More stories

  • in

    Effect of nest composition, experience and nest quality on nest-building behaviour in the Bonelli’s Eagle

    Collias, N.E. & Collias, E.C. Nest Building and Bird Behavior. (Princeton University Press, 1984).Hansell, M.H. Bird nests and construction behaviour. (Cambridge University Press, 2000).Deeming, D.C. & Reynolds, S.J. Nests, eggs and incubation: New ideas about avian reproduction. (Oxford University Press, 2015).Pärssinen, V., Kalb, N., Vallon, M., Anthes, N. & Heubel, K. U. Male and female preferences for nest characteristics under paternal care. Ecol. Evol. 9, 7780–7791 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Soler, J. J., Morales, J., Cuervo, J. J. & Moreno, J. Conspicuousness of passerine females is associated with the nest-building behaviour of males. Biol. J. Linn. Soc. 126, 824–835 (2019).
    Google Scholar 
    Tipton, H. C., Dreitz, V. J. & Doherty, P. F. Jr. Occupancy of Mountain Plover and Burrowing Owl in Colorado. J. Wildl. Manage. 72, 1001–1006 (2008).
    Google Scholar 
    Mukherjee, A., Kumara, H. N. & Bhupathy, S. Golden jackal’s underground shelters: Natal site selection, seasonal burrowing activity and pup rearing by a cathemeral canid. Mammal Res. 63, 325–339 (2018).
    Google Scholar 
    Berg, M. L., Beintema, N. H., Welbergen, J. A. & Komdeur, J. The functional significance of multiple nest building in the Australian Reed Warbler Acrocephalus australis. Ibis 148, 395–404 (2006).
    Google Scholar 
    Vergara, P., Gordo, O. & Aguirre, J. I. Nest size, nest building behaviour and breeding success in a species with nest reuse: the white stork Ciconia ciconia. Ann. Zool. Fennici 47, 184–194 (2010).
    Google Scholar 
    Hansell, M.H. Animal architecture. (Oxford University Press, 2005).Newton, I. Population ecology of raptors. Berkhamsted (T and AD Poyser, 1979).Ontiveros, D., Caro, J. & Pleguezuelos, J. M. Green plant material versus ectoparasites in nests of Bonelli’s Eagle. J. Zool. 274, 99–104 (2008).
    Google Scholar 
    Soler, J. J., Møller, A. P. & Soler, M. Nest building, sexual selection and parental investment. Evol. Ecol. 12, 427–441 (1998).
    Google Scholar 
    Moreno, J., Soler, M., Møller, A. P. & Linden, M. The function of stone carrying in the Black Wheatear, Oenanthe leucura. Anim. Behav. 47, 1297–1309 (1994).
    Google Scholar 
    Soler, J. J., Soler, M., Møller, A. P. & Martínez, J. G. Does the great spotted cuckoo choose magpie hosts according to their parenting ability?. Behav. Ecol. Sociobiol. 36, 201–206 (1995).
    Google Scholar 
    Soler, J. J., Cuervo, J. J., Møller, A. P. & de Lope, F. Nest building is a sexually selected behaviour in the barn swallow. Anim. Behav. 56, 1435–1442 (1998).CAS 
    PubMed 

    Google Scholar 
    Canal, D., Mulero-Pázmány, M., Negro, J. J. & Sergio, F. Decoration increases the conspicuousness of raptor nests. PLoS ONE 11, e0157440 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Biddle, L., Goodman, A. M. & Deeming, D. C. Construction patterns of birds’ nests provide insight into nest-building behaviours. PeerJ 5, e3010 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Akresh, M. E., Ardia, D. R. & King, D. I. Effect of nest characteristics on thermal properties, clutch size, and reproductive performance for an open-cup nesting songbird. Avian Biol. Res. 10, 107–118 (2017).
    Google Scholar 
    Podofillini, S. et al. Home, dirty home: Effect of old nest material on nest-site selection and breeding performance in a cavity-nesting raptor. Curr. Zool. 64, 693–702 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Ruiz-Castellano, C., Tomás, G., Ruiz-Rodríguez, M., Martín-Gálvez, D. & Soler, J. J. Nest material shapes eggs bacterial environment. PLoS ONE 11, e0148894 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Tomás, G. et al. Interacting effects of aromatic plants and female age on nest-dwelling ectoparasites and blood-sucking flies in avian nests. Behav. Proc. 90, 246–253 (2012).
    Google Scholar 
    Suárez-Rodríguez, M. & García, C. M. An experimental demonstration that house finches add cigarette butts in response to ectoparasites. J. Avian Biol. 48, 1316–1321 (2017).
    Google Scholar 
    Mennerat, A. et al. Aromatic plants in nests of the blue tit Cyanistes caeruleus protect chicks from bacteria. Oecologia 161, 849–855 (2009).ADS 
    PubMed 

    Google Scholar 
    Sanz, J. J. & García-Navas, V. Nest ornamentation in blue tits: is feather carrying ability a male status signal?. Behav. Ecol. 22, 240–247 (2011).
    Google Scholar 
    Östlund-Nilsson, S. & Holmlund, M. The artistic three-spined stickleback (Gasterosteus aculeatus). Behav. Ecol. Sociobiol. 53, 214–220 (2003).
    Google Scholar 
    Quader, S. What makes a good nest? Benefits of nest choice to female Baya Weavers (Ploceus philippinus). Auk 123, 475–486 (2006).
    Google Scholar 
    Møller, A. P. & Nielsen, J. T. Large increase in nest size linked to climate change: an indicator of life history, senescence and condition. Oecologia 179, 913–921 (2015).ADS 
    PubMed 

    Google Scholar 
    De Neve, L., Soler, J. J., Soler, M. & Pérez-Contreras, T. Nest size predicts the effect of food supplementation to magpie nestlings on their immunocompetence: An experimental test of nest size indicating parental ability. Behav. Ecol. 15, 1031–1036 (2004).
    Google Scholar 
    Szentirmai, I., Komdeur, J. & Székely, T. What makes a nest-building male successful? Male behavior and female care in penduline tits. Behav. Ecol. 16, 994–1000 (2005).
    Google Scholar 
    Tomás, G. et al. Nest size and aromatic plants in the nest as sexually selected female traits in blue tits. Behav. Ecol. 24, 926–934 (2013).
    Google Scholar 
    Jelínek, V., Požgayová, M., Honza, M. & Procházka, P. Nest as an extended phenotype signal of female quality in the great reed warbler. J. Avian Biol. 47, 428–437 (2016).
    Google Scholar 
    Muth, F. & Healy, S. D. The role of adult experience in nest building in the zebrafinch, Taeniopygia guttata. Anim. Behav. 82, 185–189 (2011).
    Google Scholar 
    Wysocki, D. et al. Factors affecting nest size in a population of Blackbirds Turdus merula. Bird Study 62, 208–216 (2015).
    Google Scholar 
    Moreno, J. Avian nests and nest-building as signals. Avian Biol. Res. 5, 238–251 (2012).
    Google Scholar 
    Bailey, I. E., Morgan, K. V., Bertin, M., Meddle, S. L. & Healy, S. D. Physical cognition: Birds learn the structural efficacy of nest material. Proc. R. Soc. B 281, 20133225 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Camacho-Alpízar, A., Eckersley, T., Lambert, C. T., Balasubramanian, G. & Guillette, L. M. If it ain’t broke don’t fix it: Breeding success affects nest-building decisions. Behav. Proc. 184, 104336 (2021).
    Google Scholar 
    Madden, J. R. Bower decorations are good predictors of mating success in the spotted bowerbird. Behav. Ecol. Sociobiol. 53, 269–277 (2003).
    Google Scholar 
    Mainwaring, M. C., Nagy, J. & Hauber, M. E. Sex-specific contributions to nest building in birds. Behav. Ecol. https://doi.org/10.1093/beheco/arab035 (2021).Article 

    Google Scholar 
    Witte, K. The differential-allocation hypothesis: Does the evidence support it?. Evolution 49, 1289–1290 (1995).PubMed 

    Google Scholar 
    Wright, J. & Cuthill, I. Monogamy in the European starling. Behaviour 120, 262–285 (1992).
    Google Scholar 
    Burley, N. Sexual selection for aesthetic traits in species with biparental care. Am. Nat. 127, 415–445 (1986).ADS 

    Google Scholar 
    Mainwaring, M. C., Hartley, I. R., Lambrechts, M. M. & Deeming, D. C. The design and function of birds’ nests. Ecol. Evol. 4, 3909–3928 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Sergio, F. et al. Raptor nest decorations are a reliable threat against conspecifics. Science 331, 327–330 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Heinrich, B. Why does a hawk build with green nesting material?. Northeast. Nat. 20, 209–218 (2013).
    Google Scholar 
    Mingju, E. et al. Old nest material functions as an informative cue in making nest-site selection decisions in the European Kestrel (Falco tinnunculus). Avian Res. 10, 43 (2019).
    Google Scholar 
    Martínez-Abraín, A. & Jiménez, J. Stick supply to nests by cliff-nesting raptors as an evolutionary load of past tree-nesting. IEE 12, 22–25. https://doi.org/10.24908/iee.2019.12.3.n (2019).Article 

    Google Scholar 
    Martínez, J. E. et al. Breeding behaviour and time-activity budgets of Bonelli’s Eagles Aquila fasciata: Marked sexual differences in parental activities. Bird Study 47, 35–44 (2020).
    Google Scholar 
    Cramp, S. & Simmons, K.E.L. Handbook of the Birds of the western Palearctic. Vol. 2. (Oxford University Press, 1980).Paillisson, J. M. & Chambon, R. Variation in male-built nest volume with nesting-support quality, colony, and egg production in whiskered terns. Ecol. Evol. 11, 15585–15600 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Álvarez, E. & Barba, E. Nest quality in relation to adult bird condition and its impact on reproduction in Great Tits Parus major. Acta Ornithol. 43, 3–9 (2008).
    Google Scholar 
    Ferguson-Lees, J. & Christie, D. Raptors of the world. (Christopher Helm, 2001).Ontiveros, D. Águila perdicera – Aquila fasciata. In Enciclopedia Virtual de los Vertebrados Españoles. (eds. Salvador, A. & Morales, M.B.) Museo Nacional de Ciencias Naturales, Madrid; http://www.vertebradosibericos.org/ (accessed 13 September 2021) (2016).Del Hoyo, J., Elliott, A. & Sargatal, J. Handbook of the birds of the world, vol. 2. New world vultures to guineafowl. (Lynx Edicions, 1994).Ontiveros, D., Caro, J. & Pleguezuelos, J. M. Possible functions of alternative nests in raptors: the case of Bonelli’s Eagle. J. Ornithol. 149, 253–259 (2008).
    Google Scholar 
    Del Moral, J.C. & Molina, B. El águila perdicera en España, población reproductora en 2018 y método de censo. (SEO/BirdLife, 2018).BirdLife International. Aquila fasciata (amended version of 2016 assessment). The IUCN Red List of Threatened Species 2019. https://doi.org/10.2305/IUCN.UK.2019-3.RLTS.T22696076A155464015.en. Downloaded on 26 June 2021 (2019).Balbontín, J. & Ferrer, M. Condition of large brood in Bonelli’s Eagle Hieraaetus fasciatus. Bird Study 52, 37–41 (2005).
    Google Scholar 
    Martínez, J. E. et al. Copulatory behaviour in the Bonelli’s Eagle (Aquila fasciata): assessing the paternity assurance hypothesis. PLoS ONE 14, e0217175 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Margalida, A. & Bertran, J. Nest-building behaviour of the Bearded Vulture Gypaetus barbatus. Ardea 88, 259–264 (2000).
    Google Scholar 
    Krüger, O. Dissecting common buzzard lifespan and lifetime reproductive success: the relative importance of food, competition, weather, habitat and individual attributes. Oecologia 133, 474–482 (2002).ADS 
    PubMed 

    Google Scholar 
    Morrison, T. A., Yoshizaki, J., Nichols, J. D. & Bolger, D. T. Estimating survival in photographic capture–recapture studies: overcoming misidentification error. Methods Ecol. Evol. 2, 454–463 (2011).
    Google Scholar 
    Jiménez-Franco, M. V., Martínez, J. E., Pagán, I. & Calvo, J. F. Factors determining territory fidelity in a migratory forest raptor, the Booted Eagle Hieraaetus pennatus. J. Ornithol. 154, 311–318 (2013).
    Google Scholar 
    Sreekar, R. et al. Photographic capture-recapture sampling for assessing populations of the Indian Gliding Lizard Draco dussumieri. PLoS ONE 8, e55935 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Goswami, V. R. et al. Towards a reliable assessment of Asian elephant population parameters: The application of photographic spatial capture–recapture sampling in a priority floodplain ecosystem. Sci. Rep. 9, 8578 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Méndez, D., Marsden, S. & Lloyd, H. Assessing population size and structure for Andean Condor Vultur gryphus in Bolivia using a photographic ‘capture-recapture’ method. Ibis 161, 867–877 (2019).
    Google Scholar 
    Zuberogoitia, J., Martínez, J. E. & Zabala, J. Individual recognition of territorial peregrine falcons Falco peregrinus: A key for long-term monitoring programmes. Munibe 61, 117–127 (2013).
    Google Scholar 
    Gil-Sánchez, J. M., Bautista, J., Godinho, R. & Moleón, M. Detection of individual replacements in a long-lived bird species, the Bonelli’s Eagle (Aquila fasciata), using three noninvasive methods. J. Raptor Res. https://doi.org/10.3356/JRR-20-53 (2021).Article 

    Google Scholar 
    García, V., Moreno-Opo, R. & Tintó, A. Sex differentiation of Bonelli’s Eagle Aquila fasciata in western Europe using morphometrics and plumage colour patterns. Ardeola 60, 261–277 (2013).
    Google Scholar 
    Real, J., Mañosa, S. & Codina, J. Post-nestling dependence period in the Bonelli’s Eagle Hieraaetus fasciatus. Ornis Fenn. 75, 129–137 (1998).
    Google Scholar 
    Mínguez, E., Angulo, E. & Siebering, V. Factors influencing length of the post-fledging period and timing of dispersal in Bonelli’s Eagle (Hieraaetus fasciatus) in southwestern Spain. J. Raptor Res. 35, 228–234 (2001).
    Google Scholar 
    Gil-Sánchez, J. M., Moleón, M., Otero, M. & Bautista, J. A nine-year study of successful breeding in a Bonelli’s eagle population in southeast Spain: A basis for conservation. Biol. Conserv. 118, 685–694 (2004).
    Google Scholar 
    Resano-Mayor, J. et al. Multi-scale effects of nestling diet on breeding performance in a terrestrial top predator inferred from stable isotope analysis. PLoS ONE 9, e95320 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zuberogoitia, J., Martínez, J. E., Larrea, M. & Zabala, M. Parental investment of male Peregrine Falcons during incubation: Influence of experience and weather. J. Ornithol. 159, 275–282 (2018).
    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing. Available at: http://www.R-project.org/ (accessed 20 March 2021) (2021).Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Fernández, C. Nest material supplies in the Marsh Harrier Circus aeruginosus: Sexual roles, daily and seasonal activity patterns and rainfall influence. Ardea 80, 281–284 (1992).
    Google Scholar 
    Margalida, A., González, L. M., Sánchez, R., Oria, J. & Prada, L. Parental behaviour of Spanish Imperial Eagles Aquila adalberti: sexual differences in a moderately dimorphic raptor. Bird Study 54, 112–119 (2007).
    Google Scholar 
    López-López, P., Perona, A. M., Egea-Casas, O., Morant, J. & Urios, V. Tri-axial accelerometry shows differences in energy expenditure and parental effort throughout the breeding season in long-lived raptors. Curr. Zool. https://doi.org/10.1093/cz/zoab010 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morant, J., López-López, P. & Zuberogoitia, I. Parental investment asymmetries of a globally endangered scavenger: Unravelling the role of gender, weather conditions and stage of the nesting cycle. Bird Study 66, 329–341 (2019).
    Google Scholar 
    Margalida, A. & Bertran, J. Breeding biology of the Bearded Vulture Gypaetus barbatus: Minimal sexual differences in parental activities. Ibis 142, 225–234 (2000).
    Google Scholar 
    Wimberger, P. H. The use of green plant material in bird nests to avoid ectoparasites. Auk 101, 615–618 (1984).
    Google Scholar 
    Dubiec, A., Gózdz, I. & Mazgagski, T. D. Green plant material in avian nests. Avian Biol. Res. 6, 133–146 (2013).
    Google Scholar 
    Jagiello, Z. A., Dylewski, L., Winiarska, D., Zolnierowicz, K. M. & Tobolka, M. Factors determining the occurrence of anthropogenic materials in nests of the white stork Ciconia ciconia. Environ. Sci. Pollut. Res. 25, 14726–14733 (2018).
    Google Scholar 
    Fargallo, J. A., de León, A. & Potti, J. Nest maintenance effort and health status in chinstrap penguins, Pygoscelis antarctica: the functional significance of stone provisioning behaviour. Behav. Ecol. Sociobiol. 50, 141–150 (2001).
    Google Scholar  More

  • in

    Forest soil biotic communities show few responses to wood ash applications at multiple sites across Canada

    Hannam, K. D. et al. Wood ash as a soil amendment in Canadian forests: what are the barriers to utilization?. Can. J. For. Res. 48, 442–450 (2018).
    Google Scholar 
    Hope, E. S., McKenney, D. W., Allen, D. J. & Pedlar, J. H. A cost analysis of bioenergy-generated ash disposal options in Canada. Can. J. For. Res. https://doi.org/10.1139/cjfr-2016-0524 (2017).Article 

    Google Scholar 
    Bowd, E. J., Banks, S. C., Strong, C. L. & Lindenmayer, D. B. Long-term impacts of wildfire and logging on forest soils. Nat. Geosci. 12, 113–118 (2019).ADS 
    CAS 

    Google Scholar 
    Adotey, N., Harrell, D. L. & Weatherford, W. P. Characterization and liming effect of wood Ash generated from a biomass-fueled commercial power plant. Commun. Soil Sci. Plan. 49, 38–49 (2018).CAS 

    Google Scholar 
    Royer-Tardif, S., Whalen, J. & Rivest, D. Can alkaline residuals from the pulp and paper industry neutralize acidity in forest soils without increasing greenhouse gas emissions?. Sci. Total Environ. 663, 537–547 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Reid, C. & Watmough, S. A. Evaluating the effects of liming and wood-ash treatment on forest ecosystems through systematic meta-analysis. Can. J. For. Res. 44, 867–885 (2014).CAS 

    Google Scholar 
    López, R., Díaz, M. J. & González-Pérez, J. A. Extra CO2 sequestration following reutilization of biomass ash. Sci. Total Environ. 625, 1013–1020 (2018).ADS 
    PubMed 

    Google Scholar 
    Emilson, C. E. et al. Short-term growth response of jack pine and spruce spp. to wood ash amendment across Canada. GCB Bioenergy 12, 158–167 (2020).
    Google Scholar 
    Azan, S. S. E. et al. Could a residential wood ash recycling programme be part of the solution to calcium decline in lakes and forests in Muskoka (Ontario, Canada)?. FACETS 4, 69–90 (2019).
    Google Scholar 
    Gorgolewski, A. et al. Responses of eastern red-backed salamander (Plethodon cinereus) abundance 1 year after application of wood ash in a northern hardwood forest. Can. J. For. Res. 46, 402–409 (2016).
    Google Scholar 
    McTavish, M. J., Gorgolewski, A., Murphy, S. D. & Basiliko, N. Field and laboratory responses of earthworms to use of wood ash as a forest soil amendment. For. Ecol. Manag. 474, 118376 (2020).
    Google Scholar 
    Mortensen, L. H., Rønn, R. & Vestergård, M. Bioaccumulation of cadmium in soil organisms: with focus on wood ash application. Ecotox. Environ. Safe. 156, 452–462 (2018).CAS 

    Google Scholar 
    Bélanger, N., Palma Ponce, G. & Brais, S. Contrasted growth response of hybrid larch (Larix × marschlinsii), jack pine (Pinus banksiana) and white spruce (Picea glauca) to wood ash application in northwestern Quebec, Canada. iForest. 14, 155 (2021).
    Google Scholar 
    Santás-Miguel, V. et al. Use of biomass ash to reduce toxicity affecting soil bacterial community growth due to tetracycline antibiotics. J. Environ. Manage. 269, 110838 (2020).PubMed 

    Google Scholar 
    Fritze, H. et al. A microcosmos study on the effects of cd-containing wood ash on the coniferous humus fungal community and the cd bioavailability. J Soils Sediments 1, 146–150 (2001).CAS 

    Google Scholar 
    Coleman, D., Callaham, Jr., M. A. & Crossley, Jr., D. A. Fundamentals of Soil Ecology. (Elsevier, 2018). https://doi.org/10.1016/C2015-0-04083-7.Smenderovac, E. E. et al. Does intensified boreal forest harvesting impact soil microbial community structure and function?. Can. J. For. Res. 47, 916–925 (2017).CAS 

    Google Scholar 
    Joseph, R. et al. Limited effect of wood ash application on soil quality as indicated by a multisite assessment of soil organic matter attributes. GCB Bioenergy. 00, 1–22. https://doi.org/10.1111/gcbb.12928 (2022).CAS 
    Article 

    Google Scholar 
    Noyce, G. L. et al. Soil microbial responses to wood ash addition and forest fire in managed Ontario forests. Appl. Soil Ecol. 107, 368–380 (2016).
    Google Scholar 
    Liiri, M., Ilmarinen, K. & Setälä, H. Variable impacts of enchytraeid worms and ectomycorrhizal fungi on plant growth in raw humus soil treated with wood ash. Appl. Soil Ecol. 35, 174–183 (2007).
    Google Scholar 
    Brais, S., Bélanger, N. & Guillemette, T. Wood ash and N fertilization in the Canadian boreal forest: Soil properties and response of jack pine and black spruce. For. Ecol. Manag. 348, 1–14 (2015).
    Google Scholar 
    Gömöryová, E., Pichler, V., Tóthová, S. & Gömöry, D. Changes of chemical and biological properties of distinct forest floor layers after wood ash application in a Norway spruce stand. Forests 7, 108 (2016).
    Google Scholar 
    Hannam, K., Great Lakes Forestry Centre, Canada, Ressources naturelles Canada & Canadian Forest Service. Regulations and guidelines for the use of wood ash as a soil amendment in Canadian forests. (2016).Hannam, K. D. et al. AshNet: Facilitating the use of wood ash as a forest soil amendment in Canada. Forest. Chron. 93, 17–20 (2017).
    Google Scholar 
    Klavina, D. et al. The ectomycorrhizal community of conifer stands on peat soils 12 years after fertilization with wood ash. Mycorrhiza 26, 153–160 (2016).PubMed 

    Google Scholar 
    Bang-Andreasen, T. et al. Wood ash induced pH changes strongly affect soil bacterial numbers and community composition. Front. Microbiol. 8, 1400 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Vestergård, M. et al. The relative importance of the bacterial pathway and soil inorganic nitrogen increase across an extreme wood-ash application gradient. GCB Bioenergy 10, 320–334 (2018).
    Google Scholar 
    Ekenler, M. & Tabatabai, M. A. β-glucosaminidase activity as an index of nitrogen mineralization in soils. Commun. Soil Sci. Plan. 35, 1081–1094 (2004).CAS 

    Google Scholar 
    Margalef, O. et al. Global patterns of phosphatase activity in natural soils. Sci Rep 7, 1337 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vestergaard, G., Schulz, S., Schöler, A. & Schloter, M. Making big data smart—how to use metagenomics to understand soil quality. Biol. Fertil. Soils 53, 479–484 (2017).
    Google Scholar 
    Emilson, C. et al. Synthesis of current AshNet study designs and methods with recommendations towards a standardized protocol. Information Report GLC-X-22. (2018).Baldwin, K. et al. Vegetation zones of Canada: A biogeoclimatic perspective – Open Government Portal. (2019).Findlay, S. CHAPTER 11: Dissolved organic matter. In: Methods in Stream Ecology (Second Edition) (eds. Hauer, F. R. & Lamberti, G. A.) 239–248 (Academic Press, 2007). https://doi.org/10.1016/B978-012332908-0.50013-9.Saiya-Cork, K. R., Sinsabaugh, R. L. & Zak, D. R. The effects of long term nitrogen deposition on extracellular enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309–1315 (2002).CAS 

    Google Scholar 
    Porter, T. M. & Hajibabaei, M. METAWORKS: A flexible, scalable bioinformatic pipeline for multi-marker biodiversity assessments. bioRxiv 2020.07.14.202960 (2020) https://doi.org/10.1101/2020.07.14.202960.Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Porter, T. M. & Hajibabaei, M. Automated high throughput animal CO1 metabarcode classification. Sci. Rep-UK 8, 4226 (2018).ADS 

    Google Scholar 
    Kõljalg, U., Abarenkov, K., Nilsson, R. H., Larsson, K. & Taylor, A. F. S. The UNITE Database for molecular identification and for communicating fungal species (2019). https://doi.org/10.3897/BISS.3.37402.Porter, T. M. UNITE ITS Classifier. (2020). https://github.com/terrimporter/UNITE_ITSClassifierLouca, S., Parfrey, L. W. & Doebeli, M. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277 (2016).ADS 
    CAS 

    Google Scholar 
    Nguyen, N. H. et al. FUNGuild: An open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20, 241–248 (2016).
    Google Scholar 
    Hedde, M. et al. BETSI, a complete framework for studying soil invertebrate functional traits. (2012). https://doi.org/10.13140/2.1.1286.6888.McKenney, D. W. et al. Customized spatial climate models for North America. Bull. Am. Meteor. Soc. 92, 1611–1622 (2011).ADS 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2021).Fernandes, A. D., Macklaim, J. M., Linn, T. G., Reid, G. & Gloor, G. B. ANOVA-like differential expression (ALDEx) analysis for mixed population RNA-Seq. PLOS ONE 8, 15 (2013).
    Google Scholar 
    Wickham, H. et al. Welcome to the {tidyverse}. J. Open Source Softw. 4, 1686 (2019).ADS 

    Google Scholar 
    Oksanen, J. et al. Vegan: Community ecology package. https://CRAN.R-project.org/package=vegan (2020).Domes, K. A. et al. Short-term changes in spruce foliar nutrients and soil properties in response to wood ash application in the sub-boreal climate zone of British Columbia. Can. J. Soil. Sci. 98, 246–263 (2018).CAS 

    Google Scholar 
    Pugliese, S. et al. Wood ash as a forest soil amendment: The role of boiler and soil type on soil property response. Can. J. Soil. Sci. 94, 621–634 (2014).CAS 

    Google Scholar 
    Bang-Andreasen, T. et al. Total RNA sequencing reveals multilevel microbial community changes and functional responses to wood ash application in agricultural and forest soil. FEMS Microbiol. Ecol. 96, fiaa016 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Haimi, J., Fritze, H. & Moilanen, P. Responses of soil decomposer animals to wood-ash fertilisation and burning in a coniferous forest stand. For. Ecol. Manag. 129, 53–61 (2000).
    Google Scholar 
    Aronsson, K. A. & Ekelund, N. G. A. Biological effects of wood ash application to forest and aquatic ecosystems. J. Environ. Qual. 33, 1595–1605 (2004).CAS 
    PubMed 

    Google Scholar 
    Omil, B., Piñeiro, V. & Merino, A. Trace elements in soils and plants in temperate forest plantations subjected to single and multiple applications of mixed wood ash. Sci. Total Environ. 381, 157–168 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Taylor, A. F. S. & Finlay, R. D. Effects of liming and ash application on below ground ectomycorrhizal community structure in two Norway spruce forests. WAFO 3, 63–76 (2003).CAS 

    Google Scholar 
    Wallander, H., Fossum, A., Rosengren, U. & Jones, H. Ectomycorrhizal fungal biomass in roots and uptake of P from apatite by Pinus sylvestris seedlings growing in forest soil with and without wood ash amendment. Mycorrhiza 15, 143–148 (2005).PubMed 

    Google Scholar 
    Kjøller, R., Cruz-Paredes, C. & Clemmensen, K. E. Ectomycorrhizal fungal responses to forest liming and wood ash addition: Review and meta-analysis. In Soil Biological Communities and Ecosystem Resilience (eds Lukac, M. et al.) 223–252 (Springer International Publishing, Berlin, 2017).
    Google Scholar 
    Peltoniemi, K., Pyrhönen, M., Laiho, R., Moilanen, M. & Fritze, H. Microbial communities after wood ash fertilization in a boreal drained peatland forest. Eur. J. Soil Biol. 76, 95–102 (2016).CAS 

    Google Scholar 
    Boisvert-Marsh, L., Great Lakes Forestry Centre, Canada & Resources naturelles Canada. The Island Lake biomass harvest experiment: early results. (2016).Couch, R. L., Luckai, N., Morris, D. & Diochon, A. Short-term effects of wood ash application on soil properties, growth, and foliar nutrition of Picea mariana and Picea glauca seedlings in a plantation trial. Can. J. Soil. Sci. 101, 203–215 (2021).CAS 

    Google Scholar 
    Perkiömäki, J. & Fritze, H. Cadmium in upland forests after vitality fertilization with wood ash—a summary of soil microbiological studies into the potential risk of cadmium release. Biol Fertil Soils 41, 75–84 (2005).
    Google Scholar 
    Paredes, C. et al. Bacteria respond stronger than fungi across a steep wood ash-driven pH gradient. Front. For. Glob. Change 4, 781884 (2021).
    Google Scholar 
    Kļaviņa, D. et al. Fungal communities in roots of scots pine and Norway spruce saplings grown for 10 years on peat soils fertilized with wood ash. Balt. For. 22, 10 (2016).
    Google Scholar 
    Hansen, M., Bang-Andreasen, T., Sørensen, H. & Ingerslev, M. Micro vertical changes in soil pH and base cations over time after application of wood ash on forest soil. For. Ecol. Manag. 406, 274–280 (2017).
    Google Scholar 
    Fu, X. et al. Understory vegetation leads to changes in soil acidity and in microbial communities 27years after reforestation. Sci. Total Environ. 502, 280–286 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Pitman, R. M. Wood ash use in forestry – a review of the environmental impacts. Forestry 79, 563–588 (2006).
    Google Scholar 
    Cruz-Paredes, C., Tájmel, D. & Rousk, J. Can moisture affect temperature dependences of microbial growth and respiration?. Soil Biol. Biochem. 156, 108223 (2021).CAS 

    Google Scholar  More

  • in

    Fast-decaying plant litter enhances soil carbon in temperate forests but not through microbial physiological traits

    Microcosm preparation and incubationLeaf litters were collected from Lilly-Dickey Woods, a mature eastern US temperate broadleaf forest located in South-Central Indiana (39°14′N, 86°13′W) using litter baskets and surveys for freshly senesced litter as described in Craig et al.52. Of the 19 species collected in Craig et al. (2018), we selected litter from 16 tree species with the goal of maximizing variation in litter chemical traits (Table S1). Litters were air-dried and then homogenized and fragmented such that all litter fragments passed a 4000 µm, but not a 250 µm mesh. Whereas leaf litters had a distinctly C3 δ13C signature of −30.1 ± 1.5 (mean, standard deviation), we used a 13C-rich (δ13C = −12.6 ± 0.4) soil obtained from the A horizon of a 35-yr continuous corn field at the Purdue University Agronomy Center for Research and Education near West Lafayette, Indiana (40°4′N, 86°56′W). The soil is classified as Chalmers silty clay loam (a fine-silty, mixed, superactive, mesic Typic Endoaquoll). Prior to use in the incubation, soils were sieved (2 mm) and remaining recognizable plant residues were thoroughly picked out. Soils were mixed with acid-washed sand—30% by mass—to facilitate litter mixing (see below) and to increase the soil volume for post-incubation processing. The resulting soil had a pH of 6.7 and a C:N ratio of 12.0.We constructed the experimental microcosms by mixing the 16 litter species with the 13C-enriched soil. Each litter treatment was replicated four times in four batches (i.e., 16 microcosms per species, 272 total microcosms including 16 soil-only controls). Two batches (C budget microcosms) were used to monitor CO2 efflux and to track litter-derived C into SOM pools, and two batches were used to quantify microbial biomass dynamics.Incubations were carried out in 50 mL centrifuge tubes modified with an O-ring to prevent leakage and a rubber septum to facilitate headspace sampling. To each microcosm, we added 5 g dry soil, adjusted moisture to 65% water-holding capacity, and pre-incubated for 24 h in the dark at 24 °C. Using a dissecting needle, 300 mg of leaf litter were carefully mixed into treatment microcosms and controls were similarly agitated. This corresponds to an average C addition rate of 27.1 ± 1.1 g C kg−1 dry soil among the 16 species. During incubation, microcosms were loosely capped to retain moisture while allowing gas exchange, and were maintained at 65% water-holding capacity by adding deionized water every week.Carbon budget in microcosmsRespiration was quantified with an infrared gas analyzer (LiCOR 6262, Lincoln, NE, USA) coupled to a sample injection system. Our first measurement was taken about 12 h after litter addition (day 1) and subsequent measurements were taken on days 2, 4, 11, 19, and 30 for both batches and on days 46, 64, 79, 92, 109, 128, 149, and 185 for the second batch. Prior to each measurement, microcosms were capped, flushed with CO2-free air, and incubated for 1–8 h depending on the expected efflux rate. Headspace was sampled with a gas-tight syringe and the CO2-C concentration was converted to a respiration rate (µg CO2-C day−1). Total cumulative CO2-C loss was derived from point measurements by numerical integration (i.e., the trapezoid method). To evaluate soil-derived CO2-C efflux, we measured δ13C in two gas samples per litter type or control on a ThermoFinnigan DELTA Plus XP isotope ratio mass spectrometer (IRMS) with a GasBench interface (Thermo Fisher Scientific, San Jose, CA). Isotopes were measured on days 1, 4, 11, 30, 64, 109, and 185. On each of these days, a two-source mixing model70 was applied to determine the fraction of total CO2-C derived from soil organic matter vs. litter:$$frac{{F}^{l}(t)}{F(t)}=frac{delta Fleft(tright)-,delta {F}^{c}(t)}{delta {C}_{l}-delta {F}^{c}(t)}$$
    (1)
    where (frac{{F}^{l}(t)}{F(t)}) is the fraction total CO2-C efflux [(F(t))] derived from litter [({F}^{l}(t))] at time (left(tright)), (delta Fleft(tright)) is the δ13C of the CO2 respired by each litter-soil combination, (delta {F}^{c}(t)) is the average δ13C of the CO2 respired by the control soil, and (delta {C}_{l}) is the δ13C of each litter type. These data were used to calculate cumulative soil-derived C efflux via numerical integration and, for each litter type, average soil-derived C efflux was subtracted from total cumulative CO2-C loss to determine cumulative litter-derived CO2-C loss.Carbon budget microcosms were harvested on days 30 and 185 to track litter-derived C into mineral-associated SOC at an early and intermediate stage of decomposition. To do this, we used a size fractionation procedure71,72 modified to minimize the recovery of soluble leaf litter compounds or dissolved organic matter in the mineral-associated SOC fraction. For each sample, we first added 30 mL deionized water, gently shook by hand to suspend all particles, and then centrifuged (2500 rpm) for 10 min. Floating leaf litter was carefully removed, dried for 48 h at 60 °C, and weighed; and the clear supernatant was discarded to remove the dissolved organic matter. The remaining sample was dispersed in 5% (w/v) sodium hexametaphosphate for 20 h on a reciprocal shaker and then washed through a 53 µm sieve. The fraction retained on the sieve was added to the floating leaf litter sample and collectively referred to as particulate SOC, while the fraction that passed through the sieve was considered the mineral-associated SOC. Both fractions were dried, ground, and weighed; and analyzed for C concentrations and δ13C values on an elemental combustion system (Costech ECS 4010, Costech Analytical Technologies, Valencia, CA, USA) as an inlet to an IRMS. As above, litter-derived C in the particulate and mineral-associated SOC was determined as follows:$$frac{{C}_{s}^{l}(t)}{{C}_{s}(t)}=frac{delta {C}_{s}left(tright)-,delta {C}_{c}(t)}{delta {C}_{l}-delta {C}_{c}(t)}$$
    (2)
    where ({C}_{s}(t)) is the total particulate or mineral-associated SOC content in the sample at time ((t)), ({C}_{s}^{l}(t)) is the litter-derived C in the soil, (delta {C}_{s}left(tright)) is the measured δ13C value for each soil fraction, (delta {C}_{c}left(tright)) is the average δ13C for each fraction in control samples, and (delta {C}_{l}) is the δ13C of each litter type. In a few cases, mineral-associated δ13C was slightly less negative in the treatment than in the control soil. In these cases, litter-derived mineral-associated SOC was considered zero.Total litter-derived SOC at each harvest date was calculated by subtracting the cumulative litter CO2-C from initial added litter C. The difference between this value and the sum of litter-derived particulate and mineral-associated SOC was considered the residual pool which we assume mostly represents water-extractable dissolved organic matter.Microbial biomass dynamics during incubationSample batches were harvested at days 15 and 100 to capture early- and intermediate-term microbial biomass responses to litter treatments. These times were selected to correspond with the middle of early and intermediate C budget microcosm incubations. We quantified microbial biomass as well as MGR, CUE, and MTR using 18O-labeled water73,74 as in Geyer et al.75.Microbial biomass C (MBC) was determined on two ~2 g subsamples using a standard chloroform fumigation extraction76. One subsample was immediately extracted in 0.5 M K2SO4 and one was fumigated for 72 h before extraction. After shaking for 1 h, extracts were gravity filtered through a Whatman No. 40 filter paper, and filtrates were analyzed for total organic C using the method of Bartlett and Ross77 as adapted by Giasson et al.78. The difference between total organic C in the fumigated and unfumigated subsamples was used to calculate MBC (extraction efficiency KEC = 0.45).To determine MGR, CUE, and MTR, we first pre-incubated two 0.5 g soil subsamples (one treatment and one control) for 2 d at 24 °C. Prior to this pre-incubation, samples were allowed to evaporate down to 53 ± 6% (mean, sd) water-holding capacity. After the pre-incubation, water was injected with a 25 µL syringe to bring each sample to 65% water-holding capacity. For one subsample, we used unlabeled deionized water. For the second subsample, enriched 18O-water (98.1 at%; ICON Isotopes) was mixed with unlabeled deionized H2O to achieve approximately 20 at% of 18O in the final soil water. Each sample was placed in a centrifuge tube (modified for gas sampling), flushed with CO2-free air, and incubated for 24 h. Headspace CO2 concentration was then measured, and samples were flash frozen in liquid N2 and stored at −80 °C until DNA extraction.DNA was extracted from each sample using a DNA extraction kit (Qiagen DNeasy PowerSoil Kit, Venlo, Netherlands) following the protocol described in Geyer et al. (2019) which sought to maximize the recovery of DNA. The DNA concentration was determined fluorometrically using a Quant-iT PicoGreen dsDNA Assay Kit (Invitrogen). DNA extracts (80 µL) were dried at 60 °C in silver capsules spiked with 100 µL of salmon sperm DNA (42.5 ng µL−1), to reach the oxygen detection limit, and sent to the UC Davis Stable Isotope Facility for quantification of δ18O and total O content.Microbial growth rate (MGR) was calculated following Geyer et al. (2019). Specifically, atom % of soil DNA O (at% ODNA) was determined using the two-pool mixing model:$${at} % ,{O}_{{DNA}}=,frac{left[left({at} % ,{O}_{{DN}A+{ss}}times {O}_{{DNA}+{ss}}right)-left({at} % ,{O}_{{ss}}times {O}_{{ss}}right)right]}{{O}_{{DNA}}},$$
    (3)
    where at% is the atom % 18O and ODNA+ss, ODNA, and Oss are the concentration of O in the whole sample, soil DNA, and salmon sperm, respectively. Atom percent excess of soil DNA oxygen (APE Osoil) was calculated as the difference between at% ODNA in the treatment and control samples. Total microbial growth in terms of O (Total O; µg) was estimated as:$${Total},O=frac{{O}_{{soil}}times ,{{APE},O}_{{soil}}}{{at} % ,{soil},{water}}$$
    (4)
    where at% soil water is the atom % 18O in the soil water. MGR in terms of C (µg C g−1 soil d−1) was calculated by applying conversion mass ratios of oxygen:DNA (0.31) and MBC:DNA for each sample, dividing by the soil mass, and scaling by the incubation time. Assuming uptake rate (Uptake) is equal to the sum of MGR and respiration, CUE and MTR were calculated by the following equations.$${CUE}=,frac{{MGR}}{{Uptake}},$$
    (5)
    $${MTR}=,frac{{MGR}}{{MBC}}$$
    (6)
    Data analysis for microcosm experimentLitter decay constants were calculated for each species using litter-derived CO2-C values to estimate litter mass loss over time. After it was determined that a single exponential decay model provided a poor fit, we fit litter decomposition data using the double exponential decay model:$$y=s{e}^{{-k}_{1}t}+(1-s){e}^{{-k}_{2}t}$$
    (7)
    where s represents the labile or early stage decomposition fraction that decomposes at rate k1, and k2 is the decay constant for the remaining late stage decomposition fraction.To reduce the dimensionality of litter quality and microbial indicators, indices were derived by principal component analysis (PCA; Fig. S1A, B) using the ‘prcomp’ function in R. The first axis of a PCA of decomposition parameters (s, k1, and k2) and litter chemical properties (soluble and AUR contents; AUR-to-N and C-to-N ratios; and the lignocellulose index [LCI]) was taken as a litter quality index. Whereas this index highly correlated with indicators of C quality (AUR, soluble content, and LCI), the second axis of this PCA correlated with C:N and AUR:N and was therefore taken as a second litter quality index representing variation in N concentration. The first axis of a PCA of MGR, CUE, and MTR was taken as a microbial physiological trait index.Bivariate relationships were examined using simple linear regressions on average species values at each harvest (n = 16). To examine relationships between microbial physiological traits and mineral-associated SOC, data from the early-term (day 15) and intermediate-term (day 100) microbial harvest were matched with early-term (day 30) and intermediate-term (day 185) C budget microcosms, respectively. In addition to examining total mineral-associated SOC formation, we also estimated the efficiency of litter C transfer into the mineral-associated SOC pool as the fraction of lost litter C (i.e., litter C lost as CO2, recovered in the mineral-associated SOC fraction, or in the residual pool) retained in the mineral-associated SOC. Path analyses were used to evaluate the hypothesis that microbial physiological traits mediate the effect of litter quality on mineral-associated SOC formation and mineral-associated and particulate SOC decay. We hypothesized that the litter quality index would be positively associated with the microbial physiological trait index (representing faster and more efficient microbial growth) and microbial physiological traits would, in turn, be positively associated with the rate and efficiency of mineral-associated SOC formation. We expected that this mediating pathway would reduce the direct relationship between litter quality and SOC. This analysis was conducted using the LAVAAN package79 to run path analyses for total litter-derived mineral-associated SOC, mineral-associated SOC formation efficiency, and soil-derived mineral-associated and particulate SOC for both early and intermediate stage harvests. All analyses were performed using R version 3.5.2.Field study design and soil samplingWe worked in the Smithsonian’s Forest Global Earth Observatory (ForestGEO) network80 in six mature U.S. temperate forests varying in climate, soil properties, and tree community composition (Fig. 1a): Harvard forest (HF; 42°32′N, 72°11′W) in North-Central Massachusetts, Lilly-Dickey Woods (LDW; 39°14’N, 86°13’W) in South-Central Indiana, the Smithsonian Conservation Biology Institute (SCBI; 38°54′N, 78°9′W) in Northern Virginia, the Smithsonian Environmental Research Center (SERC; 38°53′N, 76°34′W) on the Chesapeake Bay in Maryland, Tyson Research Center (TRC; 38°31′N, 90°33′W) in Eastern Missouri, and Wabikon Lake Forest (WLF; 45°33′N, 88°48′W) in Northern Wisconsin, USA. Land use history across the six sites consisted mostly of timber harvesting which ceased in the early 1900s. Soils are mostly Oxyaquic Dystrudepts at HF, Typic Dystrudepts and Typic Hapludults at LDW, Typic Hapludalfs at SCBI, Typic or Aquic Hapludults at SERC, Typic Hapludalfs and Typic Paleudalfs at TRC, and Typic and Alfic Haplorthods at WLF. Further site details are reported in Table S5.Each site contains a rich assemblage of co-occurring arbuscular mycorrhizal (AM)- and ectomycorrhizal (ECM)-associated trees (Table S6), which we leveraged to generate environmental gradients in factors hypothesized to predict microbial physiological traits within each site. Specifically, the dominance of AM vs. ECM trees within a temperate forest plot has been shown to be a strong predictor of soil pH, C:N, inorganic N availability, and litter quality52,53,54. We established nine 20 × 20 m plots in each of our six sites in Fall 2016 (n = 54) distributed along a gradient of AM- to ECM-associated tree dominance. Plots were selected to avoid obvious confounding environmental factors. Where possible, we established our nine-plot gradient in three blocks (5 cm) at HF, which was removed before coring. Samples were also collected at 5–15 cm depth for soil texture analysis. We sampled from an inner 10 × 10 m square in each plot to avoid edge effects. All samples from the same plot were composited, sieved (2 mm), picked free of roots, subsampled for gravimetric moisture (105 °C), and air-dried, or refrigerated (4 °C) until analysis for microbial physiological variables and N availability.Soil propertiesWe determined several physicochemical properties known to predict mineral-associated SOC. We measured soil pH (8:1 ml 0.01 M CaCl2:g soil) and soil texture using a benchtop pH meter and a standard hydrometer procedure82, respectively. Organic matter content was high in some upper surface soils, so plot-level soil texture was determined from 5 to 15 cm depth samples. We quantified oxalate-extractable Al and Fe pools (Alox and Feox) in all soil samples as an index of poorly crystalline Al- and Fe-oxides83, which is one of the strongest predictors of SOM content in temperate forests84. Briefly, we extracted 0.40 g dried, ground soil in 40 mL 0.2 M NH4-oxalate at pH 3.0 in the dark for 4 h before gravity filtering and refrigerating until analysis (within 2 w) on an atomic-adsorption spectrometer (Aanalyst 800, Perkin Elmer, Waltham, MA, USA), using an acetylene flame and a graphite furnace for the atomization of Fe and Al, respectively.We quantified potential net N mineralization rates as an index of soil N availability. One 5 g subsample per plot was extracted immediately after processing by adding 10 mL 2 M KCl, shaking for 1 h, and filtering through a Whatman No. 1 filter paper after centrifugation at 3000 rpm. A second subsample from each plot was incubated under aerobic conditions at field moisture and 23 °C for 14 d before extraction. Extracts were frozen (−20 °C) until analysis for NH4+-N using the salicylate method and for NO3−-N plus NO2−-N after a cadmium column reduction on a Lachat QuikChem 8000 flow Injection Analyzer (Lachat Instruments, Loveland, CO, USA). Potential net N mineralization rates (mg N g dry soil−1 d−1) were calculated as the difference between pre- and post-incubation inorganic N concentrations.Microbial biomass dynamics in field plotsMicrobial biomass carbon and microbial physiological traits were quantified within 10 days of collection as described above, with four minor differences. First, 30 g soil subsamples were covered with parafilm and pre-incubated for 2 d near the field soil temperature measured at the time of sampling (16.5 °C for WLF and HF, and 21.5 °C for LDW, TRC, SCBI, and SERC). Second, for CO2 analysis, samples were placed in a 61 mL serum vial crimped with a rubber septum. Third, DNA concentrations were determined using a Qubit dsDNA BR Assay Kit (Life Technologies) and a Qubit 3.0 fluorometer (Life Technologies). Fourth, 14.5 g subsamples were used for microbial biomass analysis.Soil organic matter characterization in field plotsMineral-associated SOC was quantified as in the microcosm experiment, but without a pre-fractionation leachate removal step. We additionally measured soil amino sugar concentrations to estimate microbial necromass contributions to SOM. Amino sugars are useful microbial biomarkers because they are found in abundance in microbial cell walls, but are not produced by higher plants and soil animals19. Moreover, amino sugars can provide information on the microbial source of necromass. For example, glucosamine (Glu) is produced mostly by fungi whereas muramic acid (MurA) is produced almost exclusively by bacteria61,85. Amino sugars were extracted, purified, converted to aldononitrile acetates, and quantified with myo-inositol as in Liang et al.86. We used the concentrations of Glu and MurA to estimate total, fungal, and bacterial necromass soil C using the empirical relationships reported in Liang et al.8.$${Bacterial},{necromass},C,=,{MurA},times ,45$$
    (8)
    $${Fungal},{necromass},C,=,({mmol},{GluN},{-},2,times ,{mmol},{MurA})times ,179.17,times ,9$$
    (9)
    Leaf litter and fine roots in field plotsIn Fall 2017, we collected leaf litter on two sample dates from four baskets deployed in the inner 10 × 10 m of each plot. Litter was composited by plot, dried (60 °C), sorted by species, weighed, and ground. We performed leaf litter analyses on at least three samples of each species at each site —unless a species was only present in one or two plots— to get a site-specific mean for each species. Some non-dominant species were not included in these analyses because an insufficient amount of material was collected. Fine roots ( 0.5). Feox and Alox were correlated above this threshold and final models were selected to contain only Feox based on AIC. Residuals were screened for normality (Shapiro-Wilk), heteroscedasticity (visual assessment of residual plots), and influential observations (Cook’s D). Based on this, MGR, MTR, and mineral-associated SOC were natural log transformed. For all mixed models, we centered and standardized predictors (i.e., z-transformation) so that the slopes and significance levels of different predictors could be compared to one another on the same axis88. More

  • in

    Field trials reveal the complexities of deploying and evaluating the impacts of yeast-baited ovitraps on Aedes mosquito densities in Trinidad, West Indies

    Bhatt, S. et al. The global distribution and burden of dengue. Nature 496, 504–509 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gratz, N. G. Critical review of the vector status of Aedes albopictus. Med. Vet. Entomol. 18, 215–227 (2004).CAS 
    PubMed 

    Google Scholar 
    Weaver, S. C., Charlier, C., Nasilakis, N. & Lecuit, M. Zika, chikungunya, and other emerging vector-borne viral diseases. Annu. Rev. Med. 69, 1–14 (2018).
    Google Scholar 
    Wilder-Smith, A. et al. Epidemic arboviral diseases: priorities for research and public health. Lancet Infect. Dis. 17, e101–e106 (2017).PubMed 

    Google Scholar 
    Felicetti, T., Manfroni, G., Cecchetti, V. & Cannalire, R. Broad-spectrum flavivirus inhibitors: a medicinal chemistry point of view. Chem. Med. Chem. 15, 2391–2419 (2020).CAS 
    PubMed 

    Google Scholar 
    da Silveira, L. T. C., Bernardo, T. & Santos, M. Systemic review of dengue vaccine efficacy. BMC Inf. Dis. 19, 750 (2019).
    Google Scholar 
    Katzelnich, L. C. et al. Zika virus infection enhances future risk of severe dengue disease. Science 369, 1123–1128 (2020).ADS 

    Google Scholar 
    Rezza, G. & Weaver, S. C. Chikungunya as a paradigm for emerging viral diseases: evaluating disease impact and hurdles to vaccine development. PLoS Negl. Trop. Dis. 13, e0006919 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Reiter, P. & Gubler, D. J. Surveillance and control of urban dengue vectors. In Dengue and dengue hemorrhagic fever (eds Gubler, D. J. & Kuno, G.) 425–462 (CAB International, 1997).
    Google Scholar 
    Moyes, C. L. et al. Contemporary status of insecticide resistance in the major Aedes vectors of arboviruses infecting humans. PLoS Negl. Trop. Dis. 11, e0005625 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Bowman, L. R., Donegan, S. & McCall, P. J. Is dengue vector control deficient in effectiveness or evidence?: systematic review and meta-analysis. PLoS Negl. Trop. Dis. 10, e0004551 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Erlanger, T. E., Keiser, J. & Utzinger, J. Effect of dengue vector control interventions on entomological parameters in developing countries: a systematic review and meta-analysis. Med. Vet. Entomol. 22, 203–221 (2008).CAS 
    PubMed 

    Google Scholar 
    Banerjee, S., Aditya, G. & Saha, G. K. Household disposables as breeding habitats of dengue vectors: linking wastes and public health. Waste Manag. 33, 233–239 (2013).PubMed 

    Google Scholar 
    Chadee, D. D., Doon, R. & Severson, D. W. Surveillance of dengue fever cases using a novel Aedes aegypti population sampling method in Trinidad, West Indies: the cardinal points approach. Acta Trop. 104, 1–7 (2007).PubMed 

    Google Scholar 
    Barrera, R., Acevedo, V. & Amador, M. Role of abandoned and vacant houses on Aedes aegypti productivity. J. Med. Entomol. 104, 145–150 (2020).
    Google Scholar 
    Chadee, D. D. & Rahaman, A. Use of water drums by humans and Aedes aegypti in Trinidad. J. Vector Ecol. 25, 28–35 (2000).CAS 
    PubMed 

    Google Scholar 
    Padmanabha, H., Soto, E., Mosquera, M., Lord, C. C. & Lounibos, L. P. Ecological links between water storage behaviors and Aedes aegypti production: implications for dengue vector control in variable climates. EcoHealth 7, 78–90 (2010).CAS 
    PubMed 

    Google Scholar 
    Colton, Y. M., Chadee, D. D. & Severson, D. W. Natural skip oviposition of the mosquito Aedes aegypti indicated by codominant genetic markers. Med. Vet. Entomol. 17, 195–204 (2003).CAS 
    PubMed 

    Google Scholar 
    Davis, T. J., Kaufman, P. E., Hogsette, J. A. & Kline, D. I. The effects of larval habitat quality on Aedes albopictus skip oviposition. J. Am. Mosq. Control Assoc. 31, 321–328 (2015).PubMed 

    Google Scholar 
    David, M. R., Lourenco-de-Oliveira, R. & de Freitas, R. M. Container productivity, daily survival rates and dispersal of Aedes aegypti mosquitoes in a high income dengue epidemic neighbourhood of Rio de Janeiro: presumed influence of differential urban structure on mosquito biology. Mem. Inst. Oswaldo Cruz 104, 927–932 (2009).PubMed 

    Google Scholar 
    Focks, D. A. & Chadee, D. D. Pupal survey: an epidemiologically significant surveillance method for Aedes aegypti: an example using data from Trinidad. Am. J. Trop. Med. Hyg. 56, 159–167 (1997).CAS 
    PubMed 

    Google Scholar 
    Morrison, A. C. et al. Temporal and geographic patterns of Aedes aegypti (Diptera: Culicidae) production in Iquitos, Peru. J. Med. Entomol. 41, 1123–1142 (2004).PubMed 

    Google Scholar 
    Chadee, D. D. Oviposition strategies adopted by gravid Aedes aegypti (L.) (Diptera: Culicidae) as detected by ovitraps in Trinidad, West Indies (2002–2006). Acta Trop. 111, 279–283 (2009).CAS 
    PubMed 

    Google Scholar 
    Chadee, D. D. Seasonal incidence and horizontal distribution patterns of oviposition by Aedes aegypti in an urban environment in Trinidad, West Indies. J. Am. Mosq. Control Asso. 8, 281–284 (1992).CAS 

    Google Scholar 
    Fay, R. W. & Eliason, D. A. A preferred oviposition site as a surveillance method for Aedes aegypti. Mosq. News 26, 531–535 (1966).
    Google Scholar 
    Johnson, B. J., Ritchie, S. A. & Fonseca, D. M. The state of the art of lethal oviposition trap-based mass interventions for arboviral control. Insects 8, 5 (2017).PubMed Central 

    Google Scholar 
    Eiras, A. E., Buhagiar, T. S. & Ritchie, S. A. Development of the gravid Aedes trap for the capture of adult female container-exploiting mosquitoes (Diptera: Culicidae). J. Med. Entomol. 51, 200–209 (2014).PubMed 

    Google Scholar 
    Mackay, A. J., Amador, M. & Barrera, R. An improvied autocidal gravid ovitrap for the control and surveillance of Aedes aegypti. Parasit. Vectors 6, 225 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Olson, K. E. & Blair, C. D. Arbovirus-mosquito interactions: RNAi pathway. Curr. Opin. Virol. 15, 119–126 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hapairai, L. K. et al. Lure-and-kill yeast interfering RNA larvicides targeting neural genes in the human disease vector mosquito Aedes aegypti. Sci. Rep. 7, 13223 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mysore, K. et al. Yeast interfering RNA larvicides targeting neural genes induce high rates of Anopheles larval mortality. Malaria J. 16, 461 (2017).
    Google Scholar 
    Mysore, K. et al. Characterization of a broad-based mosquito yeast interfering RNA larvicide with a conserved target site in mosquito semaphorin-1a genes. Parasit. Vectors 12, 256 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mysore, K. et al. Characterization of a yeast interfering RNA larvicide with a target site conserved in the synaptotagmin gene of multiple disease vector mosquitoes. PLoS Negl. Trop. Dis 13, e0007422 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hapairai, L. K. et al. Evaluation of large volume yeast interfering RNA lure-and-kill ovitraps for attraction and control of Aedes mosquitoes. Med. Vet. Entomol. 35, 361–370 (2021).CAS 
    PubMed 

    Google Scholar 
    Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Braks, M. A. H., Honorio, N. A., Lourenco-de-Oliveira, R., Juliano, S. A. & Lounibos, L. P. Convergent habitat segregation of Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in southeastern Brazil and Florida. J. Med. Entomol. 40, 785–794 (2003).PubMed 

    Google Scholar 
    Kumari, R., Kumar, K. & Chauhan, L. S. First dengue virus detection in Aedes albopictus from Delhi, India: Its breeding ecology and role in dengue transmission. Trop. Med. Int. Health 16, 949–954 (2012).
    Google Scholar 
    Apostol, B. L., Black, W. C. IV., Reiter, P. & Miller, B. R. Use of randomly amplified polymorphic DNA amplified by polymerase chain reaction markers to estimate the number of Aedes aegypti families at oviposition sites in San Juan, Puerto Rico. Am. J. Trop. Med. Hyg. 51, 89–97 (1994).CAS 
    PubMed 

    Google Scholar 
    Corbet, P. S. & Chadee, D. D. An improved method for detecting substrate preferences shown by mosquitoes that exhibit ‘skip oviposition’. Physiol. Entomol. 18, 114–118 (1993).
    Google Scholar 
    Reinbold-Wasson, D. D. & Reiskind, M. H. Comparative skip-oviposition behavior among container breeding Aedes spp. mosquitoes (Diptera: Culicidae). J. Med. Entomol. https://doi.org/10.1093/jme/tjab084 (2021).Article 
    PubMed 

    Google Scholar 
    Barrera, R. Spatial stability of adult Aedes aegypti populations. Am. J. Trop. Med. Hyg. 85, 1087–1092 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Barrera, R., Amador, M., Ruiz-Valcarcel, J. & Acevedo, V. Factors modulating captures of gravid Aedes aegypti females. J. Am. Mosq. Control Assoc. 36, 66–73 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Moura, M. B. C. M. et al. Spatio-temporal dynamics of Aedes aegypti and Aedes albopictus oviposition in an urban area of northeastern Brazil. Trop. Med. Int. Health 25, 1510–1521 (2020).PubMed 

    Google Scholar 
    Crawford, J. E. et al. Efficient production of male Wolbachia-infected Aedes aegypti mosquitoes enables large-scale suppression of wild populations. Nat. Biotechnol. 38, 482–492 (2020).CAS 

    Google Scholar 
    Lau, K. W. et al. Vertical distribution of Aedes mosquitoes in multiple story buildings in Selangor and Kuala Lumpur, Malaysia. Trop. Biomed. 30, 36–45 (2013).CAS 
    PubMed 

    Google Scholar 
    Perich, M. J. et al. Field evaluation of a lethal ovitrap against dengue vectors in Brazil. Med. Vet. Entomol. 17, 205–210 (2003).CAS 
    PubMed 

    Google Scholar 
    Serpa, L. L. N. et al. Study of the the distribution and abundance of the eggs of Aedes aegypti and Aedes albopictus according to the habitat and meteorlogical variables, municipality of Sao Sebastiao, Sao Paulo state, Brazil. Parasit. Vectors 6, 321 (2014).
    Google Scholar 
    Sithiprasasna, R. et al. Field evaluation of a lethal ovitrap for the control of Aedes aegypti (Diptera: Culicidae) in Thailand. J. Med. Entomol. 40, 455–462 (2003).PubMed 

    Google Scholar 
    Barrera, R., Amador, M., Munoz, J. & Acevedo, V. Integrated vector control of Aedes aegypti mosquitoes around target houses. Parasit. Vectors 11, 88 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Naranjo, D. P. et al. Vector control programs in Saint Johns County, Florida and Guayas, Ecuador: Successes and barriers to integrated vector management. BMC Public Health 14, 674 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Regis, L. N. et al. Sustained reduction of the dengue vector population resulting from an integrated control strategy applied in two Brazilian cities. PLoS ONE 8, e67682 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stewart, A. T. M. et al. Community acceptance of yeast interfering RNA larvicide technology for control of Aedes mosquitoes in Trinidad. PLoS ONE 15, e0237675 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Winter, N. et al. Assessment of Trinidad community stakeholder perspectives on the use of yeast interfering RNA-baited ovitraps for biorational control of Aedes mosquitoes. PLoS ONE 16, e0252997 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chadee, D. D. & Corbet, P. S. Seasonal incidence and diel patterns of oviposition in the field of the mosquito, Aedes aegypti (L.) (Diptera: Culicidae) in Trinidad, West Indies: a preliminary study. Ann. Trop. Med. Parasitol. 81, 151–161 (1987).CAS 
    PubMed 

    Google Scholar 
    Edman, J. D. et al. Aedes aegypti (Diptera: Culicdae) movement influenced by availability of oviposition sites. J. Med. Entomol. 35, 578–583 (1998).CAS 
    PubMed 

    Google Scholar 
    Reiter, P., Amador, M. A., Anderson, R. A. & Clark, G. G. Short report: dispersal of Aedes aegypti in an urban area after blood feeding as demonstrated by rubidium-marked eggs. Am. J. Trop. Med. Hyg. 52, 177–179 (1995).CAS 
    PubMed 

    Google Scholar 
    Mysore, K. et al. Preparation and use of a yeast shRNA delivery system for gene silencing in mosquito larvae. Methods Mol. Biol. 1858, 213–231 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chadee, D. D., Fat, F. H. & Persad, R. C. First record of Aedes albopictus from Trinidad, West Indies. J. Am. Mosq. Control Assoc. 19, 438–439 (2003).PubMed 

    Google Scholar 
    Clemons, A., Mori, A., Haugan, M., Severson, D. W. & Duman-Scheel, M. Culturing and egg collection of Aedes aegypti. Cold Spring Harb. Protoc. https://doi.org/10.1101/pdb.prot5507 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stan Developmental Team. Stan Modeling Language Users Guide and Reference Manual, v.2.22.1 https://mc-stan.org (2020). More

  • in

    Seasonal and temporal patterns of rainfall shape arthropod community composition and multi-trophic interactions in an arid environment

    Holmgren, M. et al. Extreme climatic events shape arid and semiarid ecosystems. Front. Ecol. Environ. 4, 87–95 (2006).
    Google Scholar 
    Ummenhofer, C. C. & Meehl, G. A. Extreme weather and climate events with ecological relevance: a review. Philos. Trans. R. Soc. B-Biol. Sci. 372, 20160135. https://doi.org/10.1098/rstb.2016.0135 (2017).Chesson, P. et al. Resource pulses, species interactions, and diversity maintenance in arid and semi-arid environments. Oecologia 141, 236–253 (2004).ADS 
    PubMed 

    Google Scholar 
    McCluney, K. E. et al. Shifting species interactions in terrestrial dryland ecosystems under altered water availability and climate change. Biol. Rev. 87, 563–582 (2012).PubMed 

    Google Scholar 
    Reyer, C. P. O. et al. A plant’s perspective of extremes: Terrestrial plant responses to changing climatic variability. Glob. Change Biol. 19, 75–89 (2013).ADS 

    Google Scholar 
    Scheffer, M., Carpenter, S., Foley, J. A., Folke, C. & Walker, B. Catastrophic shifts in ecosystems. Nature 413, 591–596 (2001).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Schwinning, S. & Sala, O. E. Hierarchy of responses to resource pulses in and and semi-arid ecosystems. Oecologia 141, 211–220 (2004).ADS 
    PubMed 

    Google Scholar 
    Borer, E. T., Seabloom, E. W. & Tilman, D. Plant diversity controls arthropod biomass and temporal stability. Ecol. Lett. 15, 1457–1464 (2012).PubMed 

    Google Scholar 
    Kwok, A. B. C., Wardle, G. M., Greenville, A. C. & Dickman, C. R. Long-term patterns of invertebrate abundance and relationships to environmental factors in arid Australia. Austral Ecol. 41, 480–491 (2016).
    Google Scholar 
    Prugh, L. R. et al. Ecological winners and losers of extreme drought in California. Nat. Climate Change 8, 819–824 (2018).ADS 

    Google Scholar 
    Deguines, N., Brashares, J. S. & Prugh, L. R. Precipitation alters interactions in a grassland ecological community. J. Anim. Ecol. 86, 262–272 (2017).PubMed 

    Google Scholar 
    Ripple, W. J. et al. What is a trophic cascade?. Trends Ecol. Evol. 31, 842–849 (2016).PubMed 

    Google Scholar 
    Greenville, A. C., Wardle, G. M. & Dickman, C. R. Extreme climatic events drive mammal irruptions: regression analysis of 100-year trends in desert rainfall and temperature. Ecol. Evol. 2, 2645–2658 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Molyneux, J., Pavey, C. R., James, A. I. & Carthew, S. M. Persistence of ground-dwelling invertebrates in desert grasslands during a period of low rainfall—Part 2. J. Arid. Environ. 157, 39–47 (2018).ADS 

    Google Scholar 
    Seymour, C. L., Simmons, R. E., Joseph, G. S. & Slingsby, J. A. On bird functional diversity: Species richness and functional differentiation show contrasting responses to rainfall and vegetation structure in an arid landscape. Ecosystems 18, 971–984 (2015).
    Google Scholar 
    Prather, C. M. et al. Invertebrates, ecosystem services and climate change. Biol. Rev. 88, 327–348 (2013).PubMed 

    Google Scholar 
    Del Toro, I., Ribbons, R. R. & Pelini, S. L. The little things that run the world revisited: a review of ant-mediated ecosystem services and disservices (Hymenoptera: Formicidae). Myrmecol. News 17, 133–146 (2012).
    Google Scholar 
    Gerlach, J., Samways, M. & Pryke, J. Terrestrial invertebrates as bioindicators: an overview of available taxonomic groups. J. Insect Conserv. 17, 831–850 (2013).
    Google Scholar 
    Doblas-Miranda, E., Sanchez-Pinero, F. & Gonzalez-Megias, A. Different microhabitats affect soil macroinvertebrate assemblages in a Mediterranean arid ecosystem. Appl. Soil Ecol. 41, 329–335 (2009).
    Google Scholar 
    Hadley, N. F. & Szarek, S. R. Productivity of desert ecosystems. Bioscience 31, 747–753 (1981).
    Google Scholar 
    Barnett, K. L. & Facey, S. L. Grasslands, invertebrates, and precipitation: A review of the effects of climate change. Front. Plant Sci. 7, 1196 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, H. et al. Effects of altered precipitation on insect community composition and structure in a meadow steppe. Ecol. Entomol. 39, 453–461 (2014).
    Google Scholar 
    Palmer, C. M. Chronological changes in terrestrial insect assemblages in the arid zone of Australia. Environ. Entomol. 39, 1775–1787 (2010).PubMed 

    Google Scholar 
    Liu, R. T., Zhu, F. & Steinberger, Y. Ground-active arthropod responses to rainfall-induced dune microhabitats in a desertified steppe ecosystem, China. J. Arid Land 8, 632–646 (2016).
    Google Scholar 
    Mendelsohn, J., Jarvis, A., Roberts, C. & Robertson, T. Atlas of Namibia: A portrait of the land and its people. 3rd edn, (Sunbird Publishers, 2009).Theron, L. Temporal and spatial composition of arboreal insects along the Omaruru river, Namibia Magister scientiae thesis, University of the Free State Bloemfontein, (2010).Wagner, T. C., Richter, J., Joubert, D. F. & Fischer, C. A dominance shift in arid savanna: An herbaceous legume outcompetes local C4 grasses. Ecol. Evol. 8, 6779–6787 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Wagner, T. C., Hane, S., Joubert, D. F. & Fischer, C. Herbaceous legume encroachment reduces grass productivity and density in arid rangelands. PLoS ONE 11, e0166743; https://doi.org/10.1371/journal.pone.0166743 (2016).Picker, M., Griffiths, C. & Weaving, A. Field Guide to Insects of Southern Africa. (Struik Nature, 2004).Scholtz, C. H. & Holm, E. Insects of Southern Africa. 2nd edn, (Protea Book House, 2008).Blaum, N., Seymour, C., Rossmanith, E., Schwager, M. & Jeltsch, F. Changes in arthropod diversity along a land use driven gradient of shrub cover in savanna rangelands: identification of suitable indicators. Biodivers. Conserv. 18, 1187–1199 (2009).
    Google Scholar 
    Franca, L. F., Figueiredo-Paixao, V. H., Duarte-Silva, T. A. & dos Santos, K. B. The effects of rainfall and arthropod abundance on breeding season of insectivorous birds, in a semi-arid neotropical environment. Zoologia-Curitiba. https://doi.org/10.3897/zoologia.37.e37716 (2020).Wagner, T. C., Uiseb, K. & Fischer, C. Rolling pits of Hartmann’s mountain zebra (Zebra equus hartmannae) increase vegetation diversity and landscape heterogeneity in the Pre-Namib. Ecol. Evol. 11, 13036–13051 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Dormann, C. F. et al. Collinearity: A review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46 (2013).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (R Foundation for Statistical Computing, Vienna, Austria, 2019).Oksanen, J., et al. vegan: Community Ecology Package. R package version 2.5-7. (2020).Legendre, P. & Gallagher, E. D. Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280 (2001).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Anderson, M. J. & Walsh, D. C. I. PERMANOVA, ANOSIM, and the Mantel test in the face of heterogeneous dispersions: What null hypothesis are you testing?. Ecol. Monogr. 83, 557–574 (2013).
    Google Scholar 
    Anderson, M. J. in Wiley StatsRef: Statistics Reference Online (eds N. Balakrishnan et al.) (2017).Stopher, K. V., Bento, A. I., Clutton-Brock, T. H., Pemberton, J. M. & Kruuk, L. E. B. Multiple pathways mediate the effects of climate change on maternal reproductive traits in a red deer population. Ecology 95, 3124–3138 (2014).
    Google Scholar 
    Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).PubMed 

    Google Scholar 
    Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Pinheiro, J. C. & Bates, D. M. Mixed-Effects Models in S and S-PLUS. (Springer Verlag, 2000).Zhang, D. rsq: R-Squared and related measures. R package version 2.2. (2021).Barnes, A. D. et al. Direct and cascading impacts of tropical land-use change on multi-trophic biodiversity. Nat. Ecol. Evol. 1, 1511–1519 (2017).PubMed 

    Google Scholar 
    Henschel, J. R. Long-term population dynamics of Namib desert Tenebrionid beetles reveal complex relationships to pulse-reserve conditions. Insects 12, 804. https://doi.org/10.3390/insects12090804 (2021).Cloudsley-Thompson, J. L. The adaptational diversity of desert biota. Environ. Conserv. 20, 227–231 (1993).
    Google Scholar 
    Sømme, L. in Invertebrates in Hot and Cold Arid Environments 135–157 (Springer, 1995).Suttle, K. B., Thomsen, M. A. & Power, M. E. Species interactions reverse grassland responses to changing climate. Science 315, 640–642 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Henschel, J., Klintenberg, P., Roberts, C. & Seely, M. Long-term ecological research from an arid, variable, drought-prone environment. Sécheresse 18, 342–347 (2007).
    Google Scholar 
    Cloudsley-Thompson, J. L. Adaptations of arthropoda to arid environments. Annu. Rev. Entomol. 20, 261–283 (1975).CAS 
    PubMed 

    Google Scholar 
    Schuldt, A. et al. Belowground top-down and aboveground bottom-up effects structure multitrophic community relationships in a biodiverse forest. Sci. Rep. 7 (2017).Vidal, M. C. & Murphy, S. M. Bottom-up vs. top-down effects on terrestrial insect herbivores: a meta-analysis. Ecol. Lett. 21, 138–150 (2018).Báez, S., Collins, S. L., Lightfoot, D. & Koontz, T. L. Bottom-up regulation of plant community structure in an aridland ecosystem. Ecology 87, 2746–2754 (2006).PubMed 

    Google Scholar 
    Gibb, H. et al. Testing top-down and bottom-up effects on arid zone beetle assemblages following mammal reintroduction. Austral Ecol. 43, 288–300 (2018).
    Google Scholar 
    Coll, M. & Guershon, M. Omnivory in terrestrial arthropods: Mixing plant and prey diets. Annu. Rev. Entomol. 47, 267–297 (2002).CAS 
    PubMed 

    Google Scholar 
    Karolyi, F., Hansal, T., Krenn, H. W. & Colville, J. F. Comparative morphology of the mouthparts of the megadiverse South African monkey beetles (Scarabaeidae: Hopliini): feeding adaptations and guild structure. PeerJ 4, e1597; https://doi.org/10.7717/peerj.1597 (2016).Greenslade, P. Survival of Collembola in arid environments: Observations in South Australia and the Sudan. J. Arid. Environ. 4, 219–228 (1981).ADS 

    Google Scholar 
    Fattorini, S. Effects of fire on tenebrionid communities of a Pinus pinea plantation: A case study in a Mediterranean site. Biodivers. Conserv. 19, 1237–1250 (2009).
    Google Scholar 
    Sanders, N. J., Moss, J. & Wagner, D. Patterns of ant species richness along elevational gradients in an arid ecosystem. Glob. Ecol. Biogeogr. 12, 93–102 (2003).
    Google Scholar  More

  • in

    Anti-pulling force and displacement deformation analysis of the anchor pulling system of the new debris flow grille dam

    Design parametersA new type of Debris-flow grille dam is proposed to be built with a height of 8 m. Column section 500 mm × 700 mm, spacing 5000 mm. The cross section of the beam is 400 mm × 300 mm, and the spacing is 4000 mm. The section steel adopts I-steel 45a, the spacing is 250 mm. The counterfort wall is 300 mm thick and 6500 mm high. Pile foundation adopts manual digging pile, pile by 1000 mm, 5000 mm deep. The concrete is C30; Stressed bar is HRB335; Stirrups is HRB300; Stay Cable is 3 (emptyset) s15.2. The design size of the anchor piers is shown in Fig. 12. In the Figure where (T = 2 times 10^{5} N); (L_{l} = 8500;{text{mm}}); (E_{l} = 1.95 times 10^{5} ;{text{N/mm}}^{2}); (A_{l} = 420;{text{mm}}); (D_{e} = 1000;{text{mm}}); (L_{m} = 1200;{text{mm}}); (E_{e} = 3.0 times 10^{4} ;{text{N/mm}}^{2}); (H = 1000;{text{mm}}); (mu = 0.2); (E = 20;{text{N/mm}}^{2}). The parameter of gully bed soil is shown in Table 1.Figure 12The parameters of anchor piers.Full size imageTable 1 The parameters of gully bed soil.Full size tableAnalysis of results(1) The effect of the elastic modulus and Poisson’s ratio of the surrounding soil on the displacement deformation of the anchor-pulling system.The elastic modulus (E) and Poisson’s ratio (mu) are important parameters for calculating the displacement deformation of soil. They have something to do with both the properties of materials and the stress level. To analyze the effect of the physical parameter variation of the surrounding soil on the displacement deformation of the anchor-pulling system, we can study changing the elastic modulus and Poisson’s ratio. The variation range of the elastic modulus is 15–45 N/mm2, and the variation range of Poisson’s ratio is 0.15–0.25.Figure 13 shows the variation curve in which the displacement deformation increases with the elastic modulus of the soil around the anchor pier. We can see that as the elastic modulus of the soil around the anchor pier increases, the displacement deformation decreases gradually. When the elastic modulus is in the range of 15–35 N/mm2, the curve is steep, and the decrease in deformation is apparent. After 35 N/mm2, the curve becomes smooth, and the decrease in deformation tends to be stable.Figure 13The effect of the elastic modulus E(15–45 N/mm2) of the surrounding soil on the displacement of the anchor-pulling system.Full size imageIn Fig. 14, the displacement deformation increases linearly with Poisson’s ratio of the soil around the anchor pier. However, the total impact is not large. From calculation, the variation of elastic modulus of the soil around the anchor pier has nothing to do with elastic deformation of the stayed cable ((S_{1} )), but mainly influences relative shear displacement between anchor piers and the surrounding soil ((S_{2} )) and the compression performance of the soil on the front of anchor piers ( (S_{3} )). where ((S_{2} )) accounted for 89% and (left( {S_{3} } right)) accounted for 11%. When the Poisson ratio increases, the displacement deformation also increases. Poisson’s ratio has the greatest influence on the relative shear displacement ((S_{2} )) of the anchor pier and soil, accounting for approximately 96.4%. The design parameters should be selected correctly during design. The influence of parameters on the deformation of anchor system is analyzed by using control variable method. The influence of a single variable on the results can be intuitively obtained. However, the elastic modulus E and Poisson ‘ s ratio (mu) of rock and soil are not independent. Therefore, Matlab is used to analyze the influence of the two aspects on the deformation of the tensile anchor system, and the results are shown in Fig. 15. It can be seen from Fig. 15 that the influence of elastic modulus E on the deformation of tensile anchor system is much greater than that of Poisson’s ratio (mu). And the variation of the curve is basically the same, so the interaction between the two is weak.Figure 14The effect of Poisson’s ratio (mu)(0.15–0.26) of the surrounding soil on the displacement of the anchor-pulling system.Full size imageFigure 15Influence of elastic modulus E (15–45 N/mm2) and Poisson’s ratio (mu left( {0.15 – 0.26} right)) on deformation of anchor system.Full size image(2) The effect of the design parameters of anchor piers on the displacement deformation of the anchor-pulling system.The design parameters of anchor piers include the equivalent width (D_{e}), length (L_{m}) and height (H). Different design parameters have varying effects on the displacement deformation of the anchor-pulling system. Keep other parameters unchanged and let ( D_{e} ) vary in 0.5–1.5 m, (L_{m}) vary in 0.6–2.0 m, and (H) vary in 0.5–1.5 m. Analyzing their effect on the displacement deformation of the anchor-pulling system, the results are shown in Figs. 16 and 17.Figure 16The effect of equivalent width (D_{e})(500–1500 mm) on the displacement of the anchor-pulling system.Full size imageFigure 17The effect of equivalent length (L_{m})(600–2000 mm) on the displacement of the anchor-pulling system.Full size imageAs illustrated in Figs. 16 and 17, the effects of the design parameters of the anchor piers on the displacement deformation of the anchor-pulling system are almost the same. As the size increases, the displacement deformation gradually decreases, and the front section decreases quickly, while the rear section becomes gradually smooth. Here, the equivalent width (D_{e}) and length (L_{m}) mainly affect the compression performance of the soil on the front of anchor piers (left( {S_{3} } right)). The anchor piers can be seen as rigid bodies where horizontal displacement takes place. Increasing the size means increasing the contact area between the anchor pier and soil body. With this increase, the compression performance of the soil on the front of the anchor piers decreases. However, the effect of the height (H) on the displacement deformation of the anchor-pulling system is the contribution to the relative shear displacement between the anchor piers and the surrounding soil ((S_{2} )). When (H) grows, ((S_{2} )) grows accordingly. However, theoretically, the larger the effect of the size, the better it is. Because of the constraint of topographic conditions, construction conditions and economic benefits in practical engineering, it is necessary to choose the best size. the anchor pier provides enough anchor force and saves all kinds of resources. The best design dimensions suggested are (D_{e}) = 1.2 m–1.8 m, (L_{m}) = 1.5 m–2.5 m, and (H) = 1.0 m–1.6 m.It can be seen from Fig. 18 that the width (D_{e}) and the height (L_{m}) of anchor pier influence each other greatly. When (D_{e}) is 600 mm, with the increase of (L_{m}), the deformation of tension anchor system will first decrease and then increase. When (D_{e}) is greater than 800 mm, with the increase of (L_{m}), the deformation of tension anchor system will continue to decrease. And with the increase of (L_{m}), the decreasing trend is more obvious. When (L_{m}) is 500 mm, with the increase of the height of the anchor pier (D_{e}), the deformation of the anchor system will increase first. When (L_{m}) is greater than 800 mm, with the increase of (D_{e}), the deformation of the anchor system will continue to decrease. But the decreasing trend is not much different.Figure 18Influence of Anchor Pier Width (D_{e} left( {500 – 1500;{text{mm}}} right)) and Anchor Pier Height (L_{m} left( {600 – 2000;{text{mm}}} right)) on Deformation of Anchorage System.Full size imageThe numerical validationThe establishment of the finite element modelWhen the finite element model of the anchor-pulling system and surrounding soil is created, the constitutive model of the surrounding soil uses the Mohr–Coulomb elastoplastic model. The anchor pier and surrounding soil use eight nodes as oparametric elements, such as solid45, of which the basic grid unit is cubic units. When the grid is divided, the grid between the anchor pier and the surrounding soil contact is dense. The LINK10 unit is used to simulate cables, which have a bilinear stiffness matrix. It can simulate not only tensile bar units but also compressed bar units. For example, when the pull-up option is used alone, if the unit is under pressure, its stiffness disappears, so it can be used to simulate the relaxation of cables or chains. This feature is very significant for the static problem of wire rope, which uses a unit to simulate the entire cable. It can also be used for dynamic analysis with inertial or damping effects when the needed relaxation unit should pay attention to its performance rather than its movement. The soil is homogeneous. The soil physical parameters and structure design parameters are consistent with the theoretical calculation parameters mentioned above. The tensile force of the cable is exerted on the nodes as a force. The top surface of the model is free, and the normal displacements of the remaining faces are constrained such that the displacements are zero. The contact of the anchor pier and surrounding soils is a rigid-flexible surface-to-surface contact element to reflect the interaction. The surface of the anchor pier is regarded as the “target” surface, and the surface of the soil body is regarded as the “contact” surface. The coefficient of friction and normal penalty stiffness are 0.35 and 0.15, respectively. The scope of interaction between the anchor pier and the surrounding soil in the model is taken as 15 m × 11 m × 12 m, referring to past experience in engineering and the research data of the effect scope that the related anchors have had on the soil. The values of the model geometric parameters and physical and mechanical parameters are the same as in “Design parameters” section. The finite element model is shown in Fig. 19.Figure 19Finite element model of the anchor-pulling system and surrounding soil.Full size imageResearch on finite element model gridIn order to verify the convergence of numerical simulation, the soil was divided into three different mesh sizes. Condition 1 is fine finite element meshing. The stress nephogram of condition 1 is shown in Fig. 20. Condition 2 is medium finite element mesh. The stress nephogram of condition 1 is shown in Fig. 21. Condition 3 is coarse finite element mesh. The stress nephogram of condition 1 is shown in Fig. 22. See Table 2 for specific grid division.Figure 20Condition 1 stress cloud diagram.Full size imageFigure 21Condition 1 stress cloud diagram.Full size imageFigure 22Condition 1 stress cloud diagram.Full size imageTable 2 Mesh size of three working conditions.Full size tableIt can be seen from the stress nephogram of the three working conditions that the thicker the grid is, the greater the displacement of the anchor system is. The maximum displacement difference between condition 2 and condition 3 is 2.6%; the maximum displacement of condition 1 is 17% different from that of condition 2. The finer the mesh, the more accurate the numerical simulation results. But with the increase in computing time. It can be seen from Table 2 that the maximum iteration of condition 1 is 10 times, and the result will converge. The maximum iterations of condition 2 and 3 only need 7 times, and the results can converge.The calculation resultsFigure 23 and Fig. 24 are the displacement nephograms of the soil around the anchor piers for 100 kN and 400 kN, respectively. The soil displacement increases with increasing load, the affected area will increase and become uniform, and the area under load will also increase. The soil within the range of 1–3 m around the anchor pier is greatly affected, accounting for 80% of the total force. The soil around the anchor pier should be reinforced, and the anchoring force should be enhanced in the design.Figure 23Displacement fringe of soil around the anchor piers for 100 kN.Full size imageFigure 24Displacement fringe of soil around the anchor piers for 400 kN.Full size imageIn order to further study the influence of anchorage pier size on the displacement and deformation of anchorage system, finite element models with different sizes are established by finite element method. The stress nephogram is shown in Figs. 25, 26 and 27.Figure 25Top 800 mm, bottom 800 mm anchor pier stress nephogram.Full size imageFigure 26Top 1000 mm, bottom 1000 mm anchor pier stress nephogram.Full size imageFigure 27Top 800 mm, bottom 1000 mm anchor pier stress nephogram.Full size imageFrom Figs. 25, 26 and 27, it can be seen that when the anchor pier is rectangular, the deformation of the tensile anchor system decreases with the increase of the size of the anchor pier, but the degree is small. When the anchor pier is trapezoidal, the material is small, but the deformation is more ideal than the rectangular. It can be seen that reasonable selection of anchor pier size is crucial, not blindly increase the size of anchor pier.Figure 28 shows that the displacement of the soil around the anchor pier increases with increasing load, and the added value is obvious at approximately 2–3 mm. Figure 29 shows that the increase in load has a great effect on the soil in front of the anchor pier. As the load increases, the compressive deformation of the soil gradually increases. As the distance from the anchor pier increases, the displacement of the soil decreases, and the scope of influence gradually decreases. The displacement of the soil tends to be stable beyond 4–5 m from the anchor pier.Figure 28The displacement of soil around anchor pier.Full size imageFigure 29The horizontal displacement of soil along cable axis.Full size imageComparison of theoretical calculation and numerical simulation results at the time of load variationTo verify the correctness of the theoretical calculation, we compare the theoretical calculation with numerical simulation results of displacement deformation of anchor-pulling system under different pulling force of stayed cable. The results are shown in Fig. 30, see Table 3 for data.Figure 30Comparison of theoretical calculation and numerical simulation results.Full size imageTable 3 Comparison between theoretical calculation and numerical simulation.Full size tableAs seen from Fig. 30, the theoretical and numerical simulation results are consistent, showing a linear growth trend. The slope difference of the two straight lines is approximately 5%, which meets the accuracy requirements of geotechnical engineering. As the restraint effect of the surrounding soil on the anchor pier is not fully considered, the theoretical calculation result is too large. The deformation of anchor (left( {S_{1} } right)) in displacement deformation is the same, and the relative shear displacement (left( {S_{2} } right)) of the anchor pier and the soil and the compressive deformation ((S_{3} )) of the soil at the front end of the anchor pier are 1.25 times and 1.08 times the numerical simulation results, respectively. The change in (left( {S_{2} } right)) in the calculation results is large and should be taken into account in the design. More

  • in

    Variation in diet composition and its relation to gut microbiota in a passerine bird

    Büyükdeveci, M. E., Balcázar, J. L., Demirkale, İ & Dikel, S. Effects of garlic-supplemented diet on growth performance and intestinal microbiota of rainbow trout (Oncorhynchus mykiss). Aquaculture 486, 170–174 (2018).
    Google Scholar 
    Maklakov, A. A. et al. Sex-specific fitness effects of nutrient intake on reproduction and lifespan. Curr. Biol. 18, 1062–1066 (2008).CAS 
    PubMed 

    Google Scholar 
    Totsch, S. K. et al. Effects of a Standard American Diet and an anti-inflammatory diet in male and female mice. Eur. J. Pain 22, 1203–1213 (2018).CAS 
    PubMed 

    Google Scholar 
    Green, D. A. & Millar, J. S. Changes in gut dimensions and capacity of Peromyscus maniculatus relative to diet quality and energy needs. Can. J. Zool. 65, 2159–2162 (1987).
    Google Scholar 
    Jones, V. A. et al. Crohn’s disease: Maintenance of remission by diet. Lancet 2, 177–180 (1985).CAS 
    PubMed 

    Google Scholar 
    Hirai, T. Ontogenetic change in the diet of the pond frog, Rana nigromaculata. Ecol. Res. 17, 639–644 (2002).
    Google Scholar 
    Qin, J. et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sender, R., Fuchs, S. & Milo, R. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell 164, 337–340 (2016).CAS 
    PubMed 

    Google Scholar 
    Reikvam, D. H. et al. Depletion of murine intestinal microbiota: effects on gut mucosa and epithelial gene expression. PLoS ONE 6, e17996 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sommer, F. & Bäckhed, F. The gut microbiota-masters of host development and physiology. Nat. Rev. Microbiol. 11, 227–238 (2013).CAS 
    PubMed 

    Google Scholar 
    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muegge, B. D. et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970–974 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Youngblut, N. D. et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat. Commun. 10, 2200 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: Human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zhu, Y. et al. Beef, chicken, and soy proteins in diets induce different gut microbiota and metabolites in rats. Front. Microbiol. 8, 1395 (2017).Zimmer, J. et al. A vegan or vegetarian diet substantially alters the human colonic faecal microbiota. Eur. J. Clin. Nutr. 66, 53–60 (2012).CAS 
    PubMed 

    Google Scholar 
    McKenney, E. A., Rodrigo, A. & Yoder, A. D. Patterns of gut bacterial colonization in three primate species. PLoS ONE 10, e0124618 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Bergmann, G. T. Microbial community composition along the digestive tract in forage- and grain-fed bison. BMC Vet. Res. 13, 253 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, C. D. et al. Microbiome structural and functional interactions across host dietary niche space. Integr. Comp. Biol. 57, 743–755 (2017).CAS 
    PubMed 

    Google Scholar 
    Song, S. J. et al. Comparative analyses of vertebrate gut microbiomes reveal convergence between birds and bats. mBio 11, e02901–19 (2020).Bodawatta, K. H., Sam, K., Jønsson, K. A. & Poulsen, M. Comparative analyses of the digestive tract microbiota of New Guinean passerine birds. Front. Microbiol. 9, 1830 (2018).Capunitan, D. C., Johnson, O., Terrill, R. S. & Hird, S. M. Evolutionary signal in the gut microbiomes of 74 bird species from Equatorial Guinea. Mol. Ecol. 29, 829–847 (2020).CAS 
    PubMed 

    Google Scholar 
    Hird, S. M., Sánchez, C., Carstens, B. C. & Brumfield, R. T. Comparative gut microbiota of 59 neotropical bird species. Front. Microbiol. 6, 1403 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Waite, D. W. & Taylor, M. W. Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front. Microbiol 5, 223 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Loo, W. T., Dudaniec, R. Y., Kleindorfer, S. & Cavanaugh, C. M. An inter-island comparison of Darwin’s finches reveals the impact of habitat, host phylogeny, and island on the gut microbiome. PLoS ONE 14, e0226432 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Loo, W. T., García-Loor, J., Dudaniec, R. Y., Kleindorfer, S. & Cavanaugh, C. M. Host phylogeny, diet, and habitat differentiate the gut microbiomes of Darwin’s finches on Santa Cruz Island. Sci. Rep. 9, 1–12 (2019).
    Google Scholar 
    Murray, M. H. et al. Gut microbiome shifts with urbanization and potentially facilitates a zoonotic pathogen in a wading bird. PLoS ONE 15, e0220926 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Orłowski, G. & Karg, J. Diet of nestling Barn Swallows Hirundo rustica in rural areas of Poland. Cent. Eur. J. Biol. 6, 1023–1035 (2011).
    Google Scholar 
    Wiesenborn, W. D. & Heydon, S. L. Diets of breeding southwestern willow flycatchers in different habitats. Wilson J. Ornithol. 119, 547–557 (2007).
    Google Scholar 
    Moreby, S. J. An aid to the identification of arthropod fragments in the faeces of gamebird chicks (Galliformes). Ibis 130, 519–526 (1988).
    Google Scholar 
    Zeale, M. R. K., Butlin, R. K., Barker, G. L. A., Lees, D. C. & Jones, G. Taxon-specific PCR for DNA barcoding arthropod prey in bat faeces. Mol. Ecol. Resour. 11, 236–244 (2011).CAS 
    PubMed 

    Google Scholar 
    Bolnick, D. I. et al. Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch). Ecol. Lett. 17, 979–987 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Bolnick, D. I. et al. Individual diet has sex-dependent effects on vertebrate gut microbiota. Nat. Commun. 5, 4500 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Clarke, L. J., Soubrier, J., Weyrich, L. S. & Cooper, A. Environmental metabarcodes for insects: In silico PCR reveals potential for taxonomic bias. Mol. Ecol. Resour. 14, 1160–1170 (2014).CAS 
    PubMed 

    Google Scholar 
    Deagle, B. E., Jarman, S. N., Coissac, E., Pompanon, F. & Taberlet, P. DNA metabarcoding and the cytochrome c oxidase subunit I marker: Not a perfect match. Biol. Lett. 10, 20140562 (2014).Elbrecht, V. et al. Testing the potential of a ribosomal 16S marker for DNA metabarcoding of insects. PeerJ 4, e1966 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Elbrecht, V. & Leese, F. Can DNA-based ecosystem assessments quantify species abundance? Testing primer bias and biomass—Sequence relationships with an innovative metabarcoding protocol. PLoS ONE 10, e0130324 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Piñol, J., San Andrés, V., Clare, E. L., Mir, G. & Symondson, W. O. C. A pragmatic approach to the analysis of diets of generalist predators: The use of next-generation sequencing with no blocking probes. Mol. Ecol. Resour. 14, 18–26 (2014).PubMed 

    Google Scholar 
    Góngora, E., Elliott, K. H. & Whyte, L. Gut microbiome is affected by inter-sexual and inter-seasonal variation in diet for thick-billed murres (Uria lomvia). Sci. Rep. 11, 1200 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Teyssier, A. et al. Diet contributes to urban-induced alterations in gut microbiota: Experimental evidence from a wild passerine. Proc. R. Soc. B 287, 20192182 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Kreisinger, J. et al. Temporal stability and the effect of transgenerational transfer on fecal microbiota structure in a long distance migratory bird. Front. Microbiol. 8, 50 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Petrželková, A. et al. Brood parasitism and quasi-parasitism in the European barn swallow (Hirundo rustica rustica). Behav. Ecol. Sociobiol. 69, 1405–1414 (2015).
    Google Scholar 
    Kreisinger, J. et al. Fecal microbiota associated with phytohaemagglutinin-induced immune response in nestlings of a passerine bird. Ecol. Evol. 8, 9793–9802 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Klindworth, A. et al. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41, e1 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Elbrecht, V. & Leese, F. Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment. Front. Environ. Sci. 5, 11 (2017).Jiang, H., Lei, R., Ding, S.-W. & Zhu, S. Skewer: a fast and accurate adapter trimmer for next-generation sequencing paired-end reads. BMC Bioinform. 15, 182 (2014).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (2018).Callahan, B. J. et al. DADA2: High-resolution sample inference from Illumina amplicon data. Nat Meth 13, 581–583 (2016).CAS 

    Google Scholar 
    Pafčo, B. et al. Metabarcoding analysis of strongylid nematode diversity in two sympatric primate species. Sci. Rep. 8, 5933 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. phyloseq: An R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wright, E. S. RNAconTest: Comparing tools for noncoding RNA multiple sequence alignment based on structural consistency. RNA 26, 531–540 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes—A 2019 update. Nucleic Acids Res. 48, D445–D453 (2020).CAS 
    PubMed 

    Google Scholar 
    Ondov, B. D., Bergman, N. H. & Phillippy, A. M. Interactive metagenomic visualization in a Web browser. BMC Bioinform. 12, 385 (2011).
    Google Scholar 
    Stoffel, M. A., Nakagawa, S. & Schielzeth, H. rptR: Repeatability estimation and variance decomposition by generalized linear mixed-effects models. Methods Ecol. Evol. 8, 1639–1644 (2017).
    Google Scholar 
    Schielzeth, H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).
    Google Scholar 
    Legendre, P. & Anderson, M. J. Distance-based redundancy analysis: Testing multispecies responses in multifactorial ecological experiments. Ecol. Monogr. 69, 1–24 (1999).
    Google Scholar 
    Oksanen, J. et al. vegan: Community Ecology Package. R package version 2.5-2. 2018. (2018).Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).MathSciNet 
    MATH 

    Google Scholar 
    Hui, F. K. C. boral–Bayesian ordination and regression analysis of multivariate abundance data in R. Methods Ecol. Evol. 7, 744–750 (2016).
    Google Scholar 
    Aivelo, T. & Norberg, A. Parasite-microbiota interactions potentially affect intestinal communities in wild mammals. J. Anim. Ecol. 87, 438–447 (2018).PubMed 

    Google Scholar 
    Caviedes-Vidal, E. et al. The digestive adaptation of flying vertebrates: High intestinal paracellular absorption compensates for smaller guts. Proc. Natl. Acad. Sci. U.S.A. 104, 19132–19137 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McWhorter, T. J., Caviedes-Vidal, E. & Karasov, W. H. The integration of digestion and osmoregulation in the avian gut. Biol. Rev. Camb. Philos. Soc. 84, 533–565 (2009).PubMed 

    Google Scholar 
    Grigolo, C. P. et al. Diet heterogeneity and antioxidant defence in Barn Swallow Hirundo rustica nestlings. Avocetta 43, 1 (2019).
    Google Scholar 
    Law, A. A. et al. Diet and prey selection of barn swallows (Hirundo rustica) at Vancouver International Airport. Canadian Field-Naturalist 131, 26 (2017).
    Google Scholar 
    McClenaghan, B., Nol, E. & Kerr, K. C. R. DNA metabarcoding reveals the broad and flexible diet of a declining aerial insectivore. Auk 136, uky003 (2019).Turner, A. K. The use of time and energy by aerial feeding birds (University of Stirling, 1981).
    Google Scholar 
    Bryant, D. M. & Turner, A. K. Central place foraging by swallows (Hirundinidae): The question of load size. Anim. Behav. 30, 845–856 (1982).
    Google Scholar 
    Møller, A. P. Advantages and disadvantages of coloniality in the swallow, Hirundo rustica. Anim. Behav. 35, 819–832 (1987).
    Google Scholar 
    Brodmann, P. A. & Reyer, H.-U. Nestling provisioning in water pipits (Anthus spinoletta): Do parents go for specific nutrients or profitable prey?. Oecologia 120, 506–514 (1999).ADS 
    PubMed 

    Google Scholar 
    Herlugson, C. J. Food of adult and nestling Western and Mountain bluebirds. Murrelet 63, 59–65 (1982).
    Google Scholar 
    Batt, B. D. J., Anderson, M. G. & Afton, A. D. Ecology and management of breeding waterfowl (Univ of Minnesota Press, 1992).
    Google Scholar 
    Douglas, D. J. T., Evans, D. M. & Redpath, S. M. Selection of foraging habitat and nestling diet by Meadow Pipits Anthus pratensis breeding on intensively grazed moorland. Bird Study 55, 290–296 (2008).
    Google Scholar 
    Waugh, D. R. Predation strategies in aerial feeding birds (University of Stirling, 1978).
    Google Scholar 
    Kropáčková, L. et al. Co-diversification of gastrointestinal microbiota and phylogeny in passerines is not explained by ecological divergence. Mol. Ecol. 26, 5292–5304 (2017).PubMed 

    Google Scholar 
    Kohl, K. D. et al. Physiological and microbial adjustments to diet quality permit facultative herbivory in an omnivorous lizard. J. Exp. Biol. 219, 1903–1912 (2016).PubMed 

    Google Scholar 
    Baxter, N. T. et al. Intra- and interindividual variations mask interspecies variation in the microbiota of sympatric Peromyscus populations. Appl. Environ. Microbiol. 81, 396–404 (2015).ADS 
    PubMed 

    Google Scholar 
    Holmes, I. A., Monagan, I. V. Jr., Rabosky, D. L. & Davis Rabosky, A. R. Metabolically similar cohorts of bacteria exhibit strong cooccurrence patterns with diet items and eukaryotic microbes in lizard guts. Ecol. Evol. 9, 12471–12481 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. Diet diversity is associated with beta but not alpha diversity of pika gut microbiota. Front. Microbiol. 7, 1169 (2016).Li, H. et al. Diet simplification selects for high gut microbial diversity and strong fermenting ability in high-altitude pikas. Appl. Microbiol. Biotechnol. 102, 6739–6751 (2018).CAS 
    PubMed 

    Google Scholar 
    Ambrosini, R. et al. Cloacal microbiomes and ecology of individual barn swallows. FEMS Microbiol. Ecol. 95, fiz061 (2019).Kreisinger, J., Čížková, D., Kropáčková, L. & Albrecht, T. Cloacal microbiome structure in a long-distance migratory bird assessed using deep 16sRNA pyrosequencing. PLoS ONE 10, e0137401 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Noguera, J. C., Aira, M., Pérez-Losada, M., Domínguez, J. & Velando, A. Glucocorticoids modulate gastrointestinal microbiome in a wild bird. R. Soc. Open Sci. 5, 171743 (2018).Shehzad, W. et al. Carnivore diet analysis based on next-generation sequencing: Application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol. Ecol. 21, 1951–1965 (2012).CAS 
    PubMed 

    Google Scholar 
    Vestheim, H. & Jarman, S. N. Blocking primers to enhance PCR amplification of rare sequences in mixed samples—A case study on prey DNA in Antarctic krill stomachs. Front. Zool. 5, 12 (2008).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Infection strategy and biogeography distinguish cosmopolitan groups of marine jumbo bacteriophages

    Detection and validation of high-quality jumbo phage binsDue to the large size of jumbo bacteriophage genomes, it is likely that they are present in multiple distinct contigs in metagenomic datasets and therefore require binning to recover high-quality metagenome-assembled genomes (MAGs) [28]. This has been shown for large DNA viruses that infect eukaryotes, where several recent studies have successfully employed binning approaches to recover viral MAGs [2, 3, 30]. Here, we used the same 1545 high-quality metagenomic assemblies [31] used in a recent study to recover giant viruses of eukaryotes [3], but we modified the bioinformatic pipeline to identify bins of jumbo bacteriophages. These metagenomes were compiled by Parks et al. [31] and included available metagenomes on the NCBI’s Short Read Archive by December 31, 2015 (see Parks et al. [31]). This dataset includes a wide variety of marine metagenomes (n = 469) including many non-Tara metagenomes (n = 165). We focused our benchmarking and distribution analyses on Tara data [29] because of the well-curated metadata and size fractions in this dataset. We first binned the contigs from these assemblies with MetaBat2 [32], which groups contigs together based on similar nucleotide composition and coverage profiles, and focused on bins of at least 200 kilobases in total length. We subsequently identified bins composed of bacteriophage contigs through analysis with VirSorter2 [33], VIBRANT [34], and CheckV [35] (see Methods for details).The occurrence of multiple copies of highly conserved marker genes is typically used to assess the level of contamination present in metagenome-derived genomes of bacteria and archaea [36]. Because bacteriophage lack these marker genes [37], we developed alternative strategies to assess possible contamination in our jumbo phage bins. Firstly, we refined the set of bins by retaining those with no more than 5 contigs that were each at least 5 kilobases in length to reduce the possibility that spurious contigs were put together. Secondly, we assessed the possibility that two strains of smaller phages with similar nucleotide composition may be binned together by aligning the contigs in a bin to each other. Bins that had contigs with high sequence similarity across the majority of their lengths were discarded (Supplementary Fig. 1). Thirdly, we discarded bins if their contigs exhibited aberrant co-abundance profiles in different metagenomes (see Supplementary Methods). To generate these co-abundance profiles, we mapped reads from 225 marine metagenomes provided by Tara Oceans [29] onto the bins. Coverage variation between contigs was benchmarked based on read-mapping results from artificially-fragmented reference genomes present in the samples (See Methods for details). Only bins with coverage variation below our empirically-derived threshold were retained. Using this stringent filtering, we identified 85 bins belonging to jumbo bacteriophages. These bins ranged in length from 202 kbp to 498 kbp, and 31 consisted of a single contig, while 54 consisted of 2–5 contigs (Supplementary Fig. 2).To assess global diversity patterns of jumbo bacteriophages, we combined these jumbo phage bins together with a compiled database of previously-identified jumbo phages that included all complete jumbo Caudovirales genomes on RefSeq (downloaded July 5th, 2020), the INPHARED database [14], a recent survey of cultivated jumbo phages [6], the Al-Shayeb et al. study [4], and marine jumbo phage contigs from metagenomic surveys of GOV 2.0 [26] (60 jumbo phages), ALOHA 2.0 [38] (8 jumbo phages), and one megaphage MAG recovered from datasets of the English Channel [39]. Ultimately, we arrived at a set of 244 jumbo phages, including the 85 bins, that were present in at least one Tara Oceans sample (min. 20% genome covered, see Methods) or deriving from a marine dataset (i.e. ALOHA, GOV 2.0) which we analyzed further in this study and refer to as marine jumbo phages. Statistics on genomic features can be found in Supplementary Dataset 1.Marine jumbo phages belong to distinct groups with diverse infection strategiesBecause bacteriophages lack high-resolution, universal marker genes for classification, such as 16S rRNA in bacteria, phages are often grouped by gene content [40, 41]. Here, we generated a bipartite network that included the 85 bins of jumbo phages with a dataset of available Caudovirales complete genomes in RefSeq (3012 genomes; downloaded July 5th, 2020) and the full set of reference jumbo phages described above. To construct the bipartite network, we compared proteins encoded in all the phage genomes to the VOG database, and each genome was linked to VOG hits that were present (Fig. 1, Supplementary Dataset 2, see Methods for details). To identify groups of phage genomes with similar VOG profiles, we employed a spinglass community detection algorithm [42] to generate genome clusters. Similar methods have recently been used to analyze evolutionary relationships in other dsDNA viruses [41]. The marine jumbo phages of this study clustered into five groups that included both jumbo and non-jumbo phage genomes (Fig. 2a). We refer to these five clusters as Phage Genome Clusters (PGCs): PGC_A, PGC_B, PGC_C, PGC_D, and PGC_E. These PGCs included cultured phages and metagenome-derived jumbo phages found in various environments (i.e. aquatic, engineered) and isolated on a diversity of hosts (i.e. Firmicutes, Proteobacteria, Bacteroidetes) (Fig. 2b, c). Of the marine jumbo phages, 135 belonged to PGC_A, 11 to PGC_B, 90 to PGC_C, 7 to PGC_D, and 1 to PGC_E (Fig. 1b). In addition to this network-based analysis, we also examined phylogenies of the major capsid protein (MCP) and the terminase large subunit (TerL) encoded by the marine jumbo phages and the same reference phage set examined in the network (Fig. 1c, d). With the exception of PGC_A, the marine jumbo phages that belong to the same PGC appeared more closely related to each other than those belonging to different clusters. The polyphyletic placement of jumbo phage PGCs in these marker gene phylogenies is consistent with the view that genome gigantism evolved multiple times, independently within the Caudovirales [6].Fig. 1: Bipartite network and marker gene analyses of jumbo phages.a Network with marine jumbos and references as nodes and edges based on shared VOGs. Marine jumbo phage nodes are colored by PGC as detected with spinglass community detection analysis, other nodes are in gray. Edges and VOG nodes have been omitted to more clearly represent the pattern of phage clustering. Node size corresponds to the natural log of genome length in kilobases. b Barchart of the number of members in each PGC. PGCs with marine jumbo phages are denoted with a star and the number of marine jumbo phages in that PGC. Proportion of marine jumbo phages in that PGC is colored. Phylogenies of TerL (c) and MCP (d) proteins with references and bins. Inner ring and branches are colored by the 5 PGCs that marine jumbo phages belong to. Navy blue circles in the outer ring denote marine jumbo phages.Full size imageFig. 2: Statistics of the Phage Genomes Clusters (PGCs).a Boxplot of genome length in each network cluster (x-axis is PGC number). Star denotes PGC with a marine jumbo phage and the color matches the PGC letters of Fig. 1. b Stacked barplot of the metagenome environment from which each phage derives from in each PGC (x-axis). Reference (yellow) are cultured phages, in black are the bins of jumbo phages from this study. c Stacked barplot of the host phylum of the RefSeq cultured phages in each cluster; metagenomic phages are in gray.Full size imageWe then compared functional content encoded by the marine jumbo phages in the PGCs to identify functional differences that distinguish these groups. PGC_E was excluded from this analysis because this genome cluster contained only a single jumbo phage. Collectively, most genes of the marine jumbo phages could not be assigned a function (mean: 86.60%, std dev: 7.01%; Supplementary Dataset 3), which is common with environmental viruses [43, 44]. Genes with known functions primarily belonged to functional categories related to viral replication machinery, such as information processing and virion structure (Fig. 3a), and these genes drove the variation between the genome clusters of marine jumbo phages (Fig. 3b). A recent comparative genomic analysis of cultivated jumbo phages was able to identify three types of jumbo phages that are defined by different infection strategies and host interactions (referred to as Groups 1–3) [6]. We cross-referenced our PGCs and found that PGCs B, C, and D of this study corresponded to Groups 1, 2, and 3, respectively, suggesting that these genome clusters contain phages with distinct infection and replication strategies. PGC_A corresponded to multiple groups, indicating that this genome cluster contains a particularly broad diversity of phages.Fig. 3: Functional predictions of PGCs.a Functional categories for genes encoded by jumbo phages averaged by PGC. b Heatmap of proportion of genomes in each PGC that contain the listed genes. Listed genes were selected based on containing a known function and having a variance between the PGCs above 0.2. Dendrogram was generated based on hierarchical clustering in pheatmap.Full size imageThe second largest phage cluster with marine jumbo phages, PGC_B, consists of 238 phages (11 (4.6%) marine jumbo phages, including 10 bins generated here), and included cultured phages of Group 1, which is typified by Pseudomonas aeruginosa phage PhiKZ. Supporting this correspondence with Group 1, all marine jumbo phages of PGC_B encoded the same distinct replication and transcription machinery, including a divergent family B DNA polymerase and a multi-subunit RNA polymerase (Fig. 3b, Supplementary Dataset 3). These marine jumbo phages also encoded a PhiKZ internal head protein, and they uniquely encoded shell and tubulin homologs which has recently been found in PhiKZ phages to assist in the formation of a nucleus-like compartment during infection that protects the replicating phage from host defenses [18, 19]. Although we could not confidently predict hosts for the 11 metagenomic marine jumbo phages in this PGC_B (Supplementary Dataset 1), the cultured phages of this genome cluster infect pathogenic bacteria belonging to the phyla Proteobacteria (178 phages) and Firmicutes (6 phages) (Fig. 2c), implicating a potential host range for marine jumbo phages in PGC_B.The next largest phage genome cluster, PGC_C, comprised of 156 phages total (90 marine jumbo phages (57.7%); 4 bins generated from this study) and included reference jumbo phages in Group 2 (31, 19.9%) which are typified by Alphaproteobacteria and Cyanobacteria phages. Likewise, the host range of other cultured phages in PGC_C support the Group 2 correspondence, either infecting Cyanobacteria (139 phages) or Proteobacteria (4 phages) (Fig. 2c). Furthermore, all 3 marine metagenomic phages in PGC_C for which hosts could be predicted were matched to Cyanobacteria hosts (Supplementary Dataset 1). Functional annotations of PGC_C marine jumbo phages revealed nearly all encode a family B DNA polymerase (97.8% of phages) and the photosystem II D2 protein (PF00124, VOG04549) characteristic of cyanophages (90% of phages) (Fig. 3b). This PGC included the reference Prochlorococcus phage P-TIM68 (NC_028955.1), which encodes components of both photosystem I and II as a mechanism to enhance cyclic electron flow during infection [45]. This suggests that an enhanced complement of genes used to manipulate host physiology during infection may be a driver of large genome sizes in this group. Additionally, most of the PGC_C marine jumbo phages encoded lipopolysaccharide biosynthesis proteins (76%), which have been found in cyanophage genomes that may induce a “pseudolysogeny” state, when infected host cells are dormant, by changing the surface of the host cell and preventing additional phage infections [6] (Supplementary Dataset 3). Taken together, most marine jumbo phages of PGC_C likely follow host interactions of jumbo cyanophages, such as potentially manipulating host metabolism by encoding their own photosynthetic genes and potentially inducing a pseudolysogenic state.Finally, phages of PGC_D totaled at 47 phages, of which 7 were marine jumbo phages generated in this study (14.9%). This group included Group 3 jumbo phages (15, 31.9%), which is primarily distinguished by encoding a T7-type DNA polymerase but is not typified by a particular phage type or host range. Supporting this grouping, all marine jumbo phages in this study encoded a T7 DNA polymerase which belongs to family A DNA polymerases (Fig. 3b, Supplementary Dataset 3). Most of the other genes distinctively encoded by the marine jumbo phages in this group included structural genes related to T7 (T7 baseplate, T7 capsid proteins), a eukaryotic DNA topoisomerase I catalytic core (PF01028), and DNA structural modification genes (MmcB-like DNA repair protein, DNA gyrase B). Hosts of metagenomic marine jumbo phages in PGC_D could not be predicted (Supplementary Dataset 1); however, cultured Group 3 jumbo phages in PGC_D all infect Proteobacteria, primarily Enterobacteria and other pathogens.The largest of the phage genome clusters, PGC_A, contained 469 phages, including 135 marine jumbo phages (63 bins from this study). This genome cluster contained the largest jumbo phages, such as Bacillus phage G (498 kb) and the marine megaphage Mar_Mega_1 (656 kb) recently recovered from the English Channel [39]. Unlike other PGCs, PGC_A contained mostly metagenomic phages (401, 85%, Fig. 2b, c). Considering PGC_A contains the largest jumbo phages (Figs. 1b, 2a), the vast genetic diversity in this PGC might explain why few genes were found to distinguish this group. Of the genes unique to PGC_A, only one was present in at least half of the phages (51.9%), which was a Bacterial DNA polymerase III alpha NTPase domain (PF07733). The host ranges of cultured phages from this PGC further reflect the large diversity of this group and included a variety of phyla and genera that can perform complex metabolisms or lifestyles, such as the nitrogen-fixing Cyanobacteria of the Nodularia genus isolated from the Baltic Sea (accessions NC_048756.1 and NC_048757.1) and the Bacteroidetes bacteria Rhodothermus isolated from a hot spring in Iceland (NC_004735.1) [46]. Because this group contains an abundance of metagenome-derived genomes that encode mostly proteins with no VOG annotation (Supplementary Dataset 2), it is possible that it includes several distinct lineages that could not be distinguished using the community detection algorithm of the bipartite network analysis.Relative abundance of jumbo bacteriophages across size fractionsTo explore the distribution of the marine jumbo phages in the ocean, we first examined the size fractions in which the jumbo phages were most prevalent. To remove redundancy for the purposes of read mapping, we examined the 244 jumbo phages at the population-level ( >80% genes shared with >95% average nucleotide identity [24]), corresponding to 142 populations (11 unique to this study, corresponding to 47 bins). We then mapped Tara Oceans metagenomes onto the 142 jumbo phage populations, and 102 of these populations could be detected [min. 20% of genome covered], resulting in 74 populations in PGC_A, 2 in PGC_B, 22 in PGC_C, 3 in PGC_D, and 1 in PGC_E. Out of the 225 Tara Oceans metagenomes examined, 213 (94.6%) contained at least one jumbo phage population (median: 7, Supplementary Dataset 4). Jumbo phages were more frequently detected in samples below 0.22 µm ( More