline, J. D. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol. Oceanogr. 14, 454–458 (1969).CAS 

    Google Scholar 
    Craddock, P. R., Rouxel, O. J., Ball, L. A. & Bach, W. Sulfur isotope measurement of sulfate and sulfide by high-resolution MC-ICP-MS. Chem. Geol. 253, 102–113 (2008).CAS 

    Google Scholar 
    Mateo, M. A., Serrano, O., Serrano, L. & Michener, R. H. Effects of sample preparation on stable isotope ratios of carbon and nitrogen in marine invertebrates: Implications for food web studies using stable isotopes. Oecologia 157, 105–115 (2008).
    Google Scholar 
    Hedges, J. I. & Stern, J. H. Carbon and nitrogen determinations of carbonate-containing solids1. Limnol. Oceanogr. 29, 657–663 (1984).CAS 

    Google Scholar 
    Coplen, T. B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results: Guidelines and recommended terms for expressing stable isotope results. Rapid Commun. Mass Spectrom. 25, 2538–2560 (2011).CAS 

    Google Scholar 
    Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrijenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotechnol. 3, 294–299 (1994).CAS 

    Google Scholar 
    Methou, P., Michel, L. N., Segonzac, M., Cambon-Bonavita, M.-A. & Pradillon, F. Integrative taxonomy revisits the ontogeny and trophic niches of Rimicaris vent shrimps. R. Soc. Open Sci. 7, 200837 (2020).CAS 

    Google Scholar 
    Leigh, J. W. & Bryant, D. Popart: Full‐feature software for haplotype network construction. Methods Ecol. Evol. 6, 1110–1116 (2015).
    Google Scholar  More

  • in

    Structure and function of the soil microbiome underlying N2O emissions from global wetlands

    Study sites and samplingWe sampled gas and soil in 29 regions throughout the A (rainy tropical), C (temperate), and D (boreal) climate types of the Köppen classification from six continents during the vegetation period between August 2011 and June 2018, following a standard protocol26. According to the protocol, the gas and soil samples were collected from locations in public domain or in previous agreement with the local community and/or property owner. The samples were exported from the origin countries and imported to Estonia, EU in cooperation with customs officers of the respective states, following the legal provisions of soil export and import, specifically exemptions for scientific purposes. To capture the full range of environmental conditions in each region, we established 76 wetland soil sites under different vegetation (mosses, sedges, grasses, herbs, trees, and bare soil) and land-use types (natural—raised bog, fen, and forest; agricultural—arable, hay field and pasture; and a peat extraction area) (Fig. 1a; Supplementary Data 1). We used a four-grade land-use intensity index to quantify the effect of land conversion: 0, no agricultural land use (natural mire, swamp, or bog forest); 1, moderate grazing or mowing (once a year or less); 2, intensive grazing or mowing (more than once a year); and 3, arable land (directly fertilized or unfertilized). The vegetation and land-use intensity types and the land-use intensity index were estimated from observations and contacts with site managers and local researchers.Within the sites, we established 1–4 stations 15–500 m apart to maximize the captured environmental variation. Each of the 196 stations were equipped with 3–5 opaque PVC 65 L truncated conical chambers 1.5–5 m apart and an observation well (perforated, 50 mm diameter PP-HT pipe wrapped in geotextile; 1 m in length). From each of the 645 chambers, N2O fluxes were measured following the static chamber method37 using PVC collars (0.5 m diameter, installed to 0.1 m depth in soil). Stabilization of 3–12 h was allowed before gas sampling to reduce the disturbance effect of inserting the collars on fluxes. The chambers were placed into water-filled rings on top of the collars. Gases were sampled from the chamber headspace into a 50 mL glass vial every 20 min during a 1-h session. The vials had been evacuated in the laboratory 2–6 days before the sampling. At least three sampling sessions per location were run within 3 days. Water-table height was recorded from the observation wells during the gas sampling at least 8 h after placement. Soil temperature was measured at the 10 and 20 cm depth.Soil samples of 150–200 g were collected from the chambers at 0–10 cm depth after the final gas sampling, and transported to laboratories in Tartu, Estonia. The homogenized samples were divided into subsamples for physical–chemical analyses and DNA extraction. The samples for chemical analyses were stored at 4 °C and microbiological samples were stored at –20 °C. DNA extraction was provided at the Tartu University environmental microbiology laboratory (see details below). Using a PP-HT plastic cylinder, intact soil cores (diameter 6.8 cm, height 6 cm) for the N2 analysis with the He–O2 method38 were collected from the topsoil (0−10 cm) inside 252 chambers at 26 sites, starting from 2014. Samples from different climates were run at respective temperatures. During transport, the soil samples were kept below the ambient soil temperature from which they were collected.Gas flux analysesThe gas samples were analyzed for N2O concentration within 2 weeks using two Shimadzu GC-2014 gas chromatographs equipped with ECD, TCD, and a Loftfield-type autosampler. The N2O fluxes were determined on linear regressions obtained from consecutive N2O concentrations taken when the chamber was closed, using p  0.05 we removed one outlier. If the regression remained insignificant but the flux value fell below the gas-chromatography measuring accuracy (regression change of N2O concentration δv  More

  • in

    Nodulation competitiveness and diversification of symbiosis genes in common beans from the American centers of domestication

    In the work reported here, we have examined the interaction of symbiotic partners representative of the three major diversification centers. Although P. vulgaris could establish symbiosis with diverse rhizobial lineages, Rhizobium etli seemed to predominate in nature in the bean nodules collected from the Americas8,9, while the Americas is where the origin and diversification of the host have been experimentally supported19,20. Genotypes other than R. etli that also induce nodule formation in the bean have already been taxonomically defined as species, for instance Rhizobium tropici and Rhizobium ecuadorense, both of which were isolated from areas in northwestern South America, namely Ecuador, Brazil, and Colombia.American-bean rhizobia, from soil samples retrieved by the common bean as well as isolates from nodules found in nature have possessed polymorphism in the nodC gene, disclosing three nodC genotypes namely α, (upgamma), and (updelta)9. The different nodC alleles in American strains exhibit a varying predominance in their regional distributions in correlation with the centers of bean genetic diversification. The nodC types α and (upgamma) were detected both in bean nodules and in soils from Mexico, whereas the nodC type (updelta) was clearly predominant in soil and nodules from the Southern Andes (i. e., in Bolivia and northwest Argentina9). A quantitatively balanced representation of rhizobia with nodC type α and (upgamma) was detected in soils from Ecuador, but the nodC type (upgamma) had been found to be predominantly isolated from nodules formed in nature in that area5,9,10. It should be noted that we have reported finding of equal distribution of allele nodC type α and γ among the nine R etli isolates from bean in Mexico reported by Silva et al.7,9. The occurrence of this polymorphism proved to contribute to examining rhizobial populations inhabiting the Americas and characterizing the interaction with beans in BGD centers from Mexico to the northwest of Argentina. In performing our nodC analysis, we were aware that rhizobia genes for symbiosis are carried on plasmids which might mediate horizontal transfer, however in agreement with Silva et al.7 we assumed that although genetic exchange could be important, it is not so extensive to prevent epidemic clones from arising at significant frequency. Similar findings were found in R. leguminosarum bv trifolii associated with native Trifolium species growing in nature21.Investigations in the last decade have proposed an evolutionary pathway for the host bean that provided us with a framework for examining our results on rhizobia-bean interactions and facilitated an interpretation of the results. The current model proposes the occurrence of a Mesoamerican origin from where dispersion by independent migrations over time led to the Mesoamerican and Andean gene pools and to the Ecuador-Peru wild common-bean populations2,19,20. We found a balanced competition between α and (upgamma) nodC types in beans from Mesoamerica and the southern Andes, whereas the beans from Ecuador and Peru revealed a clear affinity for nodulation with strains of nodC type α rather than with the sympatric strains nodC type (upgamma) that we assayed (R. ecuadorense, CIAT894 and Bra-5). Nevertheless, we have previously reported that native strains and isolates with respectively both nodC types α and (upgamma) were found in soils and bean nodules from Mexico9, whereas lineages harboring nodC type (upgamma) were found to be predominant in beans from the northern and central regions of Ecuador-Peru8,9. The present results, however, indicated a clear affinity of the Ecuadorean-Peruvian—i. e., AHD—beans for strains nodC type α when assessed for competition against nodC type (upgamma) (Fig. 2A). We also found that nodC type (updelta) displayed a clear predominant occupancy of nodules of the AHD beans in contrast to the scarce occupancy of nodules of the Mesoamerican and Andean beans (Fig. 2B). Taken together, these results indicate no affinity of AHD beans for sympatric rhizobial strains containing nodC type (upgamma)—despite the finding that rhizobia of nodC type (upgamma) appear to predominate in isolates of nodules formed in Ecuador9,10.We conclude that although rhizobial type nodC (upgamma) was previously found to predominate in bean nodules from Ecuador, the competitiveness of that rhizobial strain for nodulation compared to other genotypes of bean rhizobia was relatively low. A possible explanation could be that seeds might be assumed to play a key role as carriers during the dissemination of the bean throughout the American regions. Thus, we can hypothesize that at the time of bean dissemination both R. etli nodC types α and (upgamma) (R. ecuadorense and other lineages) moved in conjunction with the host from Mesoamerica to northern Ecuador-Peru, but the strains bearing nodC type (upgamma) achieved an adaptation—probably due to edaphic characteristics, environmental stresses, and other features—in such a way that that strain predominated in soils and succeeded in nodulation.Alternatively, that prevalence might arise from a host selection for a rhizobium that is more effective in nitrogen fixation in a new and different environment. A poor relationship, however, between competitiveness and efficiency was found in the pea22. In line with the concept of adaptation, the bean had been found to be preferentially nodulated by species of R. tropici in acidic soils in regions of Brazil and Africa4,23. Since the environment could also be a major influence on the host and its symbiotic interactions, the Andean area represents a cooler climate for the growth of the bean than the Mesoamerican region24,25. Furthermore, since our assays were performed in laboratory environment parameters, we do not rule out the effect -if any- by the diverse and complex soil microbial community coexisting with bean rhizobia. Within this context, two contrasting soils from Argentina which differ in geolocation and edaphic properties and the perlite substrate were assayed side by side in nodule occupancy of Negro Xamapa after inoculation with a mixture of strains nodC type α and γ (Results not shown). Our results showed that the predominance of nodC type γ in the occupation of the nodules of this variety (about 80% occupation) is not affected by the type of substrate (p = 0.5566). Yet, we assume that the performance in diverse soil and ecosystems should be further evaluated in situ. In agreement, a good coevolution of rhizobia strains with nodC type (upgamma) was detected in nodules of bean varieties from the Mesoamerica and Andean genetic pools inoculated with soil samples from Mexico, Ecuador, and Northwest of Argentina, respectively (see Table 2 in Aguilar et al., 2004) [9].With respect to the interaction in the southern Andes, we propose another interpretation that takes into consideration the bottleneck that occurred before domestication in the Andes, as was indicated by Bitocchi et al.26, which scenario enables the assumption that the adaptation and concomitant diversification involved a coevolution of the symbioses. Therefore, similar profiles of competitiveness for nodulation in Mesoamerican and Andean beans were found between nodC type (upgamma) versus nodC types α and (updelta), but a significant occupancy by the nodC type (updelta) was recorded in the Andean beans.Our work suggests that the genetics of both the host and the bacteria determine the mutual affinity and additionally indicates that symbiotic interaction is another trait of legumes sensitive to the effects of evolution and ecological adaptation to the locale environment such as the characteristics of the soil and the climate.The analysis of the genetic sequences of the bean that encode genes associated with symbiosis, revealed variation of NFR1, NFR5 and NIN over the representative accessions of the Mesoamerican, the Andean, and the AHD gene pools. It is proposed that a receptor complex composed of NFR1 and NFR5 initiates signal transduction in response to Nod-factor synthesized and released by rhizobia27. Although the variation consisted mainly in neutral-amino-acid substitutions, thus suggesting only minimal changes in the functionality, if any at all; we could cite the convincing and relevant evidence reported by Radutoiu et al.27 that the amino-acid residue 118 of the second LysM module of NFR5 is essential for the recognition of rhizobia by species of Lotus japonicus and Lotus filicaulis. Our finding that the Mesoamerican-bean NFR5 has glutamine (Q) in position 151, whereas the Andean and the AHD both have proline (P)—neither of which amino acids is neutral—would merit further investigation to evaluate if such a mutation might play a role in nodulation preference. Although this result must be considered with caution, we found that the conserved polymorphism in the NFR1 and NFR5 proteins has caused the beans representative of the genetic pool Ecuador-Peru—i. e., the AHD—to be grouped in a cluster separate from those of Mesoamerica and the Andes. What we found to be interesting was that the phylogenetic and RMSD profiles of grouping the sequences are consistent with different evolutionary pathways in beans from the AHD and the Andean areas. This observation agrees with the proposal of Randón-Anaya et al.2 that those former beans from northern Peru-Ecuador originated from an ancestral form earlier than that of Mesoamerican- and Andean-bean genotypes. In addition, by applying a suppressive subtractive hybridization approach a set of bean genes were identified in our laboratory to be expressed in early step of infection by the cognate rhizobia28. Taken these results together, we conclude that genomic regions and patterns of expression in the host appear associated with an affinity for nodulation.Within a broader context, we believe that our results on the biogeography of bean-rhizobia interactions in the region where the origin and domestication of the host plants occurred provide novel useful issues to be considered in inoculation programs, for instance those involving selection of strains and cultivars, and invite to validate these findings in follow up field trials. More

  • in

    The Terrific Skink bite force suggests insularity as a likely driver to exceptional resource use

    Case, T. J., Bolger, D. T. & Richman, A. D. Reptilian extinctions: The last ten thousand years. In Conservation Biology (eds Fiedler, P. L. & Jain, S. K.) 91–125 (Springer, 1992).
    Google Scholar 
    Shivanna, K. R. The sixth mass extinction crisis and its impact on biodiversity and human welfare. Resonance 25, 93–109 (2020).
    Google Scholar 
    Ceballos, G., Ehrlich, P. R., Barnosky, A. D., García, A., Pringle, R. M. & Palmer, T. M. Accelerated modern human–induced species losses: Entering the sixth mass extinction. Sci. Adv. 1, (2015)Lawler, J. J. et al. Conservation science: A 20-year report card. Front. Ecol. Environ. 4, 473–480 (2006).
    Google Scholar 
    Sodhi, N. S., Brook, B. W. & Bradshaw, C. J. A. Tropical Conservation Biology (Wiley-Blackwell, 2007).
    Google Scholar 
    Scheffers, B. R., Yong, D. L., Harris, J. B. C., Giam, X. & Sodhi, N. S. The world’s rediscovered species: Back from the brink?. PLoS ONE 6, 1–8 (2011).
    Google Scholar 
    Ineich I. Bocourt’s terrific skink, Phoboscincus bocourti Brocchi, 1876 (Squamata, Scincidae, Lygosominae). In 7. Biodiversity studies in New Caledonia.Mémoires du Muséum National d’Histoire Naturelle (ed. Grancolas, P.) vol. 198, 149–174, Muséum National d’Histoire Naturelle, (2009).Holden, M. & Ineich, I. scinque terrifiant terrifié. Le Courrier de la Nat. 312, 4 (2018).
    Google Scholar 
    Sadlier, R. A., Deuss, M., Bauer, A. M. & Jourdan, H. Kuniesaurus albiauris, a new genus and species of scincid lizard from the Île des Pins, New Caledonia, with comments on the diversity and affinities of the region’s lizard fauna. Pac. Sci. 73, 123–141 (2019).Bauer, A. M. & Sadlier, R. A. Lizard discoveries and rediscoveries in the New Caledonian region. In Flores, O., Ah-Peng, C., & Wilding, N. Island Biology 2019. Third International Conference on Island Ecology, Evolution and Conservation: Book of Abstracts. Island Biology 2019, Jul 2019, Saint Denis, France. 2020. ffhal-02633975v2 243 (2019).Ineich, I., Sadlier, R. A., Bauer, A. M., Jackman, T. R. & Smith, S. A. Bocourt’s terrific skink, Phoboscincus bocourti (Brocchi, 1876), and the monophyly of the genus Phoboscincus Greer, 1974. In Zoologia Neocaledonica 8. Biodiversity studies in New Caledonia. Mémoires du Muséum National d’Histoire Naturelle (eds Guilbert, E. et al.) 69–78 Muséum National d’Histoire naturelle, (2014).
    Google Scholar 
    Caut, S., Holden, M., Jowers, M. J., Boistel, R. & Ineich, I. Is Bocourt’s terrific skink really so terrific? Trophic myth and reality. PLoS One 8, e78638 (2013).Sagonas, K. et al. Insularity affects head morphology, bite force and diet in a Mediterranean lizard. Biol. J. Linn. Soc. 112, 469–484 (2014).
    Google Scholar 
    Tseng, W.-H. et al. Opsin gene expression regulated by testosterone level in a sexually dimorphic lizard. Sci. Rep. 8, 16055 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Avramo, V. et al. Evaluating the island effect on phenotypic evolution in the Italian wall lizard, Podarcis siculus (Reptilia: Lacertidae). Biol. J. Linn. Soc. 132, 655–665 (2021).
    Google Scholar 
    Siliceo-Cantero, H. H., Benítez-Malvido, J. & Suazo-Ortuño, I. Insularity effects on the morphological space and sexual dimorphism of a tropical tree lizard in western Mexico. J. Zool. 311, 277–285 (2020).
    Google Scholar 
    Pérez-Mellado, V. & Corti, C. Dietary adaptations and herbivory in lacertid lizards of the genus Podarcis from western Mediterranean islands (Reptilia: Sauria). Bonner Zool. Beiträge 44, 193–220 (1993).
    Google Scholar 
    Castilla, A. M., Vanhooydonck, B. & Catenazzi, A. Feeding behavior of the Columbretes lizard Podarcis atrata, in relation to the marine species, Ligia italica (Isopoda, Crustaceae). Belgian J. Zool. 138, 146–148 (2008).
    Google Scholar 
    Castilla, A. M. & Herrel, A. The scorpion Buthus occitanus as a profitable prey for the endemic lizard Podarcis atrata in the volcanic Columbretes islands (Mediterranean, Spain). J. Arid Environ. 73, 378–380 (2009).ADS 

    Google Scholar 
    Van Damme, R. Evolution of herbivory in lacertid lizards: Effects of insularity and body size. J. Herpetol. 33, 663 (1999).
    Google Scholar 
    Pafilis, P., Meiri, S., Foufopoulos, J. & Valakos, E. Intraspecific competition and high food availability are associated with insular gigantism in a lizard. Naturwissenschaften 96, 1107–1113 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    D’Amore, D. C. et al. Increasing dietary breadth through allometry: Bite forces in sympatric Australian skinks. Herpetol. Notes 11, 179–187 (2018).
    Google Scholar 
    Taverne, M. et al. Proximate and ultimate drivers of variation in bite force in the insular lizards Podarcis melisellensis and Podarcis sicula. Biol. J. Linn. Soc. 131, 88–108 (2020).
    Google Scholar 
    Kingsolver, J. G. & Pfennig, D. W. Patterns and power of phenotypic selection in nature. Bioscience 57, 561–572 (2007).
    Google Scholar 
    Itescu, Y., Foufopoulos, J., Pafilis, P. & Meiri, S. The diverse nature of island isolation and its effect on land bridge insular faunas. Glob. Ecol. Biogeogr. 29, 262–280 (2020).
    Google Scholar 
    Polis, G. A. & Hurd, S. D. Linking marine and terrestrial food webs: Allochthonous input from the ocean supports high secondary productivity on small islands and coastal land communities. Am. Nat. 147, 396–423 (1996).
    Google Scholar 
    Donihue, C. M., Brock, K. M., Foufopoulos, J. & Herrel, A. Feed or fight: Testing the impact of food availability and intraspecific aggression on the functional ecology of an island lizard. Funct. Ecol. 30, 566–575 (2016).
    Google Scholar 
    Runemark, A., Sagonas, K. & Svensson, E. I. Ecological explanations to island gigantism: Dietary niche divergence, predation, and size in an endemic lizard. Ecology 96, 2077–2092 (2015).PubMed 

    Google Scholar 
    Verwaijen, D., Van Damme, R. & Herrel, A. Relationships between head size, bite force, prey handling efficiency and diet in two sympatric lacertid lizards. Funct. Ecol. 16, 842–850 (2002).
    Google Scholar 
    Herrel, A., O’Reilly, J. C. & Richmond, A. M. Evolution of bite performance in turtles. J. Evol. Biol. 15, 1083–1094 (2002).
    Google Scholar 
    Herrel, A., Vanhooydonck, B., Joachim, R. & Irschick, D. J. Frugivory in polychrotid lizards: Effects of body size. Oecologia 140, 160–168 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Vanhooydonck, B. & Van Damme, R. Omnivory in lacertid lizards: Adaptive evolution or constraint?. J. Evol. Biol. 17, 974–984 (2004).CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Podos, J., Huber, S. K. & Hendry, A. P. Bite performance and morphology in a population of Darwin’s finches: Implications for the evolution of beak shape. Funct. Ecol. 19, 43–48 (2005).
    Google Scholar 
    Herrel, A., Podos, J., Huber, S. K. & Hendry, A. P. Evolution of bite force in Darwin’s finches: A key role for head width. J. Evol. Biol. 18, 669–675 (2005).CAS 
    PubMed 

    Google Scholar 
    Aguirre, L. F., Herrel, A., Van Damme, R. & MatThysen, E. The implications of food hardness for diet in bats. Funct. Ecol. 17, 201–212 (2003).
    Google Scholar 
    Herrel, A. & Holanova, V. Cranial morphology and bite force in Chamaeleolis lizards—Adaptations to molluscivory?. Zoology 111, 467–475 (2008).PubMed 

    Google Scholar 
    Greer, A. E. Distribution of maximum snout-vent length among species of scincid lizards. J. Herpetol. 35, 383 (2001).
    Google Scholar 
    Burggren, W. W. & McMahon, B. R. Biology of the Land Crabs, Cambridge University Press, (1988).
    Google Scholar 
    Grubb, P. Ecology of terrestrial decapod crustaceans on Aldabra. Philos. Trans. R. Soc. Lond. B Biol. Sci. 260, 411–416 (1971)Wineski, L. E. & Gans, C. Morphological basis of the feeding mechanics in the shingle-back lizard Trachydosaurus rugosus (Scincidae, Reptilia). J. Morphol. 181, 271–295 (1984).CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Verstappen, M. & De Vree, F. Modulatory complexity of the feeding repertoire in scincid lizards. J. Comp. Physiol. A Sens. Neural Behav. Physiol. 184, 501–518 (1999).Herrel, A., Aerts, P. & De Vree, F. Ecomorphology of the lizard feeding apparatus: A modelling approach. Neth. J. Zool. 48, 1–25 (1998).
    Google Scholar 
    Hartnoll, R. G. Evolution, systematics, and geographical distribution. In Biology of the Land Crabs (eds Burggren, W. W. & McMahon, B. R.) 6–54, (Cambridge University Press, 1988).
    Google Scholar 
    Ben-David, M. & Schell, D. M. Mixing models in analyses of diet using multiple stable isotopes: A response. Oecologia 127, 180–184 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Caut, S., Angulo, E. & Courchamp, F. Caution on isotopic model use for analyses of consumer diet. Can. J. Zool. 86, 438–445 (2008).CAS 

    Google Scholar 
    Warne, R. W., Gilman, C. A. & Wolf, B. O. Tissue-carbon incorporation rates in lizards: Implications for ecological studies using stable isotopes in terrestrial ectotherms. Physiol. Biochem. Zool. 83, 608–617 (2010).PubMed 

    Google Scholar 
    Steinitz, R., Lemm, J. M., Pasachnik, S. A. & Kurle, C. M. Diet-tissue stable isotope (Δ13C and Δ15N) discrimination factors for multiple tissues from terrestrial reptiles. Rapid Commun. Mass Spectrom. 30, 9–21 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lattanzio, M. & Miles, D. Stable carbon and nitrogen isotope discrimination and turnover in a small-bodied insectivorous lizard. Isot. Environ. Health Stud. 52, 673–681 (2016).CAS 

    Google Scholar 
    Durso, A. M., Smith, G. D., Hudson, S. B. & French, S. S. Stoichiometric and stable isotope ratios of wild lizards in an urban landscape vary with reproduction, physiology, space and time. Conserv. Physiol. 8, 1–14 (2020).
    Google Scholar 
    Warne, R. W. & Wolf, B. O. Nitrogen stable isotope turnover and discrimination in lizards. Rapid Commun. Mass Spectrom. 35, e9030 (2021).Aerts, P., De Vree, F. & Herrel, A. Ecomorphology of the lizard feeding apparatus: A modelling approach. Neth. J. Zool. 48, 1–25 (1997).
    Google Scholar 
    Herrel, A., Schaerlaeken, V., Meyers, J. J., Metzger, K. A. & Ross, C. F. The evolution of cranial design and performance in squamates: Consequences of skull-bone reduction on feeding behavior. Integr. Comp. Biol. 47, 107–117 (2007).PubMed 

    Google Scholar 
    Beuttner, A. & Koch, C. Analysis of diet composition and morphological characters of the Peruvian lizard Microlophus stolzmanni (Squamata: Tropiduridae). Phyllomedusa J. Herpetol. 18, 47–62 (2019).
    Google Scholar 
    Herrel, A., Aerts, P. & Vree, D. Static biting in lizards: Functional morphology of the temporal ligaments. J. Zool. 244, 135–143 (1998).
    Google Scholar 
    Greer, A. The genetic relationships of the scincid lizard genus Leiolopisma and its relatives. Aust. J. Zool. Suppl. Ser. 22, 1–67 (1974).
    Google Scholar 
    Shirley, M. H., Carr, A. N., Nestler, J. H., Vliet, K. A. & Brochu, C. A. Systematic revision of the living African slender-snouted crocodiles (Mecistops Gray, 1844). Zootaxa 4504, 151 (2018).PubMed 

    Google Scholar 
    Yoshioka, S. & Kimura, T. What does the red-eared slider eat on the tidal flats? Comparing the diet of the invasive alien species Trachemys scripta elegans inhabiting the tidal flat and freshwaters. Jpn. J. Benthol. 72, 83–93 (2018).
    Google Scholar 
    Bernal, S. & Magda, S. Análisis de los contenidos estomacales de las tortugas y cachirres de la Reserva Natural Privada de la Sociedad Civil Bojonawi (Puerto Carreño, Vichada). (Bogotá: Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, 2020).Murphy, J. C. Homalopsid Snakes, Evolution in the Mud (Krieger Publishing Company, 2007).
    Google Scholar 
    Chen, P. Z. An observation of crab predation by a Gerard’s water snake, Gerarda prevostiana (Reptilia: Squamata: Homalopsidae) in the wild at Sungei Buloh, Singapore. Nat. Singap. 3, 195–197 (2010).
    Google Scholar 
    Jayne, B. C., Voris, H. K. & Ng, P. K. L. Snake circumvents constraints on prey size. Nature 418, 143–143 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Jayne, B. C., Voris, H. K. & Ng, P. K. L. How big is too big? Using crustacean-eating snakes (Homalopsidae) to test how anatomy and behaviour affect prey size and feeding performance. Biol. J. Linn. Soc. 123, 636–650 (2018).
    Google Scholar 
    Murphy, J. C. & Voris, H. K. Aquatic snakes with crustacean-eating habits elude herpetologists for two centuries. Litt. Serpentium 22, 107–114 (2002).
    Google Scholar 
    Voris, H. K. & Murphy, J. C. The prey and predators of Homalopsine snakes. J. Nat. Hist. 36, 1621–1632 (2002).
    Google Scholar 
    Wai-Neng, L. & Melville, D. S. Notes on the feeding of Enhydris bennetti (Gray) (Reptilia, Squamata, Colubridae) in Hong Kong. Mem. Hong Kong Nat. Hist. Soc. 19, 117 (2020).
    Google Scholar 
    López-Hurtado, Y., García-Padrón, L. Y., González, A., Díaz, L. M. & Rodríguez-Cabrera, T. M. Notes on the feeding habits of the Caribbean watersnake, Tretanorhinus variabilis (Dipsadidae). Reptil. Amphib. 27, 147–153 (2020).
    Google Scholar 
    Gripshover, N. D. & Jayne, B. C. Crayfish eating in snakes: Testing how anatomy and behavior affect prey size and feeding performance. Integr. Org. Biol. 3, 1–16 (2021).
    Google Scholar 
    Naish, D. The Madagascan skink Amphiglossus eats crabs. Sci. Am. Blog Netw. https://blogs.scientificamerican.com/tetrapod-zoology/the-madagascan-skink-amphiglossus-eats-crabs/ (2016).Hediger, H. Beitrag zur herpetologie und zoogeographie Neu Britanniens und einiger umliegender gebiete. Zool. Jahrbücher. Abteilung für Syst. Geogr. und Biol. der Tiere 65, 441–582 (1934).McCoy, M. W. Reptiles of the Solomon Islands, (Pensoft Publishers, 2006).
    Google Scholar 
    Huang, W. S. Ecology and reproductive patterns of the littoral skink Emoia atrocostata on an East Asian tropical rainforest island. Zool. Stud. 50, 506–512 (2011).
    Google Scholar 
    Anderson, C. Decapod crustacean species of Aride Island, Seychelles. Phelsuma 2(12), 36–49 (1994).
    Google Scholar 
    Paulay, G. & Starmer, J. Evolution, insular restriction, and extinction of oceanic land crabs, exemplified by the loss of an endemic Geograpsus in the Hawaiian Islands. PLoS ONE 6, e19916 (2011).Cleuren, J., Aerts, P. & de Vree, F. Bite and joint force analysis in Caiman crocodilus. Belgian J. Zool. 125, 79–94 (1995).
    Google Scholar 
    Meyers, J. J., Nishikawa, K. C. & Herrel, A. The evolution of bite force in horned lizards: The influence of dietary specialization. J. Anat. 232, 214–226 (2018).PubMed 

    Google Scholar 
    Van Damme, R., De Vree, F. & Herrel, A. Sexual dimorphism of head size in Podarcis hispanica atrata: Testing the dietary divergence hypothesis by bite force analysis. Neth. J. Zool. 46, 253–262 (1995).
    Google Scholar 
    Gröning, F. et al. The importance of accurate muscle modelling for biomechanical analyses: A case study with a lizard skull. J. R. Soc. Interface 10, 1–10 (2013).
    Google Scholar 
    Vanhooydonck, B., Boistel, R., Fernandez, V. & Herrel, A. Push and bite: Trade-offs between burrowing and biting in a burrowing skink (Acontias percivali). Biol. J. Linn. Soc. 102, 91–99 (2011).
    Google Scholar 
    Handschuh, S. et al. Cranial kinesis in the miniaturised lizard Ablepharus kitaibelii (Squamata: Scincidae). J. Exp. Biol. 222, 1–15 (2019).
    Google Scholar 
    Le Guilloux, M. et al. Trade-offs between burrowing and biting force in fossorial scincid lizards?. Biol. J. Linn. Soc. 130, 310–319 (2020).
    Google Scholar 
    Herrel, A, Spithoven, L., Van Damme, R. & De Vree, F. Sexual dimorphism of head size in Gallotia galloti: Testing the niche divergence hypothesis by functional analyses. Funct. Ecol. 13, 289–297 (1999).
    Google Scholar 
    Herrel, A., De Grauw, E. & Lemos-Espinal, J. A. Head shape and bite performance in xenosaurid lizards. J. Exp. Zool. 290, 101–107 (2001).CAS 
    PubMed 

    Google Scholar 
    Herrel, A., Petrochic, S. & Draud, M. Sexual dimorphism, bite force and diet in the diamondback terrapin. J. Zool. 304, 217–224 (2018).
    Google Scholar  More

  • in

    Post-lockdown changes of age-specific susceptibility and its correlation with adherence to social distancing measures

    Stochastic age-specific transmission modelWe formulate a stochastic age-specific transmission model in the general Susceptible(S)-Exposed(E)-Reported(I)-Unreported(U)-Recovered(R) framework. For a particular age group (i) at time (t-1) ((i=1) corresponding to the 0–17 years, (i=2) to 18–44, (i=3) to 45–64 and (i=4) to 65+), we have$$begin{array}{l}{S}_{i}(t)= {S}_{i}(t-1)-{n}_{S{E}_{i}}(t)\ {E}_{i}(t)= {E}_{i}(t-1)+{n}_{S{E}_{i}}(t)-\ {n}_{E{I}_{i}}(t)-{n}_{E{U}_{i}}(t)\ {I}_{i}(t)= {I}_{i}(t-1)+{n}_{E{I}_{i}}(t)-{n}_{I{R}_{i}}(t)\ {U}_{i}(t)= {U}_{i}(t-1)+{n}_{E{U}_{i}}(t)-{n}_{U{R}_{i}}(t)\ {R}_{i}(t)= {R}_{i}(t-1)+{n}_{I{R}_{i}}(t)+{n}_{U{R}_{i}}(t),end{array}$$
    (1)
    where ({n}_{{XY}_{i}}(t)) represents number of transitions between a class X and class Y for age group (i) at time (t).The number of transitions from the susceptible to exposed class for group (i) at time (t) is modelled by$$begin{aligned}{n}_{S{E}_{i}}(t)&sim Poi({S}_{i}(t-1)times {gamma }_{i}(t)times \ & quad sum_{j=1}beta (t)times {c}_{j,i}(t)times {{I}_{j}(t-1)+{U}_{j}(t-1)}).end{aligned}$$
    (2)
    Here, (beta (t)) denotes the average infectiousness of an infectious individual and ({c}_{j,i}(t)) is the average number of contacts per day made by age group (j) to (i). Also note that the product (beta (t)times {c}_{j,i}(t)) may represent age-specific transmissibility (of age group (j)) accounting for contacts. We allow and infer two change points of (beta (t)) (one potentially correlates to changes due to the implementation of lockdown and another one to changes due to the lifting of lockdown), i.e.,$$beta left(tright)=left{begin{array}{ll}{beta }_{0},&quad if; tle {T}_{1}\ {beta }_{1}={omega }_{1}times {beta }_{0},&quad if ;{T}_{1}{T}_{2},end{array}right.$$
    (3)
    where ({T}_{1}) and ({T}_{2}) are the two change points to be inferred (({T}_{2}ge {T}_{1})). ({gamma }_{i}(t)) denotes the susceptibility of group (i) relative to the oldest age group (i.e., ({gamma }_{4}=1)), which is also allowed to change proportionally after lifting the lockdown. Note that ({gamma }_{i}(t)) implicitly incorporates any behavioral effects (e.g., potential reduction of risk of getting infection due to facemask wearing). Transitions between other classes are modelled as:$$begin{aligned}{n}_{E{U}_{i}}(t)sim & Bin({n}_{S{E}_{i}}(t-{D}_{EU}),{p}_{{U}_{i}}(t-{D}_{EU}))\ {n}_{E{I}_{i}}(t)=& {n}_{S{E}_{i}}(t-{D}_{EI})-{n}_{E{U}_{i}}(t)\ {n}_{I{R}_{i}}(t)=& {n}_{E{I}_{i}}(t-{D}_{IR})\ {n}_{U{R}_{i}}(t)=& {n}_{E{U}_{i}}(t-{D}_{UR}),end{aligned}$$
    (4)
    where ({D}_{EI}), ({D}_{EU}), ({D}_{IR}) and ({D}_{UR}) denote the mean waiting times between the indicated two classes. We assume that ({D}_{EI})= ({D}_{EU})=7 days and ({D}_{IR})= ({D}_{UR})=14 days. ({p}_{{U}_{i}}(t)) represents probability that an infection is unreported at times (t) for age group (i), we assume$${p}_{{U}_{i}}(t)=1-frac{{e}^{{f}_{i}(t)}}{1+{e}^{{f}_{i}(t)}}.$$
    (5)
    ({f}_{i}(.)) is an increasing function with ({f}_{i}(t)={a}_{i}+{b}_{i}times t), where (-infty More

  • in

    Large-scale societal dynamics are reflected in human mood and brain

    Analysing the relations between FTSE100 and self-reported measures of emotional well-being we confirmed that market ups (higher FTSE100 scores) were associated with higher scores of “happiness” and lower scores in self-reported “negative emotional facets”: irritability, hurt and nervous feelings, anxiety (Fig. 1; Table 1). The identified association also held true for the 5.5-years of the MRI subsample (Supplementary Table S2). We further explored non-imaging variables that are associated with mood changes, i.e. alcohol intake (overall intake frequency and a composite score reflecting weekly intake of all alcoholic beverages) and diastolic blood pressure (automatic readings in mmHg measured at rest), and showed that they were also highly correlated with the FTSE100 (Fig. 1A) in that both measures increased when the stock market decreased in value. Several of these effects (relation between stock market and negative emotions, blood pressure or alcohol-intake) were reproduced in the My Connectome data-set consisting of one single subject whose measurements were taken at 81 timepoints during a period or 1.5 years (Fig. 1B).Figure 1Non-MRI variables and stock market moves. The figure illustrates the identified associations between stock market moves and non-MRI indicators of well-being in the UK Biobank sample (top panel A) and My Connectome data, a single-subject study (bottom panel B); *p  More