Unpacking the complexity of longitudinal movement and recruitment patterns of facultative amphidromous fish
Beger, M. et al. Conservation planning for connectivity across marine, freshwater, and terrestrial realms. Biol. Cons. 143, 565–575 (2010).Article
Google Scholar
Roberts, J. H., Angermeier, P. L. & Hallerman, E. M. Distance, dams and drift: What structures populations of an endangered, benthic stream fish?. Freshw. Biol. 58, 2050–2064. https://doi.org/10.1111/fwb.12190 (2013).Article
Google Scholar
Berejikian, B. A., Campbell, L. A., Moore, M. E. & Grant, J. Large-scale freshwater habitat features influence the degree of anadromy in eight Hood Canal Oncorhynchus mykiss populations. Can. J. Fish. Aquat. Sci. 70, 756–765. https://doi.org/10.1139/cjfas-2012-0491 (2013).Article
Google Scholar
Falke, J. A. & Fausch, K. D. in American Fisheries Society Symposium. 207–233.Hanski, I. & Simberloff, D. in Metapopulation Biology (eds Ilkka Hanski & Michael E. Gilpin) 5–26 (Academic Press, 1997).Cadrin, S. X., Friedland, K. D. & Waldman, J. R. in Stock Identification Methods (eds Cadrin, S. X., Friedland, K. D. & Waldman, J. R.) 3–6 (Academic Press, 2005).Hughes, J. M., Schmidt, D. J. & Finn, D. S. Genes in streams: Using DNA to understand the movement of freshwater fauna and their riverine habitat. Bioscience 59, 573–583 (2009).Article
Google Scholar
Gross, M. R., Coleman, R. M. & McDowall, R. M. Aquatic productivity and the evolution of diadromous fish migration. Science 239, 1291–1293 (1988).ADS
CAS
Article
Google Scholar
McDowall, R. M. The evolution of diadromy in fishes (revisited) and its place in phylogenetic analysis. Rev. Fish Biol. Fish. 7, 443–462. https://doi.org/10.1023/A:1018404331601 (1997).Article
Google Scholar
Myers, G. S. Usage of anadromous, catadromous and allied terms for migratory fishes. Copeia 89–97, 1949. https://doi.org/10.2307/1438482 (1949).Article
Google Scholar
Augspurger, J. M., Warburton, M. & Closs, G. P. Life-history plasticity in amphidromous and catadromous fishes: A continuum of strategies. Rev. Fish Biol. Fish. 27, 177–192. https://doi.org/10.1007/s11160-016-9463-9 (2017).Article
Google Scholar
McDowall, R. On amphidromy, a distinct form of diadromy in aquatic organisms. Fish Fish. 8, 1–13 (2007).Article
Google Scholar
David, B. O. et al. To sea or not to sea? Multiple lines of evidence reveal the contribution of non-diadromous recruitment for supporting endemic fish populations within New Zealand’s longest river. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 1409–1423. https://doi.org/10.1002/aqc.3022 (2019).Article
Google Scholar
Delgado, L. et al. Genomic basis of the loss of diadromy in Galaxias maculatus: Insights from reciprocal transplant experiments. Mol. Ecol. 29, 4857–4870. https://doi.org/10.1111/mec.15686 (2020).CAS
Article
PubMed
Google Scholar
Closs, G. P., Hicks, A. S. & Jellyman, P. G. Life histories of closely related amphidromous and non-migratory fish species: A trade-off between egg size and fecundity. Freshw. Biol. 58, 1162–1177. https://doi.org/10.1111/fwb.12116 (2013).Article
Google Scholar
Górski, K., Habit, E. M., Pingram, M. A. & Manosalva, A. J. Variation of the use of marine resources by Galaxias maculatus in large Chilean rivers. Hydrobiologia 814, 61–73. https://doi.org/10.1007/s10750-015-2542-4 (2018).Article
Google Scholar
Vega Aguayo, R. et al. Bases biológicas para el cultivo del puye Galaxias maculatus (Jenyns, 1842): Una revisión (2014).Cussac, V. E. et al. New insights into the distribution, physiology and life histories of South American galaxiid fishes, and potential threats to this unique fauna. Diversity https://doi.org/10.3390/d12050178 (2020).Article
Google Scholar
Hicks, A. S. et al. Lake and species specific patterns of non-diadromous recruitment in amphidromous fish: The importance of local recruitment and habitat requirements. Mar. Freshw. Res. https://doi.org/10.1071/mf16387 (2017).Article
Google Scholar
Manosalva, A. J. et al. Variation of stomach content and isotopic niche of puye Galaxias maculatus (Jenyns, 1842) in large river systems of southern Chile. Freshw. Biol. 66, 1110–1122. https://doi.org/10.1111/fwb.13703 (2021).CAS
Article
Google Scholar
Milano, D., Aigo, J. C. & Macchi, P. J. Diel patterns in space use, food and metabolic activity of Galaxias maculatus (Pisces: Galaxiidae) in the littoral zone of a shallow Patagonian lake. Aquat. Ecol. 47, 277–290. https://doi.org/10.1007/s10452-013-9443-2 (2013).Article
Google Scholar
Chapman, A., Morgan, D. L., Beatty, S. J. & Gill, H. S. Variation in life history of land-locked lacustrine and riverine populations of Galaxias maculatus (Jenyns 1842) in Western Australia. Environ. Biol. Fishes 77, 21–37 (2006).Article
Google Scholar
Barriga, J. P. et al. Intraspecific variation in diet, growth, and morphology of landlocked Galaxias maculatus during its larval period: The role of food availability and predation risk. Hydrobiologia 679, 27–41 (2012).Article
Google Scholar
Campos, H. Population studies of Galaxias maculatus (Jenyns) (Osteichthys: Galaxiidae) in Chile with reference to the number of vertebrae. Stud. Neotrop. Fauna 9, 55–76. https://doi.org/10.1080/01650527409360470 (1974).Article
Google Scholar
Rojo, J. H., Fernandez, D. A., Figueroa, D. E. & Boy, C. C. Phenotypic and genetic differentiation between diadromous and landlocked puyen Galaxias maculatus. J. Fish Biol. 96, 956–967. https://doi.org/10.1111/jfb.14285 (2020).Article
PubMed
Google Scholar
Zemlak, T. S., Habit, E. M., Walde, S. J., Carrea, C. & Ruzzante, D. E. Surviving historical Patagonian landscapes and climate: Molecular insights from Galaxias maculatus. BMC Evol. Biol. 10, 1–18 (2010).Article
Google Scholar
Delgado, M. L., Gorski, K., Habit, E. & Ruzzante, D. E. The effects of diadromy and its loss on genomic divergence: The case of amphidromous Galaxias maculatus populations. Mol. Ecol. 28, 5217–5231. https://doi.org/10.1111/mec.15290 (2019).Article
PubMed
Google Scholar
Delgado, M. L. et al. Genomic basis of the loss of diadromy in Galaxias maculatus: Insights from reciprocal transplant experiments. Mol. Ecol. 29, 4857–4870. https://doi.org/10.1111/mec.15686 (2020).CAS
Article
PubMed
Google Scholar
Alo, D., Correa, C., Samaniego, H., Krabbenhoft, C. A. & Turner, T. F. Otolith microchemistry and diadromy in Patagonian river fishes. PeerJ 7, e6149. https://doi.org/10.7717/peerj.6149 (2019).CAS
Article
PubMed
PubMed Central
Google Scholar
Campana, S. E. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).ADS
CAS
Article
Google Scholar
Schulz-Mirbach, T., Ladich, F., Plath, M. & Heß, M. Enigmatic ear stones: What we know about the functional role and evolution of fish otoliths. Biol. Rev. 94, 457–482 (2019).Article
Google Scholar
Campana, S. E. Otolith science entering the 21st century. Mar. Freshw. Res. 56, 485–495 (2005).Article
Google Scholar
Ahn, H. et al. Effect of water temperature on embryonic development and hatching time of the Japanese eel Anguilla japonica. Aquaculture 330, 100–105 (2012).Article
Google Scholar
Avigliano, E., Velasco, G. & Volpedo, A. V. Use of lapillus otolith microchemistry as an indicator of the habitat of Genidens barbus from different estuarine environments in the southwestern Atlantic Ocean. Environ. Biol. Fishes 98, 1623–1632. https://doi.org/10.1007/s10641-015-0387-3 (2015).Article
Google Scholar
Whitledge, G. W. Otolith microchemistry and isotopic composition as potential indicators of fish movement between the Illinois River drainage and Lake Michigan. J. Great Lakes Res. 35, 101–106. https://doi.org/10.1016/j.jglr.2008.10.003 (2009).CAS
Article
Google Scholar
Kraus, R. T. & Secor, D. H. Incorporation of strontium into otoliths of an estuarine fish. J. Exp. Mar. Biol. Ecol. 302, 85–106. https://doi.org/10.1016/j.jembe.2003.10.004 (2004).CAS
Article
Google Scholar
Volk, E. C., Blakley, A., Schroder, S. L. & Kuehner, S. M. Otolith chemistry reflects migratory characteristics of Pacific salmonids: Using otolith core chemistry to distinguish maternal associations with sea and freshwaters. Fish. Res. 46, 251–266 (2000).Article
Google Scholar
Vignon, M. Extracting environmental histories from sclerochronological structures—Recursive partitioning as a mean to explore multi-elemental composition of fish otolith. Ecol. Inform. 30, 159–169. https://doi.org/10.1016/j.ecoinf.2015.10.002 (2015).Article
Google Scholar
Teichert, N. et al. Site fidelity and movements of an amphidromous goby revealed by otolith multi-elemental signatures along a tropical watershed. Ecol. Freshw. Fish 27, 834–846. https://doi.org/10.1111/eff.12396 (2018).Article
Google Scholar
Elsdon, T. S. & Gillanders, B. M. Fish otolith chemistry influenced by exposure to multiple environmental variables. J. Exp. Mar. Biol. Ecol. 313, 269–284. https://doi.org/10.1016/j.jembe.2004.08.010 (2004).CAS
Article
Google Scholar
Vivancos, A. et al. Hydrological connectivity drives longitudinal movement of endangered endemic Chilean darter Percilia irwini (Eigenmann, 1927). J Fish Biol 98, 33–43. https://doi.org/10.1111/jfb.14554 (2021).Article
PubMed
Google Scholar
Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biology 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).CAS
Article
PubMed
PubMed Central
Google Scholar
Warburton, M. L., Reid, M. R., Stirling, C. H. & Closs, G. Validation of depth-profiling LA-ICP-MS in otolith applications. Can. J. Fish. Aquat. Sci. 74, 572–581 (2017).CAS
Article
Google Scholar
Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508–2518. https://doi.org/10.1039/C1JA10172B (2011).CAS
Article
Google Scholar
Woodhead, J. et al. A guide to depth profiling and imaging applications of LA-ICP-MS. Laser Ablation ICP-MS Earth Sci. Curr. Pract. Outst. Issues 40, 135–145 (2008).CAS
Google Scholar
Veinott, G., Westley, P. A. H., Purchase, C. F., Warner, L. & Gillanders, B. Experimental evidence simultaneously confirms and contests assumptions implicit to otolith microchemistry research. Can. J. Fish. Aquat. Sci. 71, 356–365. https://doi.org/10.1139/cjfas-2013-0224 (2014).Article
Google Scholar
Brophy, D., Jeffries, T. E. & Danilowicz, B. S. Elevated manganese concentrations at the cores of clupeid otoliths: Possible environmental, physiological, or structural origins. Mar. Biol. 144, 779–786. https://doi.org/10.1007/s00227-003-1240-3 (2004).CAS
Article
Google Scholar
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH
Google Scholar
Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x (2001).Article
Google Scholar
McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 (2001).Article
Google Scholar
Brown, R. J., Campana, S. & Severin, K. P. Otolith chemistry analyses indicate that water Sr: Ca is the primary factor influencing otolith Sr: Ca for freshwater and diadromous fish but not for marine fish. Can. J. Fish. Aquat. Sci. 66, 1790–1808. https://doi.org/10.1139/f09-112 (2009).CAS
Article
Google Scholar
Humston, R. et al. Isotope geochemistry reveals ontogeny of dispersal and exchange between main-river and tributary habitats in smallmouth bass Micropterus dolomieu. J. Fish Biol. 90, 528–548. https://doi.org/10.1111/jfb.13073 (2017).CAS
Article
PubMed
Google Scholar
Dingle, H. & Drake, V. A. What is migration?. Bioscience 57, 113–121 (2007).Article
Google Scholar
Hogan, J. D., Blum, M. J., Gilliam, J. F., Bickford, N. & McIntyre, P. B. Consequences of alternative dispersal strategies in a putatively amphidromous fish. Ecology 95, 2397–2408 (2014).Article
Google Scholar
Kelley, J. L., Grierson, P. F., Collin, S. P. & Davies, P. M. Habitat disruption and the identification and management of functional trait changes. Fish Fish. 19, 716–728. https://doi.org/10.1111/faf.12284 (2018).Article
Google Scholar
Vivancos, A. et al. Hydrological connectivity drives longitudinal movement of endangered endemic Chilean darter Percilia irwini (Eigenmann, 1927). J. Fish Biol. 98, 33–43 (2020).Article
Google Scholar
Hicks, A. S., Closs, G. P. & Swearer, S. E. Otolith microchemistry of two amphidromous galaxiids across an experimental salinity gradient: A multi-element approach for tracking diadromous migrations. J. Exp. Mar. Biol. Ecol. 394, 86–97 (2010).Article
Google Scholar
Miller, J. A. Effects of water temperature and barium concentration on otolith composition along a salinity gradient: Implications for migratory reconstructions. J. Exp. Mar. Biol. Ecol. 405, 42–52. https://doi.org/10.1016/j.jembe.2011.05.017 (2011).CAS
Article
Google Scholar
Walsh, C. T. & Gillanders, B. M. Extrinsic factors affecting otolith chemistry—Implications for interpreting migration patterns in a diadromous fish. Environ. Biol. Fishes 101, 905–916. https://doi.org/10.1007/s10641-018-0746-y (2018).Article
Google Scholar
Walther, B. D. & Limburg, K. E. The use of otolith chemistry to characterize diadromous migrations. J. Fish Biol. 81, 796–825. https://doi.org/10.1111/j.1095-8649.2012.03371.x (2012).CAS
Article
PubMed
Google Scholar
Hicks, A. S. et al. Lake and species specific patterns of non-diadromous recruitment in amphidromous fish: The importance of local recruitment and habitat requirements. Mar. Freshw. Res. 68, 2315–2323 (2017).Article
Google Scholar
Hickford, M. J. & Schiel, D. R. Population sinks resulting from degraded habitats of an obligate life-history pathway. Oecologia 166, 131–140 (2011).ADS
Article
Google Scholar
Barriga, J., Battini, M. & Cussac, V. Annual dynamics variation of a landlocked Galaxias maculatus (Jenyns 1842) population in a Northern Patagonian river: Occurrence of juvenile upstream migration. J. Appl. Ichthyol. 23, 128–135 (2007).Article
Google Scholar
Huey, J. A. et al. Is variable connectivity among populations of a continental gobiid fish driven by local adaptation or passive dispersal?. Freshw. Biol. 59, 1672–1686 (2014).CAS
Article
Google Scholar
Catlin, A. K., Collier, K. J. & Duggan, I. C. Zooplankton generation following inundation of floodplain soils: Effects of vegetation type and riverine connectivity. Mar. Freshw. Res. https://doi.org/10.1071/mf15273 (2017).Article
Google Scholar
Górski, K., Collier, K. J., Duggan, I. C., Taylor, C. M. & Hamilton, D. P. Connectivity and complexity of floodplain habitats govern zooplankton dynamics in a large temperate river system. Freshw. Biol. 58, 1458–1470. https://doi.org/10.1111/fwb.12144 (2013).Article
Google Scholar
Sturrock, A. M. et al. Quantifying physiological influences on otolith microchemistry. Methods Ecol. Evol. 6, 806–816. https://doi.org/10.1111/2041-210x.12381 (2015).Article
Google Scholar
Doubleday, Z. A., Izzo, C., Woodcock, S. H. & Gillanders, B. M. Relative contribution of water and diet to otolith chemistry in freshwater fish. Aquat. Biol. 18, 271–280. https://doi.org/10.3354/ab00511 (2013).Article
Google Scholar
Elsdon, T. S. et al. Oceanography and Marine Biology 303–336 (CRC Press, 2008).
Google Scholar
Izzo, C., Doubleday, Z. A., Schultz, A. G., Woodcock, S. H. & Gillanders, B. M. Contribution of water chemistry and fish condition to otolith chemistry: Comparisons across salinity environments. J Fish Biol 86, 1680–1698. https://doi.org/10.1111/jfb.12672 (2015).CAS
Article
PubMed
Google Scholar
Walther, B. D. The art of otolith chemistry: interpreting patterns by integrating perspectives. Mar. Freshw. Res. 70, 1643–1658 (2019).CAS
Article
Google Scholar
Hüssy, K. et al. Trace element patterns in otoliths: The role of biomineralization. Rev. Fish. Sci. Aquacult. 29, 1–33 (2020).
Google Scholar
Nazir, A. & Khan, M. A. Spatial and temporal variation in otolith chemistry and its relationship with water chemistry: Stock discrimination of Sperata aor. Ecol. Freshw. Fish 28, 499–511. https://doi.org/10.1111/eff.12471 (2019).Article
Google Scholar
Vera-Escalona, I., Habit, E. & Ruzzante, D. E. Invasive species and postglacial colonization: Their effects on the genetic diversity of a Patagonian fish. Proc. Biol. Sci. 286, 20182567. https://doi.org/10.1098/rspb.2018.2567 (2019).Article
PubMed
PubMed Central
Google Scholar More