More stories

  • in

    Vegetation increases abundances of ground and canopy arthropods in Mediterranean vineyards

    Hallmann, C. A. et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 12, e0185809 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Lister, B. C. & Garcia, A. Climate-driven declines in arthropod abundance restructure a rainforest food web. Proc. Natl. Acad. Sci. 115, E10397–E10406 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cardoso, P. et al. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242, 108426 (2020).
    Google Scholar 
    Habel, J. C., Samways, M. J. & Schmitt, T. Mitigating the precipitous decline of terrestrial European insects: Requirements for a new strategy. Biodivers. Conserv. 28, 1343–1360 (2019).
    Google Scholar 
    Brühl, C. A. & Zaller, J. G. Biodiversity decline as a consequence of an inappropriate environmental risk assessment of pesticides. Front. Environ. Sci. 7, 2013–2016 (2019).
    Google Scholar 
    Seastedt, T. R. & Crossley, D. A. The influence of arthropods on ecosystems. Bioscience 34, 157–161 (1984).
    Google Scholar 
    Brussaard, L. et al. Biodiversity and ecosystem functioning in soil. Ambio 26, 563–570 (1997).
    Google Scholar 
    Symondson, W. O. C., Sunderland, K. D. & Greenstone, M. H. Can generalist predators be effective biocontrol agents?. Annu. Rev. Entomol. 47, 561–594 (2002).CAS 
    PubMed 

    Google Scholar 
    Goulson, D. The insect apocalypse, and why it matters. Curr. Biol. 29, R967–R971 (2019).CAS 
    PubMed 

    Google Scholar 
    Kremen, C. et al. Pollination and other ecosystem services produced by mobile organisms: A conceptual framework for the effects of land-use change. Ecol. Lett. 10, 299–314 (2007).PubMed 

    Google Scholar 
    Schowalter, T. D., Noriega, J. A. & Tscharntke, T. Insect effects on ecosystem services: Introduction. Basic Appl. Ecol. 26, 1–7 (2018).
    Google Scholar 
    Dangles, O. & Casas, J. Ecosystem services provided by insects for achieving sustainable development goals. Ecosyst. Serv. 35, 109–115 (2019).
    Google Scholar 
    van der Sluijs, J. P. Insect decline, an emerging global environmental risk. Curr. Opin. Environ. Sustain. 46, 39–42 (2020).
    Google Scholar 
    Metcalfe, H., Hassall, K. L., Boinot, S. & Storkey, J. The contribution of spatial mass effects to plant diversity in arable fields. J. Appl. Ecol. 56, 1560–1574 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Winter, S. et al. Effects of vegetation management intensity on biodiversity and ecosystem services in vineyards: A meta-analysis. J. Appl. Ecol. 55, 2484–2495 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Blaise, C. et al. The key role of inter-row vegetation and ants on predation in Mediterranean organic vineyards. Agric. Ecosyst. Environ. 311, 107237 (2021).
    Google Scholar 
    Hoffmann, C. et al. Can flowering greencover crops promote biological control in German vineyards?. Insects 8, 121 (2017).PubMed Central 

    Google Scholar 
    Eckert, M., Mathulwe, L. L., Gaigher, R., der Merwe, L. J. & Pryke, J. S. Native cover crops enhance arthropod diversity in vineyards of the Cape Floristic Region. J. Insect Conserv. 24, 133–149 (2019).
    Google Scholar 
    Sáenz-Romo, M. G. et al. Ground cover management in a Mediterranean vineyard: Impact on insect abundance and diversity. Agric. Ecosyst. Environ. 283, 106571 (2019).
    Google Scholar 
    Capó-Bauçà, S., Marqués, A., Llopis-Vidal, N., Bota, J. & Baraza, E. Long-term establishment of natural green cover provides agroecosystem services by improving soil quality in a Mediterranean vineyard. Ecol. Eng. 127, 285–291 (2019).
    Google Scholar 
    Garcia, L. et al. Management of service crops for the provision of ecosystem services in vineyards: A review. Agric. Ecosyst. Environ. 251, 158–170 (2018).
    Google Scholar 
    Nicholls, C. I., Altieri, M. A. & Ponti, L. Enhancing plant diversity for improved insect pest management in Northern California organic vineyards. Acta Hortic. 785, 263–278 (2008).
    Google Scholar 
    Franin, K., Barić, B. & Kuštera, G. The role of ecological infrastructure on beneficial arthropods in vineyards. Spanish J. Agric. Res. 14, e303 (2016).
    Google Scholar 
    Shapira, I. et al. Habitat use by crop pests and natural enemies in a Mediterranean vineyard agroecosystem. Agric. Ecosyst. Environ. 267, 109–118 (2018).
    Google Scholar 
    Judt, C. et al. Diverging effects of landscape factors and inter-row management on the abundance of beneficial and herbivorous arthropods in andalusian vineyards (Spain). Insects 10, 320 (2019).PubMed Central 

    Google Scholar 
    Geldenhuys, M., Gaigher, R., Pryke, J. S. & Samways, M. J. Diverse herbaceous cover crops promote vineyard arthropod diversity across different management regimes. Agric. Ecosyst. Environ. 307, 107222 (2021).CAS 

    Google Scholar 
    Medail, F. & Quezel, P. Biodiversity hotspots in the Mediterranean Basin: Setting global conservation priorities. Conserv. Biol. https://doi.org/10.1046/j.1523-1739.1999.98467.x (1999).Article 

    Google Scholar 
    Carrère, P. La structure du vignoble du Vaucluse. Etudes Conjonct. 9, 931–949 (1957).
    Google Scholar 
    Nentwig, W. et al. Spiders of Europe. (2020). www.araneae.nmbe.ch.Tronquet, M. Catalogue des coléoptères de France. Rev. l’Assoc. Roussillonnaise d’Entomol. 23, 1–10 (2014).
    Google Scholar 
    Rosseel, Y. Lavaan: An R package for structural equation modeling. J. Stat. Softw. 48, 2 (2012).
    Google Scholar 
    Grace, J. B. Structural equation modeling and natural systems. Struct. Equ. Model. Nat. Syst. https://doi.org/10.1017/CBO9780511617799 (2006).Article 

    Google Scholar 
    Fiera, C. et al. Effects of vineyard inter-row management on the diversity and abundance of plants and surface-dwelling invertebrates in Central Romania. J. Insect Conserv. 24, 175–185 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    de Pedro, L., Perera-Fernández, L. G., López-Gallego, E., Pérez-Marcos, M. & Sanchez, J. A. The effect of cover crops on the ciodiversity and abundance of ground-dwelling arthropods in a Mediterranean pear orchard. Agrono 10, 580 (2020).
    Google Scholar 
    Ebeling, A. et al. Plant diversity impacts decomposition and herbivory via changes in aboveground arthropods. PLoS ONE 9, e106529 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cobb, T. P., Langor, D. W. & Spence, J. R. Biodiversity and multiple disturbances: Boreal forest ground beetle (Coleoptera: Carabidae) responses to wildfire, harvesting, and herbicide. Can. J. For. Res. 37, 1310–1323 (2007).
    Google Scholar 
    Hendrickx, F. et al. How landscape structure, land-use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. J. Appl. Ecol. 44, 340–351 (2007).
    Google Scholar 
    Melbourne, B. A. Bias in the effect of habitat structure on pitfall traps: An experimental evaluation. Aust. J. Ecol. 24, 228–239 (1999).
    Google Scholar 
    Welti, E. A. R., Prather, R. M., Sanders, N. J., de Beurs, K. M. & Kaspari, M. Bottom-up when it is not top-down: Predators and plants control biomass of grassland arthropods. J. Anim. Ecol. 89, 1286–1294 (2020).PubMed 

    Google Scholar 
    Gonçalves, F. et al. Do soil management practices affect the activity density, diversity, and stability of soil arthropods in vineyards?. Agric. Ecosyst. Environ. 294, 106863 (2020).
    Google Scholar 
    Muscas, E. et al. Effects of vineyard floor cover crops on grapevine vigor, yield, and fruit quality, and the development of the vine mealybug under a Mediterranean climate. Agric. Ecosyst. Environ. 237, 203–212 (2017).
    Google Scholar 
    Nicholls, C. I., Parrella, M. P. & Altieri, M. A. Reducing the abundance of leafhoppers and thrips in a northern California organic vineyard through maintenance of full season floral diversity with summer cover crops. Agric. For. Entomol. 2, 107–113 (2000).
    Google Scholar 
    Vogelweith, F. & Thiéry, D. Cover crop differentially affects arthropods, but not diseases, occurring on grape leaves in vineyards. Aust. J. Grape Wine Res. 23, 426–431 (2017).
    Google Scholar 
    Hanna, R., Zalom, F. G. & Roltsch, W. J. Relative impact of spider predation and cover crop on population dynamics of Erythroneura variabilis in a raisin grape vineyard. Entomol. Exp. Appl. 107, 177–191 (2003).
    Google Scholar 
    Burgio, G. et al. Habitat management of organic vineyard in Northern Italy: the role of cover plants management on arthropod functional biodiversity. Bull. Entomol. Res. 106, 759–768 (2016).CAS 
    PubMed 

    Google Scholar 
    Wisniewska, J. & Prokopy, R. Do spiders (Araneae) feed on rose leafhopper (Edwardsiana rosae; Auchenorrhyncha: Cicadellidae) pests of apple trees? (2013).Malumbres-Olarte, J., Vink, C. J., Ross, J. G., Cruickshank, R. H. & Paterson, A. M. The role of habitat complexity on spider communities in native alpine grasslands of New Zealand. Insect Conserv. Divers. 6, 124–134 (2013).
    Google Scholar 
    Wilson, H. et al. Summer flowering cover crops support wild bees in vineyards. Environ. Entomol. 47, 63–69 (2018).PubMed 

    Google Scholar 
    Kratschmer, S. et al. Tillage intensity or landscape features: What matters most for wild bee diversity in vineyards?. Agric. Ecosyst. Environ. 266, 142–152 (2018).
    Google Scholar 
    Gardarin, A., Pigot, J. & Valantin-Morison, M. The hump-shaped effect of plant functional diversity on the biological control of a multi-species pest community. Sci. Rep. 11, 1–14 (2021).
    Google Scholar 
    Serra, G., Lentini, A., Verdinelli, M. & Delrio, G. Effects of cover crop management on grape pests in a Mediterranean environment. IOBC/WPRS Bull. (2006).Sáenz-Romo, M. G. et al. Effects of ground cover management on insect predators and pests in a Mediterranean vineyard. Insects 10, 421 (2019).PubMed Central 

    Google Scholar 
    Barry, J. P., Baxter, C. H., Sagarin, R. D. & Gilman, S. E. Climate-related, long-term faunal changes in a California rocky intertidal community. Science 267, 672–675 (1995).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ewald, J. A. et al. Influences of extreme weather, climate and pesticide use on invertebrates in cereal fields over 42 years. Glob. Chang. Biol. 21, 3931–3950 (2015).ADS 
    PubMed 

    Google Scholar 
    Celette, F., Findeling, A. & Gary, C. Competition for nitrogen in an unfertilized intercropping system: The case of an association of grapevine and grass cover in a Mediterranean climate. Eur. J. Agron. https://doi.org/10.1016/j.eja.2008.07.003 (2009).Article 

    Google Scholar 
    Ruiz-Colmenero, M., Bienes, R. & Marques, M. J. Soil and water conservation dilemmas associated with the use of green cover in steep vineyards. Soil Tillage Res. 117, 211–223 (2011).
    Google Scholar  More

  • in

    A spatiotemporally explicit paleoenvironmental framework for the Middle Stone Age of eastern Africa

    Middle and Late Pleistocene climates of MSA occupationsWe first examined MSA occupations (n = 84, Fig. 2) spanning the Middle to Late Pleistocene using simulated climate data (see Methods). We extracted mean annual temperature (bio01) and total annual precipitation (bio12) values from the climate model33 within a 50 km radii, centred on the occupation’s mid-age date range rounded to the nearest 1000 year (kyr) time slice, to characterise environments across the wider logistical landscape (following Blinkhorn and Grove10,11). The climatic conditions for each occupation can be found in Supplementary Table S1 and are illustrated in Fig. 1.Figure 2Distribution of the eastern African Middle Stone Age occupations studied. This map was created in ArcGIS 10.5 using an SRTM (NASA).Full size imageWe found that average temperatures at eastern African MSA occupations varied between 9 °C and 25 °C, with 59 occupations falling within the 68% confidence interval of 14–23 °C. The warmest environments occupied were found in coastal regions, such as Abdur along the Red Sea coast of modern-day Eritrea (25 °C) and Panga Ya Saidi situated on the Kenyan coast (24 °C), as well as in the Lower Omo Valley of southwestern Ethiopia (24–23 °C). These hot environments were inhabited during MIS 5 and MIS 7. On the other hand, the coldest environments inhabited were at high altitude, at Fincha Habera in the Bale Mountains of southern Ethiopia (9–10 °C) and at Kenyan Rift Valley occupations of Marmonet Drift (10–14 °C) and Enkapune ya Muto (13 °C), most of which date to MIS 3. Average precipitation levels experienced by Middle to Late Pleistocene MSA populations in eastern Africa ranged between 396 and 1593 mm, with 59 occupations falling within the 68% confidence interval of 620-1150 mm, corresponding to the precipitation bracket of sub-humid landscapes. The wettest habitats were located on islands within and along the shore of Lake Victoria at Rusinga Nyamtia (1593 mm) and Karungu (1374-1499 mm) in MIS 3 and 5, as well as within the Ethiopian Rift Valley at Gademotta (1368 mm), the Ethiopian Highlands at Mochena Borango (1270-1297 mm), and the Kenyan Rift Valley at Marmonet Drift (1173-1368 mm) in MIS 3, 5 and 7. On the other hand, the driest occupations occurred at Laas Geel in Somaliland during MIS 3 (396 mm) as well as within the Lower Omo Valley (534-582 mm) during MIS 5 and 7.Classifying biomes and ecotones at MSA occupationsWe then used the modelled biome dataset (biome4output)33 to classify the local ecology of each MSA occupation within a 50 km radius. We found that 38% of the occupations (n = 32) had access to only tropical xerophytic shrubland within their logistical landscape (see Fig. 3. for modern examples of this biome), and a further 42% with this biome among others within a 50 km radius (n = 35). Tropical xerophytic shrubland was persistently occupied throughout the Middle to Late Pleistocene (Fig. 1), and whilst it was the most prevalent biome type available, representing 61.9% of the biomes present during occupational phases across the region (Supplementary Fig. S2 and Table S2), eastern African MSA adaptive systems were likely specialised for engagement with tropical xerophytic shrubland, and its modulation may therefore have influenced patterns of Middle to Late Pleistocene human distribution. Nonetheless, the proportion of occupations with access to tropical xerophytic shrubland was significantly higher using a 2-sample proportion test than the proportion of the biome available across the region throughout MSA occupational phases (Z-value = 3.38, p-value = 0.0007; Supplementary Table S2), suggesting preferential occupation of tropical xerophytic shrubland and emphasising it as an important ecosystem for MSA populations.Figure 3Examples of xerophytic shrubland environments in modern eastern Africa, including typical species (sp.). (A) Acacia tortilis (B) Commiphora sp. (C) Acacia sp. and Duosperma eremophilum. (D) Hyphaene compressa, Acacia sp., Salvadora persica, Cyperacea and Lawsonia inermis (E) Acacia sp. and Duosperma eremophilum, (F) Acacia tortilis (background: Commiphora sp. Capparaceae sp. Tephrosia sp. and Indigofera spinosa).Full size imageIn total, 57% of the occupations had a logistical landscape falling on the boundary between multiple biomes (n = 48; Supplementary Table S1). The majority of these ecotonal sites are situated between ‘open’ and ‘closed’ biome types, supporting the assertion of Basell9 that access to wooded ecologies was vital for MSA populations. Forest biomes made up relatively low proportions of the available environments available throughout the Middle to Late Pleistocene; however, importantly, we found the proportions of forest biomes occupied by MSA occupations to be significantly higher than would be expected based on the prevalence of these biomes, especially in MIS 3 and MIS 7 (see Supplementary Fig. S2 and Table S2), supporting the contention that MSA hominins preferred the rarer habitats that were near to woods and forests. The most common ecotone occupied during the eastern African MSA was that between tropical xerophytic shrubland and temperate conifer forest, which is seen as far north as Goda Buticha in southeastern Ethiopia, and as far south as Mumba in Tanzania. However, the region to the east of Lake Victoria shows the most intense occupation of this ecotone, the boundary of which fluctuates through time and space (Supplementary Table S1).We found that MIS 7 saw the preferential occupation of closed ecotones between temperate conifer forest and warm mixed forest, as well as tropical xerophytic shrubland and associated ecotones which are generally occupied throughout the period. MIS 5 saw a slight increase in habitat diversity, though expansions primarily involved the tracking of tropical xerophytic shrubland environments (as shown by all occupations in MIS 5 having access to this biome within 50 km) with exposure to new ecotones occurring at the peripheries. This can be seen at occupations distributed widely across the region; for example, certain occupations at Omo would have involved engagement with deserts alongside tropical xerophytic shrubland, whereas some MSA populations at Panga Ya Saidi had access to tropical deciduous forest and tropical savannah environments within their logistical landscape. MIS 3 saw the greatest variety in the ecologies occupied, where expansions can be seen into new and previously uninhabited environments, such as steppe tundra and warm mixed forest, with a distinct emphasis on temperate conifer forest rather than tropical xerophytic shrubland. Importantly, a chi-square test revealed that the relative proportions of biomes in the region do not differ significantly between the Marine Isotope Stages (χ2 = 9.07, p-value = 0.99), strongly suggesting that variation in the environments occupied through time reflects a shift in preference as opposed to fluctuation in the underlying ecology (see Supplementary Table S2).Characterising MSA environments throughout the Middle to Late PleistoceneWe used cluster analyses to group the occupations based on their climatic values to assess patterns in habitat choice. To do this, we scaled and combined the temperature and precipitation data and employed an automated clustering algorithm (the average silhouette method) to ascertain the optimal number (k) of clusters in the data. The algorithm found ten clusters to represent the best division of the data (Fig. 4, Supplementary Fig. S1).Figure 4Hierarchical clustering of the occupations according to mean annual temperature and total annual precipitation. K means clustering identified ten clusters as the optimal division of the dendrogram, which have been highlighted here as well as the range of environmental conditions occupied by each cluster and the percentage of cells within 50 km of that biome for all occupations within that cluster.Full size imageMost of the occupations (n = 45) fall within warm to temperate sub-humid clusters (2,4,5 and 7) with a broad temperature range of 13–19 °C and a precipitation range of 613-1297 mm. These clusters are dominated by tropical xerophytic shrubland and temperate conifer forest environments and their ecotones. We found that only two clusters (8,9) did not include occupations with access to tropical xerophytic shrubland, indicating that this biome was present across a large portion of the MSA climatic range, except at the coldest extreme. We found that the coldest cluster, cluster 9 (temperature range 9–10 °C), was the most ecotonal, with all occupations situated at high altitude where populations would have had access to steppe tundra, temperate conifer forest, temperate sclerophyll woodland and warm mixed forest, the complex topography allowing diverse biomes to appear closer together than is usually possible34. Extremely humid occupations from around Lake Victoria (Karungu and Rusinga Nyamita) formed cluster 10 (1374-1593 mm precipitation). These occupations have moderate temperatures (16–18 °C) and occupy an ecotone between tropical xerophytic shrubland and temperate conifer forest. Panga Ya Saidi and Laas Geel form their own respective clusters (3 and 6) due to their distinctively hot temperatures; however, at Panga Ya Saidi, this is coupled with moist sub-humid conditions and a diverse tropical environment (24 °C, 996-1153 mm), whereas Laas Geel possesses the lowest annual precipitation of all the occupations (18 °C, 396 mm), making its hot-dry environment unique for the eastern African MSA. However, the occupation at Laas Geel falls within the tropical xerophytic shrubland biome, with access to some open conifer woodland within 50 km, suggesting that whilst occupying a climatic extreme, this distinct habitat represents an extension of the types of environments that eastern African MSA populations were already well-adapted to.Phased habitability modelsWe used the precipitation and temperature data from the occupations as the parameters to produce phased ‘habitability’ models for the more abundantly populated interglacial phases of the MSA, demonstrating the extent of the landscape that experienced comparable climatic settings to occupations dated within that period. The climatic range produced by each phased subset was projected throughout every 1000-year time interval for that MIS, and then the percentage of ‘habitable’ cells (i.e., cells that remain within that climatic range) was calculated to identify areas that were persistently habitable, as well as the geographic range and temporal scope of impersistent habitable landscapes.Figure 5 demonstrates the temperature, precipitation, and combined habitability models for each phase. MIS 9 shows the most limited habitable zone out of the interglacial phases, however the lower number of occupations available to construct the distribution likely has impacted the construction of the models. MIS 7 marks a period of expansion, with the region surrounding Lake Victoria and the Eastern Rift Valley Lakes and the Ethiopian Highlands showing the most persistent habitability across the region. For temperature, large areas of the Horn and modern-day Sudan show less persistent habitability (ca. 40–50% cells falling within the temperature range of 12–23 °C seen at MIS 7 occupations), with pockets of unsuitability along the coast of the Baab el Mandeb and the border between modern-day Ethiopian and Somalia. However, arid zones of the southern Sahara are completely uninhabitable in terms of precipitation (0% of cells fall within the precipitation range of 582-1368 mm at MIS 7 occupations), as is the tip of the Horn. Precipitation is thus the limiting factor when considering habitability for MIS 7, as the area deemed habitable in terms of precipitation is more geographically restricted than that derived from temperature. MIS 5 sees the largest increase in habitable area for temperature, with all cells showing temperature values within the MIS 5 occupation range of 13–25 °C for at least 60% of the period. Precipitation habitability, that we considered here to be ranging between 554-1385 mm, is however more fragmented, with pockets of uninhabitability forming around the northeast edge of Lake Victoria, in the region to the south of Lake Tana, and within modern-day Tanzania. Like MIS 7, this means that habitability is limited by precipitation in MIS 5. However, the habitability models for MIS 3 demonstrates the opposite pattern. Temperature habitability, defined as between 9–19 °C by the sites dating to MIS 3, shows the most restricted distribution of all the models, with habitable areas concentrated to the areas around Lake Victoria and the Ethiopian highlands, which are linked towards the southeast of Lake Turkana. Yet, MIS 3 shows the most persistent and widely distributed zone of habitability for precipitation, where much of eastern Africa, except towards the Sahara and the very tip of the Horn of Africa, remains persistently within the range of precipitation values experienced by MIS3 occupations (396-1593 mm). Overall, these models propose that interglacial MSA occupations, especially in MIS 5, may have been much more spatially diverse than presently known, however we note that these distributions are based purely on climatic data and ignore the potential effects of volcanic eruptions and subsequent ashfalls that have also been argued to have conditioned habitability in this region9.Figures 5Mean annual temperature (top), total annual precipitation (middle) and combined (bottom) phased models of habitability, demonstrating the percentage of time intervals (1000 years per interval) that remain within the climatic range of the occupations dated to that Marine Isotope Stage (MIS). The palaeocoastline has been estimated based on the predicted mean sea-level for each MIS.Full size imageFigures 6Scatterplots of the Mantel test results (Table 1, Supplementary Table S4–S5) between the pairwise distance matrix of toolkit composition (top) and raw material use (bottom) and the other distances matrices excluding the two binary variables, site type and method.Full size imageExploring the relationship between climate and Middle Stone Age occupationsWe then examined the extent to which patterns of variability in stone tool assemblage composition and raw material use correlated with environmental conditions within a 50 km radius at the mid-age of occupation of each assemblage, as well as a suite of other variables recorded by Blinkhorn and Grove11 (see Methods and Supplementary Methods S1 details). Figure 6 demonstrates the relationships between these variables and toolkit composition and raw material use, revealed using simple Mantel tests (Table 1 and Supplementary Table S4–S5). We found that MSA assemblage composition was correlated with differences in both mean annual temperature (adj. p = 0.001; Table 1) and total annual precipitation (adj. p = 0.003; Table 1), and raw material use also shows statistically significant relationships with both mean annual temperature (adj. p = 0.001; Table 1) and total annual precipitation (adj. p = 0.003; Table 1). With the use of Pleistocene climate models at high temporal resolutions, these results refine the findings of Blinkhorn and Grove11, which relied on comparisons of the climatic extremes of the LGM and LIG.Table 1 Simple Mantel test results for the effects of precipitation and temperature on toolkit composition and raw material. Statistical significance highlighted at p  More

  • in

    Tropical extreme droughts drive long-term increase in atmospheric CO2 growth rate variability

    Cox, P. M. et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability. Nature 494, 341–344 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bousquet, P. et al. Regional changes of CO2 fluxes of land and oceans since 1980. Science 290, 1253–1262 (2000).
    Google Scholar 
    Lee, K., Wanninkhof, R., Takahashi, T., Doney, S. C. & Feely, R. A. Low interannual variability in recent oceanic uptake of atmospheric carbon dioxide. Nature 396, 155 (1998).ADS 
    CAS 

    Google Scholar 
    Le Quéré, C. et al. Trends in the sources and sinks of carbon dioxide. Nat. Geosci. 2, 831 (2009).ADS 

    Google Scholar 
    Yue, C., Ciais, P., Houghton, R. A. & Nassikas, A. A. Contribution of land use to the interannual variability of the land carbon cycle. Nat. Commun. 11, 3170 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, W. et al. Variations in atmospheric CO2 growth rates coupled with tropical temperature. Proc. Natl Acad. Sci. 110, 13061–13066 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keeling, C. D., Whorf, T. P., Wahlen, M. & van der Plichtt, J. Interannual extremes in the rate of rise of atmospheric carbon dioxide since 1980. Nature 375, 666–670 (1995).ADS 
    CAS 

    Google Scholar 
    Wang, X. et al. A two-fold increase of carbon cycle sensitivity to tropical temperature variations. Nature 506, 212–215 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Humphrey, V. et al. Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature 560, 628–631 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Rödenbeck, C., Zaehle, S., Keeling, R. & Heimann, M. History of El Niño impacts on the global carbon cycle 1957–2017: A quantification from atmospheric CO2 data. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170303 (2018).Peylin, P. et al. Global atmospheric carbon budget: Results from an ensemble of atmospheric CO2 inversions. Biogeosciences 10, 6699–6720 (2013).ADS 
    CAS 

    Google Scholar 
    Fan, L. et al. Satellite-observed pantropical carbon dynamics. Nat. Plants. 5, 944–951 (2019).Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895 LP–895899 (2015).ADS 

    Google Scholar 
    Piao, S. et al. Interannual variation of terrestrial carbon cycle: Issues and perspectives. Glob. Chang. Biol. 26, 300–318 (2020).ADS 
    PubMed 

    Google Scholar 
    Wang, J., Zeng, N. & Wang, M. Interannual variability of the atmospheric CO2 growth rate: Roles of precipitation and temperature. Biogeosciences 13, 2339–2352 (2016).ADS 
    CAS 

    Google Scholar 
    Clark, D. A., Piper, S. C., Keeling, C. D. & Clark, D. B. Tropical rain forest tree growth and atmospheric carbon dynamics linked to interannual temperature variation during 1984-2000. Proc. Natl Acad. Sci. 100, 5852–5857 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Doughty, C. E. & Goulden, M. L. Are tropical forests near a high temperature threshold? J. Geophys. Res. Biogeosciences 114, 1–12 (2009).
    Google Scholar 
    Ballantyne, A. et al. Accelerating net terrestrial carbon uptake during the warming hiatus due to reduced respiration. Nat. Clim. Chang. 7, 148–152 (2017).ADS 
    CAS 

    Google Scholar 
    Anderegg, W. R. L. et al. Tropical nighttime warming as a dominant driver of variability in the terrestrial carbon sink. Proc. Natl Acad. Sci. 112, 201521479 (2015).
    Google Scholar 
    Jung, M. et al. Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature 541, 516–520 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Humphrey, V. et al. Soil moisture – atmosphere feedback dominates land carbon uptake variability. Nature 592, 65–69 (2021).Green, J. K. et al. Large influence of soil moisture on long-term terrestrial carbon uptake. Nature 565, 476–479 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, Y., Kumar, M., Katul, G. G., Feng, X. & Konings, A. G. Plant hydraulics accentuates the effect of atmospheric moisture stress on transpiration. Nat. Clim. Chang. 10, 691–695 (2020).ADS 
    CAS 

    Google Scholar 
    Phillips, O. L. et al. Drought–mortality relationships for tropical forests Oliver. N. Phytol. 187, 631–646 (2010).
    Google Scholar 
    Bigler, C., Gavin, D. G., Gunning, C. & Veblen, T. T. Drought induces lagged tree mortality in a subalpine forest in the Rocky Mountains. Oikos 116, 1983–1994 (2007).
    Google Scholar 
    Anderegg, W. R. L. et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science 349, 528–532 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aragão, L. E. O. C. et al. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia. Philos. Trans. R. Soc. B Biol. Sci. 363, 1779–1785 (2008).
    Google Scholar 
    Schwalm, C. R. et al. Global patterns of drought recovery. Nature 548, 202–205 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Huang, M., Wang, X., Keenan, T. F. & Piao, S. Drought timing influences the legacy of tree growth recovery. Glob. Chang. Biol. 24, 3546–3559 (2018).ADS 
    PubMed 

    Google Scholar 
    Chambers, J. Q., Higuchi, N., Schimel, J. P., Ferreira, L. V. & Melack, J. M. Decomposition and carbon cycling of dead trees in tropical forests of the central Amazon. Oecologia 122, 380–388 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Berenguer, E. et al. Tracking the impacts of El Niño drought and fire in human-modified Amazonian forests. Proc. Natl Acad. Sci. 118, e2019377118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ma, X. et al. Drought rapidly diminishes the large net CO2 uptake in 2011 over semi-arid Australia. Sci. Rep. 6, 1–9 (2016).CAS 

    Google Scholar 
    Sitch, S. et al. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Glob. Chang. Biol. 14, 2015–2039 (2008).ADS 

    Google Scholar 
    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).ADS 

    Google Scholar 
    Van Der Werf, G. R. et al. Global fire emissions estimates during 1997-2016. Earth Syst. Sci. Data 9, 697–720 (2017).ADS 

    Google Scholar 
    Ault, T. R. On the essentials of drought in a changing climate. Science 368, 256–260 (2020).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar 
    IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013). https://doi.org/10.1017/CBO9781107415324.Reichstein, M. et al. Climate extremes and the carbon cycle. Nature 500, 287 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frank, D. et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Change Biol. 21, 2861–2880 (2015).ADS 

    Google Scholar 
    Zscheischler, J. et al. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 9, 035001 (2014).Von Buttlar, J. et al. Impacts of droughts and extreme-temperature events on gross primary production and ecosystem respiration: A systematic assessment across ecosystems and climate zones. Biogeosciences 15, 1293–1318 (2018).ADS 

    Google Scholar 
    Anderegg, W. R. L., Berry, J. A. & Field, C. B. Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci. 17, 693–700 (2012).CAS 
    PubMed 

    Google Scholar 
    Wang, J., Zeng, N. & Wang, M. Interannual variability of the atmospheric CO2growth rate: Roles of precipitation and temperature. Biogeosciences 13, 2339–2352 (2016).ADS 
    CAS 

    Google Scholar 
    Tan, Z. H. et al. Optimum air temperature for tropical forest photosynthesis: Mechanisms involved and implications for climate warming. Environ. Res. Lett. 12, 054022 (2017).Green, J. K., Berry, J., Ciais, P., Zhang, Y. & Gentine, P. Amazon rainforest photosynthesis increases in response to atmospheric dryness. Sci. Adv. 6, 1–10 (2020).
    Google Scholar 
    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).ADS 
    CAS 

    Google Scholar 
    Jiménez-Muñoz, J. C. et al. Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016. Sci. Rep. 6, 1–7 (2016).
    Google Scholar 
    Lyon, B. The strength of El Niño and the spatial extent of tropical drought. Geophys. Res. Lett. 31, 1–4 (2004).
    Google Scholar 
    Ciais, P. et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437, 529–533 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zscheischler, J., Mahecha, M. D. & Buttlar, J. Von. A few extreme events dominate global interannual variability in gross primary production. Environ. Res. Lett. 9, 035001 (2014).Zscheischler, J. et al. Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Glob. Biogeochem. Cycles 28, 585–600 (2014).ADS 
    CAS 

    Google Scholar 
    Saatchi, S. et al. Persistent effects of a severe drought on Amazonian forest canopy. Proc. Natl Acad. Sci. U. S. A. 110, 565–570 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Williams, I. N., Torn, M. S., Riley, W. J. & Wehner, M. F. Impacts of climate extremes on gross primary production under global warming. Environ. Res. Lett. 9, 094011 (2014).Keenan, T. F., Luo, X., Zhang, Y. & Zhou, S. Ecosystem aridity and atmospheric CO2. Sci. (80-.). 368, 251.2–252 (2020).
    Google Scholar 
    Schuldt, B. et al. Change in hydraulic properties and leaf traits in a tall rainforest tree species subjected to long-term throughfall exclusion in the perhumid tropics. Biogeosciences 8, 2179–2194 (2011).ADS 

    Google Scholar 
    Hawkins, L., Kumar, J., Luo, X., Sihi, D. & Zhou, S. Measuring, Monitoring, and Modeling Ecosystem Cycling. Eos (Washington. DC). 101, (2020).Jung, M. et al. Scaling carbon fluxes from eddy covariance sites to globe: Synthesis and evaluation of the FLUXCOM approach. Biogeosciences 17, 1343–1365 (2020).ADS 
    CAS 

    Google Scholar 
    Besnard, S. et al. Memory effects of climate and vegetation affecting net ecosystem CO2 fluxes in global forests. PLoS One 14, 1–22 (2019).
    Google Scholar 
    Masarie, K. A. & Tans, P. P. Extension and integration of atmospheric carbon dioxide data into a globally consistent measurement record. J. Geophys. Res. 100, 11593 (1995).ADS 
    CAS 

    Google Scholar 
    Le Quéré, C. et al. Global Carbon Budget 2018. Earth Syst. Sci. Data 10, 2141–2194 (2018).ADS 

    Google Scholar 
    Keeling, C. D. et al. Atmospheric carbon dioxide variations at Mauna Loa Observatory, Hawaii. Tellus 28, 538–551 (1976).ADS 
    CAS 

    Google Scholar 
    Ballantyne, A. P., Alden, C. B., Miller, J. B., Trans, P. P. & White, J. W. C. Increase in observed net carbon dioxide uptake by land and oceans during the past 50 years. Nature 488, 70–73 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).
    Google Scholar 
    Davis, T. W. et al. Simple process-led algorithms for simulating habitats (SPLASH v.1.0): Robust indices of radiation, evapotranspiration and plant-available moisture. Geosci. Model Dev. 10, 689–708 (2017).ADS 

    Google Scholar 
    Priestley, C. H. B. & Taylor, R. J. On the Assessment of Surface Heat Flux and Evaporation Using Large-Scale Parameters. Mon. Weather Rev. 100, 81–92 (1972).ADS 

    Google Scholar 
    Muller, A., Rohde, R., Jacobsen, R., R., Muller, E. & Wickham, C. A New Estimate of the Average Earth Surface Land Temperature Spanning 1753 to 2011. Geoinformatics Geostatistics Overv. 01, 1–7 (2013).
    Google Scholar 
    Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res. Atmos. 111, 1–21 (2006).
    Google Scholar 
    Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, 1–29 (2010).
    Google Scholar 
    Willmott, C. J. & Matsuura, K. Smart interpolation of annually averaged air temperature in the United States. J. Appl. Meteorol. 34, 2577–2586 (1995).ADS 

    Google Scholar 
    Schneider, U. et al. Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere (Basel). 8, 30052 (2017).Chen, M., Xie, P. & Janowiak, J. E. Global land precipitation: A 50-yr monthly analysis based on gauge observations. J. Hydrometeorol. 3, 249–266 (2002).ADS 

    Google Scholar 
    Friedl, M. A. et al. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sens. Environ. 114, 168–182 (2010).ADS 

    Google Scholar 
    Trenberth, K. E. et al. Global warming and changes in drought. Nat. Clim. Chang. 4, 17–22 (2014).ADS 

    Google Scholar 
    Milly, P. C. D. & Dunne, K. A. Potential evapotranspiration and continental drying. Nat. Clim. Chang. 6, 946–949 (2016).ADS 

    Google Scholar 
    Seneviratne, S. I. et al. Changes in climate extremes and their impacts on the natural physical environment. Manag. Risks Extrem. Events Disasters Adv. Clim. Chang. Adapt. Spec. Rep. Intergov. Panel Clim. Chang. 9781107025, 109–230 (2012).
    Google Scholar 
    Baccini, A. et al. Tropical forests are a net carbon source based on aboveground measurements of gain and loss. Science 358, 230–234 (2017).ADS 
    MathSciNet 
    CAS 
    PubMed 
    MATH 

    Google Scholar  More

  • in

    Increasing terrestrial ecosystem carbon release in response to autumn cooling and warming

    Climate dataMonthly climate data (air temperature at 2 m and cloudiness) with a spatial resolution of 0.5° were obtained from the CRU Time Series 4.0.15 We extracted data from 1982 to 2018 to match the time series of satellite vegetation observations. The VPD was calculated as the difference between saturated water-vapour pressure and actual water-vapour pressure31. Temperature and vapour-pressure data used for the VPD calculation were obtained from CRU.Soil moisture dataThe daily root-zone soil moisture with a spatial resolution of 0.25° for the period 1980–2018 was obtained from the Global Land Evaporation Amsterdam Model (GLEAM v.3.3a)32. The dataset is based on radiation and air temperature from a reanalysis, a combination of gauge-based, reanalysis-based and satellite-based precipitation and satellite-based vegetation optical depth.Fire emission dataMonthly carbon emissions from biomass burning were obtained from the fourth-generation Global Fire Emission Database33. This dataset has a spatial resolution of 0.25° and provides global data on the burning area and emissions on three-hourly, daily and monthly timescales and estimates the contributions of different fire types. Emissions data can be obtained for different substances, such as carbon (C), dry matter (DM), carbon dioxide (CO2), carbon monoxide (CO) and methane (CH4).Satellite vegetation greenness dataThe satellite-based NDVI archived from the MODIS NDVI dataset with a spatial resolution of 0.5° and a temporal resolution of 16 days was used here to detect vegetation greenness changes. In addition, the solar-induced chlorophyll fluorescence product was used as a proxy of vegetation photosynthesis. We furthermore used the four-day clear-sky CSIF time series (2000–2019) with a spatial resolution of 0.05° × 0.05° from ref. 34 (https://osf.io/8xqy6/).GPP based on NIRvThe NIRv is a newly developed satellite vegetation index combining NDVI and near-infrared band reflectivity of vegetation and is recognized as a proxy of GPP35,36. We obtained the 0.05° NIRv_GPP from 1982 to 2018 from ref. 37. This product was produced by upscaling the relationships between NIRv and observed GPP to the global scale and was judged to perform well in capturing interannual trends of GPP37.Atmospheric CO2 dataIn situ observations of daily CO2 concentration at Point Barrow were obtained from the National Oceanic and Atmospheric Administration/Earth System Research Laboratory network. According to analyses of atmospheric transport and mixing processes, the CO2 signals detected at Barrow are suggested to be an integrated measure of carbon fluxes over both the high latitudes and the middle latitudes20.Ecosystem carbon fluxesSimulations of ecosystem carbon fluxes (GPP, TER and NEE) derived from process-based model simulations (TRENDY), empirical models based on flux tower observations (FLUXCOM) and atmospheric CO2 inversion models were jointly used for the investigation of net ecosystem carbon exchange over the northern middle and high latitudes.The TRENDY dataset is an ensemble of dynamic global vegetation model (DGVM) simulations that are forced by CRU–National Centers for Environmental Prediction historical climate and CO2 inputs38. The DGVMs use a bottom‐up approach to simulate terrestrial CO2 fluxes (for example, GPP, TER and NEE), and were extensively used to explore the mechanisms driving changes in carbon uptake and fluxes. The simulated GPP, TER and NEE from nine models of TRENDYv.8 (Supplementary Table 1) were used in this study. The S2 experiment, which considered the effect of both observed changes of CO2 and climate on ecosystem carbon fluxes, was selected for studying the changes of ecosystem carbon fluxes before and after the temperature shift.The FLUXCOM dataset is an upscaling product using empirical models forced by eddy-covariance data from 224 flux towers, remote sensing data and climate data8,9,10. It provides estimates of global energy and carbon fluxes (http://www.fluxcom.org/). The empirical models were trained by three machine learning algorithms, including Random Forests, Artificial Neural Networks and Multivariate Adaptive Regression Spline, and thus provide a series of estimates of global carbon fluxes. We used the FLUXCOM carbon fluxes data driven by the European Centre for Medium-Range Weather Forecasts Reanalysis v.5 (ERA5) climate reanalysis from 1979 to 2018.The atmospheric CO2 inversion datasets provide estimates of NEE over land from long-term atmospheric CO2 measurements using atmospheric transport models. Three atmospheric CO2 inversion products were used here: monthly net biome production with a spatial resolution of 3.75° × 2.5° from the JENA CarboScope (version s76_vo2020) for the period 1976–2019, long-term global CO2 fluxes estimated by the NICAM-based Inverse Simulation for Monitoring CO2 (NISMON-CO2) between 1990 and 2019 and the Copernicus Atmosphere Monitoring Service12 (CAMS v.19r1) dataset between 1979 and 2019.Eddy-covariance CO2 observation dataThe eddy-covariance measurements of carbon fluxes from tower sites were obtained from the Integrated Carbon Observation System 2018 and the FLUXNET Network 2015. We selected 48 eddy-covariance CO2 observation sites with 10 yr continuous data (Supplementary Table 2) located north of 25° N and extracted temperature and NEE data from September to November to explore the change of ecosystem carbon exchange in autumn.NEE estimationThe monthly NEE was estimated as the difference between TER and GPP. The autumn (September to November) GPP and TER derived from TRENDY and FLUXCOM over the study region were obtained by aggregating GPP and TER from each grid cell weighted by the grid-cell area. The NEE derived from atmospheric CO2 inversions was directly used and compared against those from TRENDY and FLUXCOM. To compare the NEE before and after the temperature turning point, we divided the NEE time series into two periods: 1982–2003 and 2004–2018.Calculation of the AZCWe used observations of CO2 from Point Barrow to characterize the trends in the zero-crossing date of CO2 (downward in spring and upward in autumn). These trends roughly correspond to the beginning of net carbon uptake in spring and the beginning of net carbon release in autumn. According to the method of ref. 39, we obtained the detrended seasonal CO2 curve by separating the seasonal cycle from the long-term trend and short-term variations, fitting a function consisting of a quadratic polynomial for the long-term trend and four harmonics for the annual cycle to the daily data. The residuals from this function fit are then obtained. A 1.5-month and a 390-day full-width half-maximum-value averaging filter were used for the digital filtering of residuals to remove the short-term variations and the long-term trend, respectively. Then we got the zero-crossing dates when the detrended seasonal CO2 curve crosses the zero line from positive to negative and negative to positive, respectively.The autumn carbon release is calculated as the amount of CO2 released between the autumn zero-crossing date and the first week of September following ref. 21.Identification of turning point of temperatureWe used the piecewise linear regression method to determine the turning point of the mean autumn (September to November) temperature during 1982–2018 over the area north of 25° N. In addition, a moving t-test method was used to verify the turning-point identification. Then, the temporal trends of the mean autumn temperature before and after the turning point were calculated using the Mann–Kendall non-parametric trend test method, and the confidence intervals were determined using Sen’s slope statistics. According to the temperature trends before and after the turning point, we further identified the CAs as where the autumn temperature shows a decreasing trend after the turning point (2004) relative to that before the turning point, and WAs as regions outside the CAs. To maintain spatial integrity and continuity, we ignored the significance of the temperature trend when dividing the CAs and WAs.To verify that our analysis is not affected by the division of the time period and regions, we also identified the temperature turning point at each grid point using the piecewise linear regression method and then extracted those grid points with significant temperature change and significant NEE change (P  More

  • in

    Hibernation slows epigenetic ageing in yellow-bellied marmots

    Flatt, T. A new definition of aging? Front. Genet. 3, 148 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Berdasco, M. & Esteller, M. Hot topics in epigenetic mechanisms of aging: 2011. Aging Cell 11, 181–186 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jylhävä, J., Pedersen, N. L. & Hägg, S. Biological age predictors. EBioMedicine 21, 29–36 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, K. H., Cameron-Smith, D., Wessner, B. & Franzke, B. Biomarkers of aging: from function to molecular biology. Nutrients 8, 338 (2016).
    Google Scholar 
    Field, A. E. et al. DNA methylation clocks in aging: categories, causes, and consequences. Mol. Cell 71, 882–895 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging 7, 1159–1170 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nussey, D. H., Froy, H., Lemaitre, J. F., Gaillard, J. M. & Austad, S. N. Senescence in natural populations of animals: widespread evidence and its implications for bio-gerontology. Ageing Res. Rev. 12, 214–225 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Johnson, T. E. Recent results: biomarkers of aging. Exp. Gerontol. 41, 1243–1246 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Unnikrishnan, A. et al. The role of DNA methylation in epigenetics of aging. Pharmacol. Ther. 195, 172–185 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bocklandt, S. et al. Epigenetic predictor of age. PLoS ONE 6, e14821 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Polanowski, A. M., Robbins, J., Chandler, D. & Jarman, S. N. Epigenetic estimation of age in humpback whales. Mol. Ecol. Resour. 14, 976–987 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Petkovich, D. A. et al. Using DNA methylation profiling to evaluate biological age and longevity interventions. Cell Metab. 25, 954–960 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stubbs, T. M. et al. Multi-tissue DNA methylation age predictor in mouse. Genome Biol. 18, 68 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, T. et al. Epigenetic aging signatures in mice livers are slowed by dwarfism, calorie restriction and rapamycin treatment. Genome Biol. 18, 57 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Ito, G., Yoshimura, K. & Momoi, Y. Analysis of DNA methylation of potential age-related methylation sites in canine peripheral blood leukocytes. J. Vet. Med. Sci. 79, 745–750 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thompson, M. J., von Holdt, B., Horvath, S. & Pellegrini, M. An epigenetic aging clock for dogs and wolves. Aging 9, 1055–1068 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lowe, R. et al. Ageing-associated DNA methylation dynamics are a molecular readout of lifespan variation among mammalian species. Genome Biol. 19, 22 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Zannas, A. S. et al. Lifetime stress accelerates epigenetic aging in an urban, African American cohort: relevance of glucocorticoid signaling. Genome Biol. 16, 266 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Zaghlool, S. B. et al. Association of DNA methylation with age, gender, and smoking in an Arab population. Clin. Epigenetics 7, 6 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Gao, X., Zhang, Y., Breitling, L. P. & Brenner, H. Relationship of tobacco smoking and smoking-related DNA methylation with epigenetic age acceleration. Oncotarget 7, 46878–46889 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Marioni, R. E. et al. The epigenetic clock and telomere length are independently associated with chronological age and mortality. Int. J. Epidemiol. 45, 424–432 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Marioni, R. E. et al. DNA methylation age of blood predicts all-cause mortality in later life. Genome Biol. 16, 25 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Perna, L. et al. Epigenetic age acceleration predicts cancer, cardiovascular, and all-cause mortality in a German case cohort. Clin. Epigenetics 8, 64 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Chen, B. H. et al. DNA methylation‐based measures of biological age: meta‐analysis predicting time to death. Aging 8, 1844–1859 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Christiansen, L. et al. DNA methylation age is associated with mortality in a longitudinal Danish twin study. Aging Cell 15, 149–154 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Horvath, S. & Levine, A. J. HIV-1 infection accelerates age according to the epigenetic clock. J. Infect. Dis. 212, 1563–1573 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Horvath, S. et al. Accelerated epigenetic aging in Down syndrome. Aging Cell 14, 491–495 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parrott, B. B. & Bertucci, E. M. Epigenetic aging clocks in ecology and evolution. Trends Ecol. Evol. 34, 767–770 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, W. Epigenetic aging clocks in mice and men. Genome Biol. 18, 107 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, T. et al. Quantitative translation of dog-to-human aging by conserved remodeling of the DNA methylome. Cell Syst. 11, 176–185 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Wilkinson, G. S. & Adams, D. M. Recurrent evolution of extreme longevity in bats. Biol. Lett. 15, 20180860 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Austad, S. N. Comparative biology of aging. J. Gerontol. A 64, 199–201 (2009).
    Google Scholar 
    Wu, C. W. & Storey, K. B. Life in the cold: links between mammalian hibernation and longevity. Biomol. Concepts 7, 41–52 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turbill, C., Bieber, C. & Ruf, T. Hibernation is associated with increased survival and the evolution of slow life histories among mammals. Proc. R. Soc. Lond. B 278, 3355–3363 (2011).
    Google Scholar 
    Chen, Y. et al. Mechanisms for increased levels of phosphorylation of elongation factor-2 during hibernation in ground squirrels. Biochemistry 40, 11565–11570 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knight, J. E. et al. mRNA stability and polysome loss in hibernating Arctic ground squirrels (Spermophilus parryii). Mol. Cell. Biol. 20, 6374–6379 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yan, J., Barnes, B. M., Kohl, F. & Marr, T. G. Modulation of gene expression in hibernating arctic ground squirrels. Physiol. Genomics 32, 170–181 (2008).CAS 

    Google Scholar 
    Van Breukelen, F. & Martin, S. L. Molecular adaptations in mammalian hibernators: unique adaptations or generalized responses? J. Appl. Physiol. 92, 2640–2647 (2002).
    Google Scholar 
    Morin, P. & Storey, K. B. Evidence for a reduced transcriptional state during hibernation in ground squirrels. Cryobiology 53, 310–318 (2006).CAS 

    Google Scholar 
    van Breukelen, F. & Martin, S. L. Reversible depression of transcription during hibernation. J. Comp. Physiol. B 172, 355–361 (2002).
    Google Scholar 
    Azzu, V. & Valencak, T. G. Energy metabolism and ageing in the mouse: a mini-review. Gerontology 63, 327–336 (2017).
    Google Scholar 
    Schrack, J. A., Knuth, N. D., Simonsick, E. M. & Ferrucci, L. ‘IDEAL’ aging is associated with lower resting metabolic rate: the Baltimore Longitudinal Study of Aging. J. Am. Geriatr. Soc. 62, 667–672 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Al-attar, R. & Storey, K. B. Suspended in time: molecular responses to hibernation also promote longevity. Exp. Gerontol. 134, 110889 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carey, H. V., Andrews, M. T. & Martin, S. L. Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol. Rev. 83, 1153–1181 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turbill, C., Ruf, T., Smith, S. & Bieber, C. Seasonal variation in telomere length of a hibernating rodent. Biol. Lett. 9, 20121095 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Turbill, C., Smith, S., Deimel, C. & Ruf, T. Daily torpor is associated with telomere length change over winter in Djungarian hamsters. Biol. Lett. 8, 304–307 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Armitage, K. B., Blumstein, D. T. & Woods, B. C. Energetics of hibernating yellow-bellied marmots (Marmota flaviventris). Comp. Biochem. Physiol. A 134, 101–114 (2003).
    Google Scholar 
    Armitage, K. B. in Molecules to Migration: the Pressures of Life (eds Morris, S. & Vosloo, A.) 591–602 (Medimond Publishing, 2008).Haghani, A. et al. DNA methylation networks underlying mammalian traits. Preprint at bioRxiv https://doi.org/10.1101/2021.03.16.435708 (2021).Lu, A. T. et al. Universal DNA methylation age across mammalian tissues. Preprint at bioRxiv https://doi.org/10.1101/2021.01.18.426733 (2021).Yang, S. et al. Rare mutations in AHDC1 in patients with obstructive sleep apnea. Biomed. Res. Int. https://doi.org/10.1155/2019/5907361 (2019).De Paoli-Iseppi, R. et al. Measuring animal age with DNA methylation: from humans to wild animals. Front. Genet. 8, 106 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Arneson, A. et al. A mammalian methylation array for profiling methylation levels at conserved sequences. Nat. Commun. 13, 783 (2022).CAS 

    Google Scholar 
    Armitage, K. B. Reproductive strategies of yellow-bellied marmots: energy conservation and differences between the sexes. J. Mammal. 79, 385–393 (1998).
    Google Scholar 
    Armitage, K. B. in Adaptive Strategies and Diversity in Marmots (eds Ramousse, R. et al.) 133–142 (International Marmot Network, 2003).Snir, S., Farrell, C. & Pellegrini, M. Human epigenetic ageing is logarithmic with time across the entire lifespan. Epigenetics 14, 912–926 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Snir, S., VonHoldt, B. M. & Pellegrini, M. A statistical framework to identify deviation from time linearity in epigenetic aging. PLoS Comput. Biol. 12, e1005183 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Farrell, C., Snir, S. & Pellegrini, M. The epigenetic pacemaker: modeling epigenetic states under an evolutionary framework. Bioinformatics 36, 4662–4663 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marioni, R. E. et al. Tracking the epigenetic clock across the human life course: a meta-analysis of longitudinal cohort data. J. Gerontol. A 74, 57–61 (2019).
    Google Scholar 
    El Khoury, L. Y. et al. Systematic underestimation of the epigenetic clock and age acceleration in older subjects. Genome Biol. 20, 283 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Kilgore, D. L. & Armitage, K. B. Energetics of yellow-bellied marmot populations. Ecology 59, 78–88 (1978).
    Google Scholar 
    Armitage, K. B. Social and population dynamics of yellow-bellied marmots: results from long-term research. Annu. Rev. Ecol. Syst. 22, 379–407 (1991).
    Google Scholar 
    Webb, D. R. Environmental harshness, heat stress, and Marmota flaviventris. Oecologia 44, 390–395 (1980).
    Google Scholar 
    Armitage, K. B. Evolution of sociality in marmots. J. Mammal. 80, 1–10 (1999).
    Google Scholar 
    Allainé, D. Sociality, mating system and reproductive skew in marmots: evidence and hypotheses. Behav. Processes 51, 21–34 (2000).
    Google Scholar 
    Arnold, W. The evolution of marmot sociality. II. Costs and benefits of joint hibernation. Behav. Ecol. Sociobiol. 27, 239–246 (1990).
    Google Scholar 
    Villanueva-Cañas, J. L., Faherty, S. L., Yoder, A. D. & Albà, M. M. Comparative genomics of mammalian hibernators using gene networks. Integr. Comp. Biol. 54, 452–462 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Lyman, C. P., O’Brien, R. C., Greene, G. C. & Papafrangos, E. D. Hibernation and longevity in the Turkish hamster Mesocricetus brandti. Science 212, 668–670 (1981).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kirby, R., Johnson, H. E., Alldredge, M. W. & Pauli, J. N. The cascading effects of human food on hibernation and cellular aging in free-ranging black bears. Sci. Rep. 9, 2197 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Giroud, S. et al. Late-born intermittently fasted juvenile garden dormice use torpor to grow and fatten prior to hibernation: consequences for ageing processes. Proc. R. Soc. Lond. B 281, 20141131 (2014).
    Google Scholar 
    Hoelzl, F. et al. Telomeres are elongated in older individuals in a hibernating rodent, the edible dormouse (Glis glis). Sci. Rep. 6, 36856 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haussmann, M. F. & Mauck, R. A. Telomeres and longevity: testing an evolutionary hypothesis. Mol. Biol. Evol. 25, 220–228 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Lieshout, S. H. J. et al. Individual variation in early-life telomere length and survival in a wild mammal. Mol. Ecol. 28, 4152–4165 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Lowe, D., Horvath, S. & Raj, K. Epigenetic clock analyses of cellular senescence and ageing. Oncotarget 7, 8524–8531 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Kabacik, S., Horvath, S., Cohen, H. & Raj, K. Epigenetic ageing is distinct from senescence-mediated ageing and is not prevented by telomerase expression. Aging 10, 2800–2815 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Keil, G., Cummings, E. & Magalhães, J. P. Being cool: how body temperature influences ageing and longevity. Biogerontology 16, 383–397 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Means, L. W., Higgins, J. L. & Fernandez, T. J. Mid-life onset of dietary restriction extends life and prolongs cognitive functioning. Physiol. Behav. 54, 503–508 (1993).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Speakman, J. R. & Mitchell, S. E. Caloric restriction. Mol. Aspects Med. 32, 159–221 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walford, R. L. & Spindler, S. R. The response to calorie restriction in mammals shows features also common to hibernation: a cross-adaptation hypothesis. J. Gerontol. A 52, B179–B183 (1997).CAS 

    Google Scholar 
    Conti, B. et al. Transgenic mice with a reduced core body temperature have an increased life span. Science 314, 825–828 (2006).CAS 

    Google Scholar 
    Conti, B. Considerations on temperature, longevity and aging. Cell. Mol. Life Sci. 65, 1626–1630 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gribble, K. E., Moran, B. M., Jones, S., Corey, E. L. & Mark Welch, D. B. Congeneric variability in lifespan extension and onset of senescence suggest active regulation of aging in response to low temperature. Exp. Gerontol. 114, 99–106 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Johns, D. W. & Armitage, K. B. Behavioral ecology of alpine yellow-bellied marmots. Behav. Ecol. Sociobiol. 5, 133–157 (1979).
    Google Scholar 
    Armitage, K. B. Social behaviour of a colony of the yellow-bellied marmot (Marmota flaviventris). Anim. Behav. 10, 319–331 (1962).
    Google Scholar 
    Armitage, K. B. Vernal behaviour of the yellow-bellied marmot (Marmota flaviventris). Anim. Behav. 13, 59–68 (1965).
    Google Scholar 
    Armitage, K. B., Melcher, J. C. & Ward, J. M. Oxygen consumption and body temperature in yellow-bellied marmot populations from montane-mesic and lowland-xeric environments. J. Comp. Physiol. B 160, 491–502 (1990).
    Google Scholar 
    Sheriff, M. J., Williams, C. T., Kenagy, G. J., Buck, C. L. & Barnes, B. M. Thermoregulatory changes anticipate hibernation onset by 45 days: data from free-living arctic ground squirrels. J. Comp. Physiol. B 182, 841–847 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Schwartz, C., Hampton, M. & Andrews, M. T. Hypothalamic gene expression underlying pre-hibernation satiety. Genes Brain Behav. 14, 310–318 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Geiser, F. Metabolic rate and body temperature reduction during hibernation and daily torpor. Annu. Rev. Physiol. 66, 239–274 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Maegawa, S. et al. Widespread and tissue specific age-related DNA methylation changes in mice. Genome Res. 20, 332–340 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hampton, M., Melvin, R. G. & Andrews, M. T. Transcriptomic analysis of brown adipose tissue across the physiological extremes of natural hibernation. PLoS ONE 8, e85157 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Lindner, M. et al. Temporal changes in DNA methylation and RNA expression in a small song bird: within- and between-tissue comparisons. BMC Genomics 22, 36 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schwartz, C., Hampton, M. & Andrews, M. T. Seasonal and regional differences in gene expression in the brain of a hibernating mammal. PLoS ONE 8, e58427 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dopico, X. C. et al. Widespread seasonal gene expression reveals annual differences in human immunity and physiology. Nat. Commun. 6, 7000 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jansen, H. T. et al. Hibernation induces widespread transcriptional remodeling in metabolic tissues of the grizzly bear. Commun. Biol. 2, 336 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Viitaniemi, H. M. et al. Seasonal variation in genome-wide DNA methylation patterns and the onset of seasonal timing of reproduction in great tits. Genome Biol. Evol. 11, 970–983 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Johnston, R. A., Paxton, K. L., Moore, F. R., Wayne, R. K. & Smith, T. B. Seasonal gene expression in a migratory songbird. Mol. Ecol. 25, 5680–5691 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boyer, B. B. & Barnes, B. M. Molecular and metabolic aspects of mammalian hibernation. Bioscience 49, 713–724 (1999).
    Google Scholar 
    Siutz, C., Ammann, V. & Millesi, E. Shallow torpor expression in free-ranging common hamsters with and without food supplements. Front. Ecol. Evol. 6, 190 (2018).
    Google Scholar 
    Langer, F., Havenstein, N. & Fietz, J. Flexibility is the key: metabolic and thermoregulatory behaviour in a small endotherm. J. Comp. Physiol. B 188, 553–563 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bieber, C., Turbill, C. & Ruf, T. Effects of aging on timing of hibernation and reproduction. Sci. Rep. 8, 13881 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Storey, K. B. & Storey, J. M. Aestivation: signaling and hypometabolism. J. Exp. Biol. 215, 1425–1433 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Krivoruchko, A. & Storey, K. B. Forever young: mechanisms of natural anoxia tolerance and potential links to longevity. Oxid. Med. Cell. Longev. 3, 186–198 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Storey, K. B. & Storey, J. M. Metabolic rate depression in animals: transcriptional and translational controls. Biol. Rev. 79, 207–233 (2004).PubMed 
    PubMed Central 

    Google Scholar 
    Puspitasari, A. et al. Hibernation as a tool for radiation protection in space exploration. Life 11, 54 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Blumstein, D. T. Yellow-bellied marmots: insights from an emergent view of sociality. Philos. Trans. R. Soc. Lond. B 368, 20120349 (2013).
    Google Scholar 
    Armitage, K. B. & Downhower, J. F. Demography of yellow-bellied marmot populations. Ecology 55, 1233–1245 (1974).
    Google Scholar 
    Zhou, W., Triche, T. J., Laird, P. W. & Shen, H. SeSAMe: reducing artifactual detection of DNA methylation by Infinium BeadChips in genomic deletions. Nucleic Acids Res. 46, e123 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Labarre, B. A. et al. MethylToSNP: identifying SNPs in Illumina DNA methylation array data. Epigenetics Chromatin 12, 79 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Snir, S., Wolf, Y. I. & Koonin, E. V. Universal pacemaker of genome evolution. PLoS Comput. Biol. 8, e1002785 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zou, H. & Hastie, T. Regularization and variable selection via the elastic net. J. R. Stat. Soc. B 67, 301–320 (2005).
    Google Scholar 
    Friedman, J., Hastie, T. & Tibshirani, R. Regularization paths for generalized linear models via coordinate descent. J. Stat. Softw. 33, 1–22 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Snir, S. & Pellegrini, M. An epigenetic pacemaker is detected via a fast conditional expectation maximization algorithm. Epigenomics 10, 695–706 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, S. & Scheipl, F. gamm4: Generalized additive mixed models using mgcv and lme4, R package version 0.2-3 (2014); http://cran.r-project.org/package=gamm4R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2020).RStudio Team. RStudio: Integrated Development Environment for R (RStudio Inc., 2019).Van Rossum, G. & Drake, F. L. Python 3 Reference Manual (CreateSpace, 2009).Kluyver, T. et al. in Positioning and Power in Academic Publishing: Players, Agents and Agendas (eds Loizides, F. & Scmidt, B.) 87–90 (IOS Press, 2016); https://doi.org/10.3233/978-1-61499-649-1-87Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer-Verlag, 2016).Kassambara, A. ggpubr: ‘ggplot2’ based publication ready plots https://cran.r-project.org/package=ggpubr (2020).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).
    Google Scholar 
    Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest package: tests in linear mixed effects models. J. Stat. Softw. 82, 1–26 (2017).
    Google Scholar 
    Mclean, C. Y. et al. GREAT improves functional interpretation of cis-regulatory regions. Nat. Biotechnol. 28, 495–501 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pinho, G. M. et al. Hibernation slows epigenetic ageing in yellow-bellied marmots data sets. OSF https://doi.org/10.17605/OSF.IO/E42ZV (2021). More

  • in

    Experimental manipulation of microbiota reduces host thermal tolerance and fitness under heat stress in a vertebrate ectotherm

    Paaijmans, K. P. et al. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19, 2373–2380 (2013).
    Google Scholar 
    Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).PubMed 

    Google Scholar 
    Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).CAS 
    PubMed 

    Google Scholar 
    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).CAS 
    PubMed 

    Google Scholar 
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).
    Google Scholar 
    Angilletta, M. J. Jr Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).PubMed 

    Google Scholar 
    Jørgensen, L. B., Malte, H. & Overgaard, J. How to assess Drosophila heat tolerance: unifying static and dynamic tolerance assays to predict heat distribution limits. Funct. Ecol. 33, 629–642 (2019).
    Google Scholar 
    Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220, 2685–2696 (2017).PubMed 

    Google Scholar 
    Gangloff, E. J. & Telemeco, R. S. High temperature, oxygen, and performance: insights from reptiles and amphibians. Integr. Comp. Biol. 58, 9–24 (2018).CAS 
    PubMed 

    Google Scholar 
    Perry, G. M., Danzmann, R. G., Ferguson, M. M. & Gibson, J. P. Quantitative trait loci for upper thermal tolerance in outbred strains of rainbow trout (Oncorhynchus mykiss). Heredity 86, 333–341 (2001).CAS 
    PubMed 

    Google Scholar 
    Healy, T. M. & Schulte, P. M. Factors affecting plasticity in whole-organism thermal tolerance in common killifish (Fundulus heteroclitus). J. Comp. Physiol. B 182, 49–62 (2012).PubMed 

    Google Scholar 
    Hu, X. P. & Appel, A. G. Seasonal variation of critical thermal limits and temperature tolerance in Formosan and eastern subterranean termites (Isoptera: Rhinotermitidae). Environ. Entomol. 33, 197–205 (2004).CAS 

    Google Scholar 
    Nyamukondiwa, C. & Terblanche, J. S. Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): effects of age, gender and feeding status. J. Therm. Biol. 34, 406–414 (2009).
    Google Scholar 
    Greenspan, S. E. et al. Infection increases vulnerability to climate change via effects on host thermal tolerance. Sci. Rep. 7, 9349 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Padfield, D., Castledine, M. & Buckling, A. Temperature-dependent changes to host–parasite interactions alter the thermal performance of a bacterial host. ISME J. 14, 389–398 (2020).PubMed 

    Google Scholar 
    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberdi, A., Aizpurua, O., Bohmann, K., Zepeda-Mendoza, M. L. & Gilbert, M. T. P. Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol. Evol. 31, 689–699 (2016).PubMed 

    Google Scholar 
    Kohl, K. D. & Carey, H. V. A place for host–microbe symbiosis in the comparative physiologist’s toolbox. J. Exp. Biol. 219, 3496–3504 (2016).PubMed 

    Google Scholar 
    Fontaine, S. S. & Kohl, K. D. Optimal integration between host physiology and functions of the gut microbiome. Phil. Trans. R. Soc. B 375, 20190594 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Velagapudi, V. R. et al. The gut microbiota modulates host energy and lipid metabolism in mice. J. Lipid Res. 51, 1101–1112 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Russell, J. A. & Moran, N. A. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc. R. Soc. B 273, 603–610 (2006).PubMed 

    Google Scholar 
    Montllor, C. B., Maxmen, A. & Purcell, A. H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189–195 (2002).
    Google Scholar 
    Herrera, M. et al. Unfamiliar partnerships limit cnidarian holobiont acclimation to warming. Glob. Change Biol. 26, 5539–5553 (2020).
    Google Scholar 
    Jaramillo, A. & Castaneda, L. E. Gut microbiota of Drosophila subobscura contributes to its heat tolerance and is sensitive to transient thermal stress. Front. Microbiol. 12, 886 (2021).
    Google Scholar 
    Moghadam, N. N. et al. Strong responses of Drosophila melanogaster microbiota to developmental temperature. Fly 12, 1–12 (2018).PubMed 

    Google Scholar 
    Fontaine, S. S., Novarro, A. J. & Kohl, K. D. Environmental temperature alters the digestive performance and gut microbiota of a terrestrial amphibian. J. Exp. Biol. 221, 187559 (2018).
    Google Scholar 
    Kohl, K. D. & Yahn, J. Effects of environmental temperature on the gut microbial communities of tadpoles. Environ. Microbiol. 18, 1561–1565 (2016).PubMed 

    Google Scholar 
    Fontaine, S. S. & Kohl, K. D. The gut microbiota of invasive bullfrog tadpoles responds more rapidly to temperature than a non‐invasive congener. Mol. Ecol. 29, 2449–2462 (2020).PubMed 

    Google Scholar 
    Bestion, E. et al. Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nat. Ecol. Evol. 1, 0161 (2017).
    Google Scholar 
    Zhu, L. et al. Environmental temperatures affect the gastrointestinal microbes of the Chinese giant salamander. Front. Microbiol. 12, 493 (2021).
    Google Scholar 
    Moeller, A. H. et al. The lizard gut microbiome changes with temperature and is associated with heat tolerance. Appl. Environ. Microbiol. 86, e01181-20 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Kokou, F. et al. Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature. eLife 7, e36398 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Hanage, W. P. Microbiology: microbiome science needs a healthy dose of scepticism. Nature 512, 247–248 (2014).CAS 
    PubMed 

    Google Scholar 
    Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Mykles, D. L., Ghalambor, C. K., Stillman, J. H. & Tomanek, L. Grand challenges in comparative physiology: integration across disciplines and across levels of biological organization. Integr. Comp. Biol. 50, 6–16 (2010).PubMed 

    Google Scholar 
    Kohl, K. D. A microbial perspective on the grand challenges in comparative animal physiology. mSystems 3, e00146-17 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Gray, K. T., Escobar, A. M., Schaeffer, P. J., Mineo, P. M. & Berner, N. J. Thermal acclimatization in overwintering tadpoles of the green frog, Lithobates clamitans (Latreille, 1801). J. Exp. Zool. A 325, 285–293 (2016).
    Google Scholar 
    Brattstrom, B. H. & Lawrence, P. The rate of thermal acclimation in anuran amphibians. Physiol. Zool. 35, 148–156 (1962).
    Google Scholar 
    Knutie, S. A., Wilkinson, C. L., Kohl, K. D. & Rohr, J. R. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nat. Commun. 8, 86 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Warne, R. W., Kirschman, L. & Zeglin, L. Manipulation of gut microbiota during critical developmental windows affects host physiological performance and disease susceptibility across ontogeny. J. Anim. Ecol. 88, 845–856 (2019).PubMed 

    Google Scholar 
    Morgun, A. et al. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 64, 1732–1743 (2015).CAS 
    PubMed 

    Google Scholar 
    Kohl, K. D., Cary, T. L., Karasov, W. H. & Dearing, M. D. Restructuring of the amphibian gut microbiota through metamorphosis. Environ. Microbiol. Rep. 5, 899–903 (2013).PubMed 

    Google Scholar 
    Vences, M. et al. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas. Sci. Nat. 103, 25 (2016).
    Google Scholar 
    Fontaine, S. S., Mineo, P. M. & Kohl, K. D. Changes in the gut microbial community of the eastern newt (Notophthalmus viridescens) across its three distinct life stages. FEMS Microbiol. Ecol. 97, fiab021 (2021).CAS 
    PubMed 

    Google Scholar 
    Anderson, M. J. & Walsh, D. C. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. Monogr. 83, 557–574 (2013).
    Google Scholar 
    Sepulveda, J. & Moeller, A. H. The effects of temperature on animal gut microbiomes. Front. Microbiol. 11, 384 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Arango, R. A., Schoville, S. D., Currie, C. R. & Carlos-Shanley, C. Experimental warming reduces survival, cold tolerance, and gut prokaryotic diversity of the eastern subterranean termite, Reticulitermes flavipes (Kollar). Front. Microbiol. 12, 1116 (2021).
    Google Scholar 
    Stothart, M. R. et al. Stress and the microbiome: linking glucocorticoids to bacterial community dynamics in wild red squirrels. Biol. Lett. 12, 20150875 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zaneveld, J. R., McMinds, R. & Thurber, R. V. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).CAS 
    PubMed 

    Google Scholar 
    Orrock, J. L. & Watling, J. I. Local community size mediates ecological drift and competition in metacommunities. Proc. R. Soc. B 277, 2185–2191 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Deeg, C. M. et al. Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae. PLoS Pathog. 15, e1007801 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaboré, O. D., Godreuil, S. & Drancourt, M. Planctomycetes as host-associated bacteria: a perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Front. Cell. Infect. Microbiol. 10, 729 (2020).
    Google Scholar 
    Sheremet, A. et al. Ecological and genomic analyses of candidate phylum WPS‐2 bacteria in an unvegetated soil. Environ. Microbiol. 22, 3143–3157 (2020).CAS 
    PubMed 

    Google Scholar 
    Correa, D. T. et al. Multilevel community assembly of the tadpole gut microbiome. Preprint at bioRxiv https://doi.org/10.1101/2020.07.05.188698 (2020).Contijoch, E. J. et al. Gut microbiota density influences host physiology and is shaped by host and microbial factors. eLife 8, e40553 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Warne, R. W., Kirschman, L. & Zeglin, L. Manipulation of gut microbiota reveals shifting community structure shaped by host developmental windows in amphibian larvae. Integr. Comp. Biol. 57, 786–794 (2017).PubMed 

    Google Scholar 
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B 286, 20182448 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: history and critique. Can. J. Zool. 75, 1561–1574 (1997).
    Google Scholar 
    Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 
    Daloso, D. M. The ecological context of bilateral symmetry of organ and organisms. Nat. Sci. 6, 43340 (2014).
    Google Scholar 
    Goldstein, J. A., Hoff, K. v. S. & Hillyard, S. D. The effect of temperature on development and behaviour of relict leopard frog tadpoles. Conserv. Physiol. 5, cow075 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Harkey, G. A. & Semlitsch, R. D. Effects of temperature on growth, development, and color polymorphism in the ornate chorus frog Pseudacris ornata. Copeia 1998, 1001–1007 (1988).
    Google Scholar 
    Marian, M. & Pandian, T. Effect of temperature on development, growth and bioenergetics of the bullfrog tadpole Rana tigrina. J. Therm. Biol. 10, 157–161 (1985).
    Google Scholar 
    Alvarez, D. & Nicieza, A. Effects of temperature and food quality on anuran larval growth and metamorphosis. Funct. Ecol. 16, 640–648 (2002).
    Google Scholar 
    Kohl, K. D., Brun, A., Bordenstein, S. R., Caviedes‐Vidal, E. & Karasov, W. H. Gut microbes limit growth in house sparrow nestlings (Passer domesticus) but not through limitations in digestive capacity. Integr. Zool. 13, 139–151 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Potti, J. et al. Bacteria divert resources from growth for Magellanic penguin chicks. Ecol. Lett. 5, 709–714 (2002).
    Google Scholar 
    Coates, M. E., Fuller, R., Harrison, G., Lev, M. & Suffolk, S. A comparison of the growth of chicks in the Gustafsson germ-free apparatus and in a conventional environment, with and without dietary supplements of penicillin. Br. J. Nutr. 17, 141–150 (1963).CAS 
    PubMed 

    Google Scholar 
    Gaskins, H., Collier, C. & Anderson, D. Antibiotics as growth promotants: mode of action. Anim. Biotechnol. 13, 29–42 (2002).CAS 
    PubMed 

    Google Scholar 
    Gitsels, A., Sanders, N. & Vanrompay, D. Chlamydial infection from outside to inside. Front. Microbiol. 10, 2329 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Denver, R. J. Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis. Am. Zool. 37, 172–184 (1997).CAS 

    Google Scholar 
    Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).CAS 
    PubMed 

    Google Scholar 
    Khakisahneh, S., Zhang, X.-Y., Nouri, Z. & Wang, D.-H. Gut microbiota and host thermoregulation in response to ambient temperature fluctuations. mSystems 5, e00514–e00520 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xie, B. et al. Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria. ISME J. 7, 1544–1555 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gutiérrez‐Pesquera, L. M. et al. Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. J. Biogeogr. 43, 1166–1178 (2016).
    Google Scholar 
    Litmer, A. R. & Murray, C. M. Critical thermal tolerance of invasion: comparative niche breadth of two invasive lizards. J. Therm. Biol. 86, 102432 (2019).PubMed 

    Google Scholar 
    Semlitsch, R. D. Effects of body size, sibship, and tail injury on the susceptibility of tadpoles to dragonfly predation. Can. J. Zool. 68, 1027–1030 (1990).
    Google Scholar 
    Cabrera-Guzmán, E., Crossland, M. R., Brown, G. P. & Shine, R. Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLoS ONE 8, e70121 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Tejedo, M. Effects of body size and timing of reproduction on reproductive success in female natterjack toads (Bufo calamita). J. Zool. 228, 545–555 (1992).
    Google Scholar 
    Warne, R. W., Crespi, E. J. & Brunner, J. L. Escape from the pond: stress and developmental responses to ranavirus infection in wood frog tadpoles. Funct. Ecol. 25, 139–146 (2011).
    Google Scholar 
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).CAS 
    PubMed 

    Google Scholar 
    Pearce, T. A. & Paustian, M. E. Are temperate land snails susceptible to climate change through reduced altitudinal ranges? A Pennsylvania example. Am. Malacol. 31, 213–224 (2013).
    Google Scholar 
    Wolfe, D. W. et al. Projected change in climate thresholds in the northeastern US: implications for crops, pests, livestock, and farmers. Mitig. Adapt. Strateg. Glob. Change 13, 555–575 (2008).
    Google Scholar 
    Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).CAS 
    PubMed 

    Google Scholar 
    Bennett, A. F. Thermal dependence of locomotor capacity. Am. J. Physiol. 259, R253–R258 (1990).CAS 
    PubMed 

    Google Scholar 
    Seebacher, F. & Walter, I. Differences in locomotor performance between individuals: importance of parvalbumin, calcium handling and metabolism. J. Exp. Biol. 215, 663–670 (2012).CAS 
    PubMed 

    Google Scholar 
    Husak, J. F., Fox, S. F., Lovern, M. B. & Bussche, R. A. V. D. Faster lizards sire more offspring: sexual selection on whole‐animal performance. Evolution 60, 2122–2130 (2006).CAS 
    PubMed 

    Google Scholar 
    Mineo, P. M., Waldrup, C., Berner, N. J. & Schaeffer, P. J. Differential plasticity of membrane fatty acids in northern and southern populations of the eastern newt (Notophthalmus viridescens). J. Comp. Physiol. B 189, 249–260 (2019).CAS 
    PubMed 

    Google Scholar 
    Chung, D. J., Sparagna, G. C., Chicco, A. J. & Schulte, P. M. Patterns of mitochondrial membrane remodeling parallel functional adaptations to thermal stress. J. Exp. Biol. 221, 174458 (2018).
    Google Scholar 
    Gladwell, R., Bowler, K. & Duncan, C. Heat death in crayfish Austropotamobius pallipes: ion movements and their effects on excitable tissues during heat death. J. Therm. Biol. 1, 79–94 (1976).CAS 

    Google Scholar 
    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).PubMed 

    Google Scholar 
    Gräns, A. et al. Aerobic scope fails to explain the detrimental effects on growth resulting from warming and elevated CO2 in Atlantic halibut. J. Exp. Biol. 217, 711–717 (2014).PubMed 

    Google Scholar 
    Jutfelt, F. et al. Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. J. Exp. Biol. 221, 169615 (2018).
    Google Scholar 
    St-Pierre, J., Charest, P.-M. & Guderley, H. Relative contribution of quantitative and qualitative changes in mitochondria to metabolic compensation during seasonal acclimatisation of rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 201, 2961–2970 (1998).CAS 

    Google Scholar 
    Grim, J., Miles, D. & Crockett, E. Temperature acclimation alters oxidative capacities and composition of membrane lipids without influencing activities of enzymatic antioxidants or susceptibility to lipid peroxidation in fish muscle. J. Exp. Biol. 213, 445–452 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    LeMoine, C. M., Genge, C. E. & Moyes, C. D. Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature. J. Exp. Biol. 211, 1448–1455 (2008).CAS 
    PubMed 

    Google Scholar 
    McClelland, G. B., Craig, P. M., Dhekney, K. & Dipardo, S. Temperature‐ and exercise‐induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio). J. Physiol. 577, 739–751 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pichaud, N. et al. Cardiac mitochondrial plasticity and thermal sensitivity in a fish inhabiting an artificially heated ecosystem. Sci. Rep. 9, 17832 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Seebacher, F., Guderley, H., Elsey, R. M. & Trosclair, P. L. Seasonal acclimatisation of muscle metabolic enzymes in a reptile (Alligator mississippiensis). J. Exp. Biol. 206, 1193–1200 (2003).CAS 
    PubMed 

    Google Scholar 
    Berner, N. J. & Bessay, E. P. Correlation of seasonal acclimatization in metabolic enzyme activity with preferred body temperature in the eastern red spotted newt (Notophthalmus viridescens viridescens). Comp. Biochem. Physiol. A 144, 429–436 (2006).
    Google Scholar 
    Vigelsø, A., Andersen, N. B. & Dela, F. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training. Int. J. Physiol. Pathophysiol. Pharmacol. 6, 84–101 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y., Park, J.-S., Deng, J.-H. & Bai, Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J. Bioenerg. Biomembr. 38, 283–291 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pryor, G. S. & Bjorndal, K. A. Symbiotic fermentation, digesta passage, and gastrointestinal morphology in bullfrog tadpoles (Rana catesbeiana). Physiol. Biochem. Zool. 78, 201–215 (2005).PubMed 

    Google Scholar 
    Clark, A. & Mach, N. The crosstalk between the gut microbiota and mitochondria during exercise. Front. Physiol. 8, 319 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Payne, N. L. et al. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol. 30, 903–912 (2016).
    Google Scholar 
    Van Dijk, P., Tesch, C., Hardewig, I. & Portner, H. Physiological disturbances at critically high temperatures: a comparison between stenothermal Antarctic and eurythermal temperate eelpouts (Zoarcidae). J. Exp. Biol. 202, 3611–3621 (1999).PubMed 

    Google Scholar 
    Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).PubMed 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).CAS 
    PubMed 

    Google Scholar 
    Hoppeler, H. & Weibel, E. R. Scaling functions to body size: theories and facts. J. Exp. Biol. 208, 1573–1574 (2005).PubMed 

    Google Scholar 
    Hopkins, W. A., Rowe, C. L. & Congdon, J. D. Elevated trace element concentrations and standard metabolic rate in banded water snakes (Nerodia fasciata) exposed to coal combustion wastes. Environ. Toxicol. Chem. 18, 1258–1263 (1999).CAS 

    Google Scholar 
    Sokolova, I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. J. Exp. Biol. 224, 236802 (2021).
    Google Scholar 
    Sokolova, I. M. & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim. Res. 37, 181–201 (2008).
    Google Scholar 
    Peralta-Maraver, I. & Rezende, E. L. Heat tolerance in ectotherms scales predictably with body size. Nat. Clim. Change 11, 58–63 (2021).
    Google Scholar 
    Bahrndorff, S., Alemu, T., Alemneh, T. & Lund Nielsen, J. The microbiome of animals: implications for conservation biology. Int. J. Genomics 2016, 5304028 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Hauffe, H. C. & Barelli, C. Conserve the germs: the gut microbiota and adaptive potential. Conserv. Genet. 20, 19–27 (2019).
    Google Scholar 
    Jiménez, R. R. & Sommer, S. The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers. Conserv. 26, 763–786 (2017).
    Google Scholar 
    Swaddle, J. P. Fluctuating asymmetry, animal behavior, and evolution. Adv. Study Behav. 32, 169–205 (2003).
    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing v.3.4.3 (R Foundation for Statistical Computing, 2019).Bates, D., Machler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Preprint at https://arxiv.org/abs/1406.5823 (2014).Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3 (2017).Hulbert, A., Pamplona, R., Buffenstein, R. & Buttemer, W. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 87, 1175–1213 (2007).CAS 
    PubMed 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2 (2013).Mary-Huard, T., Daudin, J.-J., Baccini, M., Biggeri, A. & Bar-Hen, A. Biases induced by pooling samples in microarray experiments. Bioinformatics 23, i313–i318 (2007).CAS 
    PubMed 

    Google Scholar 
    Singer, J. D. & Willett, J. B. It’s about time: using discrete-time survival analysis to study duration and the timing of events. J. Educ. Stat. 18, 155–195 (1993).
    Google Scholar 
    Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e100442 (2021).
    Google Scholar  More

  • in

    Seasonal variation in space use and territoriality in a large mammal (Sus scrofa)

    Schoener, T. W. & Schoener, A. Intraspecific variation in home-range size in some Anolis lizards. Ecology 63, 809–823 (1982).
    Google Scholar 
    Grigione, M. M. et al. Ecological and allometric determinants of home-range size for mountain lions (Puma concolor). Anim. Conserv. 5(4), 317–324 (2002).
    Google Scholar 
    Wolf, J. B., Mawdsley, D., Trillmich, F. & James, R. Social structure in a colonial mammal: Unravelling hidden structural layers and their foundations by network analysis. Anim. Behav. 74, 1293–1302 (2007).
    Google Scholar 
    Gehrt, S. D. & Frttzell, E. K. Sexual differences in home ranges of raccoons. J. Mammal. 78, 921–931 (1997).
    Google Scholar 
    Clutton-Brock, T. H., Iason, G. R. & Guinness, F. E. Sexual segregation and density-related changes in habitat use in male and female Red deer (Cervus elaphus). J. Zool. 211(2), 275–289 (1987).
    Google Scholar 
    Ji, W., White, P. C. & Clout, M. N. Contact rates between possums revealed by proximity data loggers. J. Appl. Ecol. 42(3), 595–604 (2005).
    Google Scholar 
    Böhm, M., Palphramand, K. L., Newton-Cross, G., Hutchings, M. R. & White, P. C. Dynamic interactions among badgers: Implications for sociality and disease transmission. J. Anim. Ecol. 77, 735–745 (2008).PubMed 

    Google Scholar 
    Hamede, R. K., Bashford, J., McCallum, H. & Jones, M. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: Using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol. Lett. 12, 1147–1157 (2009).PubMed 

    Google Scholar 
    Ostfeld, R. S., Glass, G. E. & Keesing, F. Spatial epidemiology: An emerging (or re-emerging) discipline. Trends Ecol. Evol. 20, 328–336 (2005).PubMed 

    Google Scholar 
    Mitani, J. C., Watts, D. P. & Amsler, S. J. Lethal intergroup aggression leads to territorial expansion in wild chimpanzees. Curr. Biol. 20, R507–R508 (2010).CAS 
    PubMed 

    Google Scholar 
    Cubaynes, S. et al. Density-dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus). J. Anim. Ecol. 83, 1344–1356 (2014).PubMed 

    Google Scholar 
    Wittemyer, G., Getz, W. M., Vollrath, F. & Douglas-Hamilton, I. Social dominance, seasonal movements, and spatial segregation in African elephants: A contribution to conservation behavior. Behav. Ecol. Sociobiol. 61, 1919–1931 (2007).
    Google Scholar 
    McGuire, J. M., Scribner, K. T. & Congdon, J. D. Spatial aspects of movements, mating patterns, and nest distributions influence gene flow among population subunits of Blanding’s turtles (Emydoidea blandingii). Conserv. Genet. 14, 1029–1042 (2013).
    Google Scholar 
    Kurvers, R. H., Krause, J., Croft, D. P., Wilson, A. D. & Wolf, M. The evolutionary and ecological consequences of animal social networks: Emerging issues. Trends Ecol. Evol. 29, 326–335 (2014).PubMed 

    Google Scholar 
    Loveridge, A. J. & Macdonald, D. W. Seasonality in spatial organization and dispersal of sympatric jackals (Canis mesomelas and C. adustus): Implications for rabies management. J. Zool. 253, 101–111 (2001).
    Google Scholar 
    Snijders, L., Blumstein, D. T., Stanley, C. R. & Franks, D. W. Animal social network theory can help wildlife conservation. Trends Ecol. Evol. 32(8), 567–577 (2017).PubMed 

    Google Scholar 
    Burt, W. H. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 57–63 (1943).
    Google Scholar 
    Schoener, T. W. Sizes of feeding territories among birds. Ecology 49, 123–141 (1968).
    Google Scholar 
    Kaufman, J. H. On the definitions and functions of dominance and territoriality. Biol. Revue 58, 1–20 (1983).
    Google Scholar 
    Maher, C. R. & Lott, D. F. Definitions of territoriality used in the study of variation in vertebrate spacing systems. Anim. Behav. 49, 1581–1597 (1995).
    Google Scholar 
    Powell, R. A. Animal home ranges and territories and home range estimators. Res. Tech. Anim. Ecol. Controversies Conseq. 1, 476 (2000).
    Google Scholar 
    Kerr, G. D. & Bull, C. M. Exclusive core areas in overlapping ranges of the sleepy lizard, Tiliqua rugosa. Behav. Ecol. 17, 380–391 (2006).
    Google Scholar 
    DiPierro, E., Molinari, A., Tosi, G. & Wauters, L. A. Exclusive core areas and intrasexual territoriality in Eurasian red squirrels (Sciurus vulgaris) revealed by incremental cluster polygon analysis. Ecol. Res. 23, 529–542 (2008).
    Google Scholar 
    Poole, K. G. Spatial organization of a lynx population. Can. J. Zool. 73, 632–641 (1995).ADS 

    Google Scholar 
    Chamberlain, M. J. & Leopold, B. D. Spatio-temporal relationships among adult raccoons (Procyon lotor) in central Mississippi. Am. Midl. Nat. 148, 297–309 (2002).
    Google Scholar 
    Darden, S. K. & Dabelsteen, T. Acoustic territorial signaling in a small, socially monogamous canid. Anim. Behav. 75(3), 905–912 (2008).
    Google Scholar 
    Gabor, T. M., Hellgren, E. C., Van Den Bussche, R. A. & Silvy, N. J. Demography, sociospatial behaviour and genetics of feral pigs (Sus scrofa) in a semi-arid environment. J. Zool. 247(3), 311–322 (1999).
    Google Scholar 
    Seiler, N., Boesch, C., Mundry, R., Stephens, C. & Robbins, M. M. Space partitioning in wild, non-territorial mountain gorillas: The impact of food and neighbours. R. Soc. Open Sci. 4(11), 170720 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. J. Mammal. 94, 109–119 (2013).
    Google Scholar 
    Podgórski, T., Lusseau, D., Scandura, M., Sonnichsen, L. & Jedrzejewska, B. Long-lasting, kin-directed female interactions in a spatially structured wild boar social network. PLoS One 9, 1–11 (2014).
    Google Scholar 
    Keiter, D. A. & Beasley, J. C. Hog heaven? Challenges of managing introduced wild pigs in natural areas. Nat. Areas J. 37, 6–16 (2017).ADS 

    Google Scholar 
    Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singer, F. J., Otto, D. K., Tipton, A. R. & Hable, C. P. Home ranges, movements, and habitat use of European wild boar in Tennessee. J. Wildl. Manag. 45, 343–353 (1981).
    Google Scholar 
    Saunders, G. & Kay, B. Movements of feral pigs at Sunny Corner, New South Wales. Wildl. Res. 18, 49–61 (1990).
    Google Scholar 
    Boitani, L., Mattei, L., Nonis, D. & Corsi, F. Spatial and activity patterns of wild boars in Tuscany, Italy. J. Mammal. 75, 600–612 (1994).
    Google Scholar 
    Dexter, N. The influence of pasture distribution, temperature and sex on home-range size of feral pigs in a semi-arid environment. Wildl. Res. 26, 755–762 (1999).
    Google Scholar 
    Calenge, C., Maillard, D., Vassant, J. & Brandt, S. Summer and hunting season home ranges of wild boar (Sus scrofa) in two habitats in France. Game Wildl. Sci. 19, 281–301 (2002).
    Google Scholar 
    Hayes, R., Riffell, S., Minnis, R. & Holder, B. Survival and habitat use of feral hogs in Mississippi. Southeast. Nat. 8, 411–427 (2009).
    Google Scholar 
    Fattebert, J., Baubet, E., Slotow, R. & Fischer, C. Landscape effects on wild boar home range size under contrasting harvest regimes in a human-dominated agro-ecosystem. Eur. J. Wildl. Res. 63(2), 32 (2017).
    Google Scholar 
    Clontz, L. M., Pepin, K. M., VerCauteren, K. C., & Beasley, J. C. Influence of biotic and abiotic factors on home range size and shape of invasive wild pigs (Sus scrofa). Pest Manag. Sci. 78(3), 914–928 (2021).PubMed 

    Google Scholar 
    Mcloughlin, P. D., Ferguson, S. H. & Messier, F. Intraspecific variation in home range overlap with habitat quality: A comparison among brown bear populations. Evol. Ecol. 14, 39–60 (2000).
    Google Scholar 
    Golabek, K. A., Ridley, A. R. & Radford, A. N. Food availability affects strength of seasonal territorial behaviour in a cooperatively breeding bird. Anim. Behav. 83, 613–619 (2012).
    Google Scholar 
    Kilgo, J. C. et al. Food resources affect territoriality of invasive wild pig sounders with implications for control. Sci. Rep. 11(1), 1–11 (2021).
    Google Scholar 
    Geist, V. A comparison of social adaptations in relations to ecology in gallinaceous bird and ungulate societies. Annu. Rev. Ecol. Syst. 8, 193–207 (1977).
    Google Scholar 
    Ilse, L. M. & Hellgren, E. C. Resource partitioning in sympatric populations of collared peccaries and feral hogs in southern Texas. J. Mammal. 76, 784–799 (1995).
    Google Scholar 
    Sparklin, B. D., Mitchell, M. S., Hanson, L. B., Jolley, D. B. & Ditchkoff, S. S. Territoriality of feral pigs in a highly persecuted population on Fort Benning, Georgia. J. Wildl. Manag. 73, 497–502 (2009).
    Google Scholar 
    Barrett, R. The feral hog at Dye Creek ranch, California. Hilgardia 46, 283–355 (1978).
    Google Scholar 
    Baber, D. W. & Coblentz, B. E. Density, home range, habitat use, and reproduction in feral pigs on Santa Catalina Island. J. Mammal. 67, 512–525 (1986).
    Google Scholar 
    Kay, S. L. et al. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5, 14 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pepin, K. M. et al. Contact heterogeneities in feral swine: implications for disease management and future research. Ecosphere 7(3), e01230. https://doi.org/10.1002/ecs2.1230 (2016).Article 

    Google Scholar 
    Singh, J. S. & Yadava, P. S. Seasonal variation in composition, plant biomass, and net primary productivity of a tropical grassland at Kurukshetra, India. Ecol. Monogr. 44(3), 351–376 (1974).
    Google Scholar 
    Swemmer, A. M., Knapp, A. K. & Snyman, H. A. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J. Ecol. 95, 780–788 (2007).
    Google Scholar 
    Harless, M. L., Walde, A. D., Delaney, D. K., Pater, L. L. & Hayes, W. K. Home range, spatial overlap, and burrow use of the desert tortoise in the West Mojave Desert. Copeia 2, 378–389 (2009).
    Google Scholar 
    Lewis, J. S. et al. Contact networks reveal potential for interspecific interactions of sympatric wild felids driven by space use. Ecosphere 8(3), e01707 (2017).
    Google Scholar 
    Weber, N. et al. Badger social networks correlate with tuberculosis infection. Curr. Biol. 23(20), R915–R916 (2013).CAS 
    PubMed 

    Google Scholar 
    Vander Waal, K. L. et al. The “strength of weak ties” and helminth parasitism in giraffe social networks. Behav. Ecol. 27(4), 1190–1197 (2016).
    Google Scholar 
    Podgórski, T., Apollonio, M. & Keuling, O. Contact rates in wild boar populations: Implications for disease transmission. J. Wildl. Manag. 82, 1210–1218 (2018).
    Google Scholar 
    D’Andrea, L., Durio, P., Perrone, A. & Pirone, S. Preliminary data of the wild boar (Sus scrofa) space use in mountain environment. IBEX J. Mountain Ecol. 3, 117–121 (2014).
    Google Scholar 
    Keuling, O., Stier, N. & Roth, M. Annual and seasonal space use of different age classes of female wild boar Sus scrofa L. Eur. J. Wildl. Res. 54, 403–412 (2008).
    Google Scholar 
    Hixon, M. A. Food production and competitor density as the determinants of feeding territory size. Am. Nat. 115(4), 510–530 (1980).MathSciNet 

    Google Scholar 
    Bastille-Rousseau, G. et al. Multi-level movement response of invasive wild pigs (Sus scrofa) to removal. Pest Manag. Sci. 77(1), 85–95 (2021).CAS 
    PubMed 

    Google Scholar 
    Maher, C. R. & Lott, D. F. A review of ecological determinants of territoriality within vertebrate species. Am. Midl. Nat. 143(1), 1–30 (2000).
    Google Scholar 
    Mendl, M., Randle, K. & Pope, S. Young female pigs can discriminate individual differences in odours from conspecific urine. Anim. Behav. 64, 97–101 (2002).
    Google Scholar 
    Marsh, M. K., Hutchings, M. R., McLeod, S. R. & White, P. C. L. Spatial and temporal heterogeneities in the contact behaviour of rabbits. Behav. Ecol. Sociobiol. 65, 183–195 (2011).
    Google Scholar 
    Yang, A. et al. Effects of social structure and management on risk of disease establishment in wild pigs. J. Anim. Ecol. 90(4), 820–833 (2021).PubMed 

    Google Scholar 
    Lavelle, M. J. et al. Assessing risk of disease transmission: Direct implications for an indirect science. Bioscience 64, 524–530 (2014).
    Google Scholar 
    Gortázar, C., Ferroglio, E., Hofle, U., Frolich, K. & Vicente, J. Diseases shared between wildlife and livestock: A European perspective. Eur. J. Wildl. Res. 53, 241–256 (2007).
    Google Scholar 
    Miller, R. S. et al. Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: Implications for disease risk management in North America. Sci. Rep. 7, 7821 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abrahamson, W. G., Johnson, A. F., Layne, J. N. & Peroni, P. A. Vegetation of the Archbold Biological Station, Florida: An example of the southern Lake Wales ridge. Florida Sci. 47, 209–250 (1984).
    Google Scholar 
    Boughton, E. H. & Boughton, R. K. Modification by an invasive ecosystem engineer shifts a wet prairie to a monotypic stand. Biol. Invasions 16(10), 2105–2114 (2014).
    Google Scholar 
    Ko, J., Williams, B., Smith, V., McGrath, C. & Jacobson, J. Comparison of Telazol, Telazol–ketamine, Telazol–xylazine, and Telazol–ketamine–xylazine as chemical restraint and anesthetic induction combination in swine. Lab Anim. Sci. 43(5), 476–480 (1993).CAS 
    PubMed 

    Google Scholar 
    Gabor, T. M., Hellgren, E. C. & Silvy, N. J. Immobilization of collared peccaries (Tayassu tajacu) and feral hogs (Sus scrofa) with Telazol® and xylazine. J. Wildl. Dis. 33(1), 161–164 (1997).CAS 
    PubMed 

    Google Scholar 
    Sweitzer, R. A. et al. Immobilization and physiological parameters associated with chemical restraint of wild pigs with Telazol® and xylazine hydrochloride. J. Wildl. Dis. 33(2), 198–205 (1997).CAS 
    PubMed 

    Google Scholar 
    Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movements using Brownian bridges. Ecology 88, 2354–2363 (2007).PubMed 

    Google Scholar 
    Tracey, J. A. mkde. R Core Development Team. (2014). https://cran.r-project.org/web/packages/mkde/index.Html. Accessed 27 Mar 2021R Development Core Team. R: a language and environment for statistical computing, version 3.5.1. R Foundation for Statistical Computing, Vienna, Austria. (2018). https://www.r-project.org/. Accessed 27 Mar 2021Sawyer, H. & Kauffman, M. J. Stopover ecology of a migratory ungulate. J. Anim. Ecol. 80, 1078–1087 (2011).PubMed 

    Google Scholar 
    Vander Wal, E., Laforge, M. P. & McLoughlin, P. D. Density dependence in social behaviour: Home range overlap and density interacts to affect conspecific encounter rates in a gregarious ungulate. Behav. Ecol. Sociobiol. 68(3), 383–390 (2014).
    Google Scholar 
    Schauber, E. M., Nielsen, C. K., Kjær, L. J., Anderson, C. W. & Storm, D. J. Social affiliation and contact patterns among white-tailed deer in disparate landscapes: Implications for disease transmission. J. Mammal. 96(1), 16–28 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Robert, K., Garant, D. & Pelletier, F. Keep in touch: Does spatial overlap correlate with contact rate frequency?. J. Wildl. Manag. 76(8), 1670–1675 (2012).
    Google Scholar 
    Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).
    Google Scholar 
    Newman, M. E. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Wey, T., Blumstein, D. T., Shen, W. & Jordan, F. Social network analysis of animal behaviour: A promising tool for the study of sociality. Anim. Behav. 75, 333–344 (2008).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B., & Walker, S. lme4: linear mixed effects models using Eigen and S4. R package version 1.1-9. (2014) https://cran.rproject.org/package/lme4. (accessed 30 Jan 2019).Burnham, K. P. & Anderson, D. R. A Practical Information-Theoretic Approach. Model Selection and Multi-model Inference 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second international symposium on information theory. (eds. Petrov, B. N. & Csaki, F.) 267–281 (Academiai Kiado, 1973). More

  • in

    Searching for genetic evidence of demographic decline in an arctic seabird: beware of overlapping generations

    ACIA (2004) Impacts of a Warming Arctic: Arctic Climate Impact Assessment. Cambridge University Press, Cambridge, UK
    Google Scholar 
    Alsos IG, Ehrich D, Thuiller W, Eidesen PB, Tribsch A, Schonswetter P et al. (2012) Genetic consequences of climate change for northern plants. Proc R Soc B-Biol Sci 279:2042–2051
    Google Scholar 
    Andrews KR, Good JM, Miller MR, Luikart G, Hohenlohe PA (2016) Harnessing the power of RADseq for ecological and evolutionary genomics. Nat Rev Genet 17:81–92CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Archer FI, Adams PE, Schneiders BB (2017) strataG: an R package for manipulating, summarizing and analysing population genetic data. Mol Ecol Resour 17:5–11CAS 
    PubMed 

    Google Scholar 
    Arenas M, Ray N, Currat M, Excoffier L (2011) Consequences of range contractions and range shifts on molecular diversity. Mol Biol Evol 29:207–218PubMed 

    Google Scholar 
    Beaumont MA (1999) Detecting population expansion and decline using microsatellites. Genetics 153:2013–2029CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benjamini Y, Hochberg Y (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Statistical Soc Series B 57:289–300BirdLife International (2018). Pagophila eburnea. The IUCN Red List of Threatened Species 2018: e.T22694473A132555020. https://doi.org/10.2305/IUCN.UK.2018-2.RLTS.T22694473A132555020.en. Downloaded on11 June 2020Boertmann D, Petersen IK, Nielsen HH (2020) Ivory Gull population status in Greenland 2019. Dan Orn Foren Tidsskr 114:141–150
    Google Scholar 
    Boitard S, Rodríguez W, Jay F, Mona S, Austerlitz F (2016) Inferring population size history from large samples of genome-wide molecular data – an approximate Bayesian computation approach. PLOS Genet 12:1–36
    Google Scholar 
    Box JE, Colgan WT, Christensen TR, Schmidt NM, Lund M, Parmentier F-JW et al. (2019) Key indicators of Arctic climate change: 1971–2017. Environ Res Lett 14:045010CAS 

    Google Scholar 
    Braune BM, Mallory ML, Gilchrist HG (2006) Elevated mercury levels in a declining population of ivory gulls in the Canadian Arctic. Mar Pollut Bull 52:978–982CAS 
    PubMed 

    Google Scholar 
    Broquet T, Angelone S, Jaquiéry J, Joly P, Léna JP, Lengagne T et al. (2010) Genetic bottlenecks driven by population disconnection. Conserv Biol 24:1596–1605PubMed 

    Google Scholar 
    Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026CAS 
    PubMed 

    Google Scholar 
    Chikhi L, Sousa VC, Luisi P, Goossens B, Beaumont MA (2010) The confounding effects of population structure, genetic diversity and the sampling scheme on the detection and quantification of population size changes. Genetics 186:983–995PubMed 
    PubMed Central 

    Google Scholar 
    Collevatti RG, Nabout JC, Diniz-Filho JAF (2011) Range shift and loss of genetic diversity under climate change in Caryocar brasiliense, a Neotropical tree species. Tree Genet Genomes 7:1237–1247
    Google Scholar 
    Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cotto O, Schmid M, Guillaume F (2020) Nemo-age: spatially explicit simulations of eco-evolutionary dynamics in stage-structured populations under changing environments. Methods Ecol Evol 11:1227–1236
    Google Scholar 
    Cubaynes S, Doherty PF, Schreiber EA, Gimenez O (2011) To breed or not to breed: a seabird’s response to extreme climatic events. Biol Lett 7:303–306PubMed 

    Google Scholar 
    Di Rienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994). Mutational processes of simple-sequence repeat loci in human populations. Proc Natl Acad Sci USA 91: 3166–3170Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214CAS 
    PubMed 

    Google Scholar 
    Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445CAS 
    PubMed 

    Google Scholar 
    England PR, Cornuet J-M, Berthier P, Tallmon DA, Luikart G (2006) Estimating effective population size from linkage disequilibrium: severe biasin small samples. Conserv Genet 7:303
    Google Scholar 
    Engler JO, Secondi J, Dawson DA, Elle O, Hochkirch A (2016) Range expansion and retraction along a moving contact zone has no effect on the genetic diversity of two passerine birds. Ecography 39:884–893
    Google Scholar 
    Environment Canada (2014) Recovery Strategy for the Ivory Gull (Pagophila eburnea) in Canada. Species at Risk Act Recovery Strategy Series. Environment Canada, Ottawa. iv+ 21 ppEstoup A, Angers B (1998) Microsatellites and minisatellites for molecular ecology: theoretical and empirical considerations. In Carvalho GR (ed) Advances in molecular ecology, 55–85. IOS Press, Burke, Virginia, USAEwens WJ (1972) The sampling theory of selectively neutral alleles. Theor Popul Biol 3:87–112CAS 
    PubMed 

    Google Scholar 
    Felsenstein J (1971) Inbreeding and variance effective numbers in populations with overlapping generations. Genetics 168:581–597
    Google Scholar 
    Fort J, Moe B, Strøm H, Grémillet D, Welcker J, Schultner J et al. (2013) Multicolony tracking reveals potential threats to little auks wintering in the North Atlantic from marine pollution and shrinking sea ice cover. Diversity Distrib 19:1322–1332
    Google Scholar 
    Fraïsse C, Popovic I, Mazoyer C, Spataro B, Delmotte S, Romiguier J et al. (2021). DILS: Demographic inferences with linked selection by using ABC. Mol Ecol Resourc 21:2629–2644Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genetical Res 66:95–107
    Google Scholar 
    Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, Red List criteria and population viability analyses. Biol Conserv 170:56–63
    Google Scholar 
    Garnier J, Lewis MA (2016) Expansion under climate change: the genetic consequences. Bull Math Biol 78:2165–2185PubMed 

    Google Scholar 
    Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318CAS 
    PubMed 

    Google Scholar 
    Gavrilo M, Martynova D (2017) Conservation of rare species of marine flora and fauna of the Russian Arctic National Park, included in the Red Data Book of the Russian Federation and in the IUCN Red List. Nat Conserv Res 2:10–42
    Google Scholar 
    Gienapp P, Teplitsky C, Alho JS, Mills JA, Merila J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178CAS 
    PubMed 

    Google Scholar 
    Gilchrist HG, Mallory ML (2005) Declines in abundance and distribution of the ivory gull (Pagophila eburnea) in Arctic Canada. Biol Conserv 121:303–309
    Google Scholar 
    Gilchrist HG, Strøm H, Gavrilo MV, Mosbech A (2008). International ivory gull conservation strategy and action plan. CAFF International Secretariat,Circumpolar Seabird Group (CBird), CAFF Technical Report No. 18Gilg O, Boertmann D, Merkel F, Aebischer A, Sabard B (2009) Status of the endangered ivory gull, Pagophila eburnea, in Greenland. Polar Biol 32:1275–1286
    Google Scholar 
    Gilg O, Istomina L, Heygster G, Strøm H, Gavrilo M, Mallory ML et al. (2016) Living on the edge of a shrinking habitat: the ivory gull, Pagophila eburnea, an endangered sea-ice specialist. Biol Lett 12:20160277PubMed 
    PubMed Central 

    Google Scholar 
    Gilg O, Kovacs KM, Aars J, Fort J, Gauthier G, Gremillet D et al. (2012) Climate change and the ecology and evolution of Arctic vertebrates. Ann N Y Acad Sci 1249:166–190PubMed 

    Google Scholar 
    Goutte A, Kriloff M, Weimerskirch H, Chastel O (2011) Why do some adult birds skip breeding? A hormonal investigation in a long-lived bird. Biol Lett 7:790–792PubMed 
    PubMed Central 

    Google Scholar 
    Guillaume F, Rougemont J (2006) Nemo: an evolutionary and population genetics programming framework. Bioinformatics 22:2556–2557CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hill WG (1972) Effective size of populations with overlapping generations. Theor Popul Biol 3:278–289CAS 
    PubMed 

    Google Scholar 
    Hoban SM, Mezzavilla M, Gaggiotti OE, Benazzo A, van Oosterhout C, Bertorelle G (2013) High variance in reproductive success generates a false signature of a genetic bottleneck in populations of constant size: a simulation study. BMC Bioinforma 14:309
    Google Scholar 
    Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485CAS 
    PubMed 

    Google Scholar 
    Hohenlohe PA, Funk WC, Rajora OP (2021) Population genomics for wildlife conservation and management. Mol Ecol 30:62–82PubMed 

    Google Scholar 
    Jamieson IG, Allendorf FW (2012) How does the 50/500 rule apply to MVPs? Trends Ecol Evol 27:578–584PubMed 

    Google Scholar 
    Kimura M, Ohta T (1978) Stepwise mutation model and distribution of allelic frequencies in a finite population. Proc Natl Acad Sci USA 75:2868–2872CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laporte V, Charlesworth B (2002) Effective population size and population subdivision in demographically structured populations. Genetics 162:501–519CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leblois R, Pudlo P, Néron J, Bertaux F, Reddy Beeravolu C, Vitalis R et al. (2014) Maximum-Likelihood Inference of Population Size Contractions from Microsatellite Data. Mol Biol Evol 31:2805–2823CAS 
    PubMed 

    Google Scholar 
    Li H, Durbin R (2011) Inference of human population history from individual whole-genome sequences. Nature 475:493–496CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu X, Fu Y-X (2015) Exploring population size changes using SNP frequency spectra. Nat Genet 47:555–559CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lucia M, Verboven N, Strom H, Miljeteig C, Gavrilo MV, Braune BM et al. (2015) Circumpolar contamination in eggs of the high-arctic ivory gull Pagophila eburnea. Environ Toxicol Chem 34:1552–1561CAS 
    PubMed 

    Google Scholar 
    Luikart G, Cornuet J-M (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237
    Google Scholar 
    Mallory ML, Allard KA, Braune BM, Gilchrist HG, Thomas VG (2012) New longevity record for ivory gulls (Pagophila eburnea) and evidence of natal philopatry. Arctic 65:98–101
    Google Scholar 
    Marandel F, Charrier G, Lamy J-B, Le Cam S, Lorance P, Trenkel VM (2020) Estimating effective population size using RADseq: Effects of SNP selection and sample size. Ecol Evol 10:1929–1937PubMed 
    PubMed Central 

    Google Scholar 
    McInerny GJ, Turner JRG, Wong HY, Travis JMJ, Benton TG (2009) How range shifts induced by climate change affect neutral evolution. Proc R Soc B: Biol Sci 276:1527–1534CAS 

    Google Scholar 
    McRae L, Deinet S, Gill M, Collen B (2012) Arctic species trend index: tracking trends in Arctic marine populations. CAFF Assessment Series No. 7. Conservation of Arctic Flora and Fauna, Iceland
    Google Scholar 
    Meredith M, Sommerkorn M, Cassotta S, Derksen C, Ekaykin A, Hollowed A et al. (2020) Polar Regions. In: Pörtner HO, Roberts DC, Masson-Delmotte V, Zhai P, Tignor M, Poloczanska E, Mintenbeck K, Alegría A, Nicolai M, Okem A, Petzold J, Rama B, Weyer NM (eds.) IPCC Special Report on the Ocean and Cryosphere in a Changing Climate. Intergovernmental Panel on Climate Change (IPCC)) Geneva, pp 203–320Miljeteig C, Strom H, Gavrilo MV, Volkov A, Jenssen BM, Gabrielsen GW (2009) High levels of contaminants in ivory gull Pagophila eburnea eggs from the Russian and Norwegian Arctic. Environ Sci Technol 43:5521–5528CAS 
    PubMed 

    Google Scholar 
    Miller MP, Haig SM, Mullins TD, Popper KJ, Green M (2012) Evidence for population bottlenecks and subtle genetic structure in the yellow rail. Condor 114:100–112
    Google Scholar 
    Nadachowska-Brzyska K, Li C, Smeds L, Zhang G, Ellegren H (2015) Temporal dynamics of avian populations during Pleistocene revealed by whole-genome sequences. Curr Biol 25:1375–1380CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nunney L (1993) The influence of mating system and overlapping generations on effective population size. Evolution 47:1329–1341PubMed 

    Google Scholar 
    Nunney L, Elam DR (1994) Estimating the Effective Population Size of Conserved Populations. Conserv Biol 8:175–184
    Google Scholar 
    Nunziata SO, Weisrock DW (2018) Estimation of contemporary effective population size and population declines using RAD sequence data. Heredity 120:196–207CAS 
    PubMed 

    Google Scholar 
    Nyström V, Angerbjörn A, Dalén L (2006) Genetic consequences of a demographic bottleneck in the Scandinavian arctic fox. Oikos 114:84–94
    Google Scholar 
    Orive ME (1993) Effective population size in organisms with complex life-histories. Theor Popul Biol 44:316–340CAS 
    PubMed 

    Google Scholar 
    Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Annu Rev Ecol Evol Syst 37:637–669
    Google Scholar 
    Parreira BR, Chikhi L (2015) On some genetic consequences of social structure, mating systems, dispersal, and sampling. Proc Natl Acad Sci USA 112:E3318CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parreira B, Quéméré E, Vanpé C, Carvalho I, Chikhi L (2020) Genetic consequences of social structure in the golden-crowned sifaka. Heredity 125:328–339PubMed 
    PubMed Central 

    Google Scholar 
    Peart CR, Tusso S, Pophaly SD, Botero-Castro F, Wu C-C, Aurioles-Gamboa D et al. (2020) Determinants of genetic variation across eco-evolutionary scales in pinnipeds. Nat Ecol Evol 4:1095–1104PubMed 

    Google Scholar 
    Peery MZ, Kirby R, Reid BN, Stoelting R, Doucet-Bëer E, Robinson S et al. (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418PubMed 

    Google Scholar 
    Piry S, Luikart G, Cornuet J-M (1999) Computer note. BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Heredity 90:502–503
    Google Scholar 
    Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Heredity 86:248–249
    Google Scholar 
    Rousset F (1999) Genetic Differentiation in Populations with Different Classes of Individuals. Theor Popul Biol 55:297–308CAS 
    PubMed 

    Google Scholar 
    Rousset F (2008) Genepop’007: a complete re-implementation of the Genepop software for windows and linux. Mol Ecol Notes 8:103–1006
    Google Scholar 
    Rousset F, Beeravolu CR, Leblois R (2018) Likelihood computation and inference of demographic and mutational parameters from population genetic data under coalescent approximations. J de la Société Française de Statistique 159:142–166
    Google Scholar 
    Rubidge EM, Patton JL, Lim M, Burton AC, Brashares JS, Moritz C (2012) Climate-induced range contraction drives genetic erosion in an alpine mammal. Nat Clim Change 2:285–288
    Google Scholar 
    Shafer ABA, Gattepaille LM, Stewart REA, Wolf JBW (2015) Demographic inferences using short-read genomic data in an approximate Bayesian computation framework: in silico evaluation of power, biases and proof of concept in Atlantic walrus. Mol Ecol 24:328–345PubMed 

    Google Scholar 
    Spencer NC, Gilchrist HG, Mallory ML (2014) Annual movement patterns of endangered ivory gulls: the importance of sea ice. Plos ONE 9:e115231PubMed 
    PubMed Central 

    Google Scholar 
    Stenhouse IJ, Robertson GJ, Gilchrist HG (2004) Recoveries and survival rates of ivory gulls (Pagophila eburnea) banded in Nunavut, Canada 1971–1999. Waterbirds 27:486–492
    Google Scholar 
    Storz J, Ramakrishnan U, Alberts S (2002) Genetic effective size of a wild primate population: influence of current and historical demography. Evolution 56:817–29PubMed 

    Google Scholar 
    Strøm H, Bakken V, Skoglund, Descamps S, Fjeldheim VB, Steen H (2020) Population status and trend of the threatened ivory gull Pagophila eburnea in Svalbard. Endanger Species Res 43:435–445
    Google Scholar 
    Volkov AE, de Korte J (2000) Breeding ecology of the Ivory Gull (Pagophila eburnea) in Sedov Archipelago, Severnaya Zemlya. Heritage of the Russian Arctic. Research, conservation and international cooperation. Ecopros Publishers, Moscow, p 483–500
    Google Scholar 
    Waples RS (2016) Life-history traits and effective population size in species with overlapping generations revisited: the importance of adult mortality. Heredity 117:241–250CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197:769–780PubMed 
    PubMed Central 

    Google Scholar 
    Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evolut Appl 3:244–262
    Google Scholar 
    Waples RS, Luikart G, Faulkner JR, Tallmon DA (2013) Simple life-history traits explain key effective population size ratios across diverse taxa. Proc R Soc B: Biol Sci 280:20131339
    Google Scholar 
    Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562
    Google Scholar 
    Wogan GOU, Voelker G, Oatley G, Bowie RCK (2020) Biome stability predicts population structure of a southern African aridland bird species. Ecol Evol 10:4066–4081PubMed 
    PubMed Central 

    Google Scholar 
    Xenikoudakis G, Ersmark E, Tison J-L, Waits L, Kindberg J, Swenson JE et al. (2015) Consequences of a demographic bottleneck on genetic structure and variation in the Scandinavian brown bear. Mol Ecol 24:3441–3454CAS 
    PubMed 

    Google Scholar 
    Yannic G, Broquet T, Strøm H, Aebischer A, Dufresnes C, Gavrilo MV et al. (2016) Genetic and morphological sex identification methods reveal a male-biased sex ratio in the Ivory Gull Pagophila eburnea. J Ornithol 157:861–873
    Google Scholar 
    Yannic G, Sermier R, Aebischer A, Gavrilo MV, Gilg O, Miljeteig C et al. (2011) Description of microsatellite markers and genotyping performances using feathers and buccal swabs for the ivory gull (Pagophila eburnea). Mol Ecol Resour 11:877–889PubMed 

    Google Scholar 
    Yannic G, Yearsley J, Sermier R, Dufresnes C, Gilg O, Aebischer A et al. (2016) High connectivity in a long-lived high-Arctic seabird, the ivory gull Pagophila eburnea. Polar Biol 39:221–236
    Google Scholar 
    Yurkowski DJ, Auger-Méthé M, Mallory ML, Wong SNP, Gilchrist G, Derocher AE et al. (2019) Abundance and species diversity hotspots of tracked marine predators across the North American Arctic. Diversity Distrib 25:328–345
    Google Scholar  More