Lampert, W. Zooplankton research: The contribution of limnology to general ecological paradigms. Aquat. Ecol. 31, 19–27. https://doi.org/10.1023/A:1009943402621 (1997).Article 
 Google Scholar 
 Sotton, B. et al. Trophic transfer of microcystins through the lake pelagic food web: Evidence for the role of zooplankton as a vector in fish contamination. Sci. Total Environ. 466–467, 152–163. https://doi.org/10.1016/j.scitotenv.2013.07.020 (2014).ADS 
 CAS 
 Article 
 PubMed 
 Google Scholar 
 St-Gelais, F. N., Sastri, A. R., del Giorgio, P. A. & Beisner, B. E. Magnitude and regulation of zooplankton community production across boreal lakes. Limnol. Oceanogr. Lett. 2(6), 210–217. https://doi.org/10.1002/lol2.10050 (2017).Article 
 Google Scholar 
 Dejen, E., Vijverberg, J., Nagelkerke, L. A. J. & Sibbing, F. A. Temporal and spatial distribution of microcrustacean zooplankton in relation to turbidity and other environmental factors in a large tropical lake (L. Tana, Ethiopia). Hydrobiologia 513(1), 39–49. https://doi.org/10.1023/b:hydr.0000018163.60503.b8 (2004).Article 
 Google Scholar 
 Arendt, K. E. et al. Effects of suspended sediments on copepods feeding in a glacial influenced sub-Arctic fjord. J. Plankton Res. 33, 1526–1537. https://doi.org/10.1093/plankt/fbr054 (2011).CAS 
 Article 
 Google Scholar 
 Carrasco, N. K., Perissinotto, R. & Jones, S. Turbidity effects on feeding and mortality of the copepod Acartiella natalensis (Connell and Grindley, 1974) in the St Lucia Estuary, South Africa. J. Exp. Mar. Biol. Ecol. 446, 45–51. https://doi.org/10.1016/j.jembe.2013.04.016 (2013).Article 
 Google Scholar 
 Goździejewska, A. et al. Effects of lateral connectivity on zooplankton community structure in floodplain lakes. Hydrobiologia 774, 7–21. https://doi.org/10.1007/s10750-016-2724-8 (2016).CAS 
 Article 
 Google Scholar 
 Zhou, J., Qin, B. & Han, X. The synergetic effects of turbulence and turbidity on the zooplankton community structure in large, shallow Lake Taihu. Environ. Sci. Pollut. Res. 25, 1168–1175. https://doi.org/10.1007/s11356-017-0262-1 (2018).CAS 
 Article 
 Google Scholar 
 Chou, W.-R., Fang, L.-S., Wang, W.-H. & Tew, K. S. Environmental influence on coastal phytoplankton and zooplankton diversity: A multivariate statistical model analysis. Environ. Monit. Assess. 184(9), 5679–5688. https://doi.org/10.1007/s10661-011-2373-3 (2011).CAS 
 Article 
 PubMed 
 Google Scholar 
 Du, X. et al. Analyzing the importance of top-down and bottom-up controls in food webs of Chinese lakes through structural equation modeling. Aquat. Ecol. 49(2), 199–210. https://doi.org/10.1007/s10452-015-9518-3 (2015).CAS 
 Article 
 Google Scholar 
 Feitosa, I. B. et al. Plankton community interactions in an Amazonian floodplain lake, from bacteria to zooplankton. Hydrobiologia 831, 55–70. https://doi.org/10.1007/s10750-018-3855-x (2019).CAS 
 Article 
 Google Scholar 
 Kruk, M. & Paturej, E. Indices of trophic and competitive relations in a planktonic network of a shallow, temperate lagoon. A graph and structural equation modeling approach. Ecol. Indic. 112, 106007. https://doi.org/10.1016/j.ecolind.2019.106007 (2020).Article 
 Google Scholar 
 Kruk, M., Paturej, E. & Artiemjew, P. From explanatory to predictive network modeling of relationships among ecological indicators in the shallow temperate lagoon. Ecol. Indic. 117, 106637. https://doi.org/10.1016/j.ecolind.2020.106637 (2020).Article 
 Google Scholar 
 Kruk, M., Paturej, E. & Obolewski, K. Zooplankton predator–prey network relationships indicates the saline gradient of coastal lakes. Machine learning and meta-network approach. Ecol. Indic. 125, 107550. https://doi.org/10.1016/j.ecolind.2021.107550 (2021).Article 
 Google Scholar 
 Oh, H.-J. et al. Comparison of taxon-based and trophi-based response patterns of rotifer community to water quality: Applicability of the rotifer functional group as an indicator of water quality. Anim. Cells Syst. 21, 133–140. https://doi.org/10.1080/19768354.2017.1292952 (2017).Article 
 Google Scholar 
 Sodré, E. D. O. & Bozelli, R. L. How planktonic microcrustaceans respond to environment and affect ecosystem: A functional trait perspective. Int. Aquat. Res. 11, 207–223. https://doi.org/10.1007/s40071-019-0233-x (2019).Article 
 Google Scholar 
 Simões, N. R. et al. Changing taxonomic and functional β-diversity of cladoceran communities in Northeastern and South Brazil. Hydrobiologia 847, 3845–3856. https://doi.org/10.1007/s10750-020-04234-w (2020).Article 
 Google Scholar 
 Goździejewska, A. M., Koszałka, J., Tandyrak, R., Grochowska, J. & Parszuto, K. Functional responses of zooplankton communities to depth, trophic status, and ion content in mine pit lakes. Hydrobiologia 848, 2699–2719. https://doi.org/10.1007/s10750-021-04590-1 (2021).CAS 
 Article 
 Google Scholar 
 Hart, R. C. Zooplankton feeding rates in relation to suspended sediment content: Potential influences on community structure in a turbid reservoir. Fresh. Biol. 19, 123–139. https://doi.org/10.1111/j.1365-2427.1988.tb00334.x (1988).Article 
 Google Scholar 
 Gliwicz, Z. M. & Pijanowska, J. The role of predation in zooplankton succession. In Plankton Ecology. Succession in Plankton Communities (ed. Sommer, U.) 253–296 (Springer Verlag, 1989).Chapter 
 Google Scholar 
 Gardner, M. B. Effects of turbidity on feeding rates and selectivity of bluegills. Trans. Am. Fish. Soc. 110(3), 446–450. https://doi.org/10.1577/1548-8659(1981)110%3c446:EOTOFR%3e2.0.CO;2 (1981).Article 
 Google Scholar 
 Zettler, E. R. & Carter, J. C. H. Zooplankton community and species responses to a natural turbidity gradient in Lake Temiskaming, Ontario-Quebec. Can. J. Fish. Aquat. Sci. 43, 665–673. https://doi.org/10.1139/f86-080 (1986).Article 
 Google Scholar 
 APHA. Standard Methods for the Examination of Water and Wastewater 20th edn. (American Public Health Association, 1999).
 Google Scholar 
 Lind, O. T., Chrzanowski, T. H. & D’avalos-Lind, L. Clay turbidity and the relative production of bacterioplankton and phytoplankton. Hydrobiologia 353, 1–18. https://doi.org/10.1023/A:1003039932699 (1997).CAS 
 Article 
 Google Scholar 
 Boenigk, J. & Novarino, G. Effect of suspended clay on the feeding and growth of bacterivorous flagellates and ciliates. Aquat. Microb. Ecol. 34, 181–192. https://doi.org/10.3354/ame034181 (2004).Article 
 Google Scholar 
 Noe, G. B., Harvey, J. W. & Saiers, J. E. Characterization of suspended particles in Everglades wetlands. Limnol. Oceanogr. 52, 1166–1178. https://doi.org/10.4319/lo.2007.52.3.1166 (2007).ADS 
 CAS 
 Article 
 Google Scholar 
 Bilotta, G. S. & Brazier, R. E. Understanding the influence of suspended solids on water quality and aquatic biota. Water Res. 42, 2849–2861. https://doi.org/10.1016/j.watres.2008.03.018 (2008).CAS 
 Article 
 PubMed 
 Google Scholar 
 Fernandez-Severini, M. D., Hoffmeyer, M. S. & Marcovecchio, J. E. Heavy metals concentrations in zooplankton and suspended particulate matter in a southwestern Atlantic temperate estuary (Argentina). Environ. Monit. Assess. 185, 1495–1513. https://doi.org/10.1007/s10661-012-3023-0 (2013).CAS 
 Article 
 PubMed 
 Google Scholar 
 Paaijmans, K. P., Takken, W., Githeko, A. K. & Jacobs, A. F. G. The effect of water turbidity on the near-surface water temperature of larval habitats of the malaria mosquito Anopheles gambiae. Int. J. Biometeorol. 52(8), 747–753. https://doi.org/10.1007/s00484-008-0167-2 (2008).ADS 
 CAS 
 Article 
 PubMed 
 Google Scholar 
 Asrafuzzaman, M., Fakhruddin, A. N. M. & Hossain, M. A. Reduction of turbidity of water using locally available natural coagulants. ISRN Microbiol. 1–6, 2011. https://doi.org/10.5402/2011/632189 (2011).Article 
 Google Scholar 
 Kirk, K. L. & Gilbert, J. J. Suspended clay and the population dynamics of planktonic rotifers and cladocerans. Ecology 71(5), 1741–1755. https://doi.org/10.2307/1937582 (1990).Article 
 Google Scholar 
 Kirk, K. L. Effects of suspended clay on Daphnia body growth and fitness. Freshwater Biol. 28, 103–109. https://doi.org/10.1111/j.1365-2427.1992.tb00566.x (1992).Article 
 Google Scholar 
 Levine, S. N., Zehrer, R. F. & Burns, C. W. Impact of resuspended sediment on zooplankton feeding in Lake Waihola, New Zealand. Freshw. Biol. 50, 1515–1536. https://doi.org/10.1111/j.1365-2427.2005.01420 (2005).Article 
 Google Scholar 
 Moreira, F. W. A. et al. Assessing the impacts of mining activities on zooplankton functional diversity. Acta Limn. Bras. 28, e7. https://doi.org/10.1590/S2179-975X0816 (2016).Article 
 Google Scholar 
 Kerfoot, W. C. & Sih, A. Predation. Direct and Indirect Impacts on Aquatic Communities Vol. 160 (University Press of New England, 1987).
 Google Scholar 
 Schou, M. O. et al. Restoring lakes by using artificial plant beds: Habitat selection of zooplankton in a clear and a turbid shallow lake. Freshw. Biol. 54(7), 1520–1531. https://doi.org/10.1111/j.1365-2427.2009.02189.x (2009).Article 
 Google Scholar 
 Goździejewska, A. M., Gwoździk, M., Kulesza, S., Bramowicz, M. & Koszałka, J. Effects of suspended micro- and nanoscale particles on zooplankton functional diversity of drainage system reservoirs at an open-pit mine. Sci. Rep. 9, 16113. https://doi.org/10.1038/s41598-019-52542-6 (2019).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Ribeiro, F. et al. Silver nanoparticles and silver nitrate induce high toxicity to Pseudokirchneriella subcapitata, Daphnia magna and Danio rerio. Sci. Total Environ. 466–467, 232–241. https://doi.org/10.1016/j.scitotenv.2013.06.101 (2014).ADS 
 CAS 
 Article 
 PubMed 
 Google Scholar 
 Vallotton, P., Angel, B., Mccall, M., Osmond, M. & Kirby, J. Imaging nanoparticle-algae interactions in three dimensions using Cytoviva microscopy. J. Microsc. 257(2), 166–169. https://doi.org/10.1111/jmi.12199 (2015).CAS 
 Article 
 PubMed 
 Google Scholar 
 Shanthi, S. et al. Biosynthesis of silver nanoparticles using a probiotic Bacillus licheniformis Dahb1 and their antibiofilm activity and toxicity effects in Ceriodaphnia cornuta. Microb. Pathogenesis 93, 70e77. https://doi.org/10.1016/j.micpath.2016.01.014 (2016).CAS 
 Article 
 Google Scholar 
 Vijayakumar, S. et al. Ecotoxicity of Musa paradisiaca leaf extract-coated ZnO nanoparticles to the freshwater microcrustacean Ceriodaphnia cornuta. Limnologica 67, 1–6. https://doi.org/10.1016/j.limno.2017.09.004 (2017).CAS 
 Article 
 Google Scholar 
 Hart, R. C. Zooplankton distribution in relation to turbidity and related environmental gradients in a large subtropical reservoir: Patterns and implications. Freshw. Biol. 24(2), 241–263. https://doi.org/10.1111/j.1365-2427.1990.tb00706.x (1990).Article 
 Google Scholar 
 Pollard, A. I., González, M. J., Vanni, M. J. & Headworth, J. L. Effects of turbidity and biotic factors on the rotifer community in an Ohio reservoir. In Rotifera VIII: A Comparative Approach. Developments in Hydrobiology, Hydrobiologia Vol. 387388 (eds Wurdak, E. et al.) 215–223 (Springer, 1998).
 Google Scholar 
 Roman, M. R., Holliday, D. V. & Sanford, L. P. Temporal and spatial patterns of zooplankton in the Chesapeake Bay turbidity maximum. Mar. Ecol. Prog. Ser. 213, 215–227. https://doi.org/10.3354/meps213215 (2001).ADS 
 Article 
 Google Scholar 
 Young, I. R. & Ribal, A. Multiplatform evaluation of global trends in wind speed and wave height. Science 364(6440), 548–552. https://doi.org/10.1126/science.aav9527 (2019).ADS 
 CAS 
 Article 
 PubMed 
 Google Scholar 
 Goździejewska, A. M., Skrzypczak, A. R., Paturej, E. & Koszałka, J. Zooplankton diversity of drainage system reservoirs at an opencast mine. Knowl. Manag. Aquat. Ecosyst. 419, 33. https://doi.org/10.1051/kmae/2018020 (2018).Article 
 Google Scholar 
 Goździejewska, A. M., Skrzypczak, A. R., Koszałka, J. & Bowszys, M. Effects of recreational fishing on zooplankton communities of drainage system reservoirs at an open-pit mine. Fish. Manag. Ecol. 00, 1–13. https://doi.org/10.1111/fme.12411 (2020).Article 
 Google Scholar 
 Allesina, S., Bodini, A. & Bondavalli, C. Ecological subsystems via graph theory: The role of strongly connected components. Oikos 110, 164–176. https://doi.org/10.1111/j.0030-1299.2005.13082.x (2005).Article 
 Google Scholar 
 D’Alelio, D. et al. Ecological-network models link diversity, structure and function in the plankton food-web. Sci. Rep. 6, 21806. https://doi.org/10.1038/srep21806 (2016).ADS 
 CAS 
 Article 
 PubMed 
 PubMed Central 
 Google Scholar 
 Krebs, C. J. Ecology: The Experimental Analysis of Distribution and Abundance 6th edn. (Benjamin Cummings, 2009).
 Google Scholar 
 Ejsmont-Karabin, J., Radwan, S. & Bielańska-Grajner, I. Rotifers. Monogononta–Atlas of Species. Polish Freshwater Fauna (Univ of Łódź, 2004).
 Google Scholar 
 Streble, H. & Krauter, D. Das Leben im Wassertropfen. Mikroflora und Mikrofauna des Süβwassers (Kosmos Gesellschaft der Naturfreunde Franckhsche Verlagshandlung Stuttgart, 1978).
 Google Scholar 
 Ejsmont-Karabin, J. The usefulness of zooplankton as lake ecosystem indicators: Rotifer trophic state index. Pol. J. Ecol. 60, 339–350 (2012).
 Google Scholar 
 Gutkowska, A., Paturej, E. & Kowalska, E. Rotifer trophic state indices as ecosystem indicators in brackish coastal waters. Oceanologia 55(4), 887–899. https://doi.org/10.5697/oc.55-4.887 (2013).Article 
 Google Scholar 
 Dembowska, E. A., Napiórkowski, P., Mieszczankin, T. & Józefowicz, S. Planktonic indices in the evaluation of the ecological status and the trophic state of the longest lake in Poland. Ecol. Indic. 56, 15–22. https://doi.org/10.1016/j.ecolind.2015.03.019 (2015).Article 
 Google Scholar 
 Sousa, W., Attayde, J. L., Rocha, E. D. S. & Eskinazi-Sant’Anna, E. M. The response of zooplankton assemblages to variations in the water quality of four man-made lakes in semi-arid northeastern Brazil. J. Plankton Res. 30(6), 699–708. https://doi.org/10.1093/plankt/fbn032 (2008).Article 
 Google Scholar 
 Kak, A. & Rao, R. Does the evasive behavior of H. exarthra influence its competition with cladocerans? In Rotifera VIII: A Comparative Approach. Developments in Hydrobiology, Hydrobiologia Vol. 387/388 (eds Wurdak, E. et al.) 409–419 (Springer, 1998).
 Google Scholar 
 Hochberg, R., Yang, H. & Moore, J. The ultrastructure of escape organs: Setose arms and crossstriated muscles in Hexarthra mira (Rotifera: Gnesiotrocha: Flosculariaceae). Zoomorphology 136, 159–173. https://doi.org/10.1007/s00435-016-0339-2 (2017).Article 
 Google Scholar 
 Brooks, J. L. & Dodson, S. I. Predation, body size, and composition of plankton. Science 150, 28–35 (1965).ADS 
 CAS 
 Article 
 Google Scholar 
 Connell, J. H. Intermediate-disturbance hypothesis. Science 204(4399), 1345 (1979).CAS 
 Article 
 Google Scholar 
 Martín González, A. M., Dalsgaard, B. & Olesen, J. M. Centrality measures and the importance of generalist species in pollination networks. Ecol. Complex. 7(1), 36–43. https://doi.org/10.1016/j.ecocom.2009.03.008 (2010).Article 
 Google Scholar 
 Paine, R. T. A note on trophic complexity and community stability. Am. Nat. 104, 91–93 (1969).Article 
 Google Scholar 
 Schmitz, O. J. & Trussell, G. C. Multiple stressors, state-dependence and predation risk—Foraging trade-offs: Toward a modern concept of trait-mediated indirect effects in communities and ecosystems. Curr. Opin. Behav. Sci. 12, 6–11. https://doi.org/10.1016/j.cobeha.2016.08.003 (2016).Article 
 Google Scholar 
 Burns, C. W. & Gilbert, J. J. Effects of daphnid size and density on interference between Daphnia and Keratella cochlearis. Limnol. Oceanogr. 31(4), 848–858. https://doi.org/10.4319/lo.1986.31.4.0848 (1986).ADS 
 Article 
 Google Scholar 
 Gilbert, J. J. Suppression of rotifer populations by Daphnia: A review of the evidence, the mechanisms, and the effects on zooplankton community structure. Limnol. Oceanogr. 33(6), 1286–1303. https://doi.org/10.4319/lo.1988.33.6.1286 (1988).ADS 
 Article 
 Google Scholar 
 Conde-Porcuna, J. M., Morales-Baquero, R. & Cruz-Pizarro, L. Effects of Daphnia longispina on rotifer populations in a natural environment: Relative importance of food limitation and interference competition. J. Plankton Res. 16(6), 691–706. https://doi.org/10.1093/plankt/16.6.691 (1994).Article 
 Google Scholar 
 Ladle, R. J. & Whittaker, R. J. (eds) Conservation Biogeography (Wiley–Blackwell, 2011).
 Google Scholar 
 Cottee-Jones, H. E. W. & Whittaker, R. J. The keystone species concept: A critical appraisal. Front. Biogeogr. 4(3), 117–127. https://doi.org/10.21425/F5FBG12533 (2012).Article 
 Google Scholar 
 Remane, A. Die Brackwasserfauna. Verhandlungen Der Deutschen Zoologischen Gesellschaft 36, 34–74 (1934).
 Google Scholar 
 Skrzypczak, A. R. & Napiórkowska-Krzebietke, A. Identification of hydrochemical and hydrobiological properties of mine waters for use in aquaculture. Aquac. Rep. 18, 100460. https://doi.org/10.1016/j.aqrep.2020.100460 (2020).Article 
 Google Scholar 
 von Flössner, D. & Krebstiere, C. Kiemen-und Blattfüsser, Branchiopoda, Fischläuse, Branchiura Vol. 382 (VEB Gustav Fischer Verlag, 1972).
 Google Scholar 
 Koste, W. Rotatoria. Die Rädertiere Mitteleuropas. Überordnung Monogononta. I Textband, II Tafelband 52–570 (Gebrüder Borntraeger, 1978).
 Google Scholar 
 Rybak, J. I. & Błędzki, L. A. Freshwater Planktonic Crustaceans (Warsaw University Press, 2010).
 Google Scholar 
 Błędzki, L. A. & Rybak, J. I. Freshwater Crustacean Zooplankton of Europe: Cladocera & Copepoda (Calanoida, Cyclopoida). Key to Species Identification with Notes on Ecology, Distribution, Methods and Introduction to Data Analysis (Springer, 2016).Book 
 Google Scholar 
 Bottrell, H. H. et al. A review of some problems in zooplankton production studies. Norw. J. Zool. 24, 419–456 (1976).
 Google Scholar 
 Ejsmont-Karabin, J. Empirical equations for biomass calculation of planktonic rotifers. Pol. Arch. Hydr. 45, 513–522 (1998).
 Google Scholar 
 Kovach, W. L. MVSP—A Multivariate Statistical Package for Windows, ver. 3.2 (Kovach Computing Services Pentraeth, 2015).
 Google Scholar 
 Borgatti, S. P. Centrality and network flow. Soc. Netw. 27, 55–71. https://doi.org/10.1016/j.socnet.2004.11.008 (2005).Article 
 Google Scholar 
 Kamada, T. & Kawai, S. An algorithm for drawing general undirected graphs—Inform. Process Lett. 31, 7–15 (1989).MathSciNet 
 Article 
 Google Scholar 
 Pavlopoulos, G. A. et al. Using graph theory to analyze biological networks. BioData Min 4, 10 (2011).Article 
 Google Scholar 
 Newman, M. E. J. A measure of betweenness centrality based on random walks. Soc. Netw. 27, 39–54. https://doi.org/10.1016/j.socnet.2004.11.009 (2005).Article 
 Google Scholar 
 Brandes, U. A. faster algorithm for betweenness centrality. J. Math. Sociol. 25, 163–177. https://doi.org/10.1080/0022250X.2001.9990249 (2001).Article 
 MATH 
 Google Scholar  More