More stories

  • in

    Large university with high COVID-19 incidence is not associated with excess cases in non-student population

    We used publicly available, daily, county-level COVID-19 cases and deaths from the Pennsylvania Department of Health (PA DOH) (https://www.health.pa.gov/topics/disease/coronavirus/pages/cases.aspx)13,14 for Centre County and the six neighboring counties with which it shares borders: Blair, Clearfield, Clinton, Huntingdon, Mifflin, and Union (Table 1, Fig. 1). Official COVID-19 reporting for these counties began on March 1, 2020 and is ongoing.Table 1 Summary statistics. COVID-19 reporting, census data, SafeGraph mobile-device derived data.Full size tableFigure 1(a) The cumulative COVID-19 case trajectory for Centre County minus the student cases (red line) has the same shape as the outbreak for the neighboring counties. When looking at student cases only (blue line), the curve leads other counties. Centre County cumulative cases including the university (purple line) take on the shape of an early increase because of the student cases. (b) When aggregating cases from students and non-students, Centre County (purple dot) reported about the number of cases expected for its population size, relative to the neighboring counties (black dots). When the university-reported student cases are separated from the non-student residents of the county, cases reported in Centre County non-students (red dots show possible range of total cases) fall below the number of cases we would expect for the population size. Student cases only (blue dot) are high for the student population size.Full size imageWithin Centre County, PSU provided COVID-19 testing for UP students from August 7, 2020 onward and reported anonymized weekly (2020) and daily (2021) confirmed cases, negative test results, and total tests completed for each campus in a public dashboard (Figs. 1a, S1) (https://virusinfo.psu.edu/covid-19-dashboard/)8. Two types of testing were conducted: students who were enrolled in on-campus classes were randomly selected for surveillance testing and all students could use on-demand testing. Through March 23, 2021, a total of 45,092 random tests were conducted for surveillance, of which 462, or 1.0%, were infected. Surveillance testing efforts ranged from 2440 to 4020 weekly tests through the Fall 2020 semester and were designed to consistently test approximately 1% of students throughout the school year.During the same time period, 75,436 on-demand tests were conducted, of which 6093, or 8.1%, were infected. Students living in both on-campus dorms and off-campus apartments had equal access to university-provided testing. Both on-campus and off-campus residences are within Centre County so positive and negative tests results were also included in the overall Centre County reports of COVID-19 cases.Pre-arrival testing was required for students returning to campus from transmission hotspots. Students with positive tests from pre-arrival testing were required to isolate for 10–14 days after their positive test before arriving on campus. Results from pre-arrival testing for students returning to campus in the Fall of 2020 are not included in these data.At the county level, PA DOH reports the total positive, probable, and negative tests for each county. Because PSU is within Centre County, we estimated the number of total positive and negative tests for non-student Centre County residents by subtracting the PSU estimates (from the PSU dashboard) from the Centre County estimates provided by PA DOH. However, not all student tests were reported to DOH. A portion of the on-demand tests conducted for PSU UP students were completed by a third-party vendor, which required student registration. At the time of student registration, an estimated 0–25% of students registered with an address for a family home that did not reflect their residence in Centre County. Their test results were reported to the county of their registered address. This impacts a maximum of 1,166 positive student test results and 10,760 negative student tests.We conducted a sensitivity analysis to assess the uncertainty in reporting around the negative and positive students tests that may have been misallocated due to the reported residence of student tests. We have calculated the minimum and maximum number of affected positive and negative student tests. This uncertainty from student tests impacts non-student values, which are calculated by subtracting student values from county level reports. The calculations are based on a range of a possible 0–1166 positive student tests misallocated to other counties and up to 10,760 misallocated negative student tests. We have used the ranges of misallocated student tests to calculate, for non-student Centre County residents, the full possible range of (1) total cases, (2) reported cases per capita, and (3) tests per capita (Table 1, Fig. 1b). As a result, our estimates of cases and per capita testing among non-student residents in Centre County are imprecise (Table 1).We also used publicly available data from PA DOH data and PSU to calculate COVID-19 deaths per 100,000 for Centre County, the six neighboring counties, and PSU UP.We acquired county-level data on median household income, population size, and college enrollment status from the 2019 United States Census Bureau’s American Community Survey (ACS) 5-year data (https://www.census.gov/data/developers/data-sets/acs-5year.html) for all seven previously mentioned counties in central PA15.We divide the census block groups (CBG) of Centre County into two categories. We first designated ‘student-dominated CBGs’ as CBGs where  > 50% of ACS responses report enrollment as undergraduate students. We consider data from the 19 student-dominated CBGs in Centre County to be representative of the student population in Centre County. In addition to off-campus locations, the 19 student-dominated CBGs include all on-campus dorms. These 19 CBGs are either on or adjacent to PSU’s UP campus and occupy exactly 6 census tracts. The remaining 25 county census tracts were designated as non-student dominated areas.SafeGraph16 receives geolocation data from anonymized mobile devices collected from numerous applications. We analyzed SafeGraph’s mobile device-derived daily visit counts to points of interest (POI), which are fixed locations, such as businesses or attractions. SafeGraph data provide daily counts for total numbers of visits by mobile devices while using at least one application that provides geolocation data to SafeGraph. A “visit” indicates that the device entered the building or spatial perimeter designated as a POI. We acquired daily visit counts for POIs in the seven previously mentioned counties in central PA from January 1, 2019 forward (Table 1) and within Centre County grouped counts into student-dominated CBGs and non-student dominated CBGs. From January 1, 2020 forward, we used SafeGraph data on the median daily minutes that devices spent outside of their home in each county and the student- and non-student dominated CBG divisions in Centre County. The “home location” of each device is defined by its location overnight. Finally, we used SafeGraph’s weekly calculated number of devices residing in each county and the CBGs of Centre County for 2019 to measure SafeGraph’s data representation across the seven counties and the CBGs of Centre County.No administrative permissions were required to obtain these data. Academic researchers can register to receive access to SafeGraph data at no charge for non-commercial purposes only. See Data Availability statement below for details. More

  • in

    Precipitation effects on grassland plant performance are lessened by hay harvest

    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484 (2001).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Collins, S. L. et al. Stability of tallgrass prairie during a 19-year increase in growing season precipitation. Funct. Ecol. 26, 1450–1459 (2012).
    Google Scholar 
    Maurer, G. E., Hallmark, A. J., Brown, R. F., Sala, O. E. & Collins, S. L. Sensitivity of primary production to precipitation across the United States. Ecol. Lett. 23, 527–536 (2020).PubMed 

    Google Scholar 
    IPCC. IPCC. (Cambridge University Press, 2013) https://doi.org/10.1017/cbo9781107415324.Knapp, A. K. et al. Differential sensitivity to regional-scale drought in six central US grasslands. Oecologia 177, 949–957 (2015).PubMed 
    ADS 

    Google Scholar 
    Smith, M. D. An ecological perspective on extreme climatic events: A synthetic definition and framework to guide future research. J. Ecol. 99, 656–663 (2011).
    Google Scholar 
    Zeppel, M. J. B., Wilks, J. V. & Lewis, J. D. Impacts of extreme precipitation and seasonal changes in precipitation on plants. Biogeosciences 11, 3083–3093 (2014).ADS 

    Google Scholar 
    Frank, D. A. Drought effects on above- and belowground production of a grazed temperate grassland ecosystem. Oecologia 152, 131–139 (2007).PubMed 
    ADS 

    Google Scholar 
    Skinner, R. H., Hanson, J. D., Hutchinson, G. L. & Schuman, G. E. Response of C3 and C4 grasses to supplemental summer precipitation. J. Range Manag. 55, 517–522 (2002).
    Google Scholar 
    Shi, Z. et al. Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest. Nat. Commun. 7, 1–6 (2016).ADS 

    Google Scholar 
    Zavaleta, E. S. et al. Grassland responses to three years of elevated temperature, CO2, precipitation, and N deposition. Ecol. Monogr. 73, 585–604 (2003).
    Google Scholar 
    Prather, R. M., Castillioni, K., Welti, E. A. R., Kaspari, M. & Souza, L. Abiotic factors and plant biomass, not plant diversity, strongly shape grassland arthropods under drought conditions. Ecology 101, 1–7 (2020).
    Google Scholar 
    Nippert, J. B., Knapp, A. K. & Briggs, J. M. Intra-annual rainfall variability and grassland productivity: Can the past predict the future?. Plant Ecol. 184, 65–74 (2006).
    Google Scholar 
    La Pierre, K. J. et al. Explaining temporal variation in above-ground productivity in a mesic grassland: The role of climate and flowering. J. Ecol. 99, 1250–1262 (2011).
    Google Scholar 
    Cleland, E. E. et al. Sensitivity of grassland plant community composition to spatial vs. temporal variation in precipitation. Ecology 94, 1687–1696 (2013).PubMed 

    Google Scholar 
    Grant, K., Kreyling, J., Heilmeier, H., Beierkuhnlein, C. & Jentsch, A. Extreme weather events and plant–plant interactions: Shifts between competition and facilitation among grassland species in the face of drought and heavy rainfall. Ecol. Res. 29, 991–1001 (2014).
    Google Scholar 
    Brooker, R. W. et al. Facilitation in plant communities: The past, the present, and the future. J. Ecol. 96, 18–34 (2008).MathSciNet 

    Google Scholar 
    Schöb, C., Armas, C. & Pugnaire, F. I. Direct and indirect interactions co-determine species composition in nurse plant systems. Oikos 122, 1371–1379 (2013).
    Google Scholar 
    Gross, N., Börger, L., Duncan, R. P. & Hulme, P. E. Functional differences between alien and native species: Do biotic interactions determine the functional structure of highly invaded grasslands?. Funct. Ecol. 27, 1262–1272 (2013).
    Google Scholar 
    van der Merwe, S., Greve, M., Olivier, B. & le Roux, P. C. Testing the role of functional trait expression in plant–plant facilitation. Funct. Ecol. https://doi.org/10.1111/1365-2435.13681 (2020).Article 

    Google Scholar 
    Tremmel, D. C. & Bazzaz, F. A. How neighbor canopy architecture affects target plant performance. Ecology 74, 2114–2124 (1993).
    Google Scholar 
    Weiher, E. & Keddy, P. A. In Ecological Assembly Rules: Perspective, Advances, Retreats. (eds. Weiher, E. & Keddy, P. A.) (Cambridge University Press, 2001).Anten, N. P. R. & Hirose, T. Interspecific differences in above-ground growth patterns result in spatial and temporal partitioning of light among species in a tall-grass meadow. J. Ecol. 87, 583–597 (1999).
    Google Scholar 
    Yann, H., Pascal, A. & Niklaus, A. H. Competition for light causes plant. Science 324, 636–638 (2009).
    Google Scholar 
    Walker, B., Kinzig, A. & Langridge, J. Plant attribute diversity, resilience, and ecosystem function: The nature and significance of dominant and minor species. Ecosystems 2, 95–113 (1999).
    Google Scholar 
    Brooker, R. W. Plant–plant interactions and environmental change. New Phytol. 171, 271–284 (2006).PubMed 

    Google Scholar 
    Michalet, R. & Pugnaire, F. I. Facilitation in communities: Underlying mechanisms, community and ecosystem implications. Funct. Ecol. 30, 3–9 (2016).
    Google Scholar 
    Maestre, F. T., Callaway, R. M., Valladares, F. & Lortie, C. J. Refining the stress-gradient hypothesis for competition and facilitation in plant communities. J. Ecol. 97, 199–205 (2009).
    Google Scholar 
    Saccone, P., Delzon, S., Jean-Philippe, P., Brun, J. J. & Michalet, R. The role of biotic interactions in altering tree seedling responses to an extreme climatic event. J. Veg. Sci. 20, 403–414 (2009).
    Google Scholar 
    Smith, M. D., Knapp, A. K. & Collins, S. L. A framework for assessing ecosystem dynamics in response to chronic resource alterations induced by global change. Ecology 90, 3279–3289 (2009).PubMed 

    Google Scholar 
    Borer, E. T., Seabloom, E. W., Gruner, D. S., Harpole, W. S. & Hillebrand, H. Herbivores and nutrients control grassland plant diversity via light limitation. Nature 508, 517–520 (2014).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    de Sassi, C. & Tylianakis, J. M. Climate change disproportionately increases herbivore over plant or parasitoid biomass. PLoS One 7, e40557 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Strauss, S. Y. & Ivalú Cacho, N. Nowhere to run, nowhere to hide: The importance of enemies and apparency in adaptation to harsh soil environments. Am. Nat. 182, E1 (2013).PubMed 

    Google Scholar 
    Brady, K. U., Kruckeberg, A. R. & Bradshaw, H. D. Evolutionary ecology of plant adaptation to serpentine soils. Annu. Rev. Ecol. Evol. Syst. 36, 243–266 (2005).
    Google Scholar 
    Moran, M. S. et al. Soil evaporation response to Lehmann lovegrass (Eragrostis lehmanniana) invasion in a semiarid watershed. Agric. For. Meteorol. 149, 2133–2142 (2009).ADS 

    Google Scholar 
    Pérez-Harguindeguy, N. et al. New handbook for standardised measurement of plant functional traits worldwide. Aust. J. Bot. 61, 167–234 (2013).
    Google Scholar 
    Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 167–171 (2016).PubMed 
    ADS 

    Google Scholar 
    Gross, N., Suding, K. N. & Lavorel, S. Leaf dry matter content and lateral spread predict response to land use change for six subalpine grassland species. J. Veg. Sci. 18, 289–300 (2007).
    Google Scholar 
    Quiroga, R., Golluscio, R., Blanco, L. & Fernandez, R. Aridity and grazing as convergent selective forces: An experiment with an Arid Chaco bunchgrass. Ecol. Appl. https://doi.org/10.1890/09-0641 (2010).Article 
    PubMed 

    Google Scholar 
    Blumenthal, D. M. et al. Traits link drought resistance with herbivore defence and plant economics in semi-arid grasslands: The central roles of phenology and leaf dry matter content. J. Ecol. 108, 2336–2351 (2020).
    Google Scholar 
    Taylor, S. H. et al. Ecophysiological traits in C3 and C4 grasses: A phylogenetically controlled screening experiment. New Phytol. 185, 780–791 (2010).CAS 
    PubMed 

    Google Scholar 
    N’Guessan, M. & Hartnett, D. C. Differential responses to defoliation frequency in little bluestem (Schizachyrium scoparium) in tallgrass prairie: Implications for herbivory tolerance and avoidance. Plant Ecol. 212, 1275–1285 (2011).
    Google Scholar 
    Castillioni, K. et al. Drought mildly reduces plant dominance in a temperate prairie ecosystem across years. Ecol. Evol. 10, 6702–6713 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Ivalú Cacho, N. & Strauss, S. Y. Occupation of bare habitats, an evolutionary precursor to soil specialization in plants. Proc. Natl. Acad. Sci. U. S. A. 111, 15132–15137 (2014).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Cottingham, K. L., Lennon, J. T. & Brown, B. L. Knowing when to draw the line: Designing more informative ecological experiments. Front. Ecol. Environ. 3, 145–152 (2005).
    Google Scholar 
    Xu, X., Sherry, R. A., Niu, S., Li, D. & Luo, Y. Net primary productivity and rain-use efficiency as affected by warming, altered precipitation, and clipping in a mixed-grass prairie. Glob. Change Biol. 19, 2753–2764 (2013).ADS 

    Google Scholar 
    Braun-Blanquet, J. Plant Sociology: The Study of Plant Communities. (1932).Shipley, B. The AIC model selection method applied to path analytic models compared using ad-separation test. Ecology 94, 560–564 (2013).PubMed 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. 7, 573–579 (2016).
    Google Scholar 
    Grace, J. B. In Structural Equation Modeling and Natural Systems. (Cambridge University Press, 2006). https://doi.org/10.1017/CBO9780511617799.Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & Team, R.C. nlme: Linear and nonlinear mixed effects models. R package version 3.1 111 (2013).Bates, D., Mächler, M., Bolker, B. M. & Walker, S. C. Fitting linear mixed-effects models using lme4. Ecol. Austral 67, 1–48 (2015).
    Google Scholar 
    Pearson, D. E., Ortega, Y. K. & Maron, J. L. The tortoise and the hare: reducing resource availability shifts competitive balance between plant species. J. Ecol. 105, 999–1009 (2017).CAS 

    Google Scholar 
    Maron, J. L. & Crone, E. Herbivory: Effects on plant abundance, distribution and population growth. Proc. R. Soc. B Biol. Sci. 273, 2575–2584 (2006).
    Google Scholar 
    Bertness, M. & Callaway, R. M. Positive interactions in communities. Trends Ecol. Evol. 9, 191–193 (1994).CAS 
    PubMed 

    Google Scholar 
    Ploughe, L. W. et al. Community Response to Extreme Drought (CRED): A framework for drought-induced shifts in plant–plant interactions. New Phytol. 222, 52–69 (2019).PubMed 

    Google Scholar 
    Klanderud, K., Vandvik, V. & Goldberg, D. The importance of Biotic vs. Abiotic drivers of local plant community composition along regional bioclimatic gradients. PLoS One 10, 1–15 (2015).
    Google Scholar 
    Maricle, B. R., Caudle, K. L. & Adler, P. B. Influence of water availability on photosynthesis, water potential, leaf δ 13 C, and phenology in dominant C 4 grasses in Kansas, USA. Trans. Kans. Acad. Sci. 118, 173–193 (2015).
    Google Scholar 
    Collins, S. L., Knapp, A. K., Briggs, J. M., Blair, J. M. & Steinauer, E. M. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280, 745–747 (1998).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Gornish, E. S. & Tylianakis, J. Community shifts under climate change: Mechanisms at multiple scales. Am. J. Bot. 100, 1422–1434 (2013).PubMed 

    Google Scholar  More

  • in

    Protector of giant salamander

    Download PDF

    I study the Chinese giant salamander (Andrias davidianus), which is native to the Yangtze River Basin of central China. This particular species is critically endangered in the wild owing to habitat loss and overcatching — a particular problem is their use in traditional Chinese medicine. My research focuses on the salamander’s conservation biology and evolutionary ecology.In this photo, I am releasing a Chinese giant salamander at the Golden Whip River in Zhangjiajie National Forest Park on an early morning in September 2021. My team and I caught the salamander the night before, to measure its size and collect tissue samples for genetic analyses.My interest in aquatic animals started as a child. I grew up in a rural village in Hunan province, and I remember spending most of my childhood playing and fishing near my home. Because of this, I knew where each fish species lived in nearby rivers and lakes, and it sparked my interest in river ecology.I’m employed as an associate professor at Jishou University, where I lead a team dedicated to researching this species of salamander. Wild salamanders are quiet, nocturnal animals that live in remote areas. This makes studying them challenging. My team tried many creative ways to track down the animals, including walking along riverbanks with torches and photographing salamanders under water — but these techniques didn’t work as well as we needed them to. We eventually found that the best way to trap wild salamanders is to use small live fish and chicken livers as bait. The research is challenging, but we’ve learnt to be patient and celebrate every small success we have.Studying Chinese giant salamanders has also taught me an important life lesson: adapt to thrive. When food is abundant, the salamanders grow rapidly; when food is scarce, they can go up to 11 months without feeding. In my personal life and work, I have experienced successes and failures, and taking on that lesson has been useful.

    Nature 603, 194 (2022)
    doi: https://doi.org/10.1038/d41586-022-00564-y

    Related Articles

    Close-up with a parasite that can blind

    Handling snakes for science

    Broaden your scientific audience with video animation

    Managing up: how to communicate effectively with your PhD adviser

    Subjects

    Careers

    Conservation biology

    Ecology

    Latest on:

    Careers

    Smaller science company? Tailor your CV for a manager, not HR
    Career Column 25 FEB 22

    Female scientists in Africa are changing the face of their continent
    Editorial 22 FEB 22

    African scientists engage with the public to tackle local challenges
    Career Feature 15 FEB 22

    Ecology

    How colonialism fed the flames of Australia’s catastrophic wildfires
    Research Highlight 24 FEB 22

    Apply Singapore Index on Cities’ Biodiversity at scale
    Correspondence 22 FEB 22

    Marching in the streets for climate-crisis action
    Career Q&A 22 FEB 22

    Jobs

    POST-DOC POSITION IN ELECTROPHYSIOLOGY OF FUNGAL NETWORKS

    VU University Amsterdam
    Amsterdam, Netherlands

    Director, Division of Receipt and Referral Center for Scientific Review National Institutes of Health (NIH) Department of Health and Human Services (DHHS)

    National Institutes of Health (NIH)
    Bethesda, MD, United States

    Postdoctoral Fellow

    NIH National Heart, Lung, and Blood Institute (NHLBI)
    Bethesda, MD, United States

    Two postdoctorial researchers in structural biology, with focus on artificial intelligence

    University of Gothenburg (GU)
    Uppsala, Sweden More

  • in

    Full-length transcriptome analysis of multiple organs and identification of adaptive genes and pathways in Mikania micrantha

    The full-length sequences of PacBio SMRT sequencingBased on PacBio SMRT sequencing, 3,751,089, 3,434,452, 3,900,180, 8,535,019, and 4,435,846 subreads were generated for root, stem, leaf, flower, and seed, with a N50 of 3040, 3367, 2611, 2198, and 4584 bp, respectively (Table S1; Fig. S1). Subreads were processed to generate circular consensus sequences (CCSs). By detecting the primers and poly(A) tail, 238,196, 232,290, 211,535, 257,905, and 231,877 full-length non-chimeric (FLNC) reads were identified for root, stem, leaf, flower, and seed, with a mean length of 2633, 3070, 2561, 1746, and 3762 bp, respectively (Table S2; Fig. S2). After Iterative Clustering for Error Correction (ICE) clustering, polishing, base correction, de-redundancy, and non-plant sequences filtering, 37,789, 34,034, 38,100, 54,937, and 53,906 unigenes were retained for root, stem, leaf, flower, and seed, respectively, with an average unigene length of 1802–3786 bp and N50 of 2238–4707 bp (Table S2). The length of most unigenes from five organs exceeded 2000 bp, accounting for 68.88% of the total number (Table S3; Fig. 1A). Based on Benchmarking Universal Single-Copy Orthologs (BUSCO) assessment, about 88.1% (single-copy: 353; duplicated: 916) of the 1440 core embryophyte genes were found to be complete (90.6% were present when counting fragmented genes), suggesting the high integrity of the M. micrantha transcriptome (Fig. S3).Figure 1Length distribution of unigenes from PacBio SMRT sequencing (A) and Illumina RNA-Seq (B) across five organs.Full size imageDe novo assembly of Illumina RNA-Seq dataBased on Illumina RNA-Seq, 43.23, 40.27, 41.01, 65.85, and 41.09 million clean reads were obtained for root, stem, leaf, flower, and seed, respectively, with Q20 exceeding 96.72%. Using Trinity software, clean reads were de novo assembled into 124,238, 60,232, 63,370, 93,229, and 66,411 unigenes for root, stem, leaf, flower, and seed. After filtering non-plant sequences, 124,233, 60,232, 63,370, 93,228, and 66,410 unigenes were finally retained for the five organs, respectively (Table S4). The length of most unigenes (84.70%) was shorter than 2000 bp (Table S3). In addition, the average length and N50 of unigenes generated by Illumina RNA-Seq were 1067–1312 bp and 1336–1685 bp, respectively, which were shorter than that from PacBio SMRT sequencing (Table S4; Fig. 1B).Functional annotationTo obtain a comprehensive functional annotation of M. micrantha transcriptome, unigenes generated by PacBio SMRT sequencing were annotated in seven public databases, including NCBI non-redundant nucleotide sequences (NT), NCBI non-redundant protein sequences (NR), Gene Ontology (GO), Eukaryotic Orthologous Groups (KOG), Kyoto Encyclopedia of Genes and Genomes (KEGG), Swiss-Prot, and Pfam protein families. For root, stem, leaf, flower, and seed, 35,714 (94.51%), 32,614 (95.83%), 36,134 (94.84%), 49,197 (89.55%), and 50,962 (94.54%) unigenes were annotated to at least one database, respectively, suggesting that our transcriptome is well annotated and that most of unigenes may be functional (Table 1).Table 1 Statistics of annotation of full-length transcripts from five M. micrantha organs in seven databases.Full size tableBased on NR database annotation, the top three homologous species for the five organs were Cynara cardunculus, Vitis vinifera, and Daucus carota (Fig. S4). The top homologous species was a plant of the Asteraceae family. For the GO function annotation, “binding”, “catalytic activities”, “metabolic process”, “cellular process”, “cell”, and “cell part” were functional categories with the most abundant unigenes (Fig. S5). In addition, numerous unigenes were assigned to “response to stimulus”, “response to biotic stimulus”, and “response to oxidative stress” category (Table S5). Positive response to stress stimuli is an important strategy for invasive plants to adapt to the environment. In the KEGG annotation, the top two pathways with the most abundant unigenes were “carbohydrate metabolism” and “translation”. Furthermore, “energy metabolism” and “environmental adaptation” were also worthy of attention, which are important pathways responsible for energy supply and stress responses (Fig. S6).TFs identification and AS analysisUsing the iTAK pipeline, 1776 (root), 1293 (stem), 1627 (leaf), 2529 (flower), and 1733 (seed) unigenes were identified as TFs, which were classified into 68 families (Table S6). C3H (884), C2H2 (525), and bHLH (501) were the most abundant TF families (Fig. S7A). In addition, MYB (333) TFs were also found in the five organs. The differential expression levels of the top 15 TF families were further characterized. We found that the top 15 TF families had a certain amount of expression in the five organs of M. micrantha (Fig. S7B).For root, stem, leaf, flower, and seed, 3300, 2324, 3219, 4730, and 3740 unique transcript models (UniTransModels) were constructed, among which the UniTransModels containing two isoforms were the most common (Fig. S8A). There were 329, 270, 358, 336, and 537 AS events identified in root, stem, leaf, flower, and seed, respectively. Retained introns (RIs) were detected as the most abundant AS event in all five organs, followed by alternative 3′ splice sites (A3) and alternative 5′ splice sites (A5). Mutually exclusive exons (MX) were the least frequent event (Fig. S8B).Gene expression analysisThe number of unigenes in different expression level intervals was similar across the five organs (Fig. 2A). Using FPKM  > 0.3 as the threshold for unigene expression, the total number of unigenes expressed in the five organs was 102,464 (Fig. 2B). Among them, 39,227 unigenes were co-expressed in all five organs. The information of differentially expressed genes (DEGs) identified in pairwise comparisons among the five organs is listed in Table S7. In total, 21,161 DEGs were identified among the five organs (Fig. S9). The number of DEGs between the five organs varied from 3469 (root vs stem) to 10,716 (leaf vs seed) (Fig. 2C). Notably, 933, 428, 1410, 1018, and 1292 DEGs showed significant higher expression in root, stem, leaf, flower, and seed, respectively (Figs. S10 and S11).Figure 2Gene expression patterns in five M. micrantha organs. (A) The FPKM interval distribution in the five organs. (B) Venn diagram of the number of unigenes expressed in five organs. (C) Number of differentially expressed genes in each pairwise comparison of five organs.Full size imageKEGG enrichment of unigenes with higher expression in each organAccording to the KEGG enrichment analysis results, there were obvious differences in enriched pathways in the five organs (Table S8; Fig. 3). The unigenes with higher expression in root were mainly enriched to defense response and protein processing pathways, such as “plant-pathogen interaction” and “protein processing in endoplasmic reticulum”. In stem, unigenes with higher expression were predominantly enriched to pathways related to the secondary metabolite, sugar, and terpenoid biosynthesis, such as “phenylpropanoid biosynthesis”, “starch and sucrose metabolism”, and “diterpenoid biosynthesis”. In flower, unigenes with higher expression were mainly related to “starch and sucrose metabolism”, “phenylpropanoid biosynthesis”, and “cutin, suberine, and wax biosynthesis”. The unigenes with higher expression in seed were mainly enriched in three fatty acid and sugar metabolism pathways, namely “biosynthesis of unsaturated fatty acids”, “galactose metabolism”, and “amino sugar and nucleotide sugar metabolism”. The unigenes with higher expression in leaf were significantly enriched in photosynthesis pathways, including “photosynthesis-antenna proteins”, “photosynthesis”, “porphyrin and chlorophyll metabolism”, and “carbon fixation in photosynthetic organisms”, which are important for the photosynthesis of M. micrantha.Figure 3The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of unigenes with higher expression in each organ. The significantly enriched pathways with corrected p-value (q value)  More

  • in

    Life and death in the soil microbiome: how ecological processes influence biogeochemistry

    Guerra, C. A. et al. Tracking, targeting, and conserving soil biodiversity. Science 371, 239–241 (2021).CAS 
    PubMed 

    Google Scholar 
    Orgiazzi, A. et al. Global Soil Biodiversity Atlas (European Commission, Publications Office of the European Union, 2016).Tecon, R. & Or, D. Biophysical processes supporting the diversity of microbial life in soil. FEMS Microbiol. Rev. 41, 599–623 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Williamson, K. E., Fuhrmann, J. J., Wommack, K. E. & Radosevich, M. Viruses in soil ecosystems: an unknown quantity within an unexplored territory. Annu. Rev. Virol. 4, 201–219 (2017). This Review provides a comprehensive overview of methods and technologies used to study soil viruses alongside a guide of metrics describing soil viruses across diverse soil ecosystems.CAS 
    PubMed 

    Google Scholar 
    Stefan, G., Cornelia, B., Jörg, R. & Michael, B. Soil water availability strongly alters the community composition of soil protists. Pedobiologia 57, 205–213 (2014).
    Google Scholar 
    Leake, J. et al. Networks of power and influence: the role of mycorrhizal mycelium in controlling plant communities and agroecosystem functioning. Can. J. Bot. 82, 1016–1045 (2004).
    Google Scholar 
    Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018). This study compiled metagenomic and metabarcoding data from 189 sites to demonstrate global patterns in the structure and function of soil microbial communities as well as the widespread prevalence of bacterial–fungal antagonism as an important structuring force of microbial communities.CAS 
    PubMed 

    Google Scholar 
    He, L. et al. Global biogeography of fungal and bacterial biomass carbon in topsoil. Soil Biol. Biochem. 151, 108024 (2020).CAS 

    Google Scholar 
    Bach, E. M., Williams, R. J., Hargreaves, S. K., Yang, F. & Hofmockel, K. S. Greatest soil microbial diversity found in micro-habitats. Soil Biol. Biochem. 118, 217–226 (2018).CAS 

    Google Scholar 
    Bardgett, R. D. & van der Putten, W. H. Belowground biodiversity and ecosystem functioning. Nature 515, 505–511 (2014).CAS 
    PubMed 

    Google Scholar 
    Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).CAS 
    PubMed 

    Google Scholar 
    Delgado-Baquerizo, M. et al. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nat. Ecol. Evol. 4, 210–220 (2020).PubMed 

    Google Scholar 
    Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).CAS 
    PubMed 

    Google Scholar 
    Liang, C., Amelung, W., Lehmann, J. & Kästner, M. Quantitative assessment of microbial necromass contribution to soil organic matter. Glob. Change Biol. 25, 3578–3590 (2019). This article estimates that more than 50% of SOM may be derived from microbial necromass in grassland and agricultural ecosystems based on extrapolations from amino sugar biomarker data.
    Google Scholar 
    Angst, G., Mueller, K. E., Nierop, K. G. J. & Simpson, M. J. Plant- or microbial-derived? A review on the molecular composition of stabilized soil organic matter. Soil Biol. Biochem. 156, 108189 (2021).CAS 

    Google Scholar 
    Ludwig, M. et al. Microbial contribution to SOM quantity and quality in density fractions of temperate arable soils. Soil Biol. Biochem. 81, 311–322 (2015). This study uses lipid biomarkers to estimate that at least 50% of SOM may be derived from microbial necromass.CAS 

    Google Scholar 
    Simpson, A. J., Simpson, M. J., Smith, E. & Kelleher, B. P. Microbially derived inputs to soil organic matter: are current estimates too low? Environ. Sci. Technol. 41, 8070–8076 (2007).CAS 
    PubMed 

    Google Scholar 
    Blazewicz, S. J. et al. Taxon-specific microbial growth and mortality patterns reveal distinct temporal population responses to rewetting in a California grassland soil. ISME J. 14, 1520–1532 (2020). This study used quantitative stable isotope probing to calculate growth and mortality rates of bacteria following the rewetting of a dry Mediterranean soil, and demonstrated that bacterial growth was density independent whereas bacterial mortality was density dependent.PubMed 
    PubMed Central 

    Google Scholar 
    Vieira, S. et al. Drivers of the composition of active rhizosphere bacterial communities in temperate grasslands. ISME J. 14, 463–475 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nuccio, E. E. et al. Niche differentiation is spatially and temporally regulated in the rhizosphere. ISME J. 14, 999–1014 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, S. et al. Successional trajectories of rhizosphere bacterial communities over consecutive seasons. mBio 6, e00746 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Bastian, F., Bouziri, L., Nicolardot, B. & Ranjard, L. Impact of wheat straw decomposition on successional patterns of soil microbial community structure. Soil Biol. Biochem. 41, 262–275 (2009).CAS 

    Google Scholar 
    Whitman, T. et al. Microbial community assembly differs across minerals in a rhizosphere microcosm. Environ. Microbiol. 20, 4444–4460 (2018).CAS 
    PubMed 

    Google Scholar 
    Maynard, D. S., Crowther, T. W. & Bradford, M. A. Fungal interactions reduce carbon use efficiency. Ecol. Lett. 20, 1034–1042 (2017). This study demonstrated that antagonistic interactions between wood-decay fungi can reduce CUE of the fungal community.PubMed 

    Google Scholar 
    Crowther, T. W. et al. Environmental stress response limits microbial necromass contributions to soil organic carbon. Soil Biol. Biochem. 85, 153–161 (2015).CAS 

    Google Scholar 
    Hu, Y., Zheng, Q., Noll, L., Zhang, S. & Wanek, W. Direct measurement of the in situ decomposition of microbial-derived soil organic matter. Soil Biol. Biochem. 141, 107660 (2020).CAS 

    Google Scholar 
    Fernandez, C. W., Langley, J. A., Chapman, S., McCormack, M. L. & Koide, R. T. The decomposition of ectomycorrhizal fungal necromass. Soil Biol. Biochem. 93, 38–49 (2016). This review article summarizes how the stoichiometry, morphology and chemistry of microbial necromass affects its decomposition rate in soil.CAS 

    Google Scholar 
    Buckeridge, K. M. et al. Sticky dead microbes: rapid abiotic retention of microbial necromass in soil. Soil Biol. Biochem. 149, 107929 (2020).CAS 

    Google Scholar 
    Creamer, C. A. et al. Mineralogy dictates the initial mechanism of microbial necromass association. Geochim. Cosmochim. Acta 260, 161–176 (2019). This study used Raman microspectroscopy and 13C-labelled necromass to demonstrate that different mineral types retained microbial necromass through different mechanisms and with different strengths.CAS 

    Google Scholar 
    Schurig, C. et al. Microbial cell-envelope fragments and the formation of soil organic matter: a case study from a glacier forefield. Biogeochemistry 113, 595–612 (2013).CAS 

    Google Scholar 
    Kopittke, P. M. et al. Nitrogen-rich microbial products provide new organo-mineral associations for the stabilization of soil organic matter. Glob. Change Biol. 24, 1762–1770 (2018).
    Google Scholar 
    Miltner, A., Bombach, P., Schmidt-Brücken, B. & Kästner, M. SOM genesis: microbial biomass as a significant source. Biogeochemistry 111, 41–55 (2012).CAS 

    Google Scholar 
    Kleber, M. et al. Dynamic interactions at the mineral–organic matter interface. Nat. Rev. Earth Environ. 2, 402–421 (2021).
    Google Scholar 
    Blagodatskaya, E. & Kuzyakov, Y. Active microorganisms in soil: critical review of estimation criteria and approaches. Soil Biol. Biochem. 67, 192–211 (2013).CAS 

    Google Scholar 
    Or, D., Smets, B. F., Wraith, J. M., Dechesne, A. & Friedman, S. P. Physical constraints affecting bacterial habitats and activity in unsaturated porous media–a review. Adv. Water Resour. 30, 1505–1527 (2007).
    Google Scholar 
    Kuzyakov, Y. & Blagodatskaya, E. Microbial hotspots and hot moments in soil: concept & review. Soil Biol. Biochem. 83, 184–199 (2015).CAS 

    Google Scholar 
    Finzi, A. C. et al. Rhizosphere processes are quantitatively important components of terrestrial carbon and nutrient cycles. Glob. Change Biol. 21, 2082–2094 (2015).
    Google Scholar 
    Yuan, M. M. et al. Fungal-bacterial cooccurrence patterns differ between arbuscular mycorrhizal fungi and nonmycorrhizal fungi across soil niches. mBio 12, e03509-20 (2015).
    Google Scholar 
    Zhang, L. & Lueders, T. Micropredator niche differentiation between bulk soil and rhizosphere of an agricultural soil depends on bacterial prey. FEMS Microbiol. Ecol. 93, fix103 (2017).
    Google Scholar 
    Sokol, N. W. & Bradford, M. A. Microbial formation of stable soil carbon is more efficient from belowground than aboveground input. Nat. Geosci. 12, 46–53 (2019).CAS 

    Google Scholar 
    Kallenbach, C. M., Frey, S. D. & Grandy, A. S. Direct evidence for microbial-derived soil organic matter formation and its ecophysiological controls. Nat. Commun. 7, 13630 (2016). This study used artificial soils to provide empirical evidence that SOM can be entirely microbially derived, and also demonstrated a positive relationship between CUE and SOM formation.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wood, J. L., Tang, C. & Franks, A. E. Competitive traits are more important than stress-tolerance traits in a cadmium-contaminated rhizosphere: a role for trait theory in microbial ecology. Front. Microbiol. 9, 121 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Violle, C. et al. Let the concept of trait be functional! Oikos 116, 882–892 (2007).
    Google Scholar 
    Madin, J. S. et al. A synthesis of bacterial and archaeal phenotypic trait data. Sci. Data 7, 170 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res. 48, 8883–8900 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brown, C. T., Olm, M. R., Thomas, B. C. & Banfield, J. F. Measurement of bacterial replication rates in microbial communities. Nat. Biotechnol. 34, 1256–1263 (2016). This study developed an algorithm, iRep, that uses draft-quality genome sequences and single time-point metagenome sequencing to infer microbial population replication rates.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nayfach, S. & Pollard, K. S. Average genome size estimation improves comparative metagenomics and sheds light on the functional ecology of the human microbiome. Genome Biol. 16, 51 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Leff, J. W. et al. Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc. Natl Acad. Sci. USA 112, 10967–10972 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vieira-Silva, S. & Rocha, E. P. C. The systemic imprint of growth and its uses in ecological (meta)genomics. PLoS Genet. 6, e1000808 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Hasby, F. A., Barbi, F., Manzoni, S. & Lindahl, B. D. Transcriptomic markers of fungal growth, respiration and carbon-use efficiency. FEMS Microbiol. Lett. 368, fnab100 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Maillard, F., Schilling, J., Andrews, E., Schreiner, K. M. & Kennedy, P. Functional convergence in the decomposition of fungal necromass in soil and wood. FEMS Microbiol. Ecol. 96, fiz209 (2020).CAS 
    PubMed 

    Google Scholar 
    Clemmensen, K. E. et al. Carbon sequestration is related to mycorrhizal fungal community shifts during long-term succession in boreal forests. N. Phytol. 205, 1525–1536 (2015).CAS 

    Google Scholar 
    Olivelli, M. S. et al. Unraveling mechanisms behind biomass–clay interactions using comprehensive multiphase nuclear magnetic resonance (NMR) Spectroscopy. ACS Earth Space Chem. 4, 2061–2072 (2020).CAS 

    Google Scholar 
    Achtenhagen, J., Goebel, M.-O., Miltner, A., Woche, S. K. & Kästner, M. Bacterial impact on the wetting properties of soil minerals. Biogeochemistry 122, 269–280 (2015).CAS 

    Google Scholar 
    Lehmann, J. et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 13, 529–534 (2020).CAS 

    Google Scholar 
    Ahmed, E. & Holmström, S. J. M. Microbe–mineral interactions: The impact of surface attachment on mineral weathering and element selectivity by microorganisms. Chem. Geol. 403, 13–23 (2015).CAS 

    Google Scholar 
    Chenu, C. Clay- or sand-polysaccharide associations as models for the interface between micro-organisms and soil: water related properties and microstructure. Geoderma 56, 143–156 (1993).CAS 

    Google Scholar 
    Sher, Y. et al. Microbial extracellular polysaccharide production and aggregate stability controlled by switchgrass (Panicum virgatum) root biomass and soil water potential. Soil Biol. Biochem. 143, 107742 (2020).CAS 

    Google Scholar 
    Lybrand, R. A. et al. A coupled microscopy approach to assess the nano-landscape of weathering. Sci. Rep. 9, 5377 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Prommer, J. et al. Increased microbial growth, biomass, and turnover drive soil organic carbon accumulation at higher plant diversity. Glob. Change Biol. 26, 669–681 (2020).
    Google Scholar 
    Cotrufo, M. F., Wallenstein, M. D., Boot, C. M., Denef, K. & Paul, E. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter? Glob. Change Biol. 19, 988–995 (2013).
    Google Scholar 
    Liang, C., Schimel, J. P. & Jastrow, J. D. The importance of anabolism in microbial control over soil carbon storage. Nat. Microbiol. 2, 17105 (2017).CAS 
    PubMed 

    Google Scholar 
    Geyer, K. M., Kyker-Snowman, E., Grandy, A. S. & Frey, S. D. Microbial carbon use efficiency: accounting for population, community, and ecosystem-scale controls over the fate of metabolized organic matter. Biogeochemistry 127, 173–188 (2016).CAS 

    Google Scholar 
    Kallenbach, C. M., Grandy, A. S., Frey, S. D. & Diefendorf, A. F. Microbial physiology and necromass regulate agricultural soil carbon accumulation. Soil Biol. Biochem. 91, 279–290 (2015).CAS 

    Google Scholar 
    Buckeridge, K. M. et al. Environmental and microbial controls on microbial necromass recycling, an important precursor for soil carbon stabilization. Commun. Earth Env. 1, 36 (2020).
    Google Scholar 
    Saifuddin, M., Bhatnagar, J. M., Segrè, D. & Finzi, A. C. Microbial carbon use efficiency predicted from genome-scale metabolic models. Nat. Commun. 10, 3568 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Schimel, J., Balser, T. C. & Wallenstein, M. Microbial stress-response physiology and its implications for ecosystem function. Ecology 88, 1386–1394 (2007).PubMed 

    Google Scholar 
    Mason‐Jones, K., Banfield, C. C. & Dippold, M. A. Compound-specific 13C stable isotope probing confirms synthesis of polyhydroxybutyrate by soil bacteria. Rapid Commun. Mass. Spectrom. 33, 795–802 (2019).PubMed 

    Google Scholar 
    Bååth, E. The use of neutral lipid fatty acids to indicate the physiological conditions of soil fungi. Microb. Ecol. 45, 373–383 (2003).PubMed 

    Google Scholar 
    Slessarev, E. W. et al. Cellular and extracellular C contributions to respiration after wetting dry soil. Biogeochemistry 147, 307–324 (2020).CAS 

    Google Scholar 
    Slessarev, E. W. & Schimel, J. P. Partitioning sources of CO2 emission after soil wetting using high-resolution observations and minimal models. Soil Biol. Biochem. 143, 107753 (2020).CAS 

    Google Scholar 
    Lennon, J. T. & Jones, S. E. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol. 9, 119–130 (2011).CAS 
    PubMed 

    Google Scholar 
    Brangarí, A. C., Manzoni, S. & Rousk, J. A soil microbial model to analyze decoupled microbial growth and respiration during soil drying and rewetting. Soil Biol. Biochem. 148, 107871 (2020).
    Google Scholar 
    Zha, J. & Zhuang, Q. Microbial dormancy and its impacts on northern temperate and boreal terrestrial ecosystem carbon budget. Biogeosciences 17, 4591–4610 (2020).CAS 

    Google Scholar 
    Anderson, T.-H. Microbial eco-physiological indicators to asses soil quality. Agric. Ecosyst. Environ. 98, 285–293 (2003).
    Google Scholar 
    Geyer, K., Schnecker, J., Grandy, A. S., Richter, A. & Frey, S. Assessing microbial residues in soil as a potential carbon sink and moderator of carbon use efficiency. Biogeochemistry 151, 237–249 (2020).CAS 

    Google Scholar 
    Sepehrnia, N. et al. Transport, retention, and release of Escherichia coli and Rhodococcus erythropolis through dry natural soils as affected by water repellency. Sci. Total Environ. 694, 133666 (2019).CAS 
    PubMed 

    Google Scholar 
    Boeddinghaus, R. S. et al. The mineralosphere — interactive zone of microbial colonization and carbon use in grassland soils. Biol. Fertil. Soils 57, 587–601 (2021).CAS 

    Google Scholar 
    Vieira, S. et al. Bacterial colonization of minerals in grassland soils is selective and highly dynamic. Environ. Microbiol. 22, 917–933 (2020).CAS 
    PubMed 

    Google Scholar 
    Ma, T. et al. Divergent accumulation of microbial necromass and plant lignin components in grassland soils. Nat. Commun. 9, 3480 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Blazewicz, S. J., Schwartz, E. & Firestone, M. K. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology 95, 1162–1172 (2014).PubMed 

    Google Scholar 
    Ceja-Navarro, J. A. et al. Protist diversity and community complexity in the rhizosphere of switchgrass are dynamic as plants develop. Microbiome 9, 96 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Starr, E. P., Nuccio, E. E., Pett-Ridge, J., Banfield, J. F. & Firestone, M. K. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc. Natl Acad. Sci. USA 116, 25900–25908 (2019). This comprehensive study of RNA viruses detectable in a grassland soil showed how these viruses are shaped by the presence of plant roots and litter.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, S. et al. The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).PubMed 

    Google Scholar 
    Yan, Y., Kuramae, E. E., de Hollander, M., Klinkhamer, P. G. L. & van Veen, J. A. Functional traits dominate the diversity-related selection of bacterial communities in the rhizosphere. ISME J. 11, 56–66 (2017).PubMed 

    Google Scholar 
    Zhalnina, K. et al. Dynamic root exudate chemistry and microbial substrate preferences drive patterns in rhizosphere microbial community assembly. Nat. Microbiol. 3, 470 (2018).CAS 
    PubMed 

    Google Scholar 
    Pett-Ridge, J. et al. in Rhizosphere Biology: Interactions Between Microbes and Plants (eds Gupta, V. V. S. R. & Sharma, A. K.) 51–73 (Springer, 2021).Poll, C., Marhan, S., Ingwersen, J. & Kandeler, E. Dynamics of litter carbon turnover and microbial abundance in a rye detritusphere. Soil Biol. Biochem. 40, 1306–1321 (2008).CAS 

    Google Scholar 
    Buchkowski, R. W., Bradford, M. A., Grandy, A. S., Schmitz, O. J. & Wieder, W. R. Applying population and community ecology theory to advance understanding of belowground biogeochemistry. Ecol. Lett. 20, 231–245 (2017).PubMed 

    Google Scholar 
    Erktan, A., Or, D. & Scheu, S. The physical structure of soil: determinant and consequence of trophic interactions. Soil Biol. Biochem. 148, 107876 (2020).CAS 

    Google Scholar 
    Roesch, L. F. W. et al. Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1, 283–290 (2007).CAS 
    PubMed 

    Google Scholar 
    Carson, J. K. et al. Low pore connectivity increases bacterial diversity in soil. Appl. Environ. Microbiol. 76, 3936–3942 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Raynaud, X. & Nunan, N. Spatial ecology of bacteria at the microscale in soil. PLoS ONE 9, e87217 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Ekelund, F., Rønn, R. & Christensen, S. Distribution with depth of protozoa, bacteria and fungi in soil profiles from three Danish forest sites. Soil Biol. Biochem. 33, 475–481 (2001).CAS 

    Google Scholar 
    Sharrar, A. M. et al. Bacterial secondary metabolite biosynthetic potential in soil varies with phylum, depth, and vegetation type. mBio 11, e00416-20 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Georgiou, K., Abramoff, R. Z., Harte, J., Riley, W. J. & Torn, M. S. Microbial community-level regulation explains soil carbon responses to long-term litter manipulations. Nat. Commun. 8, 1223 (2017). This modelling study demonstrated that including a density-dependent microbial mortality term can reduce the oscillatory behaviour of soil carbon models.PubMed 
    PubMed Central 

    Google Scholar 
    Thakur, M. P. & Geisen, S. Trophic regulations of the soil microbiome. Trends Microbiol. 27, 771–780 (2019).CAS 
    PubMed 

    Google Scholar 
    Fanin, N. et al. The ratio of Gram-positive to Gram-negative bacterial PLFA markers as an indicator of carbon availability in organic soils. Soil Biol. Biochem. 128, 111–114 (2019).CAS 

    Google Scholar 
    Wang, W. et al. Predatory Myxococcales are widely distributed in and closely correlated with the bacterial community structure of agricultural land. Appl. Soil Ecol. 146, 103365 (2020).
    Google Scholar 
    Hungate, B. A. et al. The functional significance of bacterial predators. mBio 12, e00466-21 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Jover, L. F., Effler, T. C., Buchan, A., Wilhelm, S. W. & Weitz, J. S. The elemental composition of virus particles: implications for marine biogeochemical cycles. Nat. Rev. Microbiol. 12, 519–528 (2014).CAS 
    PubMed 

    Google Scholar 
    Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018). This study identified novel viral genomes from metagenomes and linked many of these viruses in silico to bacterial hosts and carbon metabolisms across the spatial gradient of permafrost thaw.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ren, D., Madsen, J. S., Sørensen, S. J. & Burmølle, M. High prevalence of biofilm synergy among bacterial soil isolates in cocultures indicates bacterial interspecific cooperation. ISME J. 9, 81–89 (2015).CAS 
    PubMed 

    Google Scholar 
    Lee, K. W. K. et al. Biofilm development and enhanced stress resistance of a model, mixed-species community biofilm. ISME J. 8, 894–907 (2014).CAS 
    PubMed 

    Google Scholar 
    Witzgall, K. et al. Particulate organic matter as a functional soil component for persistent soil organic carbon. Nat. Commun. 12, 4115 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Frey, S. D. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 50, 237–259 (2019).
    Google Scholar 
    Drigo, B. et al. Shifting carbon flow from roots into associated microbial communities in response to elevated atmospheric CO2. Proc. Natl Acad. Sci. USA 107, 10938–10942 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kaiser, C. et al. Exploring the transfer of recent plant photosynthates to soil microbes: mycorrhizal pathway vs direct root exudation. N. Phytol. 205, 1537–1551 (2015).CAS 

    Google Scholar 
    Shah, F. et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. N. Phytol. 209, 1705–1719 (2016).CAS 

    Google Scholar 
    Tisserant, E. et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc. Natl Acad. Sci. USA 110, 20117–20122 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hestrin, R., Hammer, E. C., Mueller, C. W. & Lehmann, J. Synergies between mycorrhizal fungi and soil microbial communities increase plant nitrogen acquisition. Commun. Biol. 2, 233 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).CAS 
    PubMed 

    Google Scholar 
    Averill, C. & Hawkes, C. V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19, 937–947 (2016).PubMed 

    Google Scholar 
    Craig, M. E. et al. Tree mycorrhizal type predicts within-site variability in the storage and distribution of soil organic matter. Glob. Change Biol. 24, 3317–3330 (2018).
    Google Scholar 
    See, C. R. et al. Hyphae move matter and microbes to mineral microsites: Integrating the hyphosphere into conceptual models of soil organic matter stabilization. Glob. Change Biol. https://doi.org/10.1111/gcb.16073 (2022).Article 

    Google Scholar 
    Adamczyk, B., Sietiö, O.-M., Biasi, C. & Heinonsalo, J. Interaction between tannins and fungal necromass stabilizes fungal residues in boreal forest soils. N. Phytol. 223, 16–21 (2019).
    Google Scholar 
    Vidal, A. et al. Visualizing the transfer of organic matter from decaying plant residues to soil mineral surfaces controlled by microorganisms. Soil Biol. Biochem. 160, 108347 (2021).CAS 

    Google Scholar 
    Kallenbach, C. M., Wallenstein, M. D., Schipanksi, M. E. & Grandy, A. S. Managing agroecosystems for soil microbial carbon use efficiency: ecological unknowns, potential outcomes, and a path forward. Front. Microbiol. 10, 1146 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Blagodatskaya, E., Blagodatsky, S., Anderson, T.-H. & Kuzyakov, Y. microbial growth and carbon use efficiency in the rhizosphere and root-free soil. PLoS ONE 9, e93282 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Domeignoz-Horta, L. A. et al. Microbial diversity drives carbon use efficiency in a model soil. Nat. Commun. 11, 3684 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fernandez, C. W. & Kennedy, P. G. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? N. Phytol. 209, 1382–1394 (2016).CAS 

    Google Scholar 
    Nicolas, A. M. et al. Soil candidate phyla radiation bacteria encode components of aerobic metabolism and co-occur with nanoarchaea in the rare biosphere of rhizosphere grassland communities. mSystems 6, e0120520 (2021).PubMed 

    Google Scholar 
    Starr, E. P. et al. Stable isotope informed genome-resolved metagenomics reveals that Saccharibacteria utilize microbially-processed plant-derived carbon. Microbiome 6, 122 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Pace, M. L. Bacterial mortality and the fate of bacterial production. Hydrobiologia 159, 41–49 (1988).
    Google Scholar 
    Cram, J. A., Parada, A. E. & Fuhrman, J. A. Dilution reveals how viral lysis and grazing shape microbial communities. Limnol. Oceanogr. 61, 889–905 (2016).
    Google Scholar 
    Ankrah, N. Y. D. et al. Phage infection of an environmentally relevant marine bacterium alters host metabolism and lysate composition. ISME J. 8, 1089–1100 (2014). This study demonstrated that in a marine environment, the mechanism of death (that is, phage infection) altered the biochemistry of microbial necromass relative to uninfected cells.CAS 
    PubMed 

    Google Scholar 
    Lindeman, R. L. The trophic-dynamic aspect of ecology. Ecology 23, 399–417 (1942).
    Google Scholar 
    Clarholm, M. Interactions of bacteria, protozoa and plants leading to mineralization of soil nitrogen. Soil Biol. Biochem. 17, 181–187 (1985).CAS 

    Google Scholar 
    Pasternak, Z. et al. In and out: an analysis of epibiotic vs periplasmic bacterial predators. ISME J. 8, 625–635 (2014).CAS 
    PubMed 

    Google Scholar 
    Lee, X., Wu, H.-J., Sigler, J., Oishi, C. & Siccama, T. Rapid and transient response of soil respiration to rain. Glob. Change Biol. 10, 1017–1026 (2004).
    Google Scholar 
    Schimel, J. P. Life in dry soils: effects of drought on soil microbial communities and processes. Annu. Rev. Ecol. Evol. Syst. 49, 409–432 (2018).
    Google Scholar 
    Granato, E. T., Meiller-Legrand, T. A. & Foster, K. R. The evolution and ecology of bacterial warfare. Curr. Biol. 29, R521–R537 (2019).CAS 
    PubMed 

    Google Scholar 
    Bradford, M. A. et al. Managing uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change 6, 751–758 (2016).
    Google Scholar 
    Sierra, C. A. & Müller, M. A general mathematical framework for representing soil organic matter dynamics. Ecol. Monogr. 85, 505–524 (2015).
    Google Scholar 
    Wang, G. et al. Microbial dormancy improves development and experimental validation of ecosystem model. ISME J. 9, 226–237 (2015).CAS 
    PubMed 

    Google Scholar 
    Wieder, W., Grandy, S., Kallenbach, M. & Bonan, B. Integrating microbial physiology and physio-chemical principles in soils with the MIcrobial-MIneral Carbon Stabilization (MIMICS) model. Biogeosciences 11, 3899–3917 (2014).
    Google Scholar 
    Allison, S. D. A trait-based approach for modelling microbial litter decomposition. Ecol. Lett. 15, 1058–1070 (2012). This paper described one of the first trait-based modelling approaches to link microbial community composition with physiological and enzymatic traits to predict litter decomposition in soil.CAS 
    PubMed 

    Google Scholar 
    Kaiser, C., Franklin, O., Dieckmann, U. & Richter, A. Microbial community dynamics alleviate stoichiometric constraints during litter decay. Ecol. Lett. 17, 680–690 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Ebrahimi, A. & Or, D. Microbial community dynamics in soil aggregates shape biogeochemical gas fluxes from soil profiles – upscaling an aggregate biophysical model. Glob. Change Biol. 22, 3141–3156 (2016). This paper presented a demonstration of how to upscale results from a mechanistic model of microbial activity in soil aggregates to scales of practical interest for hydrological and climate models.
    Google Scholar 
    Lajoie, G. & Kembel, S. W. Making the most of trait-based approaches for microbial ecology. Trends Microbiol. 27, 814–823 (2019). This opinion article discussed trait-based approaches in microbial ecology with a focus on utilization of large-scale datasets for improved ecological understanding.CAS 
    PubMed 

    Google Scholar 
    Wang, G., Post, W. M. & Mayes, M. A. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecol. Appl. 23, 255–272 (2013).PubMed 

    Google Scholar 
    Moorhead, D. L. & Sinsabaugh, R. L. A theoretical model of litter decay and microbial interaction. Ecol. Monogr. 76, 151–174 (2006).
    Google Scholar 
    Kooijman, S. A. L. M., Muller, E. B. & Stouthamer, A. H. Microbial growth dynamics on the basis of individual budgets. Antonie Van Leeuwenhoek 60, 159–174 (1991).CAS 
    PubMed 

    Google Scholar 
    Evans, S., Dieckmann, U., Franklin, O. & Kaiser, C. Synergistic effects of diffusion and microbial physiology reproduce the Birch effect in a micro-scale model. Soil Biol. Biochem. 93, 28–37 (2016).CAS 

    Google Scholar 
    Allison, S. D. Modeling adaptation of carbon use efficiency in microbial communities. Front. Microbiol. 5, 571 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Hawkes, C. V. & Keitt, T. H. Resilience vs. historical contingency in microbial responses to environmental change. Ecol. Lett. 18, 612–625 (2015).PubMed 

    Google Scholar 
    Tang, J. & Riley, W. J. Weaker soil carbon–climate feedbacks resulting from microbial and abiotic interactions. Nat. Clim. Change 5, 56–60 (2015).CAS 

    Google Scholar 
    Zhang, Y. et al. Simulating measurable ecosystem carbon and nitrogen dynamics with the mechanistically-defined MEMS 2.0 model. Biogeosciences 18, 3147–3171 (2021).CAS 

    Google Scholar 
    Blankinship, J. C. et al. Improving understanding of soil organic matter dynamics by triangulating theories, measurements, and models. Biogeochemistry 140, 1–13 (2018).CAS 

    Google Scholar 
    Ebrahimi, A. N. & Or, D. Microbial dispersal in unsaturated porous media: Characteristics of motile bacterial cell motions in unsaturated angular pore networks. Water Resour. Res. 50, 7406–7429 (2014).
    Google Scholar 
    Tang, J. & Riley, W. J. A theory of effective microbial substrate affinity parameters in variably saturated soils and an example application to aerobic soil heterotrophic respiration. J. Geophys. Res. Biogeosci. 124, 918–940 (2019).
    Google Scholar 
    Manzoni, S., Schaeffer, S. M., Katul, G., Porporato, A. & Schimel, J. P. A theoretical analysis of microbial eco-physiological and diffusion limitations to carbon cycling in drying soils. Soil Biol. Biochem. 73, 69–83 (2014).CAS 

    Google Scholar 
    Brangarí, A. C., Fernàndez-Garcia, D., Sanchez-Vila, X. & Manzoni, S. Ecological and soil hydraulic implications of microbial responses to stress – a modeling analysis. Adv. Water Resour. 116, 178–194 (2018).
    Google Scholar 
    Alster, C. J., Weller, Z. D. & von Fischer, J. C. A meta-analysis of temperature sensitivity as a microbial trait. Glob. Change Biol. 24, 4211–4224 (2018).
    Google Scholar 
    Wang, G., Li, W., Wang, K. & Huang, W. Uncertainty quantification of the soil moisture response functions for microbial dormancy and resuscitation. Soil Biol. Biochem. 160, 108337 (2021).CAS 

    Google Scholar 
    Sierra, C. A., Trumbore, S. E., Davidson, E. A., Vicca, S. & Janssens, I. Sensitivity of decomposition rates of soil organic matter with respect to simultaneous changes in temperature and moisture. J. Adv. Model. Earth Syst. 7, 335–356 (2015).
    Google Scholar 
    Nunan, N., Schmidt, H. & Raynaud, X. The ecology of heterogeneity: soil bacterial communities and C dynamics. Philos. Trans. R. Soc. B Biol. Sci. 375, 20190249 (2020).CAS 

    Google Scholar 
    Kaiser, C., Franklin, O., Richter, A. & Dieckmann, U. Social dynamics within decomposer communities lead to nitrogen retention and organic matter build-up in soils. Nat. Commun. 6, 8960 (2015).CAS 
    PubMed 

    Google Scholar 
    Craig, M. E., Mayes, M. A., Sulman, B. N. & Walker, A. P. Biological mechanisms may contribute to soil carbon saturation patterns. Glob. Change Biol. 27, 2633–2644 (2021).
    Google Scholar 
    Fan, X. et al. Improved model simulation of soil carbon cycling by representing the microbially derived organic carbon pool. ISME J. 15, 2248–2263 (2021).CAS 
    PubMed 

    Google Scholar 
    Sulman, B. N. et al. Multiple models and experiments underscore large uncertainty in soil carbon dynamics. Biogeochemistry 141, 109–123 (2018). This paper addressed key uncertainties in the representation of microbial degradation and mineral stabilization in five microbially explicit soil carbon models.CAS 

    Google Scholar 
    Marschmann, G. L., Pagel, H., Kügler, P. & Streck, T. Equifinality, sloppiness, and emergent structures of mechanistic soil biogeochemical models. Environ. Model. Softw. 122, 104518 (2019).
    Google Scholar 
    Martiny, J. B. H., Jones, S. E., Lennon, J. T. & Martiny, A. C. Microbiomes in light of traits: a phylogenetic perspective. Science 350, aac9323 (2015).PubMed 

    Google Scholar 
    Malik, A. A., Thomson, B. C., Whiteley, A. S., Bailey, M. & Griffiths, R. I. Bacterial physiological adaptations to contrasting edaphic conditions identified using landscape scale metagenomics. mBio 8, e00799-17 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Westoby, M. et al. Trait dimensions in bacteria and archaea compared to vascular plants. Ecol. Lett. 24, 1487–1504 (2021).PubMed 

    Google Scholar 
    Jung, M.-Y. et al. Ammonia-oxidizing archaea possess a wide range of cellular ammonia affinities. ISME J. 16, 272–283 (2022).CAS 
    PubMed 

    Google Scholar 
    Kempes, C. P., Wang, L., Amend, J. P., Doyle, J. & Hoehler, T. Evolutionary tradeoffs in cellular composition across diverse bacteria. ISME J. 10, 2145–2157 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dethlefsen, L. & Schmidt, T. M. Performance of the translational apparatus varies with the ecological strategies of bacteria. J. Bacteriol. 189, 3237–3245 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Andersen, K. H. et al. Characteristic sizes of life in the oceans, from bacteria to whales. Annu. Rev. Mar. Sci. 8, 217–241 (2016).CAS 

    Google Scholar 
    Malik, A. A. et al. Defining trait-based microbial strategies with consequences for soil carbon cycling under climate change. ISME J. 14, 1–9 (2020).CAS 
    PubMed 

    Google Scholar 
    Weissman, J. L., Hou, S. & Fuhrman, J. A. Estimating maximal microbial growth rates from cultures, metagenomes, and single cells via codon usage patterns. Proc. Natl Acad. Sci. USA 118, e2016810118 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, G., Rabe, K. S., Nielsen, J. & Engqvist, M. K. M. Machine learning applied to predicting microorganism growth temperatures and enzyme catalytic optima. ACS Synth. Biol. 8, 1411–1420 (2019).CAS 
    PubMed 

    Google Scholar 
    Hungate, B. A. et al. Quantitative microbial ecology through stable isotope probing. Appl. Environ. Microbiol. 81, 7570–7581 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Couradeau, E. et al. Probing the active fraction of soil microbiomes using BONCAT-FACS. Nat. Commun. 10, 2770 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Starr, E. P. et al. Stable-isotope-informed, genome-resolved metagenomics uncovers potential cross-kingdom interactions in rhizosphere soil. mSphere 6, e0008521 (2021).PubMed 

    Google Scholar 
    Rousk, J. & Bååth, E. Fungal and bacterial growth in soil with plant materials of different C/N ratios. FEMS Microbiol. Ecol. 62, 258–267 (2007).CAS 
    PubMed 

    Google Scholar 
    Koechli, C., Campbell, A. N., Pepe-Ranney, C. & Buckley, D. H. Assessing fungal contributions to cellulose degradation in soil by using high-throughput stable isotope probing. Soil Biol. Biochem. 130, 150–158 (2019).CAS 

    Google Scholar 
    Wilhelm, R. C., Singh, R., Eltis, L. D. & Mohn, W. W. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 13, 413–429 (2019).CAS 
    PubMed 

    Google Scholar 
    Neurath, R. A. et al. Root carbon interaction with soil minerals is dynamic, leaving a legacy of microbially derived residues. Environ. Sci. Technol. 55, 13345–13355 (2021).CAS 
    PubMed 

    Google Scholar 
    Luo, Y. et al. Rice rhizodeposition promotes the build-up of organic carbon in soil via fungal necromass. Soil Biol. Biochem. 160, 108345 (2021).CAS 

    Google Scholar 
    Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2016).PubMed 

    Google Scholar 
    Sharma, K., Palatinszky, M., Nikolov, G., Berry, D. & Shank, E. A. Transparent soil microcosms for live-cell imaging and non-destructive stable isotope probing of soil microorganisms. eLife 9, e56275 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Arellano-Caicedo, C., Ohlsson, P., Bengtsson, M., Beech, J. P. & Hammer, E. C. Habitat geometry in artificial microstructure affects bacterial and fungal growth, interactions, and substrate degradation. Commun. Biol. 4, 1226 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Jansson, J. K. & Hofmockel, K. S. Soil microbiomes and climate change. Nat. Rev. Microbiol. 18, 35–46 (2020).CAS 
    PubMed 

    Google Scholar 
    García-Palacios, P. et al. Evidence for large microbial-mediated losses of soil carbon under anthropogenic warming. Nat. Rev. Earth Env. 2, 507–517 (2021).
    Google Scholar 
    Schulz, F. et al. Hidden diversity of soil giant viruses. Nat. Commun. 9, 4881 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Trubl, G. et al. Towards optimized viral metagenomes for double-stranded and single-stranded DNA viruses from challenging soils. PeerJ 7, e7265 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Sommers, P., Chatterjee, A., Varsani, A. & Trubl, G. Integrating viral metagenomics into an ecological framework. Annu. Rev. Virol. 8, 133–158 (2021).PubMed 

    Google Scholar 
    Pratama, A. A. & van Elsas, J. D. The ‘neglected’ soil virome–potential role and impact. Trends Microbiol. 26, 649–662 (2018).CAS 
    PubMed 

    Google Scholar 
    Ghosh, D. et al. Prevalence of lysogeny among soil bacteria and presence of 16S rRNA and trzN genes in viral-community DNA. Appl. Environ. Microbiol. 74, 495–502 (2008).CAS 
    PubMed 

    Google Scholar 
    Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).CAS 
    PubMed 

    Google Scholar 
    Howard-Varona, C. et al. Phage-specific metabolic reprogramming of virocells. ISME J. 14, 881–895 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Howard-Varona, C. et al. Multiple mechanisms drive phage infection efficiency in nearly identical hosts. ISME J. 12, 1605–1618 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Van Goethem, M. Characteristics of wetting-induced bacteriophage blooms in biological soil crust. mBio 10, e02287-19 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Trubl, G. et al. Active virus-host interactions at sub-freezing temperatures in Arctic peat soil. Microbiome 9, 208 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee, S. et al. Methane-derived carbon flows into host–virus networks at different trophic levels in soil. Proc. Natl Acad. Sci. USA 118, e2105124118 (2021). This study used stable isotope probing metagenomics to connect, in situ, active virus–host infections with the biogeochemical process of methane oxidation in soil.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolduc, B., Youens-Clark, K., Roux, S., Hurwitz, B. L. & Sullivan, M. B. iVirus: facilitating new insights in viral ecology with software and community data sets imbedded in a cyberinfrastructure. ISME J. 11, 7–14 (2017).PubMed 

    Google Scholar  More

  • in

    Historical reconstruction of the population dynamics of southern right whales in the southwestern Atlantic Ocean

    Hutchinson, G. E. An Introduction to Population Ecology (Yale University, 1978).MATH 

    Google Scholar 
    Erb, J., Boyce, M. S. & Stenseth, N. C. Population dynamics of large and small mammals. Oikos 92, 3–12 (2001).
    Google Scholar 
    Gaillard, J. M., Festa-Bianchet, M. & Yoccoz, N. G. Population dynamics of large herbivores: Variable recruitment with constant adult survival. Trends Ecol. Evol. 13, 58–63 (1998).CAS 
    PubMed 

    Google Scholar 
    Dennis, B., Ponciano, J. M., Lele, S. R., Taper, M. L. & Staples, D. F. Estimating density dependence, process noise, and observation error. Ecol. Monogr. 76, 323–341 (2006).
    Google Scholar 
    Rockwood, L. L. Introduction to Population Ecology (Wiley, 2015).
    Google Scholar 
    Caughley, G. Directions in conservation biology. J. Anim. Ecol. 63, 215–244 (1994).
    Google Scholar 
    Hoffmann, M. et al. The impact of conservation on the status of the world’s vertebrates. Science 330, 1503–1509 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ripple, W. J. et al. Collapse of the world’s largest herbivores. Sci. Adv. 1, e1400103 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dickinson, A. B. A History of Sealing in the Falkland Island and Dependencies, 1764–1972. Doctoral dissertation, Scott Polar Research Institute, University of Cambridge. (1987).Clapham, P. J. & Baker, C. S. Whaling, modern. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 1070–1074 (Academic Press, 2018).
    Google Scholar 
    Reeves, R. R. The origins and character of ‘aboriginal subsistence’ whaling: a global review. Mamm. Rev. 32, 71–106 (2002).
    Google Scholar 
    Reeves, R. R. Hunting of marine mammals. In Encyclopedia of Marine Mammals (eds Perrin, W. F. et al.) 585–588 (Academic Press, 2009).
    Google Scholar 
    Magera, A. M., Flemming, J. E. M., Kaschner, K., Christensen, L. B. & Lotze, H. K. Recovery trends in marine mammal populations. PLoS One 8, e77908 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tulloch, V. J., Plagányi, É. E., Matear, R., Brown, C. J. & Richardson, A. J. Ecosystem modelling to quantify the impact of historical whaling on Southern Hemisphere baleen whales. Fish Fish. 19, 117–137 (2017).
    Google Scholar 
    Best, P. B. Increase rates in severely depleted stocks of baleen whales. ICES J. Mar. Sci. 50, 169–186 (1993).
    Google Scholar 
    Townsend, C. H. The distribution of certain whales as shown by logbook records of American whaleships. Zool. Sci. Contr. New York Zool. Soc. 19, 1–50 (1935).MathSciNet 

    Google Scholar 
    Du Pasquier, J. T. Les baleiniers français au XIXe siècle, 1814–1868 (Terre et mer, 1982).Richards, R. Into the South Seas: The Southern Whale Fishery Comes of Age on the Brazil Banks 1765 to 1812 (The Paramatta Press, 1993).
    Google Scholar 
    International Whaling Commission. Report of the workshop on the comprehensive assessment of right whales: A worldwide comparison. J. Cetacean Res. Manag. (Special Issue) 2, 1–60 (2001).
    Google Scholar 
    Jackson, J., Patenaude, N., Carroll, E. & Baker, C. S. How few whales were there after whaling? Inference from contemporary mtDNA diversity. Mol. Ecol. 17, 236–251 (2008).CAS 
    PubMed 

    Google Scholar 
    Tormosov, D. D. et al. Soviet catches of southern right whales Eubalaena australis, 1951–1971. Biological data and conservation implications. Biol. Conserv. 86, 185–197 (1998).
    Google Scholar 
    International Whaling Commission. Report of the IWC workshop on the assessment of Southern Right whales. J. Cetacean Res. Manag. (Supp) 14, 439–462 (2013).
    Google Scholar 
    Carroll, E. L. et al. Accounting for female reproductive cycles in a superpopulation capture–recapture framework. Ecol. Appl. 23, 1677–1690 (2013).CAS 
    PubMed 

    Google Scholar 
    Brandão, A., Vermeulen, E., Ross-Gillespie, A., Findlay, K. & Butterworth, D. Updated application of a photo-identification based assessment model to southern right whales in South African waters, focussing on inferences to be drawn from a series of appreciably lower counts of calving females over 2015 to 2017. IWC SC/67b/SH/22 (2018).Bannister, J. L. Project A7- Monitoring Population Dynamics of ‘Western’ Right Whales off Southern Australia 2015–2018. Final report to National Environment Science Program, Australian Commonwealth Government. (2017).Stamation, K., Watson, M., Moloney, P., Charlton, C. & Bannister, J. L. Population estimate and rate of increase of Southern Right whales Eubalaena australis in Southeastern Australia. Endanger. Species Res. 41, 373–383 (2020).
    Google Scholar 
    Baker, C. S., Patenaude, N. J., Bannister, J. L., Robins, J. & Kato, H. Distribution and diversity of mtDNA lineages among southern right whales (Eubalaena australis) from Australia and New Zealand. Mar. Biol. 134, 1–7 (1999).CAS 

    Google Scholar 
    Patenaude, N. J. et al. Mitochondrial DNA diversity and population structure among southern right whales (Eubalaena australis). J. Hered. 98, 147–157 (2007).CAS 
    PubMed 

    Google Scholar 
    Carroll, E. L. et al. Population structure and individual movement of southern right whales around New Zealand and Australia. Mar. Ecol. Prog. Ser. 432, 257–268 (2011).ADS 
    CAS 

    Google Scholar 
    Cooke, J. G., Rowntree, V. J. & Payne, R. Estimates of demographic parameters for southern right whales (Eubalaena australis) observed off Península Valdés, Argentina. J. Cetacean Res. Manag. (Special Issue) 2, 125–132 (2001).
    Google Scholar 
    Cooke, J., Rowntree, V. & Sironi, M. Southwest Atlantic right whales: interim updated population assessment from photo-id collected at Península Valdéz, Argentina. IWC SC/66a/BRG/23 (2015).Crespo, E. A. et al. The southwestern Atlantic southern right whale, Eubalaena australis, population is growing but at a decelerated rate. Mar. Mamm. Sci. 35, 93–107 (2019).
    Google Scholar 
    Groch, K. R., Palazzo, J. T. Jr., Flores, P. A. C., Adler, F. R. & Fabian, M. E. Recent rapid increases in the right whale (Eubalaena australis) population off southern Brazil. LAJAM 4, 41–47 (2005).
    Google Scholar 
    Danilewicz, D., Moreno, I. B., Tavares, M. & Sucunza, F. Southern right whales (Eubalaena australis) off Torres, Brazil: group characteristics, movements, and insights into the role of the Brazilian-Uruguayan wintering ground. Mammalia 81, 225–234 (2017).
    Google Scholar 
    Costa, P., Praderi, R., Piedra, M. & Franco-Fraguas, P. Sightings of southern right whales, Eubalaena australis, off Uruguay. LAJAM 4, 157–161 (2005).
    Google Scholar 
    Lodi, L. & Tardelli, R. M. Southern right whale on the coast of Rio de Janeiro State, Brazil: Conflict between conservation and human activity. J. Mar. Biol. Ass. UK 87, 105–107 (2007).
    Google Scholar 
    Belgrano, J., Iñíguez, M., Gibbons, J., García, C. & Olavarría, C. South-west Atlantic right whales Eubalaena australis (Desmoulins, 1822) distribution nearby the Magellan Strait. Anales Instituto Patagonia (Chile) 36, 69–74 (2008).
    Google Scholar 
    Belgrano, J., Kröhling, F., Arcucci, D., Melcón, M. & Iñíguez, M. First Southern right whale aerial surveys in Golfo San Jorge, Santa Cruz, Argentina. IWC SC/63/BRG11 (2011).Arias, M. et al. Southern right whale Eubalaena australis in Golfo San Matías (Patagonia, Argentina): Evidence of recolonisation. PloS One 13(12), e0207524 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mandiola, M. A. et al. Half a century of sightings data of southern right whales in Mar del Plata (Buenos Aires, Argentina). J. Mar. Biol. Ass. UK 100, 165–171 (2020).
    Google Scholar 
    Weir, C. R. & Stanworth, A. The Falkland Islands (Malvinas) as sub-Antarctic foraging, migratory and wintering habitat for southern right whales. J. Mar. Biol. Ass. UK 100, 153–163 (2020).
    Google Scholar 
    Du Pasquier, T. Catch history of French right whaling mainly in the South Atlantic. Right whales: Past and present status. Rep. Int. Whaling Commission (Special Issue) 10, 269–274 (1986).
    Google Scholar 
    Best, P. B. Estimates of the landed catch of right (and other whalebone) whales in the American fishery, 1805–1909. Fish. Bull. 85, 403–418 (1987).
    Google Scholar 
    Rowntree, V., Groch, K. R., Vilches, F. & Sironi, M. Sighting Histories of 124 Southern Right Whales Recorded off Both Southern Brazil and Península Valdés, Argentina, between 1971 and 2017. IWC SC/68B/CMP/20 (2020).Zerbini, A. N., et al. Satellite tracking of Southern right whales (Eubalaena australis) from Golfo San Matias, Rio Negro Province, Argentina. IWC SC/67b/CMP/17 (2018).Rowntree, V. J., Valenzuela, L. O., Fraguas, P. F. & Seger, J. Foraging behaviour of Southern Right Whales (Eubalaena australis) inferred from variation of carbon stable isotope ratios in their baleen. IWC SC/60/BRG23 (2008).Vighi, M. A. et al. Stable isotopes indicate population structuring in the Southwest Atlantic population of right whales (Eubalaena australis). PLoS One 9, e90489 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Valenzuela, L. O., Rowntree, V. J., Sironi, M. & Seger, J. Stable isotopes (d15N, d13C, d34S) in skin reveal diverse food sources used by southern right whales Eubalaena australis. Mar. Ecol. Prog. Ser. 603, 243–255 (2018).ADS 
    CAS 

    Google Scholar 
    Ott, P. H., Flores, P. A. C., Freitas, T. R. O. & White, B. N. Genetic diversity and population structure of southern right whales, Eubalaena australis, from the Atlantic coast of South America. IWC SC/S11/RW25 (2011).Carroll, E. L. et al. Genetic diversity and connectivity of southern right whales (Eubalaena australis) found in the Brazil and Chile-Peru wintering grounds and the South Georgia (Islas Georgias del Sur) feeding ground. J. Hered. 111, 263–276 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, T. D., Reeves, R. R., Josephson, E. A. & Lund, J. N. Spatial and seasonal distribution of American whaling and whales in the age of sail. PLoS One 7, e34905 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    International Whaling Commission. Report of the Scientific Committee of the International Whaling Commission. J. Cetacean Res. Manage. 20 (Suppl.), 675 (2019).Peterson, B. W. South Atlantic whaling: 1603–1830. Ph.D. thesis, University of California. (1948).Palazzo, J. T. Jr., Groch, K. R. & Silveira, H. A. Projeto Baleia Franca: 25 anos de pesquisa e conservação, 1982–2007 (2007).Reeves, R. R. & Smith, T. D. A taxonomy of world whaling. In Whales, Whaling, and Ocean Ecosystems (eds Estes, J. A. et al.) 82–101 (University of California Press, 2006).
    Google Scholar 
    Richards, R. Past and present distributions of southern right whales (Eubalaena australis). N. Z. J. Zool. 36, 447–459 (2009).
    Google Scholar 
    Harcourt, R., Van Der Hoop, J., Kraus, S. & Carroll, E. L. Future directions in Eubalaena spp.: comparative research to inform conservation. Front. Mar. Sci. 5, 530 (2019).Cooke, J. G. & Zerbini, A. N. Eubalaena australis. IUCN Red List of Threatened Species 2018: e. T8153A50354147 (2018).Ellis, M. Aspectos da pesca da baleia no Brasil colonial. Rev. Hist. Sao Paulo 14, 1–126 (1958).
    Google Scholar 
    Ellis, M. A baleia no Brasil colonial (Melhoramentos, 1969).Palazzo, J. T., Jr. & Carter, L. A. A caça de baleias no Brasil (AGAPAN, 1983).Furniss, H. W. Whaling in Brazil. Bull. Int. Union Am. Republ. 2, 1048–1054 (1909).
    Google Scholar 
    Acosta y Lara, E. F. Un ballenero inglés en la Cisplatina. Hoy es Historia 24, 82–88 (1987).Moore, M. J. et al. Relative abundance of large whales around South Georgia (1979–1998). Mar. Mamm. Sci. 15, 1287–1302 (1999).
    Google Scholar 
    Comerlato, F. A baleia como recurso energético no Brasil. Simpósio Internacional de História Ambiental e Migrações 1119–1138 (2010).Comerlato, F. As armações baleeiras na configuração da costa catarinense em tempos coloniais. Tempos Históricos 15, 481–501 (2011).
    Google Scholar 
    de Morais, I. O. B. et al. From the southern right whale hunting decline to the humpback whaling expansion: A review of whale catch records in the tropical western South Atlantic Ocean. Mammal Rev. 47, 11–23 (2017).
    Google Scholar 
    American Whaling Logbook Data: A Database, by New Bedford Whaling Museum and Mystic Seaport Museum, Inc. Compilers Judith Lund and Tim Smith. Hosted at whalinghistory.org. (2020).BSWF Databases. 2020. Compilers–A. G. E. Jones; Dale Chatwin; Rhys Richards. Contributors–Jane Clayton; Mark Howard. Hosted at whalinghistory.orgFrench Offshore Whaling Voyages: A Database, https://whalinghistory.org/fv/, Mystic Seaport Museum, Inc. and New Bedford Whaling Museum.Allison, C. IWC summary catch database Version 6.1. (2016).Vighi, M. et al. The missing whales: relevance of “struck and lost” rates for the impact assessment of historical whaling in the southwestern Atlantic Ocean. ICES J. Mar. Sci. 78, 14–24 (2021).
    Google Scholar 
    McCullagh, P. & Nelder, J. Generalized Linear Models Monographs on Statistics and Applied Probability (Chapman and Hall, 1989).MATH 

    Google Scholar 
    Zuur, A. F., Ieno, E. N., Walker, N. J., Saveliev, A. A. & Smith, G. M. Mixed Effects Model and Extension in Ecology with R (Springer, 2009).MATH 

    Google Scholar 
    Ward, E., Zerbini, A., Kinas, P. G., Engel, M. H. & Adriolo, A. Estimates of growth rates of humpback whales (Megaptera novaeangliae) in the wintering grounds off the coast of Brazil (Breeding Stock A). J. Cetacean Res. Manag. (Special Issue) 3, 145–149 (2011).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (2019).Rowntree, V., Payne, R. & Schell, D. M. Changing patterns of habitat use by southern right whales (Eubalaena australis) on their nursery ground at Península Valdés, Argentina, and in their long-range movements. J. Cetacean Res. Manag. (Special Issue) 2, 133–143 (2001).
    Google Scholar 
    de Valpine, P. & Hastings, A. Fitting population models incorporating process noise and observation error. Ecol. Monogr. 72, 57–76 (2002).
    Google Scholar 
    Pella, J. J. & Tomlinson, P. K. A generalised stock production model. Int.-Am. Trop. Tuna Commun. Bull. 13, 421–496 (1969).
    Google Scholar 
    Zerbini, A. N. et al. Assessing the recovery of an Antarctic predator from historical exploitation. R. Soc. Open Sci. 6, 190368 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Halley, J. & Inchausti, P. Lognormality in ecological time series. Oikos 99, 518–530 (2002).
    Google Scholar 
    Best, J. K. & Punt, A. E. Parameterizations for Bayesian state-space surplus production models. Fish. Res. 222, 105411 (2020).
    Google Scholar 
    Walters, C. & Ludwig, D. Calculation of Bayes posterior probability distributions for key population parameters. Can. J. Fish. Aquat. Sci. 51, 713–722 (1994).
    Google Scholar 
    International Whaling Commission. Annex I: report of the sub-committee on stock definition. J. Cetacean Res. Manag. 13(Supp.), 233–241 (2012).Butterworth, D. S. & Punt, A. E. On the Bayesian approach suggested for the assessment of the Bering-Chukchi-Beaufort Seas stock of bowhead whales. Rep. Int. Whaling Commun. 45, 303–311 (1995).
    Google Scholar 
    McAllister, M. K., Pikitch, E. K., Punt, A. E. & Hilborn, R. Bayesian approach to stock assessment and harvest decisions using the sampling/importance resampling algorithm. Can. J. Fish. Aquat. Sci. 12, 2673–2687 (1999).
    Google Scholar 
    Best, P., Brandao, A. & Butterworth, D. Demographic parameters of southern right whales off South Africa. J. Cetacean Res. Manag. (Special Issue) 2, 161–169 (2001).
    Google Scholar 
    Punt, A. E. et al. Robustness of potential biological removal to monitoring, environmental, and management uncertainties. ICES J. Mar. Sci. 77, 2491–2507 (2020).
    Google Scholar 
    Pace, R. M., Corkeron, P. J. & Kraus, S. D. State-space mark-recapture estimates reveal a recent decline in abundance of North Atlantic right whales. Ecol. Evol. 7, 8730–8741 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Sueyro, N., Crespo, E. A., Arias, M. & Coscarella, M. A. Density-dependent changes in the distribution of Southern right whales (Eubalaena australis) in the breeding ground Peninsula Valdés. PeerJ 6, e5957 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wilberg, M. J., Thorson, J. T., Linton, B. C. & Berkson, J. Incorporating time-varying catchability into population dynamic stock assessment models. Rev. Fish. Sci. 18, 7–24 (2010).
    Google Scholar 
    Kass, R. E. & Raftery, A. E. Bayes factors. J. Am. Stat. Assoc. 90, 773–795 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Chang, Y. J. et al. Model selection and multi-model inference for Bayesian surplus production models: a case study for Pacific blue and striped marlin. Fish. Res. 166, 129–139 (2015).CAS 

    Google Scholar 
    Barker, D. & Sibly, R. M. The effects of environmental perturbation and measurement error on estimates of the shape parameter in the theta-logistic model of population regulation. Ecol. Model. 219, 170–177 (2008).
    Google Scholar 
    Dennis, B., Ponciano, J. M. & Taper, M. L. Replicated sampling increases efficiency in monitoring biological populations. Ecology 91, 610–620 (2010).PubMed 

    Google Scholar 
    Punt, A. E. Review of contemporary cetacean stock assessment models. J. Cetacean Res. Manag. 17, 35–56 (2017).
    Google Scholar 
    Punt, A. E., Butterworth, D. S., de Moor, C. L., De Oliveira, J. A. & Haddon, M. Management strategy evaluation: best practices. Fish Fish. 17, 303–334 (2016).
    Google Scholar 
    Baker, C. S. & Clapham, P. J. Modelling the past and future of whales and whaling. Trends Ecol. Evol. 19, 365–371 (2004).
    Google Scholar 
    Lotze, H. K. & Worm, B. Historical baselines for large marine animals. Trends Ecol. Evol. 24, 254–262 (2009).PubMed 

    Google Scholar 
    Foley, C. M. & Lynch, H. J. A method to estimate pre-exploitation population size. Conserv. Biol. 34, 256–265 (2020).PubMed 

    Google Scholar 
    Collins, A. C., Böhm, M. & Collen, B. Choice of baseline affects historical population trends in hunted mammals of North America. Biol. Conserv. 242, 108421 (2020).
    Google Scholar 
    Jackson, J. A. et al. An integrated approach to historical population assessment of the great whales: Case of the New Zealand southern right whale. R. Soc. Open Sci. 3, 150669 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Richards, R. & Du Pasquier, T. Bay whaling off southern Africa, c. 1785–1805. S. Afr. J. Mar. Sci. 8, 231–250 (1989).
    Google Scholar 
    Brandão, A., Best, P. B. & Butterworth, D. S. Estimates of demographic parameters for southern right whales off South Africa from survey data from 1979 to 2006. IWC SC/62/BRG30 (2010).Rowntree, V. J. et al. Unexplained recurring high mortality of southern right whale Eubalaena australis calves at Península Valdés, Argentina. Mar. Ecol. Progr. Ser. 493, 275–289 (2013).ADS 

    Google Scholar 
    Valenzuela, L. O., Sironi, M., Rowntree, V. J. & Seger, J. Isotopic and genetic evidence for culturally inherited site fidelity to feeding grounds in southern right whales (Eubalaena australis). Mol. Ecol. 18, 782–791 (2009).CAS 
    PubMed 

    Google Scholar 
    Clapham, P. J., Aguilar, A. & Hatch, L. T. Determining spatial and temporal scales for management: lessons from whaling. Mar. Mamm. Sci. 24, 183–201 (2008).
    Google Scholar 
    Baker, C. S. et al. Strong maternal fidelity and natal philopatry shape genetic structure in North Pacific humpback whales. Mar. Ecol. Prog. Ser. 494, 291–306 (2013).ADS 

    Google Scholar 
    González, C. V., Piola, A., O’Brien, T. D., Tormosov, D. D. & Acha, E. M. Circumpolar frontal systems as potential feeding grounds of Southern Right whales. Prog. Oceanogr. 176, 102123 (2019).
    Google Scholar 
    Leaper, R. et al. Global climate drives southern right whale (Eubalaena australis) population dynamics. Biol. Lett. 2, 289–292 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Seyboth, E. et al. Southern right whale (Eubalaena australis) reproductive success is influenced by krill (Euphausia superba) density and climate. Sci. Rep. 6, 28205 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Punt, A. E. Extending production models to include process error in the population dynamics. Can. J. Fish. Aquat. Sci. 60, 1217–1228 (2003).
    Google Scholar 
    Tulloch, V. J., Plagányi, É. E., Brown, C., Richardson, A. J. & Matear, R. Future recovery of baleen whales is imperiled by climate change. Glob. Change Biol. 25, 1263–1281 (2019).ADS 

    Google Scholar 
    Witting, L. Selection-delayed population dynamics in baleen whales and beyond. Popul. Ecol. 55, 377–401 (2013).
    Google Scholar 
    Pante, E. & Benoit, S.-B. marmap: A package for importing, plotting and analyzing bathymetric and topographic data in R. PLoS ONE 8, e73051 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis (Springer, 2016).MATH 

    Google Scholar  More

  • in

    A near-natural experiment on factors influencing larval drift in Salamandra salamandra

    Müller, K. Investigations on the organic drift in north Swedish streams. Rep. Inst. Freshw. Res. Drottningholm 35, 133–148 (1954).
    Google Scholar 
    Müller, K. Stream drift as a chronobiological phenomenon in running water ecosystems. Annu. Rev. Ecol. Syst. 5, 309–323 (1974).Article 

    Google Scholar 
    Waters, T. F. Interpretation of invertebrate drift in streams. Ecology 46, 327–334. https://doi.org/10.2307/1936336 (1965).Article 

    Google Scholar 
    Waters, T. F. The drift of stream insects. Annu. Rev. Entomol. 17, 253–272 (1972).Article 

    Google Scholar 
    Thiesmeier, B. Der Feuersalamander (Laurenti, 2004).
    Google Scholar 
    Hughes, D. A. Some factors affecting drift and upstream movements of Gammarus pulex. Ecology 51, 301–305. https://doi.org/10.2307/1933668 (1970).Article 

    Google Scholar 
    Humphries, S. & Ruxton, G. D. Is there really a drift paradox?. J. Anim. Ecol. 71, 151–154 (2002).Article 

    Google Scholar 
    Altig, R. & McDiarmid, R. W. In Tadpoles: The Biology of Anuran Larvae (eds McDiarmid, R. W. & Altig, R.) 24–51 (University of Chicago Press, 2000).
    Google Scholar 
    Sherratt, E., Vidal-García, M., Anstis, M. & Keogh, J. S. Adult frogs and tadpoles have different macroevolutionary patterns across the Australian continent. Nat. Ecol. Evol. 1, 1385–1391. https://doi.org/10.1038/s41559-017-0268-6 (2017).Article 
    PubMed 

    Google Scholar 
    Griffiths, R. A. Newts and Salamanders of Europe (Poyser Natural History, 1996).
    Google Scholar 
    Cecala, K. K., Price, S. J. & Dorcas, M. E. Evaluating existing movement hypotheses in linear systems using larval stream salamanders. Can. J. Zool. 87, 292–298. https://doi.org/10.1139/z09-013 (2009).Article 

    Google Scholar 
    Grant, E. H. C., Nichols, J. D., Lowe, W. H. & Fagan, W. F. Use of multiple dispersal pathways facilitates amphibian persistence in stream networks. Proc. Natl. Acad. Sci. USA 107, 6936–6940. https://doi.org/10.1073/pnas.1000266107 (2010).ADS 
    Article 

    Google Scholar 
    Lowe, W. H. Linking dispersal to local population dynamics: A case study using a headwater salamander system. Ecology 84, 2145–2154. https://doi.org/10.1890/0012-9658(2003)084[2145:LDTLPD]2.0.CO;2 (2003).Article 

    Google Scholar 
    Bruce, R. C. Upstream and downstream movements of Eurycea bislineata and other salamanders in a southern appalachian stream. Herpetologica 42, 149–155 (1986).
    Google Scholar 
    Thiesmeier, B. Untersuchungen zur Phänologie und Populationsdynamik des Feuersalamanders (Salamandra salamandra terrestris Lacépède, 1788) im Niederbergische Land (BRD). Zool. Jahrbücher Abteilung für Systematik Ökologie Geographie der Tiere 117, 331–353 (1990).
    Google Scholar 
    Thiesmeier, B. & Schuhmacher, H. Causes of larval drift of the fire salamander, Salamandra salamandra terrestris, and its effects on population dynamics. Oecologia 82, 259–263. https://doi.org/10.1007/BF00323543 (1990).ADS 
    Article 
    PubMed 

    Google Scholar 
    Reinhardt, T., Baldauf, L., Ilic, M. & Fink, P. Cast away: Drift as the main determinant for larval survival in western fire salamanders (Salamandra salamandra) in headwater streams. J. Zool. 306, 171–179 (2018).Article 

    Google Scholar 
    Baumgartner, N., Waringer, A. & Waringer, J. Hydraulic microdistribution patterns of larval fire salamanders (Salamandra salamandra salamandra) in the Weidlingbach near Vienna, Austria. Freshw. Biol. 41, 31–41. https://doi.org/10.1046/j.1365-2427.1999.00378.x (1999).Article 

    Google Scholar 
    Krause, E. T., Steinfartz, S. & Caspers, B. A. Poor nutritional conditions during the early larval stage reduce risk-taking activities of fire salamander larvae (Salamandra salamandra). Ethology 117, 416–421. https://doi.org/10.1111/j.1439-0310.2011.01886.x (2011).Article 

    Google Scholar 
    Veith, M. et al. Drift compensation in larval European fire salamanders, Salamandra salamandra (Amphibia: Urodela)?. Hydrobiologia 828, 315–325. https://doi.org/10.1007/s10750-018-3820-8 (2019).Article 

    Google Scholar 
    Arnold, A. Zur Verbreitung des Feuersalamanders im Tal der Zwickauer Mulde. Veröffentlichungen aus dem Museum für Naturkunde Karl-Marx-Stadt 71–79 (1983).Thiesmeier, B. Ökologie des Feuersalamanders (Westarp Wissenschaften, 1992).
    Google Scholar 
    Thiesmeier-Hornberg, B. Zur Ökologie und Populationsdynamik des Feuersalamanders (Salamandra salamandra terrestris Lacépède, 1788) im niederbergischen Land unter besonderer Berücksichtigung der Larvalphase. PhD thesis, Universität-Gesamthochschule Essen (1988).Thiesmeier, B. & Grossenbacher, K. Salamandra salamandra (Linnaeus, 1758)—Feuersalamander. In Die Amphibien und Reptilien Europas. Schwanzlurche IIB (eds Thiesmeier, B. & Grossenbacher, K.) 1059–1132 (Aula, 2004).
    Google Scholar 
    Reques, R. & Tejedo, M. Intraspecific aggressive behaviour in fire salamander larvae (Salamandra salamandra): The effects of density and body size. Herpetol. J. 6, 15–19 (1996).
    Google Scholar 
    Thiesmeier, B. & Günther, R. Feuersalamander: Salamandra salamandra (Linnaeus, 1758). In Die Amphibien und Reptilien Deutschlands (ed. Günther, R.) 82–104 (Fischer, 1996).
    Google Scholar 
    Wagner, N., Pfrommer, J. & Veith, M. Comparison of different methods to estimate abundances of larval fire salamanders (Salamandra salamandra) in first-order creeks. Salamandra 56, 265–274 (2020).
    Google Scholar 
    Peig, J. & Green, A. J. New perspectives for estimating body condition from mass/length data: The scaled mass index as an alternative method. Oikos 118, 1883–1891. https://doi.org/10.1111/j.1600-0706.2009.17643.x (2009).Article 

    Google Scholar 
    White, G. C. & Burnham, K. P. Program MARK: Survival estimation from populations of marked animals. Bird Study 46, S120–S139 (1999).Article 

    Google Scholar 
    Otis, D. L., Burnham, K. P., White, G. C. & Anderson, D. R. Statistical inference from capture data on closed animal populations. Wildl. Monogr. 62, 3–135 (1978).MATH 

    Google Scholar 
    Schwarz, C. J. & Arnason, A. N. A general methodology for the analysis of capture-recapture experiments in open populations. Biometrics 52, 860–873 (1996).MathSciNet 
    Article 

    Google Scholar 
    Seber, G. A. A note on the multiple-recapture census. Biometrika 52, 249–259 (1965).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Jolly, G. M. Explicit estimates from capture-recapture data with both death and immigration-stochastic model. Biometrika 52, 225–247 (1965).MathSciNet 
    CAS 
    Article 

    Google Scholar 
    Cormack, R. Estimates of survival from the sighting of marked animals. Biometrika 51, 429–438 (1964).Article 

    Google Scholar 
    Razali, N. M. & Wah, Y. B. Power comparisons of Shapiro-Wilk, Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. J. Stat. Model. Anal. 2, 21–33 (2011).
    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48. https://doi.org/10.18637/jss.v067.i01 (2015).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2017).
    Google Scholar 
    Segev, O. & Blaustein, L. Influence of water velocity and predation risk on fire salamander (Salamandra infraimmaculata) larval drift among temporary pools in ephemeral streams. Freshw. Sci. 33, 950–957. https://doi.org/10.1086/676634 (2014).Article 

    Google Scholar 
    Montori, A., Llorente, G. & Richter-Boix, À. Habitat features affecting the small-scale distribution and longitudinal migration patterns of Calotriton asper in a Pre-Pyrenean population. Amphibia-Reptilia 29, 371–381. https://doi.org/10.1163/156853808785112048 (2008).Article 

    Google Scholar 
    Zakrzewski, M. Effect of definite temperature ranges on development metamorphosis and procreation of the spotted salamander larvae, Salamandra salamandra (L.). Acta Biol. Crac. Ser. Zool. 29, 77–83 (1987).
    Google Scholar 
    Degani, G., Goldenberg, S. & Warburg, M. R. Cannibalistic phenomena in Salamandra salamandra larvae in certain water bodies and under experimental conditions. Hydrobiologia 75, 123–128. https://doi.org/10.1007/BF00007425 (1980).Article 

    Google Scholar 
    Manenti, R., Ficetola, G. F. & De Bernardi, F. Water, stream morphology and landscape: Complex habitat determinants for the fire salamander Salamandra salamandra. Amphibia-Reptilia 30, 7–15. https://doi.org/10.1163/156853809787392766 (2009).Article 

    Google Scholar 
    Klewen, R. Landsalamander Europa: Teil1. Die Gattungen Salamandra und Mertensiella 2nd edn. (Ziemsen-Verlag, 1991).
    Google Scholar 
    Orth, R., Zscheischler, J. & Seneviratne, S. I. Record dry summer in 2015 challenges precipitation projections in Central Europe. Sci. Rep. 6, 1–8 (2016).Article 

    Google Scholar 
    Degani, G. Temperature selection in Salamandra salamandra (L.) larvae and juveniles from different habitats. Biol. Behav. 9, 175–183 (1984).
    Google Scholar  More

  • in

    Social networks and the conservation of fish

    Wilson, A. D. M. et al. Social networks in changing environments. Behav. Ecol. Sociobiol. 69, 1617–1629 (2015).
    Google Scholar 
    Ward, A. J. W. et al. Association patterns and shoal fidelity in the three–spined stickleback. Proc. R. Soc. Lond. Ser. B Biol. Sci. 269, 2451–2455 (2002).
    Google Scholar 
    Croft, D. P. et al. Assortative interactions and social networks in fish. Oecologia 143, 211–219 (2005).CAS 
    PubMed 

    Google Scholar 
    Helfman, G. S. & Schultz, E. T. Social transmission of behavioural traditions in a coral reef fish. Anim. Behav. 32, 379–384 (1984).
    Google Scholar 
    Wong, M. Y. L., Buston, P. M., Munday, P. L. & Jones, G. P. The threat of punishment enforces peaceful cooperation and stabilizes queues in a coral-reef fish. Proc. R. Soc. B Biol. Sci. 274, 1093–1099 (2007).
    Google Scholar 
    King, A. J., Fehlmann, G., Biro, D., Ward, A. J. & Fürtbauer, I. Re-wilding collective behaviour: an ecological perspective. Trends Ecol. Evol. 33, 347–357 (2018).PubMed 

    Google Scholar 
    Bro-Jørgensen, J., Franks, D. W. & Meise, K. Linking behaviour to dynamics of populations and communities: application of novel approaches in behavioural ecology to conservation. Philos. Trans. R. Soc. B Biol. Sci. 374, 20190008 (2019).
    Google Scholar 
    Rose, G. A. Cod spawning on a migration highway in the north-west Atlantic. Nature 366, 458 (1993).
    Google Scholar 
    Wilson, A. D. M., Croft, D. P. & Krause, J. Social networks in elasmobranchs and teleost fishes. Fish Fish. 15, 676–689 (2014). This study reviewed the state of knowledge of the mechanisms and functions underpinning social network structure in fishes, including a discussion on methodological issues and developments in this area of research.Taborsky, M. & Wong, M. In Comparative Social Evolution (eds. Rubenstein, D. R., Abbot, P.) 354–389 (Cambridge University Press, 2017).Lusseau, D. Evidence for social role in a dolphin social network. Evol. Ecol. 21, 357–366 (2007).
    Google Scholar 
    Krause, J., James, R., Franks, D. W. & Croft, D. P. Animal social networks. (Oxford University Press, 2015).Smith, J. E. & Pinter‐Wollman, N. Observing the unwatchable: Integrating automated sensing, naturalistic observations and animal social network analysis in the age of big data. J. Anim. Ecol. 90, 62–75 (2021).PubMed 

    Google Scholar 
    Webber, Q. M. R. & Vander Wal, E. Trends and perspectives on the use of animal social network analysis in behavioural ecology: a bibliometric approach. Anim. Behav. 149, 77–87 (2019).
    Google Scholar 
    Aspillaga, E., Arlinghaus, R., Martorell-Barceló, M., Barcelo-Serra, M. & Alós, J. High-throughput tracking of social networks in marine fish populations. Front. Mar. Sci. 8, 794 (2021). This original and pioneering study demonstrated the use of high-resolution tracking to infer social behaviour and social structure in the marine environment.Silk, M. J., Jackson, A. L., Croft, D. P., Colhoun, K. & Bearhop, S. The consequences of unidentifiable individuals for the analysis of an animal social network. Anim. Behav. 104, 1–11 (2015).
    Google Scholar 
    Hughey, L. F., Hein, A. M., Strandburg-Peshkin, A. & Jensen, F. H. Challenges and solutions for studying collective animal behaviour in the wild. Philos. Trans. R. Soc. B Biol. Sci. 373, 20170005 (2018).
    Google Scholar 
    Hussey, N. E. et al. Aquatic animal telemetry: a panoramic window into the underwater world. Science 348, 1255642 (2015).PubMed 

    Google Scholar 
    Barkley, A. N. et al. A framework to estimate the likelihood of species interactions and behavioural responses using animal-borne acoustic telemetry transceivers and accelerometers. J. Anim. Ecol. 89, 146–160 (2020).PubMed 

    Google Scholar 
    Baktoft, H., Gjelland, K. Ø., Økland, F. & Thygesen, U. H. Positioning of aquatic animals based on time-of-arrival and random walk models using YAPS (Yet Another Positioning Solver). Sci. Rep. 7, 14294 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Aspillaga, E. et al. Performance of a novel system for high-resolution tracking of marine fish societies. Anim. Biotelemetry 9, 1 (2021).
    Google Scholar 
    Jacoby, D. M. P., Papastamatiou, Y. P. & Freeman, R. Inferring animal social networks and leadership: applications for passive monitoring arrays. J. R. Soc. Interface 13, 20160676 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Papastamatiou, Y. P., Meyer, C. G., Watanabe, Y. & Heithaus, M. in Shark Research: Emerging Technologies and Applications for the Field and Laboratory, (eds. Carrier, J. C., Heithaus, M. R., Simpfendorfer, C. A.) 83–119 (C. R. C. Press, 2018).Butcher, P. A. et al. The drone revolution of shark. Sci. A Rev. Drones 5, 8 (2021).
    Google Scholar 
    Hamede, R. K., Bashford, J., McCallum, H. & Jones, M. Contact networks in a wild Tasmanian devil (Sarcophilus harrisii) population: using social network analysis to reveal seasonal variability in social behaviour and its implications for transmission of devil facial tumour disease. Ecol. Lett. 12, 1147–1157 (2009).PubMed 

    Google Scholar 
    Sih, A., Spiegel, O., Godfrey, S., Leu, S. & Bull, C. M. Integrating social networks, animal personalities, movement ecology and parasites: a framework with examples from a lizard. Anim. Behav. 136, 195–205 (2018).
    Google Scholar 
    Carne, C., Semple, S., Morrogh-Bernard, H., Zuberbühler, K. & Lehmann, J. Predicting the vulnerability of great apes to disease: the role of superspreaders and their potential vaccination. PLoS ONE 8, e84642 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Fielding, H. R. et al. Spatial and temporal variation in proximity networks of commercial dairy cattle in Great Britain. Prev. Vet. Med. 194, 105443 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Haulsee, D. E. et al. Social network analysis reveals potential fission-fusion behavior in a shark. Sci. Rep. 6, 34087 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Merrick, M. J. & Koprowski, J. L. Should we consider individual behavior differences in applied wildlife conservation studies? Biol. Conserv. 209, 34–44 (2017).
    Google Scholar 
    Kressler, M. M., Gerlam, A., Spence-Jones, H. & Webster, M. M. Passive traps and sampling bias: Social effects and personality affect trap entry by sticklebacks. Ethology 127, 446–452 (2021).
    Google Scholar 
    Blumstein, D. T. In Social Behaviour (eds. Szekely, T., Moore, A. J., Komdeur, J.) 520–534 (Cambridge University Press, 2010).Berger-Tal, O. et al. A systematic survey of the integration of animal behavior into conservation. Conserv. Biol. 30, 744–753 (2016).PubMed 

    Google Scholar 
    Mucientes, G. R., Queiroz, N., Sousa, L. L., Tarroso, P. & Sims, D. W. Sexual segregation of pelagic sharks and the potential threat from fisheries. Biol. Lett. 5, 156–159 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Mourier, J., Vercelloni, J. & Planes, S. Evidence of social communities in a spatially structured network of a free-ranging shark species. Anim. Behav. 83, 389–401 (2012).
    Google Scholar 
    Perryman, R. J. Y. et al. Social preferences and network structure in a population of reef manta rays. Behav. Ecol. Sociobiol. 73, 114 (2019).
    Google Scholar 
    He, P., Maldonado-Chaparro, A. A. & Farine, D. R. The role of habitat configuration in shaping social structure: a gap in studies of animal social complexity. Behav. Ecol. Sociobiol. 73, 9 (2019).
    Google Scholar 
    Mourier, J., Lédée, E. J. I. & Jacoby, D. M. P. A multilayer perspective for inferring spatial and social functioning in animal movement networks. bioRxiv https://www.biorxiv.org/content/10.1101/749085v1.full (2019).Snijders, L., Blumstein, D. T., Stanley, C. R. & Franks, D. W. Animal social network theory can help wildlife conservation. Trends Ecol. Evol. 32, 567–577 (2017). This review paper outlines how understanding of direct and indirect relationships between animals can be profitably applied by wildlife managers and conservationists.Beyer, K., Gozlan, R. E. & Copp, G. H. Social network properties within a fish assemblage invaded by non-native sunbleak Leucaspius delineatus. Ecol. Modell. 221, 2118–2122 (2010).
    Google Scholar 
    Hasenjager, M. J., Leadbeater, E. & Hoppitt, W. Detecting and quantifying social transmission using network-based diffusion analysis. J. Anim. Ecol. 90, 8–26 (2021).PubMed 

    Google Scholar 
    Fritzsche McKay, A. & Hoye, B. J. Are migratory animals superspreaders of infection? Integr. Comp. Biol. 56, 260–267 (2016).PubMed 

    Google Scholar 
    Albery, G. F., Kirkpatrick, L., Firth, J. A. & Bansal, S. Unifying spatial and social network analysis in disease ecology. J. Anim. Ecol. 90, 45–61 (2021).PubMed 

    Google Scholar 
    Salvanes, A. & Braithwaite, V. The need to understand the behaviour of fish reared for mariculture or restocking. ICES J. Mar. Sci. 63, 345–354 (2006).
    Google Scholar 
    Andrew, J. E., Holm, J., Kadri, S. & Huntingford, F. A. The effect of competition on the feeding efficiency and feed handling behaviour in gilthead sea bream (Sparus aurata L.) held in tanks. Aquaculture 232, 317–331 (2004).
    Google Scholar 
    Muñoz, L., Aspillaga, E., Palmer, M., Saraiva, J. L. & Arechavala-Lopez, P. Acoustic telemetry: a tool to monitor fish swimming behavior in sea-cage aquaculture. Front. Mar. Sci. 7, 645 (2020).
    Google Scholar 
    Macaulay, G., Bui, S., Oppedal, F. & Dempster, T. Challenges and benefits of applying fish behaviour to improve production and welfare in industrial aquaculture. Rev. Aquac. 13, 934–948 (2021).
    Google Scholar 
    Jacoby, D. M. P. et al. Social network analysis reveals the subtle impacts of tourist provisioning on the social behavior of a generalist marine apex predator. Front. Mar. Sci. 8, 1202 (2021).
    Google Scholar 
    Shizuka, D. & Johnson, A. E. How demographic processes shape animal social networks. Behav. Ecol. 31, 1–11 (2020).
    Google Scholar 
    Guerra, A. S., Kao, A. B., McCauley, D. J. & Berdahl, A. M. Fisheries-induced selection against schooling behaviour in marine fishes. Proc. R. Soc. B Biol. Sci. 287, 20201752 (2020).
    Google Scholar 
    Frisch, A. Sex-change and gonadal steroids in sequentially-hermaphroditic teleost fish. Rev. Fish. Biol. Fish. 14, 481–499 (2004).
    Google Scholar 
    Webber, Q. M. R. & Vander Wal, E. An evolutionary framework outlining the integration of individual social and spatial ecology. J. Anim. Ecol. 87, 113–127 (2018).PubMed 

    Google Scholar 
    Staveley, T. A. B. et al. Sea surface temperature dictates movement and habitat connectivity of Atlantic cod in a coastal fjord system. Ecol. Evol. 9, 9076–9086 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Sosa, S., Jacoby, D. M. P., Lihoreau, M. & Sueur, C. Animal social networks: towards an integrative framework embedding social interactions, space and time. Methods Ecol. Evol. 12, 4–9 (2021).
    Google Scholar 
    Albery, G. F. et al. Multiple spatial behaviours govern social network positions in a wild ungulate. Ecol. Lett. 24, 676–686 (2021).PubMed 

    Google Scholar 
    Ellis, S. et al. Mortality risk and social network position in resident killer whales: sex differences and the importance of resource abundance. Proc. R. Soc. B Biol. Sci. 284, 20171313 (2017).
    Google Scholar 
    Ellis, S., Snyder-Mackler, N., Ruiz-Lambides, A., Platt, M. L. & Brent, L. J. N. Deconstructing sociality: the types of social connections that predict longevity in a group-living primate. Proc. R. Soc. B Biol. Sci. 286, 20191991 (2019).
    Google Scholar 
    Kohn, G. M. Friends give benefits: autumn social familiarity preferences predict reproductive output. Anim. Behav. 132, 201–208 (2017).
    Google Scholar 
    Villegas-Ríos, D., Freitas, C., Moland, E., Thorbjørnsen, S. H. & Olsen, E. M. Inferring individual fate from aquatic acoustic telemetry data. Methods Ecol. Evol. 11, 1186–1198 (2020).
    Google Scholar 
    Mourier, J., Bass, N. C., Guttridge, T. L., Day, J. & Brown, C. Does detection range matter for inferring social networks in a benthic shark using acoustic telemetry? R. Soc. open Sci. 4, 170485 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Vanovac, S., Howard, D., Monk, C. T., Arlinghaus, R. & Giabbanelli, P. J. Network analysis of intra- and interspecific freshwater fish interactions using year-around tracking. J. R. Soc. Interface 18, 20210445 (2021).PubMed 

    Google Scholar 
    Dahl, K. A., Patterson, W. F. & Snyder, R. A. Experimental assessment of lionfish removals to mitigate reef fish community shifts on northern Gulf of Mexico artificial reefs. Mar. Ecol. Prog. Ser. 558, 207–221 (2016).
    Google Scholar 
    Fitzpatrick, J. L. et al. Female-mediated causes and consequences of status change in a social fish. Proc. R. Soc. B Biol. Sci. 275, 929–936 (2008).CAS 

    Google Scholar 
    Mourier, J., Brown, C. & Planes, S. Learning and robustness to catch-and-release fishing in a shark social network. Biol. Lett. 13, 20160824 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Rutledge, L. Y. et al. Protection from harvesting restores the natural social structure of eastern wolf packs. Biol. Conserv. 143, 332–339 (2010).
    Google Scholar 
    Jacoby, D. M. P. et al. Synergistic patterns of threat and the challenges facing global anguillid eel conservation. Glob. Ecol. Conserv 4, 321–333 (2015).
    Google Scholar 
    Geffroy, B., Bru, N., Dossou-Gbété, S., Tentelier, C. & Bardonnet, A. The link between social network density and rank-order consistency of aggressiveness in juvenile eels. Behav. Ecol. Sociobiol. 68, 1073–1083 (2014).
    Google Scholar  More