Imminent loss of climate space for permafrost peatlands in Europe and Western Siberia
Hugelius, G. et al. Large stocks of peatland carbon and nitrogen are vulnerable to permafrost thaw. Proc. Natl Acad. Sci. USA 117, 20438–20446 (2020).CAS
 Google Scholar 
 Davy, R. & Outten, S. The Arctic surface climate in CMIP6: status and developments since CMIP5. J. Clim. 33, 8047–8068 (2020).
 Google Scholar 
 Voigt, C. et al. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw. Glob. Change Biol. 25, 1746–1764 (2019).
 Google Scholar 
 Swindles, G. T. et al. The long-term fate of permafrost peatlands under rapid climate warming. Sci. Rep. 5, 17951 (2015).CAS 
 Google Scholar 
 Du, R. et al. The role of peat on permafrost thaw based on field observations. Catena 208, 105772 (2022).CAS 
 Google Scholar 
 Chaudhary, N. et al. Modelling past and future peatland carbon dynamics across the pan-Arctic. Glob. Change Biol. 26, 4119–4133 (2020).
 Google Scholar 
 Müller, J. & Joos, F. Committed and projected future changes in global peatlands—continued transient model simulations since the Last Glacial Maximum. Biogeosciences 18, 3657–3687 (2021).
 Google Scholar 
 Seppälä, M. Synthesis of studies of palsa formation underlining the importance of local environmental and physical characteristics. Quatern. Res. 75, 366–370 (2011).
 Google Scholar 
 Karjalainen, O. et al. High potential for loss of permafrost landforms in a changing climate. Environ. Res. Lett. https://doi.org/10.1088/1748-9326/abafd5 (2020).Fan, X., Duan, Q., Shen, C., Wu, Y. & Xing, C. Global surface air temperatures in CMIP6: historical performance and future changes. Environ. Res. Lett. 15, 104056 (2020).
 Google Scholar 
 Tebaldi, C. et al. Climate model projections from the Scenario Model Intercomparison Project (ScenarioMIP) of CMIP6. Earth Syst. Dyn. 12, 253–293 (2021).
 Google Scholar 
 Zoltai, S. & Tarnocai, C. Properties of a wooded palsa in northern Manitoba. Arct. Alp. Res. 3, 115–129 (1971).
 Google Scholar 
 Minke, M., Donner, N., Karpov, N. S., de Klerk, P. & Joosten, H. Distribution, diversity, development and dynamics of polygon mires: examples from Northeast Yakutia (Siberia). Peatl. Int. 1, 36–40 (2007).
 Google Scholar 
 O’Neill, H. B., Wolfe, S. A. & Duchesne, C. New ground ice maps for Canada using a paleogeographic modelling approach. Cryosphere 13, 753–773 (2019).
 Google Scholar 
 Fronzek, S., Luoto, M. & Carter, T. R. Potential effect of climate change on the distribution of palsa mires in subarctic Fennoscandia. Clim. Res. 32, 1–12 (2006).
 Google Scholar 
 Luoto, M., Fronzek, S. & Zuidhoff, F. S. Spatial modelling of palsa mires in relation to climate in northern Europe. Earth Surf. Process. Landf. 29, 1373–1387 (2004).
 Google Scholar 
 Peregon, A., Maksyutov, S., Kosykh, N. P. & Mironycheva-Tokareva, N. P. Map-based inventory of wetland biomass and net primary production in Western Siberia. J. Geophys. Res. Biogeosci. 113, G01007 (2008).
 Google Scholar 
 Terentieva, I., Lapshina, E. D., Sabrekov, A. F., Maksyutov, S. S. & Glagolev, M. V. Mapping of West Siberian wetland complexes using landsat imagery: implications for methane emissions. Biogeosciences 13, 4615–4626 (2016).CAS 
 Google Scholar 
 Zoltai, S., Siltanen, R. M. & Johnson, J. D. A Wetland Data Base for the Western Boreal, Subarctic, and Arctic Regions of Canada (Natural Resources Canada, Canadian Forest Service, 2000).Fewster, R. E. et al. Drivers of Holocene palsa distribution in North America. Quat. Sci. Rev. https://doi.org/10.1016/j.quascirev.2020.106337 (2020).Parviainen, M. & Luoto, M. Climate envelopes of mire complex types in Fennoscandia. Geogr. Ann. A 89, 137–151 (2007).
 Google Scholar 
 Aalto, J., Harrison, S. & Luoto, M. Statistical modelling predicts almost complete loss of major periglacial processes in northern Europe by 2100. Nat. Commun. 8, 515 (2017).
 Google Scholar 
 Eyring, V. et al. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 9, 1937–1958 (2016).
 Google Scholar 
 Brunner, L. et al. Reduced global warming from CMIP6 projections when weighting models by performance and independence. Earth Syst. Dyn. 11, 995–1012 (2020).
 Google Scholar 
 O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).
 Google Scholar 
 Aalto, J., Venäläinen, A., Heikkinen, R. K. & Luoto, M. Potential for extreme loss in high‐latitude Earth surface processes due to climate change. Geophys. Res. Lett. 41, 3914–3924 (2014).
 Google Scholar 
 Halsey, L. A., Vitt, D. H. & Zoltai, S. C. Disequilibrium response of permafrost in boreal continental western Canada to climate change. Climatic Change 30, 57–73 (1995).
 Google Scholar 
 Camill, P. & Clark, J. S. Climate change disequilibrium of boreal permafrost peatlands caused by local processes. Am. Nat. 151, 207–222 (1998).CAS 
 Google Scholar 
 Borge, A. F., Westermann, S., Solheim, I. & Etzelmüller, B. Strong degradation of palsas and peat plateaus in northern Norway during the last 60 years. Cryosphere 11, 1–16 (2017).
 Google Scholar 
 Åkerman, H. J. & Johansson, M. Thawing permafrost and thicker active layers in sub‐arctic Sweden. Permafr. Periglac. Process. 19, 279–292 (2008).
 Google Scholar 
 Olvmo, M., Holmer, B., Thorsson, S., Reese, H. & Lindberg, F. Sub-arctic palsa degradation and the role of climatic drivers in the largest coherent palsa mire complex in Sweden (Vissátvuopmi), 1955–2016. Sci. Rep. 10, 8937 (2020).CAS 
 Google Scholar 
 Payette, S., Delwaide, A., Caccianiga, M. & Beauchemin, M. Accelerated thawing of subarctic peatland permafrost over the last 50 years. Geophys. Res. Lett. 31, L18208 (2004).
 Google Scholar 
 Treat, C. C. et al. Effects of permafrost aggradation on peat properties as determined from a pan‐Arctic synthesis of plant macrofossils. J. Geophys. Res. Biogeosci. 121, 78–94 (2016).CAS 
 Google Scholar 
 Dearborn, K. D., Wallace, C. A., Patankar, R. & Baltzer, J. L. Permafrost thaw in boreal peatlands is rapidly altering forest community composition. J. Ecol. 109, 1452–1467 (2021).CAS 
 Google Scholar 
 Olefeldt, D. & Roulet, N. T. Effects of permafrost and hydrology on the composition and transport of dissolved organic carbon in a subarctic peatland complex. J. Geophys. Res. Biogeosci. 117, G01005 (2012).
 Google Scholar 
 Burd, K., Estop-Aragonés, C., Tank, S. E. & Olefeldt, D. Lability of dissolved organic carbon from boreal peatlands: interactions between permafrost thaw, wildfire, and season. Can. J. Soil Sci. 100, 503–515 (2020).
 Google Scholar 
 Klaminder, J., Yoo, K., Rydberg, J. & Giesler, R. An explorative study of mercury export from a thawing palsa mire. J. Geophys. Res. Biogeosci. 113, G04034 (2008).
 Google Scholar 
 Luoto, M. & Seppälä, M. Thermokarst ponds as indicators of the former distribution of palsas in Finnish Lapland. Permafr. Periglac. Process. 14, 19–27 (2003).
 Google Scholar 
 Vitt, D. H., Halsey, L. A. & Zoltai, S. C. The changing landscape of Canada’s western boreal forest: the current dynamics of permafrost. Can. J. For. Res. 30, 283–287 (2000).
 Google Scholar 
 Turetsky, M., Wieder, R., Vitt, D., Evans, R. & Scott, K. The disappearance of relict permafrost in boreal North America: effects on peatland carbon storage and fluxes. Glob. Change Biol. 13, 1922–1934 (2007).
 Google Scholar 
 Jorgenson, M. T. et al. Resilience and vulnerability of permafrost to climate change. Can. J. For. Res. 40, 1219–1236 (2010).
 Google Scholar 
 Magnússon, R. Í. et al. Rapid vegetation succession and coupled permafrost dynamics in Arctic thaw ponds in the Siberian lowland tundra. J. Geophys. Res. Biogeosci. 125, e2019JG005618 (2020).
 Google Scholar 
 Zoltai, S. Permafrost distribution in peatlands of west-central Canada during the Holocene warm period 6000 years bp. Géogr. Phys. Quat. 49, 45–54 (1995).
 Google Scholar 
 Seppälä, M. An expermental study of the formation of palsas. In Proc. 4th Canadian Permafrost Conference (ed. French, H. M.) 36–42 (National Research Council of Canada, Ottawa, 1982).Yu, Z., Loisel, J., Brosseau, D. P., Beilman, D. W. & Hunt, S. J. Global peatland dynamics since the Last Glacial Maximum. Geophys. Res. Lett. 37, L13402 (2010).
 Google Scholar 
 Serreze, M. C. & Barry, R. G. Processes and impacts of Arctic amplification: a research synthesis. Glob. Planet. Change 77, 85–96 (2011).
 Google Scholar 
 Thurner, M. et al. Carbon stock and density of northern boreal and temperate forests. Glob. Ecol. Biogeogr. 23, 297–310 (2014).
 Google Scholar 
 Seppälä, M. The origin of palsas. Geogr. Ann. A 68, 141–147 (1986).
 Google Scholar 
 Mamet, S. D., Chun, K. P., Kershaw, G. G., Loranty, M. M. & Peter Kershaw, G. Recent increases in permafrost thaw rates and areal loss of palsas in the western Northwest Territories, Canada. Permafr. Periglac. Process. 28, 619–633 (2017).
 Google Scholar 
 Camill, P. Permafrost thaw accelerates in boreal peatlands during late-20th century climate warming. Climatic Change 68, 135–152 (2005).CAS 
 Google Scholar 
 Quinton, W. L. & Baltzer, J. The active-layer hydrology of a peat plateau with thawing permafrost (Scotty Creek, Canada). Hydrol. J. 21, 201–220 (2013).
 Google Scholar 
 Turetsky, M. R., Wieder, R. K. & Vitt, D. H. Boreal peatland C fluxes under varying permafrost regimes. Soil Biol. Biochem. 34, 907–912 (2002).CAS 
 Google Scholar 
 Schädel, C. et al. Potential carbon emissions dominated by carbon dioxide from thawed permafrost soils. Nat. Clim. Change 6, 950–953 (2016).
 Google Scholar 
 Myers‐Smith, I. H. & Hik, D. S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 106, 547–560 (2018).
 Google Scholar 
 Gibson, C. M. et al. Wildfire as a major driver of recent permafrost thaw in boreal peatlands. Nat. Commun. 9, 3041 (2018).
 Google Scholar 
 Gibson, C. M., Estop-Aragonés, C., Flannigan, M., Thompson, D. K. & Olefeldt, D. Increased deep soil respiration detected despite reduced overall respiration in permafrost peat plateaus following wildfire. Environ. Res. Lett. 14, 125001 (2019).CAS 
 Google Scholar 
 Estop-Aragonés, C. et al. Respiration of aged soil carbon during fall in permafrost peatlands enhanced by active layer deepening following wildfire but limited following thermokarst. Environ. Res. Lett. 13, 085002 (2018).
 Google Scholar 
 Treat, C. C. et al. Predicted vulnerability of carbon in permafrost peatlands with future climate change and permafrost thaw in western Canada. J. Geophys. Res. Biogeosci. 126, e2020JG005872 (2021).CAS 
 Google Scholar 
 Jones, M. C. et al. Rapid carbon loss and slow recovery following permafrost thaw in boreal peatlands. Glob. Change Biol. 23, 1109–1127 (2017).
 Google Scholar 
 Turetsky, M. R. et al. Carbon release through abrupt permafrost thaw. Nat. Geosci. 13, 138–143 (2020).CAS 
 Google Scholar 
 Heffernan, L., Estop‐Aragonés, C., Knorr, K. H., Talbot, J. & Olefeldt, D. Long‐term impacts of permafrost thaw on carbon storage in peatlands: deep losses offset by surficial accumulation. J. Geophys. Res. Biogeosci. 125, e2019JG005501 (2020).CAS 
 Google Scholar 
 Gallego-Sala, A. V. et al. Latitudinal limits to the predicted increase of the peatland carbon sink with warming. Nat. Clim. Change 8, 907–913 (2018).CAS 
 Google Scholar 
 Qiu, C. et al. The role of northern peatlands in the global carbon cycle for the 21st century. Glob. Ecol. Biogeogr. 29, 956–973 (2020).
 Google Scholar 
 Harris, I., Osborn, T. J., Jones, P. & Lister, D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data 7, 109 (2020).
 Google Scholar 
 Hugelius, G. et al. Maps of Northern Peatland Extent, Depth, Carbon Storage and Nitrogen Storage Version 1.0 (Bolin Centre for Climate Research, 2020); https://doi.org/10.17043/hugelius-2020Brownrigg, R. mapdata: Extra Map Databases. R version 2.3.0 https://CRAN.R-project.org/package=mapdata (2018).Olefeldt, D., Turetsky, M. R., Crill, P. M. & McGuire, A. D. Environmental and physical controls on northern terrestrial methane emissions across permafrost zones. Glob. Change Biol. 19, 589–603 (2013).
 Google Scholar 
 Pissart, A. Palsas, lithalsas and remnants of these periglacial mounds: a progress report. Prog. Phys. Geog. 26, 605–621 (2002).
 Google Scholar 
 Wolfe, S. A., Stevens, C. W., Gaanderse, A. J. & Oldenborger, G. A. Lithalsa distribution, morphology and landscape associations in the Great Slave Lowland, Northwest Territories, Canada. Geomorphology 204, 302–313 (2014).
 Google Scholar 
 Lara, M. J., Nitze, I., Grosse, G. & McGuire, A. D. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska. Sci. Data 5, 180058 (2018).
 Google Scholar 
 Jorgenson, M. T. & Grunblatt, J. Landscape-Level Ecological Mapping of Northern Alaska and Field Site Photography (Arctic Landscape Conservation Cooperative, U.S. Fish & Wildlife Service, 2013).Xu, J., Morris, P. J., Liu, J. & Holden, J. PEATMAP: refining estimates of global peatland distribution based on a meta-analysis. Catena 160, 134–140 (2018).
 Google Scholar 
 ESRI. ArcMap v.10.6.1 (Environmental Systems Research Institute, 2018).Brown, J., Ferrians, O. Jr, Heginbottom, J. A. & Melnikov, E. Circum-Arctic Map of Permafrost and Ground-Ice Conditions (US Geological Survey, 1997).QGIS v.3.12 (QGIS Association, 2020); https://qgis.orgHugelius, G. et al. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions. Earth Syst. Sci. Data 5, 3 (2013).
 Google Scholar 
 Everett, K. R. in Developments in Soil Science Vol. 11 (eds Wilding, L. P. et al.) 1–53 (Elsevier, 1983).Tokarska, K. B. et al. Past warming trend constrains future warming in CMIP6 models. Sci. Adv. 6, eaaz9549 (2020).CAS 
 Google Scholar 
 Forster, P. et al. in Climate Change 2021: The Physical Science Basis (eds Masson-Delmotte, V. et al.) Ch. 7 (IPCC, Cambridge Univ. Press, 2021).Flynn, C. M. & Mauritsen, T. On the climate sensitivity and historical warming evolution in recent coupled model ensembles. Atmos. Chem. Phys. 20, 7829–7842 (2020).CAS 
 Google Scholar 
 Morris, P. J. et al. Global peatland initiation driven by regionally asynchronous warming. Proc. Natl Acad. Sci. USA 115, 4851–4856 (2018).CAS 
 Google Scholar 
 Latombe, G. et al. Comparison of spatial downscaling methods of general circulation model results to study climate variability during the Last Glacial Maximum. Geosci. Model Dev. 11, 2563–2579 (2018).
 Google Scholar 
 Galar, M., Fernández, A., Barrenechea, E., Bustince, H. & Herrera, F. An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recognit. 44, 1761–1776 (2011).
 Google Scholar 
 Petrucci, C. J. A primer for social worker researchers on how to conduct a multinomial logistic regression. J. Soc. Serv. Res. 35, 193–205 (2009).
 Google Scholar 
 Fronzek, S. et al. Evaluating sources of uncertainty in modelling the impact of probabilistic climate change on sub-arctic palsa mires. Nat. Hazards Earth Syst. Sci. 11, 2981–2995 (2011).
 Google Scholar 
 Aalto, J. & Luoto, M. Integrating climate and local factors for geomorphological distribution models. Earth Surf. Process. Landf. 39, 1729–1740 (2014).
 Google Scholar 
 Graham, M. H. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815 (2003).
 Google Scholar 
 Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
 Google Scholar 
 Anisimov, O. A. & Nelson, F. E. Permafrost zonation and climate change in the northern hemisphere: results from transient general circulation models. Climatic Change 35, 241–258 (1997).
 Google Scholar 
 Armstrong, R. A. When to use the Bonferroni correction. Ophthalm. Physiol. Opt. 34, 502–508 (2014).
 Google Scholar 
 Menard, S. Standards for standardized logistic regression coefficients. Soc. Forces 89, 1409–1428 (2011).
 Google Scholar 
 Powers, D. M. Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation. Mach. Learn. Technol. 2, 37–63 (2011).
 Google Scholar 
 Pearce, J. & Ferrier, S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol. Model. 133, 225–245 (2000).
 Google Scholar  More
 
 
