More stories

  • in

    DNA- and RNA-based bacterial communities and geochemical zonation under changing sediment porewater dynamics on the Aldabra Atoll

    Falkowski, P. G., Fenchel, T. & Delong, E. F. The microbial engines that drive Earth’s biogeochemical cycles. Science (New York, N.Y.) 320, 1034–1039 (2008).ADS 
    CAS 

    Google Scholar 
    Jørgensen, B. B. & Kasten, S. in Marine Geochemistry, edited by H. D. Schulz & M. Zabel (Springer, 2006), 271–309.Broman, E., Sjöstedt, J., Pinhassi, J. & Dopson, M. Shifts in coastal sediment oxygenation cause pronounced changes in microbial community composition and associated metabolism. Microbiome 5, 96 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Billerbeck, M. et al. Surficial and deep pore water circulation governs spatial and temporal scales of nutrient recycling in intertidal sand flat sediment. Mar. Ecol. Prog. Ser. 326, 61–76 (2006).ADS 
    CAS 

    Google Scholar 
    Booth, J. M., Fusi, M., Marasco, R., Mbobo, T. & Daffonchio, D. Fiddler crab bioturbation determines consistent changes in bacterial communities across contrasting environmental conditions. Sci. Rep. 9, 3749 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Torti, A., Lever, M. A. & Jørgensen, B. B. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar. Genom. 24(Pt 3), 185–196 (2015).
    Google Scholar 
    Starke, R., Pylro, V. S. & Morais, D. K. 16S rRNA gene copy number normalization does not provide more reliable conclusions in metataxonomic surveys. Microb. Ecol. 81, 535–539 (2021).CAS 
    PubMed 

    Google Scholar 
    Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: Limitations and uses. ISME J. 7, 2061–2068 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Vrieze, J., Pinto, A. J., Sloan, W. T. & Ijaz, U. Z. The active microbial community more accurately reflects the anaerobic digestion process: 16S rRNA (gene) sequencing as a predictive tool. Microbiome 6, 63 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Y., Zhao, Z., Dai, M., Jiao, N. & Herndl, G. J. Drivers shaping the diversity and biogeography of total and active bacterial communities in the South China Sea. Mol. Ecol. 23, 2260–2274 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, K. M., Petersen, I. A. B., Tobi, E., Korte, L. & Bohannan, B. J. M. Use of RNA and DNA to identify mechanisms of bacterial community homogenization. Front. Microbiol. 10, 2066 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Petro, C., Starnawski, P., Schramm, A. & Kjeldsen, K. U. Microbial community assembly in marine sediments. Aquat. Microb. Ecol. 79, 177–195 (2017).
    Google Scholar 
    Walsh, E. A. et al. Relationship of bacterial richness to organic degradation rate and sediment age in subseafloor sediment. Appl. Environ. Microbiol. 82, 4994–4999 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dinsdale, E. A. et al. Microbial ecology of four coral atolls in the Northern Line Islands. PLoS ONE 3, e1584 (2008).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schmitt, S. et al. Salinity, microbe and carbonate mineral relationships in brackish and hypersaline lake sediments: A case study from the tropical Pacific coral atoll of Kiritimati. Depositional Rec. 5, 212–229 (2019).
    Google Scholar 
    Schneider, D., Arp, G., Reimer, A., Reitner, J. & Daniel, R. Phylogenetic analysis of a microbialite-forming microbial mat from a hypersaline lake of the Kiritimati atoll, Central Pacific. PLoS ONE 8, e66662 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, B. et al. Sediment microbial communities and their potential role as environmental pollution indicators in Xuande Atoll, South China Sea. Front. Microbiol. 11, 1011 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Galand, P. E. et al. Phylogenetic and functional diversity of Bacteria and Archaea in a unique stratified lagoon, the Clipperton atoll (N Pacific). FEMS Microbiol. Ecol. 79, 203–217 (2012).CAS 
    PubMed 

    Google Scholar 
    Stoddart, D. R. The conservation of Aldabra. Geogr. J. 134, 471 (1968).
    Google Scholar 
    Farrow, G. E. & Brander, K. M. Tidal studies on Aldabra. Phil. Trans. R. Soc. Lond. B 260, 93–121 (1971).ADS 

    Google Scholar 
    Gaillard, C., Bernier, P. & Gruet, Y. L. lagon d’Aldabra (Seychelles, Océan indien), un modèle pour le paléoenvironnement de Cerin (Kimméridgien supérieur, Jura méridional, France). Geobios 27, 331–348 (1994).
    Google Scholar 
    Hamylton, S., Spencer, T. & Hagan, A. B. Spatial modelling of benthic cover using remote sensing data in the Aldabra lagoon, western Indian Ocean. Mar. Ecol. Prog. Ser. 460, 35–47 (2012).ADS 

    Google Scholar 
    Braithwaite, C. J. R. Last interglacial changes in sea level on Aldabra, western Indian Ocean. Sedimentology 67, 3236–3258 (2020).
    Google Scholar 
    Haverkamp, P. J. et al. Giant tortoise habitats under increasing drought conditions on Aldabra Atoll—Ecological indicators to monitor rainfall anomalies and related vegetation activity. Ecol. Ind. 80, 354–362 (2017).
    Google Scholar 
    Hughes, R. N. & Gamble, J. C. A quantitative survey of the biota of intertidal soft substrata on Aldabra Atoll, Indian Ocean. Phil. Trans. R. Soc. Lond. B 279, 327–355 (1977).ADS 

    Google Scholar 
    Braithwaite, C., Casanova, J., Frevert, T. & Whitton, B. A. Recent stromatolites in landlocked pools on Aldabra, Western Indian Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol. 69, 145–165 (1989).
    Google Scholar 
    Potts, M. & Whitton, B. A. Nitrogen fixation by blue-green algal communities in the intertidal zone of the lagoon of Aldabra Atoll. Oecologia 27, 275–283 (1977).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Potts, M. & Whitton, B. A. Vegetation of the intertidal zone of the lagoon of Aldabra, with particular reference to the photosynthetic prokaryotic communities. Proc. R. Soc. Lond. B. 208, 13–55 (1980).ADS 

    Google Scholar 
    Meyers, P. A. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 114, 289–302 (1994).ADS 
    CAS 

    Google Scholar 
    Choi, A., Lee, K., Oh, H.-M., Feng, J. & Cho, J.-C. Litoricola marina sp. nov.. Int. J. Syst. Evolut. Microbiol. 60, 1303–1306 (2010).CAS 

    Google Scholar 
    Durham, B. P. et al. Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome. Stand Genom. Sci. 9, 632–645 (2014).
    Google Scholar 
    Boehm, A. B., Yamahara, K. M. & Sassoubre, L. M. Diversity and transport of microorganisms in intertidal sands of the California coast. Appl. Environ. Microbiol. 80, 3943–3951 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Probandt, D., Eickhorst, T., Ellrott, A., Amann, R. & Knittel, K. Microbial life on a sand grain: From bulk sediment to single grains. ISME J. 12, 623–633 (2018).PubMed 

    Google Scholar 
    Wong, H. L., Smith, D.-L., Visscher, P. T. & Burns, B. P. Niche differentiation of bacterial communities at a millimeter scale in Shark Bay microbial mats. Sci. Rep. 5, 15607 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dupraz, C., Visscher, P. T., Baumgartner, L. K. & Reid, R. P. Microbe-mineral interactions: Early carbonate precipitation in a hypersaline lake (Eleuthera Island, Bahamas). Sedimentology 51, 745–765 (2004).ADS 
    CAS 

    Google Scholar 
    Diaz, M. R., Piggot, A. M., Eberli, G. P. & Klaus, J. S. Bacterial community of oolitic carbonate sediments of the Bahamas Archipelago. Mar. Ecol. Prog. Ser. 485, 9–24 (2013).ADS 

    Google Scholar 
    Cui, H., Yang, K., Pagaling, E. & Yan, T. Spatial and temporal variation in enterococcal abundance and its relationship to the microbial community in Hawaii beach sand and water. Appl. Environ. Microbiol. 79, 3601–3609 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petriglieri, F., Nierychlo, M., Nielsen, P. H. & McIlroy, S. J. In situ visualisation of the abundant Chloroflexi populations in full-scale anaerobic digesters and the fate of immigrating species. PLoS ONE 13, e0206255 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wietz, M., Gram, L., Jørgensen, B. & Schramm, A. Latitudinal patterns in the abundance of major marine bacterioplankton groups. Aquat. Microb. Ecol. 61, 179–189 (2010).
    Google Scholar 
    Wemheuer, B. et al. Impact of a phytoplankton bloom on the diversity of the active bacterial community in the southern North Sea as revealed by metatranscriptomic approaches. FEMS Microbiol. Ecol. 87, 378–389 (2014).CAS 
    PubMed 

    Google Scholar 
    Heywood, K. J., Stevens, D. P. & Bigg, G. R. Eddy formation behind the tropical island of Aldabra. Deep Sea Res. Part I 43, 555–578 (1996).
    Google Scholar 
    Pérez-Cataluña, A. et al. Revisiting the taxonomy of the genus Arcobacter: Getting order from the chaos. Front. Microbiol. 9, 2077 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Revsbech, N. P. & Jørgensen, B. B. Microelectrodes: Their Use in Microbial Ecology. In Advances in Microbial Ecology (ed. Marshall, K. C.) 293–352 (Springer, 1989).
    Google Scholar 
    Watson, J. et al. Reductively debrominating strains of Propionigenium maris from burrows of bromophenol-producing marine infauna. Int. J. Syst. Evol. Microbiol. 50(Pt 3), 1035–1042 (2000).CAS 
    PubMed 

    Google Scholar 
    Sasi, J. T. S., Rahul, K., Ramaprasad, E. V. V., Sasikala, C. & Ramana, C. V. Arcobacter anaerophilus sp. nov., isolated from an estuarine sediment and emended description of the genus Arcobacter. Int. J. Syst. Evolut. Microbiol. 63, 4619–4625 (2013).
    Google Scholar 
    Rinke, C. et al. High genetic similarity between two geographically distinct strains of the sulfur-oxidizing symbiont ‘Candidatus Thiobios zoothamnicoli’. FEMS Microbiol. Ecol. 67, 229–241 (2009).CAS 
    PubMed 

    Google Scholar 
    Vartoukian, S. R., Palmer, R. M. & Wade, W. G. The division “Synergistes”. Anaerobe 13, 99–106 (2007).CAS 
    PubMed 

    Google Scholar 
    Janssen, P. H. & Liesack, W. Succinate decarboxylation by Propionigenium maris sp. nov., a new anaerobic bacterium from an estuarine sediment. Arch. Microbiol. 164, 29–35 (1995).CAS 
    PubMed 

    Google Scholar 
    Shiozaki, T. et al. Nitrification and its influence on biogeochemical cycles from the equatorial Pacific to the Arctic Ocean. ISME J. 10, 2184–2197 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    González-Domenech, C. M., Martínez-Checa, F., Béjar, V. & Quesada, E. Denitrification as an important taxonomic marker within the genus Halomonas. Syst. Appl. Microbiol. 33, 85–93 (2010).PubMed 

    Google Scholar 
    Farmer, J. J., Michael, J. J., Brenner, F. W., Cameron, D. N. & Birkhead, K. M. The Book. In Bergey’s Manual of Systematics of Archaea and Bacteria (eds Whitman, W. B. et al.) 1–79 (Wiley, 2016).
    Google Scholar 
    Ventosa, A. & Haba, R. R. in Bergey’s Manual of Systematics of Archaea and Bacteria, edited by W. B. Whitman, et al. (Wiley, 2015), 1–16.Lloyd, K. G. Time as a microbial resource. Environ. Microbiol. Rep. 13, 18–21 (2021).PubMed 

    Google Scholar 
    Holguin, G., Vazquez, P. & Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils 33, 265–278 (2001).CAS 

    Google Scholar 
    Nanca, C. L., Neri, K. D., Ngo, A. C. R., Bennett, R. M. & Dedeles, G. R. Degradation of polycyclic aromatic hydrocarbons by moderately halophilic bacteria from Luzon salt beds. J. Health Pollut. 8, 180915 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bird, J. T. et al. Uncultured microbial phyla suggest mechanisms for multi-thousand-year subsistence in Baltic Sea sediments. MBio 10, 1002 (2019).
    Google Scholar 
    Moulton, O. M. et al. Microbial associations with macrobiota in coastal ecosystems: Patterns and implications for nitrogen cycling. Front. Ecol. Environ. 14, 200–208 (2016).
    Google Scholar 
    Park, S., Park, J.-M., Kang, C.-H. & Yoon, J.-H. Aestuariispira insulae gen. nov., sp. nov., a lipolytic bacterium isolated from a tidal flat. Int. J. Syst. Evol. Microbiol. 64, 1841–1846 (2014).CAS 
    PubMed 

    Google Scholar 
    Evans, M. V. et al. Members of Marinobacter and Arcobacter influence system biogeochemistry during early production of hydraulically fractured natural gas wells in the Appalachian Basin. Front. Microbiol. 9, 2646 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wilhelm, R. C. Following the terrestrial tracks of Caulobacter – redefining the ecology of a reputed aquatic oligotroph. ISME J. 12, 3025–3037 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Suzuki, D., Ueki, A., Amaishi, A. & Ueki, K. Desulfopila aestuarii gen. nov., sp. nov., a Gram-negative, rod-like, sulfate-reducing bacterium isolated from an estuarine sediment in Japan. Int. J. Syst. Evol. Microbiol. 57, 520–526 (2007).CAS 
    PubMed 

    Google Scholar 
    Dawson, K. S., Scheller, S., Dillon, J. G. & Orphan, V. J. Stable isotope phenotyping via cluster analysis of nanoSIMS data as a method for characterizing distinct microbial ecophysiologies and sulfur-cycling in the environment. Front. Microbiol. 7, 774 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Fadhlaoui, K. et al. Fusibacter fontis sp. nov., a sulfur-reducing, anaerobic bacterium isolated from a mesothermic Tunisian spring. Int. J. Syst. Evol. Microbiol. 65, 3501–3506 (2015).CAS 
    PubMed 

    Google Scholar 
    Kjeldsen, K. U. et al. Diversity of sulfate-reducing bacteria from an extreme hypersaline sediment, Great Salt Lake (Utah). FEMS Microbiol. Ecol. 60, 287–298 (2007).CAS 
    PubMed 

    Google Scholar 
    Schneider, D., Wemheuer, F., Pfeiffer, B. & Wemheuer, B. Extraction of total DNA and RNA from marine filter samples and generation of a cDNA as universal template for marker gene studies. Methods Mol. Biol. Clifton N J 1539, 13–22 (2017).CAS 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).CAS 
    PubMed 

    Google Scholar 
    Berkelmann, D., Schneider, D., Hennings, N., Meryandini, A. & Daniel, R. Soil bacterial community structures in relation to different oil palm management practices. Sci. Data 7, 421 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    von Hoyningen-Huene, A. J. E. et al. Bacterial succession along a sediment porewater gradient at Lake Neusiedl in Austria. Sci. data 6, 163 (2019).
    Google Scholar 
    Tange, O. Gnu parallel-the command-line power tool. login: The USENIX Mag. 36, 42–47 (2011).Chen, S., Zhou, Y., Chen, Y. & Gu, J. fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics (Oxford, England) 34, i884–i890 (2018).
    Google Scholar 
    Zhang, J., Kobert, K., Flouri, T. & Stamatakis, A. PEAR: A fast and accurate Illumina paired-end read merger. Bioinformatics (Oxford, England) 30, 614–620 (2014).CAS 

    Google Scholar 
    Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet j. 17, 10 (2011).
    Google Scholar 
    Rognes, T., Flouri, T., Nichols, B., Quince, C. & Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 4, e2584 (2016).Edgar, R. C. UNOISE2: Improved error-correction for Illumina 16S and ITS amplicon sequencing (2016).Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 

    Google Scholar 
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local alignment search tool. J. Mol. Biol. 215, 403–410 (1990).CAS 
    PubMed 

    Google Scholar 
    SILVAngs. SILVAngs – rDNA-based microbial community analysis using next-generation sequencing (NGS) data – user guide. Available at https://www.arb-silva.de/fileadmin/silva_databases/sngs/SILVAngs_User_Guide.pdf (2017).McDonald, D. et al. The Biological Observation Matrix (BIOM) format or: How I learned to stop worrying and love the ome-ome. GigaScience 1, 7 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A. FigTree – tree figure drawing tool (2018).R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2020).RStudio Team. RStudio: integrated development for R (RStudio Inc., 2021).Chen, L. et al. GMPR: A robust normalization method for zero-inflated count data with application to microbiome sequencing data. PeerJ 6, e4600 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Pereira, M. B., Wallroth, M., Jonsson, V. & Kristiansson, E. Comparison of normalization methods for the analysis of metagenomic gene abundance data. BMC Genom. 19, 274 (2018).
    Google Scholar 
    Andersen, K. S., Kirkegaard, R. H., Karst, S. M. & Albertsen, M. ampvis2: an R package to analyse and visualise 16S rRNA amplicon data (2018).Oksanen, J. et al. vegan: Community ecology package (2018).Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics (Oxford, England) 26, 1463–1464 (2010).CAS 

    Google Scholar 
    Harrel Jr, F. E., with contributions from Charles Dupont and many others. Hmisc: Harrell Miscellaneous (2021).Wei, T. & Simko, V. R package “corrplot”: Visualization of a Correlation (2021).de Cáceres, M. & Legendre, P. Associations between species and groups of sites: Indices and statistical inference. Ecology 90, 3566–3574 (2009).PubMed 

    Google Scholar 
    Shannon, P. et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Esri Inc. ArcGIS Desktop (Esri Inc., 2019).Inkscape Developers. Inkscape (2020).Fussmann, D. et al. Authigenic formation of Ca–Mg carbonates in the shallow alkaline Lake Neusiedl, Austria. Biogeosciences 17, 2085–2106 (2020).ADS 
    CAS 

    Google Scholar 
    Parkhurst, D. L. & Appelo, C. A. in U.S. Geological Survey Techniques and Methods (2013), Vol. 6, pp. 2328–7055. More

  • in

    Regulated timber harvesting does not reduce koala density in north-east forests of New South Wales

    Slade, C. & Law, B. The other half of the coastal State Forest estate in New South Wales; The value of informal forest reserves for conservation. Aust. Zool. 39, 359–370. https://doi.org/10.7882/AZ.2016.011 (2017).Article 

    Google Scholar 
    Munks, S. A., Chuter, A. E. & Koch, A. J. ‘Off-reserve’ management in practice: Contributing to conservation of biodiversity over 30 years of Tasmania’s forest practices system. For. Ecol. Manag. 465, 117941. https://doi.org/10.1016/j.foreco.2020.117941 (2020).Article 

    Google Scholar 
    Lande, R. Demographic models of the northern spotted owl (Strix occidentalis caurina). Oecologia 75, 601–607 (1988).ADS 
    CAS 
    Article 

    Google Scholar 
    Franklin, C. M. A., Macdonald, S. E. & Nielsen, S. E. Can retention harvests help conserve wildlife? Evidence for vertebrates in the boreal forest. Ecosphere 10(3), e02632 (2019).Article 

    Google Scholar 
    McAlpine, C. A. et al. Conserving koalas: A review of the contrasting regional trends, outlooks and policy challenges. Biol. Conserv. 192, 226–236. https://doi.org/10.1016/j.biocon.2015.09.020 (2015).Article 

    Google Scholar 
    Kavanagh, R. P. & Stanton, M. A. Koalas use young Eucalyptus plantations in an agricultural landscape on the Liverpool Plains, New South Wales. Ecol. Manag. Restor. 13, 297–305. https://doi.org/10.1111/emr.12005 (2012).Article 

    Google Scholar 
    Matthews, A., Lunney, D., Gresser, S. & Maitz, W. Movement patterns of koalas in remnant forest after fire. Aust. Mammal. 38, 91–104. https://doi.org/10.1071/AM14010 (2016).Article 

    Google Scholar 
    McAlpine, C. A. et al. The importance of forest area and configuration relative to local habitat factors for conserving forest mammals: A case study of koalas in Queensland, Australia. Biol. Conserv. 132, 153–165. https://doi.org/10.1016/j.biocon.2006.03.021 (2006).Article 

    Google Scholar 
    Beyer, H. L. et al. Management of multiple threats achieves meaningful koala conservation outcomes. J. Appl. Ecol. 55, 1966–1975. https://doi.org/10.1111/1365-2664.13127 (2018).Article 

    Google Scholar 
    Kavanagh, R. P., Stanton, M. A. & Brassil, T. E. Koalas continue to occupy their previous home-ranges after selective logging in Callitris–Eucalyptus forest. Wildl. Res. 34, 94–107. https://doi.org/10.1071/WR06126 (2007).Article 

    Google Scholar 
    Kavanagh, R. P., Debus, S., Tweedie, T. & Webster, R. Distribution of nocturnal forest birds and mammals in north-eastern New South Wales: Relationships with environmental variables and management history. Wildl. Res. 22, 359–377. https://doi.org/10.1071/WR9950359 (1995).Article 

    Google Scholar 
    Roberts, P. Associations Between Koala Faecal Pellets and Trees at Dorrigo, M.Sc. Thesis (University of New England, 1998).
    Google Scholar 
    Smith, A. P. Koala conservation and habitat requirements in a timber production forest in north-east New South Wales. In Conservation of Australia’s Forest Fauna (ed. Lunney, D.) 591–611 (Royal Zoological Society of New South Wales, 2004).Chapter 

    Google Scholar 
    Radford Miller, S. Aspects of the ecology of the koala, Phascolarctos cinereus, in a tall coastal production forest in north eastern New South Wales. PhD thesis (Southern Cross University, 2012).Law, B. S. et al. Passive acoustics and sound recognition provide new insights on status and resilience of an iconic endangered marsupial (koala Phascolarctos cinereus) to timber harvesting. PLoS One 13(10), e0205075. https://doi.org/10.1371/journal.pone.0205075 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ellis, W. et al. Koala habitat use and population density: Using field data to test the assumptions of ecological models. Aust. Mammal. 35, 160–165. https://doi.org/10.1071/AM12023 (2013).Article 

    Google Scholar 
    Ashman, K. R., Rendall, A. R., Symonds, M. R. E. & Whisson, D. Understanding the role of plantations in the abundance of an arboreal folivore. Landsc. Urban Plan. 193, 103684. https://doi.org/10.1016/j.landurbplan.2019.103684 (2020).Article 

    Google Scholar 
    Cristescu, R. H., Rhodes, J., Frere, C. & Banks, P. B. Is restoring flora the same as restoring fauna? Lessons learned from koalas and mining rehabilitation. J. Appl. Ecol. 50(2), 423–431. https://doi.org/10.1111/1365-2664.12046 (2013).Article 

    Google Scholar 
    Chandler, R. B. & Royle, J. A. Spatially explicit models for inference about density in unmarked or partially marked populations. Ann. Appl. Stat. 7(2), 936–954. https://doi.org/10.1214/12-AOAS610 (2013).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Law, B., Gonsalves, L., Burgar, J., Brassil, T., Kerr, I., Wilmott, L., Madden, K., Smith, M., Mella, V., Crowther, M., Krockenberger, M., Rus, A., Pietsch, R., Truskinger, A., Eichinski, P. & Roe, P. Validation of spatial count models to estimate koala Phascolarctos cinereus density from acoustic arrays. Wildl. Res. (in press).MacKenzie, D. I. et al. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence (Elsevier, 2006).MATH 

    Google Scholar 
    Smith, M. Behaviour of the Koala, Phascolarctos cinereus (Goldfuss), in Captivity III. Vocalisations. Wildl. Res. 7, 13–34. https://doi.org/10.1071/WR9800013 (1980).Article 

    Google Scholar 
    Ellis, W. et al. Koala bellows and their association with the spatial dynamics of free-ranging koalas. Behav. Ecol. 22, 372–377. https://doi.org/10.1093/beheco/arq216 (2011).Article 

    Google Scholar 
    Ellis, W. et al. The role of bioacoustic signals in koala sexual selection: Insights from seasonal patterns of associations revealed with gps-proximity units. PLoS One 10(7), e0130657. https://doi.org/10.1371/journal.pone.0130657 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, R. W. Overbrowsing and decline of a population of the koala, Phascolarctos cinereus, in Victoria II. Population condition. Aust. Wildl. Res. 12, 367–375 (1985).ADS 
    Article 

    Google Scholar 
    Penn, A. M. et al. Demographic forecasting in koala conservation. Conserv. Biol. 14(3), 629–638. https://doi.org/10.1046/j.1523-1739.2000.99385.x (2000).Article 

    Google Scholar 
    Watchorn, D. J. & Whisson, D. A. Quantifying the interactions between koalas in a high-density population during the breeding period. Aust. Mammal. 42(1), 28–37. https://doi.org/10.1071/AM18027 (2019).Article 

    Google Scholar 
    Crowther, M. S. et al. Comparison of three methods of estimating the population size of an arboreal mammal in a fragmented rural landscape. Wildl. Res. 48, 105–114. https://doi.org/10.1071/WR19148 (2020).Article 

    Google Scholar 
    Witt, R. R. et al. Real-time drone derived thermal imagery outperforms traditional survey methods for an arboreal forest mammal. PLoS One 15(11), e0242204. https://doi.org/10.1371/journal.pone.0242204 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Law, B.S, Gonsalves, L., Burgar, J., Brassil, T., Kerr I. & O’Loughlin C. Fire severity and its local extent are key to assessing impacts of Australian mega-fires on koala (Phascolarctos cinereus) density. Glob. Ecol. Biogeogr. 00, 1–13. https://doi.org/10.1111/geb.13458 (2022).Hynes, E. F., Whisson, D. A. & Di Stefano, J. Response of an arboreal species to plantation harvest. For. Ecol. Manag. 490, 119092. https://doi.org/10.1016/j.foreco.2021.119092 (2021).Article 

    Google Scholar 
    Law, B., Gonsalves, L., Burgar, J., Brassil, T., Kerr, I., O’Loughlin, C., Eichinski, P. & Roe, P. Regulated timber harvesting does not reduce koala density in north-east forests of New South Wales. Unpubl. Report to NSW (Natural Resources Commission, 2021).Phillips, S. Aversive behaviour by koalas (Phascolarctos cinereus) during the course of a music festival in northern New South Wales, Australia. Aust. Mammal. 38(2), 158–163. https://doi.org/10.1071/AM15006 (2016).Article 

    Google Scholar 
    Fedrowitz, K. et al. Can retention forestry help conserve biodiversity? A meta-analysis. J. Appl. Ecol. 51, 1669–1679. https://doi.org/10.1111/1365-2664.12289 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mori, A. S. & Kitagawa, R. Retention forestry as a major paradigm for safeguarding forest biodiversity in productive landscapes: A global meta-analysis. Biol. Conserv. 175, 65–73. https://doi.org/10.1016/j.biocon.2014.04.016 (2014).Article 

    Google Scholar 
    Law, B. et al. Development and field validation of a regional, management-scale habitat model: A koala Phascolarctos cinereus case study. Ecol. Evol. 7, 7475–7489. https://doi.org/10.1002/ece3.3300 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, S., Wallis, K. & Lane, A. Quantifying the impacts of bushfire on populations of wild koalas (Phascolarctos cinereus): Insights from the 2019/20 fire season. Ecol. Manag. Restor. 22, 80–88. https://doi.org/10.1111/emr.12458 (2021).Article 

    Google Scholar 
    Kramer, A. et al. California spotted owl habitat selection in a fire-managed landscape suggests conservation benefit of restoring historical fire regimes. For. Ecol. Manag. 479, 118576 (2021).Article 

    Google Scholar 
    Jones, G. M. et al. Megafire causes persistent loss of an old-forest species. Anim. Conserv. 24, 925–936. https://doi.org/10.1111/acv.12697 (2021).Article 

    Google Scholar 
    Hagens, S. V., Rendall, A. R. & Whisson, D. A. Passive acoustic surveys for predicting species’ distributions: Optimising detection probability. PLoS One 13(7), e0199396. https://doi.org/10.1371/journal.pone.0199396 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Law, B. et al. Using passive acoustic recording and automated call identification to survey koalas in the southern forests of New South Wales. Aust. Zool. 40, 477–486 (2019).Article 

    Google Scholar 
    Towsey, M., Planitz, B., Nantes, A., Wimmer, J. & Roe, P. A toolbox for animal call recognition. Bioacoustics 21, 107–125. https://doi.org/10.1080/09524622.2011.648753 (2012).Article 

    Google Scholar 
    Royle, J. A. & Dorazio, R. M. Parameter-expanded data augmentation for Bayesian analysis of capture–recapture models. J. Ornithol. 152(2), 521–537 (2012).Article 

    Google Scholar 
    Royle, J. A., Chandler, R. B., Sollmann, R. & Gardner, B. Spatial Capture–Recapture 1st edn. (Elsevier, 2014). https://doi.org/10.1016/B978-0-12-405939-9.00020-7.Book 

    Google Scholar 
    Clark, J. D. Comparing clustered sampling designs for spatially explicit estimation of population density. Popul. Ecol. 61(1), 93–101. https://doi.org/10.1002/1438-390X.1011 (2019).Article 

    Google Scholar 
    Sun, C. C., Fuller, A. K. & Royle, J. A. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models. PLoS One 9(2), e88025. https://doi.org/10.1371/journal.pone.0088025 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical Computing, Vol. 124(125.10), pp. 1–10 (2003).Plummer, M. rjags: Bayesian graphical models using MCMC. R package version 4(6) (2016).Burgar, J. M., Stewart, F. E., Volpe, J. P., Fisher, J. T. & Burton, A. C. Estimating density for species conservation: Comparing camera trap spatial count models to genetic spatial capture-recapture models. Glob. Ecol. Conserv. 15, e00411. https://doi.org/10.1016/j.gecco.2018.e00411 (2018).Article 

    Google Scholar 
    Stewart-Oaten, A., Murdoch, W. W. & Parker, K. R. Environmental impact assessment: “Pseudoreplication” in time?. Ecology 67(4), 929–940. https://doi.org/10.2307/1939815 (1986).Article 

    Google Scholar 
    Stewart-Oaten, A. & Bence, J. R. Temporal and spatial variation in environmental impact assessment. Ecol. Monogr. 71(2), 305–339. https://doi.org/10.1890/0012-9615(2001)071[0305:TASVIE]2.0.CO;2 (2001).Article 

    Google Scholar  More

  • in

    Response of N2O emission and denitrification genes to different inorganic and organic amendments

    IPCC. Climate change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (Cambridge University Press, 2013).
    Google Scholar 
    Pachauri, R. K. et al. Climate change 2014: Synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change (IPCC, 2014).
    Google Scholar 
    Reay, D. S. et al. Global agriculture and nitrous oxide emissions. Nat. Clim. Change 2, 410–416 (2012).ADS 
    CAS 

    Google Scholar 
    Jassal, R. S., Black, T. A., Roy, R. & Ethier, G. Effect of nitrogen fertilization on soil CH4 and N2O fluxes, and soil and bole respiration. Geoderma 162, 182–186 (2011).ADS 
    CAS 

    Google Scholar 
    Hu, H. W., Chen, D. & He, J. Z. Microbial regulation of terrestrial nitrous oxide formation: Understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39, 729–749 (2015).CAS 
    PubMed 

    Google Scholar 
    Bateman, E. J. & Baggs, E. M. Contributions of nitrification and denitrification to N2O emissions from soils at different water-filled pore space. Biol. Fertil. Soils 41, 379–388 (2005).CAS 

    Google Scholar 
    Yang, Y. D., Hu, Y. G., Wang, Z. M. & Zeng, Z. H. Variations of the nirS-, nirK-, and nosZ-denitrifying bacterial communities in a northern Chinese soil as affected by different long-term irrigation regimes. Environ. Sci. Pollut. Res. 25, 14057–14067 (2018).CAS 

    Google Scholar 
    Pan, Y., Ye, L., Ni, B. & Yuan, Z. Effect of pH on N2O reduction and accumulation during denitrification by methanol utilizing denitrifiers. Water Res. 46, 4832–4840 (2012).CAS 
    PubMed 

    Google Scholar 
    Hallin, S., Philippot, L., Loffler, F. E., Sanford, R. A. & Jones, C. M. Genomics and ecology of novel N2O-reducing microorganisms. Trends Microbiol. 1485, 43–55 (2017).
    Google Scholar 
    Yang, L., Zhang, X. & Ju, X. Linkage between N2O emission and functional gene abundance in an intensively managed calcareous fluvo-aquic soil. Sci. Rep. 7, 43283 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cui, P. Y. et al. Long-term organic and inorganic fertilization alters temperature sensitivity of potential N2O emissions and associated microbes. Soil Biol. Biochem. 93, 131–141 (2016).CAS 

    Google Scholar 
    Gerber, J. S. et al. Spatially explicit estimates of N2O emissions from croplands suggest climate mitigation opportunities from improved fertilizer management. Glob. Change Biol. 22, 3383–3394 (2016).ADS 

    Google Scholar 
    Shcherbak, I., Millar, N. & Robertson, G. P. Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc. Natl. Acad. Sci. 111, 9199–9204 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, J., Chadwick, D. R., Cheng, Y. & Yan, X. Global analysis of agricultural soil denitrification in response to fertilizer nitrogen. Sci. Total Environ. 616, 908–917 (2018).ADS 
    PubMed 

    Google Scholar 
    Albanito, F. et al. Direct nitrous oxide emissions from tropical and sub-tropical agricultural systems—A review and modelling of emission factors. Sci. Rep. 7, 44235 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wolsing, M. & Priemé, A. Observation of high seasonal variation in community structure of denitrifying bacteria in arable soil receiving artificial fertilizer and cattle manure by determining T-RFLP of nir gene fragments. FEMS Microbiol. Ecol. 48, 261–271 (2004).CAS 
    PubMed 

    Google Scholar 
    Akiyama, H., McTaggart, I. P., Ball, B. C. & Scott, A. N2O, NO, and NH3 emissions from soil after the application of organic fertilizers, urea and water. Water Air Soil Pollut. 156, 113–129 (2004).ADS 
    CAS 

    Google Scholar 
    Wang, Y. Y. et al. Responses of N2O reductase gene (nosZ)-denitrifer communities to long-term fertilization follow a depth pattern in calcareous purplish paddy soil. J. Integr. Agric. 16, 2597–2611 (2017).CAS 

    Google Scholar 
    Fernandez-Luqueno, F. et al. Emission of CO2 and N2O from soil cultivated with common bean (Phaseolus vulgaris L.) fertilized with different N sources. Sci. Total Environ. 407, 4289–4296 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Yin, C. et al. Different denitrification potential of aquic brown soil in Northeast China under inorganic and organic fertilization accompanied by distinct changes of nirS-and nirK-denitrifying bacterial community. Eur. J. Soil Biol. 65, 47–56 (2014).CAS 

    Google Scholar 
    Harter, J. et al. Linking N2O emissions from biochar-amended soil to the structure and function of the N-cycling microbial community. ISME J. 8, 660–674 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Hai, B. et al. Quantification of key genes steering the microbial nitrogen cycle in the rhizosphere of sorghum cultivars in tropical agroecosystems. Appl. Environ. Microbiol. 75, 4993–5000 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, R. et al. Nitrous oxide emission and the related denitrifier community: A short-term response to organic manure substituting chemical fertilizer. Ecotoxicol. Environ. Saf. 192, 110291 (2020).CAS 
    PubMed 

    Google Scholar 
    Xu, X. et al. NosZ clade II rather than clade I determine in situ N2O emissions with different fertilizer types under simulated climate change and its legacy. Soil Biol. Biochem. 150, 107974 (2020).CAS 

    Google Scholar 
    Henderson, S. L. et al. Changes in denitrifier abundance, denitrification gene mRNA levels, nitrous oxide emissions, and denitrification in anoxic soil microcosms amended with glucose and plant residues. Appl. Environ. Microbiol. 76, 2155–2164 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Palmer, K., Biasi, C. & Horn, M. A. Contrasting denitrififier communities relate to contrasting N2O emission patterns from acidic peat soils in arctic tundra. ISME J. 6, 1058–1077 (2012).CAS 
    PubMed 

    Google Scholar 
    Dandie, C. E. et al. Abundance, diversity and functional gene expression of denitrifier communities in adjacent riparian and agricultural zones. FEMS Microbiol. Ecol. 77, 69–82 (2011).CAS 
    PubMed 

    Google Scholar 
    Avrahami, S., Conrad, R. & Braker, G. Effect of soil ammonium concentration on N2O release and on the community structure of ammonia oxidizers and denitrifiers. Appl. Environ. Microbiol. 68, 5685–5692 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yang, Y. J. et al. Compost supplementation with nitrogen loss and greenhouse gas emissions during pig manure composting. Bioresour. Technol. 297, 122435 (2019).PubMed 

    Google Scholar 
    Yang, Y. J. et al. Exploring the microbial mechanisms of organic matter transformation during pig manure composting amended with bean dregs and biochar. Bioresour. Technol. 313, 123647 (2020).CAS 
    PubMed 

    Google Scholar 
    Yang, J. H., Wang, C. L. & Dai, H. L. Agricultural Soil Analysis and Environmental Monitoring (China Land Press, 2008) (in Chinese).
    Google Scholar 
    Wang, Q. R., Li, Y. C. & Klassen, W. Changes of soil microbial biomass carbon and nitrogen with cover crops and irrigation in a tomato field. J. Plant Nutr. 30, 623–639 (2007).CAS 

    Google Scholar 
    Moore, J. M., Klose, S. & Tabatabai, M. A. Soil microbial biomass carbon and nitrogen as affected by cropping systems. Biol. Fertil. Soils 31, 200–210 (2000).CAS 

    Google Scholar 
    Jones, D. L. & Willett, V. B. Experimental evaluation of methods to quantify dissolved organic nitrogen (DON) and dissolved organic carbon (DOC) in soil. Soil Biol. Biochem. 38, 991–999 (2006).CAS 

    Google Scholar 
    Ghani, A., Dexter, M. & Perrott, K. W. Hot-water extractable carbon in soils: A sensitive measurement for determining impacts of fertilization, grazing and cultivation. Soil Biol. Biochem. 35, 1231–1243 (2003).CAS 

    Google Scholar 
    Huang, R. et al. Variation in N2O emission and N2O related microbial functional genes in straw- and biochar-amended and non-amended soils. Appl. Soil. Ecol. 137, 57–68 (2019).
    Google Scholar 
    Yang, Y. J. et al. Soil organic carbon transformation and dynamics of microorganisms under different organic amendments. Sci. Total Environ. 750, 141719 (2021).ADS 
    CAS 
    PubMed 

    Google Scholar 
    López-Fernández, S. et al. Effects of fertiliser type and the presence or absence of plants on nitrous oxide emissions from irrigated soils. Nutr. Cycl. Agroecosyst. 78, 279–289 (2007).
    Google Scholar 
    Wallenstein, M. D., Myrold, D. D., Firestone, M. & Voytek, M. Environmental controls on denitrifying communities and denitrification rates: insights from molecular methods. Ecol. Appl. 16, 2143–2152 (2006).PubMed 

    Google Scholar 
    Ciarlo, E., Conti, M., Bartoloni, N. & Rubio, G. Soil N2O emissions and N2O/(N2O+N2) ratio as affected by different fertilization practices and soil moisture. Biol. Fertil. Soils 44, 991–995 (2008).CAS 

    Google Scholar 
    Dandie, C. E. et al. Changes in bacterial denitrifier community abundance over time in an agricultural field and their relationship with denitrification activity. Appl. Environ. Microbiol. 74, 5997–6005 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Francis, C. A., O’Mullan, G. D., Cornwell, J. C. & Ward, B. B. Transitions in nirS-type denitrifier diversity, community composition, and biogeochemical activity along the Chesapeake Bay estuary. Front. Microbiol. 4, 237 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Lin, W. et al. Evaluation of N2O sources after fertilizers application in vegetable soil by dual isotopocule plots approach. Environ. Res. 188, 109818 (2020).CAS 
    PubMed 

    Google Scholar 
    Chen, M. M. et al. Nitrosospira cluster 3 lineage of AOB and nirK of Rhizobiales respectively dominated N2O emissions from nitrification and denitrification in organic and chemical N fertilizer treated soils. Ecol. Indic. 127, 107722 (2021).CAS 

    Google Scholar 
    Malghani, S., Kim, J., Lee, S. H., Yoo, G. Y. & Kang, H. Application of two contrasting rice-residue-based biochars triggered gaseous loss of nitrogen under denitrification-favoring conditions: a short-term study based on acetylene inhibition technique. Appl. Soil Ecol. 127, 112–119 (2018).
    Google Scholar 
    Sun, R., Guo, X., Wang, D. & Chu, H. Effects of long-term application of chemical and organic fertilizers on the abundance of microbial communities involved in the nitrogen cycle. Appl. Soil. Ecol. 95, 171–178 (2015).
    Google Scholar 
    Philippot, L., Andert, J., Jones, C. M., Bru, D. & Hallin, S. Importance of denitrifiers lacking the genes encoding the nitrous oxide reductase for N2O emissions from soil. Glob. Change Biol. 17, 1497–1504 (2011).ADS 

    Google Scholar 
    Chen, Z. et al. Differentiated response of denitrifying communities to fertilization regime in paddy soil. Microb. Ecol. 63, 446–459 (2012).PubMed 

    Google Scholar 
    Yoshida, M., Ishii, S., Otsuka, S. & Senoo, K. nirK-harboring denitrifiers are more responsive to denitrification-inducing conditions in rice paddy soil than nirS-harboring bacteria. Microbes Environ. 25, 45–48 (2010).PubMed 

    Google Scholar 
    Yin, C. et al. Denitrification potential under different fertilization regimes is closely coupled with changes in the denitrifying community in a black soil. Appl. Microbiol. Biotechnol. 99, 5719–5729 (2015).CAS 
    PubMed 

    Google Scholar 
    Barrett, M. et al. Carbon amendment and soil depth affect the distribution and abundance of denitrifiers in agricultural soils. Environ. Sci. Pollut. Res. 23, 7899–7910 (2016).CAS 

    Google Scholar 
    Yoshida, M., Ishii, S., Otsuka, S. & Senoo, K. Temporal shifts in diversity and quantity of nirS and nirK in a rice paddy field soil. Soil Biol. Biochem. 41, 2044–2051 (2009).CAS 

    Google Scholar 
    Kandeler, E., Deiglmayr, K., Tscherko, D., Bru, D. & Philippot, L. Abundance of narG, nirS, nirK, and nosZ genes of denitrifying bacteria during primary successions of a glacier foreland. Appl. Environ. Microbiol. 72, 5957–5962 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    The accumulation of microplastic pollution in a commercially important fishing ground

    PlasticsEurope. Plastics – the Facts 2019, Avenue E. van Nieuwenhuyse 4/3, 1160 Brussels. Belgium: PlasticsEurope. https://www.plasticseurope.org/de/resources/publications/4312-plastics-facts-2020 (2020).Mattsson, K., Jocic, S., Doverbratt, I. & Hansson, L. A. In Nanoplastics in the Aquatic Environment: Microplastic Contamination in Aquatic Environments (ed. Zheng, E. Y.) 379–399 (Elsevier, 2018).Chapter 

    Google Scholar 
    Lusher, A. L., Tirelli, V., O’Connor, I. & Officer, R. Microplastics in Arctic polar waters: The first reported values of particles in surface and sub-surface samples. Sci. Rep. 5, 14947. https://doi.org/10.1038/srep14947 (2015).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waller, C. L. et al. Microplastics in the Antarctic marine system: An emerging area of research. Sci. Total. Environ. 598, 220–227. https://doi.org/10.1016/j.scitotenv.2017.03.283 (2017).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Thompson, R. C. et al. Lost at sea: where is all the plastic?. Sci. 304, 838–838 (2004).CAS 
    Article 

    Google Scholar 
    Gall, S. C. & Thompson, R. C. The impact of debris on marine life. Mar. Pollut. Bull. 92, 170–179. https://doi.org/10.1016/j.marpolbul.2014.12.041 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kroon, F. J., Motti, C. E., Jensen, L. H. & Berry, K. L. Classification of marine microdebris: A review and case study on fish from the Great Barrier Reef, Australia. Sci. Rep. 8, 1–15. https://doi.org/10.1038/s41598-018-34590-6 (2018).CAS 
    Article 

    Google Scholar 
    Cunningham, E. M. & Sigwart, J. D. Environmentally accurate microplastic levels and their absence from exposure studies. Integr. Comp. Biol. 59, 1485–1496. https://doi.org/10.1093/icb/icz068 (2019).Article 
    PubMed 

    Google Scholar 
    Welden, N. A. & Cowie, P. R. Long-term microplastic retention causes reduced body condition in the langoustine Nephrops norvegicus. Environ. Pollut. 218, 895–900. https://doi.org/10.1016/j.envpol.2016.08.020 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Green, D. S., Colgan, T. J., Thompson, R. C. & Carolan, J. C. Exposure to microplastics reduces attachment strength and alters the haemolymph proteome of blue mussels (Mytilus edulis). Environ. Pollut. 246, 423–434. https://doi.org/10.1016/j.envpol.2018.12.017 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schéré, C. M., Dawson, T. P. & Schreckenberg, K. Multiple conservation designations: what impact on the effectiveness of marine protected areas in the Irish Sea?. Int. J. Sustain. Dev. 27, 596–610. https://doi.org/10.1080/13504509.2019.1706058 (2020).Article 

    Google Scholar 
    Ungfors, A. et al. Nephrops fisheries in European waters. In Advances in Marine Biology 247–314 (Academic Press, 2013).
    Google Scholar 
    ICES. Celtic Seas Ecosystem—Fisheries Overview. In Report of the ICES Advisory Committee, 2019. ICES Advice 2019, Section 7.2. 40 pp https://doi.org/10.17895/ices.advice.5708. (2019).Becker, C., Dick, J. T., Cunningham, E. M., Schmitt, C. & Sigwart, J. D. The crustacean cuticle does not record chronological age: New evidence from the gastric mill ossicles. Arthropod. Struct. Dev. 47, 498–512. https://doi.org/10.1016/j.asd.2018.07.002 (2018).Article 
    PubMed 

    Google Scholar 
    Woodall, L. C. et al. The deep sea is a major sink for microplastic debris. R. Soc. Open Sci. 1, 140317. https://doi.org/10.1098/rsos.140317 (2014).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yin, J., Li, J. Y., Craig, N. J. & Su, L. Microplastic pollution in wild populations of decapod crustaceans: A review. Chemosphere https://doi.org/10.1016/j.chemosphere.2021.132985 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cau, A. et al. Benthic crustacean digestion can modulate the environmental fate of microplastics in the deep sea. Environ. Sci. Technol. 54, 4886–4892. https://doi.org/10.1021/acs.est.9b07705 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hara, J., Frias, J. & Nash, R. Quantification of microplastic ingestion by the decapod crustacean Nephrops norvegicus from Irish waters. Mar. Pollut. Bull. 152, 110905. https://doi.org/10.1016/j.marpolbul.2020.110905 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hill, A. E., Durazo, R. & Smeed, D. A. Observations of a cyclonic gyre in the western Irish Sea. Cont. Shelf Res. 14, 479–490. https://doi.org/10.1016/0278-4343(94)90099-X (1994).ADS 
    Article 

    Google Scholar 
    Horsburgh, K. J. & Hill, A. E. A three-dimensional model of density-driven circulation in the Irish Sea. J. Phys. Oceanogr. 33, 343–365. https://doi.org/10.1175/1520-0485(2003)033%3c0343:ATDMOD%3e2.0.CO;2 (2003).ADS 
    Article 

    Google Scholar 
    Hill, A.E., Brown, J., & Fernand, L. The western Irish Sea gyre: a retention system for Norway lobster (Nephrops norvegicus)? Oceanol. Acta. 19, 357–368. (1996). https://archimer.ifremer.fr/doc/00094/20493/Lebreton, L. et al. Evidence that the great pacific garbage patch is rapidly accumulating plastic. Sci. Rep. 8, 1–15. https://doi.org/10.1038/s41598-018-22939-w (2018).CAS 
    Article 

    Google Scholar 
    Charlesworth, M., Mitchell, S. H. & Oliver, W. T. Metals in surficial sediments of the north-west Irish Sea. Bull. Environ. Contam. Toxicol. 62, 40–47. https://doi.org/10.1007/s001289900839 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Charlesworth, M. E., Service, M. & Gibson, C. E. The distribution and transport of Sellafield derived 137Cs and 241Am to western Irish Sea sediments. Sci. Total. Environ. 354, 83–92. https://doi.org/10.1016/j.scitotenv.2004.12.062 (2006).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Global Monitoring and Forecasting Center. Atlantic-European North West Shelf – Ocean Physics Analysis and Forecast, E.U Copernicus Marine Service Information . Available at: https://resources.marine.copernicus.eu/product-detail/NORTHWESTSHELF_ANALYSIS_FORECAST_PHY_004_013/INFORMATION (Accessed: 8th December 2021).Cunningham, E. M. et al. High abundances of microplastic pollution in deep-sea sediments: Evidence from antarctica and the Southern Ocean. Environ. Sci. Technol. 54, 13661–13671. https://doi.org/10.1021/acs.est.0c03441 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, S. et al. A simple method for the extraction and identification of light density microplastics from soil. Sci. Total. Environ. 616, 1056–1065. https://doi.org/10.1016/j.scitotenv.2017.10.213 (2018).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Martin, J., Lusher, A., Thompson, R. C. & Morley, A. The deposition and accumulation of microplastics in marine sediments and bottom water from the Irish continental shelf. Sci. Rep. 7, 10772. https://doi.org/10.1038/s41598-017-11079-2 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Development Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2018).
    Google Scholar 
    Nor, N. H. M. & Obbard, J. P. Microplastics in Singapore’s coastal mangrove ecosystems. Mar. Pollut. Bullet. 79, 278–283. https://doi.org/10.1016/j.marpolbul.2013.11.025 (2014).CAS 
    Article 

    Google Scholar 
    Lacerda, A. L. D. F. et al. Plastics in sea surface waters around the Antarctic Peninsula. Sci. Rep. 9, 1–12. https://doi.org/10.1038/s41598-019-40311-4 (2019).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Tata, T., Belabed, B. E., Bououdina, M. & Bellucci, S. Occurrence and characterization of surface sediment microplastics and litter from North African coasts of Mediterranean Sea: Preliminary research and first evidence. Sci. Total. Environ. 713, 136664. https://doi.org/10.1016/j.scitotenv.2020.136664 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Lorenz, C. et al. Spatial distribution of microplastics in sediments and surface waters of the southern North Sea. Environ. Pollut. 252, 1719–1729 (2019).CAS 
    Article 

    Google Scholar 
    Chouchene, K. et al. Microplastics on Barra beach sediments in Aveiro, Portgal. Mar. Pollut. Bull. 167, 112264. https://doi.org/10.1016/j.marpolbul.2021.112264 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kane, I. A. et al. Seafloor microplastic hotspots controlled by deep-sea circulation. Science 368, 1140–1145. https://doi.org/10.1126/science.aba5899 (2020).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Gaylarde, C. C., Neto, J. A. B. & da Fonseca, E. M. Paint fragments as polluting microplastics: A brief review. Mar. Pollut. Bull. 162, 111847. https://doi.org/10.1016/j.marpolbul.2020.111847 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sait, S. T. L. et al. Microplastic fibres from synthetic textiles: Environmental degradation and additive chemical content. Environ. Pollut. 268, 115745. https://doi.org/10.1016/j.envpol.2020.115745 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen, Q. et al. Bioassay guided analysis coupled with non-target chemical screening in polyethylene plastic shopping bag fragments after exposure to simulated gastric juice of Fish. J. Hazard. Mater. 401, 123421. https://doi.org/10.1016/j.jhazmat.2020.123421 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wu, X. et al. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater. Water. Res. 188, 116456. https://doi.org/10.1016/j.watres.2020.116456 (2021).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zabaniotou, A. & Kassidi, E. Life cycle assessment applied to egg packaging made from polystyrene and recycled paper. J. Clean. Prod. 11, 549–559. https://doi.org/10.1016/S0959-6526(02)00076-8 (2003).Article 

    Google Scholar 
    Tanaka, K. & Takada, H. Microplastic fragments and microbeads in digestive tracts of planktivorous fish from urban coastal waters. Sci. Rep. 6, 34351. https://doi.org/10.1038/srep34351 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Biamis, C., O’Driscoll, K. & Hardiman, G. Microplastic toxicity: A review of the role of marine sentinel species in assessing the environmental and public health impacts. CSCEE. https://doi.org/10.1016/j.cscee.2020.100073 (2020).Article 

    Google Scholar 
    Bakir, A., Rowland, S. J. & Thompson, R. C. Transport of persistent organic pollutants by microplastics in estuarine conditions. Estuar. Coast. 140, 14–21. https://doi.org/10.1016/j.ecss.2014.01.004 (2014).CAS 
    Article 

    Google Scholar 
    Nelson, A. M. & Long, T. E. A perspective on emerging polymer technologies for bisphenol-A replacement. Polym. Int. 61, 1485–1491. https://doi.org/10.1002/pi.4323 (2012).CAS 
    Article 

    Google Scholar 
    Le Bihanic, F. et al. Organic contaminants sorbed to microplastics affect marine medaka fish early life stages development. Mar. Pollut. Bull. 154, 111059. https://doi.org/10.1016/j.marpolbul.2020.111059 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Murray, F. & Cowie, P. R. Plastic contamination in the decapod crustacean Nephrops norvegicus (Linnaeus, 1758). Mar. Pollut. Bull. 62, 1207–1217. https://doi.org/10.1016/j.marpolbul.2011.03.032 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Cobb, J. S. & Phillips, B. F. (eds) The Biology and Management of Lobsters, Physiology and Behaviour 2–61 (Academic Press Inc., 1980).
    Google Scholar 
    Quintana, M. M., Motova, A., Wilkie, O., Patience, N. Seafish: Economics of the UK fishing fleet 2020. Seafish Report No. SR758. Edinburgh, UK. https://www.seafish.org/document/?id=d9e7982d-e374-4de7-85a4-ca80c35f5666 (2021). More

  • in

    Macroalgae and interspecific alarm cues regulate behavioral interactions between sea urchins and sea cucumbers

    Lawrence, J.M. Sea urchins: biology and ecology. Amsterdam, The Netherlands: Elsevier B.V. (2020)Purcell, S.W., Samyn, Y. & Conand, C. Commercially important sea cucumbers of the world. Rome, Italy: FAO. (2012)Yorke, C. E., Page, H. M. & Miller, R. J. Sea urchins mediate the availability of kelp detritus to benthic consumers. Proc. R. Soc. B. 286(1906), 20190846 (2019).CAS 
    Article 

    Google Scholar 
    Dethier, M. N. et al. Feces as food: The nutritional value of urchin feces and implications for benthic food webs. J. Exp. Mar. Biol. Ecol. 514, 95–102 (2019).Article 

    Google Scholar 
    Purcell, S. W. et al. Ecological roles of exploited sea cucumbers. Oceanogr. Mar. Biol. 54, 367–386 (2017).
    Google Scholar 
    Hamel, J. F. & Mercier, A. Early development, settlement, growth, and spatial distribution of the sea cucumber Cucumaria frondosa (Echinodermata: Holothuroidea). Can. J. Fish. Aquat. Sci. 53(2), 253–271 (1996).Article 

    Google Scholar 
    Grosso, L. et al. Integrated Multi-Trophic Aquaculture (IMTA) system combining the sea urchin Paracentrotus lividus, as primary species, and the sea cucumber Holothuria tubulosa as extractive species. Aquaculture 534, 736268 (2021)Gabara, S.S., Konar, B.H. & Edwards, M.S. Biodiversity loss leads to reductions in community-wide trophic complexity. Ecosphere 12(2), e03361 (2021)Duffy, J. E. et al. The functional role of biodiversity in ecosystems: Incorporating trophic complexity. Ecol. Lett. 10(6), 522–538 (2010).ADS 
    Article 

    Google Scholar 
    Miller, R. J. et al. Giant kelp, Macrocystis pyrifera, increases faunal diversity through physical engineering. Proc. R. Soc. B. 285(1874), 20172571 (2018).Article 

    Google Scholar 
    Soulsby, P. G., Lowthion, D. & Houston, M. Effects of macroalgal mats on the ecology of intertidal mudflats. Mar. Pollut. Bull. 13(5), 162–166 (1982).Article 

    Google Scholar 
    Filbee-Dexter, K. & Scheibling, R.E. Sea urchin barrens as alternative stable states of collapsed kelp ecosystems. Mar. Ecol.: Prog. Ser. 495(1), 1–25 (2014)Hendler, G., Miller, J. E., Pawson, D. L. & Kier, P. M. Sea stars, sea urchins and allies: echinoderms of Florida and the Caribbean (Smithsonian Institution Press, 1995).
    Google Scholar 
    James, D. B. Sea cucumber and sea urchin resources. CMFRI Bull. 34, 85–93 (1983).
    Google Scholar 
    Muthiga, N.A. & Kawaka, J.A. The effects of temperature and light on the gametogenesis and spawning of four sea urchin and one sea cucumber species on coral reefs in Kenya. Proceedings of the 11th international coral reef symposium. Fort Lauderdale, Florida pp 356–360 (2008)Byrnes, J., Cardinale, B. & Reed, D. Interactions between sea urchin grazing and prey diversity on temperate rocky reef communities. Ecology 94(7), 1636–1646 (2013).Article 

    Google Scholar 
    Vanderklift, M.A. & Kendrick, G.A. Contrasting influence of sea urchins on attached and drift macroalgae. Mar. Ecol.: Prog. Ser. 299, 101–110 (2005)Duggins, D. O. Interspecific facilitation in a guild of benthic marine herbivores. Oecologia 48(2), 157–163 (1981).ADS 
    Article 

    Google Scholar 
    Bonaviri, C. et al. Fish versus starfish predation in controlling sea urchin populations in Mediterranean rocky shores. Mar. Ecol.: Prog. Ser. 382(1), 129–138 (2009)Purcell, S. W. & Simutoga, M. Spatio-temporal and size-dependent variation in the success of releasing cultured sea cucumbers in the wild. Rev. Fish. Sci. 16, 204–214 (2008).Article 

    Google Scholar 
    Scheibling, R. E. & Robinson, M. C. Settlement behaviour and early post-settlement predation of the sea urchin Strongylocentrotus droebachiensis. J. Exp. Mar. Biol. Ecol. 365(1), 59–66 (2008).Article 

    Google Scholar 
    Francour, P. Predation on holothurians: a literature review. Invertebr. Biol. 116(1), 52–60 (1997).Article 

    Google Scholar 
    Scheibling, R. E. & Hamm, J. Interactions between sea urchins (Strongylocentrotus droebachiensis) and their predators in field and laboratory experiments. Mar. Biol. 110(1), 105–116 (1991).Article 

    Google Scholar 
    Bartumeus, F., Romero, J. & Alcoverro, T. The scent of fear makes sea urchins go ballistic. Mov. Ecol. 9(1), 1–12 (2021).Article 

    Google Scholar 
    Campbell, A.C. & Coppard, S., Tudor-Thomas CD. Escape and aggregation responses of three echinoderms to conspecific stimuli. Biol. Bull. 201(2), 175–185 (2001)Chi, X. et al. Conspecific alarm cues are a potential effective barrier to regulate foraging behavior of the sea urchin Mesocentrotus nudus. Mar. Environ. Res. 171(8), 105476 (2021)Chi, X. et al. Foraging behavior of the sea urchin Mesocentrotus nudus exposed to conspecific alarm cues in various conditions. Sci. Rep. 11(1), 1–6 (2021).Article 

    Google Scholar 
    Zhadan, P.M. & Vaschenko, M.A. Long-term study of behaviors of two cohabiting sea urchin species, Mesocentrotus nudus and Strongylocentrotus intermedius, under conditions of high food quantity and predation risk in situ. PeerJ 7(1), e8087 (2019)Bshary, R. & Noë, R. Red colobus and Diana monkeys provide mutual protection against predators. Anim. Behav. 54(6), 1461–1474 (1997).CAS 
    Article 

    Google Scholar 
    Peres, C. A. Anti-predation benefits in a mixed-species group of Amazonian tamarins. Folia Primatol. 61(2), 61–76 (1993).CAS 
    Article 

    Google Scholar 
    Fuji, A. Ecological studies on the growth and food consumption of Japanese common littoral sea urchin, Strongylocentrotus intermedius (A. Agassiz). Mem. Fac. Fish. Hokkaido Univ. 15(2), 83–160 (1967)Chang, Y., Ding, J., Song, J. & Yang, W. Biology and aquaculture of sea cucumbers and sea urchins (Ocean Press, 2004).
    Google Scholar 
    Yang, H., Hamel, J. F. & Mercier, A. The sea cucumber Apostichopus japonicus: history, biology and aquaculture (Elsevier Inc., 2015).
    Google Scholar 
    Zhao, C. et al. Carryover effects of short-term UV-B radiation on fitness related traits of the sea urchin Strongylocentrotus intermedius. Ecotoxicol. Environ. Saf. 164, 659–664 (2018).CAS 
    Article 

    Google Scholar 
    Zhang, L. et al. Effects of long-term elevated temperature on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. PeerJ 5, e3122 (2017)Zhao, C. et al. Effects of covering behavior and exposure to a predatory crab Charybdis japonica on survival and HSP70 expression of juvenile sea urchins Strongylocentrotus intermedius. PloS One 9(5), e97840 (2014)Kawai, T. & Agatsuma, Y. Predators on released seed of the sea urchin Strongylocentrotus intermedius at Shiribeshi, Hokkaido, Japan. Fish. Sci. (Tokyo, Jpn.) 62(2), 317–318 (1996)Hatanaka, H. Experimental studies on the predation of juvenile sea cucumber, Stichopus japonicus by sea star Asterina pectinifera. Aquacult. Sci. 42(4), 563–566 (1994).
    Google Scholar 
    Guidetti, P. & Mori, M. Morpho-functional defences of Mediterranean sea urchins, Paracentrotus lividus and Arbacia lixula, against fish predators. Mar. Biol. 147(3), 797–802 (2005).Article 

    Google Scholar 
    Moitoza, D.J & Phillips, D.W. Prey defense, predator preference, and nonrandom diet: the interactions between Pycnopodia helianthoides and two species of sea urchins. Mar. Biol. 53(4), 299–304 (1979)Williams, J.P. et al. Sea urchin mass mortality rapidly restores kelp forest communities. Mar. Ecol.: Prog. Ser. 664, 117–131 (2021)Pearse, J. Ecological role of purple sea urchins. Science 314(5801), 940–941 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Vadas, R. L. Preferential feeding: an optimization strategy in sea urchins. Ecol. Monogr. 47(4), 337–371 (1977).Article 

    Google Scholar 
    Lowe, A. T. et al. Sedentary urchins influence benthic community composition below the macroalgal zone. Mar. Biol. 36(2), 129–140 (2015).
    Google Scholar 
    Layton, C. et al. Kelp Forest Restoration in Australia. Front. Mar. Sci. 7(74) (2020)Eger, A.M. et al. Global Kelp forest restoration: Past lessons, status, and future goals. Preprint. EcoEvoRxiv. https://doi.org/10.32942/osf.io/emaz2 (2021)Ritson-Williams, R. & Paul, V. J. Marine benthic invertebrates use multimodal cues for defense against reef fish. Mar. Ecol. Prog. Ser. 340, 29–39 (2007).ADS 
    Article 

    Google Scholar 
    Hu, F. et al. Effects of artificial reefs on selectivity and behaviors of the sea cucumber Apostichopus japonicas: New insights into the pond culture. Aquacult. Rep. 21(3), 100842 (2021)Sun, J. et al. Light intensity regulates phototaxis, foraging and righting behaviors of the sea urchin Strongylocentrotus intermedius. PeerJ 7, e8001 (2019)Bi, S., Shi, J. & Liu, A. Exploitation and utilization of Ulva lactuca L. Mod. Fish. Inf. 11, 21–23 (1993).
    Google Scholar 
    Chang, Y. Q., Wang, Z. C. & Wang, G. J. Effect of temperature and algae on feeding and growth in sea urchin Strongylocentrotus intermedius. J. Fish. China 23(1), 69–76 (1999).
    Google Scholar 
    Dumont, C., Himmelman, J.H. & Russell, M.P. Size-specific movement of green sea urchins Strongylocentrotus droebachiensis on urchin barrens in eastern Canada. Mar. Ecol.: Prog. Ser. 276, 93–101 (2004)Sun, J. et al. Interaction among sea urchins in response to food cues. Sci. Rep. 11(1), 1–9 (2021).ADS 
    Article 

    Google Scholar 
    Węglarczyk, S. Kernel density estimation and its application. ITM Web Conf. 23(2), 00037 (2018).Article 

    Google Scholar  More

  • in

    The macroparasite fauna of cichlid fish from Nicaraguan lakes, a model system for understanding host–parasite diversification and speciation

    Price, P. W. Evolutionary Biology of Parasites (Princeton University Press, 1980).
    Google Scholar 
    Lima, L. B., Bellay, S., Giacomini, H. C., Isaac, A. & Lima-Junior, D. P. Influence of host diet and phylogeny on parasite sharing by fish in a diverse tropical floodplain. Parasitology 143, 343–349 (2016).CAS 
    PubMed 

    Google Scholar 
    Eizaguirre, C., Lenz, T. L., Kalbe, M. & Milinski, M. Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations. Nat. Commun. 3, 1–6 (2012).
    Google Scholar 
    Bashey, F. Within-host competitive interactions as a mechanism for the maintenance of parasite diversity. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140301 (2015).
    Google Scholar 
    Jolles, J. W., Mazué, G. P. F., Davidson, J., Behrmann-Godel, J. & Couzin, I. D. Schistocephalus parasite infection alters sticklebacks’ movement ability and thereby shapes social interactions. Sci. Rep. 10, 12282 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Demandt, N. et al. Parasite-infected sticklebacks increase the risk-taking behaviour of uninfected group members. Proc. R. Soc. B Biol. Sci. 285, 20180956 (2018).
    Google Scholar 
    Poulin, R. Parasite manipulation of host behavior: An update and frequently asked questions. Adv. Study Behav. 41, 151–186 (2010).
    Google Scholar 
    Terui, A., Ooue, K., Urabe, H. & Nakamura, F. Parasite infection induces size-dependent host dispersal: Consequences for parasite persistence. Proc. R. Soc. B Biol. Sci. 284, 20171491 (2017).
    Google Scholar 
    Raeymaekers, J. A. M. et al. Contrasting parasite communities among allopatric colour morphs of the Lake Tanganyika cichlid Tropheus. BMC Evol. Biol. 13, 41 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Meyer, B. S. et al. An exploration of the links between parasites, trophic ecology, morphology, and immunogenetics in the Lake Tanganyika cichlid radiation. Hydrobiologia 832, 215–233 (2019).PubMed 

    Google Scholar 
    Gobbin, T. P. et al. Temporally consistent species differences in parasite infection but no evidence for rapid parasite-mediated speciation in Lake Victoria cichlid fish. J. Evol. Biol. 33, 556–575 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Karvonen, A., Wagner, C. E., Selz, O. M. & Seehausen, O. Divergent parasite infections in sympatric cichlid species in Lake Victoria. J. Evol. Biol. 31, 1313–1329 (2018).PubMed 

    Google Scholar 
    Bush, S. E. et al. Host defense triggers rapid adaptive radiation in experimentally evolving parasites. Evol. Lett. 3, 120–128 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Waid, R. M., Raesly, R. L., Mckaye, K. R. & McCrary, J. Zoogeografía íctica de lagunas cratéricas de Nicaragua. Encuentro 51, 65–80 (1999).
    Google Scholar 
    Barluenga, M., Stölting, K., Salzburger, W., Muschick, M. & Meyer, A. Sympatric speciation in Nicaraguan crater lake cichlid fish. Nature 439, 719–723 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Elmer, K. R., Lehtonen, T. K., Fan, S. & Meyer, A. Crater lake colonization by neotropical cichlid fishes. Evolution 67, 281–288 (2012).PubMed 

    Google Scholar 
    Kautt, A. F. et al. Contrasting signatures of genomic divergence during sympatric speciation. Nature 588, 106–111 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elmer, K. R., Lehtonen, T. K., Kautt, A. F., Harrod, C. & Meyer, A. Rapid sympatric ecological differentiation of crater lake cichlid fishes within historic times. BMC Biol. 8, 1–15 (2010).
    Google Scholar 
    Kautt, A. F., Machado-Schiaffino, G., Torres-Dowdall, J. & Meyer, A. Incipient sympatric speciation in Midas cichlid fish from the youngest and one of the smallest crater lakes in Nicaragua due to differential use of the benthic and limnetic habitats? Ecol. Evol. 6, 5342–5357 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Barluenga, M. & Meyer, A. Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp.) in the Nicaraguan crater lakes. BMC Evol. Biol. 10, 326 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Elmer, K. R., Lehtonen, T. K. & Meyer, A. Color assortative mating contributes to sympatric divergence of neotropical cichlid fish. Evolution 63, 2750–2757 (2009).PubMed 

    Google Scholar 
    Kautt, A. F., Machado-Schiaffino, G. & Meyer, A. Lessons from a natural experiment: Allopatric morphological divergence and sympatric diversification in the Midas cichlid species complex are largely influenced by ecology in a deterministic way. Evol. Lett. 2, 323–340 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Elmer, K. R., Kusche, H., Lehtonen, T. K. & Meyer, A. Local variation and parallel evolution: Morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes. Philos. Trans. R. Soc. B Biol. Sci. 365, 1763–1782 (2010).
    Google Scholar 
    Elmer, K. R. et al. Parallel evolution of Nicaraguan crater lake cichlid fishes via non-parallel routes. Nat. Commun. 5, 1–8 (2014).
    Google Scholar 
    Vanhove, M. P. M. et al. Cichlids: A host of opportunities for evolutionary parasitology. Trends Parasitol. 32, 820–832 (2016).PubMed 

    Google Scholar 
    Choudhury, A. et al. Trematode diversity in freshwater fishes of the Globe II: ‘New World’. Syst. Parasitol. 93, 271–282 (2016).PubMed 

    Google Scholar 
    Watson, D. E. Digenea of fishes from Lake Nicaragua. In Investigations of the Ichthyofauna of Nicaraguan Lakes Vol. 15 (ed. Thorson, T. B.) 251–260 (University of Nebraska Press, 1976).
    Google Scholar 
    Aguirre-Macedo, M. L. et al. Larval helminths parasitizing freshwater fishes from the Atlantic coast of Nicaragua. Comp. Parasitol. 68, 42–51 (2001).
    Google Scholar 
    Aguirre-Macedo, M. L. et al. Some adult endohelminths parasitizing freshwater fishes from the Atlantic Drainages of Nicaragua. Comp. Parasitol. 68, 190–195 (2001).
    Google Scholar 
    Mendoza-Franco, E. F., Posel, P. & Dumailo, S. Monogeneans (Dactylogyridae: Ancyrocephalinae) of freshwater fishes from the Caribbean coast of Nicaragua. Comp. Parasitol. 70, 32–41 (2003).
    Google Scholar 
    Andrade-Gómez, L., Pinacho-Pinacho, C. D. & García-Varela, M. Molecular, morphological, and ecological data of Saccocoelioides Szidat, 1954 (Digenea: Haploporidae) from Middle America supported the reallocation from Culuwiya cichlidorum to Saccocoelioides. J. Parasitol. 103, 257–267 (2017).PubMed 

    Google Scholar 
    López-Jiménez, A., Pérez-Ponce de León, G. & García-Varela, M. Molecular data reveal high diversity of Uvulifer (Trematoda: Diplostomidae) in Middle America, with the description of a new species. J. Helminthol. 92, 725–739 (2018).PubMed 

    Google Scholar 
    Vidal-Martínez, V. M., Scholz, T. & Aguirre-Macedo, M. L. Dactylogyridae of cichlid fishes from Nicaragua, Central America, with descriptions of Gussevia herotilapiae sp. n. and three new species of Sciadicleithrum (Monogenea: Ancyrocephalinae). Comp. Parasitol. 68, 76–86 (2001).
    Google Scholar 
    de Chambrier, A. & Vaucher, C. Proteocephalus gaspari n. sp. (Cestoda: Proteocephalidae), parasite de Lepisosteus tropicus (Gill.) au Lac Managua (Nicaragua). Rev. suisse Zool. 91, 229–233 (1984).
    Google Scholar 
    González-Solís, A. D. & Jiménez-García, M. I. Parasitic nematodes of freshwater fishes from two nicaraguan crater lakes. Comp. Parasitol. 73, 188–192 (2006).
    Google Scholar 
    Santacruz, A., Morales-Serna, F. N., Leal-Cardín, M., Barluenga, M. & Pérez-Ponce de León, G. Acusicola margulisae n. sp. (Copepoda: Ergasilidae) from freshwater fishes in a Nicaraguan crater lake based on morphological and molecular evidence. Syst. Parasitol. 97, 165–177 (2020).PubMed 

    Google Scholar 
    Santacruz, A., Barluenga, M. & Pérez-Ponce de León, G. Taxonomic assessment of the genus Procamallanus (Nematoda) in Middle American cichlids (Osteichthyes) with molecular data, and the description of a new species from Nicaragua and Costa Rica. Parasitol. Res. 120, 1965–1977 (2021).PubMed 

    Google Scholar 
    Bush, A. O., Lafferty, K. D., Lotz, J. M. & Shostak, A. W. Parasitology meets ecology on its own terms: Margolis et al. revisited. J. Parasitol. 83, 575–583 (1997).CAS 
    PubMed 

    Google Scholar 
    Rózsa, L., Reiczigel, J. & Majoros, G. Quantifying parasites in samples of hosts. J. Parasitol. 86, 228–232 (2000).PubMed 

    Google Scholar 
    Krebs, C. J. Species diversity measures. In Ecological Methodology (ed. Krebs, C. J.) (Addison-Wesley Educational Publishers, 2014).
    Google Scholar 
    Dixon, P. VEGAN, a package of R functions for community ecology. J. Veg. Sci. 14, 927–930 (2003).
    Google Scholar 
    R Core Team. A language and environment for statistical computing. R Found. Stat. Comput. (2018). https://www.R-project.org.Wickham, H. Elegant Graphics for Data Analysis: ggplot2 (Springer, 2008).MATH 

    Google Scholar 
    Hsieh, T. C., Ma, K. H. & Chao, A. iNEXT-package: Interpolation and extrapolation for species diversity. Methods Ecol. Evol. 7, 1451–1456 (2016).
    Google Scholar 
    Chao, A. et al. Rarefaction and extrapolation with Hill numbers: A framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67 (2014).
    Google Scholar 
    Poulin, R. Parasite biodiversity revisited: Frontiers and constraints. Int. J. Parasitol. 44, 581–589 (2014).PubMed 

    Google Scholar 
    Salzburger, W. Understanding explosive diversification through cichlid fish genomics. Nat. Rev. Genet. 19, 705–717 (2018).CAS 
    PubMed 

    Google Scholar 
    Barluenga, M. & Meyer, A. The Midas cichlid species complex: Incipient sympatric speciation in Nicaraguan cichlid fishes? Mol. Ecol. 13, 2061–2076 (2004).CAS 
    PubMed 

    Google Scholar 
    Elmer, K. R. & Meyer, A. Adaptation in the age of ecological genomics: Insights from parallelism and convergence. Trends Ecol. Evol. 26, 298–306 (2011).PubMed 

    Google Scholar 
    Pérez-Ponce de León, G. & Choudhury, A. Biogeography of helminth parasites of freshwater fishes in Mexico: The search for patterns and processes. J. Biogeogr. 32, 645–659 (2005).
    Google Scholar 
    Blais, J. et al. MHC adaptive divergence between closely related and sympatric African cichlids. PLoS ONE 2, e734 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pariselle, A. et al. The monogenean parasite fauna of cichlids: A potential tool for host biogeography. Int. J. Evol. Biol. 2011, 1–15 (2011).
    Google Scholar 
    Aguilar-Aguilar, R., Salgado-Maldonado, G., Contreras-Medina, R. & Martínez-Aquino, A. Richness and endemism of helminth parasites of freshwater fishes in Mexico. Biol. J. Linn. Soc. 94, 435–444 (2008).
    Google Scholar 
    Dogiel, V. A. Ecology of parasites of freshwater fish. In Parasitology of Fishes (eds Dogiel, V. A. et al.) 1–47 (Edinburgh Oliver & Boyd, 1961).
    Google Scholar 
    Poulin, R. & Valtonen, E. T. The predictability of helminth community structure in space: A comparison of fish populations from adjacent lakes. Int. J. Parasitol. 32, 1235–1243 (2002).PubMed 

    Google Scholar 
    Razo-Mendivil, U., Rosas-Valdez, R. & Pérez-Ponce de León, G. A new Cryptogonimid (Digenea) from the mayan cichlid, Cichlasoma urophthalmus (Osteichthyes: Cichlidae), in several localities of the Yucatán Peninsula, Mexico. J. Parasitol. 94, 1371–1378 (2009).
    Google Scholar 
    Mendoza-Franco, E. F. et al. Occurrence of Sciadicleithrum mexicanum Kritsky, Vidal-Martinez et Rodríguez-Canul, 1994 (Monogenea: Dactylogyridae) in the Cichlid Cichlasoma urophthalmus from a flooded quarry in Yucatan, Mexico. Mem. Inst. Oswaldo Cruz 90, 319–324 (1995).
    Google Scholar 
    Blasco-Costa, I. & Poulin, R. Host traits explain the genetic structure of parasites: A meta-analysis. Parasitology 140, 1316–1322 (2013).PubMed 

    Google Scholar 
    Torchin, M. E., Lafferty, K. D., Dobson, A. P., McKenzie, V. J. & Kuris, A. M. Introduced species and their missing parasites. Nature 421, 628–630 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Salgado-Maldonado, G. et al. Helminth parasites of freshwater fishes of the Balsas River drainage basin of southwestern Mexico. Comp. Parasitol. 68, 196–203 (2001).
    Google Scholar 
    McCrary, J. K., Murphy, B. R., Stauffer, J. R. & Hendrix, S. S. Tilapia (Teleostei: Cichlidae) status in Nicaraguan natural waters. Environ. Biol. Fishes 78, 107–114 (2007).
    Google Scholar 
    García-Vásquez, A., Pinacho-Pinacho, C. D., Guzmán-Valdivieso, I., Calixto-Rojas, M. & Rubio-Godoy, M. Morpho-molecular characterization of Gyrodactylus parasites of farmed tilapia and their spillover to native fishes in Mexico. Sci. Rep. 11, 1–17 (2021).
    Google Scholar 
    Paredes-Trujillo, A., Velázquez-Abunader, I., Torres-Irineo, E., Romero, D. & Vidal-Martínez, V. M. Geographical distribution of protozoan and metazoan parasites of farmed Nile tilapia Oreochromis niloticus (L.) (Perciformes: Cichlidae) in Yucatán, México. Parasit. Vectors 9, 66 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, S. et al. Monogenean fauna of alien tilapias (Cichlidae) in south China. Parasite 26, 4 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Outa, J. O., Dos Santos, Q. M., Avenant-Oldewage, A. & Jirsa, F. Parasite diversity of introduced fish Lates niloticus, Oreochromis niloticus and endemic Haplochromis spp. of Lake Victoria. Kenya. Parasitol. Res. 120, 1583 (2021).PubMed 

    Google Scholar 
    Smit, N. J., Malherbe, W. & Hadfield, K. A. Alien freshwater fish parasites from South Africa: Diversity, distribution, status and the way forward. Int. J. Parasitol. Parasites Wildl. 6, 386–401 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pérez-Ponce de León, G., Lagunas-Calvo, O., García-Prieto, L., Briosio-Aguilar, R. & Aguilar-Aguilar, R. Update on the distribution of the co-invasive Schyzocotyle acheilognathi (= Bothriocephalus acheilognathi), the Asian fish tapeworm, in freshwater fishes of Mexico. J. Helminthol. 92, 279–290 (2018).PubMed 

    Google Scholar 
    Scholz, T., Šimková, A., Razanabolana, J. R. & Kuchta, R. The first record of the invasive Asian fish tapeworm (Schyzocotyle acheilognathi) from an endemic cichlid fish in Madagascar. Helminthol. 55, 84–87 (2018).CAS 

    Google Scholar 
    Acosta, A., Carvalho, E. & da Silva, R. First record of Lernaea cyprinacea (copepoda) in a native fish species from a Brazilian river. Neotrop. Helminthol. 7, 7–12 (2013).
    Google Scholar 
    Choudhury, A. et al. The invasive asian fish tapeworm, Bothriocephalus acheilognathi Yamaguti, 1934, in the chagres river/panama canal drainage, Panama. BioInvas. Rec. 2, 99–104 (2013).
    Google Scholar 
    Schatz, H. & Behan-Pelletier, V. Global diversity of oribatids (Oribatida: Acari: Arachnida). Hydrobiologia 595, 323–328 (2008).
    Google Scholar 
    Choudhury, A., Hoffnagle, T. L. & Cole, R. A. Parasites of native and nonnative fishes of the Little Colorado River, Grand Canyon, Arizona. J. Parasitol. 90, 1042–1053 (2004).PubMed 

    Google Scholar 
    Vanhove, M. P. M. Part 6: Evolutionary parasitology of African freshwater fishes—And its implications for the sustainable management of aquatic resources. In A Guide to the Parasites of African Freshwater Fishes (eds Scholz, T. et al.) 403–412 (Royal Belgian Institute of Natural Sciences, 2018).
    Google Scholar 
    Catalano, S. R., Whittington, I. D., Donnellan, S. C. & Gillanders, B. M. Parasites as biological tags to assess host population structure: Guidelines, recent genetic advances and comments on a holistic approach. Int. J. Parasitol. Parasites Wildl. 3, 220–226 (2014).PubMed 

    Google Scholar 
    Baldwin, R. E., Banks, M. A. & Jacobson, K. C. Integrating fish and parasite data as a holistic solution for identifying the elusive stock structure of Pacific sardines (Sardinops sagax). Rev. Fish Biol. Fish. 22, 137–156 (2011).
    Google Scholar 
    Criscione, C. D. & Blouin, M. S. Parasite phylogeographical congruence with salmon host evolutionarily significant units: Implications for salmon conservation. Mol. Ecol. 16, 993–1005 (2007).CAS 
    PubMed 

    Google Scholar 
    Vanhove, M. P. M. et al. Hidden biodiversity in an ancient lake: Phylogenetic congruence between Lake Tanganyika tropheine cichlids and their monogenean flatworm parasites. Sci. Rep. 5, 1–15 (2015).
    Google Scholar 
    Matschiner, M., Böhne, A., Ronco, F. & Salzburger, W. The genomic timeline of cichlid fish diversification across continents. Nat. Commun. 11, 1–8 (2020).
    Google Scholar 
    Choudhury, A., García-Varela, M. & Pérez-Ponce de León, G. Parasites of freshwater fishes and the Great American biotic interchange: A bridge too far? J. Helminthol. 91, 174–196 (2017).CAS 
    PubMed 

    Google Scholar 
    Mendoza-Franco, E. F. & Vidal-Martínez, V. M. Phylogeny of species of Sciadicleithrum (Monogenoidea: Ancyrocephalinae), and their historical biogeography in the Neotropics. J. Parasitol. 91, 253–259 (2005).PubMed 

    Google Scholar 
    de Chambrier, A., Pinacho-Pinacho, C. D., Hernández-Orts, J. S. & Scholz, T. T. A new genus and two new species of proteocephalidean tapeworms (Cestoda) from cichlid fish (Perciformes: Cichlidae) in the neotropics. J. Parasitol. 103, 83–94 (2017).PubMed 

    Google Scholar 
    Mendoza-Palmero, C. A., Blasco-Costa, I., Hernández-Mena, D. & Pérez-Ponce de León, G. Parasciadicleithrum octofasciatum n. gen., n. sp. (Monogenoidea: Dactylogyridae), parasite of Rocio octofasciata (Regan) (Cichlidae: Perciformes) from Mexico characterised by morphological and molecular evidence. Parasitol. Int. 66, 152–162 (2017).PubMed 

    Google Scholar 
    Pinacho-Pinacho, C. D., Hernández-Orts, J. S., Sereno-Uribe, A. L., Pérez-Ponce de León, G. & García-Varela, M. Mayarhynchus karlae n. g., n. sp. (Acanthocephala: Neoechinorhynchidae), a parasite of cichlids (Perciformes: Cichlidae) in southeastern Mexico, with comments on the paraphyly of Neoechynorhynchus Stiles & Hassall, 1905. Syst. Parasitol. 94, 351–365 (2017).PubMed 

    Google Scholar 
    Razo-Mendivil, U., Vázquez-Domínguez, E., Rosas-Valdez, R., Pérez-Ponce de León, G. & Nadler, S. A. Phylogenetic analysis of nuclear and mitochondrial DNA reveals a complex of cryptic species in Crassicutis cichlasomae (Digenea: Apocreadiidae), a parasite of Middle-American cichlids. Int. J. Parasitol. 40, 471–486 (2010).CAS 
    PubMed 

    Google Scholar 
    Razo-Mendivil, U., Rosas-Valdez, R., Rubio-Godoy, M. & Pérez-Ponce de León, G. The use of mitochondrial and nuclear sequences in prospecting for cryptic species in Tabascotrema verai (Digenea: Cryptogonimidae), a parasite of Petenia splendida (Cichlidae) in Middle America. Parasitol. Int. 64, 173–181 (2015).CAS 
    PubMed 

    Google Scholar 
    Pinacho-Pinacho, C. D., García-Varela, M., Sereno-Uribe, A. L. & Pérez-Ponce de León, G. A hyper-diverse genus of acanthocephalans revealed by tree-based and non-tree-based species delimitation methods: Ten cryptic species of Neoechinorhynchus in Middle American freshwater fishes. Mol. Phylogenet. Evol. 127, 30–45 (2018).PubMed 

    Google Scholar 
    Martínez-Aquino, A. et al. Detecting a complex of cryptic species within Neoechinorhynchus golvani (Acanthocephala: Neoechinorhynchidae) inferred from ITSs and LSU rDNA gene sequences. J. Parasitol. 95, 1040–1047 (2009).PubMed 

    Google Scholar  More

  • in

    Predicting the possibility of African horse sickness (AHS) introduction into China using spatial risk analysis and habitat connectivity of Culicoides

    Kumar, N. et al. Peste des petits ruminants virus infection of small ruminants: A comprehensive review. Viruses 6, 2287–2327. https://doi.org/10.3390/v6062287 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zientara, S., Weyer, C. T. & Lecollinet, S. African horse sickness. Rev. Sci. Tech. 34, 315–327. https://doi.org/10.20506/rst.34.2.2359 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Rutkowska, D. A., Mokoena, N. B., Tsekoa, T. L., Dibakwane, V. S. & O’Kennedy, M. M. Plant-produced chimeric virus-like particles—A new generation vaccine against African horse sickness. BMC Vet. Res. 15, 1. https://doi.org/10.1016/j.rvsc.2010.05.031 (2019).CAS 
    Article 

    Google Scholar 
    Barnard, B. J. H. Epidemiology of African horse sickness and the role of zebra in South Africa. Arch. Virol. Suppl. 14, 13–19. https://doi.org/10.1007/978-3-7091-6823-3_3 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hamblin, C., Salt, J. S., Mellor, P. S., Graham, S. D. & Wohlsein, P. Donkeys as reservoirs of African horse sickness virus. Arch. Virol. Suppl. 14, 37–47. https://doi.org/10.1007/978-3-7091-6823-3_5 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mellor, P. S., Boorman, J. P. T. & Baylis, M. Culicoides biting midges: their role as arbovirus vectors. Annu. Rev. Entomol. 45, 307–340 (2000).CAS 
    Article 

    Google Scholar 
    Redmond, E. F., Jones, D. & Rushton, J. Economic assessment of african horse sickness vaccine impact. Equine Vet. J. https://doi.org/10.1111/j.2042-3306.1982.tb02404.x (2021).Article 
    PubMed 

    Google Scholar 
    Venter, G. J., Wright, I. M., Linde, T. C. V. D. & Paweska, J. T. The oral susceptibility of South African field populations of Culicoides to African horse sickness virus. Med. Vet. Entomol. 23, 367–378. https://doi.org/10.1111/j.1365-2915.2009.00829.x (2010).Article 

    Google Scholar 
    Mellor, P. S., Boned, J., Hamblin, C. & Graham, S. D. Isolations of African horse sickness virus from vector insects made during the 1988 epizootic in Spain. Epidemiol. Infect. 105, 447–454. https://doi.org/10.1017/s0950268800048020 (1990).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meiswinkel, R. & Paweska, J. T. Evidence for a new field Culicoides vector of African horse sickness in South Africa. Prev. Vet. Med. 60, 243–253. https://doi.org/10.1016/s0167-5877(02)00231-3 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Howell, P. G. The isolation and identification of further antigenic types of African horsesickness virus. Onderstepoort. J. Vet. Res. 29, 139–149 (1962).
    Google Scholar 
    Calisher, C. H. & Mertens, P. P. C. Taxonomy of African horse sickness viruses. Arch. Virol. Suppl. 14, 3 (1998).CAS 
    PubMed 

    Google Scholar 
    Rodriguez, M., Hooghuis, H. & Castaño, M. African horse sickness in Spain. Vet. Microbiol. 33, 129–142. https://doi.org/10.1016/0378-1135(92)90041-q (1992).CAS 
    Article 
    PubMed 

    Google Scholar 
    Howell, P. G. The 1960 epizootic of African Horsesickness in the Middle East and S.W. Asia (268KB) (268KB). J. South Afr. Vet. Med. Assoc. (1960).King, S., RajkoEnow, P., Ashby, M., Frost, L. & Batten, C. Outbreak of African Horse Sickness in Thailand, 2020. Transbound. Emerg. Dis. (2020).OIE. World Animal Health Information System. https://www.oie.int/wahis_2/public/wahid.php/Reviewreport/Review?page_refer=MapFullEventReport&reportid=33768 (2020).Castillo-Olivares, J. African horse sickness in Thailand: Challenges of Controlling an outbreak by vaccination. Equine Vet. J. (2020).Gibbens, N. Schmallenberg virus: a novel viral disease in northern Europe. Vet. Rec. 170, 58. https://doi.org/10.1136/vr.e292 (2012).Article 
    PubMed 

    Google Scholar 
    Purse, B. V., Brown, H. E., Harrup, L., Mertens, P. & Rogers, D. J. Invasion of bluetongue and other orbivirus infections into Europe: the role of biological and climatic processes. Rev. Sci. Tech. 27, 427–442 (2008).CAS 
    Article 

    Google Scholar 
    Leta, S., Fetene, E., Mulatu, T., Amenu, K. & Revie, C. W. Modeling the global distribution of Culicoides imicola: an Ensemble approach. Sci. Rep. 9, 1 (2019).CAS 
    Article 

    Google Scholar 
    Thepparat, A., Bellis, G., Ketavan, C., Ruangsittichai, J. & Apiwathnasorn, C. T. species of Culicoides Latreille (Diptera: Ceratopogonidae) newly recorded from Thailand. Zootaxa 4033, 48–56. https://doi.org/10.11646/zootaxa.4033.1.2 (2015).Article 
    PubMed 

    Google Scholar 
    Raksakoon, C. & Potiwat, R. Current arboviral threats and their potential vectors in Thailand. Pathogens 10, 80 (2021).CAS 
    Article 

    Google Scholar 
    Gao, S. et al. Transboundary spread of peste des petits ruminants virus in western China: A prediction model. PLoS ONE 16, e0257898–e0257898. https://doi.org/10.1371/journal.pone.0257898 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joka, F. R., Van Gils, H., Huang, L. & Wang, X. High probability areas for ASF infection in china along the russian and korean borders. Transbound. Emerg. Dis. https://doi.org/10.1016/j.watres.2015.05.061.Steven et al. Opening the black box: an open-source release of Maxent. Ecography (2017).Gils, H. V., Westinga, E., Carafa, M., Antonucci, A. & Ciaschetti, G. Where the bears roam in Majella National Park, Italy. J. Nat. Conser. 22, 23–34. https://doi.org/10.1016/j.jnc.2013.08.001 (2014).Article 

    Google Scholar 
    Duque-Lazo, J., Navarro-Cerrillo, R. M., Van Gils, H. & Groen, T. A. Forecasting oak decline caused by Phytophthora cinnamomi in Andalusia : identification of priority areas for intervention. For. Ecol. Manage. 417, 122–136 (2018).Article 

    Google Scholar 
    Duque-Lazo, J., Gils, H. V., Groen, T. A. & Cerrillo, R. M. N. Transferability of species distribution models: The case of Phytophthora cinnamomi in Southwest Spain and Southwest Australia. Ecol. Model. 320, 62–70 (2016).Article 

    Google Scholar 
    Zeng, Z., Gao, S., Wang, H.-N., Huang, L.-Y. & Wang, X.-L. A predictive analysis on the risk of peste des petits ruminants in livestock in the Trans-Himalayan region and validation of its transboundary transmission paths. PLoS ONE 16, e0257094–e0257094. https://doi.org/10.1371/journal.pone.0257094 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Joka, F. R., Wang, H., van Gils, H. & Wang, X. Could wild boar be the Trans-Siberian transmitter of African swine fever?. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.13814 (2020).Article 
    PubMed 

    Google Scholar 
    Robin, M., Page, P., Archer, D. & Baylis, M. African horse sickness: The potential for an outbreak in disease-free regions and current disease control and elimination techniques. Equine Vet. J. 48, 659–669. https://doi.org/10.1111/evj.12600 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Maclachlan, N. J. & Guthrie, A. J. Re-emergence of bluetongue, African horse sickness, and other Orbivirus diseases. Vet. Res. 41, 35. https://doi.org/10.1051/vetres/2010007 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    M. et al. African horse sickness: The potential for an outbreak in disease-free regions and current disease control and elimination techniques. Equine Vet. J. https://doi.org/10.1111/evj.12600 (2016).Eagles, D., Melville, L., Weir, R. & Davis, S. Long-distance aerial dispersal modelling of Culicoides biting midges: case studies of incursions into Australia. BMC Vet. Res. 10, 1. https://doi.org/10.1186/1746-6148-10-135 (2014).Article 

    Google Scholar 
    Pedgley, D. E. & Tucker, M. R. Possible spread of African horse sickness on the wind. J. Hygiene 79, 279–298 (1977).CAS 
    Article 

    Google Scholar 
    Riddin, M. A., Venter, G. J., Labuschagne, K. & Villet, M. H. Culicoides species as potential vectors of African horse sickness virus in the southern regions of South Africa. Med. Vet. Entomol. 33, 1 (2019).Article 

    Google Scholar 
    Carpenter, S., Mellor, P. S., Fall, A. G., Garros, C. & Venter, G. J. African horse sickness Virus: History, transmission, and current status. Annu. Rev. Entomol. 62, 343–358. https://doi.org/10.1146/annurev-ento-031616-035010 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    https://www.oie.int/wahis_2/public/wahid.php/Countryinformation/Countryreports. (Accessed 12 August 2020).OIE. African horse sickness(updated April 2013). OIE Technical Disease Cards, Paris, France: World Organisation for Animal Health. (2013).Ciss, M. et al. Ecological niche modelling to estimate the distribution of Culicoides, potential vectors of bluetongue virus in Senegal. BMC Ecology 19, doi:https://doi.org/10.1186/s12898-019-0261-9 (2019).Harrup, L. E. et al. Does covering of farm-associated Culicoides larval habitat reduce adult populations in the United Kingdom?. Vet. Parasitol. 201, 137–145. https://doi.org/10.1016/j.vetpar.2013.11.028 (2013).Article 
    PubMed 

    Google Scholar 
    Hoch, A. L., Roberts, D. R. & Pinheiro, F. P. Host-seeking behavior and seasonal abundance of Culicoides paraensis (Diptera: Ceratopogonidae) in Brazil. J. Am. Mosq. Control Assoc. 6, 110–114 (1990).CAS 
    PubMed 

    Google Scholar 
    Carpenter, S., Groschup, M. H., Garros, C., Felippe-Bauer, M. L. & Purse, B. V. Culicoides biting midges, arboviruses and public health in Europe. Antiviral Res. 100, 102–113. https://doi.org/10.1016/j.antiviral.2013.07.020 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Carpenter, S., Wilson, A., Barber, J., Veronesi, E. & Gubbins, S. Temperature Dependence of the Extrinsic Incubation Period of Orbiviruses in Culicoides Biting Midges. PLoS ONE 6, e27987. https://doi.org/10.1371/journal.pone.0027987 (2011).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yanase, T. et al. Molecular Identification of Field-CollectedCulicoidesLarvae in the Southern Part of Japan. J. Med. Entomol. (2013).Meiswinkel, R. Afrotropical Culicoides: C (Avaritia) miombo sp. nov., a widespread species closely allied to C. (A.) imicola Kieffer, 1913 (Diptera: Ceratopogonidae). Onderstepoort. J. Vet. Res. 58, 155–170 (1991).Sloyer, K. E. et al. Ecological niche modeling the potential geographic distribution of four Culicoides species of veterinary significance in Florida, USA. PLoS ONE 14, 1 (2019).Article 

    Google Scholar 
    Reynolds, D. R., Chapman, J. W. & Harrington, R. The migration of insect vectors of plant and animal viruses. Adv. Virus Res. 67, 453–517 (2006).CAS 
    Article 

    Google Scholar 
    L. et al. Investigating Incursions of Bluetongue Virus Using a Model of Long-Distance Culicoides Biting Midge Dispersal. Transbound. Emerg. Dis. https://doi.org/10.1111/j.1865-1682.2012.01345.x (2013).Notice of the general office of the Ministry of agriculture and rural areas and the general office of the State General Administration of sports on printing and distributing the national horse industry development plan (2020–2025). (Animal Husbandry and Veterinary Bureau, 2020.09.29). More

  • in

    Relationship between bacterial phylotype and specialized metabolite production in the culturable microbiome of two freshwater sponges

    Mehbub MF, Lei J, Franco C, Zhang W. Marine sponge derived natural products between 2001 and 2010: trends and opportunities for discovery of bioactives. Mar Drugs. 2014;12:4539–77.PubMed 
    PubMed Central 

    Google Scholar 
    Sipkema D, Franssen MCR, Osinga R, Tramper J, Wijffels RH. Marine sponges as pharmacy. Mar Biotechnol. 2005;7:142–62.CAS 

    Google Scholar 
    Dobson CM. Chemical space and biology. Nature. 2004;432:824–8.CAS 
    PubMed 

    Google Scholar 
    Indraningrat AAG, Micheller S, Runderkamp M, Sauerland I, Becking LE, Smidt H, et al. Cultivation of sponge-associated bacteria from Agelas sventres and Xestospongia muta collected from different depths. Mar Drugs. 2019;17:578.CAS 
    PubMed Central 

    Google Scholar 
    Piel J. Metabolites from symbiotic bacteria. Nat Prod Rep. 2009;26:338–62.CAS 
    PubMed 

    Google Scholar 
    Webster NS, Thomas T. The sponge hologenome. mBio. 2016;7:e00135–16.PubMed 
    PubMed Central 

    Google Scholar 
    de Oliveira MRF, de Maringá UE, da Costa C, Benedito E. Trends and gaps in scientific production on freshwater sponges. Oecologia Austrlis. 2020;24:61–75.
    Google Scholar 
    Manconi R, Pronzato R. How to survive and persist in temporary freshwater? Adaptive traits of sponges (Porifera: Spongillida): a review. Hydrobiologia. 2016;782:11–22.
    Google Scholar 
    Manconi R, Pronzato R. Chapter 8 – Phylum Porifera. In: Thorp JH, Rogers DC, editors. Ecology and general biology. Thorp and Covich’s freshwater invertebrates. vol 1 (4th ed.) New York: Academic Press; 2015. p. 133–157.Manconi R, Pronzato R. Chapter 3 – Phylum Porifera. In: Thorp JH, Rogers DC, editors. Keys to Nearctic fauna. Thorp and Covich’s freshwater invertebrates vol 2(4th ed.) San Diego: Academic Press, Elsevier; 2016. p. 39–83.Leidy J. On Spongilla. In: Proceedings of the Academy of Natural Sciences of Philadelphia. Philadelphia: Academy of Natural Sciences of Philadelphia; 1850. p. 278.Smith F. Distribution of the fresh-water sponges of North America. INHS Bull. 1921;14:9–22.
    Google Scholar 
    Old MC. Environmental selection of the fresh-water sponges (Spongillidae) of Michigan. Trans Am Microsc Soc. 1932;51:129–36.CAS 

    Google Scholar 
    Ashley JM. Fresh water sponges of Illinois and Michigan. Urbana-Champaign: Master of Arts, University of Illinois; 1913.Jewell ME. An ecological study of the fresh-water sponges of northeastern Wisconsin. Ecol Monogr. 1935;5:461–504.CAS 

    Google Scholar 
    Kolomyjec SH, Willford RA. The fall 2019 genetics class. Phylogenetic analysis of Michigan’s freshwater sponges (Porifera, Spongillidae) using extended COI mtDNA sequences. bioRxiv. 2020; https://doi.org/10.1101/2020.04.26.062448.Copeland J, Kunigelis S, Tussing J, Jett T, Rich C. Freshwater sponges (Porifera: Spongillida) of Tennessee. Am Midl Nat. 2019;181:310–26.
    Google Scholar 
    Lauer TE, Spacie A. An association between freshwater sponges and the zebra mussel in a southern Lake Michigan harbor. J Freshw Ecol. 2004;19:631–7.
    Google Scholar 
    Skelton J, Strand M. Trophic ecology of a freshwater sponge (Spongilla lacustris) revealed by stable isotope analysis. Hydrobiologia. 2013;709:227–35.CAS 

    Google Scholar 
    Early TA, Glonek T. Zebra mussel destruction by a Lake Michigan sponge: populations, in vivo 31P nuclear magnetic resonance, and phospholipid profiling. Environ Sci Technol. 1999;33:1957–62.CAS 

    Google Scholar 
    Early TA, Kundrat JT, Schorp T, Glonek T. Lake Michigan sponge phospholipid variations with habitat: A 31P nuclear magnetic resonance study. Comp Biochem Physiol. 1996;114:77–89.
    Google Scholar 
    Dembitsky VM, Rezanka T, Srebnik M. Lipid compounds of freshwater sponges: family Spongillidae, class Demospongiae. Chem Phys Lipids. 2003;123:117–55.CAS 
    PubMed 

    Google Scholar 
    Řezanka T, Sigler K, Dembitsky VM. Syriacin, a novel unusual sulfated ceramide glycoside from the freshwater sponge Ephydatia syriaca (Porifera, Demospongiae, Spongillidae). Tetrahedron. 2006;62:5937–43.
    Google Scholar 
    Radnaeva LD, Bazarsadueva SV, Taraskin VV, Tulokhonov AK. First data on lipids and microorganisms of deepwater endemic sponge Baikalospongia intermedia and sediments from hydrothermal discharge area of the Frolikha Bay (North Baikal, Siberia). J Great Lakes Res. 2020;46:67–74.CAS 

    Google Scholar 
    Manconi R, Piccialli V, Pronzato R, Sica D. Steroids in porifera, sterols from freshwater sponges Ephydatia fluviatilis (L.) and Spongilla lacustris (L.). Comp Biochem Physiol. 1988;91:237–45.
    Google Scholar 
    Belikov S, Belkova N, Butina T, Chernogor L, Kley AM-V, Nalian A, et al. Diversity and shifts of the bacterial community associated with Baikal sponge mass mortalities. PLoS ONE. 2019;14:e0213926.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costa R, Keller-Costa T, Gomes NCM, da Rocha UN, van Overbeek L, van Elsas JD. Evidence for selective bacterial community structuring in the freshwater sponge Ephydatia fluviatilis. Microb Ecol. 2013;65:232–44.PubMed 

    Google Scholar 
    Laport MS, Pinheiro U, Rachid CTCC. Freshwater sponge Tubella variabilis presents richer microbiota than marine sponge species. Front Microbiol. 2019;10:2799.PubMed 
    PubMed Central 

    Google Scholar 
    Kenny NJ, Plese B, Riesgo A, Itskovich VB. Symbiosis, selection, and novelty: freshwater adaptation in the unique sponges of Lake Baikal. Mol Biol Evol. 2019;36:2462–80.CAS 
    PubMed Central 

    Google Scholar 
    Gaikwad S, Shouche YS, Gade WN. Microbial community structure of two freshwater sponges using Illumina MiSeq sequencing revealed high microbial diversity. AMB Express. 2016;6:40.PubMed 
    PubMed Central 

    Google Scholar 
    Gernert C, Glöckner FO, Krohne G, Hentschel U. Microbial diversity of the freshwater sponge Spongilla lacustris. Microb Ecol. 2005;50:206–12.CAS 
    PubMed 

    Google Scholar 
    Hernandez A, Nguyen LT, Dhakal R, Murphy BT. The need to innovate sample collection and library generation in microbial drug discovery: a focus on academia. Nat Prod Rep. 2021;38:292–300.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li C-Q, Liu W-C, Zhu P, Yang J-L, Cheng K-D. Phylogenetic diversity of bacteria associated with the marine sponge Gelliodes carnosa collected from the Hainan Island coastal waters of the South China Sea. Microb Ecol. 2011;62:800–12.PubMed 

    Google Scholar 
    Sipkema D, Schippers K, Maalcke WJ, Yang Y, Salim S, Blanch HW. Multiple approaches to enhance the cultivability of bacteria associated with the marine sponge Haliclona (gellius) sp. Appl Environ Microbiol. 2011;77:2130–40.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Montalvo NF, Davis J, Vicente J, Pittiglio R, Ravel J, Hill RT. Integration of culture-based and molecular analysis of a complex sponge-associated bacterial community. PLoS ONE. 2014;9:e90517.PubMed 
    PubMed Central 

    Google Scholar 
    Elfeki M, Alanjary M, Green SJ, Ziemert N, Murphy BT. Assessing the efficiency of cultivation techniques to recover natural product biosynthetic gene populations from sediment. ACS Chem Biol. 2018;13:2074–81.CAS 
    PubMed 

    Google Scholar 
    Dieckmann R, Graeber I, Kaesler I, Szewzyk U, von Döhren H. Rapid screening and dereplication of bacterial isolates from marine sponges of the Sula Ridge by intact-cell-MALDI-TOF mass spectrometry (ICM-MS). Appl Microbiol Biotechnol. 2005;67:539–48.CAS 
    PubMed 

    Google Scholar 
    Costa MS, Clark CM, Ómarsdóttir S, Sanchez LM, Murphy BT. Minimizing taxonomic and natural product redundancy in microbial libraries using MALDI-TOF MS and the bioinformatics pipeline IDBac. J Nat Prod. 2019;82:2167–73.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CM, Costa MS, Sanchez LM, Murphy BT. Coupling MALDI-TOF mass spectrometry protein and specialized metabolite analyses to rapidly discriminate bacterial function. Proc Natl Acad Sci USA. 2018;115:4981–6.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Clark CM, Costa MS, Conley E, Li E, Sanchez LM, Murphy BT. Using the open-source MALDI TOF-MS IDBac pipeline for analysis of microbial protein and specialized metabolite data. J Vis Exp. 2019;147:e59219.
    Google Scholar 
    Ryzhov V, Fenselau C. Characterization of the protein subset desorbed by MALDI from whole bacterial cells. Anal Chem. 2001;73:746–50.CAS 
    PubMed 

    Google Scholar 
    Welker M, Moore ERB. Applications of whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry in systematic microbiology. Syst Appl Microbiol. 2011;34:2–11.CAS 
    PubMed 

    Google Scholar 
    Sandrin TR, Goldstein JE, Schumaker S. MALDI TOF MS profiling of bacteria at the strain level: a review. Mass Spectrom Rev. 2013;32:188–217.CAS 
    PubMed 

    Google Scholar 
    Seuylemezian A, Aronson HS, Tan J, Lin M, Schubert W, Vaishampayan P. Development of a custom MALDI-TOF MS database for species-level identification of bacterial isolates collected from spacecraft and associated surfaces. Front Microbiol. 2018;9:780.PubMed 
    PubMed Central 

    Google Scholar 
    Strejcek M, Smrhova T, Junkova P, Uhlik O. Whole-cell MALDI-TOF MS versus 16S rRNA gene analysis for identification and dereplication of recurrent bacterial isolates. Front Microbiol. 2018;9:1294.PubMed 
    PubMed Central 

    Google Scholar 
    Giraud-Gatineau A, Texier G, Garnotel E, Raoult D, Chaudet H. Insights into subspecies discrimination potentiality from bacteria MALDI-TOF mass spectra by using data mining and diversity studies. Front Microbiol. 2020;11:1931.PubMed 
    PubMed Central 

    Google Scholar 
    LaMontagne MG, Tran PL, Benavidez A, Morano LD. Development of an inexpensive matrix-assisted laser desorption-time of flight mass spectrometry method for the identification of endophytes and rhizobacteria cultured from the microbiome associated with maize. PeerJ. 2021;9:e11359.PubMed 
    PubMed Central 

    Google Scholar 
    Freiwald A, Sauer S. Phylogenetic classification and identification of bacteria by mass spectrometry. Nat Protoc. 2009;4:732–42.CAS 
    PubMed 

    Google Scholar 
    Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36:380–407.CAS 
    PubMed 

    Google Scholar 
    Rodríguez-Sánchez B, Cercenado E, Coste AT, Greub G. Review of the impact of MALDI-TOF MS in public health and hospital hygiene, 2018. Eurosurveillance. 2019;24:1800193. PubMed Central 

    Google Scholar 
    Rahi P, Vaishampayan P. MALDI-TOF MS application in microbial ecology studies. Front Microbiol. 2019;10:2954.PubMed 

    Google Scholar 
    Popović NT, Kazazić SP, Strunjak-Perović I, Čož-Rakovac R. Differentiation of environmental aquatic bacterial isolates by MALDI-TOF MS. Environ Res. 2017;152:7–16.PubMed 

    Google Scholar 
    Rahi P, Prakash O, Shouche YS. Matrix-assisted laser desorption/ionization Time-of-Flight mass-spectrometry (MALDI-TOF MS) based microbial identifications: challenges and scopes for microbial ecologists. Front Microbiol. 2016;7:1359.PubMed 
    PubMed Central 

    Google Scholar 
    Schumann P, Maier T. Chapter 13 – MALDI-TOF mass spectrometry applied to classification and identification of bacteria. In: Methods in microbiology, vol 41, ISSN 0580-9517. Goodfellow M, Sutcliffe I, Chun J, editors. Academic Press; 2014. p. 275–306.Murtagh F, Legendre P. Ward’s hierarchical agglomerative clustering method: which algorithms implement Ward’s criterion? J Classif. 2014;31:274–95.
    Google Scholar 
    Batagelj V. Generalized Ward and related clustering problems. In: Bock HH, editor. North Holland, Amsterdam: Proceedings of the First Conference of the International Federation of Classification Societies; 1988. p. 67–74.van Santen JA, Jacob G, Singh AL, Aniebok V, Balunas MJ, Bunsko D, et al. The natural products atlas: an open access knowledge base for microbial natural products discovery. ACS Cent Sci. 2019;5:1824–33.PubMed 
    PubMed Central 

    Google Scholar 
    Ghyselinck J, Van Hoorde K, Hoste B, Heylen K, De Vos P. Evaluation of MALDI-TOF MS as a tool for high-throughput dereplication. J Microbiol Meth. 2011;86:327–36.CAS 

    Google Scholar 
    Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Henson MW, Lanclos VC, Pitre DM, Weckhorst JL, Lucchesi AM, Cheng C, et al. Expanding the diversity of bacterioplankton isolates and modeling isolation efficacy with large-scale dilution-to-extinction cultivation. Appl Environ Microbiol. 2020;86:e00943–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hoffmann T, Krug D, Bozkurt N, Duddela S, Jansen R, Garcia R, et al. Correlating chemical diversity with taxonomic distance for discovery of natural products in myxobacteria. Nat Commun. 2018;9:1–10.CAS 

    Google Scholar 
    Jensen PR, Williams PG, Oh D-C, Zeigler L, Fenical W. Species-specific secondary metabolite production in marine actinomycetes of the genus Salinispora. Appl Environ Microbiol. 2007;73:1146–52.CAS 
    PubMed 

    Google Scholar 
    Ziemert N, Lechner A, Wietz M, Millán-Aguiñaga N, Chavarria KL, Jensen PR. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora. Proc Natl Acad Sci USA. 2014;111:E1130–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bruns H, Crüsemann M, Letzel A-C, Alanjary M, McInerney JO, Jensen PR, et al. Function-related replacement of bacterial siderophore pathways. ISME J. 2018;12:320–9.CAS 
    PubMed 

    Google Scholar 
    Chase AB, Sweeney D, Muskat MN, Guillén-Matus DG, Jensen PR. Vertical inheritance facilitates interspecies diversification in biosynthetic gene clusters and specialized metabolites. MBio. 2021;12:e0270021.PubMed 

    Google Scholar 
    Covington BC, Xu F, Seyedsayamdost MR. A natural product chemist’s guide to unlocking silent biosynthetic gene clusters. Annu Rev Biochem. 2021;90:763–88.CAS 
    PubMed 

    Google Scholar 
    Adamek M, Alanjary M, Sales-Ortells H, Goodfellow M, Bull AT, Winkler A, et al. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics. 2018;19:426.PubMed 
    PubMed Central 

    Google Scholar 
    Chevrette MG, Currie CR. Emerging evolutionary paradigms in antibiotic discovery. J Ind Microbiol Biotechnol. 2019;46:257–71.CAS 
    PubMed 

    Google Scholar 
    Zdouc MM, Iorio M, Maffioli SI, Crüsemann M, Donadio S, Sosio M. Planomonospora: a metabolomics perspective on an underexplored Actinobacteria genus. J Nat Prod. 2021;84:204–19.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang D, Shoaie S, Jacquiod S, Sørensen SJ, Ledesma-Amaro R. Comparative genomics analysis of keratin-degrading Chryseobacterium species reveals their keratinolytic potential for secondary metabolite production. Microorganisms. 2021;9:1042.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Han S, Van Treuren W, Fischer CR, Merrill BD, DeFelice BC, Sanchez JM, et al. A metabolomics pipeline for the mechanistic interrogation of the gut microbiome. Nature. 2021;595:415–20.CAS 
    PubMed 

    Google Scholar 
    Newman DJ, Cragg GM. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod. 2020;83:770–803.CAS 
    PubMed 

    Google Scholar 
    Demain AL, Sanchez S. Microbial drug discovery: 80 years of progress. J Antibiot. 2009;62:5–16.CAS 

    Google Scholar 
    Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol. 2012;30:918–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gibb S, Strimmer K. Mass spectrometry analysis using MALDIquant. In: Datta S, Mertens BJA, editors. Statistical analysis of proteomics, metabolomics, and lipidomics data using mass spectrometry. Cham: Springer International Publishing; 2017. p. 101–24.Gibb S, Strimmer K. MALDIquant: a versatile R package for the analysis of mass spectrometry data. Bioinformatics. 2012;28:2270–1.CAS 
    PubMed 

    Google Scholar 
    Weisburg WG, Barns SM, Pelletier DA, Lane DJ. 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol. 1991;173:697–703.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More