More stories

  • in

    Hippotherium Datum implies Miocene palaeoecological pattern

    Alberdi, M. T. A review of Old World hipparionine horses in The Evolution of Perissodactyls (eds. Prothero, D. R. & Schoch, R. M.) 234–261 (Clarendon Press, Oxford University Press, New York, NY ⋅ Oxford, 1989).Sen S. Hipparion Datum and its chronologic evidence in the Mediterranean area in European Neogene Mammal Chronology (eds. Lindsay, E. H., Fahlbusch, V. & Mein, P.) 495–506 (Plenum Press, New York, 1990).Garcés, M., Cabrera, L., Agustí, J. & Parés, J. M. Old World first appearance datum of “Hipparion” horses: Late Miocene large–mammal dispersal and global events. Geology 25(1), 19–22. https://doi.org/10.1130/0091-7613(1997)025%3c0019:OWFADO%3e2.3.CO;2 (1997).ADS 
    Article 

    Google Scholar 
    Woodburne, M. O. A new occurrence of Cormohipparion, with implications for the Old World Hippotherium Datum. J. Vert. Paleont. 25(1), 256–257 (2005).Woodburne, M. O. Phyletic diversification of the Cormohipparion occidentale complex (Mammalia; Perissodactyla, Equidae), Late Miocene, North America, and the origin of the Old World Hippotherium Datum. B. Am. Mus. Nat. Hist. 306, 1–180 (2007).Article 

    Google Scholar 
    Bernor, R. L., Qiu, Z. & Tobien, H., 1987. Phylogenetic and biogeographic bases for an Old World hipparionine horse geochronology. Proceedings of the VIIIth International Congress of the Regional Committee on Mediterranean Neogene Stratigraphy, Budapest. Ann. Inst. Geol. Publ. Hung. 70, 43–53 (1987).Bernor, R. L., Tobien, H., Hayek, L–A. C. & Mittmann, H. –W. Hippotherium primigenium (Equidae, Mammalia) from the late Miocene of Höwenegg (Hegau, Germany). Andrias 10, 1–230 (1997).Qiu, Z., Huang, W. & Guo, Z. The Chinese hipparionine fossils. Palaeont. Sin. New Ser C 25, 1–250 (1987) ((in Chinese with English summary)).
    Google Scholar 
    Zouhri, S. & Bensalmia, A. Révision systématique des Hipparion sensu lato (Perissodactyla, Equidae) de l’Ancien Monde. Estud. Geol. 61, 61–99. https://doi.org/10.3989/egeol.05611-243 (2005).Article 

    Google Scholar 
    Liu, Y. Late Miocene hipparionine fossils from Lantian, Shaanxi Province and phylogenetic analysis on Chinese Hipparionines. PhD thesis (University of Chinese Academy of Sciences, Beijing) (2013).Bernor, R. L., Wang, S., Liu, Y., Chen, Y. & Sun, B. Shanxihippus dermatorhinus (new gen.) with comparisons to Old World hipparions with specialized nasal apparati. Riv. Ital. Paleontol. Stratigr. 124, 361–386 (2018).Bernor, R. L., Boaz, N. T., Omar, C., El-Shawaihdi, M. H. & Rook, L. Sahabi Eurygnathohippus feibeli: Its systematic, stratigraphic, chronologic and biogeographic contexts. Riv. Ital. Paleontol. Stratigr. 126, 561–581 (2020).
    Google Scholar 
    Liu, T., Li, C. & Zhai, R. Pliocene mammalian fauna of Lantian, Shaangxi. Prof. Pap. Stratigr. Paleont. 7, 149–200 (1978) (in Chinese).Deng, T. et al. Locomotive implication of a Pliocene three–toed horse skeleton from Tibet and its paleo–altimetry significance. Proc. Natl. Acad. Sci. USA 109, 7374–7378. https://doi.org/10.1073/pnas.1201052109 (2012).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fang, X., Garzione, C., van der Voo, R., Li, J. & Fan, M. Flexural subsidence by 29 Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin China. Earth Planet. Sci. Lett. 210, 545–560 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Fang, X. et al. Tectonosedimentary evolution model of an intracontinental flexural (foreland) basin for paleoclimatic research. Glob. Planet Change 145, 78–97. https://doi.org/10.1016/j.gloplacha.2016.08.015 (2016).ADS 
    Article 

    Google Scholar 
    Deng, T., Qiu, Z., Wang, B., Wang, X. & Hou, S. Chapter 9: Late Cenozoic Biostratigraphy of the Linxia Basin, Northwestern China in Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology (eds. Wang, X., Flynn, L. J. & Fortelius, M.) 243–273 (Columbia University Press, New York, 2013).Li, Y., Deng, T., Hua, H., Li, Y. & Zhang, Y. Assessment of dental ontogeny in late Miocene hipparionines from the Lamagou fauna of Fugu, Shaanxi Province China. PLoS ONE https://doi.org/10.1371/journal.pone.0175460 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y., Deng, T., Hua, H., Sun, B. & Zhang, Y. Locomotor adaptations of 7.4 Ma Hipparionine fossils from the middle reaches of the Yellow River and their palaeoecological significance. Hist. Biol. 33(7), 927–940 (2021).Bernor, R. L. & Sun, B. Morphology through ontogeny of Chinese Proboscidipparion and Plesiohipparion and observations on their Eurasian and African relatives. Vert. PalAsiat. 53, 73–92 (2015).
    Google Scholar 
    Woodburne, M. O. & Bernor, R. L. On superspecific groups of some Old World hipparinonine horses. J. Paleontol. 54(6), 1319–1348 (1980).
    Google Scholar 
    Bernor, R. L., Kaya, F., Kaakinen, A., Saarinen, J. & Fortelius, M. Old World hipparion evolution, biogeography, climatology and ecology. Earth Sci. Rev. 211, 103784 (2021).Article 

    Google Scholar 
    Bernor, R. L., Göhlich, U. B., Harzhauser, M. & Semprebon, G. M. The Pannonian C hipparions from the Vienna Basin. Palaegeogr. Palaeoclim. Palaeoecol. 476, 28–41. https://doi.org/10.1016/j.palaeo.2017.03.026 (2017).ADS 
    Article 

    Google Scholar 
    Arambourg, C. Vertebres continentaux du Miocene superieur de l’Afrique du Nord. Service Carte Geologie Algerie Paleontologie Memoire, Nouveaux Serie 4, 1–159 (1959).
    Google Scholar 
    Bernor, R.L. & White, T.D. Systematics and biogeography of “Cormohipparion” africanum, Early Vallesian (MN 9, ca. 10.5 Ma) of Bou Hanifia, Algeria in Papers on Geology, Vertebrate Paleontology, and Biostratigraphy in Honorof Michael O. Woodburne. (ed. Albright, B.), Bull., Mus. of No. Arizona. 65, 635–658 (2009).Bernor, R. L., Scott, R. S., Fortelius, M., Kappelman, J. & Sen, S. Systematics and Evolution of the late Miocene Hipparions from Sinap, Turkey in The Geology and Paleontology of the Miocene Sinap Formation, Turkey (eds. Fortelius, M., Kappelman, J., Sen, S. & Bernor, R. L.) 220–281 (Columbia University Press, New York, 2003).Sack, W. O. The stay–apparatus of the horse’s hindlimb, explained. Equine Pract. 11, 31–35 (1988).
    Google Scholar 
    MacFadden, B. J. In Fossil Horses: Systematics, Paleobiology, and Evolution of the Family Equidae (Cambridge University Press, 1992).
    Google Scholar 
    Li, F. & Li D. Latest Miocene Hipparion (Plesiohipparion) of Zanda Basin in Paleontology of the Ngari Area, Tibet (Xizang) (eds. Yang, Z. & Nie, Z.) 186–193 (China University of Geosciences Press, Wuhan, 1990).Thomason, J. J. The functional morphology of the manus in tridactyl equids Merychippus and Mesohippus: Paleontological inferences from neontological models. J. Vert. Paleont. 6, 143–161 (1986).Article 

    Google Scholar 
    Eisenmann, V. What metapodial morphometry has to say about some Miocene Hipparions in Paleoclimate and Evolution, with Emphasis on Human Origins (eds. Vrba, E. S., Denton, G. H., Partridge, T. C. & Burckle, L. H.) 148–164 (Yale University Press, New Haven, 1995).Deng, T. & Wang, X. Late Miocene Hipparion (Equidae, Mammalia) of eastern Qaidam Basin in Qinghai, China. Vert. PalAsiat. 42(4), 316–333 (2004) (in Chinese with English summary).Wang, X. et al. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Palaegeogr. Palaeoclim. Palaeoecol. 254, 363–385 (2007).Article 

    Google Scholar 
    Zhang, Z. et al. Chapter 6: Mammalian Biochronology of the Late Miocene Bahe Formation in Fossil Mammals of Asia: Neogene Biostratigraphy and Chronology (eds. Wang, X., Flynn, L. J. & Fortelius, M.) 187–202 (Columbia University Press, New York, 2013).Xue, X. X., Zhang, Y. X. & Yue, L. P. Discovery of Hipparion fauna of Laogaochuan and its division of eras, Fugu County Shaanxi. Chin. Sci. Bull. 40, 447–449 (1995).Article 

    Google Scholar 
    Deng, T. Late Cenozoic environmental changes in the Linxia Basin (Gansu, China) as indicated by cenograms of fossil mammals. Vert. PalAsiat. 47(4), 282–298 (2009).
    Google Scholar 
    An, Z., Kutzbach, J. E., Prell, W. L. & Porter, S. C. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan plateau since Late Miocene times. Nature 411, 62–66. https://doi.org/10.1038/35075035 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    An, Z. et al. Changes of the monsoon–arid environment in China and growth of the Tibetan Plateau since the Miocene. Q. Sci. 26(5), 678–693. https://doi.org/10.3321/j.issn:1001-7410.2006.05.002 (2006).Article 

    Google Scholar 
    Wang, X. et al. Origin of the Red Earth sequence on the northeastern Tibetan Plateau and its implications for regional aridity since the middle Miocene. Sci. China D Earth Sci. 49(5), 505–517. https://doi.org/10.1007/s11430-006-0505-3 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Dettman, D. L., Fang, X., Garzione, C. N. & Li, J. Uplift–driven climate change at 12 Ma: A long δ18O record from the NE margin of the Tibetan plateau. Earth Planet. Sci. Lett. 214, 267–277. https://doi.org/10.1016/S0012-821X(03)00383-2 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Jiang, H. C. & Ding, Z. L. A 20 Ma pollen record of East-Asian summer monsoon evolution from Guyuan, Ningxia China. Palaegeogr. Palaeoclim. Palaeoecol. 265, 30–38. https://doi.org/10.1016/j.palaeo.2008.04.016 (2008).ADS 
    Article 

    Google Scholar 
    Fortelius, M. et al. Late Miocene and Pliocene large land mammals and climatic changes in Eurasia. Palaegeogr. Palaeoclim. Palaeoecol. 238, 219–227. https://doi.org/10.1016/j.palaeo.2006.03.042 (2006).ADS 
    Article 

    Google Scholar 
    Fortelius, M. et al. Evolution of neogene mammals in Eurasia: Environmental forcing and biotic interactions. Annu. Rev. Earth Pl Sci. 42, 579–604 (2014).ADS 
    CAS 
    Article 

    Google Scholar 
    Bernor, R. L., Scott, R. S., Fortelius, M., Kappelman, J. & Sen, S. Equidae (Perissodactyla) in The Geology and Paleontology of the Miocene Sinap Formation, Turkey. (eds. Fortelius, M., Kappelman, J., Sen, S. & Bernor, R.L.) 220–281 (Columbia University Press, New York, 2003).Zhang, Z. S., Wang, H. J., Guo, Z. T. & Jiang, D. B. What triggers the transition of palaeoenvironmental patterns in China, the Tibetan Plateau uplift or the Paratethys Sea retreat?. Palaegeogr. Palaeoclim. Palaeoecol. 245, 317–331. https://doi.org/10.1016/j.palaeo.2006.08.003 (2007).ADS 
    Article 

    Google Scholar 
    Böhme, M., Ilg, A. & Winklhofer, M. Late Miocene “washhouse” climate in Europe. Earth Planet. Sci. Lett. 275, 393–401. https://doi.org/10.1016/j.epsl.2008.09.011 (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Janis, C. M., Damuth, J. & Theodor, J. M. Miocene ungulates and terrestrial primary productivity: Where have all the browsers gone?. Proc. Natl. Acad. Sci. USA 97(14), 7899–7904. https://doi.org/10.1073/pnas.97.14.7899 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Janis, C. M., Damuth, J. & Theodor, J. M. The origins and evolution of the North American grassland biome: The story from the hoofed mammals. Palaegeogr. Palaeoclim. Palaeoecol. 177, 183–198. https://doi.org/10.1016/S0031-0182(01)00359-5 (2002).ADS 
    Article 

    Google Scholar 
    Mihlbachler, M. C., Rivals, F., Solounias, N. & Semprebon, G. M. Dietary change and evolution of horses in North America. Science 331, 1178–1181. https://doi.org/10.1126/science.1196166 (2011).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Hayek, L. C., Bernor, R. L., Solounias, N. & Steigerwald, A. Preliminary studies of hipparionine horse diet as measured by tooth microwear. Ann. Zool. Fenniuci 28, 187–200 (1992).
    Google Scholar 
    Sisson, S. The anatomy of the domestic animals (Saunders W B Comp, 1953).
    Google Scholar 
    Budras, K.-D., Sack, W. O. & Röck, S. In Anatomy of the horse. (Schlütersche, Hannover, 2009).Eisenmann, V., Alberdi, M. T., de Giuli, C. & Staesche, U. In Studying Fossil Horses, Vol. I: Methodology. (ed. Brill, E. J.) 1–71 (Leiden, 1988).Deng, T., Hou, S. & Wang, S. Neogene integrative stratigraphy and timescale of China. Sci. China Earth Sci. 62, 310–323 (2019).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Fish diversity patterns along coastal habitats of the southeastern Galapagos archipelago and their relationship with environmental variables

    Witman, J. D. & Smit, F. Rapid community change at a tropical upwelling site in the Galapagos Marine Reserve. Biodivers. Conserv. 12, 25–45 (2003).
    Google Scholar 
    Edgar, G. J., Banks, S., Fariña, J. M., Calvopiña, M. & Martínez, C. Regional biogeography of shallow reef fish and macro-invertebrate communities in the Galapagos archipelago. J. Biogeogr. 31, 1107–1124 (2004).
    Google Scholar 
    Okey, T. A. et al. A trophic model of a Galápagos subtidal rocky reef for evaluating fisheries and conservation strategies. Ecol. Model. 172, 383–401 (2004).
    Google Scholar 
    Briggs, J. C. & Bowen, B. W. A realignment of marine biogeographic provinces with particular reference to fish distributions. J. Biogeogr. 39, 12–30 (2012).
    Google Scholar 
    Salinas de León, P. et al. Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf. PeerJ 4, e1911. https://doi.org/10.7717/peerj.1911 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Humann, P. & DeLoach, N. Reef Fish Identification: Galápagos (ed. Humann, P.) (New World Publications, Inc., 2003).McCosker, J. E. & Rosenblatt, R. H. The fishes of the Galápagos archipelago: An update. Proc. Calif. Acad. Sci. 61, 167–195 (2010).
    Google Scholar 
    Grove, J. S. & Lavenberg, R. J. The Fishes of the Galapagos Islands (Stanford University Press, 1997).Allen, G. & Ross-Robertson, D. Fishes of Tropical Eastern Pacific (University of Hawaii Press, 1994).Ruttenberg, B. I., Haupt, A. J., Chiriboga, A. I. & Warner, R. R. Patterns, causes and consequences of regional variation in the ecology and life history of a reef fish. Oecologia 145, 394–403 (2005).ADS 
    PubMed 

    Google Scholar 
    Bernardi, G. et al. Darwin’s fishes: Phylogeography of Galápagos Islands reef fishes. Bull. Mar. Sci. 90, 533–549 (2014).
    Google Scholar 
    Banks, S., Vera, M. & Chiriboga, A. Establishing reference points to assess long-term change in zooxanthellate coral communities of the northern Galápagos coral reefs. Galapagos Res. 66, 43–64 (2009).
    Google Scholar 
    Palacios, D., Bograd, S., Foley, D. & Schwing, F. Oceanographic characteristics of biological hot spots in the North Pacific: A remote sensing perspective. Deep Sea Res Part II Top. Stud. Oceanogr. 53, 250–269 (2006).ADS 

    Google Scholar 
    Sweet, W. V. et al. Water mass seasonal variability in the Galapagos Archipelago. Deep Sea Res. Part I Oceanogr. Res. Pap. 54, 2023–2035 (2007).ADS 

    Google Scholar 
    Schaeffer, B. et al. Phytoplankton biomass distribution and identification of productive habitats within the Galapagos Marine Reserve by MODIS, a surface acquisition system, and in-situ measurements. Remote Sens. Environ. 112, 3044–3054 (2008).ADS 

    Google Scholar 
    Witman, J. D., Brandt, M. & Smith, F. Coupling between subtidal prey and consumers along a mesoscale upwelling gradient in the Galapagos Islands. Ecol. Monogr. 80, 153–177 (2010).
    Google Scholar 
    Moity, N. Evaluation of no-take zones in the Galápagos marine reserve, zoning plan 2000. Frontiers. 5, 244. https://doi.org/10.3389/fmars.2018.00244 (2018).Article 

    Google Scholar 
    Lamb, R. W., Smith, F. & Witman, J. D. Consumer mobility predicts impacts of herbivory across an environmental stress gradient. Ecology 101, e02910. https://doi.org/10.1002/ecy.2910 (2020).Article 
    PubMed 

    Google Scholar 
    Edgar, G. J. et al. Conservation of threatened species in the Galapagos Marine Reserve through identification and protection of marine key biodiversity areas. Aquat. Conserv. 18, 955–968 (2008).
    Google Scholar 
    Carrión-Cortez, J. A., Zárate, P. & Seminoff, J. A. Feeding ecology of the green sea turtle (Chelonia mydas) in the Galapagos Islands. J. Mar. Biol. Assoc. U. K. 90, 1005–1013 (2010).
    Google Scholar 
    Moity, N., Delgado, B. & Salinas-de-León, P. Correction: Mangroves in the Galapagos islands: Distribution and dynamics. PLoS One 14, e0212440. https://doi.org/10.1371/journal.pone.0212440 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seitz, R. D., Wennhage, H., Bergström, U., Lipcius, R. N. & Ysebaert, T. Ecological value of coastal habitats for commercially and ecologically important species. ICES J. Mar. Sci. 71, 648–665 (2014).
    Google Scholar 
    Aguaiza, C. The role of mangrove as nursery habitats for coral reef fish species in the Galapagos Islands. MSc Thesis (University of Queensland, 2016).Llerena-Martillo, Y., Peñaherrera-Palma, C. & Espinoza, E. Fish assemblages in three fringed mangrove bays of Santa Cruz Island, Galapagos Marine Reserve. Rev. Biol. Trop. 66, 674–687 (2018).
    Google Scholar 
    Fierro-Arcos, D. et al. Mangrove fish assemblages reflect the environmental diversity of the Galapagos Islands. Mar. Ecol. Prog. Ser. 664, 183–205 (2021).ADS 

    Google Scholar 
    Henseler, C. et al. Coastal habitats and their importance for the diversity of benthic communities: A species-and trait-based approach. Estuar. Coast. Shelf Sci. 226, 106272. https://doi.org/10.1016/j.ecss.2019.106272 (2019).Article 

    Google Scholar 
    Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294, 804–808 (2001).ADS 
    CAS 

    Google Scholar 
    Menezes, R. F. et al. Variation in fish community structure, richness, and diversity in 56 Danish lakes with contrasting depth, size, and trophic state: Does the method matter?. Hydrobiologia 710, 47–59 (2013).
    Google Scholar 
    Hu, M., Wang, C., Liu, Y., Zhang, X. & Jian, S. Fish species composition, distribution and community structure in the lower reaches of Ganjiang River, Jiangxi, China. Sci. Rep. 9, 10100. https://doi.org/10.1038/s41598-019-46600-2 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Clarke, K. R. & Warwick, R. M. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. (PRIMER-E Ltd, Plymouth Marine Laboratory, 2001).Warwick, R. M. & Clarke, K. R. New biodiversity measures reveal a decrease in taxonomic distinctness with increasing stress. Mar. Ecol. Prog. Ser. 129, 301–305 (1995).ADS 

    Google Scholar 
    Clarke, K. R. & Warwick, R. M. The taxonomic distinctness measure of biodiversity: Weighting of step lengths between hierarchical levels. Mar. Ecol. Prog. Ser. 184, 21–29 (1999).ADS 

    Google Scholar 
    Nieto-Navarro, J. T., Zetina-Rejón, M. A., Arreguín-Sánchez, F., Palacios-Salgado, D. & Jordán, F. Changes in fish bycatch during the shrimp fishing season along the eastern coast of the mouth of the Gulf of California. J. Appl. Ichthyol. 29, 610–616 (2013).
    Google Scholar 
    Escobar-Toledo, F., Zetina-Rejón, M. J. & Duarte, L. O. Measuring the spatial and seasonal variability of community structure and diversity of fish by-catch from tropical shrimp trawling in the Colombian Caribbean Sea. Mar. Biol. Res. 11, 528–539 (2015).
    Google Scholar 
    Herrera-Valdivia, E., López-Martínez, J., Castillo Vargasmachuca, S. & García-Juárez, A. R. Diversidad taxonómica y funcional en la comunidad de peces de la pesca de arrastre de camarón en el norte del Golfo de California, México. Rev. Biol. Trop. 64, 587–602 (2016).PubMed 

    Google Scholar 
    Heylings, P., Bensted-Smith, R. & Altamirano, M. Zonificación e historia de la Reserva Marina de Galápagos. In Reserva Marina de Galápagos. Línea Base de la Biodiversidad (eds. Danulat, E. & Edgar, G. J.) 10–21 (Fundación Charles Darwin y Servicio Parque Nacional de Galápagos, 2002).Edgar, G. J. et al. Bias in evaluating the effects of marine protected areas: The importance of baseline data for the Galapagos Marine Reserve. Environ. Conserv. 3, 212–218. https://doi.org/10.1017/S0376892904001584 (2004).Article 

    Google Scholar 
    Jennings, S., Brierley, A. S. & Walker, J. W. The inshore fish assemblages of the Galápagos archipelago. Biol. Conserv. 70, 49–57 (1994).
    Google Scholar 
    Brito, A., Pérez-Ruzafaga, A. & Bacallado, J. J. Ictiofauna costera de las islas Galápagos: composición y estructura del poblamiento de los fondos rocosos. Res. Cient. Proy. Galápagos TFCM 5, 61 (1997).
    Google Scholar 
    Bruneel, S. et al. Assessing the drivers behind the structure and diversity of fish assemblages associated with rocky shores in the Galapagos Archipelago. J. Mar. Sci. Eng. 9, 375. https://doi.org/10.3390/jmse9040375 (2021).Article 

    Google Scholar 
    Wellington, G. M., Strong, A. E. & Merlen, G. Sea surface temperature variation in the Galápagos Archipelago: A comparison between AVHRR nighttime satellite data and in-situ instrumentation (1982–1998). Bull. Mar. Res. 69, 27–42 (2001).
    Google Scholar 
    Snell, H., Stone, P. & Snell, H. L. A summary of geographical characteristics of the Galapagos Islands. J. Biogeogr. 23, 619–624 (1996).
    Google Scholar 
    Bustamante, R. H., et al. Outstanding marine features of Galápagos. In A Biodiversity Vision for the Galapagos Islands: An Exercise for Ecoregional Planning (eds. Bensted-Smith, R. & Dinnerstein, E.) 60–71 (WWF, 2002).Airoldi, L. & Beck, M. W. Loss, status and trends for coastal marine habitats of Europe. In Oceanography and Marine Biology: An Annual Review (eds. Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M.) vol. 45, 345–405 (Taylor & Francis, 2007).Carr, M. H., Malone, D. P., Hixon, M. A., Holbrook, S. J. & Schmitt, R. J. How Scuba changed our understanding of nature: underwater breakthrough in reef fish ecology. In Research and Discoveries: The Revolution of Science Through Scuba vol. 39, 157–167 (Smithsonian Contributions to the Marine Sciences, 2013).Durkacz, S. Assessing the Oceanographic Conditions and Distribution of Reef Fish Assemblages Throughout the Galápagos Islands Using Underwater Visual Survey Methods. MSc Thesis (Texas A & M University, 2014).Fischer, W. et al. Guía FAO para la identificación de especies para los fines de pesca. Pacífico Centro-Oriental vol. II–III, 648–1652 (FAO, 1995).Clarke, K. R. & Warwick, R. M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35, 523–531 (1998).
    Google Scholar 
    Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).
    Google Scholar 
    Rosenberg, A., Binford, T. E., Leathery, S., Hill, R. L. & Bickers, K. Ecosystem approaches to fishery management through essential fish habitat. Bull. Mar. Sci. 66, 535–542 (2000).
    Google Scholar 
    Aburto-Oropeza, O. & Balart, E. F. Community structure of reef fish in several habitats of a rocky reef in the Gulf of California. Mar. Ecol. 22, 283–305 (2001).ADS 

    Google Scholar 
    Fulton, C. J., Bellwood, D. R. & Wainwright, P. C. Wave energy and swimming performance shape coral reef fish assemblages. Proc. R. Soc. B 272, 827–832 (2005).CAS 
    PubMed 

    Google Scholar 
    Dominici-Arosemena, A. & Wolff, M. Reef fish community structure in the Tropical Eastern Pacific (Panamá): Living on a relatively stable rocky reef environment. Helgol. Mar. Res. 60, 287–305 (2006).ADS 

    Google Scholar 
    Villegas-Sánchez, C. A., Abitia-Cárdenas, L. A., Gutiérrez-Sánchez, F. J. & Galván-Magaña, F. Rocky-reef fish assemblages at San José Island, Mexico. Rev. Mex. Biodivers. 80, 169–179 (2009).
    Google Scholar 
    Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).
    Google Scholar 
    Glynn, P. Some physical and biological determinants of coral community structure in the eastern Pacific. Ecol. Monogr. 46, 431–456 (1976).
    Google Scholar 
    Ramos-Miranda, J. et al. Changes in four complementary facets of fish diversity in a tropical coastal lagoon after 18 years: A functional interpretation. Mar. Ecol. Prog. Ser. 304, 1–13 (2005).ADS 

    Google Scholar 
    Gristina, M., Bahri, T., Fiorentino, F. & Garofalo, G. Comparison of demersal fish assemblages in three areas of the Strait of Sicily under different trawling pressure. Fish. Res. 81, 60–71 (2006).
    Google Scholar 
    Pérez-Ruzafa, A. P., Marcos, C. & Bacallado, J. J. Biodiversidad marina en archipiélagos e islas: patrones de riqueza específica y afinidades faunísticas. Vieraea Folia Scientarum Biologicarum Canariensium. 33, 455–476 (2005).
    Google Scholar 
    Malcolm, H. A., Jordan, A. & Smith, S. D. Biogeographical and cross-shelf patterns of reef fish assemblages in a transition zone. Mar. Biodivers. 40(3), 181–193 (2010).
    Google Scholar 
    García-Charton, J. A. & Pérez-Ruzafa, A. P. Correlation between habitat structure and a rocky reef fish assemblage in the Southwest Mediterranean. Mar. Ecol. 19(2), 111–128 (1998).ADS 

    Google Scholar 
    Mumby, P. J. et al. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427, 533–536 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Unsworth, R. K. F. et al. High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Mar. Ecol. Prog. Ser. 353, 213–224 (2008).ADS 

    Google Scholar 
    Birkeland, C. & Amesbury, S. S. Fish-transect surveys to determine the influence of neighboring habitats on fish community structure in the tropical Pacific. Co-operation for environmental protection in the Pacific. UNEP Reg. Seas Rep. Stud. 97, 195–202 (1988).
    Google Scholar 
    Thollot, P., Kulbicki, M., & Wantiez, L. Temporal patterns of species composition in three habitats of the St Vincent Bay area (New Caledonia): Coral reefs, soft bottoms and mangroves. In Proceedings International Soc. Reef Studies. 127–137 (1991).Kulbicki, M. Present knowledge of the structure of coral reef fish assemblages in the Pacific. UNEP Reg. Seas Rep. Stud. 147, 31–53 (1992).
    Google Scholar 
    Cruz-Romero, M., Chávez, E.A., Espino, E. & García, A. Assessment of a snapper complex (Lutjanus spp.) of the eastern tropical Pacific. In Biology, Fisheries and Culture of Tropical Groupers and Snappers (eds. Arreguín-Sánchez, F., Munro, J. L., Balgos, M. C. & Pauly, D.) 324–330 (ICLARM Conf. Proc. 48, 1996).Aguilar-Santana, F. Biología reproductiva de Prionurus laticlavius (Valenciennes, 1846) (Teleostei: Acanthuridae) en la Costa Sudoccidental del Golfo de California, México. PhD Thesis (Instituto Politécnico Nacional, 2020).Hall, S. The Effects of Fishing on Marine Ecosystems and Communities (Blackwell Science Ltd., 1999).Mangi, S. C. & Roberts, C. M. Quantifying the environmental impacts of artisanal fishing gear on Kenya’s coral reef ecosystems. Mar. Pollut. Bull. 52, 1646–1660 (2006).CAS 
    PubMed 

    Google Scholar 
    Rees, M. J., Jordan, A., Price, O. F., Coleman, M. A. & Davis, A. R. Abiotic surrogates for temperate rocky reef biodiversity: Implications for marine protected areas. Divers. Distrib. 20(3), 284–296 (2014).
    Google Scholar 
    Ferrari, R. et al. Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography 41(7), 1077–1091 (2018).
    Google Scholar 
    Pihl, L. & Wennhage, H. Structure and diversity of fish assemblages on rocky and soft bottom shores on the Swedish west coast. J. Fish Biol. 61, 148–166 (2002).
    Google Scholar 
    La Mesa, G., Molinari, A., Gambaccini, S. & Tunesi, L. Spatial pattern of coastal fish assemblages in different habitats in North-western Mediterranean. Mar. Ecol. 32, 104–114 (2011).ADS 

    Google Scholar 
    Kristensen, L. D. et al. Establishment of blue mussel beds to enhance fish habitats. Appl. Ecol. Environ. Res. 13, 783–798 (2015).
    Google Scholar 
    Bergström, L., Karlsson, M., Bergström, U., Pihl, L. & Kraufvelin, P. Distribution of mesopredatory fish determined by habitat variables in a predator-depleted coastal system. Mar. Biol. 163, 201. https://doi.org/10.1007/s00227-016-2977-9 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Galván-Villa, C. M., Arreola-Robles, J. L., Ríos-Jara, E. & Rodríguez-Zaragoza, F. A. Ensamblajes de peces arrecifales y su relación con el hábitat bentónico de la Isla Isabel, Nayarit, México. Rev. Biol. Mar. Oceanogr. 45, 311–324 (2010).
    Google Scholar 
    Lunt, J. & Smee, D. L. Turbidity alters estuarine biodiversity and species composition. ICES J. Mar. Sci. 77, 379–387 (2019).
    Google Scholar 
    Anthony, K. R., Ridd, P. V., Orpin, A. R., Larcombe, P. & Lough, J. Temporal variation of light availability in coastal benthic habitats: Effects of clouds, turbidity, and tides. Limnol. Oceanogr. 49, 2201–2211 (2004).ADS 

    Google Scholar 
    Helfman, G. S. Patterns of community structure in fishes: Summary and overview’. Environ. Biol. Fishes 3, 129–148 (1978).
    Google Scholar 
    Helfman, G. S. Fish behaviour by day, night and twilight. In The Behaviour of Teleost Fishes (ed. Pitcher T.J.) (Springer, 1986).Warwick, R. M. & Clarke, K. R. Taxonomic distinctness and environmental assessment. J. Appl. Ecol. 35, 532–543 (1998).
    Google Scholar 
    Rogers, S. I., Clarke, K. R. & Reynolds, J. D. The taxonomic distinctness of coastal bottom-dwelling fish communities of the North-east Atlantic. J. Anim. Ecol. 68, 769–782 (1999).
    Google Scholar 
    Robertson, A. I., & Blaber, S. J. M. Plankton, epibenthos and fish communities. In Tropical Mangrove Ecosystems (eds. Robertson, A. I. & Alongi, D. M.) Coastal and Estuarine Studies No. 41, 173–224 (American Geophysical Union, 1992).Koranteng, K. A. Diversity and stability of demersal species assemblages in the Gulf of Guinea. West Afr. J. Appl. Ecol. 2, 49–63 (2001).
    Google Scholar 
    McCormick, M. I. Comparison of field methods for measuring surface topography and their associations with a tropical reef fish assemblage. Mar. Ecol. Prog. Ser. 112, 87–96 (1994).ADS 

    Google Scholar 
    Moraes, L. E., Paes, E., Garcia, A., Möller, O. Jr. & Vieira, J. Delayed response of fish abundance to environmental changes: A novel multivariate time-lag approach. Mar. Ecol. Prog. Ser. 456, 159–168 (2012).ADS 

    Google Scholar 
    Edgar, G. J. et al. El Niño, grazers and fisheries interact to greatly elevate extinction risk for Galapagos marine species. Glob. Change. Biol. 16, 2876–2890 (2010).ADS 

    Google Scholar 
    Glynn, P. W., Enochs, I. C., Afflerbach, J. A., Brandtneris, V. W. & Serafy, J. E. Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Mar. Ecol. Prog. Ser. 495, 233–247 (2014).ADS 

    Google Scholar  More

  • in

    Hysteresis stabilizes dynamic control of self-assembled army ant constructions

    Field experiments: collective structuresWe found that self-assembled Eciton hamatum bridges adaptively adjust in response to shifts in the terrain on which they are built. Detailed methods are included in Methods: Field experiments. Briefly, we moved foraging trails onto an apparatus where we could introduce a terrain gap. We repeatedly changed the size of this gap by first incrementally increasing it to 30 mm, by 1 mm every 30 s, and then incrementally contracting it at the same rate (See Fig. 1, Methods: Field experiments, and Supplementary Movie 1). As the size of the gap was expanded (the period before the dotted line in Fig. 2a, b) both the volume and number of ants increased to mean maximum values of 1080 mm3 (standard error, s.e. 84) and 18.9 ants (s.e. 1.6), respectively. Ants typically began forming a bridge when the gap was ~5 mm. As the gap size was decreased (period after dotted line), volume and the number of ants decreased back to zero as ants left the bridge. These broad dynamics across the ten complete trials were similar (Fig. 2a, b, inset panels and Supplementary Figs. 2, 3). Additionally, bridge volume (Fig. 2a) strongly correlated with the number of ants in the bridge (Fig. 2b), indicating that the density of ants per unit volume in these structures is relatively consistent (Pearson correlation coefficients range from 0.88 to 0.98 across the ten trials, see also Supplementary Fig. 4). Bridges broke and quickly reformed in eight of the ten trials; breaks occurred in both experimental phases, and these broken periods were excluded from analyses. Overall, these results show that bridges adjust dynamically to changing terrain geometry, as stretching the bridges caused them to become larger, with more ants, and contracting bridges caused them to become smaller, with fewer ants.Fig. 1: Experimental procedure and data extraction summary.Experiments were conducted on robust E. hamatum foraging trails, which were moved onto the experimental apparatus while it was closed. a Experimental procedure: The size of the gap was increased by 1 mm every 30 s until the gap reached 30 mm (expansion phase), then decreased at the same rate till no gap remained (the contraction phase). b Field setup: Experiments were recorded from both the side and the top, examples of bridges during each phase of the same trial are shown. c Data extraction: Example images and silhouettes from the maximum size bridge (30 mm) of the same trial as the images of 20 mm bridges shown in panel a. The envelopes of the bridges were extracted at a temporal resolution of 1 s; for each focal second, image frames were averaged over 10 s to remove ants walking on the bridge from the extracted envelopes. Envelopes were automatically extracted using hue-saturation-value (HSV) thresholding, with thresholds checked independently for each trial due to lighting differences. Locations of fixed points on the platform were used to re-scale and combine data from the side and top views into a single coordinate system in which 100 pixels = 1 cm. Estimates of bridge volume, mean cross-sectional area, and relative height of the center of mass were recorded from the extracted envelopes as shown. See Methods: Data extraction and Supplementary Note 1 for additional details of the data extraction process, including additional bridge metrics.Full size imageFig. 2: Changes in collective structures in experiments.a, b Volume and group size of self-assembled bridges: a Estimated volume of collective bridge structures over time for one focal trial (main figure) and three other examples (inset). The dotted vertical line indicates the time when the experiment shifted from the expansion phase (increasing gap size) to the contraction phase (decreasing gap size). Gray shading indicates that the bridge was broken or recovering from a break; result metrics may be inaccurate during these periods and they were, therefore, excluded from analyses. b The number of ants in the bridge structure over time for the same focal trial (main figure) and three other examples (inset). c–f Hysteresis: Trials consistently show hysteresis, with bridge status at a particular gap size differing during the expansion and contraction phases, for volume (c), number of ants (d), mean cross-sectional area (e), and tautness, or the height of the center of mass of the bridge from the side view (f; lower values indicate bridge is hanging lower). c–f Panels show result metrics over gap size for the same focal trial as in panels a and b, as well as for three other examples (inset). Points show individual measurements, taken every second, lines are smoothed LOESS (local regression) for the expansion (orange points, dashed orange line) and contraction (green points, solid green line) phases. The area between the smoothed lines (shaded gray) shows the extent of hysteresis. c, e, f) Points are jittered to improve clarity. a–f See Supplementary Figs. 2, 3, 5–8 for all complete trials.Full size imageHowever, these changes were not symmetric—adjustments in the contraction phase were not the inverse of adjustments in the expansion phase. We found consistent hysteresis in several metrics; for a given gap size, bridges were larger and made up of more individuals during the contraction of the gap than the expansion (Fig. 2c, d; t-test for volume: mean extent of hysteresis = 0.43, 95% CI = 0.29 to 0.58, t = 6.7, df = 9, p  More

  • in

    The evolution of biogeochemical recycling by persistence-based selection

    Model descriptionThe model involves a discrete time, discrete valued stochastic Markov process. Model variables and parameters are given in Tables 1 and 2 respectively. Both time and the number of individuals of each type are constrained to be integer valued. Death and reproductive mutation are stochastic processes derived from sampling from binomial distributions given by the relevant probabilities. All ensemble results give the 100-replicate average for the parameter choices in question.Growth of individuals from species ({S}_{1}) and ({S}_{2}) is proportional to the bio-available level of environmental substances ({R}_{1}) and ({R}_{2}) respectively. At time (t) (where time is in units of biological generations) the change in the number ({N}_{q,j}) of individuals of genotype (j) (non-producer, producer, plastic) within species (q) (({S}_{1}) or ({S}_{2})) can be written as a function of the state of the variables at the previous time-step:$${N}_{q,j}left(t+1right)=left(left({N}_{q,j}left(tright)-{rho }_{q,j}left(tright)right)cdot {G}_{q,j}left(tright)-{{{{{{rm{{Upsilon }}}}}}}}_{q,j}left(tright)-{delta }_{q,j}left(tright)+{{{{{{rm{{Upsilon }}}}}}}}_{q,xne j}left(tright)right)cdot left(1-frac{{S}_{q}left(tright)}{K}right)$$
    (1)
    The leftmost bracket on the right-hand side represents the number of individuals escaping starvation (death due to insufficient environmental substance) at the previous time-step and ({G}_{q,j}left(tright)) is the per capita reproductive growth rate. ({{{{{{rm{{Upsilon }}}}}}}}_{q,j}left(tright)) gives the number of mutant offspring individuals produced during reproduction from parent individuals of genotype (j). ({{{{{{rm{{Upsilon }}}}}}}}_{q,xne j}left(tright)) represents the number of (j) genotype individuals derived from mutation in parent individuals of other genotypes. ({delta }_{q,j}left(tright)) is the number of individuals of genotype (j) lost to random death, and the rightmost bracket relates the total number ({S}_{q}left(tright)) of individuals of species (q) to carrying capacity (K), which represents limitation of growth by any factor other than the relevant environmental substance, e.g. space. (The steady state population size in all simulations shown is below (K) and limited by the environmental substance influx. The carrying capacity is included in the model for computational reasons and as a “crash preventer” but has no qualitative effect on the results).The total number of individuals ({S}_{q}left(tright)) in species (q) is the sum of the number of individuals of each genotype (producer, non-producer and plastic, as discussed in the main text):$${S}_{q}left(tright)=mathop{sum }limits_{j=1}^{{j}_{{total}}}{N}_{q,j}left(tright)={N}_{q,{prod}}left(tright)+{N}_{q,{non}-{prod}}left(tright)+{N}_{q,{plast}}left(tright)$$
    (2)
    The genotype-specific reproductive growth rate ({G}_{q,j}left(tright)) (again for genotype (j) within species (q), time (t)), gives the number of offspring individuals produced per parent individual, per time-step. Growth rate is an increasing function of the bio-available level of environmental substance ({R}_{q,{BIOAVAIL}{ABLE}}) (the subscript (q) being identical because species ({S}_{1}) and ({S}_{2}) assimilate substances ({R}_{1}) and ({R}_{2}) respectively). Growth rate also includes a substance-to-biomass conversion efficiency parameter ({f}_{{conv}}) and a genotype-specific per capita term ({G}_{q,j,{PR}}) (number of offspring per parent, per unit environmental substance assimilated, per unit time). In the absence of growth-limitation by environmental substance levels, growth rate is capped at a genotype-specific maximum ({G}_{q,{jMAX}}):$${G}_{q,j}left(tright)={MIN}[{G}_{q,j,{PR}}cdot {R}_{q,{BIOAVAILABLE}}(t)cdot {f}_{{conv}},{G}_{q,{jMAX}}]$$
    (3)
    $${G}_{q,{non}-{prod},{PR}}={G}_{0}$$
    (4)
    $${G}_{q,{non}-{prod},{MAX}}={G}_{0}cdot {R}_{{assimMAX}}$$
    (5)
    ({G}_{0}) is the baseline number of offspring, per parent, per unit substance assimilated. ({R}_{{assimMAX}}) is a universal maximum potential number of units of environmental substance that can be assimilated by a single individual per time-step (i.e. representing basic physiological constraints on growth). The producer genotype incurs a per capita reproductive growth rate cost ({kappa }_{{prod}}) relative to the non-producer:$${G}_{q,{prod},{PR}}={G}_{0}cdot (1-{kappa }_{{prod}})$$
    (6)
    $${G}_{q,{prod},{MAX}}={G}_{0}cdot (1-{kappa }_{{prod}})cdot {R}_{{assimMAX}}$$
    (7)
    This growth rate formulation is therefore a highly simplified linearization of the Michaelis-Menten kinetics normally used in models of resource and nutrient assimilation.The plastic genotype switches phenotype depending upon the level of environmental substance relative to a fixed threshold ({{R}_{q,{BIOAVAILABLE}}}_{{crit}}), in effect becoming a second non-producer genotype below this threshold and a second producer genotype above it:$${IF}[{R}_{q,{BIOAVAILABLE}}(t)ge {{R}_{q,{BIOAVAILABLE}}}_{{crit}}],{G}_{q,{plast}}left(tright)={G}_{q,{prod}}left(tright)$$$${ELSEIF}[{R}_{q,{BIOAVAILA}{BLE}}left(tright) , < , {{R}_{q,{BIOAVAILABLE}}}_{{crit}}],{G}_{q,{plast}}left(tright)={G}_{q,{non}-{prod}}left(tright)$$ (8) There is no spatial structure whatsoever, thus access to environmental substance is uniform across individuals. The bioavailable quantity of each environmental substance is simply the total amount ({R}_{q,{NET}}(t)) divided by the total number of individuals assimilating it:$${R}_{q,{BIOAVAILABLE}}left(tright)=frac{{R}_{q,{NET}}(t)}{{S}_{q}left(tright)}$$ (9) We allow the per capita reproductive growth rate to fall below ({G}_{q,j}left(tright)=1), which, if interpreted deterministically at the individual level would correspond to an individual failing to sustain its biomass to the next time-step and thus dying. However, a population-level average ({G}_{q,j}left(tright) , < , 1) is interpretable in terms of a thinning factor that maps between discretized individuals and continuously distributed environmental substance. Thus, a thinning factor of (left(1-{G}_{q,j}left(tright)right)) is used to calculate the total number of individuals dying of starvation ({rho }_{q,j}) (again genotype (j), species (q)). This represents pre-reproduction deaths, corresponding to the difference between the actual population size and the population size that the environmental substance pool is capable of supporting. ({rho }_{q,j}left(tright)) is constrained to be an integer and is zero for ({G}_{q,j}left(tright) , > , 1):$${rho }_{q,j}left(tright)={N}_{q,j}left(tright)cdot {MAX}left[0,left(1-{G}_{q,j}left(tright)right)right]$$
    (10)
    A subset of offspring are a different genotype from their parent via mutation. For parent genotype (j), the number ({{{{{{rm{{Upsilon }}}}}}}}_{q,j}left(tright)) of mutant offspring with genotype (ne j) is calculated using baseline mutation probability per reproductive event ({mu }_{0}), with the total number of new individuals produced by the parent individuals surviving starvation ({G}_{q,j}left(tright)cdot left({N}_{q,j}left(tright)-{rho }_{q,j}left(tright)right)). The total number of mutant offspring ({{{{{{rm{{Upsilon }}}}}}}}_{q,j}left(tright)) is thus a binomially distributed random variable with success probability ({mu }_{0}) and number of trials ({G}_{q,j}left(tright)cdot left({N}_{q,j}left(tright)-{rho }_{q,j}left(tright)right)). The expected value (Eleft[{{{{{{rm{{Upsilon }}}}}}}}_{q,j}left(tright)right]) is the product of these two numbers:$$ {{{{{{rm{{Upsilon }}}}}}}}_{q,j}left(tright) sim Bleft({G}_{q,j}left(tright)cdot left({N}_{q,j}left(tright)-{rho }_{q,j}left(tright)right),{mu }_{0}right), \ Eleft[{{{{{{rm{{Upsilon }}}}}}}}_{q,j}left(tright)right]={G}_{q,j}left(tright)cdot left({N}_{q,j}left(tright)-{rho }_{q,j}left(tright)right)cdot {mu }_{0}$$
    (11)
    Mutation to genotype (j) from the other genotypes is calculated in exactly the same way using the number and reproductive growth rates of the relevant (other) genotypes. Any particular mutant offspring is randomly allocated to one of the other genotypes with equal probability ({p}_{kto j}=frac{1}{{j}_{{total}}-1}=0.5) (where ({j}_{{total}}=3) is the total number of genotypes per species). The expected number of offspring with genotype (j) produced by mutation within parent offspring of other genotypes (kne j) is therefore:$$E[{{{{{{rm{{Upsilon }}}}}}}}_{q,x , ne , j}left(tright)]={left(mathop{sum }limits_{k=1}^{{k}_{{to}{tal}}}{{{{{{rm{{Upsilon }}}}}}}}_{q,k}left(tright)right)}_{kne j}cdot frac{1}{{j}_{{total}}-1}$$
    (12)
    Independently of reproduction and assimilation of environmental substance, any given individual has a probability ({delta }_{0}) at each time point of death due to stochastic factors. The genotype/species specific number of such deaths is again a random sample from a binomial distribution, with success probability ({delta }_{0}):$${delta }_{q,j}left(tright) sim Bleft({N}_{q,j}left(tright),{delta }_{0}right),Eleft[{delta }_{q,j}left(tright)right]={N}_{q,j}left(tright)cdot {delta }_{0}$$
    (13)
    The net quantity of growth-limiting environmental substance at each time-step is given by the difference between total biotic assimilation ({A}_{{R}_{q}}) and the production ({P}_{{R}_{q}}) and abiotic input ({varphi }_{{R}_{q}}) fluxes:$${R}_{q,{NET}}(t+1)={varphi }_{{R}_{q}}(t)+{P}_{{R}_{q}}(t)-{A}_{{R}_{q}}(t)$$
    (14)
    The abiotic net influx is the sum of two fluxes. First, an input term that is the product of a baseline scaling factor ({{varphi }_{0}}_{{R}_{q}}) and a model forcing (frac{partial {t}_{{geo}}}{partial {t}_{{bio}}}) representing the mapping between abiotic-geological and biotic-evolutionary timescales. In practice (frac{partial {t}_{{geo}}}{partial {t}_{{bio}}}(t)) was set to either (1) or (0) or (in fluctuation runs) a time-dependent switching between the two. (More sophisticated implementations of (frac{partial {t}_{{geo}}}{partial {t}_{{bio}}}(t)), e.g. sinusoidal oscillations and stochastic time dependence, were attempted but made little qualitative difference to the results). Second, an abiotic removal term that scales linearly with the quantity of environmental substance:$${varphi }_{{R}_{q}}(t)={{varphi }_{0}}_{{R}_{q}}cdot frac{partial {t}_{{geo}}}{partial {t}_{{bio}}}left(tright)-frac{{R}_{q,{NET}(t)}}{{R}_{q,{NET}0}}$$
    (15)
    where ({R}_{q,{NET}0}) is a normalization factor representing the sensitivity of the abiotic efflux to the influx. In the absence of any biota and for (frac{partial {t}_{{geo}}}{partial {t}_{{bio}}}=1) the steady state environmental substance level is immediately given by (15) as ({R}_{q,{NET}(t)}={R}_{q,{NET}0}cdot {{varphi }_{0}}_{{R}_{q}}), thus the numerical value of ({R}_{q,{NET}0}) corresponds to the abiotic steady state residence time.Total biotic assimilation ({A}_{R}) of each environmental substance is given by:$${A}_{{R}_{q}}left(tright)=mathop{sum }limits_{k=1}^{{j}_{{total}}}frac{{G}_{q,k}left(tright)cdot left({N}_{q,k}left(tright)-{rho }_{q,k}left(tright)right)}{{G}_{q,{kPR}}}$$
    (16)
    The numerator gives the total number of individuals produced as a result of biological assimilation of environmental substance ({R}_{q}) and the denominator is the genotype specific number of individuals produced per unit substance assimilated, dividing through by which therefore converts to total units of substance assimilated by the population as a whole.Net biotic ({P}_{{R}_{q}{NET}}) production of substance ({R}_{q}) by the producer genotype in the other species (p) is calculated equivalently, via the product of the per capita production rate ({P}_{q,{prod}}) and the total number of reproducing individuals:$${P}_{q,{prod}}left(tright)=frac{{MIN}[{G}_{q,{prod}}left(tright)cdot {f}_{{convprod}},{G}_{q,{prodMAX}}]}{{G}_{p,{PRODUCER;PR}}}$$
    (17)
    $${P}_{{R}_{q}{NET}}left(tright)={P}_{q,{prod}}left(tright)cdot left({N}_{p,{PRODUCER}}left(tright)-{rho }_{p,P{RODUCER}}left(tright)right)$$
    (18)
    Where ({f}_{{conv},{PROD}}) is the per capita efficiency by which producers convert the environmental substance that they assimilate into the by-product they produce (note that the equivalent conversion efficiency for assimilation ({f}_{{conv}}) already appears in the growth functions of each genotype, therefore does not appear in Eq. (17)).The residence time ({T}_{{R}_{q}})of each environmental substance is given by the net quantity of this substance divided by the influx, to give units of the average number of biological generations a unit of environmental substance spends in the relevant pool before being removed. In those simulations in which the abiotic influx ({varphi }_{{R}_{q}}(t)) was set to zero (i.e. during the shut-off intervals) production ({P}_{{R}_{q}{NE}T}left(tright)) was used as an alternative denominator:$${IF}left[{varphi }_{{R}_{q}}left(tright) , > , 0,{T}_{{R}_{q}}left(tright)=frac{{R}_{q,{NET}}left(tright)}{{varphi }_{{R}_{q}}left(tright)}right]!,{IF}left[left(left({varphi }_{{R}_{q}}left(tright)=0right){& }left({P}_{{R}_{q}{NET}}left(tright) , > ,0right)right)!,{T}_{{R}_{q}}left(tright)=frac{{R}_{q,{NET}}left(tright)}{{P}_{{R}_{q}{NET}}left(tright)}right]{ELSE}[{T}_{{R}_{q}}left(tright)=0]$$
    (19)
    The cycling ratio ({{CR}}_{{R}_{q}}) of each substance is given by the ratio between net biotic assimilation of that substance ({A}_{{R}_{q}}left(tright)) and the abiotic influx of that substance ({varphi }_{{R}_{q}}left(tright)). As with the residence time, when the abiotic influx was zero, the input from biological production was used as an alternative denominator:$${IF}left[{varphi }_{{R}_{q}}left(tright) , > , 0,{{CR}}_{{R}_{q}}left(tright)=frac{{A}_{{R}_{q}}left(tright)}{{varphi }_{{R}_{q}}left(tright)}right]{IF}left[left(left({varphi }_{{R}_{q}}left(tright)=0right){{& }}left({P}_{{R}_{q}{NET}}left(tright) , > ,0right)right),{{CR}}_{{R}_{q}}left(tright)=frac{{A}_{{R}_{q}}left(tright)}{{P}_{{R}_{q}{NET}}left(tright)}right]{ELSE}[{{CR}}_{{R}_{q}}left(tright)=0]$$
    (20)
    Deterministic approximation to steady stateAssume that at steady state substance assimilation will reach a maximal state such that the level of environmental substance is limiting to population size. Assume that such a state is below the level ({{R}_{q,{BIOAVAILABLE}}}_{{crit}}) at which the plastic genotype effectively becomes a second non-producer genotype and can thus be subsumed into non-producer frequency, such that (2) becomes ({S}_{q}left(tright)=mathop{sum }nolimits_{j=1}^{{j}_{{total}}}{N}_{q,j}left(tright)={N}_{q,{prod}}left(tright)+{N}_{q,{non}-{prod}}left(tright)). Assume that there are non-zero starvations at each time-step for all genotypes, which implies growth rate ({G}_{q,j}left(tright) , < , 1,ll {G}_{q,{jMAX}},forall j,q), which gives by (3)({G}_{q,j}left(tright)={G}_{q,j,{PR}}cdot {R}_{q,{BIOAVAILABLE}}left(tright)cdot {f}_{{conv}}). Substituting this into (10), then the first bracketed term in (1), then labeling the post-starvation number of individuals as ({({N}_{q,j}left(tright))}_{{NET}}):$${({N}_{q,j}left(tright))}_{{NET}}=left({N}_{q,j}left(tright)-{rho }_{q,j}left(tright)right)={N}_{q,j}left(tright)cdot left(1-left(1-{G}_{q,j}left(tright)right)right)={N}_{q,j}left(tright)cdot {G}_{q,j}left(tright)$$ (21) Approximate (14) deterministically by a fixed fractional parameter corresponding to the baseline random death rate:$${delta }_{q,j}left(tright)approx {N}_{q,j}left(tright)cdot {delta }_{0}$$ (22) Doing the same for mutation:$${{{{{{rm{{Upsilon }}}}}}}}_{q,j}left(tright)={G}_{q,j}left(tright)cdot {left({N}_{q,j}left(tright)right)}_{{NET}}cdot {mu }_{0}={N}_{q,j}left(tright)cdot {{G}_{q,j}left(tright)}^{2}cdot {mu }_{0}$$ (23) The term in (12) for mutation to (j) from other genotypes simplifies to$${{{{{{rm{{Upsilon }}}}}}}}_{q,x ,ne , j}left(tright)={sum }_{k,=,1}^{{j}_{{total}}}frac{{G}_{q,k}left(tright)cdot {left({N}_{q,k}left(tright)right)}_{{NET}}cdot {mu }_{0}}{{j}_{{total}}-1}={N}_{q,k}left(tright)cdot {{G}_{q,k}left(tright)}^{2}cdot {mu }_{0}$$Substituting Eqs. (21–23) into (1):$${N}_{q,j}left(tright)cdot {{G}_{q,j}left(tright)}^{2}cdot (1-{mu }_{0})-{N}_{q,j}left(tright)cdot {delta }_{0}+{N}_{q,k}left(tright)cdot {{G}_{q,k}left(tright)}^{2}cdot {mu }_{0}=0$$ (24) Noting that by Eqs. (3)–(5) combined with the above assumptions, the growth rate of the producer can be written as:$${G}_{q,{prod}}left(tright)={G}_{q,{cheat}}left(tright)cdot (1-{kappa }_{{prod},q})$$ (25) Writing (24) explicitly for each genotype:$${N}_{q,{non}-{prod}}left(tright)cdot {{G}_{q,{non}-{prod}}left(tright)}^{2}cdot (1-{mu }_{0})-{N}_{q,{non}-{prod}}left(tright)cdot {delta }_{0}+{N}_{q,{prod}}left(tright)cdot {{G}_{q,{prod}}left(tright)}^{2}cdot {mu }_{0}=0$$$${N}_{q,{prod}}left(tright)cdot {{G}_{q,{prod}}left(tright)}^{2}cdot (1-{mu }_{0})-{N}_{q,{prod}}left(tright)cdot {delta }_{0}+{N}_{q,{non}-{prod}}left(tright)cdot {{G}_{q,{non}-{prod}}left(tright)}^{2}cdot {mu }_{0}=0$$Adding:$${N}_{q,{non}-{prod}}left(tright)cdot {{G}_{q,{non}-{prod}}left(tright)}^{2}cdot left(1-{mu }_{0}right)-{N}_{q,{non}-{prod}}left(tright)cdot {delta }_{0}$$$$+{N}_{q,{prod}}left(tright)cdot {left({G}_{q,{non}-{prod}}left(tright)cdot left(1-{kappa }_{{prod},q}right)right)}^{2}cdot {mu }_{0}+{N}_{q,{prod}}left(tright)cdot {left({G}_{q,{non}-{prod}}left(tright)cdot left(1-{kappa }_{{prod},q}right)right)}^{2}cdot left(1-{mu }_{0}right)$$$$-{N}_{q,{prod}}left(tright)cdot {delta }_{0}+{N}_{q,{non}-{prod}}left(tright)cdot {{G}_{q,{non}-{prod}}left(tright)}^{2}cdot {mu }_{0}=0$$Because the mutation terms cancel:$$left({N}_{q,{non}-{prod}}left(tright)+{N}_{q,{prod}}left(tright)cdot {left(1-{kappa }_{{prod},q}right)}^{2}right)cdot left({{G}_{q,{non}-{prod}}left(tright)}^{2}-{delta }_{0}right)=0$$ (26) Substituting in for the growth rate terms (3–7) gives:$$left({N}_{q,{non}-{prod}}(t)+{N}_{q,{prod}}(t)cdot {left(1-{kappa }_{{prod},q}right)}^{2}right)cdot left({left({G}_{0}cdot {R}_{q,{BIOAVAILABLE}}(t)cdot {f}_{{conv}}right)}^{2}-{delta }_{0}right)=0$$ (27) By (16), (4), (6) and the above, total steady state assimilation of the growth limiting environmental substance by species (q) is:$${A}_{{R}_{q}}left(tright)=mathop{sum }limits_{k=1}^{{j}_{{total}}}frac{{G}_{q,k}left(tright)cdot left({N}_{q,k}left(tright)-{rho }_{q,k}left(tright)right)}{{G}_{q,{kPR}}}$$$$kern2.4pc=frac{{N}_{q,{non}-{prod}}left(tright)cdot {left({G}_{q,{non}-{prod}}left(tright)right)}^{2}}{{G}_{0}}+frac{left({N}_{q,{prod}}left(tright)cdot {left(1-{kappa }_{{prod},q}right)}^{2}right)cdot {left({G}_{q,{non}-{prod}}left(tright)right)}^{2}}{{G}_{0}cdot left(1-{kappa }_{{prod}}right)}$$$$=left({N}_{q,{non}-{prod}}left(tright)+{N}_{q,{prod}}left(tright)cdot left(1-{kappa }_{{prod},q}right)right)cdot {{G}_{0}cdot ({R}_{q,{BIOAVAILABLE}}left(tright)cdot {f}_{{conv}})}^{2}$$ (28) By (16–18), production of this substance by the producer allele in the other species (p , ne , q), assuming the various arguments above simultaneously apply to this species, is:$${P}_{{R}_{q}}left(tright)= frac{{G}_{p,{prod}}left(tright)cdot left({N}_{p,{prod}}left(tright)-{rho }_{p,{PRODUCER}}left(tright)right)}{{G}_{p,{prodPR}}}cdot {f}_{{conv},{PROD}}\ = {N}_{p,{prod}}left(tright)cdot left(1-{kappa }_{{prod},p}right) cdot {G}_{0}cdot {({R}_{p,{BIOAVAILABLE}}left(tright)cdot {f}_{{conv}})}^{2}cdot {f}_{{conv},{PROD}}$$ (29) Balance between input and output fluxes of each environmental substance requires ({varphi }_{{R}_{q}}left(tright)+{P}_{{R}_{q}}left(tright)={A}_{{R}_{q}}left(tright)), meaning that by substituting in ({A}_{{R}_{q}}left(tright)) from (28) it is possible to solve for bioavailable substance level, then substitute in the production flux of this substance derived from the producer allele in the other species (p,ne, q):$${R}_{q,{BIO}{AVAILABLE}}left(tright) =frac{1}{{f}!_{{conv}}}sqrt{frac{{varphi }_{{R}_{q}}left(tright)+{P}_{{R}_{q}}left(tright)}{left({N}_{q,{non}-{prod}}left(tright)+{N}_{q,{prod}}left(tright)cdot left(1-{kappa }_{{prod},q}right)right)cdot {G}_{0}}}\ =frac{1}{{f}!_{{conv}}}sqrt{frac{{varphi }_{{R}_{q}}left(tright)+{N}_{p,{prod}}left(tright)cdot left(1-{kappa }_{{prod},p}right)cdot {G}_{0}cdot {({R}_{p,{BIOAVAILABLE}}left(tright)cdot {f}_{{conv}})}^{2}cdot {f}_{{conv},{PROD}}}{left({N}_{q,{non}-{prod}}left(tright)+{N}_{q,{prod}}left(tright)cdot left(1-{kappa }_{{prod},q}right)right)cdot {G}_{0}}}$$ (30) Substituting this into (27) gives a symmetrical condition for steady state genotype frequencies and substance levels across the system:$$ left({N}_{q,{non}-{prod}}left(tright)+{N}_{q,{prod}}left(tright)cdot {left(1-{kappa }_{{prod},q}right)}^{2}right)cdot\ left(frac{{varphi }_{{R}_{q}}left(tright)+{N}_{p,{prod}}left(tright)cdot left(1-{kappa }_{{prod},p}right)cdot {G}_{0}cdot {({R}_{p,{BIOAVAILABLE}}left(tright)cdot {f}_{{conv}})}^{2}cdot {f}_{{conv},{PROD}}}{left({N}_{q,{non}-{prod}}left(tright)+{N}_{q,{prod}}left(tright)cdot left(1-{kappa }_{{prod},q}right)right)cdot {G}_{0}}-{delta }_{0}right)=0$$ (31) This solution illustrates the intuitive ideas that growth and reproduction balance random death at steady state and that the associated producer frequency is lower than that of the non-producer by a factor of the cost. (This factor is of second order because the growth rate is used both directly and (by (10)) in the calculation of starvations). Because our model is a discrete stochastic process, (31) can be viewed as an approximation to a steady state condition, subject to the above assumptions combined with the continuous generation of producers by mutation at a sufficient rate to preclude their extinction. The key point is that over long timescales in the finite populations with which we deal, organism-level selection unavoidably favors the non-producer, with no possibility for multi-level fecundity selection. The producer’s stable presence is thus attributable to the combination of mutation and cycle-level selection. More

  • in

    Rapid remote monitoring reveals spatial and temporal hotspots of carbon loss in Africa’s rainforests

    Continental, regional, and local spatiotemporal patterns of carbon lossFor Africa’s primary tropical humid forest, carbon losses due to forest disturbances reached 42.2 ± 5.1 MtC yr−1 (mean ± standard deviation, where MtC yr−1 is one million metric tons of carbon loss per year) in 2019 and 53.4 ± 6.5 MtC yr−1 in 2020. Just 9 countries out of the 23 analyzed accounted for 95.0% of total gross losses in 2019 and 94.3% in 2020. These countries contain about 95.7% of all primary tropical humid forests of Africa, with the DRC accounting for 52.8%, Gabon 11.8%, the Republic of the Congo 11.0%, and Cameroon 9.8%. Of these, DRC and Cameroon were responsible for 49.3% and 19.1% of losses in 2019 and 44.7% and 20.6% in 2020. DRC and Cameroon had an annual increase of 15.0% and 36.5% respectively, between 2019 and 2020. From countries with at least 1 MtC emitted in the two years analyzed, Madagascar had the highest annual increase in carbon loss (+153.9%), while Equatorial Guinea is the only country with a decrease in carbon loss (−20.1%). Extending the carbon loss analysis for both past and future will help to better understand these variations and whether the COVID-19 global pandemic had any influence on the general increase between 2019 and 202019. While the absolute numbers for carbon loss estimates should be treated carefully and a sample-based approach should be preferred for an unbiased estimate of absolute numbers20, we focused our analysis on the trends of carbon loss at the continental, country, and local scale (Fig. 1 and Supplementary Fig. 1).Fig. 1: Carbon loss across Africa’s rainforests.We analyzed 23 countries containing primary moist forest. The aboveground carbon stock (green palette) underlies the carbon loss estimations (red palette). Several hotspots can be seen across these regions. The uncertainties of the carbon loss estimations are expressed as standard deviations and shown in Supplementary Fig. 1.Full size imageThe high temporal detail of the analysis revealed various monthly patterns of carbon losses for countries, highly related to local rainfall patterns18 (Fig. 2). Countries like Cameroon, Liberia, Nigeria, Central African Republic (CAR), and Madagascar showed a clear dry-wet seasonal variation in carbon loss per year, while the Republic of the Congo and the DRC, due to their latitudinal extent, exhibited two dry-wet season variations per year with varying intensities (Fig. 2). The seasonal variation can be explained by higher accessibility to forests during the dry months when activities related to smallholder agriculture and logging are more feasible than in the wet season when many roads become inaccessible.Fig. 2: Temporal patterns of carbon loss for the top 10 countries.We show monthly statistics for 2019 and 2020 and the associated uncertainty (black lines). We separate between high (red bars) and low (yellow bars) confidence alerts, the latter showing up for the last 3 months of 2020.Full size imageOne of the highest differences between the months with the most and the least carbon losses was found for Madagascar (72 times more carbon loss in March compared to November 2019). In CAR, the three consecutive months with the highest cumulative carbon loss (January to March 2020) contributed to 75.7% of the total annual loss (between February and April 2020), in Nigeria 73.9% (January to March 2020), Liberia 73.1% (February to April 2020), Madagascar 70.7% (September to November 2020), and Cameroon 62.2% (January to March 2020). Lower percentages were found for countries with mixed seasonality and patterns, like DRC 36.7% (January to March 2020), and the Republic of the Congo 32.8% (January to March 2020) (Fig. 2). For the latter two countries, we expect better-defined peaks of carbon loss at local scales, where climatic conditions are not mixed. The annual cumulative carbon loss (%) per country (Fig. 3) showed that Liberia, Nigeria, CAR, and Cameroon reached between 70-90% of their annual carbon loss in April, while Madagascar reached 60% in October. The DRC, Gabon, Republic of the Congo, Equatorial Guinea, and Ghana have a more gradual monthly increase of cumulative carbon loss with less contrasting seasonality effects. Monthly patterns of carbon losses between the two years analyzed resulted in a correlation coefficient of 0.94 for the CAR, 0.92 for the DRC, 0.91 for Madagascar, 0.90 for Gabon, and 0.83 for Cameroon (Supplementary Fig. 2). For the Republic of the Congo, the two years correlated 0.51. Knowing the peak months of carbon loss for each country and that these patterns are repeatable from one year to another can contribute to better target and prioritize enforcement activities, as well as predicting future patterns and early reporting of annual forest carbon losses.Fig. 3: Annual cumulative carbon loss (%) for both years analyzed, 2019 and 2020.Africa’s total cumulative carbon loss is shown with a black line. The 10 topmost emitting countries out of 23 countries analyzed are shown and represented by distinct colored lines.Full size imageSeveral hotspots of carbon losses can be seen in Fig. 1. The high spatial and temporal details of our analysis are shown in Fig. 4, where several local examples with different drivers of forest disturbances are shown, like logging roads, selective logging, mining, oil palm plantations, urban expansion, and small-holder agriculture. This kind of information, coupled with auxiliary datasets (e.g., legal concessions, protected areas) can identify the legality of forest disturbance21.Fig. 4: Local examples of approx. 10 × 10 km in extent showing different spatiotemporal patterns and drivers of carbon loss.The first column shows the carbon loss, the second column the associated uncertainty, the third column the day-of-the-year when the loss occurred, and the last column shows the monthly distribution of carbon loss and associated uncertainty for each local example. The center coordinates of each location are shown in the third column as latitude and longitude. Exact locations are shown in Supplementary Fig. 3. a Logging roads and selective logging in the Central African Republic, b mining of gold and titanium in the Republic of the Congo, c development of an oil palm plantation in Cameroon, d forest disturbance related to building a new capital city in Equatorial Guinea, and e small-scale agriculture expansion at the edge of the forest in the DRC.Full size imageImplications of rapid monitoring of local carbon lossNear-real time alerts combined with biomass maps result in spatially explicit forest carbon loss, unlike global tabular statistics of national data22,23. We provide new insights into the spatiotemporal dynamics of carbon loss with consistent assessment of accuracy that could enable transparency and completeness for countries reporting on their REDD + progress to the UNFCCC24. We provide monthly carbon loss estimates that could play a key role in local, national, and international forest initiatives for global carbon policy goals25. Such a system can be implemented with minimal costs and is based on open-source datasets and Google Earth Engine cloud computing platform26, thus enabling cost-effective national monitoring of forest carbon loss7. Providing rapid reporting on the location, time, and amount of carbon lost across Africa’s primary humid forest will help undertake immediate action to protect and conserve carbon-rich threatened forests. Furthermore, countries will be able to predict and estimate their annual carbon loss before a reporting period ends, thus having the opportunity to adjust their practices to meet their country-specific commitments for climate change mitigation initiatives.Limitations and future improvementsWe used the RADD alerts (Radar for Detecting Deforestation)18 with a minimum mapping unit (MMU) of 0.2 ha as accuracy estimates were available for this MMU. Events smaller than 0.2 ha would add to the total carbon loss but are by nature associated with higher uncertainties18. The implications of the RADD alerts using a global humid tropical forest product as a forest baseline for 201816,27,28 are twofold. First, the global nature of this product might result in inconsistencies at the local level18. Second, because the forest cover loss information used to generate the forest baseline is based on optical Landsat data, persistent cloud cover in the second half of 2018 in some areas led to missed reporting of forest disturbances, thus being detected at the beginning of 2019 by the RADD alerts. This possible overestimation of carbon loss at the start of 2019 is not an issue for a near-real-time alerting system since later months are not affected. Furthermore, the alerts do not distinguish between human-induced disturbances and natural forest disturbances18. When a new forest disturbance alert is detected, it will be confirmed or rejected within 90 days by subsequent Sentinel-1 images18. That is why our carbon loss reporting separates between high and low confidence alerts for the last three months of 2020, which is common for most forest disturbance alerting products18,29. We separated all the alerts into core and boundary pixels. Core alerts represent complete tree cover removal and we assumed complete carbon loss within a pixel. For boundary alerts, we assumed a 50% carbon loss since these mainly represent forest disturbances with partial tree cover removal. Detecting and quantifying the level of degradation remains challenging and future developments will minimize this uncertainty by providing variable percentages of degraded forest30. The timeliness and spatial details of future forest disturbance alerting products will improve with the availability of open access long-wavelength radar data from near-future satellite missions (e.g., NISAR L-band SAR in 202331), by using a combination of optical and radar forest disturbance alert products, and integration with high-resolution satellite products.We relied on an aboveground biomass baseline map from 201832, prior to RADD alerts starting from 2019. Biomass estimation for the tropical moist forests is based on ALOS-2 PALSAR-2 L-band satellite and its usage needs to account for the local biases, especially underestimating AGB values higher than 250 Mg ha−1 (ref. 32). Although we reduced this underestimation by adjusting the AGB map based on ground field data, more research is needed on providing up-to-date high-resolution aboveground carbon estimates33 that could further increase the accuracy of local carbon loss estimation. Radar-based estimation of forest carbon stocks is challenging over mountainous terrain and is less accurate in complex canopies3 and future integration of radar and optical satellite data will provide more robust estimates33. Nevertheless, new spaceborne missions (e.g., GEDI34, BIOMASS35) will provide an unprecedented amount of forest structure samples that will improve the algorithms and thus the final accuracy of aboveground biomass estimates.We focused on exploring and analyzing local carbon losses and showing high temporal and spatial patterns of carbon losses. We showed the country statistics to emphasize the temporal dynamics of carbon losses and compare the temporal profiles across our study region. Our approach was not to provide stratified area estimations36 associated with forest disturbances but we used this concept in the sense that we had a stratified sample of higher quality reference data18 to estimate the omission and commission errors and consider those in our uncertainty estimation on the pixel level. The analysis showed that omission and commission errors are small and rather balanced, and thus do not result in a major area bias for the forest disturbances. The uncertainties of the aboveground biomass product32 were adjusted for known regional biases using regional forest biomass plot data sources. With this approach, the original aboveground biomass map bias was partly corrected using a model-based approach deemed to be an alternative to a sample-based approach whenever country data are unavailable37. Our uncertainty analysis and error reduction showed that we expect only minor bias in the forest disturbance and the biomass data and the remaining uncertainties are propagated in our pixel-based uncertainty layer. More

  • in

    Experimental immune challenges reduce the quality of male antennae and female pheromone output

    Kraaijeveld, A. R. & Godfray, H. C. J. Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster. Nature 389(6648), 278–280 (1997).ADS 
    CAS 
    Article 

    Google Scholar 
    Lochmiller, R. L. & Deerenberg, C. Trade-offs in evolutionary immunology: Just what is the cost of immunity?. Oikos 88(1), 87–98 (2000).Article 

    Google Scholar 
    Zuk, M. & Stoehr, A. M. Immune defense and host life history. Am. Nat. 160(4), S9–S22 (2002).Article 

    Google Scholar 
    McKean, K. A. & Nunney, L. Increased sexual activity reduces male immune function in Drosophila melanogaster. Proc. Natl. Acad. Sci. 98(14), 7904–7909 (2001).ADS 
    CAS 
    Article 

    Google Scholar 
    Schwenke, R., Lazzaro, B. P. & Wolfner, M. F. Reproduction–immunity trade-offs in insects. Annu. Rev. Entomol. 61(1), 239–256. https://doi.org/10.1146/annurev-ento-010715-023924 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    McNamara, K. B., Wedell, N. & Simmons, L. W. Experimental evolution reveals trade-offs between mating and immunity. Biol. Lett. 9(4), 20130262. https://doi.org/10.1098/rsbl.2013.0262 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nystrand, M. & Dowling, D. K. Effects of immune challenge on expression of life-history and immune trait expression in sexually reproducing metazoans—a meta-analysis. BMC Biol. 18(1), 135. https://doi.org/10.1186/s12915-020-00856-7 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lawniczak, M. K. N. et al. Mating and immunity in invertebrates. Trends Ecol. Evol. 22(1), 48–55 (2007).Article 

    Google Scholar 
    Ahtiainen, J. J., Alatalo, R. V., Kortet, R. & Rantala, M. J. A trade-off between sexual signalling and immune function in a natural population of the drumming wolf spider Hygrolycosa rubrofasciata. J. Evol. Biol. 18(4), 985–991. https://doi.org/10.1111/j.1420-9101.2005.00907.x (2005).CAS 
    Article 
    PubMed 

    Google Scholar 
    Simmons, L. W., Zuk, M. & Rotenberry, J. T. Immune function reflected in calling song characteristics in a natural population of the cricket Teleogryllus commodus. Anim. Behav. 69, 1235–1241. https://doi.org/10.1016/j.anbehav.2004.09.011 (2005).Article 

    Google Scholar 
    Spencer, K. A., Buchanan, K. L., Leitner, S., Goldsmith, A. R. & Catchpole, C. K. Parasites affect song complexity and neural development in a songbird. Proc. R. Soc. B 272(1576), 2037–2043. https://doi.org/10.1098/rspb.2005.3188 (2005).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rantala, M. J., Koskimaki, J., Taskinen, J., Tynkkynen, K. & Suhonen, J. Immunocompetence, developmental stability and wingspot size in the damselfly Calopteryx splendens L. Proc R Soc B 267(1460), 2453–2457 (2000).CAS 
    Article 

    Google Scholar 
    Clotfelter, E. D., Ardia, D. R. & McGraw, K. J. Red fish, blue fish: Trade-offs between pigmentation and immunity in Betta splendens. Behav. Ecol. 18(6), 1139–1145. https://doi.org/10.1093/beheco/arm090 (2007).Article 

    Google Scholar 
    Rantala, M., Jokinen, I., Kortet, R., Vainikka, A. & Suhonen, J. Do pheromones reveal male immunocompetence?. Proc. R. Soc. B 269, 1681–1685 (2002).Article 

    Google Scholar 
    Worden, B., Parker, P. & Pappas, P. Parasites reduce attractiveness and reproductive success in male grain beetles. Anim. Behav. 59, 543–550 (2000).CAS 
    Article 

    Google Scholar 
    Barthel, A., Staudacher, H., Schmaltz, A., Heckel, D. G. & Groot, A. T. Sex-specific consequences of an induced immune response on reproduction in a moth. BMC Evol. Biol. 15(1), 282. https://doi.org/10.1186/s12862-015-0562-3 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sadd, B. et al. Modulation of sexual signalling by immune challenged male mealworm beetles (Tenebrio molitor L.): Evidence for terminal investment and dishonesty. J. Evol. Biol. 19(2), 321–325. https://doi.org/10.1111/j.1420-9101.2005.01062.x (2006).CAS 
    Article 
    PubMed 

    Google Scholar 
    Chemnitz, J., Bagrii, N., Ayasse, M. & Steiger, S. Variation in sex pheromone emission does not reflect immunocompetence but affects attractiveness of male burying beetles—a combination of laboratory and field experiments. Sci. Nat. 104(7), 53. https://doi.org/10.1007/s00114-017-1473-5 (2017).CAS 
    Article 

    Google Scholar 
    Johansson, B. G. & Jones, T. M. The role of chemical communication in mate choice. Biol. Rev. 82(2), 265–289. https://doi.org/10.1111/j.1469-185X.2007.00009.x (2007).Article 
    PubMed 

    Google Scholar 
    Rantala, M. J., Kortet, R., Kotiaho, J. S., Vainikka, A. & Suhonen, J. Condition dependence of pheromones and immune function in the grain beetle Tenebrio molitor. Funct. Ecol. 17(4), 534–540 (2003).Article 

    Google Scholar 
    Niven, J. E. & Laughlin, S. B. Energy limitation as a selective pressure on the evolution of sensory systems. J. Exp. Biol. 211(11), 1792. https://doi.org/10.1242/jeb.017574 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Stöckl, A. et al. Differential investment in visual and olfactory brain areas reflects behavioural choices in hawk moths. Sci. Rep. 6(1), 26041. https://doi.org/10.1038/srep26041 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elgar, M. A. et al. Insect antennal morphology: The evolution of diverse solutions to odorant perception. Yale J. Biol. Med. 91(4), 457–469 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Symonds, M. R. E., Johnson, T. L. & Elgar, M. A. Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths. Ecol. Evol. 2(1), 227–246. https://doi.org/10.1002/ece3.81 (2012).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chapman, R. F. Chemoreception: The significance of receptor numbers. In Advances in Insect Physiology (eds Berridge, M. J. et al.) 247–356 (Academic Press, Cambridge, 1982).
    Google Scholar 
    Symonds, M. R. E. & Elgar, M. A. The evolution of pheromone diversity. Trends Ecol. Evol. 23(4), 220–228. https://doi.org/10.1016/j.tree.2007.11.009 (2008).Article 
    PubMed 

    Google Scholar 
    Wyatt, T. Pheromones and Animal Behaviour: Communication by Smell and Taste (Cambridge University Press, Cambridge, 2003).Book 

    Google Scholar 
    Elgar, M. A., Johnson, T. L. & Symonds, M. R. E. Sexual selection and organs of sense: Darwin’s neglected insight. Anim. Biol. 69(1), 63–82. https://doi.org/10.1163/15707563-00001046 (2019).Article 

    Google Scholar 
    Wang, Q. et al. 2018 Antennal scales improve signal detection efficiency in moths. Proc. R. Soc. B 285, 20172832. https://doi.org/10.1098/rspb.2017.2832 (1874).CAS 
    Article 

    Google Scholar 
    Johnson, T. L., Symonds, M. & Elgar, M. Sexual selection on receptor organ traits: Younger females attract males with longer antennae. Sci. Nat. 104, 1–6 (2017).CAS 
    Article 

    Google Scholar 
    Xu, J. & Wang, Q. Male moths undertake both pre- and in-copulation mate choice based on female age and weight. Behav. Ecol. Sociobiol. 63(6), 801–808. https://doi.org/10.1007/s00265-009-0713-x (2009).MathSciNet 
    Article 

    Google Scholar 
    Fricke, C., Adler, M. I., Brooks, R. C. & Bonduriansky, R. The complexity of male reproductive success: Effects of nutrition, morphology, and experience. Behav. Ecol. 26(2), 617–624. https://doi.org/10.1093/beheco/aru240 (2015).Article 

    Google Scholar 
    Bernays, E. A. & Chapman, R. F. Phenotypic plasticity in numbers of antennal chemoreceptors in a grasshopper: Effects of food. J. Comp. Physiol. 183(1), 69–76. https://doi.org/10.1007/s003590050235 (1998).CAS 
    Article 

    Google Scholar 
    Johnson, T. L., Symonds, M. R. E. & Elgar, M. A. 2017 Anticipatory flexibility: Larval population density in moths determines male investment in antennae, wings and testes. Proc. R. Soc. B 284(1866), 2017–2087. https://doi.org/10.1098/rspb.2017.2087 (1866).Article 

    Google Scholar 
    Pomiankowski, A. & Møller, A. P. A resolution of the lek paradox. Proc. R. Soc. Lond. B 260(1357), 21–29. https://doi.org/10.1098/rspb.1995.0054 (1995).ADS 
    Article 

    Google Scholar 
    Cardé, R. & Baker, T. Sexual communication with pheromones. In Chemical Ecology of Insects (eds Bell, W. & Cardé, R.) (Chapman and Hall, London, 1984).
    Google Scholar 
    Kokko, H. & Wong, B. B. M. What determines sex roles in mate searcing?. Evolution 61(5), 1162–1175. https://doi.org/10.1111/j.1558-5646.2007.00090.x (2007).Article 
    PubMed 

    Google Scholar 
    Alberts, A. Constraints on the design of chemical communication systems in terrestrial vertebrates. Am. Nat. 139, S62–S89 (1992).Article 

    Google Scholar 
    van Dongen, S., Matthysen, E., Sprengers, E. & Dhondt, A. A. Mate selection by male winter moths Operophtera brumata (Lepidoptera, Geometridae): Adaptive male choice or female control?. Behaviour 135, 29–42 (1998).Article 

    Google Scholar 
    Henneken, J., Goodger, J. Q. D., Jones, T. M. & Elgar, M. A. Diet-mediated pheromones and signature mixtures can enforce signal reliability. Front. Ecol. Evol. https://doi.org/10.3389/fevo.2016.00145 (2017).Article 

    Google Scholar 
    Harari, A. R., Zahavi, T. & Thiéry, D. Fitness cost of pheromone production in signaling female moths. Evolution 65(6), 1572–1582. https://doi.org/10.1111/j.1558-5646.2011.01252.x (2011).Article 
    PubMed 

    Google Scholar 
    Pham, H. T., McNamara, K. B. & Elgar, M. A. Socially cued anticipatory adjustment of female signalling effort in a moth. Biol. Lett. 16(12), 20200614. https://doi.org/10.1098/rsbl.2020.0614 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morgan, F. D. & Cobbinah, J. R. Oviposition and establishment of Uraba lugens (Walker), the gum leaf skeletoniser. Aust. For. 40(1), 44–55. https://doi.org/10.1080/00049158.1977.10675665 (1977).Article 

    Google Scholar 
    Pham, H. T., McNamara, K. B. & Elgar, M. A. Age-dependent chemical signalling and its consequences for mate attraction in the gumleaf skeletonizer moth, Uraba lugens. Anim. Behav. 173, 207–213. https://doi.org/10.1016/j.anbehav.2020.12.010 (2021).Article 

    Google Scholar 
    McNamara, K. B., van Lieshout, E., Jones, T. M. & Simmons, L. W. Age-dependent trade-offs between immunity and male, but not female, reproduction. J. Anim. Ecol. 82(1), 235–244. https://doi.org/10.1111/j.1365-2656.2012.02018.x (2012).Article 
    PubMed 

    Google Scholar 
    Simmons, L. W. Resource allocation trade-off between sperm quality and immunity in the field cricket, Teleogryllus oceanicus. Behav. Ecol. 23(1), 168–173. https://doi.org/10.1093/beheco/arr170 (2012).Article 

    Google Scholar 
    Triseleva, T. A. & Safonkin, A. F. Variation in antennal sensory system in different phenotypes of large fruit-tree tortrix Archips podana Scop (Lepidoptera: Tortricidae). Biol Bull 33(6), 568–572. https://doi.org/10.1134/s1062359006060069 (2006).Article 

    Google Scholar 
    Rasband, W. S. ImageJ (National Institutes of Health, Maryland USA, 2009).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Austria, 2013).
    Google Scholar 
    Sanes, J. R. & Hildebrand, J. G. Origin and morphogenesis of sensory neurons in an insect antenna. Dev. Biol. 51(2), 300–319. https://doi.org/10.1016/0012-1606(76)90145-7 (1976).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gill, K. P., Wilgenburg, E. V., Macmillan, D. L. & Elgar, M. A. Density of antennal sensilla influences efficacy of communication in a social insect. Am. Nat. 182(6), 834–840. https://doi.org/10.1086/673712 (2013).Article 
    PubMed 

    Google Scholar 
    Jayaweera, A. & Barry, K. L. Male antenna morphology and its effect on scramble competition in false garden mantids. Sci. Nat. 104(9), 75. https://doi.org/10.1007/s00114-017-1494-0 (2017).CAS 
    Article 

    Google Scholar 
    Greenfield, M. D. Moth sex pheromones: An evolutionary perspective. Fla Entomol. 64(1), 4–17. https://doi.org/10.2307/3494597 (1981).Article 

    Google Scholar 
    McNamara, K. B., van Lieshout, E. & Simmons, L. W. The effect of maternal and paternal immune challenge on offspring immunity and reproduction in a cricket. J. Evol. Biol. 27(6), 1020–1028. https://doi.org/10.1111/jeb.12376 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Foster, S. P. & Anderson, K. G. 2020 Sex pheromone biosynthesis, storage and release in a female moth: Making a little go a long way. Proc. R. Soc. B 287, 20202775. https://doi.org/10.1098/rspb.2020.2775 (1941).CAS 
    Article 

    Google Scholar 
    Gibb, A. R. et al. Major sex pheromone components of the Australian gum leaf skeletonizer Uraba lugens: (10E,12Z)-hexadecadien-1-yl acetate and (10E,12Z)-hexadecadien-1-ol. J. Chem. Ecol. 34(9), 1125–1133. https://doi.org/10.1007/s10886-008-9523-2 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kerr, A. M., Gershman, S. N. & Sakaluk, S. K. Experimentally induced spermatophore production and immune responses reveal a trade-off in crickets. Behav. Ecol. 21(3), 647–654. https://doi.org/10.1093/beheco/arg035 (2010).Article 

    Google Scholar 
    Ahmed, A. M., Baggott, S. L., Maingon, R. & Hurd, H. The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos 97(3), 371–377 (2002).Article 

    Google Scholar 
    Hurd, H. Host fecundity reduction: A strategy for damage limitation?. Trends Parasitol. 17(8), 363–368. https://doi.org/10.1016/S1471-4922(01)01927-4 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Adamo, S. A. Evidence for adaptive changes in egg laying in crickets exposed to bacteria and parasites. Anim. Behav. 57(1), 117–124. https://doi.org/10.1006/anbe.1998.0999 (1999).CAS 
    Article 
    PubMed 

    Google Scholar 
    Arnqvist, G. & Nilsson, T. The evolution of polyandry: Multiple mating and female fitness in insects. Anim. Behav. 60, 145–164 (2000).CAS 
    Article 

    Google Scholar 
    Parker, G. A., Lessells, C. M. & Simmons, L. W. Sperm competition games: A general model for precopulatory male-male competition. Evolution 67(1), 95–109. https://doi.org/10.1111/j.1558-5646.2012.01741.x (2013).Article 
    PubMed 

    Google Scholar 
    Simmons, L. W., Lüpold, S. & Fitzpatrick, J. L. Evolutionary trade-off between secondary sexual traits and ejaculates. Trends Ecol. Evol. 32(12), 964–976. https://doi.org/10.1016/j.tree.2017.09.011 (2017).Article 
    PubMed 

    Google Scholar 
    Parker, G. A. & Pizzari, T. Sperm competition and ejaculate economics. Biol. Rev. 85(4), 897–934. https://doi.org/10.1111/j.1469-185X.2010.00140.x (2010).Article 
    PubMed 

    Google Scholar 
    Katsuki, M. & Lewis, Z. A trade-off between pre- and post-copulatory sexual selection in a bean beetle. Behav. Ecol. Sociobiol. 69(10), 1597–1602. https://doi.org/10.1007/s00265-015-1971-4 (2015).Article 

    Google Scholar 
    Gage, M. J. G. Continuous variation in reproductive strategy as an adaptive response to population-density in the moth Plodia interpunctella. Proc. R. Soc. B 261(1360), 25–30 (1995).ADS 
    Article 

    Google Scholar 
    Shiel, B. P., Sherman, C. D. H., Elgar, M. A., Johnson, T. L. & Symonds, M. R. E. Investment in sensory structures, testis size, and wing coloration in males of a diurnal moth species: Trade-offs or correlated growth?. Ecol. Evol. 5(8), 1601–1608. https://doi.org/10.1002/ece3.1459 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rolff, J. Bateman’s principle and immunity. Proc. R. Soc. B 269(1493), 867–872. https://doi.org/10.1098/rspb.2002.1959 (2002).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Calabrese, E. J. & Baldwin, L. A. Hormesis: A generalizable and unifying hypothesis. Crit. Rev. Toxicol. 31(4–5), 353–424. https://doi.org/10.1080/20014091111730 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Calabrese, E. J. & Mattson, M. P. How does hormesis impact biology, toxicology, and medicine?. NPJ Aging Mech. Dis. 3(1), 13. https://doi.org/10.1038/s41514-017-0013-z (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Assessing the impact of water use in conventional and organic carrot production in Poland

    The LCA approach includes the potential effects of depriving humans and ecosystems of water resources, as well as the specific potential effects of pollutants affecting water and thus the environment49. Water stress is commonly defined as the ratio of total freshwater consumption to the level of its hydrological availability. ISO 14046 presents a new concept, i.e., WF, which is associated with the LCA approach. The standard’s “water scarcity footprint” refers to the potential impacts associated with the quantitative aspect of water use50. Figure 2 shows the WF per cultivation area of conventional and organic carrot production. In general, there are significant differences in the total value of the WF in question. For conventional carrot production technology, it is 10.25 m3 ha−1, while for organic technology, it is only 1.96 m3 ha−1. In the case of conventional production, treatments using significant amounts of chemicals have the greatest impact on the WF, i.e., fertilization (mainly mineral) (WF = 6.85 m3 ha−1), and chemical plant protection (WF = 1.19 m3 ha−1). The analysis of WF in organic farming showed that its highest value (WF = 0.84 m3 ha−1) concerns the harvesting of carrots, while soil preparation ranks second (WF = 0.45 m3 ha−1). A slightly lower WF of 0.38 m3 ha−1 was recorded in the case of transporting the harvested carrots to the farm buildings. It can therefore be concluded that in organic farming, it is (diesel) fuel consumption that has the greatest impact on WF level.Figure 2Water footprint in conventional and organic carrot production (m3 ha−1).Full size imageIn terms of production volume, in conventional technology, the WF is 0.196 m3 t−1. On the other hand, in organic technology the value of WF is approx. four times lower and amounts to 0.049 m3 t−1 of harvested carrots. For comparison, the WF in tomato production is 160 m3 per 1 tonne of produce51. Such a high value results mainly from irrigation of the plants.In order to explain in detail the impact of individual agricultural treatments on the water deficit in carrot production, a detailed WF analysis was carried out for the treatments that demonstrated the highest values. In the case of conventional technology, it was fertilization (Fig. 3). Upon analyzing Fig. 3, it can be observed that the use of urea, and hence nitrogen, has the greatest impact on WF with regard to fertilization. Most nitrogen mineral fertilizers have a negative impact on the environment, causing ozone depletion in the stratosphere, groundwater pollution, global warming, and water eutrophication52,53. The largest water footprint associated with the use of mineral fertilizers in conventional cultivation is mainly due to a very energy-intensive fertilizer production process. Depending on the type of fertilizer and the technology used, the production process involves machines and equipment for cleaning, grinding, drying, sieving, extruding, granulating, packing, pumping, evaporation (crystallization) and transport. The vast majority of these treatments are powered by electricity. In contrast, conventional power production, regardless of the technology and fuel used (nuclear, natural gas, or coal), is characterized by very high water consumption. Mineral fertilizers are also a material whose consumed mass is relatively high compared to other production materials (seeds, pesticides, and diesel fuel). These two factors mentioned above have a decisive impact on the largest water footprint associated with the use of mineral fertilizers in conventional carrot cultivation. Processes requiring the use of machinery, i.e., fertilizer spreaders (1%) and the consumption of diesel fuel (0.1%) have the lowest impact on the level of fertilization-induced WF. Such a low impact of diesel fuel results mainly from its relatively low consumption during fertilization, most often using very efficient centrifugal spreaders. For comparison, WF related only to the use of carrot irrigation water is 20 m3 t−1 of harvested crops54.Figure 3Water footprint related to carrot fertilization in conventional production (m3 ha−1).Full size imageIn the case of organic technology, WF of harvesting was analyzed in detail (Fig. 4). Carrots were excavated with harvesters, which cut the aboveground parts, cleaned the roots and collected them in a hopper. Sometimes the excavation was preceded by mowing the carrot leaves with mowers. Carrot harvesters are machines that require farm tractors with high-power combustion engines, and the harvesting procedure itself is very time-consuming, hence such a large impact of fuel consumption on WF in carrot harvesting. Despite the above, the share of diesel consumption in the total value of WF related to carrot harvesting is only 11%. However, when comparing the WF related to fuel consumed during harvesting and during fertilization, it can be noticed that in the case of harvesting, WF is approx. 15 times higher.Figure 4Water footprint related to carrot harvest in organic production (m3 ha−1).Full size imageIn LCA, the potential effects of water pollution have traditionally been addressed in impact categories such as (eco) toxicity, acidification, and eutrophication42,43. In the WF analysis, the impact of water consumption is generally related to specific goals within a given conservation area, such as: Human Health, Ecosystems Quality and Resources43. The impact of water consumption on human health is expressed in DALY and is obtained by modeling the cause-effect chain of water scarcity (lack of irrigation water) leading to malnutrition. Ecosystem quality is assessed by modeling the cause-effect chain of freshwater consumption with the quality of the terrestrial ecosystem, based on the number of species disappearing each year (species * year). On the other hand, the impact of water consumption in the resources category is assessed by modeling the cause-effect chain of freshwater consumption in relation to the depletion of water resources, along with the cost ($) of extracting an additional cubic meter of water46. The data in Table 2 shows WF in conventional carrot production related to the three impact categories, and Fig. 5 shows its structure. The total impact of individual processes in the Human Health category is 1.15E−05 DALY, in the Ecosystem Quality category—1.53E−07 species * year, and in the Resources category—2.97 $ surplus. For comparison, WF in the above-mentioned impact areas per 1 ha of tomatoes is, respectively: Human Health—5.00E−03 DALY, Ecosystem Quality—2.50E−05 species * year55. When analyzing Fig. 5, it can be observed that in all impact categories, fertilization has the greatest environmental impact, the share of which in individual categories is at approx. 67.0–67.7%. Chemical plant protection ranks second, the impact of which in the three categories ranges from 11.9 to 12.6%. In addition to the treatments related to fertilizers and chemicals, treatments associated with high consumption of diesel fuel, i.e., soil preparation and harvest, have a significant impact on the value of individual categories in carrot production. This confirms the results of many studies, i.e. that the extraction, production and, above all, the use of diesel fuel bring significant damage to the environment56,57.Table 2 Environmental impact related to the use of water in conventional carrot production per area unit (ha).Full size tableFigure 5The structure of WF in individual impact categories in conventional carrot production.Full size imageBearing in mind that carrot yield range in conventional cultivation is 43–65 t ha−1, the total impact of individual processes per 100 tons of harvested carrots is as follows: Human Health: 2.17E−05 DALY, Ecosystem Quality: 2.88E−07 species * year and Resources: 5.57 $ surplus.Upon comparing the obtained results with the research presented in the literature and conducted with a similar methodology, it can be concluded that for the production of 100 tons of tomatoes, the total environmental footprint for the above-mentioned impact areas, including factors other than water, is respectively: Human Health: 2.7E−01 DALY, Ecosystems Quality: 1.45E−03 Species * year, Resources: 1.05E + 06 $58. On the other hand, the WF for green beans, per 100 tons of harvest was reported as follows: Human Health: from 2.00E−2 to 1.08E−1 DALY, Ecosystem Quality: from1.10E−3 to 1.80E−3 species * year, Resources: from 1.90E+2 to 1.40E+3 $ surplus59.Detailed WF results for the fertilization process in conventional carrot production are presented in Fig. 6. Among the individual factors shaping the environmental impact, what stands out is the consumption of urea, i.e. nitrogen (44.9–47.0% of the total impact in individual categories) and of phosphorus fertilizers, the impact of which is at 31.4–32.4%.Figure 6Structure of WF of the fertilization process in conventional carrot production as per individual impact categories.Full size imageIn endpoint analysis, the impact of water use is generally related to specific endpoints in a given conservation area: Human Health, Ecosystems Quality or Resources43. The data in Table 3 shows WF in organic carrot production as per the three impact categories, and Fig. 7 shows its structure. The total WF values in each category are as follows: in the Human Health category—2.11E−06 DALY, in the Ecosystem Quality category—3.00E−08 species * year and in the Resources category—0.56 $ surplus. The above results are over five times lower compared to the footprint in conventional production (Table 2), and therefore it can be concluded that organic production not only enables the production of healthy carrot, but also has a very positive impact on the broadly understood environment. Upon analyzing the data from Tables 2 and 3, it can be observed that the environmental impact of fertilization treatment in organic production is over thirty times lower compared to the impact of fertilization in conventional production. Moreover, the fact that no pesticides are used means that the impact of chemical plant protection treatments is 0. Upon analyzing Fig. 7, it can be observed that the largest share in the total value of WF in individual impact categories is that of carrot harvest, from 41.9% (Ecosystem Quality) to 43.1% (Resources). The reason for such a significant environmental impact of carrot harvesting technology is the use of complex harvesters, as explained in Fig. 8. When calculating WF, both direct water consumption in a technology is taken into account, as well as indirect, related e.g., to the production of agricultural equipment used in the technology. The complexity of the machinery, the type of materials it is made of and the type of technology used in its production determine the WF.Table 3 Environmental impact related to the use of water in organic carrot production per area unit (ha).Full size tableFigure 7The structure of WF in individual impact categories in organic carrot production.Full size imageFigure 8Structure of WF of the harvest process in organic carrot production as per individual impact categories.Full size imageThe methodology for calculating WF is very diverse and includes many methods. Moreover, the results of research on WF related to the production of vegetable species presented in the literature often differ in terms of the analyzed system boundaries, production technology, irrigation, etc. Therefore, the possibility of a broad discussion of the results of WF of conventional and organic carrot production is limited.The detailed structure of WF of the carrot harvesting process in organic farming is shown in Fig. 8. The use of machines, i.e. harvesters, has a decisive share (90.3–96.6%) in the total value of individual impact categories. The reason for this significant impact was explained above. Relatively high consumption of fuel during harvester operation contributes little to the water footprint structure. The use of diesel fuel has the highest impact on damage caused in the Ecosystem Quality category, with the lowest impact in the Human Health category. More

  • in

    Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod

    Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. USA 108, 17905–17909 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Somero, G. N. The physiology of climate change: how potentials for acclimatization and genetic adaptation will determine ‘winners’ and ‘losers’. J. Exp. Biol. 213, 912–920 (2010).Hoffmann, A. A. & Sgrò, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Chevin, L.-M., Lande, R. & Mace, G. M. Adaptation, plasticity, and extinction in a changing environment: towards a predictive theory. PLoS Biol. 8, e1000357 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Kawecki, T. J. & Ebert, D. Conceptual issues in local adaptation. Ecol. Lett. 7, 1225–1241 (2004).
    Google Scholar 
    Campbell-Staton, S. C. et al. Winter storms drive rapid phenotypic, regulatory, and genomic shifts in the green anole lizard. Science 357, 495–498 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barrett, R. D. H. et al. Linking a mutation to survival in wild mice. Science 363, 499–504 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Therkildsen, N. O. et al. Contrasting genomic shifts underlie parallel phenotypic evolution in response to fishing. Science 365, 487–490 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Brennan, R. S., Garrett, A. D., Huber, K. E., Hargarten, H. & Pespeni, M. H. Rare genetic variation and balanced polymorphisms are important for survival in global change conditions. Proc. R. Soc. B: Biol. Sci. 286, 20190943 (2019).CAS 

    Google Scholar 
    Stearns, S. C. The evolutionary significance of phenotypic plasticity. Bioscience 39, 436–445 (1989).Thompson, J. D. Phenotypic plasticity as a component of evolutionary change. Trends Ecol. Evol. 6, 246–249 (1991).CAS 
    PubMed 

    Google Scholar 
    Kelly, M. Adaptation to climate change through genetic accommodation and assimilation of plastic phenotypes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180176 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Chevin, L. M., Collins, S. & Lefèvre, F. Phenotypic plasticity and evolutionary demographic responses to climate change: taking theory out to the field. Funct. Ecol. https://doi.org/10.1111/j.1365-2435.2012.02043.x (2013).Hendry, A. P. Key questions on the role of phenotypic plasticity in eco-evolutionary dynamics. J. Hered. 107, 25–41 (2016).PubMed 

    Google Scholar 
    Calosi, P., De Wit, P., Thor, P. & Dupont, S. Will life find a way? Evolution of marine species under global change. Evol. Appl. 9, 1035–1042 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Fox, R. J., Donelson, J. M., Schunter, C., Ravasi, T. & Gaitán-Espitia, J. D. Beyond buying time: the role of plasticity in phenotypic adaptation to rapid environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180174 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Lande, R. Adaptation to an extraordinary environment by evolution of phenotypic plasticity and genetic assimilation. J. Evol. Biol. 22, 1435–1446 (2009).PubMed 

    Google Scholar 
    Murren, C. J. et al. Constraints on the evolution of phenotypic plasticity: limits and costs of phenotype and plasticity. Heredity 115, 293–301 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Posavi, M., Gulisija, D., Munro, J. B., Silva, J. C. & Lee, C. E. Rapid evolution of genome-wide gene expression and plasticity during saline to freshwater invasions by the copepod Eurytemora affinis species complex. Mol. Ecol. 29, 4835–4856 (2020).CAS 
    PubMed 

    Google Scholar 
    Ghalambor, C. K. et al. Non-adaptive plasticity potentiates rapid adaptive evolution of gene expression in nature. Nature 525, 372–375 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Kelly, M. W., Pankey, M. S., DeBiasse, M. B. & Plachetzki, D. C. Adaptation to heat stress reduces phenotypic and transcriptional plasticity in a marine copepod. Funct. Ecol. 31, 398–406 (2017).
    Google Scholar 
    Sikkink, K. L., Reynolds, R. M., Ituarte, C. M., Cresko, W. A. & Phillips, P. C. Rapid evolution of phenotypic plasticity and shifting thresholds of genetic assimilation in the nematode Caenorhabditis remanei. G3 4, 1103–1112 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Brennan, R. S., Galvez, F. & Whitehead, A. Reciprocal osmotic challenges reveal mechanisms of divergence in phenotypic plasticity in the killifish Fundulus heteroclitus. J. Exp. Biol. 218, 1212–1222 (2015).PubMed 

    Google Scholar 
    Kelly, M. W., Pankey, M. S. & DeBiasse, M. B. Adaptation to heat stress reduces phenotypic and transcriptional plasticity in a marine copepod. Funct. Ecol. https://doi.org/10.1111/1365-2435.12725 (2017).Waddington, C. H. Genetic assimilation of an acquired character. Evolution 7, 118–126 (1953).
    Google Scholar 
    Schlötterer, C., Kofler, R., Versace, E., Tobler, R. & Franssen, S. U. Combining experimental evolution with next-generation sequencing: a powerful tool to study adaptation from standing genetic variation. Heredity 114, 431–440 (2015).PubMed 

    Google Scholar 
    Munday, P. L., Warner, R. R., Monro, K., Pandolfi, J. M. & Marshall, D. J. Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500 (2013).PubMed 

    Google Scholar 
    Huang, Y. & Agrawal, A. F. Experimental evolution of gene expression and plasticity in alternative selective regimes. PLoS Genet. 12, e1006336 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Mallard, F., Nolte, V. & Schlötterer, C. The evolution of phenotypic plasticity in response to temperature stress. Genome Biol. Evol. 12, 2429–2440 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schaum, C. E. & Collins, S. Plasticity predicts evolution in a marine alga. Proc. Biol. Sci. 281, 20141486 (2014).Kelly, S. A., Czech, P. P., Wight, J. T., Blank, K. M. & Garland, T. Jr Experimental evolution and phenotypic plasticity of hindlimb bones in high-activity house mice. J. Morphol. 267, 360–374 (2006).PubMed 

    Google Scholar 
    Garland, T. Jr & Kelly, S. A. Phenotypic plasticity and experimental evolution. J. Exp. Biol. 209, 2344–2361 (2006).PubMed 

    Google Scholar 
    Gibbin, E. M., Massamba N’Siala, G., Chakravarti, L. J., Jarrold, M. D. & Calosi, P. The evolution of phenotypic plasticity under global change. Sci. Rep. 7, 17253 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McCairns, R. J. S. & Bernatchez, L. Adaptive divergence between freshwater and marine sticklebacks: insights into the role of phenotypic plasticity from an integrated analysis of candidate gene expression. Evolution 64, 1029–1047 (2010).CAS 
    PubMed 

    Google Scholar 
    Whitehead, A. The evolutionary radiation of diverse osmotolerant physiologies in killifish (Fundulus sp.). Evolution 64, 2070–2085 (2010).PubMed 

    Google Scholar 
    Lind, M. I. & Johansson, F. The degree of adaptive phenotypic plasticity is correlated with the spatial environmental heterogeneity experienced by island populations of Rana temporaria. J. Evol. Biol. 20, 1288–1297 (2007).CAS 
    PubMed 

    Google Scholar 
    Lázaro-Nogal, A. et al. Environmental heterogeneity leads to higher plasticity in dry-edge populations of a semi-arid Chilean shrub: insights into climate change responses. J. Ecol. 103, 338–350 (2015).
    Google Scholar 
    Gianoli, E. Plasticity of traits and correlations in two populations of Convolvulus arvensis (Convolvulaceae) differing in environmental heterogeneity. Int. J. Plant Sci. 165, 825–832 (2004).
    Google Scholar 
    Fischer, E. K., Song, Y., Hughes, K. A., Zhou, W. & Hoke, K. L. Nonparallel transcriptional divergence during parallel adaptation. Mol. Ecol. 30, 1516–1530 (2021).PubMed 

    Google Scholar 
    Gunter, H. M., Schneider, R. F., Karner, I., Sturmbauer, C. & Meyer, A. Molecular investigation of genetic assimilation during the rapid adaptive radiations of East African cichlid fishes. Mol. Ecol. 26, 6634–6653 (2017).CAS 
    PubMed 

    Google Scholar 
    Bitter, M. C. et al. Fluctuating selection and global change: a synthesis and review on disentangling the roles of climate amplitude, predictability and novelty. Proc. Biol. Sci. 288, 20210727 (2021).CAS 
    PubMed 

    Google Scholar 
    Skliris, N. et al. Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes. Clim. Dyn. 43, 709–736 (2014).
    Google Scholar 
    Collins, M. et al. Long-term climate change: projections, commitments and irreversibility. in Climate Change 2013-The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. 1029–1136 (Cambridge University Press, 2013).Sunday, J. M. et al. Evolution in an acidifying ocean. Trends Ecol. Evol. 29, 117–125 (2014).PubMed 

    Google Scholar 
    Reusch, T. B. H. & Boyd, P. W. Experimental evolution meets marine phytoplankton. Evolution 67, 1849–1859 (2013).PubMed 

    Google Scholar 
    Palumbi, S. R., Evans, T. G., Pespeni, M. H. & Somero, G. N. Present and future adaptation of marine species assemblages. Oceanography https://doi.org/10.5670/oceanog.2019.314 (2019).Helmuth, B. et al. Long-term, high frequency in situ measurements of intertidal mussel bed temperatures using biomimetic sensors. Sci. Data 3, 160087 (2016).MathSciNet 
    PubMed 
    PubMed Central 

    Google Scholar 
    Feely, R. A., Sabine, C. L., Hernandez-Ayon, J. M., Ianson, D. & Hales, B. Evidence for upwelling of corrosive ‘acidified’ water onto the continental shelf. Science 320, 1490–1492 (2008).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cowen, R. K. & Sponaugle, S. Larval dispersal and marine population connectivity. Ann. Rev. Mar. Sci. 1, 443–466 (2009).PubMed 

    Google Scholar 
    Huys, R. & Boxshall, G. A. Copepod Evolution. (marinespecies.org, 1991).Langer, J. A. F. et al. Acclimation and adaptation of the coastal calanoid copepod Acartia tonsa to ocean acidification: a long-term laboratory investigation. Mar. Ecol. Prog. Ser. 619, 35–51 (2019).ADS 
    CAS 

    Google Scholar 
    Dam, H. G. Evolutionary adaptation of marine zooplankton to global change. Ann. Rev. Mar. Sci. 5, 349–370 (2013).PubMed 

    Google Scholar 
    De Wit, P., Dupont, S. & Thor, P. Selection on oxidative phosphorylation and ribosomal structure as a multigenerational response to ocean acidification in the common copepod Pseudocalanus acuspes. Evol. Appl. 9, 1112–1123 (2016).PubMed 

    Google Scholar 
    Thor, P. & Dupont, S. Transgenerational effects alleviate severe fecundity loss during ocean acidification in a ubiquitous planktonic copepod. Glob. Chang. Biol. 21, 2261–2271 (2015).ADS 
    PubMed 

    Google Scholar 
    Donelson, J. M. et al. Understanding interactions between plasticity, adaptation and range shifts in response to marine environmental change. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20180186 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Gibbin, E. M. et al. Can multi-generational exposure to ocean warming and acidification lead to the adaptation of life history and physiology in a marine metazoan? J. Exp. Biol. 220, 551–563 (2017).PubMed 

    Google Scholar 
    Mauchline, J. The Biology of Calanoid Copepods (Academic Press, 1998).Steinberg, D. K. & Landry, M. R. Zooplankton and the ocean carbon cycle. Ann. Rev. Mar. Sci. 9, 413–444 (2017).PubMed 

    Google Scholar 
    Gobler, C. J. & Baumann, H. Hypoxia and acidification in ocean ecosystems: coupled dynamics and effects on marine life. Biol. Lett. 12, 20150976 (2016).Rice, E., Dam, H. G. & Stewart, G. Impact of climate change on estuarine zooplankton: surface water warming in Long Island Sound is associated with changes in copepod size and community structure. Estuaries Coasts 38, 13–23 (2015).
    Google Scholar 
    IPCC. Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Vol. 1454 (IPCC, 2014).Caldeira, K. & Wickett, M. E. Oceanography: anthropogenic carbon and ocean pH. Nature 425, 365 (2003).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Dam, H. G. et al. Rapid, but limited, zooplankton adaptation to simultaneous warming and acidification. Nat. Clim. Chang. 11, 780–786 (2021).ADS 

    Google Scholar 
    Behrenfeld, M. J. et al. Climate-driven trends in contemporary ocean productivity. Nature 444, 752–755 (2006).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Barghi, N., Hermisson, J. & Schlötterer, C. Polygenic adaptation: a unifying framework to understand positive selection. Nat. Rev. Genet. 21, 769–781 (2020).CAS 
    PubMed 

    Google Scholar 
    Láruson, Á. J., Yeaman, S. & Lotterhos, K. E. The importance of genetic redundancy in evolution. Trends Ecol. Evol. 35, 809–822 (2020).PubMed 

    Google Scholar 
    Tobler, R. et al. Massive habitat-specific genomic response in D. melanogaster populations during experimental evolution in hot and cold environments. Mol. Biol. Evol. 31, 364–375 (2014).CAS 
    PubMed 

    Google Scholar 
    Belhadj Slimen, I. et al. Reactive oxygen species, heat stress and oxidative-induced mitochondrial damage. A review. Int. J. Hyperth. 30, 513–523 (2014).CAS 

    Google Scholar 
    Downs, C. A. & Heckathorn, S. A. The mitochondrial small heat-shock protein protects NADH:ubiquinone oxidoreductase of the electron transport chain during heat stress in plants. FEBS Lett. 430, 246–250 (1998).CAS 
    PubMed 

    Google Scholar 
    Harada, A. E., Healy, T. M. & Burton, R. S. Variation in thermal tolerance and its relationship to mitochondrial function across populations of Tigriopus californicus. Front. Physiol. 10, 213 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Chung, D. J. & Schulte, P. M. Mitochondria and the thermal limits of ectotherms. J. Exp. Biol. 223 (2020).Mathew, A. N. U. & Morimoto, R. I. Role of the heat-shock response in the life and death of proteins. Ann. N. Y. Acad. Sci. 851, 99–111 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Evans, T. G., Pespeni, M. H., Hofmann, G. E., Palumbi, S. R. & Sanford, E. Transcriptomic responses to seawater acidification among sea urchin populations inhabiting a natural pH mosaic. Mol. Ecol. 26, 2257–2275 (2017).CAS 
    PubMed 

    Google Scholar 
    Bailey, A. et al. Regulation of gene expression is associated with tolerance of the Arctic copepod Calanus glacialis to CO2-acidified sea water. Ecol. Evol. 7, 7145–7160 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Tenaillon, O. et al. The molecular diversity of adaptive convergence. Science 335, 457–461 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Anjum, R. & Blenis, J. The RSK family of kinases: emerging roles in cellular signalling. Nat. Rev. Mol. Cell Biol. 9, 747–758 (2008).CAS 
    PubMed 

    Google Scholar 
    Marshall, D. J. Transgenerational plasticity in the sea: context-dependent maternal effects across the life history. Ecology 89, 418–427 (2008).PubMed 

    Google Scholar 
    Vehmaa, A., Brutemark, A. & Engström-Öst, J. Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes. PLoS ONE 7, e48538 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Skinner, M. K. What is an epigenetic transgenerational phenotype? F3 or F2. Reprod. Toxicol. 25, 2–6 (2008).CAS 
    PubMed 

    Google Scholar 
    Sasaki, M. C. & Dam, H. G. Integrating patterns of thermal tolerance and phenotypic plasticity with population genetics to improve understanding of vulnerability to warming in a widespread copepod. Glob. Chang. Biol. 25, 4147–4164 (2019).ADS 
    PubMed 

    Google Scholar 
    Sasaki, M. C. & Dam, H. G. Genetic differentiation underlies seasonal variation in thermal tolerance, body size, and plasticity in a short‐lived copepod. Ecol. Evol. 90, 193 (2020).
    Google Scholar 
    Ho, W.-C., Li, D., Zhu, Q. & Zhang, J. Phenotypic plasticity as a long-term memory easing readaptations to ancestral environments. Sci. Adv. 6, eaba3388 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caswell, H. Matrix population models. Encyclopedia of Environmetrics 3, https://doi.org/10.1002/9781118445112.stat07481 (2006).Huey, R. B., Wakefield, T., Crill, W. D. & Gilchrist, G. W. Within- and between-generation effects of temperature on early fecundity of Drosophila melanogaster. Heredity 74, 216–223 (1995). Pt 2.PubMed 

    Google Scholar 
    Zwaan, B., Bijlsma, R. & Hoekstra, R. F. Direct selection on life span in Drosophila melanogaster. Evolution 49, 649–659 (1995).PubMed 

    Google Scholar 
    Reznick, D. A., Bryga, H. & Endler, J. A. Experimentally induced life-history evolution in a natural population. Nature 346, 357–359 (1990).ADS 

    Google Scholar 
    Jerison, E. R., Nguyen Ba, A. N., Desai, M. M. & Kryazhimskiy, S. Chance and necessity in the pleiotropic consequences of adaptation for budding yeast. Nat. Ecol. Evol. 4, 601–611 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Zhong, S., Khodursky, A., Dykhuizen, D. E. & Dean, A. M. Evolutionary genomics of ecological specialization. Proc. Natl Acad. Sci. USA 101, 11719–11724 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    MacLean, R. C., Bell, G. & Rainey, P. B. The evolution of a pleiotropic fitness tradeoff in Pseudomonas fluorescens. Proc. Natl Acad. Sci. USA 101, 8072–8077 (2004).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bettencourt, B. R., Feder, M. E. & Cavicchi, S. Experimental evolution of HSP70 expression and thermotolerance in Drosophila melanogaster. Evolution 53, 484–492 (1999).CAS 
    PubMed 

    Google Scholar 
    Schaum, C.-E., Buckling, A., Smirnoff, N., Studholme, D. J. & Yvon-Durocher, G. Environmental fluctuations accelerate molecular evolution of thermal tolerance in a marine diatom. Nat. Commun. 9, 1719 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Orr, H. A. Adaptation and the cost of complexity. Evolution 54, 13–20 (2000).CAS 
    PubMed 

    Google Scholar 
    Chen, P. & Zhang, J. Antagonistic pleiotropy conceals molecular adaptations in changing environments. Nat. Ecol. Evol. 4, 461–469 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Cox, P. M., Betts, R. A., Jones, C. D., Spall, S. A. & Totterdell, I. J. Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature 408, 184–187 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mayor, D. J., Sommer, U., Cook, K. B. & Viant, M. R. The metabolic response of marine copepods to environmental warming and ocean acidification in the absence of food. Sci. Rep. 5, 13690 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pedersen, S. A. et al. Multigenerational exposure to ocean acidification during food limitation reveals consequences for copepod scope for growth and vital rates. Environ. Sci. Technol. 48, 12275–12284 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bono, L. M., Smith, L. B. Jr, Pfennig, D. W. & Burch, C. L. The emergence of performance trade-offs during local adaptation: insights from experimental evolution. Mol. Ecol. 26, 1720–1733 (2017).PubMed 

    Google Scholar 
    Masel, J., King, O. D. & Maughan, H. The loss of adaptive plasticity during long periods of environmental stasis. Am. Nat. 169, 38–46 (2007).PubMed 

    Google Scholar 
    Bay, R. A. et al. Genomic signals of selection predict climate-driven population declines in a migratory bird. Science 359, 83–86 (2018).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Bay, R. A. et al. Predicting responses to contemporary environmental change using evolutionary response architectures. Am. Nat. 189, 463–473 (2017).PubMed 

    Google Scholar 
    Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).PubMed 

    Google Scholar 
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed 

    Google Scholar 
    Feinberg, L. R. & Dam, H. G. Effects of diet on dimensions, density and sinking rates of fecal pellets of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 175, 87–96 (1998).ADS 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jørgensen, T. S. et al. The genome and mRNA transcriptome of the cosmopolitan calanoid copepod Acartia tonsa Dana improve the understanding of copepod genome size evolution. Genome Biol. Evol. https://doi.org/10.1093/gbe/evz067 (2019).Haas, B. J. et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8, 1494–1512 (2013).CAS 

    Google Scholar 
    Davidson, N. M., Hawkins, A. D. K. & Oshlack, A. SuperTranscripts: a data driven reference for analysis and visualisation of transcriptomes. Genome Biol. 18, 148 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997 (2013).Faust, G. G. & Hall, I. M. SAMBLASTER: fast duplicate marking and structural variant read extraction. Bioinformatics 30, 2503–2505 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koboldt, D. C. et al. VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res. 4, 1521 (2016).Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Core Team, 2019).Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Kenkel, C. D. & Matz, M. V. Gene expression plasticity as a mechanism of coral adaptation to a variable environment. Nat. Ecol. Evol. 1, 14 (2016).PubMed 

    Google Scholar 
    Campbell-Staton, S. C., Velotta, J. P. & Winchell, K. M. Selection on adaptive and maladaptive gene expression plasticity during thermal adaptation to urban heat islands. Nat. Commun. 12, 6195 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jombart, T. & Ahmed, I. adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics https://doi.org/10.1093/bioinformatics/btr521 (2011).Hadfield, J. D. MCMC methods for multi-response generalized linear mixed models: The MCMCglmm R Package. J. Stat. Softw. 33, 1–22 (2010).
    Google Scholar 
    Orozco-terWengel, P. et al. Adaptation of Drosophila to a novel laboratory environment reveals temporally heterogeneous trajectories of selected alleles. Mol. Ecol. 21, 4931–4941 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Kofler, R. et al. PoPoolation: a toolbox for population genetic analysis of next generation sequencing data from pooled individuals. PLoS ONE 6, e15925 (2011).ADS 
    CAS 

    Google Scholar 
    Wright, R. M., Aglyamova, G. V., Meyer, E. & Matz, M. V. Gene expression associated with white syndromes in a reef building coral, Acropora hyacinthus. BMC Genomics 16, 371 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Therneau, T. M. & Grambsch, P. M. Modeling Survival Data: Extending the Cox Model (Springer, 2013).Therneau, T. A Package for Survival Analysis in S. version 2.38. (Mayo Foundation, 2015).Kassambara, A., Kosinski, M., Biecek, P. & Fabian, S. Package ‘survminer’. Drawing Survival Curves using ‘ggplot2’. (R package version 0. 3. 1.) (2017).Houde, S. E. L. & Roman, M. R. Effects of food quality on the functional ingestion response of the copepod Acartia tonsa. Mar. Ecol. Prog. Ser. 40, 69–77 (1987).ADS 

    Google Scholar 
    Brennan, R. S. et al. Code repository for ‘Loss of transcriptional plasticity but sustained adaptive capacity after adaptation to global change conditions in a marine copepod’. Zenodo https://doi.org/10.5281/zenodo.5840148 (2022). More