Fish diversity patterns along coastal habitats of the southeastern Galapagos archipelago and their relationship with environmental variables
Witman, J. D. & Smit, F. Rapid community change at a tropical upwelling site in the Galapagos Marine Reserve. Biodivers. Conserv. 12, 25–45 (2003).
Google Scholar
Edgar, G. J., Banks, S., Fariña, J. M., Calvopiña, M. & Martínez, C. Regional biogeography of shallow reef fish and macro-invertebrate communities in the Galapagos archipelago. J. Biogeogr. 31, 1107–1124 (2004).
Google Scholar
Okey, T. A. et al. A trophic model of a Galápagos subtidal rocky reef for evaluating fisheries and conservation strategies. Ecol. Model. 172, 383–401 (2004).
Google Scholar
Briggs, J. C. & Bowen, B. W. A realignment of marine biogeographic provinces with particular reference to fish distributions. J. Biogeogr. 39, 12–30 (2012).
Google Scholar
Salinas de León, P. et al. Largest global shark biomass found in the northern Galápagos Islands of Darwin and Wolf. PeerJ 4, e1911. https://doi.org/10.7717/peerj.1911 (2016).CAS
Article
PubMed
PubMed Central
Google Scholar
Humann, P. & DeLoach, N. Reef Fish Identification: Galápagos (ed. Humann, P.) (New World Publications, Inc., 2003).McCosker, J. E. & Rosenblatt, R. H. The fishes of the Galápagos archipelago: An update. Proc. Calif. Acad. Sci. 61, 167–195 (2010).
Google Scholar
Grove, J. S. & Lavenberg, R. J. The Fishes of the Galapagos Islands (Stanford University Press, 1997).Allen, G. & Ross-Robertson, D. Fishes of Tropical Eastern Pacific (University of Hawaii Press, 1994).Ruttenberg, B. I., Haupt, A. J., Chiriboga, A. I. & Warner, R. R. Patterns, causes and consequences of regional variation in the ecology and life history of a reef fish. Oecologia 145, 394–403 (2005).ADS
PubMed
Google Scholar
Bernardi, G. et al. Darwin’s fishes: Phylogeography of Galápagos Islands reef fishes. Bull. Mar. Sci. 90, 533–549 (2014).
Google Scholar
Banks, S., Vera, M. & Chiriboga, A. Establishing reference points to assess long-term change in zooxanthellate coral communities of the northern Galápagos coral reefs. Galapagos Res. 66, 43–64 (2009).
Google Scholar
Palacios, D., Bograd, S., Foley, D. & Schwing, F. Oceanographic characteristics of biological hot spots in the North Pacific: A remote sensing perspective. Deep Sea Res Part II Top. Stud. Oceanogr. 53, 250–269 (2006).ADS
Google Scholar
Sweet, W. V. et al. Water mass seasonal variability in the Galapagos Archipelago. Deep Sea Res. Part I Oceanogr. Res. Pap. 54, 2023–2035 (2007).ADS
Google Scholar
Schaeffer, B. et al. Phytoplankton biomass distribution and identification of productive habitats within the Galapagos Marine Reserve by MODIS, a surface acquisition system, and in-situ measurements. Remote Sens. Environ. 112, 3044–3054 (2008).ADS
Google Scholar
Witman, J. D., Brandt, M. & Smith, F. Coupling between subtidal prey and consumers along a mesoscale upwelling gradient in the Galapagos Islands. Ecol. Monogr. 80, 153–177 (2010).
Google Scholar
Moity, N. Evaluation of no-take zones in the Galápagos marine reserve, zoning plan 2000. Frontiers. 5, 244. https://doi.org/10.3389/fmars.2018.00244 (2018).Article
Google Scholar
Lamb, R. W., Smith, F. & Witman, J. D. Consumer mobility predicts impacts of herbivory across an environmental stress gradient. Ecology 101, e02910. https://doi.org/10.1002/ecy.2910 (2020).Article
PubMed
Google Scholar
Edgar, G. J. et al. Conservation of threatened species in the Galapagos Marine Reserve through identification and protection of marine key biodiversity areas. Aquat. Conserv. 18, 955–968 (2008).
Google Scholar
Carrión-Cortez, J. A., Zárate, P. & Seminoff, J. A. Feeding ecology of the green sea turtle (Chelonia mydas) in the Galapagos Islands. J. Mar. Biol. Assoc. U. K. 90, 1005–1013 (2010).
Google Scholar
Moity, N., Delgado, B. & Salinas-de-León, P. Correction: Mangroves in the Galapagos islands: Distribution and dynamics. PLoS One 14, e0212440. https://doi.org/10.1371/journal.pone.0212440 (2019).Article
PubMed
PubMed Central
Google Scholar
Seitz, R. D., Wennhage, H., Bergström, U., Lipcius, R. N. & Ysebaert, T. Ecological value of coastal habitats for commercially and ecologically important species. ICES J. Mar. Sci. 71, 648–665 (2014).
Google Scholar
Aguaiza, C. The role of mangrove as nursery habitats for coral reef fish species in the Galapagos Islands. MSc Thesis (University of Queensland, 2016).Llerena-Martillo, Y., Peñaherrera-Palma, C. & Espinoza, E. Fish assemblages in three fringed mangrove bays of Santa Cruz Island, Galapagos Marine Reserve. Rev. Biol. Trop. 66, 674–687 (2018).
Google Scholar
Fierro-Arcos, D. et al. Mangrove fish assemblages reflect the environmental diversity of the Galapagos Islands. Mar. Ecol. Prog. Ser. 664, 183–205 (2021).ADS
Google Scholar
Henseler, C. et al. Coastal habitats and their importance for the diversity of benthic communities: A species-and trait-based approach. Estuar. Coast. Shelf Sci. 226, 106272. https://doi.org/10.1016/j.ecss.2019.106272 (2019).Article
Google Scholar
Loreau, M. et al. Biodiversity and ecosystem functioning: Current knowledge and future challenges. Science 294, 804–808 (2001).ADS
CAS
Google Scholar
Menezes, R. F. et al. Variation in fish community structure, richness, and diversity in 56 Danish lakes with contrasting depth, size, and trophic state: Does the method matter?. Hydrobiologia 710, 47–59 (2013).
Google Scholar
Hu, M., Wang, C., Liu, Y., Zhang, X. & Jian, S. Fish species composition, distribution and community structure in the lower reaches of Ganjiang River, Jiangxi, China. Sci. Rep. 9, 10100. https://doi.org/10.1038/s41598-019-46600-2 (2019).ADS
CAS
Article
PubMed
Google Scholar
Clarke, K. R. & Warwick, R. M. Changes in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. (PRIMER-E Ltd, Plymouth Marine Laboratory, 2001).Warwick, R. M. & Clarke, K. R. New biodiversity measures reveal a decrease in taxonomic distinctness with increasing stress. Mar. Ecol. Prog. Ser. 129, 301–305 (1995).ADS
Google Scholar
Clarke, K. R. & Warwick, R. M. The taxonomic distinctness measure of biodiversity: Weighting of step lengths between hierarchical levels. Mar. Ecol. Prog. Ser. 184, 21–29 (1999).ADS
Google Scholar
Nieto-Navarro, J. T., Zetina-Rejón, M. A., Arreguín-Sánchez, F., Palacios-Salgado, D. & Jordán, F. Changes in fish bycatch during the shrimp fishing season along the eastern coast of the mouth of the Gulf of California. J. Appl. Ichthyol. 29, 610–616 (2013).
Google Scholar
Escobar-Toledo, F., Zetina-Rejón, M. J. & Duarte, L. O. Measuring the spatial and seasonal variability of community structure and diversity of fish by-catch from tropical shrimp trawling in the Colombian Caribbean Sea. Mar. Biol. Res. 11, 528–539 (2015).
Google Scholar
Herrera-Valdivia, E., López-Martínez, J., Castillo Vargasmachuca, S. & García-Juárez, A. R. Diversidad taxonómica y funcional en la comunidad de peces de la pesca de arrastre de camarón en el norte del Golfo de California, México. Rev. Biol. Trop. 64, 587–602 (2016).PubMed
Google Scholar
Heylings, P., Bensted-Smith, R. & Altamirano, M. Zonificación e historia de la Reserva Marina de Galápagos. In Reserva Marina de Galápagos. Línea Base de la Biodiversidad (eds. Danulat, E. & Edgar, G. J.) 10–21 (Fundación Charles Darwin y Servicio Parque Nacional de Galápagos, 2002).Edgar, G. J. et al. Bias in evaluating the effects of marine protected areas: The importance of baseline data for the Galapagos Marine Reserve. Environ. Conserv. 3, 212–218. https://doi.org/10.1017/S0376892904001584 (2004).Article
Google Scholar
Jennings, S., Brierley, A. S. & Walker, J. W. The inshore fish assemblages of the Galápagos archipelago. Biol. Conserv. 70, 49–57 (1994).
Google Scholar
Brito, A., Pérez-Ruzafaga, A. & Bacallado, J. J. Ictiofauna costera de las islas Galápagos: composición y estructura del poblamiento de los fondos rocosos. Res. Cient. Proy. Galápagos TFCM 5, 61 (1997).
Google Scholar
Bruneel, S. et al. Assessing the drivers behind the structure and diversity of fish assemblages associated with rocky shores in the Galapagos Archipelago. J. Mar. Sci. Eng. 9, 375. https://doi.org/10.3390/jmse9040375 (2021).Article
Google Scholar
Wellington, G. M., Strong, A. E. & Merlen, G. Sea surface temperature variation in the Galápagos Archipelago: A comparison between AVHRR nighttime satellite data and in-situ instrumentation (1982–1998). Bull. Mar. Res. 69, 27–42 (2001).
Google Scholar
Snell, H., Stone, P. & Snell, H. L. A summary of geographical characteristics of the Galapagos Islands. J. Biogeogr. 23, 619–624 (1996).
Google Scholar
Bustamante, R. H., et al. Outstanding marine features of Galápagos. In A Biodiversity Vision for the Galapagos Islands: An Exercise for Ecoregional Planning (eds. Bensted-Smith, R. & Dinnerstein, E.) 60–71 (WWF, 2002).Airoldi, L. & Beck, M. W. Loss, status and trends for coastal marine habitats of Europe. In Oceanography and Marine Biology: An Annual Review (eds. Gibson, R. N., Atkinson, R. J. A. & Gordon, J. D. M.) vol. 45, 345–405 (Taylor & Francis, 2007).Carr, M. H., Malone, D. P., Hixon, M. A., Holbrook, S. J. & Schmitt, R. J. How Scuba changed our understanding of nature: underwater breakthrough in reef fish ecology. In Research and Discoveries: The Revolution of Science Through Scuba vol. 39, 157–167 (Smithsonian Contributions to the Marine Sciences, 2013).Durkacz, S. Assessing the Oceanographic Conditions and Distribution of Reef Fish Assemblages Throughout the Galápagos Islands Using Underwater Visual Survey Methods. MSc Thesis (Texas A & M University, 2014).Fischer, W. et al. Guía FAO para la identificación de especies para los fines de pesca. Pacífico Centro-Oriental vol. II–III, 648–1652 (FAO, 1995).Clarke, K. R. & Warwick, R. M. A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35, 523–531 (1998).
Google Scholar
Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).
Google Scholar
Rosenberg, A., Binford, T. E., Leathery, S., Hill, R. L. & Bickers, K. Ecosystem approaches to fishery management through essential fish habitat. Bull. Mar. Sci. 66, 535–542 (2000).
Google Scholar
Aburto-Oropeza, O. & Balart, E. F. Community structure of reef fish in several habitats of a rocky reef in the Gulf of California. Mar. Ecol. 22, 283–305 (2001).ADS
Google Scholar
Fulton, C. J., Bellwood, D. R. & Wainwright, P. C. Wave energy and swimming performance shape coral reef fish assemblages. Proc. R. Soc. B 272, 827–832 (2005).CAS
PubMed
Google Scholar
Dominici-Arosemena, A. & Wolff, M. Reef fish community structure in the Tropical Eastern Pacific (Panamá): Living on a relatively stable rocky reef environment. Helgol. Mar. Res. 60, 287–305 (2006).ADS
Google Scholar
Villegas-Sánchez, C. A., Abitia-Cárdenas, L. A., Gutiérrez-Sánchez, F. J. & Galván-Magaña, F. Rocky-reef fish assemblages at San José Island, Mexico. Rev. Mex. Biodivers. 80, 169–179 (2009).
Google Scholar
Wiens, J. J. & Graham, C. H. Niche conservatism: Integrating evolution, ecology, and conservation biology. Annu. Rev. Ecol. Evol. Syst. 36, 519–539 (2005).
Google Scholar
Glynn, P. Some physical and biological determinants of coral community structure in the eastern Pacific. Ecol. Monogr. 46, 431–456 (1976).
Google Scholar
Ramos-Miranda, J. et al. Changes in four complementary facets of fish diversity in a tropical coastal lagoon after 18 years: A functional interpretation. Mar. Ecol. Prog. Ser. 304, 1–13 (2005).ADS
Google Scholar
Gristina, M., Bahri, T., Fiorentino, F. & Garofalo, G. Comparison of demersal fish assemblages in three areas of the Strait of Sicily under different trawling pressure. Fish. Res. 81, 60–71 (2006).
Google Scholar
Pérez-Ruzafa, A. P., Marcos, C. & Bacallado, J. J. Biodiversidad marina en archipiélagos e islas: patrones de riqueza específica y afinidades faunísticas. Vieraea Folia Scientarum Biologicarum Canariensium. 33, 455–476 (2005).
Google Scholar
Malcolm, H. A., Jordan, A. & Smith, S. D. Biogeographical and cross-shelf patterns of reef fish assemblages in a transition zone. Mar. Biodivers. 40(3), 181–193 (2010).
Google Scholar
García-Charton, J. A. & Pérez-Ruzafa, A. P. Correlation between habitat structure and a rocky reef fish assemblage in the Southwest Mediterranean. Mar. Ecol. 19(2), 111–128 (1998).ADS
Google Scholar
Mumby, P. J. et al. Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature 427, 533–536 (2004).ADS
CAS
PubMed
Google Scholar
Unsworth, R. K. F. et al. High connectivity of Indo-Pacific seagrass fish assemblages with mangrove and coral reef habitats. Mar. Ecol. Prog. Ser. 353, 213–224 (2008).ADS
Google Scholar
Birkeland, C. & Amesbury, S. S. Fish-transect surveys to determine the influence of neighboring habitats on fish community structure in the tropical Pacific. Co-operation for environmental protection in the Pacific. UNEP Reg. Seas Rep. Stud. 97, 195–202 (1988).
Google Scholar
Thollot, P., Kulbicki, M., & Wantiez, L. Temporal patterns of species composition in three habitats of the St Vincent Bay area (New Caledonia): Coral reefs, soft bottoms and mangroves. In Proceedings International Soc. Reef Studies. 127–137 (1991).Kulbicki, M. Present knowledge of the structure of coral reef fish assemblages in the Pacific. UNEP Reg. Seas Rep. Stud. 147, 31–53 (1992).
Google Scholar
Cruz-Romero, M., Chávez, E.A., Espino, E. & García, A. Assessment of a snapper complex (Lutjanus spp.) of the eastern tropical Pacific. In Biology, Fisheries and Culture of Tropical Groupers and Snappers (eds. Arreguín-Sánchez, F., Munro, J. L., Balgos, M. C. & Pauly, D.) 324–330 (ICLARM Conf. Proc. 48, 1996).Aguilar-Santana, F. Biología reproductiva de Prionurus laticlavius (Valenciennes, 1846) (Teleostei: Acanthuridae) en la Costa Sudoccidental del Golfo de California, México. PhD Thesis (Instituto Politécnico Nacional, 2020).Hall, S. The Effects of Fishing on Marine Ecosystems and Communities (Blackwell Science Ltd., 1999).Mangi, S. C. & Roberts, C. M. Quantifying the environmental impacts of artisanal fishing gear on Kenya’s coral reef ecosystems. Mar. Pollut. Bull. 52, 1646–1660 (2006).CAS
PubMed
Google Scholar
Rees, M. J., Jordan, A., Price, O. F., Coleman, M. A. & Davis, A. R. Abiotic surrogates for temperate rocky reef biodiversity: Implications for marine protected areas. Divers. Distrib. 20(3), 284–296 (2014).
Google Scholar
Ferrari, R. et al. Habitat structural complexity metrics improve predictions of fish abundance and distribution. Ecography 41(7), 1077–1091 (2018).
Google Scholar
Pihl, L. & Wennhage, H. Structure and diversity of fish assemblages on rocky and soft bottom shores on the Swedish west coast. J. Fish Biol. 61, 148–166 (2002).
Google Scholar
La Mesa, G., Molinari, A., Gambaccini, S. & Tunesi, L. Spatial pattern of coastal fish assemblages in different habitats in North-western Mediterranean. Mar. Ecol. 32, 104–114 (2011).ADS
Google Scholar
Kristensen, L. D. et al. Establishment of blue mussel beds to enhance fish habitats. Appl. Ecol. Environ. Res. 13, 783–798 (2015).
Google Scholar
Bergström, L., Karlsson, M., Bergström, U., Pihl, L. & Kraufvelin, P. Distribution of mesopredatory fish determined by habitat variables in a predator-depleted coastal system. Mar. Biol. 163, 201. https://doi.org/10.1007/s00227-016-2977-9 (2016).Article
PubMed
PubMed Central
Google Scholar
Galván-Villa, C. M., Arreola-Robles, J. L., Ríos-Jara, E. & Rodríguez-Zaragoza, F. A. Ensamblajes de peces arrecifales y su relación con el hábitat bentónico de la Isla Isabel, Nayarit, México. Rev. Biol. Mar. Oceanogr. 45, 311–324 (2010).
Google Scholar
Lunt, J. & Smee, D. L. Turbidity alters estuarine biodiversity and species composition. ICES J. Mar. Sci. 77, 379–387 (2019).
Google Scholar
Anthony, K. R., Ridd, P. V., Orpin, A. R., Larcombe, P. & Lough, J. Temporal variation of light availability in coastal benthic habitats: Effects of clouds, turbidity, and tides. Limnol. Oceanogr. 49, 2201–2211 (2004).ADS
Google Scholar
Helfman, G. S. Patterns of community structure in fishes: Summary and overview’. Environ. Biol. Fishes 3, 129–148 (1978).
Google Scholar
Helfman, G. S. Fish behaviour by day, night and twilight. In The Behaviour of Teleost Fishes (ed. Pitcher T.J.) (Springer, 1986).Warwick, R. M. & Clarke, K. R. Taxonomic distinctness and environmental assessment. J. Appl. Ecol. 35, 532–543 (1998).
Google Scholar
Rogers, S. I., Clarke, K. R. & Reynolds, J. D. The taxonomic distinctness of coastal bottom-dwelling fish communities of the North-east Atlantic. J. Anim. Ecol. 68, 769–782 (1999).
Google Scholar
Robertson, A. I., & Blaber, S. J. M. Plankton, epibenthos and fish communities. In Tropical Mangrove Ecosystems (eds. Robertson, A. I. & Alongi, D. M.) Coastal and Estuarine Studies No. 41, 173–224 (American Geophysical Union, 1992).Koranteng, K. A. Diversity and stability of demersal species assemblages in the Gulf of Guinea. West Afr. J. Appl. Ecol. 2, 49–63 (2001).
Google Scholar
McCormick, M. I. Comparison of field methods for measuring surface topography and their associations with a tropical reef fish assemblage. Mar. Ecol. Prog. Ser. 112, 87–96 (1994).ADS
Google Scholar
Moraes, L. E., Paes, E., Garcia, A., Möller, O. Jr. & Vieira, J. Delayed response of fish abundance to environmental changes: A novel multivariate time-lag approach. Mar. Ecol. Prog. Ser. 456, 159–168 (2012).ADS
Google Scholar
Edgar, G. J. et al. El Niño, grazers and fisheries interact to greatly elevate extinction risk for Galapagos marine species. Glob. Change. Biol. 16, 2876–2890 (2010).ADS
Google Scholar
Glynn, P. W., Enochs, I. C., Afflerbach, J. A., Brandtneris, V. W. & Serafy, J. E. Eastern Pacific reef fish responses to coral recovery following El Niño disturbances. Mar. Ecol. Prog. Ser. 495, 233–247 (2014).ADS
Google Scholar More