Iron and manganese co-limit the growth of two phytoplankton groups dominant at two locations of the Drake Passage
Sabine, C. L. et al. The oceanic sink for anthropogenic CO2. Science 305, 367–371 (2004).CAS
PubMed
Google Scholar
Landschützer, P. et al. The reinvigoration of the Southern Ocean carbon sink. Science 349, 1221–1224 (2015).PubMed
Google Scholar
Dunne, J. P., Sarmiento, J. L. & Gnanadesikan, A. A synthesis of global particle export from the surface ocean and cycling through the ocean interior and on the seafloor. Global Biogeochem. Cycles 21, https://doi.org/10.1029/2006GB002907 (2007).Buesseler, K. O., Boyd, P. W., Black, E. E. & Siegel, D. A. Metrics that matter for assessing the ocean biological carbon pump. Proc. Natl Acad. Sci. USA 117, 9679–9687 (2020).CAS
PubMed
PubMed Central
Google Scholar
de Baar, H. J. On iron limitation of the Southern Ocean: experimental observations in the Weddell and Scotia Seas. Mar. Ecol. Prog. Ser. 65, 105–122 (1990).
Google Scholar
Twining, B. S. & Baines, S. B. The trace metal composition of marine phytoplankton. Annu. Rev. Mar. Sci. 5, 191–215 (2013).
Google Scholar
Martin, J. H., Fitzwater, S. E. & Gordon, R. M. Iron deficiency limits phytoplankton growth in Antarctic waters. Glob. Biogeochem. Cycles 4, 5–12 (1990).CAS
Google Scholar
Boyd, P. W. et al. Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. science 315, 612–617 (2007).CAS
PubMed
Google Scholar
Sunda, W. Feedback interactions between trace metal nutrients and phytoplankton in the ocean. Front. Microbiol. 3, 204 (2012).PubMed
PubMed Central
Google Scholar
Martin, J. H. Glacial‐interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13 (1990).
Google Scholar
Martin, J. H., Gordon, R. M. & Fitzwater, S. E. Iron in Antarctic waters. Nature 345, 156 (1990).CAS
Google Scholar
Moore, C. M. et al. Processes and patterns of oceanic nutrient limitation. Nat. Geosci. 6, 701–710 (2013).CAS
Google Scholar
Behrenfeld, M. J. & Milligan, A. J. Photophysiological expressions of iron stress in phytoplankton. Annu. Rev. Mar. Sci. 5, 217–246 (2013).
Google Scholar
Greene, R. M., Geider, R. J., Kolber, Z. & Falkowski, P. G. Iron-induced changes in light harvesting and photochemical energy conversion processes in eukaryotic marine algae. Plant Physiol. 100, 565–575 (1992).CAS
PubMed
PubMed Central
Google Scholar
Raven, J. A., Evans, M. C. & Korb, R. E. The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynthesis Res. 60, 111–150 (1999).CAS
Google Scholar
Raven, J. A. Predictions of Mn and Fe use efficiencies of phototrophic growth as a function of light availability for growth and of C assimilation pathway. N. Phytologist 116, 1–18 (1990).CAS
Google Scholar
Wolfe-Simon, F., Grzebyk, D., Schofield, O. & Falkowski, P. G. The role and evolution of superoxide dismutases in algae 1. J. Phycol. 41, 453–465 (2005).CAS
Google Scholar
Middag, R. D., De Baar, H. J. W., Laan, P., Cai, P. V. & Van Ooijen, J. C. Dissolved manganese in the Atlantic sector of the Southern Ocean. Deep Sea Res. Part II: Topical Stud. Oceanogr. 58, 2661–2677 (2011).CAS
Google Scholar
Buma, A. G., De Baar, H. J., Nolting, R. F. & Van Bennekom, A. J. Metal enrichment experiments in the Weddell‐Scotia Seas: effects of iron and manganese on various plankton communities. Limnol. Oceanogr. 36, 1865–1878 (1991).CAS
Google Scholar
Middag, R., de Baar, H. J., Klunder, M. B. & Laan, P. Fluxes of dissolved aluminum and manganese to the Weddell Sea and indications for manganese co‐limitation. Limnol. Oceanogr. 58, 287–300 (2013).CAS
Google Scholar
Browning, T. J. et al. Strong responses of Southern Ocean phytoplankton communities to volcanic ash. Geophys. Res. Lett. 41, 2851–2857 (2014).CAS
Google Scholar
Wu, M. et al. Manganese and iron deficiency in Southern Ocean Phaeocystis Antarctica populations revealed through taxon-specific protein indicators. Nat. Commun. 10, 1–10 (2019).
Google Scholar
Browning, T. J., Achterberg, E. P., Engel, A. & Mawji, E. Manganese co-limitation of phytoplankton growth and major nutrient drawdown in the Southern Ocean. Nat. Commun. 12, 884 (2021).CAS
PubMed
PubMed Central
Google Scholar
Viljoen, J. J. et al. Links between the phytoplankton community composition and trace metal distribution in summer surface waters of the Atlantic southern ocean. Front. Mar. Sci. 6, 295 (2019).
Google Scholar
Arrigo, K. R. Marine microorganisms and global nutrient cycles. Nature 437, 349–355 (2005).CAS
PubMed
Google Scholar
De Baar, H. J. W. von Liebig’s law of the minimum and plankton ecology (1899–1991). Prog. Oceanogr. 33, 347–386 (1994).
Google Scholar
Saito, M. A., Goepfert, T. J. & Ritt, J. T. Some thoughts on the concept of colimitation: three definitions and the importance of bioavailability. Limnol. Oceanogr. 53, 276–290 (2008).CAS
Google Scholar
Pausch, F., Bischof, K. & Trimborn, S. Iron and manganese co-limit growth of the Southern Ocean diatom Chaetoceros debilis. PLos ONE 14, e0221959 (2019).CAS
PubMed
PubMed Central
Google Scholar
Hopkinson, B. M. et al. Iron limitation across chlorophyll gradients in the southern Drake Passage: phytoplankton responses to iron addition and photosynthetic indicators of iron stress. Limnol. Oceanogr. 52, 2540–2554 (2007).CAS
Google Scholar
Trimborn, S., Hoppe, C. J., Taylor, B. B., Bracher, A. & Hassler, C. Physiological characteristics of open ocean and coastal phytoplankton communities of Western Antarctic Peninsula and Drake Passage waters. Deep Sea Res. Part I: Oceanographic Res. Pap. 98, 115–124 (2015).CAS
Google Scholar
Rijkenberg, M. J. et al. The distribution of dissolved iron in the West Atlantic Ocean. PLoS ONE 9, e101323 (2014).PubMed
PubMed Central
Google Scholar
Prézelin, B. B., Hofmann, E. E., Mengelt, C. & Klinck, J. M. The linkage between upper circumpolar deep water (UCDW) and phytoplankton assemblages on the west Antarctic Peninsula continental shelf. J. Mar. Res. 58, 165–202 (2000).
Google Scholar
Varela, M., Fernandez, E. & Serret, P. Size-fractionated phytoplankton biomass and primary production in the Gerlache and south Bransfield Straits (Antarctic Peninsula) in Austral summer 1995–1996. Deep Sea Res. Part II: Topical Stud. Oceanogr. 49, 749–768 (2002).CAS
Google Scholar
Hoffmann, L. J., Peeken, I. & Lochte, K. Effects of iron on the elemental stoichiometry during EIFEX and in the diatoms Fragilariopsis kerguelensis and Chaetoceros dichaeta. Biogeosciences 4, 569–579 (2007).CAS
Google Scholar
Blanco-Ameijeiras, S. et al. Exopolymeric substances control microbial community structure and function by contributing to both C and Fe nutrition in Fe-limited Southern Ocean provinces. Microorganisms 8, 1980 (2020).CAS
PubMed Central
Google Scholar
Church, M. J., Hutchins, D. A. & Ducklow, H. W. Limitation of bacterial growth by dissolved organic matter and iron in the Southern Ocean. Appl. Environ. Microbiol. 66, 455–466 (2000).CAS
PubMed
PubMed Central
Google Scholar
Obernosterer, I., Fourquez, M. & Blain, S. Fe and C co-limitation of heterotrophic bacteria in the naturally fertilized region off the Kerguelen Islands. Biogeosciences 12, 1983–1992 (2015).
Google Scholar
Fourquez, M., Obernosterer, I., Davies, D. M., Trull, T. W. & Blain, S. Microbial iron uptake in the naturally fertilized waters in the vicinity of the Kerguelen Islands: phytoplankton–bacteria interactions. Biogeosciences 12, 1893–1906 (2015).
Google Scholar
Fourquez, M. et al. Microbial competition in the subpolar southern ocean: an Fe–C Co-limitation experiment. Front. Mar. Sci. 6, 776 (2020).
Google Scholar
Boyd, P. W. et al. A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization. Nature 407, 695–702 (2000).CAS
PubMed
Google Scholar
De Baar, H. J. et al. Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. J. Geophys. Res. Oceans 110, https://doi.org/10.1029/2004JC002601 (2005).Smetacek, V. & Naqvi, S. W. A. The next generation of iron fertilization experiments in the Southern Ocean. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 366, 3947–3967 (2008).CAS
Google Scholar
Geider, R. J. & La Roche, J. The role of iron in phytoplankton photosynthesis, and the potential for iron-limitation of primary productivity in the sea. Photosynthesis Res. 39, 275–301 (1994).CAS
Google Scholar
van Leeuwe, M. A. & Stefels, J. Effects of iron and light stress on the biochemical composition of Antarctic Phaeocystis sp. (Prymnesiophyceae). II. Pigment composition. J. Phycol. 34, 496–503 (1998).
Google Scholar
Hoffmann, L. J., Peeken, I., Lochte, K., Assmy, P. & Veldhuis, M. Different reactions of Southern Ocean phytoplankton size classes to iron fertilization. Limnol. Oceanogr. 51, 1217–1229 (2006).CAS
Google Scholar
Koch, F., Beszteri, S., Harms, L. & Trimborn, S. The impacts of iron limitation and ocean acidification on the cellular stoichiometry, photophysiology, and transcriptome of Phaeocystis antarctica. Limnol. Oceanogr. 64, 357–375 (2019).CAS
Google Scholar
Koch, F. & Trimborn, S. Limitation by Fe, Zn, Co, and B12 results in similar physiological responses in two antarctic phytoplankton species. Front. Mar. Sci. 6, 514 (2019).
Google Scholar
Peers, G. & Price, N. M. A role for manganese in superoxide dismutases and growth of iron‐deficient diatoms. Limnol. Oceanogr. 49, 1774–1783 (2004).CAS
Google Scholar
Cefarelli, A. O. et al. Diversity of the diatom genus Fragilariopsis in the Argentine Sea and Antarctic waters: morphology, distribution and abundance. Polar Biol. 33, 1463–1484 (2010).
Google Scholar
Marchetti, A. & Harrison, P. J. Coupled changes in the cell morphology and elemental (C, N, and Si) composition of the pennate diatom Pseudo-nitzschia due to iron deficiency. Limnol. Oceanogr. 52, 2270–2284 (2007).CAS
Google Scholar
Boyd, P. W. et al. Microbial control of diatom bloom dynamics in the open ocean. Geophys. Res. Lett. 39, https://doi.org/10.1029/2012GL053448 (2012).Behrenfeld, M. J. & Kolber, Z. S. Widespread iron limitation of phytoplankton in the South Pacific Ocean. Science 283, 840–843 (1999).CAS
PubMed
Google Scholar
Strzepek, R. F., Hunter, K. A., Frew, R. D., Harrison, P. J. & Boyd, P. W. Iron‐light interactions differ in Southern Ocean phytoplankton. Limnol. Oceanogr. 57, 1182–1200 (2012).CAS
Google Scholar
Klunder, M. B. et al. Dissolved Fe across the Weddell Sea and Drake Passage: impact of DFe on nutrient uptake. Biogeosciences 11, 651–669 (2014).
Google Scholar
Trimborn, S. et al. Iron sources alter the response of Southern Ocean phytoplankton to ocean acidification. Mar. Ecol. Prog. Ser. 578, 35–50 (2017).CAS
Google Scholar
Smith, W. O. & Lancelot, C. Bottom-up versus top-down control in phytoplankton of the Southern Ocean. Antarct. Sci. 16, 531–539 (2004).
Google Scholar
Schoffman, H., Lis, H., Shaked, Y. & Keren, N. Iron–nutrient interactions within phytoplankton. Front. Plant Sci. 7, 1223 (2016).PubMed
PubMed Central
Google Scholar
Meijers, A. J. S. The Southern Ocean in the coupled model intercomparison project phase 5. Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 372, 20130296 (2014).CAS
Google Scholar
Hauck, J. et al. On the Southern Ocean CO2 uptake and the role of the biological carbon pump in the 21st century. Glob. Biogeochem. Cycles 29, 1451–1470 (2015).CAS
Google Scholar
Cabanes, D. J. et al. Using Fe chemistry to predict Fe uptake rates for natural plankton assemblages from the Southern Ocean. Mar. Chem. 225, 103853 (2020).CAS
Google Scholar
Cutter, G. A. et al. Sampling and sample-handling protocols for GEOTRACES Cruises, Version 3.0 (2017).Gerringa, L. J. A., De Baar, H. J. W. & Timmermans, K. R. A comparison of iron limitation of phytoplankton in natural oceanic waters and laboratory media conditioned with EDTA. Mar. Chem. 68, 335–346 (2000).CAS
Google Scholar
Hoppe, C. J. et al. Iron limitation modulates ocean acidification effects on Southern Ocean phytoplankton communities. PLoS ONE 8, e79890 (2013).PubMed
PubMed Central
Google Scholar
Hathorne, E. C. et al. Online preconcentration ICP-MS analysis of rare earth elements in seawater. Geochemistry, Geophysics, Geosystems 13, https://doi.org/10.1029/2011GC003907 (2012).Rapp, I., Schlosser, C., Rusiecka, D., Gledhill, M. & Achterberg, E. P. Automated preconcentration of Fe, Zn, Cu, Ni, Cd, Pb, Co, and Mn in seawater with analysis using high-resolution sector field inductively-coupled plasma mass spectrometry. Analytica Chim. Acta 976, 1–13 (2017).CAS
Google Scholar
Utermöhl, H. Zur vervollkommnung der quantitativen phytoplankton-methodik: Mit 1 Tabelle und 15 abbildungen im Text und auf 1 Tafel. Int. Ver. f.ür. theoretische und Angew. Limnologie: Mitteilungen 9, 1–38 (1958).
Google Scholar
Edler, L. Recommendations on Methods for Marine Biological Studies in the Baltic Sea. Phytoplankton and Chlorophyll (Publication-Baltic Marine Biologists BMB (Sweden), 1979).Tomas, C. R. & Haste, G. R. Identifying Marine Phytoplankton (Academic Press, 1997).Olson, R. J., Zettler, E. R., Chisholm, S. W. & Dusenberry, J. A. in Particle Analysis in Oceanography 351–399 (Springer, 1991).Koch, F., Sanudo-Wilhelmy, S. A., Fisher, N. S. & Gobler, C. J. Effect of vitamins B1 and B12 on bloom dynamics of the harmful brown tide alga, Aureococcus anophagefferens (Pelagophyceae). Limnol. Oceanogr. 58, 1761–1774 (2013).CAS
Google Scholar
Welschmeyer, N. A. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnol. Oceanogr. 39, 1985–1992 (1994).CAS
Google Scholar
Oxborough, K. et al. Direct estimation of functional PSII reaction center concentration and PSII electron flux on a volume basis: a new approach to the analysis of Fast Repetition Rate fluorometry (FRRf) data. Limnol. Oceanogr.: Methods 10, 142–154 (2012).
Google Scholar
Schlitzer, R. Ocean Data View. (2015). More