More stories

  • in

    Microbiomes in the Challenger Deep slope and bottom-axis sediments

    Jamieson, A. J., Fujii, T., Mayor, D. J., Solan, M. & Priede, I. G. Hadal trenches: the ecology of the deepest places on Earth. Trends Ecol. Evol. 25, 190–197 (2010).PubMed 

    Google Scholar 
    Stewart, H. A. & Jamieson, A. J. Habitat heterogeneity of hadal trenches: considerations and implications for future studies. Prog. Oceanogr. 161, 47–65 (2018).ADS 

    Google Scholar 
    Zhu, G. et al. Along-strike variation in slab geometry at the southern Mariana subduction zone revealed by seismicity through ocean bottom seismic experiments. Geophys. J. Int. 218, 2122–2135 (2019).ADS 

    Google Scholar 
    Bao, R. et al. Tectonically-triggered sediment and carbon export to the Hadal zone. Nat. Commun. 9, 121 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kioka, A. et al. Megathrust earthquake drives drastic organic carbon supply to the hadal trench. Sci. Rep. 9, 1553 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luo, M., Gieskes, J., Chen, L. Y., Shi, X. F. & Chen, D. F. Provenances, distribution, and accumulation of organic matter in the southern Mariana Trench rim and slope: implication for carbon cycle and burial in hadal trenches. Mar. Geol. 386, 98–106 (2017).ADS 
    CAS 

    Google Scholar 
    Glud, R. N. et al. High rates of microbial carbon turnover in sediments in the deepest oceanic trench on Earth. Nat. Geosci. 6, 284–288 (2013).ADS 
    CAS 

    Google Scholar 
    Liu, S. & Peng, X. Organic matter diagenesis in hadal setting: insights from the pore-water geochemistry of the Mariana Trench sediments. Deep Sea Res. I 147, 22–31 (2019).CAS 

    Google Scholar 
    Nunoura, T. et al. Microbial diversity in sediments from the bottom of the Challenger Deep, the Mariana Trench. Microbes Environ. 33, 186–194 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Y. et al. Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep ocean. Environ. Microbiol. 21, 716–729 (2019).CAS 
    PubMed 

    Google Scholar 
    Nunoura, T. et al. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments. Environ. Microbiol. 15, 3087–3107 (2013).CAS 
    PubMed 

    Google Scholar 
    Mason, E. et al. Volatile metal emissions from volcanic degassing and lava–seawater interactions at Kīlauea Volcano, Hawai’i. Commun. Earth Environ. 2, 79 (2021).ADS 

    Google Scholar 
    Sun, R. et al. Methylmercury produced in upper oceans accumulates in deep Mariana Trench fauna. Nat. Commun. 11, 3389 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kalia, K. & Khambholja, D. B. in Handbook of Arsenic Toxicology (ed. Flora, S. J. S.) Ch. 28 (Elsevier, 2015).Welty, C. J., Sousa, M. L., Dunnivant, F. M. & Yancey, P. H. High-density element concentrations in fish from subtidal to hadal zones of the Pacific Ocean. Heliyon 4, e00840 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Oremland, R. S. & Stolz, J. F. The ecology of arsenic. Science 300, 939–944 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Popowich, A., Zhang, Q. & Le, X. C. Arsenobetaine: the ongoing mystery. Natl Sci. Rev. 3, 451–458 (2016).CAS 

    Google Scholar 
    Hoffmann, T. et al. Arsenobetaine: an ecophysiologically important organoarsenical confers cytoprotection against osmotic stress and growth temperature extremes. Environ. Microbiol. 20, 305–323 (2018).CAS 
    PubMed 

    Google Scholar 
    Steinbauer, M. J. et al. Topography-driven isolation, speciation and a global increase of endemism with elevation. Glob. Ecol. Biogeogr. 25, 1097–1107 (2016).
    Google Scholar 
    Hoffmann, A. A. & Hercus, M. J. Environmental stress as an evolutionary force. Bioscience 50, 217–226 (2000).
    Google Scholar 
    Cui, G., Li, J., Gao, Z. & Wang, Y. Spatial variations of microbial communities in abyssal and hadal sediments across the Challenger Deep. PeerJ 7, e6961 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Hiraoka, S. et al. Microbial community and geochemical analyses of trans-trench sediments for understanding the roles of hadal environments. ISME J. 14, 740–756 (2020).CAS 
    PubMed 

    Google Scholar 
    Morono, Y. et al. Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years. Nat. Commun. 11, 3626 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, X. et al. Metagenomics reveals microbial diversity and metabolic potentials of seawater and surface sediment from a hadal biosphere at the Yap Trench. Front. Microbiol. 9, 2402 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Logares, R. et al. Metagenomic 16S rDNA Illumina tags are a powerful alternative to amplicon sequencing to explore diversity and structure of microbial communities. Environ. Microbiol. 16, 2659–2671 (2014).CAS 
    PubMed 

    Google Scholar 
    Zhou, Z. et al. Genome- and community-level interaction insights into carbon utilization and element cycling functions of Hydrothermarchaeota in hydrothermal sediment. mSystems 5, e00795-00719 (2020).
    Google Scholar 
    Dombrowski, N., Teske, A. P. & Baker, B. J. Expansive microbial metabolic versatility and biodiversity in dynamic Guaymas Basin hydrothermal sediments. Nat. Commun. 9, 4999 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dong, X. et al. Metabolic potential of uncultured bacteria and archaea associated with petroleum seepage in deep-sea sediments. Nat. Commun. 10, 1816 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laso-Pérez, R. et al. Anaerobic degradation of non-methane alkanes by “Candidatus Methanoliparia” in hydrocarbon seeps of the Gulf of Mexico. mBio 10, e01814–e01819 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Z. M. et al. In situ meta-omic insights into the community compositions and ecological roles of hadal microbes in the Mariana Trench. Environ. Microbiol. 21, 4092–4108 (2019).CAS 
    PubMed 

    Google Scholar 
    Varliero, G., Bienhold, C., Schmid, F., Boetius, A. & Molari, M. Microbial diversity and connectivity in deep-sea sediments of the South Atlantic polar front. Front. Microbiol. 10, 665 (2019).Su, X. et al. Identifying and predicting novelty in microbiome studies. mBio 9, e02099-02018 (2018).
    Google Scholar 
    Jing, G. et al. Microbiome Search Engine 2: a platform for taxonomic and functional search of global microbiomes on the whole-microbiome level. mSystems 6, e00943-00920 (2021).
    Google Scholar 
    Baltar, F., Zhao, Z. H. & Herndl, G. J. Potential and expression of carbohydrate untilization by marine fungi in the global ocean. Microbiome 9, 106 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quemener, M. et al. Meta-omics highlights the diversity, activity and adaptations of fungi in deep oceanic crust. Environ. Microbiol. 22, 3950–3967 (2020).CAS 

    Google Scholar 
    Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).CAS 
    PubMed 

    Google Scholar 
    Almeida, A. et al. A new genomic blueprint of the human gut microbiota. Nature 568, 499–504 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Bobay, L. M. & Ochman, H. The evolution of bacterial genome architecture. Front. Genet. 8, 72 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Huang, L. et al. dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res. 46, D516–D521 (2018).CAS 
    PubMed 

    Google Scholar 
    Xu, Y., Ge, H. & Fang, J. Biogeochemistry of hadal trenches: Recent developments and future perspectives. Deep Sea Res. II Top. Stud. Oceanogr. 155, 19–26 (2018).ADS 
    CAS 

    Google Scholar 
    Jørgensen, B. B. & Boetius, A. Feast and famine — microbial life in the deep-sea bed. Nat. Rev. Microbiol. 5, 770–781 (2007).PubMed 

    Google Scholar 
    Pérez Castro, S. et al. Degradation of biological macromolecules supports uncultured microbial populations in Guaymas Basin hydrothermal sediments. ISME J. 15, 3480–3497 (2021).Rastelli, E. et al. Drivers of bacterial α- and β-diversity patterns and functioning in subsurface hadal sediments. Front. Microbiol. 10, 2609 (2019).Vetter, Y. A. & Deming, J. W. Extracellular enzyme-activity in the Arctic northeast water polynya. Mar. Ecol. Prog. Ser. 114, 23–34 (1994).ADS 
    CAS 

    Google Scholar 
    Li, J. et al. Recycling and metabolic flexibility dictate life in the lower oceanic crust. Nature 579, 250–255 (2020).ADS 
    CAS 

    Google Scholar 
    Kikuchi, G., Motokawa, Y., Yoshida, T. & Hiraga, K. Glycine cleavage system: reaction mechanism, physiological significance, and hyperglycinemia. Proc. Jpn. Acad. 84, 246–263 (2008).CAS 

    Google Scholar 
    Chakraborty, A. et al. Hydrocarbon seepage in the deep seabed links subsurface and seafloor biospheres. Proc. Natl Acad. Sci. USA 117, 11029–11037 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, J. et al. Proliferation of hydrocarbon-degrading microbes at the bottom of the Mariana Trench. Microbiome 7, 47 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xue, C.-X. et al. Insights into the vertical stratification of microbial ecological roles across the deepest seawater column on Earth. Microorganisms 8, 1309 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Thamdrup, B. et al. Anammox bacteria drive fixed nitrogen loss in hadal trench sediments. Proc. Natl Acad. Sci. USA 118, e2104529118 (2021).CAS 
    PubMed 

    Google Scholar 
    Wu, J. et al. Unexpectedly high diversity of anammox bacteria detected in deep-sea surface sediments of the South China Sea. FEMS Microbiol. Ecol. 95, fiz013 (2019).Kartal, B. et al. Molecular mechanism of anaerobic ammonium oxidation. Nature 479, 127–130 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Maalcke, W. J. et al. Characterization of anammox hydrazine dehydrogenase, a key N2-producing enzyme in the global nitrogen cycle. J. Biol. Chem. 291, 17077–17092 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kartal, B. et al. How to make a living from anaerobic ammonium oxidation. FEMS Microbiol. Rev. 37, 428–461 (2013).CAS 
    PubMed 

    Google Scholar 
    Oshiki, M., Ali, M., Shinyako-Hata, K., Satoh, H. & Okabe, S. Hydroxylamine-dependent anaerobic ammonium oxidation (anammox) by “Candidatus Brocadia sinica”. Environ. Microbiol. 18, 3133–3143 (2016).CAS 
    PubMed 

    Google Scholar 
    Mateos, L. M. et al. in Advances in Applied Microbiology (eds Sariaslani, S. & Gadd, G. M.) Ch. 4 (Academic Press, 2017).Ben Fekih, I. et al. Distribution of arsenic resistance genes in prokaryotes. Front. Microbiol. 9, 2473 (2018).Wang, P. P., Sun, G. X. & Zhu, Y. G. Identification and characterization of arsenite methyltransferase from an archaeon, methanosarcina acetivorans C2A. Environ. Sci. Technol. 48, 12706–12713 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Masuda, H., Yoshinishi, H., Fuchida, S., Toki, T. & Even, E. Vertical profiles of arsenic and arsenic species transformations in deep-sea sediment, Nankai Trough, offshore Japan. Prog. Earth Planet Sci. 6, 28 (2019).ADS 

    Google Scholar 
    Dunivin, T. K., Yeh, S. Y. & Shade, A. A global survey of arsenic-related genes in soil microbiomes. BMC Biol. 17, 45 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Teske, A. et al. The Guaymas Basin hiking guide to hydrothermal mounds, chimneys, and microbial mats: complex seafloor expressions of subsurface hydrothermal circulation. Front. Microbiol. 7, 75 (2016).O’Day, P. A., Vlassopoulos, D., Root, R. & Rivera, N. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl Acad. Sci. USA 101, 13703–13708 (2004).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Galinski, E. A. Osmoadaptation in bacteria. Adv. Microb. Physiol. 37, 273–328 (1995).CAS 

    Google Scholar 
    Papini, C. M., Pandharipande, P. P., Royer, C. A. & Makhatadze, G. I. Putting the piezolyte hypothesis under pressure. Biophys. J. 113, 974–977 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caumette, G., Koch, I. & Reimer, K. J. Arsenobetaine formation in plankton: a review of studies at the base of the aquatic food chain. J. Environ. Monit. 14, 2841–2853 (2012).CAS 
    PubMed 

    Google Scholar 
    Whaley-Martin, K. J., Koch, I., Moriarty, M. & Reimer, K. J. Arsenic speciation in blue mussels (Mytilus edulis) along a highly contaminated arsenic gradient. Environ. Sci. Technol. 46, 3110–3118 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Oremland, R. S. et al. Anaerobic oxidation of arsenite in Mono Lake water and by a facultative, arsenite-oxidizing chemoautotroph, strain MLHE-1. Appl. Environ. Microbiol. 68, 4795–4802 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rhine, E. D., Phelps, C. D. & Young, L. Y. Anaerobic arsenite oxidation by novel denitrifying isolates. Environ. Microbiol. 8, 899–908 (2006).CAS 
    PubMed 

    Google Scholar 
    Rhine et al. LY. The arsenite oxidase genes (aroAB) in novel chemoautotrophic arsenite oxidizers. Biochem. Biophys. Res. Commun. 354, 662–667 (2007).CAS 
    PubMed 

    Google Scholar 
    Saunders, J. K., Fuchsman, C. A., Mckay, C. & Rocap, G. Complete arsenic-based respiratory cycle in the marine microbial communities of pelagic oxygen-deficient zones. Proc. Natl Acad. Sci. USA 116, 9925–9930 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Couture, R. M., Sekowska, A., Fang, G. & Danchin, A. Linking selenium biogeochemistry to the sulfur‐dependent biological detoxification of arsenic. Environ. Microbiol. 14, 1612–1623 (2012).CAS 
    PubMed 

    Google Scholar 
    Zhang, Y. & Gladyshev, V. N. Trends in selenium utilization in marine microbial world revealed through the analysis of the Global Ocean Sampling (GOS) project. PLoS Genet. 4, e1000095 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Peng, T., Lin, J., Xu, Y.-Z. & Zhang, Y. Comparative genomics reveals new evolutionary and ecological patterns of selenium utilization in bacteria. ISME J. 10, 2048–2059 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Labunskyy, V. M., Hatfield, D. L. & Gladyshev, V. N. Selenoproteins: molecular pathways and physiological roles. Physiol. Rev. 94, 739–777 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yin, K., Wang, Q., Lv, M. & Chen, L. Microorganism remediation strategies towards heavy metals. Chem. Eng. J. 360, 1553–1563 (2019).CAS 

    Google Scholar 
    O’Day, P. A., Vlassopoulos, D., Root, R. & Rivera, N. The influence of sulfur and iron on dissolved arsenic concentrations in the shallow subsurface under changing redox conditions. Proc. Natl Acad. Sci. USA 101, 13703–13708 (2004).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, S. F., Zhou, Y. Q., Chen, Y. R. & Gu, J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, 884–890 (2018).
    Google Scholar 
    Salter, S. J. et al. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12, 87 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).CAS 
    PubMed 

    Google Scholar 
    Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, Y., Gilna, P. & Li, W. Z. Identification of ribosomal RNA genes in metagenomic fragments. Bioinformatics 25, 1338–1340 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).ADS 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhou, Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Zenodo https://doi.org/10.5281/zenodo.6061243 (2022).Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jing, G. C. et al. Parallel-META 3: comprehensive taxonomical and functional analysis platform for efficient comparison of microbial communities. Sci. Rep. 7, 40371 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, Y. W., Simmons, B. A. & Singer, S. W. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics 32, 605–607 (2016).CAS 
    PubMed 

    Google Scholar 
    Kang, D. et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ 7, e7359 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Alneberg, J. et al. Binning metagenomic contigs by coverage and composition. Nat. Methods 11, 1144–1146 (2014).CAS 
    PubMed 

    Google Scholar 
    Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP-a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25, 1043–1055 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mende, D. R., Sunagawa, S., Zeller, G. & Bork, P. Accurate and universal delineation of prokaryotic species. Nat. Methods 10, 881–887 (2013).CAS 
    PubMed 

    Google Scholar 
    Yamada, K. D., Tomii, K. & Katoh, K. Application of the MAFFT sequence alignment program to large data-reexamination of the usefulness of chained guide trees. Bioinformatics 32, 3246–3251 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutierrez, S., Silla-Martinez, J. M. & Gabaldon, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 

    Google Scholar 
    Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pachiadaki, M. G. et al. Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358, 1046–1051 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Perry, M. heatmaps: flexible heatmaps for functional genomics and sequence features. R package version 1.14.0 (Bioconductor, 2020).Buchfink, B., Xie, C. & Huson, D. H. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12, 59–60 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics 11, 119 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Aramaki, T. et al. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics 36, 2251–2252 (2019).PubMed Central 

    Google Scholar 
    Kanehisa, M., Sato, Y. & Morishima, K. BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J. Mol. Biol. 428, 726–731 (2016).CAS 
    PubMed 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).CAS 
    PubMed 

    Google Scholar 
    Zhou, Y. Microbiomes in the Challenger Deep slope and bottom-axis sediments. Figshare https://doi.org/10.6084/m6089.figshare.12979709 (2022). More

  • in

    Fingerprint analysis reveals sources of petroleum hydrocarbons in soils of different geographical oilfields of China and its ecological assessment

    Concentration of TPHs in surface soilsStatistical results of TPHs concentrations at different geographic oilfields were showed in Fig. 2, and grid regional distribution of TPHs in YC Oilfield surface soils (Y6–Y25) were shown in Fig. 3. Results are given as mean value of triplicate analysis of each sample. The results of TPHs concentration in soil samples showed that the three oilfields all suffered from varying degrees of petroleum pollution, and 60.92% of the 47 sampling points was significantly higher than the soil critical value (500 mg/kg). The average concentration of the TPHs in each study areas conformed to be in the following law: SL Oilfield (average: 5.36 × 103 mg/kg) ( >) NY Oilfield (average: 1.73 × 103 mg/kg) ( >) YC Oilfield (average: 1.37 × 103 mg/kg). The highest concentration of the TPHs were found in SL Oilfield surface soils, ranging from 1.21 × 102 to 6.66 × 104 mg/kg, and NY Oilfield had the second highest TPHs concentrations in the range from 15.82 to 7.42 × 103 mg/kg. The concentrations of TPHs in YC Oilfield ranged from 12.34 to 5.38 × 103 mg/kg. The petroleum contamination mainly derived from abandoned and working oil wells. S4 and S8 soils were collected near the abandoned oil well and working oil well, respectively, and had the highest concentration of TPHs up to 5.28 × 104 and 6.66 × 104 mg/kg. Y1, N8 near the abandoned oil well also had high concentration of TPHs with 5.39 × 103 and 7.42 × 103 mg/kg, respectively. Pollution caused by grounded crude oil in exploitation process has been a serious problem in oilfield area. Our previous research reported that the TPHs content in Dagang Oilfield soils collected adjacent to working oil wells were about 20-folds higher than that in corn soils and living area soils25. Concentration contour map of TPHs in YC Oilfield by grid sampling method showed that regional pollution in the northwest and southeast area are more serious than other sites. Y6 near the gas station and Y15, Y21, Y23 adjacent to the working oil wells have higher concentration (2.12 × 103–5.34 × 103 mg/kg) of TPHs than other farmland and grass soils. Previous study reported that the concentrations of TPHs ranged 7.0 × 102–4.0 × 103 mg/kg in oil exploitation areas of the loess plateau region (34°20′N,107°10′E), showing a similar pollution level with this study26.Figure 2The concentration of TPHs in three oilfield soils.Full size imageFigure 3Grid regional distribution of TPHs in YC Oilfield.Full size imageThe percentage composition of total PAHs, SHs and polar components of petroleum hydrocarbons were shown in Table 1. In general, the dominant petroleum component was saturated hydrocarbons in all soils, accounting more than 50%. Yet, the percentage proportion of PAHs and SHs in contamination soils adjacent to working and abandon oil wells were significantly different (p  BbF (14.16–21.87%) ≫ BaA, Chr, InP, and BkF (less than 10%). This result aligned to the previous study that the contribution of individual PAHs to the TEQs of ∑PAH16 was BaP (45%)  > DBA (33%) in urban surface dust of Xi’an city, China46. Therefore, contamination control should priority focus on the individual PAHs of BaP, DBA, BbF in these areas. In addition, the ecological risk with abandoned time ranging 0–15 years has been assessed, and the descriptive statistic TEQBap of PAHs was shown in Supporting Information, Table S6. The highest TEQs of ∑PAH16 and ∑PAH7 with mean of 1422.27 μg/kg and 1400.48 μg/kg, respectively, were present in soils adjacent to abandoned oil well with abandoned time of 0—5 years. And the TEQs of ∑PAH16 and ∑PAH7 decreased with the abandoned time though the percentage proportion of PAHs increased. The TEQs of ∑PAH16 and ∑PAH7 were close between abandoned time of 5–10 years and 10—15 years while both had high content. It demonstrated that high ecological risk was persistent in abandoned oil well areas over abandoned time of 15 years, and basically stable after 5 years. Therefore, abandoned oil well areas need to be blocked to prevent PAHs entering the external environment, and combine physical–chemical technology for petroleum remediation instead of simple weathering biological processes.Table 3 Descriptive statistic TEQBap of PAHs in different sampling area.Full size tableAs referred the PAHs standard of Dutch soil, TEQs of ∑PAH7 was 32.02 μg/kg, calculated by ten individual PAHs times TEFs. In this study, the mean TEQs of ∑PAH7 were about 35- and 10-folds of Dutch soil in petro-related area soils and grassland soils, indicating a high and medium ecological risk in these soils respectively. However, the mean TEQs of ∑PAH7 in farmland soils (18.80 μg/kg) was below Dutch soil, presenting a low potential ecological risk. It should be noted that the minimum of TEQs of ∑PAH7 in grassland soil was 26.24 μg/kg less than TEQs of ∑PAH7 in Dutch soil, but it was vulnerable affected by the surrounding soils with high TEQs of ∑PAH7. In this study, except the farmland soils, TEQs of ∑PAH7 exhibited higher TEQ values than those reported soils in Santiago, Chile47 and Nepal24, and road dust in Tianjin, China48. Overall, the most threat of ecological risk in petro-related soils caused by the anthropogenic PAHs input, such like oil leakage, oil refining, and fossil energy combustion. Preventing oil spills accident and developing the remediation methods are the main significant ways to reduce the ecological risks in these areas. The medium ecological risk in grassland might result from the migration of PAHs via rainfall pathway. Therefore, establishment the oil-blocking isolation zones is the critical way for medium ecological risk areas to control petroleum inflow. Even though the low ecological risk was identified in farmland soils, PAHs source analysis indicated that the biomass combustion should be controlled in these areas. More

  • in

    Assessment of deep convolutional neural network models for species identification of forensically-important fly maggots based on images of posterior spiracles

    Of which at the third instar, the external morphology of larvae is quite similar; thus, the morphological identification used to differentiate between its genera or species, generally includes cephalophalyngeal skeleton, anterior spiracle, and posterior spiracles. The morphology of the posterior spiracle is one of the important characteristics for identification. A typical morphology of the posterior spiracle of third stage larvae was shown in Fig. 2. Based on studying under light microscopy, the posterior spiracle of M. domestica was clearly distinguished from the others. On the other hand, the morphology of the posterior spiracle of C. megacephala and A. rufifacies was quite similar. For C. megacephala and C. rufifacies, the peritreme, a structure encircling the three spiracular openings (slits), was incomplete and slits were straight as shown Fig. 2A,B, respectively. The complete peritreme encircling three slits was found in L. cuprina and M. domestica as shown in Fig. 2C,D, respectively. However, only the slits of M. domestica were sinuous like the M-letter (Fig. 2D). Their morphological characteristics found in this study were like the descriptions in the previous reports23,24,25.Figure 2Morphology of posterior spiracles of four different fly species after inverting the image colors; (A) Chrysomya (Achoetandrus) ruffifacies, (B) Chrysomya megacephala, (C) Lucilia cuprina, (D) Musca domestica.Full size imageFor model training, four of the CNN models used for species-level identification of fly maggots provided 100% accuracy rates and 0% loss. Number of parameter (#Params), model speed, model size, macro precision, macro recall, f1-score, and support value were also presented in Table 1. The result demonstrated that the AlexNet model provided the best performance in all indicators when compared among four models. The AlexNet model used the least number of parameters while the Resnet101 model used the most. For model speed, the AlexNet model provided the fastest speed, while the Densenet161 model provided the slowest speed. For the model size, the AlexNet model was the smallest, while the Resnet101 model was the largest which corresponded to the number of parameters used. Macro precision, macro recall, f1-score and support value of all models were the same.Table 1 Comparison of model size, speed, and performances of each studied model (The text in bold indicates the best value in each category).Full size tableAs the training results presented in the supplementary data (Fig. S1), all models provided 100% accuracy and 0% loss in the early stage of training ( More

  • in

    European-wide forest monitoring substantiate the neccessity for a joint conservation strategy to rescue European ash species (Fraxinus spp.)

    Hill, L. et al. The£ 15 billion cost of ash dieback in Britain. Curr. Biol. 29(9), R315–R316 (2019).CAS 
    PubMed 

    Google Scholar 
    Pliûra, A. & Heuertz, M. EUFORGEN Technical Guidelines for Genetic Conservation and Use for Common Ash (Fraxinus excelsior) (Bioversity International, 2003).
    Google Scholar 
    Dufour, S. & Piégay, H. Geomorphological controls of Fraxinus excelsior growth and regeneration in floodplain forests. Ecology 89(1), 205–215 (2008).CAS 
    PubMed 

    Google Scholar 
    Mitchell, R. J. et al. Ash dieback in the UK: a review of the ecological and conservation implications and potential management options. Biol. Conserv. 175, 95–109 (2014).
    Google Scholar 
    Przybył, K. Fungi associated with necrotic apical parts of Fraxinus excelsior shoots. For. Pathol. 32(6), 387–394 (2002).
    Google Scholar 
    Vasaitis, R., & Enderle, R. Dieback of European ash (Fraxinus spp.)-consequences and guidelines for sustainable management. Dieback of European ash (Fraxinus spp.). Report on COST Action FP1103 FRAXBACK. ISBN978-91-576-8696-1. (SLU Swedish University of Agricultural Sciences, 2017).Børja, I. et al. Ash dieback in Norway-current situation. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 166–175 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Ghelardini, L. et al. From the Alps to the Apennines: Possible spread of ash dieback in Mediterranean areas. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 140–149 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Marçais, B., Husson, C., Godart, L. & Cael, O. Influence of site and stand factors on Hymenoscyphus fraxineus-induced basal lesions. Plant. Pathol. 65(9), 1452–1461 (2016).
    Google Scholar 
    Queloz, V., Hopf, S., Schoebel, C. N., Rigling, D. & Gross, A. Ash dieback in Switzerland: History and scientific achievements. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 68–78 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Orton, E. S. et al. Population structure of the ash dieback pathogen, Hymenoscyphus fraxineus, in relation to its mode of arrival in the UK. Plant. Pathol. 67(2), 255–264 (2018).CAS 
    PubMed 

    Google Scholar 
    Enderle, R., Stenlid, J. & Vasaitis, R. An overview of ash (Fraxinus spp.) and the ash dieback disease in Europe. CAB Rev. 14, 1–12 (2019).
    Google Scholar 
    Heinze, B., Tiefenbacher, H., Litschauer, R. & Kirisits, T. Ash dieback in Austria: History, current situation and outlook. in Dieback of European Ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management, 33–52 (2017).Coker, T. L. et al. Estimating mortality rates of European ash (Fraxinus excelsior) under the ash dieback (Hymenoscyphus fraxineus) epidemic. Plants People Planet 1(1), 48–58 (2019).
    Google Scholar 
    Cleary, M., Nguyen, D., Stener, L. G., Stenlid, J., & Skovsgaard, J. P. Ash and ash dieback in Sweden: A review of disease history, current status, pathogen and host dynamics, host tolerance and management options in forests and landscapes. Dieback of European Ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management, 195–208 (2017).Stocks, J. J., Buggs, R. J. & Lee, S. J. A first assessment of Fraxinus excelsior (common ash) susceptibility to Hymenoscyphus fraxineus (ash dieback) throughout the British Isles. Sci. Rep. 7(1), 1–7 (2017).
    Google Scholar 
    Díaz-Yáñez, O. et al. The invasive forest pathogen Hymenoscyphus fraxineus boosts mortality and triggers niche replacement of European ash (Fraxinus excelsior). Sci. Rep. 10(1), 1–10 (2020).
    Google Scholar 
    Enderle, R., Metzler, B., Riemer, U. & Kändler, G. Ash dieback on sample points of the national forest inventory in south-western Germany. Forests 9(1), 25 (2018).
    Google Scholar 
    Klesse, S. et al. Spread and severity of ash dieback in Switzerland: Tree characteristics and landscape features explain varying mortality probability. Front. For. Glob. Change 4, 18 (2021).
    Google Scholar 
    Timmermann, V., Potočić, N., Ognjenović, M. & Kirchner, T. Tree crown condition in 2020. In Forest Condition in Europe: The 2021 Assessment ICP Forests Technical Report under the UNECE Convention on Long-range Transboundary Air Pollution (Air Convention) (eds Michel, A. et al.) (Thünen Institute, 2021).
    Google Scholar 
    Chumanová, E. et al. Predicting ash dieback severity and environmental suitability for the disease in forest stands. Scand. J. For. Res. 34(4), 254–266 (2019).
    Google Scholar 
    Solheim, H. & Hietala, A. M. Spread of ash dieback in Norway. Balt. For. 23(1), 1–6 (2017).
    Google Scholar 
    Kjær, E. D. et al. Genetics of ash dieback resistance in a restoration context: Experiences from Denmark. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 106–114 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Madsen, C. L. et al. Combined progress in symptoms caused by Hymenoscyphus fraxineus and Armillaria species, and corresponding mortality in young and old ash trees. For. Ecol. Manage. 491, 119177 (2021).
    Google Scholar 
    Trapiello, E., Schoebel, C. N. & Rigling, D. Fungal community in symptomatic ash leaves in Spain. Balt. For. 23(1), 68–73 (2017).
    Google Scholar 
    Grosdidier, M., Ioos, R. & Marçais, B. Do higher summer temperatures restrict the dissemination of Hymenoscyphus fraxineus in France?. For. Pathol. 48(4), e12426. https://doi.org/10.1111/efp.12426 (2018).Article 

    Google Scholar 
    Stroheker, S., Queloz, V. & Nemesio-Gorriz, M. First report of Hymenoscyphus fraxineus causing ash dieback in Spain. New Dis. Rep. 44(2), e12054 (2021).
    Google Scholar 
    Chandelier, A., Gerarts, F., San Martin, G., Herman, M. & Delahaye, L. Temporal evolution of collar lesions associated with ash dieback and the occurrence of Armillaria in Belgian forests. For. Pathol. 46(4), 289–297. https://doi.org/10.1111/efp.12258 (2016).Article 

    Google Scholar 
    Gross, A., Holdenrieder, O., Pautasso, M., Queloz, V. & Sieber, T. N. H ymenoscyphus pseudoalbidus, the causal agent of E uropean ash dieback. Mol. Plant Pathol. 15(1), 5–21 (2014).CAS 
    PubMed 

    Google Scholar 
    Clark, J. & Webber, J. The ash resource and the response to ash dieback in Great Britain. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 228–237 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Dandy, N., Marzano, M., Porth, E. F., Urquhart, J. & Potter, C. Who has a stake in ash dieback? A conceptual framework for the identification and categorisation of tree health stakeholders. In Dieback of European ash (Fraxinus spp.): Consequences and Guidelines for Sustainable Management (eds Vasaitis, R. & Enderle, R.) 15–26 (Swedish University of Agricultural Sciences, 2017).
    Google Scholar 
    Kjær, E. D., McKinney, L. V., Nielsen, L. R., Hansen, L. N. & Hansen, J. K. Adaptive potential of ash (Fraxinus excelsior) populations against the novel emerging pathogen Hymenoscyphus pseudoalbidus. Evol. Appl. 5(3), 219–228 (2012).PubMed 

    Google Scholar 
    Plumb, W. J. et al. The viability of a breeding programme for ash in the British Isles in the face of ash dieback. Plants People Planet 2(1), 29–40 (2020).
    Google Scholar 
    Evans, M. R. Will natural resistance result in populations of ash trees remaining in British woodlands after a century of ash dieback disease?. R. Soc. Open Sci. 6(8), 190908 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Buggs, R. J. A. Changing perceptions of tree resistance research. Plants People Planet 2, 2–4. https://doi.org/10.1002/ppp3.10089 (2020).Article 

    Google Scholar 
    Tomlinson, I. & Potter, C. ‘Too little, too late’? Science, policy and Dutch Elm Disease in the UK. J. Hist. Geogr. 36(2), 121–131 (2010).
    Google Scholar 
    Kelly, L. J. et al. Convergent molecular evolution among ash species resistant to the emerald ash borer. Nat. Ecol. Evol. 4, 1116–1128. https://doi.org/10.1038/s41559-020-1209-3 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sollars, E. S. et al. Genome sequence and genetic diversity of European ash trees. Nature 541(7636), 212–216 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stocks, J. J. et al. Genomic basis of European ash tree resistance to ash dieback fungus. Nat. Ecol. Evol. 3(12), 1686–1696 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Volkovitsh, M. G., Bieńkowski, A. O. & Orlova-Bienkowskaja, M. J. Emerald ash borer approaches the borders of the european union and kazakhstan and is confirmed to infest European ash. Forests 12(6), 691 (2021).
    Google Scholar 
    Eichhorn, J. et al. Part IV: Visual Assessment of Crown Condition and Damaging Agents. in Manual on Methods and Criteria for Harmonized Sampling, Assessment, Monitoring and Analysis of the Effects of Air Pollution on Forests. (Thünen Institute of Forest Ecosystems, 2016). Annex http://www.icp-forests.org/manual.htm.Koontz, M. J., Latimer, A. M., Mortenson, L. A., Fettig, C. J. & North, M. P. Cross-scale interaction of host tree size and climatic water deficit governs bark beetle-induced tree mortality. Nat. Commun. 12(1), 1–13 (2021).
    Google Scholar 
    Taccoen, A. et al. Climate change impact on tree mortality differs with tree social status. For. Ecol. Manage. 489, 119048 (2021).
    Google Scholar 
    Therneau, T. A Package for Survival Analysis in R. https://cran.r-project.org/web/packages/survival/vignettes/survival.pdf. Accessed 26 May 2021Godaert, L. et al. Prognostic factors of inhospital death in elderly patients: A time-to-event analysis of a cohort study in Martinique (French West Indies). BMJ Open 8(1), e018838 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Sargeran, K., Murtomaa, H., Safavi, S. M. R., Vehkalahti, M. M. & Teronen, O. Survival after diagnosis of cancer of the oral cavity. Br. J. Oral Maxillofac. Surg. 46(3), 187–191 (2008).PubMed 

    Google Scholar 
    Cox, D. R. Regression models and life-tables. J. R. Stat. Soc. B 34(2), 187–202 (1972).MathSciNet 
    MATH 

    Google Scholar 
    Aalen, O. O. A linear regression model for the analysis of life times. Stat. Med. 8(8), 907–925 (1989).CAS 
    PubMed 

    Google Scholar 
    Therneau, T. M., & Grambsch, P. M. The cox model. In Modeling survival data: extending the Cox model, pp. 39–77. (Springer, 2000).Neumann, M., Mues, V., Moreno, A., Hasenauer, H. & Seidl, R. Climate variability drives recent tree mortality in Europe. Glob. Change Biol. 23(11), 4788–4797 (2017).ADS 

    Google Scholar 
    Senf, C., Buras, A., Zang, C. S., Rammig, A. & Seidl, R. Excess forest mortality is consistently linked to drought across Europe. Nat. Commun. 11(1), 1–8 (2020).
    Google Scholar 
    Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950–2006. J. Geophys. Res. Atmos. 113, D20 (2008).
    Google Scholar 
    R Development Core Team. RStudio, R: A Language and Environment for Statistical Computing (R Development Core Team, 2017).Holt, C. C. Forecasting Trends and Season-Als by Exponentially Weighted Averages. (Carnegie Institute of Technology, Pittsburgh ONR memorandum no. 52, 1957)Hyndman, R. J. & Khandakar, Y. Automatic time series forecasting: the forecast package for R. J. Stat. Softw. 27(3), 1–22 (2008).
    Google Scholar  More

  • in

    Newly initiated carbon stock, organic soil accumulation patterns and main driving factors in the High Arctic Svalbard, Norway

    Walker, D. A. et al. The circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).Article 

    Google Scholar 
    Raynolds, M. K. et al. A raster version of the Circumpolar Arctic Vegetation Map (CAVM). Remote Sens. Environ. 232, 111297 (2019).ADS 
    Article 

    Google Scholar 
    Danell, K. What Is the Arctic? In Which Ways Is the Arctic Different? In Arctic Ecology (ed. Thomas, D. N.) 1–22 (University of Helsinki, 2021).
    Google Scholar 
    Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Global Biogeochem. Cycles 23(2), 1–11. https://doi.org/10.1029/2008GB003327 (2009).CAS 
    Article 

    Google Scholar 
    Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl. Acad. Sci. U.S.A. 117(34), 20438–20446. https://doi.org/10.1073/pnas.1916387117 (2020).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loisel, J. et al. A database and synthesis of northern peatland soil properties and Holocene carbon and nitrogen accumulation. Holocene 24(9), 1028–1042. https://doi.org/10.1177/0959683614538073 (2014).ADS 
    Article 

    Google Scholar 
    Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Chang. 8(10), 907–913. https://doi.org/10.1038/s41558-018-0271-1 (2018).ADS 
    CAS 
    Article 

    Google Scholar 
    Yu, Z., Beilman, D. W. & Jones, M. C. Sensitivity of Northern Peatland carbon dynamics to holocene climate change. Carbon Cycl. Northern Peatl. C https://doi.org/10.1029/2008GM000822 (2009).Article 

    Google Scholar 
    Svendsen, J. & Mangerud, J. Paleoclimatic inferences from glacial fluctuations on Svalbard during the last 20 000 years. Clim. Dyn. 6(3–4), 213–220. https://doi.org/10.1007/BF00193533 (1992).Article 

    Google Scholar 
    Farnsworth, W. R. et al. Holocene glacial history of Svalbard: Status, perspectives and challenges. Earth Sci. Rev. 208(April), 103249. https://doi.org/10.1016/j.earscirev.2020.103249 (2020).CAS 
    Article 

    Google Scholar 
    D’Andrea, W. J. et al. Mild Little Ice Age and unprecedented recent warmth in an 1800 year lake sediment record from Svalbard. Geology 40(11), 1007–1010. https://doi.org/10.1130/G33365.1 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Miller, G. H., Landvik, J. Y., Lehman, S. J. & Southon, J. R. Episodic Neoglacial snowline descent and glacier expansion on Svalbard reconstructed from the 14C ages of ice-entombed plants. Quatern. Sci. Rev. 155, 67–78. https://doi.org/10.1016/j.quascirev.2016.10.023 (2017).ADS 
    Article 

    Google Scholar 
    Røthe, T. O. et al. Arctic Holocene glacier fluctuations reconstructed from lake sediments at Mitrahalvøya, Spitsbergen. Quatern. Sci. Rev. 109, 111–125. https://doi.org/10.1016/j.quascirev.2014.11.017 (2015).Article 

    Google Scholar 
    van der Bilt, W. G. M. et al. Reconstruction of glacier variability from lake sediments reveals dynamic Holocene climate in Svalbard. Quatern. Sci. Rev. 126, 201–218. https://doi.org/10.1016/j.quascirev.2015.09.003 (2015).ADS 
    Article 

    Google Scholar 
    Allaart, L. et al. Glacial history of the Åsgardfonna Ice Cap, NE Spitsbergen, since the last glaciation. Quatern. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106717 (2021).Article 

    Google Scholar 
    Humlum, O. et al. Late-Holocene glacier growth in Svalbard, documented by subglacial relict vegetation and living soil microbes. Holocene 15(3), 396–407. https://doi.org/10.1191/0959683605hl817rp (2005).ADS 
    Article 

    Google Scholar 
    Yang, Z., Yang, W., Yuan, L., Wang, Y. & Sun, L. Evidence for glacial deposits during the Little Ice Age in Ny-Alesund, western Spitsbergen. J. Earth Syst. Sci. https://doi.org/10.1007/s12040-019-1274-7 (2020).Article 

    Google Scholar 
    AMAP – ARCTIC MONITORING AND ASSESSMENT PROGRAMME. (2019). Arctic Climate Change Update 2019: An update to key findings of Snow, Water, Ice, and Permafrost in the Arctic (SWIPA) 2017. Assessment Report, 12. https://www.amap.no/documents/doc/amap-climate-change-update-2019/1761.Nordli, Ø. et al. Polar Res. 39, 3614. https://doi.org/10.33265/polar.v39.3614 (2020).Article 

    Google Scholar 
    Førland, E. J., Benestad, R., Hanssen-Bauer, I., Haugen, J. E. & Skaugen, T. E. Temperature and precipitation development at svalbard 1900–2100. Adv. Meteorol. 2011, 1–14. https://doi.org/10.1155/2011/893790 (2011).Article 

    Google Scholar 
    Van Der Knaap, W. O. (1988). A pollen diagram from Broggerhalvoya, Spitsbergen: changes in vegetation and environment from ca. 4400 to ca. 800 BP. Arctic & Alpine Research, 20(1), 106–116. Doi: https://doi.org/10.2307/1551703Rozema, J. et al. A vegetation, climate and environment reconstruction based on palynological analyses of high arctic tundra peat cores (5000–6000 years BP) from Svalbard. Plant Ecol. 182(1–2), 155–173. https://doi.org/10.1007/s11258-005-9024-0 (2006).Article 

    Google Scholar 
    Nakatsubo, T. et al. Carbon accumulation rate of peatland in the High Arctic, Svalbard: Implications for carbon sequestration. Polar Sci. 9(2), 267–275. https://doi.org/10.1016/j.polar.2014.12.002 (2015).ADS 
    Article 

    Google Scholar 
    Magnússon, B., Magnússon, S. & Fridriksson, S. (2009). Developments in plant colonization and succession on Surtsey during 1999–2008. Surtsey Res. pp. 57–76.Zwolicki, A., Zmudczyńska-Skarbek, K. M., Iliszko, L. & Stempniewicz, L. Guano deposition and nutrient enrichment in the vicinity of planktivorous and piscivorous seabird colonies in Spitsbergen. Polar Biol. 36(3), 363–372. https://doi.org/10.1007/s00300-012-1265-5 (2013).Article 

    Google Scholar 
    Leblans, N. I. W. et al. Effects of seabird nitrogen input on biomass and carbon accumulation after 50 years of primary succession on a young volcanic island Surtsey. Biogeosciences 11(22), 6237–6250. https://doi.org/10.5194/bg-11-6237-2014 (2014).ADS 
    Article 

    Google Scholar 
    Zmudczyńska-Skarbek, K. et al. Transfer of ornithogenic influence through different trophic levels of the Arctic terrestrial ecosystem of Bjørnøya (Bear Island), Svalbard. Soil Biol. Biochem. 115, 475–489. https://doi.org/10.1016/j.soilbio.2017.09.008 (2017).CAS 
    Article 

    Google Scholar 
    Hodkinson, I. D., Coulson, S. J. & Webb, N. R. Community assembly along proglacial chronosequences in the high arctic: vegetation and soil development in north-west Svalbard. J. Ecol. 91(4), 651–663. https://doi.org/10.1046/j.1365-2745.2003.00786.x (2003).Article 

    Google Scholar 
    Ravolainen, V. et al. High Arctic ecosystem states: Conceptual models of vegetation change to guide long-term monitoring and research. Ambio 49(3), 666–677. https://doi.org/10.1007/s13280-019-01310-x (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    van der Wal, R. & Brooker, R. W. Mosses mediate grazer impacts on grass abundance in arctic ecosystems. Funct. Ecol. 18(1), 77–86. https://doi.org/10.1111/j.1365-2435.2004.00820.x (2004).Article 

    Google Scholar 
    Vanderpuye, A. W., Elvebakk, A. & Nilsen, L. Plant communities along environmental gradients of high-arctic mires in Sassendalen Svalbard. J. Veg. Sci. 13(6), 875–884. https://doi.org/10.1111/j.1654-1103.2002.tb02117.x (2002).Article 

    Google Scholar 
    Le Moullec, M., Pedersen, Å. Ø., Stien, A., Rosvold, J. & Hansen, B. B. A century of conservation: the ongoing recovery of svalbard reindeer. J. Wildl. Manag. 83(8), 1676–1686. https://doi.org/10.1002/jwmg.21761 (2019).Article 

    Google Scholar 
    Garfelt-Paulsen, I. M. et al. Don’t go chasing the ghosts of the past: habitat selection and site fidelity during calving in an Arctic ungulate. Wildl. Biol. https://doi.org/10.2981/wlb.00740 (2021).Article 

    Google Scholar 
    Moreau, M., Mercier, D., Laffly, D. & Roussel, E. Impacts of recent paraglacial dynamics on plant colonization: a case study on Midtre Lovénbreen foreland, Spitsbergen (79°N). Geomorphology 95(1–2), 48–60. https://doi.org/10.1016/j.geomorph.2006.07.031 (2008).ADS 
    Article 

    Google Scholar 
    Moreau, M., Laffly, D. & Brossard, T. Recent spatial development of Svalbard strandflat vegetation over a period of 31 years. Polar Res. 28(3), 364–375. https://doi.org/10.1111/j.1751-8369.2009.00119.x (2009).Article 

    Google Scholar 
    Wietrzyk, P., Wȩgrzyn, M. & Lisowska, M. Vegetation diversity and selected abiotic factors influencing the primary succession process on the foreland of Gåsbreen Svalbard. Pol. Polar Res. 37(4), 493–509. https://doi.org/10.1515/popore-2016-0026 (2016).Article 

    Google Scholar 
    Divine, D. et al. Thousand years of winter surface air temperature variations in Svalbard and northern norway reconstructed from ice-core data. Polar Res. 30(SUPPL.1), 1–12. https://doi.org/10.3402/polar.v30i0.7379 (2011).ADS 
    Article 

    Google Scholar 
    Van Pelt, W. et al. A long-term dataset of climatic mass balance, snow conditions, and runoff in Svalbard (1957–2018). Cryosphere 13(9), 2259–2280. https://doi.org/10.5194/tc-13-2259-2019 (2019).ADS 
    Article 

    Google Scholar 
    Johansen, B. E., Karlsen, S. R. & Tømmervik, H. Vegetation mapping of Svalbard utilising Landsat TM/ETM+ data. Polar Rec. 48(1), 47–63. https://doi.org/10.1017/S0032247411000647 (2012).Article 

    Google Scholar 
    Norwegian Polar Institute. Available online at: https://npolar.no (2021).Norwegian Meteorological Institute. Available online at: https://seklima.met.no (2019).Kelly, T. J. et al. The vegetation history of an Amazonian domed peatland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468(November), 129–141. https://doi.org/10.1016/j.palaeo.2016.11.039 (2017).Article 

    Google Scholar 
    Estop-Aragonés, C. et al. Limited release of previously-frozen C and increased new peat formation after thaw in permafrost peatlands. Soil Biol. Biochem. 118, 115–129. https://doi.org/10.1016/j.soilbio.2017.12.010 (2018).CAS 
    Article 

    Google Scholar 
    Blaauw, M., Christen, J. A. & Aquino-Lopez, M. A. rplum: Bayesian Age-Depth Modelling of Cores Dated by Pb-210. R package version 0.2.2. https://CRAN.R-project.org/package=rplum (2021).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2020).Heiri, O., Lotter, A. F. & Lemcke, G. Loss on ignition as a method for estimating organic and carbonate content in sediments: Reproducibility and comparability of results. J. Paleolimnol. 25(1), 101–110. https://doi.org/10.1023/A:1008119611481 (2001).ADS 
    Article 

    Google Scholar 
    Booth, R. K., Lamentowicz, M. & Charman, D. J. Preparation and analysis of testate amoebae in peatland palaeoenvironmental studies. Mires and Peat 7(2), 1–7 (2010).
    Google Scholar 
    Charman, D., Hendon, D. & Woodland, W. A. The Identification of Testate Amoebae (Protozoa: Rhizopoda) in Peats (Quaternary Research Association, 2000).
    Google Scholar 
    Siemensma, F. J. Microworld, world of Amoeboid Organisms. World-Wide Electronic Publication, Kortenhoef, the Netherlands. Available online at: https://www.arcella.nl (2019).Payne, R. J. & Mitchell, E. A. D. How many is enough? Determining optimal count totals for ecological and palaeoecological studies of testate amoebae. J. Paleolimnol. 42(4), 483–495. https://doi.org/10.1007/s10933-008-9299-y (2009).ADS 
    Article 

    Google Scholar 
    Swindles, G. T. et al. Testing peatland water-table depth transfer functions using high-resolution hydrological monitoring data. Q. Sci. Rev. 120, 107–117. https://doi.org/10.1016/j.quascirev.2015.04.019 (2015).ADS 
    Article 

    Google Scholar 
    Amesbury, M. J. et al. Development of a new pan-European testate amoeba transfer function for reconstructing peatland palaeohydrology. Quatern. Sci. Rev. 152, 132–151. https://doi.org/10.1016/j.quascirev.2016.09.024 (2016).ADS 
    Article 

    Google Scholar 
    Amesbury, M. J. et al. Towards a Holarctic synthesis of peatland testate amoeba ecology: Development of a new continental-scale palaeohydrological transfer function for North America and comparison to European data. Quatern. Sci. Rev. 201, 483–500. https://doi.org/10.1016/j.quascirev.2018.10.034 (2018).ADS 
    Article 

    Google Scholar 
    Zhang, H. et al. Testate amoeba as palaeohydrological indicators in the permafrost peatlands of north-east European Russia and Finnish Lapland. J. Quat. Sci. 32(7), 976–988. https://doi.org/10.1002/jqs.2970 (2017).Article 

    Google Scholar 
    Sim, T. G. et al. Pathways for Ecological Change in Canadian High Arctic Wetlands Under Rapid Twentieth Century Warming. Geophys. Res. Lett. 46(9), 4726–4737. https://doi.org/10.1029/2019GL082611 (2019).ADS 
    Article 

    Google Scholar 
    Elmendorf, S. C. et al. Global assessment of experimental climate warming on tundra vegetation: Heterogeneity over space and time. Ecol. Lett. 15(2), 164–175. https://doi.org/10.1111/j.1461-0248.2011.01716.x (2012).Article 
    PubMed 

    Google Scholar 
    Lupascu, M. et al. High Arctic wetting reduces permafrost carbon feedbacks to climate warming. Nat. Clim. Chang. 4(1), 51–55. https://doi.org/10.1038/nclimate2058 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Bjorkman, A. D. et al. Status and trends in Arctic vegetation: Evidence from experimental warming and long-term monitoring. Ambio 49(3), 678–692. https://doi.org/10.1007/s13280-019-01161-6 (2020).MathSciNet 
    Article 
    PubMed 

    Google Scholar 
    Egli, M., Mavris, C., Mirabella, A. & Giaccai, D. Soil organic matter formation along a chronosequence in the Morteratsch proglacial area (Upper Engadine, Switzerland). CATENA 82(2), 61–69. https://doi.org/10.1016/j.catena.2010.05.001 (2010).CAS 
    Article 

    Google Scholar 
    Prach, K. & Rachlewicz, G. Succession of vascular plants in front of retreating glaciers in central Spitsbergen. Polish Polar Research 33(4), 319–328. https://doi.org/10.2478/v10183-012-0022-3 (2012).Article 

    Google Scholar 
    Låg, J. Special Peat Formations in Svalbard. Acta Agric. Scand. 30(2), 205–210. https://doi.org/10.1080/00015128009435267 (1980).Article 

    Google Scholar 
    Serebryannyy, L. P., Tishkov, A. A., Malyasova, Y. S., Solomina, O. N. & Il’ves, E. O.,. Reconstruction of the development of vegetation in Arctic high latitudes. Polar Geogr. Geol. 9(4), 308–320. https://doi.org/10.1080/10889378509377261 (1985).Article 

    Google Scholar 
    Surova, T. G., Troitskiy, L. S., Skobeyeva, Y. I. & Punning, Y. M. K. Glacioclimatic conditions in the european arctic in the late holocene. Polar Geogr. Geol. 11(1), 50–57. https://doi.org/10.1080/10889378709377310 (1987).Article 

    Google Scholar 
    Surova, T. G., Troitskiy, L. S., Skobeyeva, Y. I. & Troitskiy, Y. M. K. Changes in glacioclimatic conditions on svalbard during the subboreal period. Polar Geogr. Geol. 12(3), 221–226. https://doi.org/10.1080/10889378809377366 (1988).Article 

    Google Scholar 
    Låg, J. Peat Accumulation in Steep Hills at Alkhornet Spitsbergen. Acta Agric. Scand. 40(3), 217–219. https://doi.org/10.1080/00015129009438554 (1990).Article 

    Google Scholar 
    Oliva, M. et al. Sedimentological characteristics of ice-wedge polygon terrain in adventdalen (Svalbard) environmental and climatic implications for the late Holocene. Solid Earth 5(2), 901–914. https://doi.org/10.5194/se-5-901-2014 (2014).ADS 
    Article 

    Google Scholar 
    Van der Knaap, W. O. Past Vegetation and Reindeer on Edgeoya (Spitsbergen) Between c. 7900 and c. 3800 BP, Studied by Means of Peat Layers and Reindeer Faecal Pellets. J. Biogeogr. 16(4), 379. https://doi.org/10.2307/2845229 (1989).Article 

    Google Scholar 
    Røthe, T. O., Bakke, J., Støren, E. W. N. & Bradley, R. S. Reconstructing holocene glacier and climate fluctuations from lake sediments in Vårfluesjøen Northern Spitsbergen. Front. Earth Sci. 6(July), 1–20. https://doi.org/10.3389/feart.2018.00091 (2018).Article 

    Google Scholar 
    Alsos, I. G. et al. Sedimentary ancient DNA from Lake Skartjørna, Svalbard: assessing the resilience of arctic flora to Holocene climate change. Holocene 26(4), 627–642. https://doi.org/10.1177/0959683615612563 (2016).ADS 
    Article 

    Google Scholar 
    Klimowicz, Z., Melke, J. & Uziak, S. Peat soils in the Bellsund region Spitsbergen. Pol. Polar Res. 18(1), 25–39 (1997).
    Google Scholar 
    Yang, Z. et al. Total photosynthetic biomass record between 9400 and 2200 BP and its link to temperature changes at a High Arctic site near Ny-Ålesund Svalbard. Polar Biol. 42(5), 991–1003. https://doi.org/10.1007/s00300-019-02493-5 (2019).Article 

    Google Scholar 
    Vickers, H. et al. Changes in greening in the high arctic: insights from a 30-year AVHRR max NDVI dataset for Svalbard. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/11/10/105004 (2016).Article 

    Google Scholar 
    Van Der Knaap, W. O. Human influence on natural Arctic vegetation in the 17th century and climatic change since AD 1600 in northwest Spitsbergen: a paleobotanical study. Arct. Alp. Res. 17(4), 371–387. https://doi.org/10.2307/1550863 (1985).Article 

    Google Scholar 
    Martín-Moreno, R., Allende Álvarez, F. & Hagen, J. O. ‘Little Ice Age’ glacier extent and subsequent retreat in Svalbard archipelago. Holocene 27(9), 1379–1390. https://doi.org/10.1177/0959683617693904 (2017).ADS 
    Article 

    Google Scholar 
    Rachlewicz, G., Szczuziński, W. & Ewertowski, M. Post-“Little Ice Age” retreat rates of glaciers around Billefjorden in central Spitsbergen Svalbard. Pol. Polar Res. 28(3), 159–186 (2007).
    Google Scholar 
    Matthews, J. A. & Whittaker, R. J. Vegetation succession on the storbreen glacier foreland, Jotunheimen, Norway : a review. Arct. Alp. Res. 19(4), 385–395 (1987).Article 

    Google Scholar 
    Beyens, L. & Chardez, D. Evidence from testate amoebae for changes in some local hydrological conditions between c. 5000 BP and c. 3800 BP on Edgeøya (Svalbard). Polar Res. 5(2), 165–169. https://doi.org/10.1111/j.1751-8369.1987.tb00619.x (1987).Article 

    Google Scholar 
    Lawrence, D. M., Koven, C. D., Swenson, S. C., Riley, W. J. & Slater, A. G. Permafrost thaw and resulting soil moisture changes regulate projected high-latitude CO2 and CH4 emissions. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/10/9/094011 (2015).Article 

    Google Scholar 
    Isaksen, K., Benestad, R. E., Harris, C. & Sollid, J. L. Recent extreme near-surface permafrost temperatures on Svalbard in relation to future climate scenarios. Geophys. Res. Lett. 34(17), 1–5. https://doi.org/10.1029/2007GL031002 (2007).Article 

    Google Scholar 
    Cable, S., Elberling, B. & Kroon, A. Holocene permafrost history and cryostratigraphy in the High-Arctic Adventdalen Valley, central Svalbard. Boreas 47(2), 423–442. https://doi.org/10.1111/bor.12286 (2018).Article 

    Google Scholar 
    König, M., Kohler, J. & Nuth, C. Glacier Area Outlines–Svalbard, v1.0, http://data.npolar.no/dataset/89f430f8-862f-11e2-8036-005056ad0004 Delivered by CryoClim service (2013).Box, J. E. et al. Key indicators of Arctic climate change: 1917–2017. Environ. Res. Lett. 14(4), 045010. https://doi.org/10.1088/1748-9326/aafc1b (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Zhang, H. et al. Decreased carbon accumulation feedback driven by climate-induced drying of two southern boreal bogs over recent centuries. Glob. Change Biol. 26(4), 2435–2448. https://doi.org/10.1111/gcb.15005 (2020).ADS 
    Article 

    Google Scholar 
    Szymański, W., Wojtuń, B., Stolarczyk, M., Siwek, J. & Waścińska, J. Organic carbon and nutrients (N, P) in surface soil horizons in a non-glaciated catchment SW Spitsbergen. Pol. Polar Res. 37(1), 49–66. https://doi.org/10.1515/popore-2016-0006 (2016).Article 

    Google Scholar 
    Hugelius, G. et al. Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11(23), 6573–6593. https://doi.org/10.5194/bg-11-6573-2014 (2014).ADS 
    Article 

    Google Scholar 
    Palmtag, J. et al. Storage, landscape distribution, and burial history of soil organic matter in contrasting areas of continuous permafrost. Arct. Antarct. Alp. Res. 47(1), 71–88. https://doi.org/10.1657/AAAR0014-027 (2015).Article 

    Google Scholar 
    Siewert, M. B. et al. Comparing carbon storage of Siberian tundra and taiga permafrost ecosystems at very high spatial resolution. J. Geophys. Res. Biogeosci. 120, 1973–1994 (2015).CAS 
    Article 

    Google Scholar 
    Wojcik, R., Palmtag, J., Hugelius, G., Weiss, N. & Kuhry, P. Land cover and landform-based upscaling of soil organic carbon stocks on the Brøgger Peninsula, Svalbard. Arct. Antarct. Alp. Res. 51(1), 40–57. https://doi.org/10.1080/15230430.2019.1570784 (2019).Article 

    Google Scholar 
    Yoshitake, S. et al. Vegetation development and carbon storage on a glacier foreland in the High Arctic, Ny-Ålesund Svalbard. Polar Sci. 5(3), 391–397. https://doi.org/10.1016/j.polar.2011.03.002 (2011).ADS 
    Article 

    Google Scholar 
    Mack, M. C. et al. Carbon loss from an unprecedented Arctic tundra wildfire. Nature 475(7357), 489–492. https://doi.org/10.1038/nature10283 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Cooper, E. J., Dullinger, S. & Semenchuk, P. Late snowmelt delays plant development and results in lower reproductive success in the High Arctic. Plant Sci. 180(1), 157–167. https://doi.org/10.1016/j.plantsci.2010.09.005 (2011).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    A global microbiome survey of vineyard soils highlights the microbial dimension of viticultural terroirs

    Bokulich, N. A. et al. Associations among wine grape microbiome, metabolome, and fermentation behavior suggest microbial contribution to regional wine characteristics. MBio, https://doi.org/10.1128/mBio.00631-16 (2016).Zohary, D. The Domestication of the Grapevine Vitis Vinifera L. in the Near East (Chapter 2) in The Origins and Ancient History of Wine (eds McGovern, P. E., Katz, S. H. & Fleming, S. J.) 21–28. (Routledge, 2003).Whalen, P. ‘Insofar as the ruby wine seduces them’: cultural strategies for selling wine in inter-war Burgundy. Contemp. Eur. Hist. 18, 67–98 (2009).
    Google Scholar 
    Østerlie, M. & Wicklund, T. In Nutritional and Health Aspects of Food in Nordic Countries (eds Bar, E., Wirtanen, G. & Veslemøy Andersen, V.) Ch. 2 (Elsevier Inc., 2018).Planète Terroirs. The future needs terroirs. https://planeteterroirs.org/ (2010).California Wine-Growing Regions, https://discovercaliforniawines.com/wine-map-winery-directory/Agricultura, M. D. E. & Ambiente. Compendio informativo en relación con las DOPs/IGPs y terminos tradicionales de vino, las indicaciones geograficas de bebidas espirituosas, y las indicaciones geograficas de productos vitivinicolas aromatizados. https://www.mapa.gob.es/es/alimentacion/temas/calidad-diferenciada/relaciondisposicionesdopseigpsdevinosbbeevinosaromatiz_tcm30-432336.pdf (2016).Ballantyne, D., Terblanche, N. S., Lecat, B. & Chapuis, C. Old world and new world wine concepts of terroir and wine: perspectives of three renowned non-French wine makers. J. Wine Res. 30, 122–143 (2019).
    Google Scholar 
    OIV. Resolution OIV/VITI 333/2010, definition of vitivinicultural “terroir”. https://www.oiv.int/public/medias/379/viti-2010-1-en.pdf (2010).Belda, I., Zarraonaindia, I., Perisin, M., Palacios, A. & Acedo, A. From vineyard soil to wine fermentation: microbiome approximations to explain the ‘terroir’ Concept. Front. Microbiol. 8, 1–12 (2017).
    Google Scholar 
    Zarraonaindia, I. et al. The soil microbiome influences grapevine-associated microbiota. MBio 6, 1–10 (2015).CAS 

    Google Scholar 
    Burns, K. N. et al. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by vineyard management. Soil Biol. Biochem. 103, 337–348 (2016).CAS 

    Google Scholar 
    Bokulich, N. A., Joseph, C. M. L., Allen, G., Benson, A. K. & Mills, D. A. Next-generation sequencing reveals significant bacterial diversity of botrytized wine. PLoS ONE 7, 3–12 (2012).
    Google Scholar 
    Portillo, M., del, C., Franquès, J., Araque, I., Reguant, C. & Bordons, A. Bacterial diversity of Grenache and Carignan grape surface from different vineyards at Priorat wine region (Catalonia, Spain). Int. J. Food Microbiol. 219, 56–63 (2016).
    Google Scholar 
    Mezzasalma, V. et al. Grape microbiome as a reliable and persistent signature of field origin and environmental conditions in Cannonau wine production. PLoS ONE 12, 1–20 (2017).
    Google Scholar 
    Hermans, S. M. et al. Using soil bacterial communities to predict physico-chemical variables and soil quality. Microbiome 8, 1–13 (2020).
    Google Scholar 
    OIV. Functional biodiversity in the vineyard. https://www.oiv.int/public/medias/6367/functional-biodiversity-in-the-vineyard-oiv-expertise-docume.pdf (2018).Ortiz-Álvarez, R. et al. Network properties of local fungal communities reveal the anthropogenic disturbance consequences of farming practices in vineyard soils. mSystems 6, e00344-21 (2021).Knight, S., Klaere, S., Fedrizzi, B. & Goddard, M. R. Regional microbial signatures positively correlate with differential wine phenotypes: evidence for a microbial aspect to terroir. Sci. Rep. 5, 1–10 (2015).
    Google Scholar 
    Belda, I. et al. Unraveling the enzymatic basis of wine ‘flavorome’: a phylo-functional study of wine related yeast species. Front. Microbiol. 7, 1–13 (2016).
    Google Scholar 
    Gilbert, J. A., van der Lelie, D. & Zarraonaindia, I. Microbial terroir for wine grapes. Proc. Natl Acad. Sci. USA 111, 5–6 (2014).CAS 
    PubMed 

    Google Scholar 
    Belda, I. et al. Microbiomics to Define Wine Terroir (Chapter: 3.32) in Comprehensive Foodomics (Ed. Cifuentes, A.) 438–451 (Elsevier, 2021).Van der Heijden, M. G. A. & Hartmann, M. Networking in the plant microbiome. PLoS Biol. 14, e1002378 (2016).Altieri, M. A. In Invertebrate Biodiversity as Bioindicators of Sustainable Landscapes (1999).Brussaard, L., de Ruiter, P. C. & Brown, G. G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 121, 233–244 (2007).Nielsen, U. N., Wall, D. H. & Six, J. Soil biodiversity and the environment. Annu. Rev. Environ. Resour. 40, 63–90 (2015).Wei, Y. J. et al. High-throughput sequencing of microbial community diversity in soil, grapes, leaves, grape juice and wine of grapevine from China. PLoS ONE 13, 1–17 (2018).
    Google Scholar 
    Liao, J., Xu, Q., Xu, H. & Huang, D. Natural farming improves soil quality and alters microbial diversity in a cabbage field in Japan. Sustain 11, 1–16 (2019).
    Google Scholar 
    Yan, J. et al. Plant litter composition selects different soil microbial structures and in turn drives different litter decomposition pattern and soil carbon sequestration capability. Geoderma 319, 194–203 (2018).CAS 

    Google Scholar 
    Qiao, Q. et al. The variation in the rhizosphere microbiome of cotton with soil type, genotype and developmental stage. Sci. Rep. 7, 1–10 (2017).
    Google Scholar 
    Pacchioni, R. G. et al. Taxonomic and functional profiles of soil samples from Atlantic forest and Caatinga biomes in northeastern Brazil. Microbiologyopen 3, 299–315 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ishaq, S. L. et al. Impact of cropping systems, soil inoculum, and plant species identity on soil bacterial community structure. Microb. Ecol. 73, 417–434 (2017).CAS 
    PubMed 

    Google Scholar 
    Verkley, G. J. M., Da Silva, M., Wicklow, D. T. & Crous, P. W. Paraconiothyrium, a new genus to accommodate the mycoparasite Coniothyrium minitans, anamorphs of Paraphaeosphaeria, and four new species. Stud. Mycol. 50, 323–335 (2004).
    Google Scholar 
    Thomma, B. P. H. J. Alternaria spp.: from general saprophyte to specific parasite. Mol. Plant Pathol. 4, 225–236 (2003).CAS 
    PubMed 

    Google Scholar 
    Mašínová, T. et al. Drivers of yeast community composition in the litter and soil of a temperate forest. FEMS Microbiol. Ecol. 93, 1–10 (2017).
    Google Scholar 
    Chen, J., Xu, L., Liu, B. & Liu, X. Taxonomy of Dactylella complex and Vermispora. III. A new genus Brachyphoris and revision of Vermispora. Fungal Divers. 26, 127–142 (2014).Burns, K. N. et al. Vineyard soil bacterial diversity and composition revealed by 16S rRNA genes: differentiation by geographic features. Soil Biol. Biochem. 91, 232–247 (2015).Bokulich, N. A., Thorngate, J. H., Richardson, P. M. & Mills, D. A. Microbial biogeography of wine grapes is conditioned by cultivar, vintage, and climate. Proc. Natl Acad. Sci. USA 111, 139–148 (2014).
    Google Scholar 
    Castañeda, L. E. & Barbosa, O. Metagenomic analysis exploring taxonomic and functional diversity of soil microbial communities in Chilean vineyards and surrounding native forests. PeerJ 5, e3098 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Coller, E. et al. Microbiome of vineyard soils is shaped by geography and management. Microbiome 7, 1–15 (2019).
    Google Scholar 
    Zhou, J. et al. Wine terroir and the soil bacteria: an amplicon sequencing–based assessment of the Barossa Valley and its sub-regions. Front. Microbiol. 11, 1–15 (2021).
    Google Scholar 
    Price, C. A. et al. Testing the metabolic theory of ecology. Ecol. Lett. 15, 1465–1474 (2012).PubMed 

    Google Scholar 
    Jenerette, G. D., Scott, R. L. & Huxman, T. E. Whole ecosystem metabolic pulses following precipitation events. Funct. Ecol. 22, 924–930 (2008).
    Google Scholar 
    Větrovský, T. et al. A meta-analysis of global fungal distribution reveals climate-driven patterns. Nat. Commun. 10, 1–9 (2019).
    Google Scholar 
    Arnold, A. E., Maynard, Z., Gilbert, G. S., Coley, P. D. & Kursar, T. A. Are tropical fungal endophytes hyperdiverse? Ecol. Lett. 3, 267–274 (2000).
    Google Scholar 
    Tedersoo, L. et al. Global diversity and geography of soil fungi. Science 346, 1052–1053 (2014).
    Google Scholar 
    Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72, 1719–1728 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bintrim, S. B., Donohue, T. J., Handelsman, J., Roberts, G. P. & Goodman, R. M. Molecular phylogeny of Archaea from soil. Proc. Natl Acad. Sci. USA 94, 277–282 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simon, H. M., Dodsworth, J. A. & Goodman, R. M. Crenarchaeota colonize terrestrial plant roots. Environ. Microbiol. 2, 495–505 (2000).CAS 
    PubMed 

    Google Scholar 
    Buckley, D. H., Graber, J. R. & Schmidt, T. M. Phylogenetic analysis of nonthermophilic members of the kingdom Crenarchaeota and their diversity and abundance in soils. Appl. Environ. Microbiol. 64, 4333–4339 (1998).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch-Osmolovskaya, L. & Schleper, C. Diversity and abundance of Crenarchaeota in terrestrial habitats studied by 16S RNA surveys and real time PCR. Environ. Microbiol. 5, 787–797 (2003).CAS 
    PubMed 

    Google Scholar 
    Kemnitz, D., Kolb, S. & Conrad, R. High abundance of Crenarchaeota in a temperate acidic forest soil. FEMS Microbiol. Ecol. 60, 442–448 (2007).CAS 
    PubMed 

    Google Scholar 
    Zhalnina, K. et al. Ca. nitrososphaera and bradyrhizobium are inversely correlated and related to agricultural practices in long-term field experiments. Front. Microbiol. 4, 1–13 (2013).
    Google Scholar 
    Barata, A., Malfeito-Ferreira, M. & Loureiro, V. The microbial ecology of wine grape berries. Int. J. Food Microbiol. 153, 243–259 (2012).CAS 
    PubMed 

    Google Scholar 
    Yurkov, A. M. Yeasts of the soil—obscure but precious. Yeast 35, 369–378 (2018).CAS 
    PubMed 

    Google Scholar 
    Kachalkin, A. V., Abdullabekova, D. A., Magomedova, E. S., Magomedov, G. G. & Chernov, I. Y. Yeasts of the vineyards in Dagestan and other regions. Microbiology 84, 425–432 (2015).CAS 

    Google Scholar 
    Čadež, N., Zupan, J. & Raspor, P. The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res. 10, 619–630 (2010).PubMed 

    Google Scholar 
    Comitini, F. & Ciani, M. Influence of fungicide treatments on the occurrence of yeast flora associated with wine grapes. Ann. Microbiol. 58, 489–493 (2008).
    Google Scholar 
    Kepler, R. M., Maul, J. E. & Rehner, S. A. Managing the plant microbiome for biocontrol fungi: examples from Hypocreales. Curr. Opin. Microbiol. 37, 48–53 (2017).CAS 
    PubMed 

    Google Scholar 
    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486 (2012).CAS 
    PubMed 

    Google Scholar 
    Liu, D. & Howell, K. Community succession of the grapevine fungal microbiome in the annual growth cycle. Environ. Microbiol. 23, 1842–1857 (2021).CAS 
    PubMed 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Bacteria found in soil. Science 325, 320–325 (2018).
    Google Scholar 
    Egidi, E. et al. A few Ascomycota taxa dominate soil fungal communities worldwide. Nat. Commun. 10, 2369 (2019).Alonso, A. et al. Looking at the origin: Some insights into the general and fermentative microbiota of vineyard soils. Fermentation 5, 1–15 (2019).
    Google Scholar 
    OIV. Resolution OIV-VITI 655-2021. OIV recommendations about valuation and importance of microbial biodiversity in a sustainable vitiviniculture context. https://www.oiv.int/public/medias/8097/en-oiv-viti-655-2021.pdf (2021).Vishnivetskaya, T. A. et al. Commercial DNA extraction kits impact observed microbial community composition in permafrost samples. FEMS Microbiol. Ecol. 87, 217–230 (2014).CAS 
    PubMed 

    Google Scholar 
    Gobbi, A. et al. Quantitative and qualitative evaluation of the impact of the G2 enhancer, bead sizes and lysing tubes on the bacterial community composition during DNA extraction from recalcitrant soil core samples based on community sequencing and qPCR. PLoS One 14, e0200979 (2019).Bolyen, E. et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ 37, 852–857 (2018).Callahan, B. J., McMurdie, P. J. & Holmes, S. P. Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J. 11, 2639–2643 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Janssen, S. et al. Phylogenetic placement of exact amplicon sequences improves associations with clinical information. mSystems 3, e00021-18 (2018).Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 1–17 (2018).
    Google Scholar 
    DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nilsson, R. H. et al. The UNITE database for molecular identification of fungi: Handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res. 47, D259–D264 (2019).CAS 
    PubMed 

    Google Scholar 
    Lozupone, C. & Knight, R. UniFrac: a new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228–8235 (2005).Chen, H. VennDiagram: generate high-resolution Venn and Euler plots. R. Packag. Version 1, 1 (2018).
    Google Scholar 
    Salonen, A., Salojärvi, J., Lahti, L. & de Vos, W. M. The adult intestinal core microbiota is determined by analysis depth and health status. Clin. Microbiol. Infect. 18, 16–20 (2012).CAS 
    PubMed 

    Google Scholar 
    Martín-Fernández, J. A., Hron, K., Templ, M., Filzmoser, P. & Palarea-Albaladejo, J. Bayesian-multiplicative treatment of count zeros in compositional data sets. Stat. Model. 15, 134–158 (2015).
    Google Scholar 
    Oksanen, J. et al. vegan: community ecology package. R package version 2.4-3. Vienna R Found. Stat. Comput. Sch. (2016).Wright, M. N. & Ziegler, A. Ranger: a fast implementation of random forests for high dimensional data in C++ and R. J. Stat. Softw. 77, 1–17 (2017).Team, R. C. R: a language and environment for statistical computing. (2019).Henschel, A., Anwar, M. Z. & Manohar, V. Comprehensive meta-analysis of ontology annotated 16S rRNA profiles identifies beta diversity clusters of environmental bacterial communities. PLoS Comput. Biol. 11, 1–24 (2015).
    Google Scholar 
    Lozupone, C. A. et al. Meta-analyses of studies of the human microbiota. Genome Res. 23, 1704–1714 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone, C. A. & Knight, R. Global patterns in bacterial diversity. Proc. Natl Acad. Sci. USA 104, 11436–11440 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pauvert, C. et al. Bioinformatics matters: the accuracy of plant and soil fungal community data is highly dependent on the metabarcoding pipeline. Fungal Ecol. 41, 23–33 (2019).Gobbi, A., Kyrkou, I., Filippi, E., Ellegaard-Jensen, L. & Hansen, L. H. Seasonal epiphytic microbial dynamics on grapevine leaves under biocontrol and copper fungicide treatments. Sci. Rep. 10, 681 (2020).Engelbrektson, A. et al. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J. 4, 642–647 (2010).CAS 
    PubMed 

    Google Scholar 
    Willis, A. D. Rarefaction, alpha diversity, and statistics. Front. Microbiol. 10, 2407 (2019). More

  • in

    Validation of leaf area index measurement system based on wireless sensor network

    Study areaWith the advanced observational techniques, abundant data accumulation, and ability to carry on multi-scale experiments, the Huailai Remote Sensing Station and around (for short Huailai Station), located in Huailai, Hebei province, China (40.349°N, 115.785°E), becomes one of the ideal study areas for the observation and validation of the LAI27. The Huailai Station is mainly covered by corn and some weeds. So, we mainly use LAIS to monitor the growth cycle of corn (in April 2015, we submitted an application for plant collection permission to Huailai Remote Sensing Station and obtained approval.)Huailai WSN vegetation monitoring system includes 6 sets of monitoring equipment, and its distribution is shown in Fig. 1 as follows, in which red dot represents LAIS Node, purple frame represents MODIS pixel, red frame represents observation area. The observation system is designed for the application of remote sensing pixel scale authenticity tests. The observation scale is a 1 km MODIS pixel on the pixel scale, and the actual coverage area is 2 km * 1.5 km. The six sets of equipment cover the core area of the test station and the surrounding typical growth plot, which is a good representative of the 1 km pixel scale.Figure 1Equipment distribution of WSN vegetation monitoring network in Huailai (red dot represents LAIS Node; purple frame represents the footprint of a MODIS pixel.Full size imageEach piece of equipment consists of two cameras which were only one camera with two different angles in previous work23 set up at a height of 2.5–4 m above the ground (Fig. 2), one for vertical downward observation and the other for inclined observation, which can take canopy photos regularly every day at its fixed position. The observation system obtained the photos of the corn canopy from May to August, but the corn did not grow in August. Therefore, in this study, we selected the photos taken by the vertical observation camera of the corn sample plot in the experimental station from May to July 2015.Figure 2The design of the LAIS node.Full size imageRelated work—data acquisitionData collection using LAISThe data collection complies with the plant guidelines statement: “LAI-2000 Plant Canopy Analyzer Instrution Manual” (Supplementary Information 2) (https://www.licor.com/env/, Last visit time: 21 October 2021). Existing facilities such as the high poles and the wireless sensor network in the experimental station have proved convenient for the installation of the LAI measurement system. LAIS uses the GEO001 digital serial camera that is suitable for a variety of embedded image acquisition modes. The specification of the camera includes: the total field of view is 120°, the maximum image size is 2176 * 1920 (approximately 5 million pixels), mounted at a height of 3 m, the spatial resolution at ground level is about 3 mm. The acquired image is simultaneously stored in a flash card in two formats: the JPEG format merits in less file size thus suitable for quick wireless transfer; the RAW format, which is the user data in our analysis, contains 3 channel binary image in 10 bits bit-depth. Compared to our previous work, an important new feature of this camera is the programmable cut-off filter. As we know, unlike scientific sensor which has the precise spectral response to each band, the digital camera is cheap and can only acquire the so-called RGB image. Usual digital cameras have one NIR cut-off filter to exclude the near-infrared light. The GEO001 camera, which was a commercial camera produced by Zhongshan Yunteng Photographic Equipment Co., Ltd, has two cut-off filters: one is the NIR cut-off filter, another is a blue cut-off filter. Switching on the NIR cut-off filter results in an ordinary color image as in a usual household digital camera. While the blue cut-off filter is switched on and NIR cut-off filter is switched off, near-infrared light is allowed to reach the detector array and blue light is blocked, resulting in false-color images as in Fig. 3b. Adding near-infrared light can increase illumination in the shadow area, and blocking blue light can alleviate the disturbance of sun glint, so, switching to a blue cut-off filter helps to improve the image quality when the direct sunlight is strong such as around noon time.Figure 3Three images on July 2 of site 1: (a) and (c) are true-color images obtained at 05:31 a.m. and 6:32 p.m., and (b) is a false-color image when the blue filter is removed at 1:28 p.m.Full size imageTo acquire an image in the best illumination condition and avoid the influence of rain or other unsuitable weather, the image acquisition device based on WSN was set up to acquire images three times per day: 5:30 a.m., 1:30 p.m., and 6:30 p.m. According to our experience, when the canopy is open (sparse vegetation), usually images acquired at 6:30 p.m. are the best for classification because the direct sunlight is weak; when the canopy is closed (dense vegetation), the illumination on the soil background is very poor in all time, and classification is difficult. So, the camera is programmed to switch to a blue cut-off filter when acquiring images at 1:30 p.m., while the images acquired at other times were with NIR cut-off filter, resulting in true color images, as shown in Fig. 3.LAILLW data and LAI2000 dataTo evaluate the accuracy of the improved finite length averaging method proposed in this study, a field experiment was carried out to measure LAI by manual sampling (Supplementary Information 3,4). A field sampling scheme covering the corn growing season (late May to early July) was designed (Supplementary Information 1). The LAI of corn in the experimental area was measured by the quadrat harvesting method, and the validation data of LAI of corn in each growth period were obtained. Considering the rapid growth of the corn, the sampling experiment period was set as 1 week, but due to the actual work in summer and the influence of rainfall, six effective measurements were carried out in the field experiment: May 30, June 7, June 13, June 20, July 4 and July 16.The LAILLW method, which is also known as the shape factor method, involves outdoor and indoor measurements. The formulas are:$${text{L}} = {text{S}}*{text{N}}$$
    (1)
    $${text{f}} = {{text{S}} /{left( {sumlimits_{i = 1}^m {{text{len}}*{text{wid}}} } right)}}$$
    (2)

    where L represents the leaf area index, S refers to the area of a single plant, and N refers to the number of plants in a unit area. The shape factor ƒ is the ratio of the S to the value multiplied by the length and width of all leaves in the plant.To reduce measurement errors, 10 plants were selected in the sample, and the length and width of each leaf on each corn were recorded with a ruler. To obtain the shape factor, representative corn plants were cut next to the sample (not in the image coverage area) and the true area of each leaf was obtained by software, and the shape factor was derived from this23. Through the length and width of 10 strains measured in the field, and the shape factor obtained, the total leaf area of 10 corns can be calculated, and the average leaf area of one plant is finally obtained. The LAI value under the LAILLW method is obtained.Using the difference between the solar radiation values of the upper and lower canopies, the LAI2000 canopy analyzer can obtain LAI and set up a corresponding point folder to save the measured data for subsequent collation. 10 measurement points were selected for each site, and the average value was the final result for each site. To reduce the effects of the solar altitude angle on measurement accuracy, the experiments were repeated every two hours.To make it easier to record the date of data acquisition, the data were summarized in the order day of the year (DOY). For example, 30 May 2015 is the 150th day in the year and its DOY is 150. The DOY information of data acquisition using the LAILLW method and LAI2000 is specifically shown in Table 1.Table 1 The DOY information of data acquisition using the LAILLW and LAI2000.Full size tableMODIS LAI dataMODIS leaf area index data was downloaded from the United States Geological Survey (https://modis.gsfc.nasa.gov/data/dataprod/mod15.php), named MCD15A2Hv006. It is an 8-day composite dataset with a 500-m pixel size. The algorithm chooses the best pixel available from all the acquisitions of both MODIS sensors located on NASA’s Terra and Aqua satellites from within the 8 days.In the comparison of MODIS LAI data, as the pixel of the satellite product is in 500 m resolution, it is not recommended to directly compare single node LAIS measurement with the MODIS LAI product because of the scale mismatch. Though complicated upscaling approaches have been discussed and implemented in Huailai station for other parameters28, it is not the purpose of this study So, we simply averaged the LAI in all the LAIS nodes to compare to the average MODIS LAI product in the 3 * 3 nearest pixels (1.5 km * 1.5 km), referred to as MODIS LAI_Mean in a later context, which approximately covers the area of all LAIS nodes. Time matching was carried out by selecting the date of the MODIS product closest to the date of the handheld LAI2000 measurement. The following Table 2 is obtained by taking 3 * 3 pixels closest to the LAIS Nodes.Table 2 MODIS leaf area index of 3 * 3 pixels around Huailai experimental station.Full size tableImproved LAIS methodsIn previous work, we have deployed sensors and cameras, and also have an automatic image processing and preliminary method of calculating LAI23. Figure 4 is a flow chart of our work. The previous articles focused on hardware and system implementation but did not pay much attention to performance. On this basis, we upgrade the image classification method and LAI calculation method, which will be explained in detail below.Figure 4Flow chart of leaf area index measurement system based on WSN.Full size imageImage preprocessing and classification methodsBecause of weather-related factors such as water vapor and dust or inaccurate exposure, a small number of the photographs are not clear. Besides, some of the image data cannot be decoded because of unstable communications and other factors. Therefore, it is necessary to check and select the photographs that meet the processing requirements before binary image processing. Currently, the selection process is carried out by human visual inspection based on the following principles: (1) when the canopy is open (sparse vegetation), the image at 6:30 p.m. is preferred, when the vegetation the canopy is closed (sparse vegetation), the image at 1:30 p.m. is preferred; (2) if the preferred image is not clear, other clear image acquired on the same day should be used; if all the images are not clear, then this day is marked as a failure.If we decided to use the image acquired at 1:30 p.m. It is also necessary to convert it from a false-color image to a true-color-like image (as shown in Fig. 3b) in which the leaves are shown in green color. The conversion is carried out by multiplying the vector of DN (digital number) of 3 bands with a coefficient matrix which is provided by the camera manufacturer. Another preprocessing is to choose the near nadir-view area of the image for further processing. As the off-nadir-view area of the image is subject to large geometric distortion as well as saturation of fraction of vegetation cover (FVC), they are not used in this study. The images are clipped to an ROI (region of interest) of about 2 * 2 square meters in ground area, with a maximum view zenith angle less than 30°.The study of the color spatial distributions of the crop images is helpful for the classification of the images and extraction of the image information. The color of the image pixel is the most direct and effective element that can be used to describe the image29. Because the red–green–blue (RGB) color space has the characteristic of a clear and convenient expression of information. When corn leaves are small, the crops in the fields are sparse, and most of them are soil background in the images. The soil in a lower hue is similar to the corn in terms of R and B components, while it has an overlap with the corn in G components when soil is in a higher hue. This makes it difficult to classify sparse corn scenes only by RGB space, so it is necessary to consider the characteristics of hue, luminosity, and saturation (HLS) spatial components.Statistical analysis showed that the component values of the crop leave in the RGB color space were in the ranges of G  > R and G  > B while the corresponding values for the soil follow the law that B  More

  • in

    Genetic and morphological variation of Vespa velutina nigrithorax which is an invasive species in a mountainous area

    Kim, J. K., Choi, M. B. & Moon, T. Y. Occurrence of Vespa velutina Lepeletier from Korea, and a revised key for Korean Vespa species (Hymenoptera: Vespidae). Entomol. Res. 36, 112–115 (2006).
    Google Scholar 
    Choi, M. B., Martin, S. J. & Lee, J. W. Distribution, spread, and impact of the invasive hornet Vespa velutina in South Korea. J. Asia-Pac. Entomol. 15, 473–477 (2012).
    Google Scholar 
    Do, Y. et al. Quantitative analysis of research topics and public concern on V. velutina as invasive species in Asian and European countries. Entomol. Res. 49, 456–461 (2019).
    Google Scholar 
    Kwon, O. & Choi, M. B. Interspecific hierarchies from aggressiveness and body size among the invasive alien hornet, Vespa velutina nigrithorax, and five native hornets in South Korea. PLoS ONE 15, e0226934 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Choi, M. B. Foraging behavior of an invasive alien hornet (Vespa velutina) at Apis mellifera hives in Korea: Foraging duration and success. Entomol. Res. 51, 143–148 (2021).
    Google Scholar 
    Turchi, L. & Derijard, B. Options for the biological and physical control of Vespa velutina nigrithorax (Hym.: Vespidae) in Europe: A review. J. Appl. Entomol. 142, 553–562 (2018).CAS 

    Google Scholar 
    Bessa, A. S., Carvalho, J., Gomes, A. & Santarém, F. Climate and land-use drivers of invasion: Predicting the expansion of Vespa velutina nigrithorax into the Iberian Peninsula. Insect Conserv. Divers. 9, 27–37 (2016).
    Google Scholar 
    Rodríguez-Flores, M. S., Seijo-Rodríguez, A., Escuredo, O. & del Carmen Seijo-Coello, M. Spreading of Vespa velutina in northwestern Spain: Influence of elevation and meteorological factors and effect of bait trapping on target and non-target living organisms. J. Pest Sci. 92, 557–565 (2019).
    Google Scholar 
    Robinet, C., Darrouzet, E. & Suppo, C. Spread modelling: A suitable tool to explore the role of human-mediated dispersal in the range expansion of the yellow-legged hornet in Europe. Int. J. Pest Manag. 65, 258–267 (2019).
    Google Scholar 
    Saunders, D. A., Hobbs, R. J. & Margules, C. R. Biological consequences of ecosystem fragmentation: A review. Conserv. Biol. 5, 18–32 (1991).
    Google Scholar 
    Ellstrand, N. C. & Elam, D. R. Population genetic consequences of small population size: Implications for plant conservation. Annu. Rev. Ecol. Evol. Syst. 24, 217–242 (1993).
    Google Scholar 
    Young, A., Boyle, T. & Brown, T. The population genetic consequences of habitat fragmentation for plants. Trends Ecol. Evol. 11, 413–418 (1996).CAS 
    PubMed 

    Google Scholar 
    Hughes, A. R. & Stachowicz, J. J. Genetic diversity enhances the resistance of a seagrass ecosystem to disturbance. Proc. Natl. Acad. Sci. 101, 8998–9002 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dudley, R. The Biomechanics of Insect Flight: Form, Function, Evolution (Princeton University Press, 2002).
    Google Scholar 
    Porporato, M., Manino, A., Laurino, D. & Demichelis, D. Vespa velutina Lepeletier (Hymenoptera Vespidae): A first assessment 2 years after its arrival in Italy. Redia 97, 189–194 (2014).
    Google Scholar 
    Sauvard, D., Imbault, V. & Darrouzet, É. Flight capacities of yellow-legged hornet (Vespa velutina nigrithorax, Hymenoptera: Vespidae) workers from an invasive population in Europe. PLoS ONE 13, e0198597 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Monceau, K., Bonnard, O., Moreau, J. & Thiéry, D. Spatial distribution of Vespa velutina individuals hunting at domestic honeybee hives: Heterogeneity at a local scale. Insect Sci. 21, 765–774 (2014).PubMed 

    Google Scholar 
    Choi, M. B., Lee, S. A., Suk, H. Y. & Lee, J. W. Microsatellite variation in colonizing populations of yellow-legged Asian hornet, Vespa velutina nigrithorax, South Korea. Entomol. Res. 43, 208–214 (2013).
    Google Scholar 
    Jeong, J. S. et al. Tracing the invasion characteristics of the yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), in Korea using newly detected variable mitochondrial DNA sequences. J. Asia-Pac. Entomol. 24(2), 135–147 (2021).MathSciNet 

    Google Scholar 
    Villemant, C. et al. Predicting the invasion risk by the alien bee-hawking Yellow-legged hornet Vespa velutina nigrithorax across Europe and other continents with niche models. Biol. Conserv. 144, 2142–2150 (2011).
    Google Scholar 
    Kishi, S. & Goka, K. Review of the invasive yellow-legged hornet, Vespa velutina nigrithorax (Hymenoptera: Vespidae), in Japan and its possible chemical control. Appl. Entomol. Zool. 52, 361–368 (2017).
    Google Scholar 
    Arca, M. et al. Development of microsatellite markers for the yellow-legged Asian hornet, Vespa velutina, a major threat for European bees. Conserv. Genet. Resour. 4, 283–286 (2012).
    Google Scholar 
    Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Res. 8, 103–106 (2008).
    Google Scholar 
    Peakall, P. & Smouse, R. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 28, 2537 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Excoffier, L. & Lischer, H. E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10, 564–567 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Hammer, Ø., Harper, D. A. & Ryan, P. D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 4, 9 (2001).
    Google Scholar 
    Oksanen, J. et al. The vegan package. 10, 719 (2007).Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, S. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. Resour. 14, 2611–2620 (2005).CAS 

    Google Scholar 
    Earl, D. A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 4, 359–361 (2012).
    Google Scholar 
    Jombart, T., Devillard, S. & Balloux, F. Discriminant analysis of principal components: A new method for the analysis of genetically structured populations. BMC Genet. 11, 94 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. Adegenet: A R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waraniak, J. M., Fisher, J. D., Purcell, K., Mushet, D. M. & Stockwell, C. A. Landscape genetics reveal broad and fine-scale population structure due to landscape features and climate history in the northern leopard frog (Rana pipiens) in North Dakota. Ecol. Evol. 9, 1041–1060 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Rohlf, F. J. tpsDig, version 2.10. http://life.bio.sunysb.edu/morph/index.html (2006).Zimmermann, G. et al. Geometric morphometrics of carapace of Macrobrachium australe (Crustacea: Palaemonidae) from Reunion Island. Acta Zool. 93, 492–500 (2012).
    Google Scholar  More