The role of forest structure and composition in driving the distribution of bats in Mediterranean regions
Barnagaud, J. Y., Barbaro, L., Hampe, A., Jiguet, F. & Archaux, F. Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography (Cop.) 36, 1218–1226 (2013).
Google Scholar
LeRoy, P. N. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. North Am. Benthol. Soc. 391–409 (1997).Keddy, P. A. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3, 157–164 (1992).
Google Scholar
Whittaker, R. J., Willis, K. J. & Field, R. Scale and species richness: Towards a general, hierarchical theory of species diversity. J. Biogeogr. 28, 453–470 (2001).
Google Scholar
Willis, K. J. & Whittaker, R. J. Species diversity – scale matters. Science (80-. ). 295, 1245–1247 (2002).Brockerhoff, E. G. et al. Forest biodiversity, ecosystem functioning. Biodivers. Conserv. 26, 3005–3035 (2017).
Google Scholar
Dolek, M. et al. Ants on oaks: effects of forest structure on species composition. J. Insect Conserv. 13, 367–375 (2009).
Google Scholar
Díaz, I. A., Armesto, J. J., Reid, S., Sieving, K. E. & Willson, M. F. Linking forest structure and composition: Avian diversity in successional forests of Chiloé Island Chile. Biol. Conserv. 123, 91–101 (2005).
Google Scholar
Fady-Welterlen, B. Is there really more biodiversity in Mediterranean forest ecosystems?. Taxon 54, 905–910 (2005).
Google Scholar
Peñuelas, J. et al. Impacts of global change on Mediterranean forests and their services. Forests 8, 1–37 (2017).
Google Scholar
Resco De Dios, V., Fischer, C. & Colinas, C. Climate change effects on mediterranean forests and preventive measures. New For. 33, 29–40 (2007).Lindner, M. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manage. 259, 698–709 (2010).
Google Scholar
Cadieux, P. et al. Projected effects of climate change on boreal bird community accentuated by anthropogenic disturbances in western boreal forest Canada. Divers. Distrib. 26, 668–682 (2020).
Google Scholar
Simmons, N. B. & Cirranello, A. L. Bat Species of the World: A taxonomic and geographic database. https://batnames.org/home.html (2020).Peixoto, F. P., Braga, P. H. P. & Mendes, P. A synthesis of ecological and evolutionary determinants of bat diversity across spatial scales. BMC Ecol. 18, 1–14 (2018).
Google Scholar
Bats in forests: conservation and management. (The Johns Hopkins University Press, 2007).Barclay, R. M. R. & Kurta, A. Ecology and behavioyr of bats roosting in tree cavities and under bark. in Bats in forests: Conservation and management (eds. Lacki, M. J., Hayes, J. P. & Kurta, A.) (The Johns Hopkins University Press, 2007).Lacki, M. J., Amelon, S. K. & Baker, M. D. Foraging Ecology of Bats in Forests. in Bats in forests: Conservation and management (eds. Lacki, M. J., Hayes, J. P. & Kurta, A.) 329 (The Johns Hopkins University Press, 2007).Silvis, A., Ford, W. M. & Britzke, E. R. Day-roost tree selection by northern long-eared bats—What do non-roost tree comparisons and one year of data really tell us?. Glob. Ecol. Conserv. 3, 756–763 (2015).
Google Scholar
Manual de conservación y seguimiento de los quirópteros forestales. in (eds. Guixe, D. & Camprodon, J.) 274 (Ministerio de Agricultura, Pesca y Alimentación y Ministerio para la Transición Ecológica., 2018).Patriquin, K. J. & Barclay, R. M. R. Foraging by bats in cleared, thinned and unharvested boreal forest. J. Appl. Ecol. 40, 646–657 (2003).
Google Scholar
Carr, A., Weatherall, A. & Jones, G. The effects of thinning management on bats and their insect prey in temperate broadleaved woodland. For. Ecol. Manage. 457, 117682 (2020).Norberg, U. M. & Rayner, J. M. V. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. London. B, Biol. Sci. 316, 335–427 (1987).Aldridge, H. D. J. N. & Rautenbach, I. L. Morphology, echolocation and resource partitioning in insectivorous bats. J. Anim. Ecol. 56, 763 (1987).
Google Scholar
Dodd, L. E. et al. Forest structure affects trophic linkages: How silvicultural disturbance impacts bats and their insect prey. For. Ecol. Manage. 267, 262–270 (2012).
Google Scholar
Lumsden, L. F. & Bennett, A. F. Scattered trees in rural landscapes: Foraging habitat for insectivorous bats in south-eastern Australia. Biol. Conserv. 122, 205–222 (2005).
Google Scholar
Fahr, J. & Kalko, E. K. V. Biome transitions as centres of diversity: Habitat heterogeneity and diversity patterns of West African bat assemblages across spatial scales. Ecography (Cop.) 34, 177–195 (2011).
Google Scholar
Ferreira, D. F. et al. Season-modulated responses of Neotropical bats to forest fragmentation. Ecol. Evol. 7, 4059–4071 (2017).PubMed
PubMed Central
Google Scholar
Fuentes-Montemayor, E., Goulson, D., Cavin, L., Wallace, J. M. & Park, K. J. Fragmented woodlands in agricultural landscapes: The influence of woodland character and landscape context on bats and their insect prey. Agric. Ecosyst. Environ. 172, 6–15 (2013).
Google Scholar
Wood, H., Lindborg, R. & Jakobsson, S. European Union tree density limits do not reflect bat diversity in wood-pastures. Biol. Conserv. 210, 60–71 (2017).
Google Scholar
Sagot, M. & Chaverri, G. Effects of roost specialization on extinction risk in bats. Conserv. Biol. 29, 1666–1673 (2015).PubMed
Google Scholar
Russo, D., Cistrone, L. & Jones, G. Spatial and temporal patterns of roost use by tree-dwelling barbastelle bats Barbastella barbastellus. Ecography (Cop.) 28, 769–776 (2005).
Google Scholar
Popa-Lisseanu, A. G., Bontadina, F., Mora, O. & Ibáñez, C. Highly structured fission–fusion societies in an aerial-hawking, carnivorous bat. Anim. Behav. 75, 471–482 (2008).
Google Scholar
Zambrana Pineda, J. F. & Ríos Jiménez, S. El sector primario andaluz en el siglo XX. Instituto de Estadística de Andalucía (2006).Nogueras, J., Garrido-García, J. A. & Fijo-León, A. Patrones de distribución del complejo “Myotis mystacinus” en la península Ibérica”. Barbastella 6, 24–30 (2013).
Google Scholar
Boye, P. & Dietz, M. Development of good practice guidelines for woodland management for bats. English Nature Research Reports (2005) ISSN 0967-876X.Dietz, C. & Kiefer, A. Bats of Britain and Europe. (Bloomsbury Publishing, 2016).Estók, P., Gombkötő, P. & Cserkész, T. Roosting behaviour of the greater noctule Nyctalus lasiopterus Schreber, 1780 (Chiroptera, Vespertilionidae) in Hungary as revealed by radio-tracking. Mammalia 71, 1 (2007).
Google Scholar
Walters, C. L. et al. A continental-scale tool for acoustic identification of European bats. J. Appl. Ecol. 49, 1064–1074 (2012).
Google Scholar
Smeraldo, S. et al. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: Lessons from bats. Biodivers. Conserv. 27, 2425–2441 (2018).
Google Scholar
Crome, F. H. J. & Richards, G. C. Bats and gaps : Microchiropteran community structure in a queensland rain forest. Ecology 69, 1960–1969 (1988).
Google Scholar
R core team. R: A language and environment for statistical computing. (2021).Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).
Google Scholar
Franklin, J. F. & Pelt, R. Van. Spatial spects of structural complexity in old-growth forests. J. For. 22–28 (2004).Ishii, H. T., Tanabe, S. & Hiura, T. Canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. For. Sci. 50, (2004).Pebesma, E. & Bivand, R. sp: Classes and methods for spatial data. (2021).Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the Geospatial Data Abstraction Library. (2021).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2020).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 6, 231–252 (2006).
Google Scholar
Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. (2017).Muscarella, R. et al. ENMeval: Automated runs and evaluations of ecological niche models. (2018).Raes, N. & Ter Steege, H. A null-model for significance testing of presence-only species distribution models. Ecography (Cop.) 30, 727–736 (2007).
Google Scholar
Wittmann, M. E., Barnes, M. A., Jerde, C. L., Jones, L. A. & Lodge, D. M. Confronting species distribution model predictions with species functional traits. Ecol. Evol. 6, 873–879 (2016).PubMed
PubMed Central
Google Scholar
Hanspach, J., Kühn, I., Pompe, S. & Klotz, S. Predictive performance of plant species distribution models depends on species traits. Perspect. Plant Ecol. Evol. Syst. 12, 219–225 (2010).
Google Scholar
Pöyry, J., Luoto, M., Heikkinen, R. K. & Saarinen, K. Species traits are associated with the quality of bioclimatic models. Glob. Ecol. Biogeogr. 17, 403–414 (2008).
Google Scholar
van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography (Cop.) 39, 542–552 (2016).
Google Scholar
Froidevaux, J. S. P., Zellweger, F., Bollmann, K., Jones, G. & Obrist, M. K. From field surveys to LiDAR: Shining a light on how bats respond to forest structure. Remote Sens. Environ. 175, 242–250 (2016).ADS
Google Scholar
Edenius, L. & Elmberg, J. Landscape level effects of modern forestry on bird communities in North Swedish boreal forests. Landsc. Ecol. 11, 325–338 (1996).
Google Scholar
Drapeau, P. et al. Landscape-scale disturbances and changes in bird communities of boreal mixed-wood forests. Ecol. Monogr. 70, 423–444 (2000).
Google Scholar
McGarigal, K. & McComb, W. C. Relationships between landscape structure and breeding birds in the Oregon coast range. Ecol. Monogr. 65, 235–260 (1995).
Google Scholar
Gil-Tena, A., Brotons, L. & Saura, S. Effects of forest landscape change and management on the range expansion of forest bird species in the Mediterranean region. For. Ecol. Manage. 259, 1338–1346 (2010).
Google Scholar
Gil-tena, A., Brotons, L. & Saura, S. Mediterranean forest dynamics and forest bird distribution changes in the late 20th century. Glob. Chang. Biol. 15, 474–485 (2009).ADS
Google Scholar
Goiti, U., Garin, I., Almenar, D., Salsamendi, E. & Aihartza, J. Foraging by mediterranean horshoe bats (Rhinolophus euryale) in relation to prey distribution and edge habitat. J. Mammal. 89, 493–502 (2008).
Google Scholar
Motte, G. & Libois, R. Conservation of the lesser horseshoe bat (Rhinolophus hipposideros Bechstein, 1800) (Mammalia: Chiroptera) in Belgium. A case study of feeding habitat requirements. Belgian J. Zool. 132, 49–54 (2002).Castro, E. B. Los bosques ibéricos: una interpretación geobotánica. (GeoPlaneta, Editorial, SA, 1997).Ozanne, C. M. P. A comparison of the canopy arthropod communities of coniferous and broad-leaved trees in the United Kingdom. Selbyana 20, 290–298 (1999).Vehviläinen, H., Koricheva, J. & Ruohomäki, K. Effects of stand tree species composition and diversity on abundance of predatory arthropods. Oikos 117, 935–943 (2008).
Google Scholar
Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
Google Scholar
Lisón, F. & Sánchez-Fernández, D. Low effectiveness of the Natura 2000 network in preventing land-use change in bat hotspots. Biodivers. Conserv. 26, 1989–2006 (2017).
Google Scholar
Gillespie, T. W. & Walter, H. Distribution of bird species richness at a regional scale in tropical dry forest of central America. J. Biogeogr. 28, 651–662 (2001).
Google Scholar
O’Brien, M. J. et al. Tree diversity drives diversity of arthropod herbivores, but successional stage mediates detritivores. Ecol. Evol. 7, 8753–8760 (2017).PubMed
PubMed Central
Google Scholar
Zhang, J. et al. Tree diversity promotes generalist herbivore community patterns in a young subtropical forest experiment. Oecologia 183, 455–467 (2017).ADS
PubMed
Google Scholar
Naďo, L. et al. Highly selective roosting of the giant noctule bat and its astonishing foraging activity by GPS tracking in a mountain environment. Mammal Res. 64, 587–594 (2019).
Google Scholar
Begehold, H., Rzanny, M. & Flade, M. Forest development phases as an integrating tool to describe habitat preferences of breeding birds in lowland beech forests. J. Ornithol. 156, 19–29 (2015).
Google Scholar
Hayes, J. P. Presence, relative abundance, and resource selection of bats in managed forest landscapes in western Oregon. vol. 53 (Oregon State University, 2007).Mortimer, G. Foraging, roosting and survival of natterer’s bats, Myotis nattereri, in a commercial coniferous plantation. (University of St Andrews, 2006).Kirkpatrick, L. et al. Bat use of commercial coniferous plantations at multiple spatial scales: Management and conservation implications. Biol. Conserv. 206, 1–10 (2017).
Google Scholar
Napal, M. & Ibanez, C. Murcielagos y Bosques. in Manual de conservación y seguimiento de los quirópteros forestales (eds. Guixé, D. & Camprodon, J.) (Organismo Autónomo Parques Nacionales. Ministerio para la Transición Ecológica, 2018).Sleep, D. J. H. & Brigham, R. M. An experimental test of clutter tolerance in bats. J. Mammal. 84, 216–224 (2003).
Google Scholar
Fukui, D., Murakami, M., Nakano, S. & Aoi, T. Effect of emergent aquatic insects on bat foraging in a riparian forest. J. Anim. Ecol. 75, 1252–1258 (2006).PubMed
Google Scholar
Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).
Google Scholar
Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. 108, 1474–1478 (2011).ADS
CAS
PubMed
PubMed Central
Google Scholar
Rebelo, H., Tarroso, P. & Jones, G. Predicted impact of climate change on european bats in relation to their biogeographic patterns. Glob. Chang. Biol. 16, 561–576 (2010).ADS
Google Scholar
Amorim, F., Carvalho, S. B., Honrado, J. & Rebelo, H. Designing optimized multi-species monitoring networks to detect range shifts driven by climate change: A case study with bats in the North of Portugal. PLoS ONE 9, 1 (2014).
Google Scholar
Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).
Google Scholar
Jandl, R., Spathelf, P., Bolte, A. & Prescott, C. E. Forest adaptation to climate change—is non-management an option?. Ann. For. Sci. 76, 1–13 (2019).
Google Scholar
Morán-Ordóñez, A. et al. Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios. Ecosyst. Serv. 45, 1 (2020).
Google Scholar
Wickham, H. et al. ggplot2: Create elegant data visualisations using the grammar of graphics. (2020). More