More stories

  • in

    Functional representativeness and distinctiveness of reintroduced birds and mammals in Europe

    Cardinale, B. J., Palmer, M. A. & Collins, S. L. Species diversity enhances ecosystem functioning through interspecific facilitation. Nature 415, 426–429 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gagic, V. et al. Functional identity and diversity of animals predict ecosystem functioning better than species-based indices. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142620 (2015).
    Google Scholar 
    Oliver, T. H. et al. Biodiversity and resilience of ecosystem functions. Trends Ecol. Evol. 30, 673–684 (2015).PubMed 

    Google Scholar 
    Oliver, T. H. et al. Declining resilience of ecosystem functions under biodiversity loss. Nat. Commun. 6, 10122 (2015).ADS 
    PubMed 

    Google Scholar 
    Wardle, D. A. Do experiments exploring plant diversity–ecosystem functioning relationships inform how biodiversity loss impacts natural ecosystems?. J. Veg. Sci. 27, 646–653 (2016).
    Google Scholar 
    Cadotte, M. W., Carscadden, K. & Mirotchnick, N. Beyond species: Functional diversity and the maintenance of ecological processes and services. J. Appl. Ecol. 48, 1079–1087 (2011).
    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Extinction and the loss of functional diversity. Proc. R. Soc. Lond. B Biol. Sci. 269, 1721–1727 (2002).
    Google Scholar 
    Rosenfeld, J. S. Functional redundancy in ecology and conservation. Oikos 98, 156–162 (2002).
    Google Scholar 
    Fonseca, C. R. & Ganade, G. Species functional redundancy, random extinctions and the stability of ecosystems. J. Ecol. 89, 118–125 (2001).
    Google Scholar 
    Mouillot, D. et al. Functional over-redundancy and high functional vulnerability in global fish faunas on tropical reefs. PNAS 111, 13757–13762 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional!. Oikos 116, 882–892 (2007).
    Google Scholar 
    Laughlin, D. C. Applying trait-based models to achieve functional targets for theory-driven ecological restoration. Ecol. Lett. 17, 771–784 (2014).PubMed 

    Google Scholar 
    Laughlin, D. C., Strahan, R. T., Huffman, D. W. & Sánchez Meador, A. J. Using trait-based ecology to restore resilient ecosystems: Historical conditions and the future of montane forests in western North America. Restor. Ecol. 25, S135–S146 (2017).
    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity (FD), species richness and community composition. Ecol. Lett. 5, 402–411 (2002).
    Google Scholar 
    Carmona, C. P., de Bello, F., Mason, N. W. H. & Lepš, J. Traits without borders: Integrating functional diversity across scales. Trends Ecol. Evol. 31, 382–394 (2016).PubMed 

    Google Scholar 
    Jain, M. et al. The importance of rare species: A trait-based assessment of rare species contributions to functional diversity and possible ecosystem function in tall-grass prairies. Ecol. Evol. 4(104), 112 (2014).
    Google Scholar 
    Mouillot, D. et al. Rare species support vulnerable functions in high-diversity ecosystems. PLoS Biol. 11, e1001569 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Leitão, R. P. et al. Rare species contribute disproportionately to the functional structure of species assemblages. Proc. R. Soc. B 283, 20160084 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    IUCN/SSC. Guidelines for Reintroductions and Other Conservation Translocations. (IUCN Species Survival Commission, 2013).Bakker, E. S. & Svenning, J.-C. Trophic rewilding: Impact on ecosystems under global change. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170432 (2018).
    Google Scholar 
    Garrido, P. et al. Experimental rewilding enhances grassland functional composition and pollinator habitat use. J. Appl. Ecol. 56, 946–955 (2019).
    Google Scholar 
    Svenning, J.-C. et al. Science for a wilder Anthropocene: Synthesis and future directions for trophic rewilding research. Proc. Natl. Acad. Sci. 113, 898–906 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ritchie, E. G. et al. Ecosystem restoration with teeth: What role for predators?. Trends Ecol. Evol. 27, 265–271 (2012).PubMed 

    Google Scholar 
    Chauvenet, A. L. M., Canessa, S. & Ewen, J. G. Setting objectives and defining the success of reintroductions. In Reintroduction of Fish and Wildlife Populations 105–121 (University of California Press, 2016).Ewen, J. G., Soorae, P. S. & Canessa, S. Reintroduction objectives, decisions and outcomes: Global perspectives from the herpetofauna. Anim. Conserv. 17, 74–81 (2014).
    Google Scholar 
    Kleiman, D. G., Price, M. R. S. & Beck, B. B. Criteria for reintroductions. In Creative Conservation: Interactive Management of Wild and Captive Animals (eds. Olney, P. J. S., Mace, G. M. & Feistner, A. T. C.) 287–303 (Springer Netherlands, 1994). https://doi.org/10.1007/978-94-011-0721-1_14.Hunter, M. L. & Hutchinson, A. The virtues and shortcomings of parochialism: Conserving species that are locally rare, but globally common. Conserv. Biol. 8, 1163–1165 (1994).
    Google Scholar 
    Brichieri-Colombi, T. A. & Moehrenschlager, A. Alignment of threat, effort, and perceived success in North American conservation translocations. Conserv. Biol. 30, 1159–1172 (2016).PubMed 

    Google Scholar 
    Thévenin, C., Mouchet, M., Robert, A., Kerbiriou, C. & Sarrazin, F. Reintroductions of birds and mammals involve evolutionarily distinct species at the regional scale. PNAS https://doi.org/10.1073/pnas.1714599115 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seddon, P. J., Soorae, P. S. & Launay, F. Taxonomic bias in reintroduction projects. Anim. Conserv. 8, 51–58 (2005).
    Google Scholar 
    Thévenin, C., Morin, A., Kerbiriou, C., Sarrazin, F. & Robert, A. Heterogeneity in the allocation of reintroduction efforts among terrestrial mammals in Europe. Biol. Conserv. 241, 108346 (2020).
    Google Scholar 
    Devictor, V. et al. Spatial mismatch and congruence between taxonomic, phylogenetic and functional diversity: The need for integrative conservation strategies in a changing world. Ecol. Lett. 13, 1030–1040 (2010).PubMed 

    Google Scholar 
    Crees, J. J., Turvey, S. T., Freeman, R. & Carbone, C. Mammalian tolerance to humans is predicted by body mass: Evidence from long-term archives. Ecology 100, e02783 (2019).PubMed 

    Google Scholar 
    Sandom, C., Faurby, S., Sandel, B. & Svenning, J.-C. Global late Quaternary megafauna extinctions linked to humans, not climate change. Proc. R. Soc. B Biol. Sci. 281, 20133254 (2014).
    Google Scholar 
    Wilman, H. et al. EltonTraits 1.0: Species-level foraging attributes of the world’s birds and mammals. Ecology 95, 2027–2027 (2014).
    Google Scholar 
    Dı́az, S. & Cabido, M. Vive la différence: Plant functional diversity matters to ecosystem processes. Trends Ecol. Evol. 16, 646–655 (2001).
    Google Scholar 
    Mlambo, M. C. Not all traits are ‘functional’: Insights from taxonomy and biodiversity-ecosystem functioning research. Biodivers. Conserv. 23, 781–790 (2014).
    Google Scholar 
    van der Plas, F. et al. Plant traits alone are poor predictors of ecosystem properties and long-term ecosystem functioning. Nat. Ecol. Evol. 4, 1602–1611 (2020).PubMed 

    Google Scholar 
    Lavorel, S. & Garnier, E. Predicting changes in community composition and ecosystem functioning from plant traits: Revisiting the Holy Grail. Funct. Ecol. 16, 545–556 (2002).
    Google Scholar 
    Luck, G. W., Lavorel, S., McIntyre, S. & Lumb, K. Improving the application of vertebrate trait-based frameworks to the study of ecosystem services. J. Anim. Ecol. 81, 1065–1076 (2012).PubMed 

    Google Scholar 
    Mouchet, M. et al. Towards a consensus for calculating dendrogram-based functional diversity indices. Oikos 117, 794–800 (2008).
    Google Scholar 
    Podani, J. & Schmera, D. On dendrogram-based measures of functional diversity. Oikos 115, 179–185 (2006).
    Google Scholar 
    Maire, E., Grenouillet, G., Brosse, S. & Villéger, S. How many dimensions are needed to accurately assess functional diversity? A pragmatic approach for assessing the quality of functional spaces. Glob. Ecol. Biogeogr. 24, 728–740 (2015).
    Google Scholar 
    Villéger, S., Maire, E. & Leprieur, F. On the risks of using dendrograms to measure functional diversity and multidimensional spaces to measure phylogenetic diversity: A comment on Sobral et al. (2016). Ecol. Lett. 20, 554–557 (2017).PubMed 

    Google Scholar 
    Tsirogiannis, C. & Sandel, B. PhyloMeasures: A package for computing phylogenetic biodiversity measures and their statistical moments. Ecography 39, 709–714 (2016).
    Google Scholar 
    Isaac, N. J., Turvey, S. T., Collen, B., Waterman, C. & Baillie, J. E. Mammals on the EDGE: Conservation priorities based on threat and phylogeny. PLoS ONE 2, e296 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 

    Google Scholar 
    Hidasi-Neto, J., Loyola, R. & Cianciaruso, M. V. Global and local evolutionary and ecological distinctiveness of terrestrial mammals: Identifying priorities across scales. Divers. Distrib. 21, 548–559 (2015).
    Google Scholar 
    Dovrat, G., Meron, E., Shachak, M., Golodets, C. & Osem, Y. The relative contributions of functional diversity and functional identity to ecosystem function in water-limited environments. J. Veg. Sci. 30, 427–437 (2019).
    Google Scholar 
    Funk, J. L. et al. Revisiting the Holy Grail: Using plant functional traits to understand ecological processes. Biol. Rev. 92, 1156–1173 (2017).PubMed 

    Google Scholar 
    Kuebbing, S. E. & Bradford, M. A. The potential for mass ratio and trait divergence effects to explain idiosyncratic impacts of non-native invasive plants on carbon mineralization of decomposing leaf litter. Funct. Ecol. 33, 1156–1171 (2019).
    Google Scholar 
    Devictor, V. et al. Defining and measuring ecological specialization. J. Appl. Ecol. 47, 15–25 (2010).
    Google Scholar 
    Byers, J. E. et al. Using ecosystem engineers to restore ecological systems. Trends Ecol. Evol. 21, 493–500 (2006).PubMed 

    Google Scholar 
    Jones, C. G., Lawton, J. H. & Shachak, M. Organisms as ecosystem engineers. In Ecosystem Management: Selected Readings (eds. Samson, F. B. & Knopf, F. L.) 130–147 (Springer, 1996). https://doi.org/10.1007/978-1-4612-4018-1_14.Macdonald, D. W. et al. Reintroducing the beaver (Castor fiber) to Scotland: A protocol for identifying and assessing suitable release sites. Anim. Conserv. 3, 125–133 (2000).
    Google Scholar 
    Wilmers, C. C., Crabtree, R. L., Smith, D. W., Murphy, K. M. & Getz, W. M. Trophic facilitation by introduced top predators: Grey wolf subsidies to scavengers in Yellowstone National Park. J. Anim. Ecol. 72, 909–916 (2003).
    Google Scholar 
    Dupont, H., Mihoub, J.-B., Bobbé, S. & Sarrazin, F. Modelling carcass disposal practices: Implications for the management of an ecological service provided by vultures. J. Appl. Ecol. 49, 404–411 (2012).
    Google Scholar 
    Moleon, M. et al. Humans and scavengers: The evolution of interactions and ecosystem services. Bioscience 64, 394–403 (2014).
    Google Scholar 
    Legras, G., Loiseau, N., Gaertner, J.-C., Poggiale, J.-C. & Gaertner-Mazouni, N. Assessing functional diversity: The influence of the number of the functional traits. Theor. Ecol. 13, 117–126 (2020).
    Google Scholar 
    Petchey, O. L. & Gaston, K. J. Functional diversity: Back to basics and looking forward. Ecol. Lett. 9, 741–758 (2006).PubMed 

    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).ADS 
    PubMed 

    Google Scholar 
    Lundgren, E. J. et al. Introduced herbivores restore Late Pleistocene ecological functions. Proc. Natl. Acad. Sci. 117, 7871–7878 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Malhi, Y. et al. Megafauna and ecosystem function from the Pleistocene to the Anthropocene. PNAS 113, 838–846 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Osborne, P. E. & Seddon, P. J. Selecting suitable habitats for reintroductions: Variation, change and the role of species distribution modelling. Reintrod. Biol. Integr. Sci. Manag. 1, 73–104 (2012).
    Google Scholar 
    Lipsey, M. K., Child, M. F., Seddon, P. J., Armstrong, D. P. & Maloney, R. F. Combining the fields of reintroduction biology and restoration ecology. Conserv. Biol. 21, 1387–1390 (2007).PubMed 

    Google Scholar 
    Perino, A. et al. Rewilding complex ecosystems. Science 364, eaav5570 (2019).CAS 
    PubMed 

    Google Scholar 
    Loiseau, N. et al. Global distribution and conservation status of ecologically rare mammal and bird species. Nat. Commun. 11, 5071 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cadotte, M. W. & Tucker, C. M. Difficult decisions: Strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128–133 (2018).
    Google Scholar 
    Sarrazin, F. & Barbault, R. Reintroduction: Challenges and lessons for basic ecology. Trends Ecol. Evol. (Amst.) 11, 474–478 (1996).CAS 

    Google Scholar  More

  • in

    Divergence time estimation using ddRAD data and an isolation-with-migration model applied to water vole populations of Arvicola

    Hey, J. On the arbitrary identification of real species. In Speciation and Patterns of Diversity (eds Butlin, R. K. et al.) 15–28 (Cambridge University Press, 2009).
    Google Scholar 
    Arbogast, B. S., Edwards, S. V., Wakeley, J., Beerli, P. & Slowinski, J. B. Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annu. Rev. Ecol. Syst. 33, 707–740 (2002).
    Google Scholar 
    Nielsen, R. & Wakeley, J. Distinguishing migration from isolation: A Markov chain Monte Carlo approach. Genetics 158, 885–896 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wakeley, J. The effects of subdivision on the genetic divergence of populations and species. Evolution 54, 1092–1101 (2000).CAS 
    PubMed 

    Google Scholar 
    Hey, J. & Nielsen, R. Multilocus methods for estimating population sizes, migration rates and divergence time, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167, 747–760 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hey, J. Isolation with migration models for more than two populations. Mol. Biol. Evol. 27, 905–920 (2010).CAS 
    PubMed 

    Google Scholar 
    Mailund, T. et al. A new isolation with migration model along complete genomes infers very different divergence processes among closely related great ape species. PLoS Genet. 8, e1003125 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Igea, J., Aymerich, P., Bannikova, A. A., Gosálbez, J. & Castresana, J. Multilocus species trees and species delimitation in a temporal context: Application to the water shrews of the genus Neomys. BMC Evol. Biol. 15, 209 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Sánchez-Gracia, A. & Castresana, J. Impact of deep coalescence on the reliability of species tree inference from different types of DNA markers in mammals. PLoS One 7, e30239 (2012).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Degnan, J. H. & Rosenberg, N. A. Gene tree discordance, phylogenetic inference and the multispecies coalescent. Trends Ecol. Evol. 24, 332–340 (2009).PubMed 

    Google Scholar 
    Edwards, S. V. & Beerli, P. Perspective: Gene divergence, population divergence, and the variance in coalescence time in phylogeographic studies. Evolution 54, 1839–1854 (2000).CAS 
    PubMed 

    Google Scholar 
    Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. S. & Hoekstra, H. E. Double digest RADseq: An inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7, e37135 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andrews, K. R., Good, J. M., Miller, M. R., Luikart, G. & Hohenlohe, P. A. Harnessing the power of RADseq for ecological and evolutionary genomics. Nat. Rev. Genet. 17, 81–92 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Escoda, L., Fernández-González, A. & Castresana, J. Quantitative analysis of connectivity in populations of a semi-aquatic mammal using kinship categories and network assortativity. Mol. Ecol. Resour. 19, 310–326 (2019).PubMed 

    Google Scholar 
    Bininda-Emonds, O. R. P. Fast genes and slow clades: Comparative rates of molecular evolution in mammals. Evol. Bioinform. 3, 59 (2007).CAS 

    Google Scholar 
    Welch, J. J., Bininda-Emonds, O. R. P. & Bromham, L. Correlates of substitution rate variation in mammalian protein-coding sequences. BMC Evol. Biol. 8, 53 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Matassi, G., Sharp, P. M. & Gautier, C. Chromosomal location effects on gene sequence evolution in mammals. Curr. Biol. 9, 786–791 (1999).CAS 
    PubMed 

    Google Scholar 
    Lercher, M. J., Chamary, J. V. & Hurst, L. D. Genomic regionality in rates of evolution is not explained by clustering of genes of comparable expression profile. Genome Res. 14, 1002–1013 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castresana, J. Genes on human chromosome 19 show extreme divergence from the mouse orthologs and a high GC content. Nucleic Acids Res. 30, 1751–1756 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benton, M. J., Donoghue, P. C. J. & Asher, R. J. Calibrating and constraining molecular clocks. In The Timetree of Life (eds Hedges, S. B. & Kumar, S.) 35–86 (Oxford University Press, 2009).Bouckaert, R. et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15, e1006650 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Musser, G. G. & Carleton, M. D. Superfamily Muroidea. In Mammal Species of the World. A Taxonomic and Geographic Reference (eds Wilson, D. E. & Reeder, D. M.) 894–1531 (Johns Hopkins University Press, 2005).Pardiñas, U. F. J. et al. Family Cricetidae (True Hamsters, Voles, Lemmings and New World Rats and Mice). In Handbook of the Mammals of the World. Volume 7. Rodents II (eds Wilson, D. E. et al.) 204-279 (Lynx Edicions, 2017).Chevret, P. et al. Genetic structure, ecological versatility, and skull shape differentiation in Arvicola water voles (Rodentia, Cricetidae). J. Zoolog. Syst. Evol. Res. 58, 1323–1334 (2020).
    Google Scholar 
    Kryštufek, B. et al. Fossorial morphotype does not make a species in water voles. Mammalia 79, 293–303 (2015).
    Google Scholar 
    Centeno-Cuadros, A., Delibes, M. & Godoy, J. A. Dating the divergence between Southern and European water voles using molecular coalescent-based methods. J. Zool. 279, 404–409 (2009).
    Google Scholar 
    Castiglia, R. et al. The Italian peninsula hosts a divergent mtDNA lineage of the water vole, Arvicola amphibius s.l., including fossorial and aquatic ecotypes. Hystrix 27, 99–103 (2016).
    Google Scholar 
    Mahmoudi, A. et al. Evolutionary history of water voles revisited: Confronting a new phylogenetic model from molecular data with the fossil record. Mammalia 84, 171–184 (2020).
    Google Scholar 
    Cassola, F. Arvicola scherman, Montane Water Vole. The IUCN Red List of Threatened Species e.T136766A115519839 (2016).Somoano, A., Miñarro, M. & Ventura, J. Reproductive potential of a vole pest (Arvicola scherman) in Spanish apple orchards. Spanish J. Agric. Res. 14, e1008 (2016).
    Google Scholar 
    Somoano, A., Ventura, J. & Miñarro, M. Continuous breeding of fossorial water voles in northwestern Spain: Potential impact on apple orchards. Folia Zool. 66, 37–49 (2017).
    Google Scholar 
    Ventura, J. & Gosálbez, J. Taxonomic review of Arvicola terrestris (Linnaeus, 1758) (Rodentia, Arvicolidae) in the Iberian Peninsula. Bonn Zool. Beitr. 40, 227–242 (1989).
    Google Scholar 
    Ventura, J. & Sans-Fuentes, M. A. Geographic variation and divergence in nonmetric cranial traits of Arvicola (Mammalia, Rodentia) in southwestern Europe. Z. Säugetierkunde 62, 99–107 (1997).
    Google Scholar 
    Gómez, A. & Lunt, D. H. Refugia within refugia: Patterns of phylogeographic concordance in the Iberian Peninsula. In Phylogeography of Southern European Refugia (eds S. Weiss & N. Ferrand) 155–188 (Springer, 2007).Batsaikhan, N. et al. Arvicola amphibius, European Water Vole. The IUCN Red List of Threatened Species e.T2149A197271401 (2016).Cuenca-Bescós, G., Agustí, J., Lira, J., Rubio, M. M. & Rofes, J. A new species of water vole from the early Pleistocene of Southern Europe. Acta Palaeontol. Pol. 55, 565–580 (2010).
    Google Scholar 
    Cubo, J., Ventura, J. & Casinos, A. A heterochronic interpretation of the origin of digging adaptations in the northern water vole, Arvicola terrestris (Rodentia: Arvicolidae). Biol. J. Linn. Soc. 87, 381–391 (2006).
    Google Scholar 
    Catchen, J. M., Hohenlohe, P. A., Bassham, S., Amores, A. & Cresko, W. A. Stacks: An analysis tool set for population genomics. Mol. Ecol. 22, 3124–3140 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Pritchard, J. K., Stephens, M. & Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 155, 945–959 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yates, A. D. et al. Ensembl 2020. Nucleic Acids Res. 48, D682–D688 (2020).CAS 

    Google Scholar 
    Aghová, T. et al. Fossils know it best: Using a new set of fossil calibrations to improve the temporal phylogenetic framework of murid rodents (Rodentia: Muridae). Mol. Phylogenet. Evol. 128, 98–111 (2018).PubMed 

    Google Scholar 
    Hey, J. et al. Phylogeny estimation by integration over isolation with migration models. Mol. Biol. Evol. 35, 2805–2818 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phifer-Rixey, M., Harr, B. & Hey, J. Further resolution of the house mouse (Mus musculus) phylogeny by integration over isolation-with-migration histories. BMC Evol. Biol. 20, 120 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Hey, J. The divergence of chimpanzee species and subspecies as revealed in multipopulation isolation-with-migration analyses. Mol. Biol. Evol. 27, 921–933 (2010).CAS 
    PubMed 

    Google Scholar 
    Kumar, S. & Subramanian, S. Mutation rates in mammalian genomes. Proc. Natl. Acad. Sci. U.S.A. 99, 803–808 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Uchimura, A. et al. Germline mutation rates and the long-term phenotypic effects of mutation accumulation in wild-type laboratory mice and mutator mice. Genome Res. 25, 1125–1134 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Milholland, B. et al. Differences between germline and somatic mutation rates in humans and mice. Nat. Commun. 8, 15183 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wright, B. R. et al. A demonstration of conservation genomics for threatened species management. Mol. Ecol. Resour. 20, 1526–1541 (2020).PubMed 

    Google Scholar 
    Escoda, L. & Castresana, J. The genome of the Pyrenean desman and the effects of bottlenecks and inbreeding on the genomic landscape of an endangered species. Evol. Appl. 14, 1898–1913 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Arnold, B., Corbett-Detig, R. B., Hartl, D. & Bomblies, K. RADseq underestimates diversity and introduces genealogical biases due to nonrandom haplotype sampling. Mol. Ecol. 22, 3179–3190 (2013).CAS 
    PubMed 

    Google Scholar 
    Cariou, M., Duret, L. & Charlat, S. How and how much does RAD-seq bias genetic diversity estimates?. BMC Evol. Biol. 16, 240 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Campbell, C. R. et al. Pedigree-based and phylogenetic methods support surprising patterns of mutation rate and spectrum in the gray mouse lemur. Heredity 127, 233–244 (2021).CAS 
    PubMed 

    Google Scholar 
    Scornavacca, C. et al. Orthomam v10: Scaling-up orthologous coding sequence and exon alignments with more than one hundred mammalian genomes. Mol. Biol. Evol. 36, 861–862 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Willis, S. C., Hollenbeck, C. M., Puritz, J. B., Gold, J. R. & Portnoy, D. S. Haplotyping RAD loci: An efficient method to filter paralogs and account for physical linkage. Mol. Ecol. Resour. 17, 955–965 (2017).CAS 
    PubMed 

    Google Scholar 
    O’Leary, S. J., Puritz, J. B., Willis, S. C., Hollenbeck, C. M. & Portnoy, D. S. These aren’t the loci you’e looking for: Principles of effective SNP filtering for molecular ecologists. Mol. Ecol. 27, 3193–3206 (2018).
    Google Scholar 
    Dahl-Jensen, D. et al. Eemian interglacial reconstructed from a Greenland folded ice core. Nature 493, 489–494 (2013).ADS 
    CAS 

    Google Scholar 
    Clark, P. U. et al. The last glacial maximum. Science 325, 710–714 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pinho, C. & Hey, J. Divergence with gene flow: Models and data. Annu. Rev. Ecol. Evol. Syst. 41, 215–230 (2010).
    Google Scholar 
    Balmori-de la Puente, A. et al. Size increase without genetic divergence in the Eurasian water shrew Neomys fodiens. Sci. Rep. 9, 17375 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Foll, M. & Gaggiotti, O. A genome-scan method to identify selected loci appropriate for both dominant and codominant markers: A Bayesian perspective. Genetics 180, 977–993 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Freedman, A. H. et al. Genome sequencing highlights the dynamic early history of dogs. PLoS Genet. 10, e1004016 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Felsenstein, J. PHYLIP-phylogeny inference package (version 3.4). Cladistics 5, 164–166 (1989).
    Google Scholar 
    Zheng, X. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Evanno, G., Regnaut, S. & Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 14, 2611–2620 (2005).CAS 
    PubMed 

    Google Scholar 
    Jakobsson, M. & Rosenberg, N. A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).CAS 
    PubMed 

    Google Scholar 
    Goudet, J. HIERFSTAT, a package for R to compute and test hierarchical F-statistics. Mol. Ecol. Notes 5, 184–186 (2005).
    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Castresana, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552 (2000).CAS 
    PubMed 

    Google Scholar 
    Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, R. P. & Yang, Z. Rate variation and estimation of divergence times using strict and relaxed clocks. BMC Evol. Biol. 11, 271 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Rambaut, A., Drummond, A. J., Xie, D., Baele, G. & Suchard, M. A. Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7. Syst. Biol. 67, 901–904 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hey, J. & Wang, K. The effect of undetected recombination on genealogy sampling and inference under an isolation-with-migration model. Mol. Ecol. Resour. 18, 489 (2019).
    Google Scholar 
    QGIS_Development_Team. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org (2021).IUCN. Arvicola scherman. The IUCN Red List of Threatened Species. Version 6.2. https://www.iucnredlist.org. Downloaded on 04 September 2019. (2019).IUCN. Arvicola amphibius. The IUCN Red List of Threatened Species. Version 6.2. https://www.iucnredlist.org. Downloaded on 10 July 2019. (2019). More

  • in

    The dynamics of disease mediated invasions by hosts with immune reproductive tradeoff

    Following the work in36, we construct an epidemiological model which tracks the disease dynamics and population of two species of hosts following the introduction of a pathogen. The native host (hereafter simply referred to as “type 1”) is vulnerable to the disease, but due to being well adapted to the native habitat has high fecundity when uninfected. The invasive host (hereafter referred to as “type 2”), has coevolved defenses to the pathogen that increase both its tolerance of and resistance to the disease, but is not inherently as well-adapted to the habitat in the absence of infection (i.e., its intrinsic rate of growth in the new habitat is lower than that of the native).Our initial conditions correspond to a population of uninfected type 1 hosts with a small number of both uninfected and infected type 2 hosts, representing an invasion by a novel competitor carrying a novel pathogen into the type 1 population. We consider a vector-borne pathogen, and make the simplifying assumption that there is an already abundant competent vector species in the habitat. (For this initial formulation, we considered a scenario of mosquito-borne infections in birds, such as avian malaria37 or West Nile virus38, to motivate concrete choices.)The model couples two biological dynamics: the daily vector-borne spread of the disease among hosts, and a yearly host breeding cycle. We simulate in discrete time-steps that represent days using an SIR model taking into account the interactions between the disease, the two species of host, and the vectors. The model also includes a passive death rate for hosts of vectors, which increases for hosts while infected. While the vectors are assumed to breed daily, the hosts reproduce as part of an assumed annual breeding season, every (t_c) time-steps (typically equal to 365). These dynamics were informed by considering an annually breeding bird population in a tropical environment, however, they are not meant to reflect the realism of any one biological system. They are chosen here merely to allow a clean interpretation of modeled scenarios. Future models should explore the impact of greater variety in the dynamics of possible vector and host reproductive patterns.Epidemiological modelThe model tracks eight variables corresponding to combinations of host species and vectors with their infection status. Hosts may be of type 1 or 2, and are either susceptible to the disease ((S_1, S_2)), currently infected ((I_1, I_2)), or recovered ((R_1, R_2)). We assume that recovery is complete and recovered individuals suffer no residual effects from their infection aside from a lifelong immunity to becoming reinfected. (We later set the recovery rate for host type 1 to 0, so (R_1 = 0) at all times, but leave it defined for the sake of generality.) For simplicity, we model using only one stage of infection in which individuals are both infectious and symptomatic. The model also tracks the status of the vector population, which may either be susceptible ((S_v)) or infected ((I_v)). We assume that vectors do not recover from the disease, but also suffer no negative effects from being infected, acting only as carriers.For convenience of notation, we denote the total number of hosts$$begin{aligned} H = S_1 + I_1 + R_1 + S_2 + I_2 + R_2 end{aligned}$$and the relative frequencies of infection within their respective population$$begin{aligned} F_1 = frac{I_1}{H}, F_2 = frac{I_2}{H},F_v = frac{I_v}{S_v+I_v} end{aligned}$$which allows some equations to be written more compactly. Table 1 shows a summary of these variables.Table 1 Variables.Full size tableThe model also has several constant parameters that affect the dynamics. (beta _j) determines the probability that hosts of type j become infected when bitten by a single infected vector. We typically set (beta _1 > beta _2), making type 2 hosts less likely to become infected.Likewise, (delta _j) determines the probability that a vector becomes infected when biting an infected host of type j.(b_j) determines the bite rate for vectors on host type j. We assume that each vector bites the same number of hosts per day, so each vector’s probability of becoming infected depends only on the frequency of infection among hosts, while each host will be bitten more if there are more vectors.(gamma _j) determines the proportion of infected hosts of type j that recover from the disease each day. We typically set (gamma _1 = 0 < gamma _2), meaning infected hosts of type 1 do not recover, while infected type 2 recover after an average of (1/gamma _2) days.(mu _{j-}) determines the daily death rate for uninfected hosts of type j and (mu _{j+}) determines the death rate for infected host of type j. We typically set (mu _{1-} = mu _{2-}< mu _{2+} < mu _{1+}), meaning uninfected hosts have the same death rate regardless of type, infected type 2 have a higher death rate than uninfected hosts, and infected type 1 have the highest. (Both susceptible and recovered hosts are considered to be uninfected.) Table 2 shows a summary of parameters related to the SIR dynamics.Equation 1 shows continuous ordinary differential equations approximating the dynamics. Note that the actual model instantiates these in discrete time-steps using the forward Euler method with (h = 1).$$ begin{aligned}&frac{dS_1}{dt} = - S_1 beta _1 b_1 I_v /H - S_1 mu _{1-} \&frac{dI_1}{dt} = S_1 beta _1 b_1 I_v /H - gamma _1 I_1 - I_1 mu _{1+} \&frac{dR_1}{dt} = I_1 gamma _1 - R_1 mu _{1-} \&frac{dS_2}{dt} = -S_2 beta _2 b_2 I_v /H - S_2 mu _{2-} \&frac{dI_2}{dt} = S_2 beta _2 b_2 I_v /H - I_2 gamma _2 - I_2 mu _{2+} \&frac{dR_2}{dt} = I_2 gamma _2 - R_2 mu _{2-}\&frac{dS_v}{dt} = alpha _v H -S_v delta _1 b_1 F_1 -S_v delta _2 b_2 F_2 -S_v mu _v\&frac{dI_v}{dt} = S_v delta _1 b_1 F_1 + S_v delta _2 b_2 F_2 - I_v mu _v\ end{aligned} $$ (1) Table 2 Parameters for SIR dynamics.Full size tableFollowing a standard SIR model, susceptible hosts can become infected, and infected hosts become recovered, but each equation also contains a negative term corresponding to deaths. Thus, the total population of hosts is strictly decreasing in this time-frame. We assume that the vectors breed on a much shorter timescale than hosts, so we include a term for their births here, while host births are implemented by a yearly breeding event. We assume no vertical disease transmission, so all new vectors begin in the susceptible category. We assume that the daily birthrate for each vector increases with access to hosts, and decreases with competition among other vectors for hosts and breeding sites, so we set it equal to (frac{alpha _v H}{S_v + I_v}), where (alpha _v) is a constant scaling factor. Since the birthrate for each vector contains the total number of vectors in its denominator, the total number of vector births in the population will simply be (alpha _v H).A population with a larger number of hosts will be able to sustain a larger number of vectors. For a population with a constant number of hosts, the equilibrium vector population will be proportional to the number hosts: aH where (a = frac{alpha _v}{mu _v}) is the equilibrium vector density (number of vectors per host). For instance if (a = 2), then in equilibrium there will be twice as many vectors as hosts. Given a fixed number of hosts, the population of vectors will asymptotically approach the equilibrium value. In practice the total number of hosts is constantly changing, so the population of vectors will chase after this moving equilibrium, though for our standard parameters (alpha _v) and (mu _v) are sufficiently large such that this will occur on a short timescale, and the population of vectors remains close to the current equilibrium value.Breeding eventTable 3 shows a summary of parameters related to the breeding event. Every (t_c) days (typically 365), a breeding event occurs according to the following process.Table 3 Parameters for breeding event.Full size tableLet$$begin{aligned}&Delta S_1 = t_c alpha _{1-}(S_1+R_1)+t_calpha _{1+} I_1 \&Delta S_2 = t_c alpha _{2-}(S_2+R_2)+t_calpha _{2+} I_2 \ end{aligned}$$be the number of new host offspring of each type born this generation. In order to maintain consistency of temporal units among the parameters, each birthrate parameter is multiplied by (t_c). Let H be the current total number of hosts. Let$$begin{aligned} c = {left{ begin{array}{ll} 0 &{} hbox {if } H ge kappa \ 1 &{} hbox {if } H + Delta S_1 + Delta S_2 le kappa \ frac{kappa -H}{Delta S_1 + Delta S_2} &{} hbox {otherwise} \ end{array}right. } end{aligned}$$be the proportion of offspring that survive to adulthood. (None, if the population is already above carrying capacity. All, if the difference between the reproducing population size and the carrying capacity exceeds the new births. If the population is approaching carrying capacity, juvenile mortality scales proportionally so that the population will hit carrying capacity but not exceed it.)Then$$begin{aligned}&S_1 + c Delta S_1 rightarrow S_1 \&S_2 + c Delta S_2 rightarrow S_2 \ end{aligned}$$We assume there is no vertical disease transmission, so all new hosts begin in the susceptible category. We assume that the host population is iteroparous, such that the new offspring and the existing adult population both carry over to the next generation. If the new population would exceed the carrying capacity, we assume the limited space or supplies reduces the number of successful offspring so that the population exactly reaches the carry capacity by reduction in juvenile survival rather than population-wide competition that could also reduce the adult population.The carrying capacity is therefore what drives the interspecific host competition. Because births of both species are summed and then normalized by the total number of births, the higher the birthrate of one host, the larger a fraction of the available space it will capture during the breeding event. Similarly, the lower the death-rate of a host, the less space it frees up for the next breeding event. Even if one host species would be able to sustain a stable population on its own, the presence of a more fit competitor can lead to the extinction of the less fit type by driving its effective birth rate down.Immune-reproductive trade-offs and boundary conditionsWe assume that host type 1 is evolutionarily stable in the absence of the disease; an uninfected monoculture population below the carrying capacity will have at least as many births as deaths each cycle. In a continuous version of this model where births and deaths happened simultaneously, this might be defined by (alpha _{1-} ge mu _{1-}) . However in our model, the population spends many days decreasing due to deaths before the next breeding event occurs. The population exponentially decays throughout the cycle, and then jumps up during the breeding event. The number of new host births is proportional to the number of hosts at the start of the breeding event, which will be the lowest value of any other time during the cycle. Thus, the birth rate needs to be high enough that the surviving hosts can compensate despite their diminished numbers. Taking this into account, we get the condition$$begin{aligned}&alpha _{1-} ge frac{1-(1- mu _{1-})^{t_c}}{(1-mu _{1-})^{t_c}} \ end{aligned}$$Which is a higher bound on (alpha _{1-}) than the simpler one above, but will be close to it if (mu _{1-}) and (t_c) are small.To implement the scenario in which type 2 has increased resistance and tolerance to the disease at the expense of overall fecundity, we implement the following boundary conditions:$$begin{aligned}&beta _1 > beta _2 \&0 = gamma _1< gamma _2 \&mu _{1-} = mu _{2-}< mu _{2+} < mu _{1+} \&alpha _{1-} > alpha _{2-} > alpha _{2+} > alpha _{1+} end{aligned}$$Type 2 hosts are less likely to contract the disease, and are able to recover from it, while type 1 lack the immunological strength to eradicate it completely. Additionally, while both types of host are weakened by the disease, type 2 suffer fewer negative effects. However, this stronger immune response comes at the cost of reducing their birth rate when compared to healthy type 1 hosts.Due to the heterogeneous population, there is ambiguity in defining (R_0) for the disease. The two types of host have different transmission rates and durations of infection, and will therefore be responsible for different amounts of disease spread. To resolve this, we define several related values. Let (R_0^j) be the (R_0) of the disease in a homogeneous population of type j hosts: the average number of hosts infected (indirectly, through vectors) from a single infected host in a population consisting entirely of type j hosts.$$begin{aligned}&R_0^1 = frac{delta _1 beta _1 a b_1^2}{mu _v mu _{1+}} \&R_0^2 = frac{delta _2 beta _2 a b_2^2}{mu _v (mu _{2+}+gamma _2)} end{aligned}$$We simplify the equation for (R_0^1) since (gamma _1 = 0). We define w to be the frequency of host type 1: (w := (S_1 + I_1)/H). Then (R_0) for the vectors is$$begin{aligned} R_0^v = R_0^1 w + R_0^2 (1-w) end{aligned}$$which will also be the effective (R_0) of the disease for the hosts in the mixed population.For simplicity of results, we restrict to the case where type 1 is more infectious overall than type 2, in particular (R_0^1 > R_0^2). This allows us to avoid edge cases in simulation outcomes which are beyond the scope of this paper. We intend to lift this restriction and study these outcomes in future work.NoteAlthough usual epidemiological model formulations can rely on the value 1 as the boundary condition for (R_0) to determine the epidemic potential of an outbreak, in this case we are calculating effective (R_0) in a dynamic host population, such that the decrease in disease spread due to saturation from recovered hosts and already infected hosts increases the actual thresholds. More accurate criteria require a technical and somewhat cumbersome analysis, which we leave for a future paper. More

  • in

    Exploring agricultural land-use and childhood malaria associations in sub-Saharan Africa

    Tusting, L. S. et al. Mapping changes in housing in sub-Saharan Africa from 2000 to 2015. Nature 568, 391–394 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lozano, R. et al. Measuring progress from 1990 to 2017 and projecting attainment to 2030 of the health-related Sustainable Development Goals for 195 countries and territories: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 2091–2138 (2018).
    Google Scholar 
    Kassebaum, N. J. et al. Global, regional, and national levels and causes of maternal mortality during 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 980–1004 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Dhiman, S. Are malaria elimination efforts on right track? An analysis of gains achieved and challenges ahead. Infect. Dis. Poverty 8, 1–19 (2019).
    Google Scholar 
    WHO. World Malaria Report 2018 (WHO, 2018).
    Google Scholar 
    Janko, M. M. et al. The links between agriculture, Anopheles mosquitoes, and malaria risk in children younger than 5 years in the Democratic Republic of the Congo: A population-based, cross-sectional, spatial study. Lancet Planet. Health 2, e74–e82 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Gerland, P. et al. World population stabilization unlikely this century. Science 346, 234–237 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jayne, T. S., Chamberlin, J. & Headey, D. D. Land pressures, the evolution of farming systems, and development strategies in Africa: A synthesis. Food Policy 48, 1–17 (2014).
    Google Scholar 
    Ordway, E. M., Asner, G. P. & Lambin, E. F. Deforestation risk due to commodity crop expansion in sub-Saharan Africa. Environ. Res. Lett. 12, 044015 (2017).ADS 

    Google Scholar 
    Chaves, L. S. M. et al. Global consumption and international trade in deforestation-associated commodities could influence malaria risk. Nat. Commun. 11, 1–10 (2020).
    Google Scholar 
    Adenle, A. A., Azadi, H. & Manning, L. The era of sustainable agricultural development in Africa: Understanding the benefits and constraints. Food Rev. Int. 34, 411–433 (2018).
    Google Scholar 
    Ijumba, J. N. & Lindsay, S. W. Impact of irrigation on malaria in Africa: Paddies paradox. Med. Vet. Entomol. 15, 1–11 (2001).CAS 
    PubMed 

    Google Scholar 
    Warra, A. A. & Prasad, M. N. V. African perspective of chemical usage in agriculture and horticulture—their impact on human health and environment. In Agrochemicals, Detection Treatment and Remediation 401–436 (Elsevier, 2020).
    Google Scholar 
    Fornace, K. M., Diaz, A. V., Lines, J. & Drakeley, C. J. Achieving global malaria eradication in changing landscapes. Malar. J. 20, 1–14 (2021).
    Google Scholar 
    Burkett-Cadena, N. D. & Vittor, A. Y. Deforestation and vector-borne disease: Forest conversion favors important mosquito vectors of human pathogens. Basic Appl. Ecol. 26, 101–110 (2018).PubMed 

    Google Scholar 
    Lindblade, K. A., Walker, E. D., Onapa, A. W., Katungu, J. & Wilson, M. L. Land use change alters malaria transmission parameters by modifying temperature in a highland area of Uganda. Trop. Med. Int. Heal. 5, 263–274 (2000).CAS 

    Google Scholar 
    Yasuoka, J. & Levins, R. Impact of deforestation and agricultural development on anopheline ecology and malaria epidemiology. Am. J. Trop. Med. Hyg. 76, 450–460 (2007).PubMed 

    Google Scholar 
    Guerra, C. A., Snow, R. W. & Hay, S. I. A global assessment of closed forests, deforestation and malaria risk. Ann. Trop. Med. Parasitol. 100, 189–204 (2006).CAS 
    PubMed 

    Google Scholar 
    Laporta, G. Z., de Prado, P. I. K. L., Kraenkel, R. A., Coutinho, R. M. & Sallum, M. A. M. Biodiversity can help prevent malaria outbreaks in tropical forests. PLoS Negl. Trop. Dis. 7, e2139 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Baeza, A., Santos-Vega, M., Dobson, A. P. & Pascual, M. The rise and fall of malaria under land-use change in frontier regions. Nat. Ecol. Evol. 1, 0108 (2017).
    Google Scholar 
    Patz, J. A., Graczyk, T. K., Geller, N. & Vittor, A. Y. Effects of environmental change on emerging parasitic diseases. Int. J. Parasitol. https://doi.org/10.1016/S0020-7519(00)00141-7 (2000).Article 
    PubMed 

    Google Scholar 
    Sogoba, N. et al. Spatial analysis of malaria transmission parameters in the rice cultivation area of Office du Niger, Mali. Am. J. Trop. Med. Hyg. 76, 1009–1015 (2007).PubMed 

    Google Scholar 
    Mwangangi, J. M. et al. Anopheles larval abundance and diversity in three rice agro-village complexes Mwea irrigation scheme, central Kenya. Malar. J. 9, 1–10 (2010).
    Google Scholar 
    Diuk-Wasser, M. A. et al. Patterns of irrigated rice growth and malaria vector breeding in Mali using multi-temporal ERS-2 synthetic aperture radar. Int. J. Remote Sens. 27, 535–548 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Briët, O. J. T., Dossou-Yovo, J., Akodo, E., Van De Giesen, N. & Teuscher, T. M. The relationship between Anopheles gambiae density and rice cultivation in the savannah zone and forest zone of Côte d’Ivoire. Trop. Med. Int. Heal. 8, 439–448 (2003).
    Google Scholar 
    Klinkenberg, E., McCall, P. J., Wilson, M. D., Amerasinghe, F. P. & Donnelly, M. J. Impact of urban agriculture on malaria vectors in Accra, Ghana. Malar. J. 7, 1–9 (2008).
    Google Scholar 
    Keiser, J. et al. Effect of irrigation and large dams on the burden of malaria on a global and regional scale. Am. J. Trop. Med. Hyg. 72, 392–406 (2005).PubMed 

    Google Scholar 
    Kyei-Baafour, E. et al. Impact of an irrigation dam on the transmission and diversity of Plasmodium falciparum in a seasonal malaria transmission area of Northern Ghana. J. Trop. Med. 2020, 1–8 (2020).
    Google Scholar 
    Kibret, S. Time to revisit how dams are affecting malaria transmission. Lancet Planet. Heal. 2, e378–e379 (2018).
    Google Scholar 
    Kibret, S., Lautze, J., McCartney, M., Nhamo, L. & Yan, G. Malaria around large dams in Africa: Effect of environmental and transmission endemicity factors. Malar. J. 18, 1–12 (2019).
    Google Scholar 
    Kibret, S., Wilson, G. G., Ryder, D., Tekie, H. & Petros, B. Malaria impact of large dams at different eco-epidemiological settings in Ethiopia. Trop. Med. Health 45, 1–14 (2017).
    Google Scholar 
    Keiser, J., Singer, B. H. & Utzinger, J. Reducing the burden of malaria in different eco-epidemiological settings with environmental management: A systematic review. Lancet Infect. Dis. 5, 695–708 (2005).PubMed 

    Google Scholar 
    Ijumba, J. N., Shenton, F. C., Clarke, S. E., Mosha, F. W. & Lindsay, S. W. Irrigated crop production is associated with less malaria than traditional agricultural practices in Tanzania. Trans. R. Soc. Trop. Med. Hyg. 96, 476–480 (2002).CAS 
    PubMed 

    Google Scholar 
    Ijumba, J. N., Mosha, F. W. & Lindsay, S. W. Malaria transmission risk variations derived from different agricultural practices in an irrigated area of northern Tanzania. Med. Vet. Entomol. 16, 28–38 (2002).CAS 
    PubMed 

    Google Scholar 
    Klinkenberg, E. et al. Malaria and irrigated crops, Accra, Ghana. Emerg. Infect. Dis. 11, 1290–1293 (2005).PubMed 
    PubMed Central 

    Google Scholar 
    USAID. The DHS Program—DHS Methodology. https://www.dhsprogram.com/What-We-Do/Survey-Types/DHS-Methodology.cfm (1984).Siraj, A. S. et al. Altitudinal changes in malaria incidence in highlands of Ethiopia and Colombia. Science 343, 1154–1158 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pascual, M., Ahumada, J. A., Chaves, L. F., Rodó, X. & Bouma, M. Malaria resurgence in the East African highlands: Temperature trends revisited. Proc. Natl. Acad. Sci. U. S. A. 103, 5829–5834 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindblade, K. A. et al. Sustainability of reductions in malaria transmission and infant mortality in Western Kenya with use of insecticide-treated bednets 4 to 6 years of follow-up. J. Am. Med. Assoc. 291, 2571–2580 (2004).CAS 

    Google Scholar 
    Mordecai, E. A. et al. Optimal temperature for malaria transmission is dramatically lower than previously predicted. Ecol. Lett. 16, 22–30 (2013).PubMed 

    Google Scholar 
    Weiss, D. J. et al. Re-examining environmental correlates of Plasmodium falciparum Malaria endemicity: A data-intensive variable selection approach. Malar. J. 14, 1–18 (2015).
    Google Scholar 
    Bauhoff, S. & Busch, J. Does deforestation increase malaria prevalence? Evidence from satellite data and health surveys. World Dev. 127, 104734 (2020).
    Google Scholar 
    Austin, K. F., Bellinger, M. O. & Rana, P. Anthropogenic forest loss and malaria prevalence: A comparative examination of the causes and disease consequences of deforestation in developing nations. AIMS Environ. Sci. 4, 217–231 (2017).
    Google Scholar 
    Kabaria, C. W., Gilbert, M., Noor, A. M., Snow, R. W. & Linard, C. The impact of urbanization and population density on childhood Plasmodium falciparum parasite prevalence rates in Africa. Malar. J. 16, 1–10 (2017).
    Google Scholar 
    Herrera, D. et al. Upstream watershed condition predicts rural children’s health across 35 developing countries. Nat. Commun. 8, 1–8 (2017).CAS 

    Google Scholar 
    Van Ittersum, M. K. et al. Can sub-Saharan Africa feed itself?. Proc. Natl. Acad. Sci. U. S. A. 113, 14964–14969 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Ickowitz, A. Shifting cultivation and deforestation in tropical Africa: Critical reflections. Dev. Change 37, 599–626 (2006).
    Google Scholar 
    Kar, N. P., Kumar, A., Singh, O. P., Carlton, J. M. & Nanda, N. A review of malaria transmission dynamics in forest ecosystems. Parasit. Vectors 7, 1–12 (2014).
    Google Scholar 
    Phalan, B. et al. Crop expansion and conservation priorities in tropical countries. PLoS ONE 8, e51759 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Afrane, Y. A. et al. Does irrigated urban agriculture influence the transmission of malaria in the city of Kumasi, Ghana?. Acta Trop. 89, 125–134 (2004).PubMed 

    Google Scholar 
    De Silva, P. M. & Marshall, J. M. Factors contributing to urban malaria transmission in sub-saharan Africa: A systematic review. J. Trop. Med. 2012, 1–10 (2012).
    Google Scholar 
    Kibret, S., Wilson, G. G., Tekie, H. & Petros, B. Increased malaria transmission around irrigation schemes in Ethiopia and the potential of canal water management for malaria vector control. Malar. J. 13, 1–12 (2014).
    Google Scholar 
    Dongus, S. et al. Urban agriculture and Anopheles habitats in Dar es Salaam, Tanzania. Geospat. Health 3, 189–210 (2009).PubMed 

    Google Scholar 
    Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Georganos, S. et al. Modelling the wealth index of demographic and health surveys within cities using very high-resolution remotely sensed information. Remote Sens. 11, 2543 (2019).ADS 

    Google Scholar 
    Pascual, M. & Baeza, A. What happens when forests fall?. Elife 10, e67863 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    MacDonald, A. J. & Mordecai, E. A. Amazon deforestation drives malaria transmission, and malaria burden reduces forest clearing. Proc. Natl. Acad. Sci. U. S. A. 116, 22212–22218 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valle, D. & Clark, J. Conservation efforts may increase malaria burden in the Brazilian Amazon. PLoS ONE 8, e57519 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Luis, A. D., Kuenzi, A. J. & Mills, J. N. Species diversity concurrently dilutes and amplifies transmission in a zoonotic host–pathogen system through competing mechanisms. Proc. Natl. Acad. Sci. U. S. A. 115, 7979–7984 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, E. & Huppert, A. The effects of host diversity on vector-borne disease: The conditions under which diversity will amplify or dilute the disease risk. PLoS ONE https://doi.org/10.1371/journal.pone.0080279 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yamana, T. K. & Eltahir, E. A. B. Incorporating the Effects of Humidity in a Mechanistic Model of Anopheles Gambiae Mosquito Population Dynamics in the Sahel Region of Africa. http://www.parasitesandvectors.com/content/6/1/235. https://doi.org/10.1186/1756-3305-6-235 (2013).Wielgosz, B., Kato, E. & Ringler, C. Agro-ecology, household economics and malaria in Uganda: Empirical correlations between agricultural and health outcomes. Malar. J. 13, 1–11 (2014).
    Google Scholar 
    Asale, A., Duchateau, L., Devleesschauwer, B., Huisman, G. & Yewhalaw, D. Zooprophylaxis as a control strategy for malaria caused by the vector Anopheles arabiensis (Diptera: Culicidae): A systematic review. Infect. Dis. Poverty 6, 1–14 (2017).
    Google Scholar 
    Halliday, F., Rohr, J. & Laine, A.-L. Biodiversity loss underlies the dilution effect of biodiversity. Ecol. Lett. https://doi.org/10.1101/2020.04.20.050377 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pienkowski, T., Dickens, B. L., Sun, H. & Carrasco, L. R. Empirical evidence of the public health benefits of tropical forest conservation in Cambodia: A generalised linear mixed-effects model analysis. Lancet Planet. Health 1, e180–e187 (2017).PubMed 

    Google Scholar 
    Shah, H. A., Huxley, P., Elmes, J. & Murray, K. A. Agricultural land-uses consistently exacerbate infectious disease risks in Southeast Asia. Nat. Commun. 10, 4299 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parham, P. E. & Michael, E. Modeling the effects of weather and climate change on malaria transmission. Environ. Health Perspect. 118, 620–626 (2010).PubMed 

    Google Scholar 
    Krefis, A. C. et al. Modeling the relationship between precipitation and malaria incidence in children from a holoendemic area in Ghana. Am. J. Trop. Med. Hyg. 84, 285–291 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Drakeley, C. J. et al. Altitude-Dependent and -Independent Variations in Plasmodium falciparum Prevalence in Northeastern Tanzania. J. Infect. Dis. 191, 1589–1598 (2005).PubMed 

    Google Scholar 
    Masuda, K. Length of maternal schooling and children’s risk of malaria infection: Evidence from a natural experiment in Uganda. BMJ Glob. Health 5, 4–11 (2020).
    Google Scholar 
    Ma, C. et al. Is maternal education a social vaccine for childhood malaria infection? A cross-sectional study from war-torn Democratic Republic of Congo. Pathog. Glob. Health 111, 98–106 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Njau, J. D., Stephenson, R., Menon, M. P., Kachur, S. P. & McFarland, D. A. Investigating the important correlates of maternal education and childhood malaria infections. Am. J. Trop. Med. Hyg. 91, 509–519 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Degarege, A., Fennie, K., Degarege, D., Chennupati, S. & Madhivanan, P. Improving socioeconomic status may reduce the burden of malaria in sub Saharan Africa: A systematic review and meta-analysis. PLoS ONE 14, 1–26 (2019).
    Google Scholar 
    Sonko, S. T. et al. Does socio-economic status explain the differentials in malaria parasite prevalence? Evidence from the Gambia. Malar. J. 13, 1–12 (2014).
    Google Scholar 
    Tusting, L. S. et al. Housing improvements and malaria risk in Sub-Saharan Africa: A multi-country analysis of survey data. PLoS Med. 14, 1–15 (2017).
    Google Scholar 
    Yang, D. et al. Drinking water and sanitation conditions are associated with the risk of malaria among children under five years old in sub-Saharan Africa: A logistic regression model analysis of national survey data. J. Adv. Res. 21, 1–13 (2020).PubMed 

    Google Scholar 
    Hay, S. I., Guerra, C. A., Tatem, A. J., Atkinson, P. M. & Snow, R. W. Urbanization, malaria transmission and disease burden in Africa. Nat. Rev. Microbiol. 3, 81–90 (2011).
    Google Scholar 
    Murray, C. J. L. et al. Global malaria mortality between 1980 and 2010: A systematic analysis. Lancet 379, 413–431 (2012).PubMed 

    Google Scholar 
    Nankabirwa, J. et al. Malaria in school-age children in Africa: An increasingly important challenge. Trop. Med. Int. Heal. 19, 1294–1309 (2014).
    Google Scholar 
    Okiro, E. A. et al. Age patterns of severe paediatric malaria and their relationship to Plasmodium falciparum transmission intensity. Malar. J. 8, 1–11 (2009).
    Google Scholar 
    Fullman, N., Burstein, R., Lim, S. S., Medlin, C. & Gakidou, E. Nets, spray or both? the effectiveness of insecticide-treated nets and indoor residual spraying in reducing malaria morbidity and child mortality in sub-Saharan Africa. Malar. J. 12, 1 (2013).
    Google Scholar 
    Agusto, F. B. et al. The impact of bed-net use on malaria prevalence. J. Theor. Biol. 320, 58–65 (2013).ADS 
    PubMed 
    MATH 

    Google Scholar 
    Hughes, R. A., Heron, J., Sterne, J. A. C. & Tilling, K. Accounting for missing data in statistical analyses: Multiple imputation is not always the answer. Int. J. Epidemiol. 48, 1294–1304 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Beck-Johnson, L. M. et al. The effect of temperature on Anopheles mosquito population dynamics and the potential for malaria transmission. PLoS ONE 8, e79276 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hien, D. F. D. S. et al. Plant-mediated effects on mosquito capacity to transmit human malaria. PLoS Pathog. 12, 1–17 (2016).
    Google Scholar 
    Donnelly, B., Berrang-Ford, L., Ross, N. A. & Michel, P. A systematic, realist review of zooprophylaxis for malaria control. Malar. J. 14, 1–16 (2015).
    Google Scholar 
    Curtis, P. G., Slay, C. M., Harris, N. L., Tyukavina, A. & Hansen, M. C. Classifying drivers of global forest loss. Science 361, 1108–1111 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Townes, L. R., Mwandama, D., Mathanga, D. P. & Wilson, M. L. Elevated dry-season malaria prevalence associated with fine-scale spatial patterns of environmental risk: A case-control study of children in rural Malawi. Malar. J. 12, 1 (2013).
    Google Scholar 
    Brock, P. M. et al. Predictive analysis across spatial scales links zoonotic malaria to deforestation. Proc. R. Soc. B 286, 20182351 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, Z., Manjourides, J., Cohen, T., Hu, Y. & Jiang, Q. Spatial measurement errors in the field of spatial epidemiology. Int. J. Health Geogr. 15, 1–12 (2016).
    Google Scholar 
    Rockström, J. et al. Managing water in rainfed agriculture: The need for a paradigm shift. Agric. Water Manag. 97, 543–550 (2010).
    Google Scholar 
    Rockström, J., Barron, J. & Fox, P. Water productivity in rain-fed agriculture: Challenges and opportunities for smallholder farmers in drought-prone tropical agroecosystems. Water Product. Agric. limits Oppor. Improv. 85199, 145–162. https://doi.org/10.1079/9780851996691.0145 (2009).Article 

    Google Scholar 
    Steinmann, P., Keiser, J., Bos, R., Tanner, M. & Utzinger, J. Schistosomiasis and water resources development: Systematic review, meta-analysis, and estimates of people at risk. Lancet. Infect. Dis. 6, 411–425 (2006).PubMed 

    Google Scholar 
    Halstead, N. T. et al. Agrochemicals increase risk of human schistosomiasis by supporting higher densities of intermediate hosts. Nat. Commun. 9, 837 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rohr, J. R. et al. Emerging human infectious diseases and the links to global food production. Nat. Sustain. 2, 445–456 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Sokolow, S. H. et al. Reduced transmission of human schistosomiasis after restoration of a native river prawn that preys on the snail intermediate host. Proc. Natl. Acad. Sci. U. S. A. 112, 9650–9655 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rasolofoson, R. A., Hanauer, M. M., Pappinen, A., Fisher, B. & Ricketts, T. H. Impacts of forests on children’s diet in rural areas across 27 developing countries. Sci. Adv. 4, 1–10 (2018).
    Google Scholar 
    Doxsey-Whitfield, E. et al. Taking advantage of the improved availability of census data: A first look at the gridded population of the world, version 4. Pap. Appl. Geogr. 1, 226–234 (2015).
    Google Scholar 
    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 850, 850–854 (2013).ADS 

    Google Scholar 
    Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G. & Jarvis, A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 25, 1965–1978 (2005).
    Google Scholar 
    Hollister, M. J. Package ‘elevatr’ Title Access Elevation Data from Various APIs. (2018).Bontemps, S. et al. Consistent global land cover maps for climate modelling communities: Current achievements of the ESA’s land cover CCI. Proc. ESA Living Planet Symp. 13, 9–13 (2013).
    Google Scholar 
    Mahende, C. et al. Performance of rapid diagnostic test, blood-film microscopy and PCR for the diagnosis of malaria infection among febrile children from Korogwe District, Tanzania. Malar. J. 15, 1–7 (2016).
    Google Scholar 
    Stauffer, W. M. et al. Diagnostic performance of rapid diagnostic tests versus blood smears for malaria in US clinical practice. Clin. Infect. Dis. 49, 908–913 (2009).PubMed 

    Google Scholar 
    Yankson, R., Anto, E. A. & Chipeta, M. G. Geostatistical analysis and mapping of malaria risk in children under 5 using point-referenced prevalence data in Ghana. Malar. J. 18, 1–12 (2019).
    Google Scholar 
    Gatton, M. L. et al. Impact of Plasmodium falciparum gene deletions on malaria rapid diagnostic test performance. Malar. J. 19, 1–11 (2020).
    Google Scholar 
    Austin, K. F. Export agriculture is feeding malaria: A cross-national examination of the environmental and social causes of malaria prevalence. Popul. Environ. 35, 133–158 (2013).
    Google Scholar 
    Tyukavina, A. et al. Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012. Environ. Res. Lett. 10, 074002 (2015).ADS 

    Google Scholar 
    Ayele, D. G., Zewotir, T. T. & Mwambi, H. G. Prevalence and risk factors of malaria in Ethiopia. Malar. J. 11, 1 (2012).
    Google Scholar 
    Acheson, E. S. & Kerr, J. T. Nets versus spraying: A spatial modelling approach reveals indoor residual spraying targets Anopheles mosquito habitats better than mosquito nets in Tanzania. PLoS ONE 13, 1–19 (2018).
    Google Scholar 
    Siraj, A. S. et al. Temperature and population density determine reservoir regions of seasonal persistence in highland malaria. Proc. R. Soc. B 282, 20151383 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Ishengoma, D. S. et al. Trends of Plasmodium falciparum prevalence in two communities of Muheza district North-eastern Tanzania: Correlation between parasite prevalence, malaria interventions and rainfall in the context of re-emergence of malaria after two decades of progressive. Malar. J. 17, 1–10 (2018).
    Google Scholar 
    Weiss, D. J. et al. Air temperature suitability for Plasmodium falciparum malaria transmission in Africa 2000–2012: A high-resolution spatiotemporal prediction. Malar. J. 13, 1–11 (2014).
    Google Scholar 
    Watts, A. G. et al. Elevation as a proxy for mosquito-borne zika virus transmission in the Americas. PLoS ONE 12, 1–16 (2017).
    Google Scholar 
    Shah, H. A., Dritsaki, M., Pink, J. & Petrou, S. Psychometric properties of Patient Reported Outcome Measures (PROMs) in patients diagnosed with Acute Respiratory Distress Syndrome (ARDS). Health Qual. Life Outcomes 14, 15 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Eneanya, O. A. et al. Environmental suitability for lymphatic filariasis in Nigeria. Parasites Vectors 11, 1–13 (2018).
    Google Scholar 
    Craney, T. A. & Surles, J. G. Model-dependent variance inflation factor cutoff values. Qual. Eng. 14, 391–403 (2002).
    Google Scholar 
    Anderson, D. & Burnham, K. Model Selection and Multimodel Inference (Springer, 2002).MATH 

    Google Scholar 
    Giam, X. & Olden, J. D. Quantifying variable importance in a multimodel inference framework. Methods Ecol. Evol. 7, 388–397 (2016).
    Google Scholar 
    Guo, G. & Zhao, H. Multilevel modeling for binary data. Annu. Rev. Sociol. 26, 441–462 (2000).
    Google Scholar 
    Li, B., Lingsma, H. F., Steyerberg, E. W. & Lesaffre, E. Logistic random effects regression models: A comparison of statistical packages for binary and ordinal outcomes. BMC Med. Res. Methodol. 11, 1–11 (2011).
    Google Scholar 
    Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).
    Google Scholar 
    Burnham, K. P., Anderson, D. R. & Huyvaert, K. P. AIC model selection and multimodel inference in behavioral ecology: Some background, observations, and comparisons. Behav. Ecol. Sociobiol. 65, 23–35 (2011).
    Google Scholar 
    Shmueli, G. To explain or to predict?. Stat. Sci. 25, 289–310 (2010).MathSciNet 
    MATH 

    Google Scholar 
    Hamlet, A. et al. The seasonal influence of climate and environment on yellow fever transmission across Africa. PLoS Negl. Trop. Dis. 12, 1–17 (2018).
    Google Scholar 
    Foley, J. A. et al. Global consequences of land use. Science 309, 570–574 (2005).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Norton, E. C., Dowd, B. E. & Maciejewski, M. L. Marginal effects: Quantifying the effect of changes in risk factors in logistic regression models. JAMA 320, 84–85 (2018).PubMed 

    Google Scholar 
    RStudio Team. R Studio: Integrated Development for R (2015).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar  More

  • in

    Spinal fracture reveals an accident episode in Eremotherium laurillardi shedding light on the formation of a fossil assemblage

    Since the bone discontinuities noted in the three vertebrae analyzed show no clear sign of bone overgrowth, it is pivotal to rule out the possibility that we are dealing with preservation damages before proposing an accurate diagnosis for the lesions. The close-up view examination of the abnormalities shows that their edges have clear signs of smoothing and rounding (Fig. 1), which represent important evidence of osteoblastic activity18,19. Additionally, the similar color of the cortical damage and normal bone can be used as secondary evidence to rule out post-mortem processes as a possible origin of the alterations, since recent destructive processes are lighter than the rest of the bone19. Therefore, as taphonomic processes can be ruled out, the pointed evidence strongly suggests that the discontinuities observed are of pathological origin. More specifically, these breaks found in all three vertebrae are indicative of bone fracture.Based on fracture analysis criteria applied here20, which consider the location and morphological pattern of the fractures, we classified the fractures noted in all vertebrae as traumas belonging to Type A (vertebral body compression), Group A2 (split fractures), and subgroup A2.1 (sagittal split fracture). This diagnosis implies that the traumatic episode was likely caused by a compressive force on the vertebral column, which split the vertebral bodies in the sagittal plane. This type of injury is considered stable—i.e., the fracture does not have a tendency to displace after reduction—and neurological deficit is uncommon20,22,23. Although stable traumas cause only moderate pain, without generating significant movement limitations20, the Eremotherium individual here analyzed died with unhealed bones, as there is no evidence of callus formation.The absence of other skeletal signs that point to the presence of another type of disease concomitantly to the fractures allows us to reject the possibility that they have been generated as a result of a pre-existing disease (e.g., infection, neoplasm). We also consider that the vertebral injuries were not caused by repetitive force (stress fractures) because this type of injury is commonly characterized as a nondisplaced line or crack in the bone, called hairline fracture3. Those refer to situations where the broken bone fragments are not visibly out of alignment and exhibit very little relative displacement21. Although the Eremotherium vertebrae fractures’ can be described as nondisplaced, they also have a noticeable gap between their edges that is mostly narrow with wider parts in the middle, something found in split fractures20 but that is not characteristic of hairline fractures. Lastly, the subgroup C1.2.1 (rotational sagittal split fracture) might be a source of confusion due to similar morphological pattern with subgroup A2.1 (sagittal split fracture). However, in subgroup C1.2.1 there are compressive and rotational forces acting simultaneously, producing total separation into two parts20, which clearly did not occur in the vertebrae analyzed here.In humans, compression fractures are most commonly caused by osteoporosis, although infection, neoplasm and trauma can also be etiological factors23,24,25. However, as aforementioned, the absence of other pathological skeletal marks is an important characteristic to take note as it serves to disregard the possibility of the fractures’ genesis to be secondary to another pathology. As such, in this case, osteoporosis, infection and neoplasm are unlikely etiologies. On the other hand, a compression fracture in a healthy individual is commonly generated after a severe traumatic event such as a fall from great height23,26. This scenario seems to better explain the origin of the vertebral fractures in the case of the Eremotherium ground sloth herein studied.The three fractured vertebrae were recovered in the Toca das Onças site (Fig. 2), a small cave considered as one of the richest paleontological sites of the Brazilian Quaternary15. Two complete skeletons of Eremotherium laurillardi and fragments belonging to at least thirteen other individuals, together with several other bones assigned to different smaller species are known to this cave14. It comprises of a single dry chamber that can only be entered through vertical entrances approximately 4.5 m high (Figs. 2b–d and 3). Two different hypotheses concerning the depositional process of Toca da Onças were previously proposed: (1) the animals climbed down into the cave in search of water14; or (2) due to the vertical character of the cave entrance, it could have functioned as a natural trap where animals accidentally fell into the cave15.Figure 2Location map of the Toca das Onças site and images of the cave. (a) Detail of the location, (b) cave entrance area view, (c) view from inside the cave, (d) Cave entrance detail. Scale bars 10 m in (b) and 5 m in (c). This figure was generated by Adobe Photoshop CS6 software (https://www.adobe.com/br/products/photoshop.html).Full size imageFigure 3Schematic representation of the Toca das Onças site. (a) Ground plan of the cave illustrating its morphology and dimension, (b) Cross-section illustrating the abyss-shaped entrance.Full size imageThe first hypothesis would indicate that the animal fell into the cave during an attempt to climb down. However, there is no report in the literature indicating that Eremotherium laurillardi could have been a climbing animal. In addition, the vertical morphology of the cave entrance would be a limiting factor for climbing behavior (see Fig. 3).Therefore, based on the type of fracture (compression sagittal split fracture) observed in the three vertebrae of Eremotherium as well as the inferred origin mechanism (fall from a great height), the presence of the individual here analyzed in the fossil accumulation of Toca das Onças is more likely explained by the second hypothesis. This idea is not particularly new as ‘entrapment due to fall’ has been described as a fossil accumulation mode to several other caves worldwide (e.g.,27,28). However, the use of bones fractures as an indicator of fossil accumulation mode is an interesting novelty. Of course, a detailed taphonomic investigation in the Toca das Onças still needs to be conducted in order to accurately interpret the formation of this important Quaternary fossil accumulation from Brazil.In sum, we suggest that the animal accidentally fell into the cave, fractured at least three sequential vertebrae (12th, 13th thoracic vertebrae and 1st lumbar vertebra) after the impact on the ground, survived for a while, but succumbed trapped inside the cave without food and water (Fig. 4). Other animals found in the cave, but without signs of bone fracture, may have fallen and not fractured their bones or not survived after the fall, especially the smaller ones. Finally, the proposal of falls to explain the unusual record of giant ground sloth fossils preserving much of its skeleton in caves, as reported for Toca das Onças site, contrasts with the better-documented pattern of skeletal accumulation via hydraulic action.Figure 4Artistic reconstruction of the suggested fall of the individual Eremotherium laurillardi into the cave. Artwork by Júlia d’Oliveira.Full size image More

  • in

    Experimental manipulation of microbiota reduces host thermal tolerance and fitness under heat stress in a vertebrate ectotherm

    Paaijmans, K. P. et al. Temperature variation makes ectotherms more sensitive to climate change. Glob. Change Biol. 19, 2373–2380 (2013).
    Google Scholar 
    Clusella-Trullas, S., Blackburn, T. M. & Chown, S. L. Climatic predictors of temperature performance curve parameters in ectotherms imply complex responses to climate change. Am. Nat. 177, 738–751 (2011).PubMed 

    Google Scholar 
    Pounds, J. A. et al. Widespread amphibian extinctions from epidemic disease driven by global warming. Nature 439, 161–167 (2006).CAS 
    PubMed 

    Google Scholar 
    Sinervo, B. et al. Erosion of lizard diversity by climate change and altered thermal niches. Science 328, 894–899 (2010).CAS 
    PubMed 

    Google Scholar 
    Pacifici, M. et al. Assessing species vulnerability to climate change. Nat. Clim. Change 5, 215–224 (2015).
    Google Scholar 
    Angilletta, M. J. Jr Thermal Adaptation: A Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. B 278, 1823–1830 (2011).PubMed 

    Google Scholar 
    Jørgensen, L. B., Malte, H. & Overgaard, J. How to assess Drosophila heat tolerance: unifying static and dynamic tolerance assays to predict heat distribution limits. Funct. Ecol. 33, 629–642 (2019).
    Google Scholar 
    Pörtner, H.-O., Bock, C. & Mark, F. C. Oxygen- and capacity-limited thermal tolerance: bridging ecology and physiology. J. Exp. Biol. 220, 2685–2696 (2017).PubMed 

    Google Scholar 
    Gangloff, E. J. & Telemeco, R. S. High temperature, oxygen, and performance: insights from reptiles and amphibians. Integr. Comp. Biol. 58, 9–24 (2018).CAS 
    PubMed 

    Google Scholar 
    Perry, G. M., Danzmann, R. G., Ferguson, M. M. & Gibson, J. P. Quantitative trait loci for upper thermal tolerance in outbred strains of rainbow trout (Oncorhynchus mykiss). Heredity 86, 333–341 (2001).CAS 
    PubMed 

    Google Scholar 
    Healy, T. M. & Schulte, P. M. Factors affecting plasticity in whole-organism thermal tolerance in common killifish (Fundulus heteroclitus). J. Comp. Physiol. B 182, 49–62 (2012).PubMed 

    Google Scholar 
    Hu, X. P. & Appel, A. G. Seasonal variation of critical thermal limits and temperature tolerance in Formosan and eastern subterranean termites (Isoptera: Rhinotermitidae). Environ. Entomol. 33, 197–205 (2004).CAS 

    Google Scholar 
    Nyamukondiwa, C. & Terblanche, J. S. Thermal tolerance in adult Mediterranean and Natal fruit flies (Ceratitis capitata and Ceratitis rosa): effects of age, gender and feeding status. J. Therm. Biol. 34, 406–414 (2009).
    Google Scholar 
    Greenspan, S. E. et al. Infection increases vulnerability to climate change via effects on host thermal tolerance. Sci. Rep. 7, 9349 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Padfield, D., Castledine, M. & Buckling, A. Temperature-dependent changes to host–parasite interactions alter the thermal performance of a bacterial host. ISME J. 14, 389–398 (2020).PubMed 

    Google Scholar 
    Hooper, L. V., Littman, D. R. & Macpherson, A. J. Interactions between the microbiota and the immune system. Science 336, 1268–1273 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Alberdi, A., Aizpurua, O., Bohmann, K., Zepeda-Mendoza, M. L. & Gilbert, M. T. P. Do vertebrate gut metagenomes confer rapid ecological adaptation? Trends Ecol. Evol. 31, 689–699 (2016).PubMed 

    Google Scholar 
    Kohl, K. D. & Carey, H. V. A place for host–microbe symbiosis in the comparative physiologist’s toolbox. J. Exp. Biol. 219, 3496–3504 (2016).PubMed 

    Google Scholar 
    Fontaine, S. S. & Kohl, K. D. Optimal integration between host physiology and functions of the gut microbiome. Phil. Trans. R. Soc. B 375, 20190594 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Velagapudi, V. R. et al. The gut microbiota modulates host energy and lipid metabolism in mice. J. Lipid Res. 51, 1101–1112 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ziegler, M., Seneca, F. O., Yum, L. K., Palumbi, S. R. & Voolstra, C. R. Bacterial community dynamics are linked to patterns of coral heat tolerance. Nat. Commun. 8, 14213 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Russell, J. A. & Moran, N. A. Costs and benefits of symbiont infection in aphids: variation among symbionts and across temperatures. Proc. R. Soc. B 273, 603–610 (2006).PubMed 

    Google Scholar 
    Montllor, C. B., Maxmen, A. & Purcell, A. H. Facultative bacterial endosymbionts benefit pea aphids Acyrthosiphon pisum under heat stress. Ecol. Entomol. 27, 189–195 (2002).
    Google Scholar 
    Herrera, M. et al. Unfamiliar partnerships limit cnidarian holobiont acclimation to warming. Glob. Change Biol. 26, 5539–5553 (2020).
    Google Scholar 
    Jaramillo, A. & Castaneda, L. E. Gut microbiota of Drosophila subobscura contributes to its heat tolerance and is sensitive to transient thermal stress. Front. Microbiol. 12, 886 (2021).
    Google Scholar 
    Moghadam, N. N. et al. Strong responses of Drosophila melanogaster microbiota to developmental temperature. Fly 12, 1–12 (2018).PubMed 

    Google Scholar 
    Fontaine, S. S., Novarro, A. J. & Kohl, K. D. Environmental temperature alters the digestive performance and gut microbiota of a terrestrial amphibian. J. Exp. Biol. 221, 187559 (2018).
    Google Scholar 
    Kohl, K. D. & Yahn, J. Effects of environmental temperature on the gut microbial communities of tadpoles. Environ. Microbiol. 18, 1561–1565 (2016).PubMed 

    Google Scholar 
    Fontaine, S. S. & Kohl, K. D. The gut microbiota of invasive bullfrog tadpoles responds more rapidly to temperature than a non‐invasive congener. Mol. Ecol. 29, 2449–2462 (2020).PubMed 

    Google Scholar 
    Bestion, E. et al. Climate warming reduces gut microbiota diversity in a vertebrate ectotherm. Nat. Ecol. Evol. 1, 0161 (2017).
    Google Scholar 
    Zhu, L. et al. Environmental temperatures affect the gastrointestinal microbes of the Chinese giant salamander. Front. Microbiol. 12, 493 (2021).
    Google Scholar 
    Moeller, A. H. et al. The lizard gut microbiome changes with temperature and is associated with heat tolerance. Appl. Environ. Microbiol. 86, e01181-20 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Kokou, F. et al. Host genetic selection for cold tolerance shapes microbiome composition and modulates its response to temperature. eLife 7, e36398 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Hanage, W. P. Microbiology: microbiome science needs a healthy dose of scepticism. Nature 512, 247–248 (2014).CAS 
    PubMed 

    Google Scholar 
    Pascoe, E. L., Hauffe, H. C., Marchesi, J. R. & Perkins, S. E. Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies. ISME J. 11, 2644–2651 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Mykles, D. L., Ghalambor, C. K., Stillman, J. H. & Tomanek, L. Grand challenges in comparative physiology: integration across disciplines and across levels of biological organization. Integr. Comp. Biol. 50, 6–16 (2010).PubMed 

    Google Scholar 
    Kohl, K. D. A microbial perspective on the grand challenges in comparative animal physiology. mSystems 3, e00146-17 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Gray, K. T., Escobar, A. M., Schaeffer, P. J., Mineo, P. M. & Berner, N. J. Thermal acclimatization in overwintering tadpoles of the green frog, Lithobates clamitans (Latreille, 1801). J. Exp. Zool. A 325, 285–293 (2016).
    Google Scholar 
    Brattstrom, B. H. & Lawrence, P. The rate of thermal acclimation in anuran amphibians. Physiol. Zool. 35, 148–156 (1962).
    Google Scholar 
    Knutie, S. A., Wilkinson, C. L., Kohl, K. D. & Rohr, J. R. Early-life disruption of amphibian microbiota decreases later-life resistance to parasites. Nat. Commun. 8, 86 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Warne, R. W., Kirschman, L. & Zeglin, L. Manipulation of gut microbiota during critical developmental windows affects host physiological performance and disease susceptibility across ontogeny. J. Anim. Ecol. 88, 845–856 (2019).PubMed 

    Google Scholar 
    Morgun, A. et al. Uncovering effects of antibiotics on the host and microbiota using transkingdom gene networks. Gut 64, 1732–1743 (2015).CAS 
    PubMed 

    Google Scholar 
    Kohl, K. D., Cary, T. L., Karasov, W. H. & Dearing, M. D. Restructuring of the amphibian gut microbiota through metamorphosis. Environ. Microbiol. Rep. 5, 899–903 (2013).PubMed 

    Google Scholar 
    Vences, M. et al. Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas. Sci. Nat. 103, 25 (2016).
    Google Scholar 
    Fontaine, S. S., Mineo, P. M. & Kohl, K. D. Changes in the gut microbial community of the eastern newt (Notophthalmus viridescens) across its three distinct life stages. FEMS Microbiol. Ecol. 97, fiab021 (2021).CAS 
    PubMed 

    Google Scholar 
    Anderson, M. J. & Walsh, D. C. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: what null hypothesis are you testing? Ecol. Monogr. 83, 557–574 (2013).
    Google Scholar 
    Sepulveda, J. & Moeller, A. H. The effects of temperature on animal gut microbiomes. Front. Microbiol. 11, 384 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Arango, R. A., Schoville, S. D., Currie, C. R. & Carlos-Shanley, C. Experimental warming reduces survival, cold tolerance, and gut prokaryotic diversity of the eastern subterranean termite, Reticulitermes flavipes (Kollar). Front. Microbiol. 12, 1116 (2021).
    Google Scholar 
    Stothart, M. R. et al. Stress and the microbiome: linking glucocorticoids to bacterial community dynamics in wild red squirrels. Biol. Lett. 12, 20150875 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zaneveld, J. R., McMinds, R. & Thurber, R. V. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 17121 (2017).CAS 
    PubMed 

    Google Scholar 
    Orrock, J. L. & Watling, J. I. Local community size mediates ecological drift and competition in metacommunities. Proc. R. Soc. B 277, 2185–2191 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Deeg, C. M. et al. Chromulinavorax destructans, a pathogen of microzooplankton that provides a window into the enigmatic candidate phylum Dependentiae. PLoS Pathog. 15, e1007801 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaboré, O. D., Godreuil, S. & Drancourt, M. Planctomycetes as host-associated bacteria: a perspective that holds promise for their future isolations, by mimicking their native environmental niches in clinical microbiology laboratories. Front. Cell. Infect. Microbiol. 10, 729 (2020).
    Google Scholar 
    Sheremet, A. et al. Ecological and genomic analyses of candidate phylum WPS‐2 bacteria in an unvegetated soil. Environ. Microbiol. 22, 3143–3157 (2020).CAS 
    PubMed 

    Google Scholar 
    Correa, D. T. et al. Multilevel community assembly of the tadpole gut microbiome. Preprint at bioRxiv https://doi.org/10.1101/2020.07.05.188698 (2020).Contijoch, E. J. et al. Gut microbiota density influences host physiology and is shaped by host and microbial factors. eLife 8, e40553 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Warne, R. W., Kirschman, L. & Zeglin, L. Manipulation of gut microbiota reveals shifting community structure shaped by host developmental windows in amphibian larvae. Integr. Comp. Biol. 57, 786–794 (2017).PubMed 

    Google Scholar 
    Trevelline, B. K., Fontaine, S. S., Hartup, B. K. & Kohl, K. D. Conservation biology needs a microbial renaissance: a call for the consideration of host-associated microbiota in wildlife management practices. Proc. R. Soc. B 286, 20182448 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Lutterschmidt, W. I. & Hutchison, V. H. The critical thermal maximum: history and critique. Can. J. Zool. 75, 1561–1574 (1997).
    Google Scholar 
    Gosner, K. L. A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16, 183–190 (1960).
    Google Scholar 
    Daloso, D. M. The ecological context of bilateral symmetry of organ and organisms. Nat. Sci. 6, 43340 (2014).
    Google Scholar 
    Goldstein, J. A., Hoff, K. v. S. & Hillyard, S. D. The effect of temperature on development and behaviour of relict leopard frog tadpoles. Conserv. Physiol. 5, cow075 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Harkey, G. A. & Semlitsch, R. D. Effects of temperature on growth, development, and color polymorphism in the ornate chorus frog Pseudacris ornata. Copeia 1998, 1001–1007 (1988).
    Google Scholar 
    Marian, M. & Pandian, T. Effect of temperature on development, growth and bioenergetics of the bullfrog tadpole Rana tigrina. J. Therm. Biol. 10, 157–161 (1985).
    Google Scholar 
    Alvarez, D. & Nicieza, A. Effects of temperature and food quality on anuran larval growth and metamorphosis. Funct. Ecol. 16, 640–648 (2002).
    Google Scholar 
    Kohl, K. D., Brun, A., Bordenstein, S. R., Caviedes‐Vidal, E. & Karasov, W. H. Gut microbes limit growth in house sparrow nestlings (Passer domesticus) but not through limitations in digestive capacity. Integr. Zool. 13, 139–151 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Potti, J. et al. Bacteria divert resources from growth for Magellanic penguin chicks. Ecol. Lett. 5, 709–714 (2002).
    Google Scholar 
    Coates, M. E., Fuller, R., Harrison, G., Lev, M. & Suffolk, S. A comparison of the growth of chicks in the Gustafsson germ-free apparatus and in a conventional environment, with and without dietary supplements of penicillin. Br. J. Nutr. 17, 141–150 (1963).CAS 
    PubMed 

    Google Scholar 
    Gaskins, H., Collier, C. & Anderson, D. Antibiotics as growth promotants: mode of action. Anim. Biotechnol. 13, 29–42 (2002).CAS 
    PubMed 

    Google Scholar 
    Gitsels, A., Sanders, N. & Vanrompay, D. Chlamydial infection from outside to inside. Front. Microbiol. 10, 2329 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Denver, R. J. Proximate mechanisms of phenotypic plasticity in amphibian metamorphosis. Am. Zool. 37, 172–184 (1997).CAS 

    Google Scholar 
    Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).CAS 
    PubMed 

    Google Scholar 
    Khakisahneh, S., Zhang, X.-Y., Nouri, Z. & Wang, D.-H. Gut microbiota and host thermoregulation in response to ambient temperature fluctuations. mSystems 5, e00514–e00520 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xie, B. et al. Chlamydomonas reinhardtii thermal tolerance enhancement mediated by a mutualistic interaction with vitamin B12-producing bacteria. ISME J. 7, 1544–1555 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gutiérrez‐Pesquera, L. M. et al. Testing the climate variability hypothesis in thermal tolerance limits of tropical and temperate tadpoles. J. Biogeogr. 43, 1166–1178 (2016).
    Google Scholar 
    Litmer, A. R. & Murray, C. M. Critical thermal tolerance of invasion: comparative niche breadth of two invasive lizards. J. Therm. Biol. 86, 102432 (2019).PubMed 

    Google Scholar 
    Semlitsch, R. D. Effects of body size, sibship, and tail injury on the susceptibility of tadpoles to dragonfly predation. Can. J. Zool. 68, 1027–1030 (1990).
    Google Scholar 
    Cabrera-Guzmán, E., Crossland, M. R., Brown, G. P. & Shine, R. Larger body size at metamorphosis enhances survival, growth and performance of young cane toads (Rhinella marina). PLoS ONE 8, e70121 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Tejedo, M. Effects of body size and timing of reproduction on reproductive success in female natterjack toads (Bufo calamita). J. Zool. 228, 545–555 (1992).
    Google Scholar 
    Warne, R. W., Crespi, E. J. & Brunner, J. L. Escape from the pond: stress and developmental responses to ranavirus infection in wood frog tadpoles. Funct. Ecol. 25, 139–146 (2011).
    Google Scholar 
    Urban, M. C. Accelerating extinction risk from climate change. Science 348, 571–573 (2015).CAS 
    PubMed 

    Google Scholar 
    Pearce, T. A. & Paustian, M. E. Are temperate land snails susceptible to climate change through reduced altitudinal ranges? A Pennsylvania example. Am. Malacol. 31, 213–224 (2013).
    Google Scholar 
    Wolfe, D. W. et al. Projected change in climate thresholds in the northeastern US: implications for crops, pests, livestock, and farmers. Mitig. Adapt. Strateg. Glob. Change 13, 555–575 (2008).
    Google Scholar 
    Huey, R. B. & Kingsolver, J. G. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131–135 (1989).CAS 
    PubMed 

    Google Scholar 
    Bennett, A. F. Thermal dependence of locomotor capacity. Am. J. Physiol. 259, R253–R258 (1990).CAS 
    PubMed 

    Google Scholar 
    Seebacher, F. & Walter, I. Differences in locomotor performance between individuals: importance of parvalbumin, calcium handling and metabolism. J. Exp. Biol. 215, 663–670 (2012).CAS 
    PubMed 

    Google Scholar 
    Husak, J. F., Fox, S. F., Lovern, M. B. & Bussche, R. A. V. D. Faster lizards sire more offspring: sexual selection on whole‐animal performance. Evolution 60, 2122–2130 (2006).CAS 
    PubMed 

    Google Scholar 
    Mineo, P. M., Waldrup, C., Berner, N. J. & Schaeffer, P. J. Differential plasticity of membrane fatty acids in northern and southern populations of the eastern newt (Notophthalmus viridescens). J. Comp. Physiol. B 189, 249–260 (2019).CAS 
    PubMed 

    Google Scholar 
    Chung, D. J., Sparagna, G. C., Chicco, A. J. & Schulte, P. M. Patterns of mitochondrial membrane remodeling parallel functional adaptations to thermal stress. J. Exp. Biol. 221, 174458 (2018).
    Google Scholar 
    Gladwell, R., Bowler, K. & Duncan, C. Heat death in crayfish Austropotamobius pallipes: ion movements and their effects on excitable tissues during heat death. J. Therm. Biol. 1, 79–94 (1976).CAS 

    Google Scholar 
    Wang, Z. et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature 472, 57–63 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pörtner, H. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften 88, 137–146 (2001).PubMed 

    Google Scholar 
    Gräns, A. et al. Aerobic scope fails to explain the detrimental effects on growth resulting from warming and elevated CO2 in Atlantic halibut. J. Exp. Biol. 217, 711–717 (2014).PubMed 

    Google Scholar 
    Jutfelt, F. et al. Oxygen- and capacity-limited thermal tolerance: blurring ecology and physiology. J. Exp. Biol. 221, 169615 (2018).
    Google Scholar 
    St-Pierre, J., Charest, P.-M. & Guderley, H. Relative contribution of quantitative and qualitative changes in mitochondria to metabolic compensation during seasonal acclimatisation of rainbow trout Oncorhynchus mykiss. J. Exp. Biol. 201, 2961–2970 (1998).CAS 

    Google Scholar 
    Grim, J., Miles, D. & Crockett, E. Temperature acclimation alters oxidative capacities and composition of membrane lipids without influencing activities of enzymatic antioxidants or susceptibility to lipid peroxidation in fish muscle. J. Exp. Biol. 213, 445–452 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    LeMoine, C. M., Genge, C. E. & Moyes, C. D. Role of the PGC-1 family in the metabolic adaptation of goldfish to diet and temperature. J. Exp. Biol. 211, 1448–1455 (2008).CAS 
    PubMed 

    Google Scholar 
    McClelland, G. B., Craig, P. M., Dhekney, K. & Dipardo, S. Temperature‐ and exercise‐induced gene expression and metabolic enzyme changes in skeletal muscle of adult zebrafish (Danio rerio). J. Physiol. 577, 739–751 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pichaud, N. et al. Cardiac mitochondrial plasticity and thermal sensitivity in a fish inhabiting an artificially heated ecosystem. Sci. Rep. 9, 17832 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Seebacher, F., Guderley, H., Elsey, R. M. & Trosclair, P. L. Seasonal acclimatisation of muscle metabolic enzymes in a reptile (Alligator mississippiensis). J. Exp. Biol. 206, 1193–1200 (2003).CAS 
    PubMed 

    Google Scholar 
    Berner, N. J. & Bessay, E. P. Correlation of seasonal acclimatization in metabolic enzyme activity with preferred body temperature in the eastern red spotted newt (Notophthalmus viridescens viridescens). Comp. Biochem. Physiol. A 144, 429–436 (2006).
    Google Scholar 
    Vigelsø, A., Andersen, N. B. & Dela, F. The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training. Int. J. Physiol. Pathophysiol. Pharmacol. 6, 84–101 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y., Park, J.-S., Deng, J.-H. & Bai, Y. Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J. Bioenerg. Biomembr. 38, 283–291 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pryor, G. S. & Bjorndal, K. A. Symbiotic fermentation, digesta passage, and gastrointestinal morphology in bullfrog tadpoles (Rana catesbeiana). Physiol. Biochem. Zool. 78, 201–215 (2005).PubMed 

    Google Scholar 
    Clark, A. & Mach, N. The crosstalk between the gut microbiota and mitochondria during exercise. Front. Physiol. 8, 319 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Payne, N. L. et al. Temperature dependence of fish performance in the wild: links with species biogeography and physiological thermal tolerance. Funct. Ecol. 30, 903–912 (2016).
    Google Scholar 
    Van Dijk, P., Tesch, C., Hardewig, I. & Portner, H. Physiological disturbances at critically high temperatures: a comparison between stenothermal Antarctic and eurythermal temperate eelpouts (Zoarcidae). J. Exp. Biol. 202, 3611–3621 (1999).PubMed 

    Google Scholar 
    Schulte, P. M. The effects of temperature on aerobic metabolism: towards a mechanistic understanding of the responses of ectotherms to a changing environment. J. Exp. Biol. 218, 1856–1866 (2015).PubMed 

    Google Scholar 
    Gillooly, J. F., Brown, J. H., West, G. B., Savage, V. M. & Charnov, E. L. Effects of size and temperature on metabolic rate. Science 293, 2248–2251 (2001).CAS 
    PubMed 

    Google Scholar 
    Hoppeler, H. & Weibel, E. R. Scaling functions to body size: theories and facts. J. Exp. Biol. 208, 1573–1574 (2005).PubMed 

    Google Scholar 
    Hopkins, W. A., Rowe, C. L. & Congdon, J. D. Elevated trace element concentrations and standard metabolic rate in banded water snakes (Nerodia fasciata) exposed to coal combustion wastes. Environ. Toxicol. Chem. 18, 1258–1263 (1999).CAS 

    Google Scholar 
    Sokolova, I. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. J. Exp. Biol. 224, 236802 (2021).
    Google Scholar 
    Sokolova, I. M. & Lannig, G. Interactive effects of metal pollution and temperature on metabolism in aquatic ectotherms: implications of global climate change. Clim. Res. 37, 181–201 (2008).
    Google Scholar 
    Peralta-Maraver, I. & Rezende, E. L. Heat tolerance in ectotherms scales predictably with body size. Nat. Clim. Change 11, 58–63 (2021).
    Google Scholar 
    Bahrndorff, S., Alemu, T., Alemneh, T. & Lund Nielsen, J. The microbiome of animals: implications for conservation biology. Int. J. Genomics 2016, 5304028 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Hauffe, H. C. & Barelli, C. Conserve the germs: the gut microbiota and adaptive potential. Conserv. Genet. 20, 19–27 (2019).
    Google Scholar 
    Jiménez, R. R. & Sommer, S. The amphibian microbiome: natural range of variation, pathogenic dysbiosis, and role in conservation. Biodivers. Conserv. 26, 763–786 (2017).
    Google Scholar 
    Swaddle, J. P. Fluctuating asymmetry, animal behavior, and evolution. Adv. Study Behav. 32, 169–205 (2003).
    Google Scholar 
    R Core Team R: A Language and Environment for Statistical Computing v.3.4.3 (R Foundation for Statistical Computing, 2019).Bates, D., Machler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. Preprint at https://arxiv.org/abs/1406.5823 (2014).Pinheiro, J. et al. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3 (2017).Hulbert, A., Pamplona, R., Buffenstein, R. & Buttemer, W. Life and death: metabolic rate, membrane composition, and life span of animals. Physiol. Rev. 87, 1175–1213 (2007).CAS 
    PubMed 

    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2 (2013).Mary-Huard, T., Daudin, J.-J., Baccini, M., Biggeri, A. & Bar-Hen, A. Biases induced by pooling samples in microarray experiments. Bioinformatics 23, i313–i318 (2007).CAS 
    PubMed 

    Google Scholar 
    Singer, J. D. & Willett, J. B. It’s about time: using discrete-time survival analysis to study duration and the timing of events. J. Educ. Stat. 18, 155–195 (1993).
    Google Scholar 
    Mallick, H. et al. Multivariable association discovery in population-scale meta-omics studies. PLoS Comput. Biol. 17, e100442 (2021).
    Google Scholar  More

  • in

    Seasonal variation in space use and territoriality in a large mammal (Sus scrofa)

    Schoener, T. W. & Schoener, A. Intraspecific variation in home-range size in some Anolis lizards. Ecology 63, 809–823 (1982).
    Google Scholar 
    Grigione, M. M. et al. Ecological and allometric determinants of home-range size for mountain lions (Puma concolor). Anim. Conserv. 5(4), 317–324 (2002).
    Google Scholar 
    Wolf, J. B., Mawdsley, D., Trillmich, F. & James, R. Social structure in a colonial mammal: Unravelling hidden structural layers and their foundations by network analysis. Anim. Behav. 74, 1293–1302 (2007).
    Google Scholar 
    Gehrt, S. D. & Frttzell, E. K. Sexual differences in home ranges of raccoons. J. Mammal. 78, 921–931 (1997).
    Google Scholar 
    Clutton-Brock, T. H., Iason, G. R. & Guinness, F. E. Sexual segregation and density-related changes in habitat use in male and female Red deer (Cervus elaphus). J. Zool. 211(2), 275–289 (1987).
    Google Scholar 
    Ji, W., White, P. C. & Clout, M. N. Contact rates between possums revealed by proximity data loggers. J. Appl. Ecol. 42(3), 595–604 (2005).
    Google Scholar 
    Böhm, M., Palphramand, K. L., Newton-Cross, G., Hutchings, M. R. & White, P. C. Dynamic interactions among badgers: Implications for sociality and disease transmission. J. Anim. Ecol. 77, 735–745 (2008).PubMed 

    Google Scholar 
    Hamede, R. K., Bashford, J., McCallum, H. & Jones, M. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: Using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol. Lett. 12, 1147–1157 (2009).PubMed 

    Google Scholar 
    Ostfeld, R. S., Glass, G. E. & Keesing, F. Spatial epidemiology: An emerging (or re-emerging) discipline. Trends Ecol. Evol. 20, 328–336 (2005).PubMed 

    Google Scholar 
    Mitani, J. C., Watts, D. P. & Amsler, S. J. Lethal intergroup aggression leads to territorial expansion in wild chimpanzees. Curr. Biol. 20, R507–R508 (2010).CAS 
    PubMed 

    Google Scholar 
    Cubaynes, S. et al. Density-dependent intraspecific aggression regulates survival in northern Yellowstone wolves (Canis lupus). J. Anim. Ecol. 83, 1344–1356 (2014).PubMed 

    Google Scholar 
    Wittemyer, G., Getz, W. M., Vollrath, F. & Douglas-Hamilton, I. Social dominance, seasonal movements, and spatial segregation in African elephants: A contribution to conservation behavior. Behav. Ecol. Sociobiol. 61, 1919–1931 (2007).
    Google Scholar 
    McGuire, J. M., Scribner, K. T. & Congdon, J. D. Spatial aspects of movements, mating patterns, and nest distributions influence gene flow among population subunits of Blanding’s turtles (Emydoidea blandingii). Conserv. Genet. 14, 1029–1042 (2013).
    Google Scholar 
    Kurvers, R. H., Krause, J., Croft, D. P., Wilson, A. D. & Wolf, M. The evolutionary and ecological consequences of animal social networks: Emerging issues. Trends Ecol. Evol. 29, 326–335 (2014).PubMed 

    Google Scholar 
    Loveridge, A. J. & Macdonald, D. W. Seasonality in spatial organization and dispersal of sympatric jackals (Canis mesomelas and C. adustus): Implications for rabies management. J. Zool. 253, 101–111 (2001).
    Google Scholar 
    Snijders, L., Blumstein, D. T., Stanley, C. R. & Franks, D. W. Animal social network theory can help wildlife conservation. Trends Ecol. Evol. 32(8), 567–577 (2017).PubMed 

    Google Scholar 
    Burt, W. H. Territoriality and home range concepts as applied to mammals. J. Mammal. 24, 57–63 (1943).
    Google Scholar 
    Schoener, T. W. Sizes of feeding territories among birds. Ecology 49, 123–141 (1968).
    Google Scholar 
    Kaufman, J. H. On the definitions and functions of dominance and territoriality. Biol. Revue 58, 1–20 (1983).
    Google Scholar 
    Maher, C. R. & Lott, D. F. Definitions of territoriality used in the study of variation in vertebrate spacing systems. Anim. Behav. 49, 1581–1597 (1995).
    Google Scholar 
    Powell, R. A. Animal home ranges and territories and home range estimators. Res. Tech. Anim. Ecol. Controversies Conseq. 1, 476 (2000).
    Google Scholar 
    Kerr, G. D. & Bull, C. M. Exclusive core areas in overlapping ranges of the sleepy lizard, Tiliqua rugosa. Behav. Ecol. 17, 380–391 (2006).
    Google Scholar 
    DiPierro, E., Molinari, A., Tosi, G. & Wauters, L. A. Exclusive core areas and intrasexual territoriality in Eurasian red squirrels (Sciurus vulgaris) revealed by incremental cluster polygon analysis. Ecol. Res. 23, 529–542 (2008).
    Google Scholar 
    Poole, K. G. Spatial organization of a lynx population. Can. J. Zool. 73, 632–641 (1995).ADS 

    Google Scholar 
    Chamberlain, M. J. & Leopold, B. D. Spatio-temporal relationships among adult raccoons (Procyon lotor) in central Mississippi. Am. Midl. Nat. 148, 297–309 (2002).
    Google Scholar 
    Darden, S. K. & Dabelsteen, T. Acoustic territorial signaling in a small, socially monogamous canid. Anim. Behav. 75(3), 905–912 (2008).
    Google Scholar 
    Gabor, T. M., Hellgren, E. C., Van Den Bussche, R. A. & Silvy, N. J. Demography, sociospatial behaviour and genetics of feral pigs (Sus scrofa) in a semi-arid environment. J. Zool. 247(3), 311–322 (1999).
    Google Scholar 
    Seiler, N., Boesch, C., Mundry, R., Stephens, C. & Robbins, M. M. Space partitioning in wild, non-territorial mountain gorillas: The impact of food and neighbours. R. Soc. Open Sci. 4(11), 170720 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Podgórski, T. et al. Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: Primeval forest and metropolitan area. J. Mammal. 94, 109–119 (2013).
    Google Scholar 
    Podgórski, T., Lusseau, D., Scandura, M., Sonnichsen, L. & Jedrzejewska, B. Long-lasting, kin-directed female interactions in a spatially structured wild boar social network. PLoS One 9, 1–11 (2014).
    Google Scholar 
    Keiter, D. A. & Beasley, J. C. Hog heaven? Challenges of managing introduced wild pigs in natural areas. Nat. Areas J. 37, 6–16 (2017).ADS 

    Google Scholar 
    Lewis, J. S. et al. Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal. Sci. Rep. 7, 44152 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Singer, F. J., Otto, D. K., Tipton, A. R. & Hable, C. P. Home ranges, movements, and habitat use of European wild boar in Tennessee. J. Wildl. Manag. 45, 343–353 (1981).
    Google Scholar 
    Saunders, G. & Kay, B. Movements of feral pigs at Sunny Corner, New South Wales. Wildl. Res. 18, 49–61 (1990).
    Google Scholar 
    Boitani, L., Mattei, L., Nonis, D. & Corsi, F. Spatial and activity patterns of wild boars in Tuscany, Italy. J. Mammal. 75, 600–612 (1994).
    Google Scholar 
    Dexter, N. The influence of pasture distribution, temperature and sex on home-range size of feral pigs in a semi-arid environment. Wildl. Res. 26, 755–762 (1999).
    Google Scholar 
    Calenge, C., Maillard, D., Vassant, J. & Brandt, S. Summer and hunting season home ranges of wild boar (Sus scrofa) in two habitats in France. Game Wildl. Sci. 19, 281–301 (2002).
    Google Scholar 
    Hayes, R., Riffell, S., Minnis, R. & Holder, B. Survival and habitat use of feral hogs in Mississippi. Southeast. Nat. 8, 411–427 (2009).
    Google Scholar 
    Fattebert, J., Baubet, E., Slotow, R. & Fischer, C. Landscape effects on wild boar home range size under contrasting harvest regimes in a human-dominated agro-ecosystem. Eur. J. Wildl. Res. 63(2), 32 (2017).
    Google Scholar 
    Clontz, L. M., Pepin, K. M., VerCauteren, K. C., & Beasley, J. C. Influence of biotic and abiotic factors on home range size and shape of invasive wild pigs (Sus scrofa). Pest Manag. Sci. 78(3), 914–928 (2021).PubMed 

    Google Scholar 
    Mcloughlin, P. D., Ferguson, S. H. & Messier, F. Intraspecific variation in home range overlap with habitat quality: A comparison among brown bear populations. Evol. Ecol. 14, 39–60 (2000).
    Google Scholar 
    Golabek, K. A., Ridley, A. R. & Radford, A. N. Food availability affects strength of seasonal territorial behaviour in a cooperatively breeding bird. Anim. Behav. 83, 613–619 (2012).
    Google Scholar 
    Kilgo, J. C. et al. Food resources affect territoriality of invasive wild pig sounders with implications for control. Sci. Rep. 11(1), 1–11 (2021).
    Google Scholar 
    Geist, V. A comparison of social adaptations in relations to ecology in gallinaceous bird and ungulate societies. Annu. Rev. Ecol. Syst. 8, 193–207 (1977).
    Google Scholar 
    Ilse, L. M. & Hellgren, E. C. Resource partitioning in sympatric populations of collared peccaries and feral hogs in southern Texas. J. Mammal. 76, 784–799 (1995).
    Google Scholar 
    Sparklin, B. D., Mitchell, M. S., Hanson, L. B., Jolley, D. B. & Ditchkoff, S. S. Territoriality of feral pigs in a highly persecuted population on Fort Benning, Georgia. J. Wildl. Manag. 73, 497–502 (2009).
    Google Scholar 
    Barrett, R. The feral hog at Dye Creek ranch, California. Hilgardia 46, 283–355 (1978).
    Google Scholar 
    Baber, D. W. & Coblentz, B. E. Density, home range, habitat use, and reproduction in feral pigs on Santa Catalina Island. J. Mammal. 67, 512–525 (1986).
    Google Scholar 
    Kay, S. L. et al. Quantifying drivers of wild pig movement across multiple spatial and temporal scales. Mov. Ecol. 5, 14 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Pepin, K. M. et al. Contact heterogeneities in feral swine: implications for disease management and future research. Ecosphere 7(3), e01230. https://doi.org/10.1002/ecs2.1230 (2016).Article 

    Google Scholar 
    Singh, J. S. & Yadava, P. S. Seasonal variation in composition, plant biomass, and net primary productivity of a tropical grassland at Kurukshetra, India. Ecol. Monogr. 44(3), 351–376 (1974).
    Google Scholar 
    Swemmer, A. M., Knapp, A. K. & Snyman, H. A. Intra-seasonal precipitation patterns and above-ground productivity in three perennial grasslands. J. Ecol. 95, 780–788 (2007).
    Google Scholar 
    Harless, M. L., Walde, A. D., Delaney, D. K., Pater, L. L. & Hayes, W. K. Home range, spatial overlap, and burrow use of the desert tortoise in the West Mojave Desert. Copeia 2, 378–389 (2009).
    Google Scholar 
    Lewis, J. S. et al. Contact networks reveal potential for interspecific interactions of sympatric wild felids driven by space use. Ecosphere 8(3), e01707 (2017).
    Google Scholar 
    Weber, N. et al. Badger social networks correlate with tuberculosis infection. Curr. Biol. 23(20), R915–R916 (2013).CAS 
    PubMed 

    Google Scholar 
    Vander Waal, K. L. et al. The “strength of weak ties” and helminth parasitism in giraffe social networks. Behav. Ecol. 27(4), 1190–1197 (2016).
    Google Scholar 
    Podgórski, T., Apollonio, M. & Keuling, O. Contact rates in wild boar populations: Implications for disease transmission. J. Wildl. Manag. 82, 1210–1218 (2018).
    Google Scholar 
    D’Andrea, L., Durio, P., Perrone, A. & Pirone, S. Preliminary data of the wild boar (Sus scrofa) space use in mountain environment. IBEX J. Mountain Ecol. 3, 117–121 (2014).
    Google Scholar 
    Keuling, O., Stier, N. & Roth, M. Annual and seasonal space use of different age classes of female wild boar Sus scrofa L. Eur. J. Wildl. Res. 54, 403–412 (2008).
    Google Scholar 
    Hixon, M. A. Food production and competitor density as the determinants of feeding territory size. Am. Nat. 115(4), 510–530 (1980).MathSciNet 

    Google Scholar 
    Bastille-Rousseau, G. et al. Multi-level movement response of invasive wild pigs (Sus scrofa) to removal. Pest Manag. Sci. 77(1), 85–95 (2021).CAS 
    PubMed 

    Google Scholar 
    Maher, C. R. & Lott, D. F. A review of ecological determinants of territoriality within vertebrate species. Am. Midl. Nat. 143(1), 1–30 (2000).
    Google Scholar 
    Mendl, M., Randle, K. & Pope, S. Young female pigs can discriminate individual differences in odours from conspecific urine. Anim. Behav. 64, 97–101 (2002).
    Google Scholar 
    Marsh, M. K., Hutchings, M. R., McLeod, S. R. & White, P. C. L. Spatial and temporal heterogeneities in the contact behaviour of rabbits. Behav. Ecol. Sociobiol. 65, 183–195 (2011).
    Google Scholar 
    Yang, A. et al. Effects of social structure and management on risk of disease establishment in wild pigs. J. Anim. Ecol. 90(4), 820–833 (2021).PubMed 

    Google Scholar 
    Lavelle, M. J. et al. Assessing risk of disease transmission: Direct implications for an indirect science. Bioscience 64, 524–530 (2014).
    Google Scholar 
    Gortázar, C., Ferroglio, E., Hofle, U., Frolich, K. & Vicente, J. Diseases shared between wildlife and livestock: A European perspective. Eur. J. Wildl. Res. 53, 241–256 (2007).
    Google Scholar 
    Miller, R. S. et al. Cross-species transmission potential between wild pigs, livestock, poultry, wildlife, and humans: Implications for disease risk management in North America. Sci. Rep. 7, 7821 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abrahamson, W. G., Johnson, A. F., Layne, J. N. & Peroni, P. A. Vegetation of the Archbold Biological Station, Florida: An example of the southern Lake Wales ridge. Florida Sci. 47, 209–250 (1984).
    Google Scholar 
    Boughton, E. H. & Boughton, R. K. Modification by an invasive ecosystem engineer shifts a wet prairie to a monotypic stand. Biol. Invasions 16(10), 2105–2114 (2014).
    Google Scholar 
    Ko, J., Williams, B., Smith, V., McGrath, C. & Jacobson, J. Comparison of Telazol, Telazol–ketamine, Telazol–xylazine, and Telazol–ketamine–xylazine as chemical restraint and anesthetic induction combination in swine. Lab Anim. Sci. 43(5), 476–480 (1993).CAS 
    PubMed 

    Google Scholar 
    Gabor, T. M., Hellgren, E. C. & Silvy, N. J. Immobilization of collared peccaries (Tayassu tajacu) and feral hogs (Sus scrofa) with Telazol® and xylazine. J. Wildl. Dis. 33(1), 161–164 (1997).CAS 
    PubMed 

    Google Scholar 
    Sweitzer, R. A. et al. Immobilization and physiological parameters associated with chemical restraint of wild pigs with Telazol® and xylazine hydrochloride. J. Wildl. Dis. 33(2), 198–205 (1997).CAS 
    PubMed 

    Google Scholar 
    Horne, J. S., Garton, E. O., Krone, S. M. & Lewis, J. S. Analyzing animal movements using Brownian bridges. Ecology 88, 2354–2363 (2007).PubMed 

    Google Scholar 
    Tracey, J. A. mkde. R Core Development Team. (2014). https://cran.r-project.org/web/packages/mkde/index.Html. Accessed 27 Mar 2021R Development Core Team. R: a language and environment for statistical computing, version 3.5.1. R Foundation for Statistical Computing, Vienna, Austria. (2018). https://www.r-project.org/. Accessed 27 Mar 2021Sawyer, H. & Kauffman, M. J. Stopover ecology of a migratory ungulate. J. Anim. Ecol. 80, 1078–1087 (2011).PubMed 

    Google Scholar 
    Vander Wal, E., Laforge, M. P. & McLoughlin, P. D. Density dependence in social behaviour: Home range overlap and density interacts to affect conspecific encounter rates in a gregarious ungulate. Behav. Ecol. Sociobiol. 68(3), 383–390 (2014).
    Google Scholar 
    Schauber, E. M., Nielsen, C. K., Kjær, L. J., Anderson, C. W. & Storm, D. J. Social affiliation and contact patterns among white-tailed deer in disparate landscapes: Implications for disease transmission. J. Mammal. 96(1), 16–28 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Robert, K., Garant, D. & Pelletier, F. Keep in touch: Does spatial overlap correlate with contact rate frequency?. J. Wildl. Manag. 76(8), 1670–1675 (2012).
    Google Scholar 
    Fieberg, J. & Kochanny, C. O. Quantifying home-range overlap: The importance of the utilization distribution. J. Wildl. Manag. 69, 1346–1359 (2005).
    Google Scholar 
    Newman, M. E. The structure and function of complex networks. SIAM Rev. 45, 167–256 (2003).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Wey, T., Blumstein, D. T., Shen, W. & Jordan, F. Social network analysis of animal behaviour: A promising tool for the study of sociality. Anim. Behav. 75, 333–344 (2008).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B., & Walker, S. lme4: linear mixed effects models using Eigen and S4. R package version 1.1-9. (2014) https://cran.rproject.org/package/lme4. (accessed 30 Jan 2019).Burnham, K. P. & Anderson, D. R. A Practical Information-Theoretic Approach. Model Selection and Multi-model Inference 2nd edn. (Springer, 2002).MATH 

    Google Scholar 
    Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second international symposium on information theory. (eds. Petrov, B. N. & Csaki, F.) 267–281 (Academiai Kiado, 1973). More

  • in

    The biology of beauty sleep

    Wang, L. C. H. & Lee, T.-F. in Life in the Cold (eds Heldmaier, G. & Klingenspor, M.) 149–158 (Springer, 2000).van Breukelen, F. & Martin, S. L. J. Appl. Physiol. 92, 2640–2647 (2002).Article 

    Google Scholar 
    Turbill, C., Bieber, C. & Ruf, T. Proc. R. Soc. Lond. B 278, 3355–3363 (2011).
    Google Scholar 
    Pinho, G. M. et al. Nat. Ecol. Evol. https://doi.org/10.1038/s41559-022-01679-1 (2022).Article 

    Google Scholar 
    Oli, M. K. & Armitage, K. B. Oecologia 136, 543–550 (2003).Article 

    Google Scholar 
    Horvath, S. Genome Biol. 14, 3156 (2013).Article 

    Google Scholar 
    Anderson, J. A. et al. eLife 10, e66128 (2021).CAS 
    Article 

    Google Scholar 
    Larison, B. et al. Commun. Biol. 4, 1412 (2021).Article 

    Google Scholar 
    Dausmann, K. H., Glos, J., Ganzhorn, J. U. & Heldmaier, G. Nature 429, 825–826 (2004).CAS 
    Article 

    Google Scholar 
    Wilkinson, G. S. & Adams, D. M. et al. Biol. Lett. 15, 20180860 (2019).Article 

    Google Scholar 
    Jansen, H. T. et al. Commun. Biol. 2, 336 (2019).Article 

    Google Scholar 
    Medawar, P. B. An Unsolved Problem Of Biology (H. K. Lewis & Co., 1952). More