More stories

  • in

    Carex pulicaris abundance is positively associated with soil acidity, rainfall and floristic diversity in the eastern distribution range

    Lawler, J.J. Climate change adaptation strategies for resource management and conservation planning. The year in ecology and conservation biology. Ann. N.Y. Acad. Sci. 1162, 79–98. https://doi.org/10.1111/j.1749-6632.2009.04147.x (2009).Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025), 53–58. https://doi.org/10.1126/science.1200303 (2011).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Walsworth, T. E. et al. Management for network diversity speeds evolutionary adaptation to climate change. Nat. Clim. Change 9(8), 632–636. https://doi.org/10.1038/s41558-019-0518-5 (2019).Article 

    Google Scholar 
    Morelli, T. L. et al. Climate-change refugia: Biodiversity in the slow lane. Front Ecol. Environ. 18(5), 228–234. https://doi.org/10.1002/fee.2189 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vincent, H., Bornand, C. N., Kempel, A. & Fischer, M. Rare species perform worse than widespread species under changed climate. Biol. Conserv. 246, 108586. https://doi.org/10.1016/j.biocon.2020.108586 (2020).Article 

    Google Scholar 
    Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change?. Trends Ecol. Evol. 28(8), 482–488. https://doi.org/10.1016/j.tree.2013.04.003 (2013).Article 
    PubMed 

    Google Scholar 
    Janssen, J. & Bijlsma, R.J. Molinia meadows on calcareous, peaty or clayey-silt-laden soils (Molinion caeruleae) (6410) in the Netherlands, in: Bijlsma, R.J. et al. Defining and applying the concept of favourable reference values for species habitats under the EU Birds and Habitats Directives: examples of setting favourable reference values. Wageningen Environmental Research, Wageningen, 2929, pp. 201–203 (2019).Arnell, M., Cousins, S. A. O. & Eriksson, O. Does historical land use affect the regional distribution of fleshy-fruited woody plants?. PLoS ONE 14(12), e0225791. https://doi.org/10.1371/journal.pone.0225791 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Welk, A., Welk, E., Baudis, M., Böckelmann, J. & Bruelheide, H. Plant species range type determines local responses to biotic interactions and land use. Ecology 100(12), e02890. https://doi.org/10.1002/ecy.2890 (2019).Article 
    PubMed 

    Google Scholar 
    Caissy, P., Klemet-N’Guessan, S., Jackiw, R., Eckert, C.G. & Hargreaves, A.L. High conservation priority of range-edge plant populations not matched by habitat protection or research effort. Biol. Conserv. 249, 108732. https://doi.org/10.1101/682823 (2020).Kreyling, J. et al. Rewetting does not return drained fen peatlands to their old selves. Nat. Commun. 12, 5693. https://doi.org/10.1038/s41467-021-25619-y (2021).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Sotek, Z. Distribution patterns, history, and dynamics of peatland vascular plants in Pomerania (NW Poland). Biodiv. Res. Conserv. 18, 1–82. https://doi.org/10.2478/v10119-010-0020-4 (2010).Article 

    Google Scholar 
    Hultén, E. & Fries, M. Atlas of north European vascular plants, North of the tropic of cancer, I, Introduction, taxonomic index to the maps (Koeltz Scientific Books, 1986).
    Google Scholar 
    Buse, J., Boch, S., Hilgers, J. & Griebeler, E. M. Conservation of threatened habitat types under future climate change—lessons from plant-distribution models and current extinction trends in southern Germany. J. Nat. Conserv. 27, 18–25. https://doi.org/10.1016/j.jnc.2015.06.001 (2015).Article 

    Google Scholar 
    Dítě, D., Melečková, Z. & Eliáš, P. jun. Flea sedge (Carex pulicaris)—a new species in the Great Fatra. Acta Carpathica Occidentalis 6, 23–27, (in Slovak) (2015).Sotek, Z. et al. Distribution and habitat properties of Carex pulicaris and Pedicularis sylvatica at their range margin in NW Poland. Acta Soc. Bot. Pol. 85(3), 3507. https://doi.org/10.5586/asbp.3507 (2016).Article 

    Google Scholar 
    Kukk, T., Kull, T., Luuk, O., Mesipuu, M. & Saar, P. Atlas of the Estonian flora 2020. Tartu, Estonia (2020).Grulich, V. Red list of vascular plants of the Czech Republic, 3rd ed. Preslia 84, 631–645 (2012).Eliáš, P. jun, Dítě, D., Kliment, J., Hrivnák, R. & Feráková, V. Red list of ferns and flowering plants of Slovakia, 5th edition (October 2014). Biologia 70(2), 218–228. https://doi.org/10.1515/biolog-2015-0018 (2015).Kaźmierczakowa, R. et al. Polish red list of pteridophytes and flowering plants. Institute of Nature Conservation of the Polish Academy of Sciences, Cracow (2016).Aronsson, M. et al. Kärlväxter—vascular plants (Tracheophyta). In The 2010 Red List of Swedish Species (ed. Gärdenfors, U.) 201–221 (ArtDatabanken, Uppsala, 2010).
    Google Scholar 
    Kalliovirta, M. et al. Vascular plants, in: Rassi, P., Hyvärinen, E., Juslén, A. & Mannerkoski, I. (Eds.), The 2010 red list of Finnish species. Ministry of the Environment and Finnish Environment Institute, Helsinki, pp. 183–203 (2010).Kull, T. et al. Kokkuvõte soontaimede ohustatuse hindamistulemustest 2017–2018. Liikide ohustatuse hindamine riigihanke 183098 osa nr 15 – Õistaimed (Anthophyta), okaspuutaimed (Coniferophyta), lehtsooneostaimed (Monilophyta) ja pärisraigastaimed (Lycopodiophyta) vastavalt lepingule nr 7–27/17/59 (16. juuni 2017.a.). Lõpparuanne Keskkonnaametile. Eesti Maaülikool. Lk 1–6 + lisa, (in Estonian). Available from https://infoleht.keskkonnainfo.ee/GetFile.aspx?id=1947479558 (2018).Bartoszek, W., Mirek, Z. & Koczur, A. Flea sedge – Carex pulicaris L., in: Kaźmierczakowa, R., Zarzycki, K. & Mirek, Z., (Eds), Polish red data book of plants. Pteridophytes and flowering plants, 3rd ed. Polish Academy of Sciences, Institute of Nature Conservation, Cracow, pp. 737–739, (in Polish) (2014).Matuszkiewicz, W. Guide to the identification of plant communities in Poland. Scientific Publisher Warsaw, Poland, (in Polish) (2006).Hájek, M., Horsák, M., Hájková, P. & Dítě, D. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect. Plant Ecol. Evol. Syst. 8, 97–114. https://doi.org/10.1016/j.ppees.2006.08.002 (2006).Article 

    Google Scholar 
    Šefferová-Stanová, V., Šeffer, J. & Janák, M. Management of Natura 2000 habitats. 7230 Alkaline fens. Technical Report 2008 20/24. European Commission. Available from http://ec.europa.eu/environment/nature/natura2000/management/habitats/pdf/7230_Alkaline_fens.pdf. Accessed 15 June 2018 (2008).O’Connell, M., Ryan, J. B. & Macgowran, B. A. Wetland communities in Ireland: a phytosociological review. In European Mires (ed. Moore, P. D.) 303–364 (Academic Press INC, LTD, 1984).Chapter 

    Google Scholar 
    Dítě, D., Kubandová, M. & Pukajová, D. Chorological, ecological and phytocenological notes on the occurrence of flea sedge (Carex pulicaris L.) in Slovakia. Bull. Slovak Bot. Soc. 27, 77–84, (in Slovak) (2005).Hällfors, M. H. et al. Assessing the need and potential of assisted migration using species distribution models. Biol. Conserv. 196(7), 60–68. https://doi.org/10.1016/j.biocon.2016.01.031 (2016).Article 

    Google Scholar 
    Emsens, W.-J., Aggenbach, C. J. S., Rydin, H., Smolders, A. J. P. & van Diggelen, R. Competition for light as a bottleneck for endangered fen species: an introduction experiment. Biol. Conserv. 220, 76–83. https://doi.org/10.1016/j.biocon.2018.02.002 (2018).Article 

    Google Scholar 
    Kącki, Z. & Śliwiński, M. The polish vegetation database: structure, resources and development. Acta Soc. Bot. Pol. 81(2), 75–79. https://doi.org/10.5586/asbp.2012.014 (2012).Article 

    Google Scholar 
    Ellenberg, H. et al. Indicator values of plants in Central Europe. 2nd ed. Scripta Geobotanica 18, 1–258 (in Germany) (1992).PN-R-04031. Chemical and agricultural analysis of soil. Sampling of soil. Polish Committee for Standardization (1997).PN-R-04024. Chemical and agricultural analysis of soil. Determination of the Content of Available P, K, Mg and Mn in organic soils. Polish Committee for Standardization (1997).PN-R-04016-21. Chemical and Agricultural Analysis of Soil. Determination of the Content of Available Zinc, Copper, Manganese, Iron. Polish Committee for Standardization. (1992).Ostrowska, A., Gawliński, S. & Szczubiałka, Z. Methods of analysis and evaluation of soil and plant properties. Institute of Environmental Protection, Warsaw, Poland, (in Polish) (1991).WRB, I.W.G. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Report, 106 (2014).IUNG (Institute of Soil Science and Plant Cultivation). Fertiliser Recommendations Part I. Limits for Estimating Soil Macro- and Microelement Content. Series P (44), Puławy, Poland, pp. 26–28 (1990).IUNG (Institute of Soil Science and Plant Cultivation). Evaluation of heavy metal and sulfur contamination of soils and plants. Framework guidelines for agriculture. Series P (53), Puławy, Poland, pp. 1–22 (1993).Oksanen, J. et al. Vegan: community ecology package. R package version 2.3–0. Available from https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed date: 4 January 2021 (2019).R Core Team. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria Accessed 30 May 2020. https://www.R-project.org (2020).Hammer, Ø., Harper, D.A.T. & Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 4 (1), 1–9; http://palaeo-electronica.org/2001_1/past/issue1_01.htm (2001).Zelnik, I. & Čarni, A. Wet meadows of the alliance Molinion and their environmental gradients in Slovenia. Biologia 63(2), 187–196. https://doi.org/10.2478/s11756-008-0042-y (2008).CAS 
    Article 

    Google Scholar 
    Lindén, C. Local plant species diversity in coastal grasslands in the Stockholm archipelago. The effect of isostatic land-uplift, different management and future sea level rise. Stockholm University, Master’s thesis, Physical Geography and Quaternary Geology, 45 Credits, Stockholm, pp. 1–33 (2017).Muller, S. Diversity of management practices required to ensure conservation of rare and locally threatened plant species in grasslands: A case study at a regional scale (Lorraine, France). Biodiv. Conserv. 11(7), 1173–1184. https://doi.org/10.1023/A:1016049605021 (2002).Article 

    Google Scholar 
    Rodwell, J. S. (ed.) British plant communities. Grasslands and montane communities. Vol. 3 (Cambridge University Press. 1992).Rodwell, J.S., Morgan, V., Jefferson, R.G. & Moss, D. The European context of British Lowland Grasslands. JNCC Report No. 394, JNCC, Peterborough, UK (2007).Carter, S. P., Proctor, J. & Slingsby, D. R. Soil and vegetation of the Keen of Hamar serpentine. Shetland. J. Ecol. 75(1), 21–42. https://doi.org/10.2307/2260534 (1987).CAS 
    Article 

    Google Scholar 
    de Vere, N. Biological flora of the British Isles: Cirsium dissectum (L.) Hill (Cirsium tuberosum (L.) All. subsp. anglicum (Lam.) Bonnier; Cnicus pratensis (Huds.) Willd., non Lam.; Cirsium anglicum (Lam.) DC.). J. Ecol. 95, 876–894. https://doi.org/10.1111/j.1365-2745.2007.01265.x (2007).Fernández-Pascual, E. Comparative seed germination traits in bog and fen mire wetlands. Aquat. Bot. 130, 21–26. https://doi.org/10.1016/j.aquabot.2016.01.001 (2016).Article 

    Google Scholar 
    Otsus, M., Kukk, D., Kattai, K. & Sammul, M. Clonal ability, height and growth form explain species’ response to habitat deterioration in Fennoscandian wooded meadows. Plant Ecol. 215(9), 953–962. https://doi.org/10.1007/s11258-014-0347-6 (2014).Article 

    Google Scholar 
    Meusel, H., Jäger, E. & Weinert, E. Comparative chorology of the Central European flora. VEB Gustav Fischer Verlag, Jena, Germany, (in German) (1965).Hill, M.O., Preston, C.D. & Roy, D.B. PLANTATT. Attributes of British and Irish Plants: Status, Size, Life History, Geography and Habits. Centre for Ecology and Hydrology, Huntingdon, UK (2004).Dahl, E. The phytogeography of Northern Europe (British Isles, Fennoscandia and adjacent areas). Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511565182 (1998).Bartoszek, W., Koczur, A., Mirek, Z. & Oklejewicz, K. Flea sedge Carex pulicaris L., in: Mirek, Z. & Piękoś-Mirkowa, H. (Eds.), Red data book of the Polish Carpathians. Vascular plants. Polish Academy of Sciences Institute of Botany W. Szafer, Cracow, pp. 523–525, (in Polish) (2008).Hereźniak, J. Carex pulicaris L. – flea sedge, in: Olaczek R. (Ed.), Red Book of Plants of the Lodzkie Voivodship. Botanical Garden in Łódź, University of Łódź, Łódź, pp. 50–51, (in Polish) (2012).Wołejko, L., Pawlaczyk, P. & Stańko, R. (Eds.). Alkaline fens in Poland—diversity, resources, conservation. Naturalists’ Club, Świebodzin, Poland (2019).Koopman, J., Timmerman, A., Hosper, U. & Więcław, H. Distribution, ecology and morphology of three Ceratocystis hybrids in the Province of Fryslân, the Netherlands (Carex, Cyperaceae). Gorteria 41(1), 14–20 (2019).
    Google Scholar 
    Laughlin, D. C. & Abella, S. R. Abiotic and biotic factors explain independent gradients of plant community composition in ponderosa pine forests. Ecol. Modell. 205(1–2), 231–240. https://doi.org/10.1016/j.ecolmodel.2007.02.018 (2007).Article 

    Google Scholar 
    Austrheim, G., Gunilla, E., Olsson, A. & Grøntvedt, E. Land-use impact on plant communities in semi-natural sub-alpine grasslands of Budalen, central Norway. Biol. Conserv. 87(3), 369–379. https://doi.org/10.1016/S0006-3207(98)00071-8 (1999).Article 

    Google Scholar 
    Gough, M. W. & Marrs, R. H. A comparison of soil fertility between semi-natural and agricultural plant communities: Implications for the creations of species-rich grassland on abandoned agricultural land. Biol. Conserv. 51(2), 83–96. https://doi.org/10.1016/0006-3207(90)90104-w (1990).Article 

    Google Scholar 
    Bobbink, R., Hornung, M. & Roelofs, J. G. M. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J. Ecol. 86(5), 717–738 (1998).CAS 
    Article 

    Google Scholar 
    McCrea, A. R., Trueman, I. C., Fullen, M. A., Atkinson, M. D. & Besenyei, L. Relationships between soil characteristics and species richness in two botanically heterogeneous created meadows in the urban English West Midlands. Biol. Conserv. 97(2), 171–180 (2001).Article 

    Google Scholar 
    Wamelink, W., van Dobben, H.F., Goedhart, P.W. & Jones-Walters, L.M. The role of abiotic soil parameters as a factor in the success of invasive plant species. Emerg. Sci. J. 2(6), 308–365. https://doi.org/10.28991/esj-2018-01155 (2018).Janssens, F. et al. Relationship between soil chemical factors and grassland diversity. Plant Soil 202(1), 69–78. https://doi.org/10.1023/A:1004389614865 (1998).CAS 
    Article 

    Google Scholar 
    Tallowin, J. R. B. & Smith, R. E. N. Restoration of a Cirsio-Molinietum fen meadow on an agriculturally improved pasture. Restor. Ecol. 9(2), 167–178. https://doi.org/10.1046/j.1526-100x.2001.009002167.x (2001).Article 

    Google Scholar 
    Venterink, H. O., van der Vliet, R. E. & Wassen, M. J. Nutrient limitation along a productivity gradient in wet meadows. Plant Soil 234(2), 171–179. https://doi.org/10.1023/A:1017922715903 (2001).Article 

    Google Scholar 
    Linderoth, E. Management of nature reserves—with Valön nature reserve in focus. Bachelor of Science with specialization in Environmental Analysis 15 hp, VT18. Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science, pp 1–26, (in Swedish) (2018).Jansen, A. M. & Roelofs, J. G. Restoration of Cirsio-Molinietum wet meadows by sod cutting. Ecol. Eng. 7(4), 279–298. https://doi.org/10.1016/S0925-8574(96)00022-5 (1996).Article 

    Google Scholar 
    Jurzyk, S. & Wrobel, M. Co-occurrence of two species Molinia caerulea L. and “red-list” species Carex pulicaris L. in western Pomerania (Poland). Pol. J. Ecol. 51 (3), 363–367 (2003).Boyer, M. L. H. & Wheeler, B. D. Vegetation patterns in spring-fed calcareous fens: Calcite precipitation and constraints on fertility. J. Ecol. 77(2), 597–609. https://doi.org/10.2307/2260772 (1989).CAS 
    Article 

    Google Scholar  More

  • in

    Host microbiome responses to the Snake Fungal Disease pathogen (Ophidiomyces ophidiicola) are driven by changes in microbial richness

    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287, 443–449 (2000).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Pedersen, A. B., Jones, K. E., Nunn, C. L. & Altizer, S. Infectious diseases and extinction risk in wild mammals. Conserv. Biol. 21, 1269–1279 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, K. F., Sax, D. F. & Lafferty, K. D. Evidence for the role of infectious disease in species extinction and endangerment. Conserv. Biol. 20, 1349–1357 (2006).PubMed 

    Google Scholar 
    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Paré, J. A. & Sigler, L. An overview of reptile fungal pathogens in the genera Nannizziopsis, Paranannizziopsis, and Ophidiomyces. J. Herpetol. Med. Surg. 26, 46–53 (2016).
    Google Scholar 
    Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. 109, 6999–7003 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Skerratt, L. F. et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4, 125 (2007).
    Google Scholar 
    Franklinos, L. H. V. et al. Emerging fungal pathogen Ophidiomyces ophiodiicola in wild European snakes. Sci. Rep. 7, 3844 (2017).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Lorch, J. M. et al. Snake fungal disease: an emerging threat to wild snakes. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150457 (2016).
    Google Scholar 
    Bustos, M. L., Nicolás Sánchez, M., Peichoto, M. E. & Teibler, G. P. First report of fungal disease in a South American snake. Rev. Investig. Vet. Perú 29, 1036–1042 (2018).Sun, P.-L. et al. Infection with Nannizziopsis guarroi and Ophidiomyces ophiodiicola in reptiles in Taiwan. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.14049 (2021).Article 
    PubMed 

    Google Scholar 
    Haynes, E. et al. First report of ophidiomycosis in a free-ranging California kingsnake (Lampropeltis californiae) in California, USA. J. Wildl. Dis. 57, 246–249 (2021).CAS 
    PubMed 

    Google Scholar 
    Takami, Y. et al. First report of ophidiomycosis in Asia caused by Ophidiomyces ophiodiicola in captive snakes in Japan. J. Vet. Med. Sci. 83, 1234–1239 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lorch, J. M. et al. Experimental infection of snakes with Ophidiomyces ophiodiicola causes pathological changes that typify snake fungal disease. MBio 6, e01534 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. 108, 4578–4585 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).CAS 
    ADS 

    Google Scholar 
    Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gall, C. A. et al. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J. 10, 1846–1855 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci. 115, E11951–E11960 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hanning, I. & Diaz-Sanchez, S. The functionality of the gastrointestinal microbiome in non-human animals. Microbiome 3, 51 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Jani, A. J. & Briggs, C. J. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc. Natl. Acad. Sci. 111, E5049–E5058 (2014).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Walker, D. M. et al. Variability in snake skin microbial assemblages across spatial scales and disease states. ISME J. 13, 2209–2222 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Allender, M. C., Baker, S., Britton, M. & Kent, A. D. Snake fungal disease alters skin bacterial and fungal diversity in an endangered rattlesnake. Sci. Rep. 8, 12147 (2018).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Rykiel, E. J. Jr. Towards a definition of ecological disturbance. Aust. J. Ecol. 10, 361–365 (1985).
    Google Scholar 
    Kong, H. H. et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 22, 850–859 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferrenberg, S. et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J. 7, 1102–1111 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Mackey, R. L. & Currie, D. J. The diversity–disturbance relationship: is it generally strong and peaked?. Ecology 82, 3479–3492 (2001).
    Google Scholar 
    Connell, J. H. Diversity in tropical rain forests and coral reefs: high diversity of trees and corals is maintained only in a nonequilibrium state. Science 199, 1302–1310 (1978).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Guthrie, A. L., Knowles, S., Ballmann, A. E. & Lorch, J. M. Detection of snake fungal disease due to Ophidiomyces ophiodiicola in Virginia, USA. J. Wildl. Dis. 52, 143–149 (2016).PubMed 

    Google Scholar 
    Chandler, H. C. et al. Ophidiomycosis prevalence in Georgia’s eastern indigo snake (Drymarchon couperi) populations. PLoS ONE 14, e0218351 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tetzlaff, S. J. et al. Snake fungal disease affects behavior of free-ranging massasauga rattlesnakes (Sistrurus catenatus). Herpetol. Conserv. Biol. 12, 624–634 (2017).
    Google Scholar 
    Lind, C. M., McCoy, C. M. & Farrell, T. M. Tracking outcomes of snake fungal disease in free-ranging pygmy rattlesnakes (Sistrurus miliarius). J. Wildl. Dis. 54, 352–356 (2018).PubMed 

    Google Scholar 
    Lind, C. M., Lorch, J. M., Moore, I. T., Vernasco, B. J. & Farrell, T. M. Seasonal sex steroids indicate reproductive costs associated with snake fungal disease. J. Zool. 307, 104–110 (2019).
    Google Scholar 
    McKenzie, J. M. et al. Field diagnostics and seasonality of Ophidiomyces ophiodiicola in wild snake populations. EcoHealth 16, 141–150 (2019).PubMed 

    Google Scholar 
    McCoy, C. M., Lind, C. M. & Farrell, T. M. Environmental and physiological correlates of the severity of clinical signs of snake fungal disease in a population of pigmy rattlesnakes, Sistrurus miliarius. Conserv. Physiol. 5, cow077 (2017).Hill, A. J. et al. Common cutaneous bacteria isolated from snakes inhibit growth of Ophidiomyces ophiodiicola. EcoHealth 15, 109–120 (2018).PubMed 

    Google Scholar 
    Baker, S. et al. Case definition and diagnostic testing for Snake Fungal Disease. Herpetol. Rev. 50, 279–285 (2019).
    Google Scholar 
    Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M. & Inouye, B. D. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2, art24 (2011).Agugliaro, J., Lind, C. M., Lorch, J. M. & Farrell, T. M. An emerging fungal pathogen is associated with increased resting metabolic rate and total evaporative water loss rate in a winter-active snake. Funct. Ecol. 34, 486–496 (2020).
    Google Scholar 
    Frick, W. F. et al. Pathogen dynamics during invasion and establishment of white-nose syndrome explain mechanisms of host persistence. Ecology 98, 624–631 (2017).PubMed 

    Google Scholar 
    Gervasi, S. S., Hunt, E. G., Lowry, M. & Blaustein, A. R. Temporal patterns in immunity, infection load and disease susceptibility: understanding the drivers of host responses in the amphibian-chytrid fungus system. Funct. Ecol. 28, 569–578 (2014).
    Google Scholar 
    Allender, M. C. et al. Development of snake fungal disease after experimental challenge with Ophidiomyces ophiodiicola in cottonmouths (Agkistrodon piscivorous). PLoS ONE 10, e0140193 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Briggs, C. J., Knapp, R. A. & Vredenburg, V. T. Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proc. Natl. Acad. Sci. 107, 9695–9700 (2010).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Neuman-Lee, L. A. et al. Assessing multiple endpoints of atrazine ingestion on gravid Northern Watersnakes (Nerodia sipedon) and their offspring. Environ. Toxicol. 29, 1072–1082 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Kueneman, J. G. et al. Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat. Ecol. Evol. 3, 381–389 (2019).PubMed 

    Google Scholar 
    Manichanh, C. et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55, 205–211 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Murphy, G. E. P. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).PubMed 

    Google Scholar 
    Jani, A. J. et al. The amphibian microbiome exhibits poor resilience following pathogen-induced disturbance. ISME J. 15, 1628–1640 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 1–8 (2017).
    Google Scholar 
    Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).PubMed 
    ADS 

    Google Scholar 
    Lankau, E. W., Hong, P.-Y. & Mackie, R. I. Ecological drift and local exposures drive enteric bacterial community differences within species of Galápagos iguanas. Mol. Ecol. 21, 1779–1788 (2012).PubMed 

    Google Scholar 
    Mebert, K. Good species despite massive hybridization: genetic research on the contact zone between the watersnakes Nerodia sipedon and N. fasciata in the Carolinas, USA. Mol. Ecol. 17, 1918–1929 (2008).CAS 
    PubMed 

    Google Scholar 
    Bohuski, E., Lorch, J. M., Griffin, K. M. & Blehert, D. S. TaqMan real-time polymerase chain reaction for detection of Ophidiomyces ophiodiicola, the fungus associated with snake fungal disease. BMC Vet. Res. 11, 95 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).
    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the Miseq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 

    Google Scholar 
    Yilmaz, P. et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl. Acids Res. 42, D643–D648 (2014).CAS 
    PubMed 

    Google Scholar 
    Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021).Bozdogan, H. Model selection and akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987).MathSciNet 
    MATH 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, Thousand Oaks, 2011).
    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).MATH 

    Google Scholar 
    Heip, C. A new index measuring evenness. J. Mar. Biol. Assoc. UK 54, 555–557 (1974).
    Google Scholar  More

  • in

    Multilateral benefit-sharing from digital sequence information will support both science and biodiversity conservation

    Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, GermanyAmber Hartman Scholz, Rodrigo Sara, Scarlett Sett, Andrew Lee Hufton & Jörg OvermannLeibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, GermanyJens FreitagNatural History Museum, London, UKChristopher H. C. LyalOne Planet Solutions, Montpellier, FranceRodrigo SaraUniversidad de los Andes, Bogotá, ColombiaMartha Lucia CepedaPlentzia Marine Station (PiE-UPV/EHU), European Marine Biological Resource Centre – Spain (EMBRC-Spain), Plentzia, SpainIbon CancioEthiopian Biotechnology Institute, Addis Ababa, EthiopiaYemisrach Abebaw & Kassahun TesfayeNational Academy of Agricultural Science and Global Plant Council, New Delhi, IndiaKailash BansalNational Council of Scientific Research and Technologies (NCSRT), Algiers, AlgeriaHalima BenbouzaMinistry of Agriculture, Livestock, Fisheries and Cooperatives, Nairobi, KenyaHamadi Iddi BogaInstitut Pasteur, Paris, FranceSylvain Brisse, Anne-Caroline Deletoille & Raquel Hurtado-OrtizSchool of Biosciences, Cardiff University, Cardiff, UKMichael W. BrufordWellcome Sanger Institute, Hinxton, UKHayley Clissold & David NicholsonEuropean Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI), Hinxton, UKGuy CochraneGlobal Genome Initiative, Smithsonian National Museum of Natural History, Washington, DC, USAJonathan A. CoddingtonAlexander von Humboldt Biological Resources Research Institute, Bogota, ColombiaFelipe García-CardonaSouth African National Biodiversity Institute, Cape Town, South AfricaMichelle Hamer, Jessica da Silva & Krystal A. TolleyUniversity of Nairobi, Nairobi, KenyaDouglas W. MianoInstituto Tecnologico Vale (ITV), Belem, BrazilGuilherme OliveiraMinistry of Environment and Sustainable Development, Bogota, ColombiaCarlos Ospina BravoUniversity of Lethbridge, Lethbridge, CanadaFabian RohdenNatural History Museum of Denmark, Copenhagen, DenmarkOle SebergUniversity of Freiburg, Freiburg, GermanyGernot SegelbacherNational Centre for Cell Science, Pune, IndiaYogesh ShoucheMariano Galvez University, Guatemala City, GuatemalaAlejandra Sierra National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USAIlene Karsch-MizrachiCentre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South AfricaJessica da Silva & Krystal A. TolleyUniversity of the Philippines Los Banos, Laguna, PhilippinesDesiree M. HauteaFundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, BrazilManuela da SilvaNational Institute of Genetics, Mishima, JapanMutsuaki SuzukiInstitute of Biotechnology, Addis Ababa University, Addis Ababa, EthiopiaKassahun TesfayeCentre for Tropical Livestock Genetics and Health (CTLGH) – International Livestock Research Institute (ILRI), Nairobi, KenyaChristian Keambou TiamboMurdoch University, Murdoch, AustraliaRajeev VarshneyCorporación CorpoGen, Bogotá, ColombiaMaría Mercedes ZambranoTechnical University of Braunschweig, Braunschweig, GermanyJörg OvermannConceptualization: A.H.S., J.F., C.H.C.L., R.S., M.L.C., I.C., S.S., Y.A., K.B., H.B., H.I.B., S.Y., M.W.B., H.C., G.C., J.A.C., A.D., F.G.C., M.H., R.H.O., D.W.M., G.O., C.O.B., F.B., O.S., G.S., Y.S., A.S., J.d.S., M.d.S., M.S., K.T., K.A.T., M.M.Z., and J.O. Visualization: J.O., I.C., S.S., R.S., C.H.C.L., G.C., and A.H.S. Funding acquisition: A.H.S., J.F., and J.O. Writing—original draft: A.H.S., R.S., M.L.C., C.H.C.L., I.C., and S.S. Writing—review & editing: A.H.S., J.F., C.H.C.L., R.S., M.L.C., I.B., S.S., A.L.H., D.N., M.d.S., S.B., M.M.Z., O.S., K.T., K.A.T., R.H.O., J.d.S., C.K.T., R.V., J.O., D.H., and I.K.M. More

  • in

    Non-target impacts of fungicide disturbance on phyllosphere yeasts in conventional and no-till management

    Rykiel EJ. Towards a definition of ecological disturbance. Austral Ecology. 1985;10:361–5.
    Google Scholar 
    Glasby TM, Underwood AJ. Sampling to differentiate between pulse and press perturbations. Environ Monit. Assess. 1996;42:241–52.CAS 
    PubMed 

    Google Scholar 
    Sullivan TP, Sullivan DS. Vegetation management and ecosystem disturbance: impact of glyphosate herbicide on plant and animal diversity in terrestrial systems. Environ Rev. 2003;11:37–59.CAS 

    Google Scholar 
    Landers TF, Cohen B, Wittum TE, Larson EL. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Rep. 2012;127:4–22.PubMed 
    PubMed Central 

    Google Scholar 
    Shade A, Peter H, Allison SD, Baho DL, Berga M, Bürgmann H, et al. Fundamentals of microbial community resistance and resilience. Front Microbiol. 2012;3:417.PubMed 
    PubMed Central 

    Google Scholar 
    Hahn M. The rising threat of fungicide resistance in plant pathogenic fungi: Botrytis as a case study. J Chem Biol. 2014;7:133–41.PubMed 
    PubMed Central 

    Google Scholar 
    Schaeffer RN, Vannette RL, Brittain C, Williams NM, Fukami T. Non-target effects of fungicides on nectar-inhabiting fungi of almond flowers. Environ. Microbiol. Rep. 2017;9:79–84.PubMed 

    Google Scholar 
    Zubrod JP, Bundschuh M, Arts G, Brühl CA, Imfeld G, Knäbel A, et al. Fungicides: An Overlooked Pesticide Class? Environ Sci Technol. 2019;53:3347–65.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delmas CEL, Dussert Y, Delière L, Couture C, Mazet ID, Richart Cervera S, et al. Soft selective sweeps in fungicide resistance evolution: recurrent mutations without fitness costs in grapevine downy mildew. Mol. Ecol. 2017;26:1936–51.CAS 
    PubMed 

    Google Scholar 
    McDonald MC, Renkin M, Spackman M, Orchard B, Croll D, Solomon PS, et al. Rapid parallel evolution of azole fungicide resistance in Australian populations of the wheat pathogen Zymoseptoria tritici. Appl Environ Microbiol. 2019;85:e01908–e01918.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Riat A, Plojoux J, Gindro K, Schrenzel J, Sanglard D. Azole Resistance of environmental and clinical Aspergillus fumigatus isolates from Switzerland. Antimicrob Agents Chemother. 2018;62:e02088–e02017.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Verweij PE, Snelders E, Kema GHJ, Mellado E, Melchers WJG. Azole resistance in Aspergillus fumigatus: a side-effect of environmental fungicide use? Lancet Infect Dis. 2009;9:789–95.CAS 
    PubMed 

    Google Scholar 
    Wise K, Mueller D Are fungicides no longer just for fungi? An analysis of foliar fungicide use in corn. APSnet Features doi 2011; 10.Kandel YR, Hunt C, Ames K, Arneson N, Bradley CA, Byamukama E, et al. Meta-Analysis of Soybean Yield Response to Foliar Fungicides Evaluated from 2005 to 2018 in the United States and Canada. Plant Dis. 2021;105:1382–9.PubMed 

    Google Scholar 
    Imfeld G, Vuilleumier S. Measuring the effects of pesticides on bacterial communities in soil: A critical review. Eur J Soil Biol. 2012;49:22–30.CAS 

    Google Scholar 
    Fournier B, Dos Santos SP, Gustavsen JA, Imfeld G, Lamy F, Mitchell EAD, et al. Impact of a synthetic fungicide (fosetyl-Al and propamocarb-hydrochloride) and a biopesticide (Clonostachys rosea) on soil bacterial, fungal, and protist communities. Sci Total Environ. 2020;738:139635.CAS 
    PubMed 

    Google Scholar 
    Morton V, Staub T A Short History of Fungicides. APSnet Feature Articles. 2008.Brent KJ, Hollomon DW Fungicide resistance in crop pathogens: how can it be managed? 2007. FRAC Monogr. No. 1, Global Prot. Fed.Perazzolli M, Antonielli L, Storari M, Puopolo G, Pancher M, Giovannini O, et al. Resilience of the natural phyllosphere microbiota of the grapevine to chemical and biological pesticides. Appl Environ Microbiol. 2014;80:3585–96.PubMed 
    PubMed Central 

    Google Scholar 
    Knorr K, Jørgensen LN, Nicolaisen M. Fungicides have complex effects on the wheat phyllosphere mycobiome. PLoS One. 2019;14:e0213176.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sapkota R, Knorr K, Jørgensen LN, O’Hanlon KA, Nicolaisen M. Host genotype is an important determinant of the cereal phyllosphere mycobiome. New Phytol. 2015;207:1134–44.CAS 
    PubMed 

    Google Scholar 
    Southwell RJ, Brown JF, Welsby SM. Microbial interactions on the phylloplane of wheat and barley after applications of mancozeb and triadimefon. Australasian Plant Pathol. 1999;28:139.
    Google Scholar 
    Dickinson CH, Wallace B. Effects of late applications of foliar fungicides on activity of micro-organisms on winter wheat flag leaves. Trans Br Mycological Soc. 1976;67:103–12.
    Google Scholar 
    Freimoser FM, Rueda-Mejia MP, Tilocca B, Migheli Q. Biocontrol yeasts: mechanisms and applications. World J Microbiol Biotechnol. 2019;35:154.PubMed 
    PubMed Central 

    Google Scholar 
    Fonseca Á, Inácio J Phylloplane Yeasts. In: Péter G, Rosa C (eds). Biodiversity and Ecophysiology of Yeasts. 2006. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 263–301.Cobban A, Edgcomb VP, Burgaud G, Repeta D, Leadbetter ER. Revisiting the pink-red pigmented basidiomycete mirror yeast of the phyllosphere. Microbiologyopen. 2016;5:846–55.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cadez N, Zupan J, Raspor P. The effect of fungicides on yeast communities associated with grape berries. FEMS Yeast Res. 2010;10:619–30.CAS 
    PubMed 

    Google Scholar 
    Schaeffer RN, Mei YZ, Andicoechea J, Manson JS, Irwin RE. Consequences of a nectar yeast for pollinator preference and performance. Funct Ecol. 2017;31:613–21.
    Google Scholar 
    Agler MT, Ruhe J, Kroll S, Morhenn C, Kim S-T, Weigel D, et al. Microbial Hub Taxa Link Host and Abiotic Factors to Plant Microbiome Variation. PLoS Biol. 2016;14:e1002352.PubMed 
    PubMed Central 

    Google Scholar 
    Tilman D. The ecological consequences of changes in biodiversity: a search for general principles. Ecology. 1999;80:1455.
    Google Scholar 
    Ripple WJ, Beschta RL. Linking wolves and plants: aldo leopold on trophic cascades. BioScience. 2005;55:613.
    Google Scholar 
    Sahasrabudhe S, Motter AE. Rescuing ecosystems from extinction cascades through compensatory perturbations. Nat Commun. 2011;2:170.PubMed 

    Google Scholar 
    Zhou J, Deng Y, Luo F, He Z, Tu Q, Zhi X. Functional molecular ecological networks. mBio. 2010;1:e00169–e00210.PubMed 
    PubMed Central 

    Google Scholar 
    Wagg C, Schlaeppi K, Banerjee S, Kuramae EE, van der Heijden MGA. Fungal-bacterial diversity and microbiome complexity predict ecosystem functioning. Nat Commun. 2019;10:4841.PubMed 
    PubMed Central 

    Google Scholar 
    Claassen R, Bowman M, McFadden J, Smith D, Wallander S. Tillage intensity and conservation cropping in the United States. US Dep Agric Bull Econ Rese Ser. 2018;197:1–21.
    Google Scholar 
    Gdanetz K, Trail F. The wheat microbiome under four management strategies, and potential for endophytes in disease protection. Phytobiomes J. 2017;1:158–68.
    Google Scholar 
    Longley R, Noel ZA, Benucci GMN, Chilvers MI, Trail F, Bonito G. Crop management impacts the soybean microbiome. Front Microbiol. 2020;11:1116.PubMed 
    PubMed Central 

    Google Scholar 
    Sułowicz S, Cycoń M, Piotrowska-Seget Z. Non-target impact of fungicide tetraconazole on microbial communities in soils with different agricultural management. Ecotoxicology. 2016;25:1047–60.PubMed 
    PubMed Central 

    Google Scholar 
    Karlsson I, Friberg H, Steinberg C, Persson P. Fungicide effects on fungal community composition in the wheat phyllosphere. PLoS One. 2014;9:e111786.PubMed 
    PubMed Central 

    Google Scholar 
    Robertson GP, Hamilton SK Long-term ecological research at the Kellogg Biological Station LTER site. The ecology of agricultural landscapes: Long-term research on the path to sustainability 2015; 1–32.Fehr WR, Caviness CE, Burmood DT, Pennington JS. Stage of development descriptions for soybeans, Glycine max (L.) Merrill 1. Crop Sci. 1971;11:929–31.
    Google Scholar 
    Gdanetz K, Noel Z, Trail F. Influence of plant host and organ, management strategy, and spore traits on microbiome composition. Phytobiomes J. 2021;5:202–19.
    Google Scholar 
    Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL. Practical innovations for high-throughput amplicon sequencing. Nat Methods. 2013;10:999–1002.CAS 
    PubMed 

    Google Scholar 
    Bowsher AW, Benucci GMN, Bonito G, Shade A. Seasonal Dynamics of Core Fungi in the Switchgrass Phyllosphere, and Co-Occurrence with Leaf Bacteria. Phytobiomes J. 2021;5:60–68.
    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. vegan: Community Ecology Package v. 2.5-7. 2020Anderson MJ, Willis TJ. Canonical analysis of principle coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84:511–25.
    Google Scholar 
    Mandal S, Van Treuren W, White RA, Eggesbø M, Knight R, Peddada SD. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb Ecol Health Dis. 2015;26:27663.PubMed 

    Google Scholar 
    Shade A, Stopnisek N. Abundance-occupancy distributions to prioritize plant core microbiome membership. Curr Opin Microbiol. 2019;49:50–58.PubMed 

    Google Scholar 
    Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2:18–22.
    Google Scholar 
    Kursa MB, Rudnicki WR. Feature selection with the Boruta package. J Stat Softw. 2010;36:1–13.
    Google Scholar 
    Kurtz ZD, Müller CL, Miraldi ER, Littman DR, Blaser MJ, Bonneau RA. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput Biol. 2015;11:e1004226.PubMed 
    PubMed Central 

    Google Scholar 
    Lindow SE, Brandl MT. Microbiology of the phyllosphere. Appl Environ Microbiol. 2003;69:1875–83.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang K, Sipilä TP, Overmyer K. The isolation and characterization of resident yeasts from the phylloplane of Arabidopsis thaliana. Sci Rep. 2016;6:39403.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sun PF, Fang WT, Shin LY, Wei JY, Fu SF, Chou JY. Indole-3-acetic acid-producing yeasts in the phyllosphere of the carnivorous plant Drosera indica L. PLoS One. 2014;9:e114196.PubMed 
    PubMed Central 

    Google Scholar 
    Yurkov AM, Kurtzman CP. Three new species of Tremellomycetes isolated from maize and northern wild rice. FEMS Yeast Res. 2019;19:foz004.CAS 
    PubMed 

    Google Scholar 
    Sommermann L, Geistlinger J, Wibberg D, Deubel A, Zwanzig J, Babin D, et al. Fungal community profiles in agricultural soils of a long-term field trial under different tillage, fertilization and crop rotation conditions analyzed by high-throughput ITS-amplicon sequencing. PLOS ONE. 2018;13:e0195345.PubMed 
    PubMed Central 

    Google Scholar 
    Li A-H, Yuan F-X, Groenewald M, Bensch K, Yurkov AM, Li K, et al. Diversity and phylogeny of basidiomycetous yeasts from plant leaves and soil: proposal of two new orders, three new families, eight new genera and one hundred and seven new species. Stud Mycol. 2020;96:17–140.PubMed 
    PubMed Central 

    Google Scholar 
    Gilbert DG. Dispersal of yeasts and bacteria by Drosophila in a temperate forest. Oecologia. 1980;46:135–7.PubMed 

    Google Scholar 
    Starmer WT, Peris F, Fontdevila A. The transmission of yeasts by Drosophila buzzatii during courtship and mating. Animal Behaviour. 1988;36:1691–5.
    Google Scholar 
    Murrell EG. Can agricultural practices that mitigate or improve crop resilience to climate change also manage crop pests? Curr Opin Insect Sci. 2017;23:81–88.PubMed 

    Google Scholar 
    Latin R A Practical Guide to Turfgrass Fungicides. 2017.Banerjee S, Walder F, Büchi L, Meyer M, Held AY, Gattinger A, et al. Agricultural intensification reduces microbial network complexity and the abundance of keystone taxa in roots. ISME J. 2019;13:1722–36.PubMed 
    PubMed Central 

    Google Scholar 
    Schmidt JE, Kent AD, Brisson VL, Gaudin ACM. Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome. 2019;7:146.PubMed 
    PubMed Central 

    Google Scholar 
    Brockhurst MA, Buckling A, Gardner A. Cooperation peaks at intermediate disturbance. Curr Biol. 2007;17:761–5.CAS 
    PubMed 

    Google Scholar 
    Brockhurst MA, Habets MGJL, Libberton B, Buckling A, Gardner A. Ecological drivers of the evolution of public-goods cooperation in bacteria. Ecology. 2010;91:334–40.PubMed 

    Google Scholar 
    Kwak M-J, Jeong H, Madhaiyan M, Lee Y, Sa T-M, Oh TK, et al. Genome information of Methylobacterium oryzae, a plant-probiotic methylotroph in the phyllosphere. PLoS One. 2014;9:e106704.PubMed 
    PubMed Central 

    Google Scholar 
    Yoshida S, Hiradate S, Koitabashi M, Kamo T, Tsushima S. Phyllosphere Methylobacterium bacteria contain UVA-absorbing compounds. J Photochem Photobiol B. 2017;167:168–75.CAS 
    PubMed 

    Google Scholar 
    Grady KL, Sorensen JW, Stopnisek N, Guittar J, Shade A. Assembly and seasonality of core phyllosphere microbiota on perennial biofuel crops. Nat Commun. 2019;10:4135.PubMed 
    PubMed Central 

    Google Scholar 
    Delmotte N, Knief C, Chaffron S, Innerebner G, Roschitzki B, Schlapbach R, et al. Community proteogenomics reveals insights into the physiology of phyllosphere bacteria. Proc Natl Acad Sci USA. 2009;106:16428–33.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Environmental crises at the Permian–Triassic mass extinction

    Wignall, P. B. The Worst of Times (Princeton Univ. Press, 2015).Black, B. A., Karlstrom, L. & Mather, T. A. The life cycle of large igneous provinces. Nat. Rev. Earth Environ. 2, 840–857 (2021).
    Google Scholar 
    Jin, Y. G. et al. Pattern of marine mass extinction near the Permian–Triassic boundary in south China. Science 289, 432–436 (2000).
    Google Scholar 
    Song, H., Wignall, P. B., Tong, J. & Yin, H. Two pulses of extinction during the Permian–Triassic crisis. Nat. Geosci. 6, 52–56 (2013).
    Google Scholar 
    Stanley, S. M. Estimates of the magnitudes of major marine mass extinctions in Earth history. Proc. Natl Acad. Sci. USA 113, E6325–E6334 (2016).
    Google Scholar 
    Benton, M. J. & Newell, A. J. Impacts of global warming on Permo–Triassic terrestrial ecosystems. Gondwana Res. 25, 1308–1337 (2014).
    Google Scholar 
    Brayard, A. et al. Transient metazoan reefs in the aftermath of the end-Permian mass extinction. Nat. Geosci. 4, 693–697 (2011).
    Google Scholar 
    Brayard, A. et al. Good genes and good luck: ammonoid diversity and the end-Permian mass extinction. Science 325, 1118–1121 (2009).
    Google Scholar 
    Scheyer, T. M., Romano, C., Jenks, J. & Bucher, H. Early triassic marine biotic recovery: the predators’ perspective. PLoS ONE 9, e88987 (2014).
    Google Scholar 
    Retallack, G. J., Veevers, J. J. & Morante, R. Global coal gap between Permian–Triassic extinction and Middle Triassic recovery of peat-forming plants. Bull. Geolog. Soc. Am. 108, 195–207 (1996).
    Google Scholar 
    Payne, J. L. et al. Large perturbations of the carbon cycle during recovery from the end-Permian extinction. Science 305, 506–509 (2004).
    Google Scholar 
    Song, H., Wignall, P. B. & Dunhill, A. M. Decoupled taxonomic and ecological recoveries from the Permo–Triassic extinction. Sci. Adv. 4, eaat5091 (2018).
    Google Scholar 
    Retallack, G. J. Postapocalyptic greenhouse paleoclimate revealed by earliest Triassic paleosols in the Sydney basin, Australia. Bull. Geol. Soc. Am. 111, 52–70 (1999).
    Google Scholar 
    Ward, P. D., Montgomery, D. R. & Smith, R. Altered river morphology in South Africa related to the Permian–Triassic extinction. Science 289, 1740–1743 (2000).
    Google Scholar 
    Wignall, P. B. & Twitchett, R. J. Extent, duration, and nature of the Permian–Triassic superanoxic event. Spec. Pap. Geol. Soc. Am. 356, 395–413 (2002).
    Google Scholar 
    Rampino, M. R. & Stothers, R. B. Flood basalt volcanism during the past 250 million years. Science 241, 663–668 (1988).
    Google Scholar 
    Renne, P. R. & Basu, A. R. Rapid eruption of the Siberian traps flood basalts at the Permo–Triassic boundary. Science 253, 176–179 (1991).
    Google Scholar 
    Burgess, S. D. & Bowring, S. A. High-precision geochronology confirms voluminous magmatism before, during, and after Earth’s most severe extinction. Sci. Adv. 1, e1500470 (2015).
    Google Scholar 
    Vasiljev, Y. R., Zolotukhin, V. V., Feoktistov, G. D. & Prusskaya, S. N. Volume estimation and genesis of Permian–Triassic trap magmatism from Siberian platform. Russ. Geol. Geophys. 41, 1696–1705 (2000).
    Google Scholar 
    Dobretsov, N. L. Large igneous provinces of Asia (250 Ma): Siberian and Emeishan traps (plateau basalts) and associated granitoids. Geol. Geof. 46, 870–890 (2005).
    Google Scholar 
    Augland, L. E. et al. The main pulse of the Siberian Traps expanded in size and composition. Sci. Rep. 9, 18723 (2019).
    Google Scholar 
    Kasbohm, J., Schoene, B. & Burgess, S. in Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes (eds Ernst, R. E., Dickson, A. & Bekker, A.) 27–82 (Wiley, 2021).Burgess, S. D., Muirhead, J. D. & Bowring, S. A. Initial pulse of Siberian Traps sills as the trigger of the end-Permian mass extinction. Nat. Commun. 8, 164 (2017).
    Google Scholar 
    Posenato, R. Marine biotic events in the lopingian succession and latest Permian extinction in the Southern Alps (Italy). Geol. J. 45, 195–215 (2010).
    Google Scholar 
    Posenato, R. The end-Permian mass extinction (EPME) and the early Triassic biotic recovery in the western Dolomites (Italy): state of the art. Bull. Soc. Paleontol. Ital. 58, 11–34 (2019).
    Google Scholar 
    Fielding, C. R. et al. Age and pattern of the southern high-latitude continental end-Permian extinction constrained by multiproxy analysis. Nat. Commun. 10, 385 (2019).
    Google Scholar 
    Chu, D. et al. Ecological disturbance in tropical peatlands prior to marine Permian–Triassic mass extinction. Geology 48, 288–292 (2020).
    Google Scholar 
    Gastaldo, R. A. et al. The base of the Lystrosaurus Assemblage Zone, Karoo basin, predates the end-Permian marine extinction. Nat. Commun. 11, 1428 (2020).
    Google Scholar 
    Foote, M. Morphological and taxonomic diversity in clade’s history: the blastoid record and stochastic simulations. Contrib. Mus. Paleontol. 28, 101–140 (1991).
    Google Scholar 
    Stanley, S. M. & Yang, X. A double mass extinction at the end of the Paleozoic era. Science 266, 1340–1344 (1994).
    Google Scholar 
    Wang, X. D. & Sugiyama, T. Diversity and extinction patterns of Permian coral faunas of China. Lethaia 33, 285–294 (2000).
    Google Scholar 
    Hallam, A. & Wignall, P. B. Mass Extinctions and their Aftermath (Oxford Univ. Press, 1997).Orchard, M. J. Conodont diversity and evolution through the latest Permian and Early Triassic upheavals. Palaeogeogr. Palaeoclimatol. Palaeoecol. 252, 93–117 (2007).
    Google Scholar 
    Romano, C. et al. Permian–Triassic Osteichthyes (bony fishes): diversity dynamics and body size evolution. Biol. Rev. 91, 106–147 (2016).
    Google Scholar 
    Tu, C., Chen, Z. Q. & Harper, D. A. T. Permian–Triassic evolution of the Bivalvia: extinction-recovery patterns linked to ecologic and taxonomic selectivity. Palaeogeogr. Palaeoclimatol. Palaeoecol. 459, 53–62 (2016).
    Google Scholar 
    Schaal, E. K., Clapham, M. E., Rego, B. L., Wang, S. C. & Payne, J. L. Comparative size evolution of marine clades from the Late Permian through Middle Triassic. Paleobiology 42, 127–142 (2016).
    Google Scholar 
    Chen, J. et al. Size variation of brachiopods from the late Permian through the middle Triassic in south China: evidence for the Lilliput effect following the Permian–Triassic extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 519, 248–257 (2019).
    Google Scholar 
    Feng, Y., Song, H. & Bond, D. P. G. Size variations in foraminifers from the early Permian to the Late Triassic: implications for the Guadalupian–Lopingian and the Permian–Triassic mass extinctions. Paleobiology 46, 511–532 (2020).
    Google Scholar 
    Luo, G., Lai, X., Jiang, H. & Zhang, K. Size variation of the end-Permian conodont Neogondolella at Meishan section, Changxing, Zhejiang and its significance. Sci. China Ser. D 49, 337–347 (2006).
    Google Scholar 
    Brayard, A. et al. Early Triassic Gulliver gastropods: spatio-temporal distribution and significance for biotic recovery after the end-Permian mass extinction. Earth Sci. Rev. 146, 31–64 (2015).
    Google Scholar 
    Knoll, A. H., Bambach, R. K., Canfield, D. E. & Grotzinger, J. P. Comparative Earth history and late Permian mass extinction. Science 273, 452–457 (1996).
    Google Scholar 
    Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S. & Fischer, W. W. Paleophysiology and end-Permian mass extinction. Earth Planet. Sci. Lett. 256, 295–313 (2007).
    Google Scholar 
    Clapham, M. E. & Payne, J. L. Acidification, anoxia, and extinction: a multiple logistic regression analysis of extinction selectivity during the Middle and Late Permian. Geology 39, 1059–1062 (2011).
    Google Scholar 
    Vázquez, P. & Clapham, M. E. Extinction selectivity among marine fishes during multistressor global change in the end-Permian and end-Triassic crises. Geology 45, 395–398 (2017).
    Google Scholar 
    Payne, J. L. & Finnegan, S. The effect of geographic range on extinction risk during background and mass extinction. Proc. Natl Acad. Sci. USA 104, 10506–10511 (2007).
    Google Scholar 
    Dai, X. & Song, H. Toward an understanding of cosmopolitanism in deep time: a case study of ammonoids from the middle Permian to the Middle Triassic. Paleobiology 46, 533–549 (2020).
    Google Scholar 
    Kiessling, W. et al. Pre-mass extinction decline of latest Permian ammonoids. Geology 46, 283–286 (2018).
    Google Scholar 
    Rampino, M. R. & Adler, A. C. Evidence for abrupt latest Permian mass extinction of foraminifera: results of tests for the Signor–Lipps effect. Geology 26, 415–418 (1998).
    Google Scholar 
    Song, H., Tong, J., Chen, Z. Q., Yang, H. & Wang, Y. End-Permian mass extinction of foraminifers in the Nanpanjiang basin, south China. J. Paleontol. 83, 718–738 (2009).
    Google Scholar 
    Wignall, P. B. & Hallam, A. Anoxia as a cause of the Permian/Triassic mass extinction: facies evidence from northern Italy and the western United States. Palaeogeogr. Palaeoclimatol. Palaeoecol. 93, 21–46 (1992).
    Google Scholar 
    Shen, S. Z. et al. A sudden end-Permian mass extinction in south China. Bull. Geol. Soc. Am. 131, 205–223 (2019).
    Google Scholar 
    Angiolini, L., Checconi, A., Gaetani, M. & Rettori, R. The latest Permian mass extinction in the Alborz Mountains (North Iran). Geol. J. 45, 216–229 (2010).
    Google Scholar 
    Yin, H., Feng, Q., Lai, X., Baud, A. & Tong, J. The protracted Permo-Triassic crisis and multi-episode extinction around the Permian–Triassic boundary. Glob. Planet. Change 55, 1–20 (2007).
    Google Scholar 
    Wignall, P. B. & Newton, R. Contrasting deep-water records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: evidence for a diachronous mass extinction. Palaios 18, 153–167 (2003).
    Google Scholar 
    Wang, Y. et al. Quantifying the process and abruptness of the end-Permian mass extinction. Paleobiology 40, 113–129 (2014).
    Google Scholar 
    Liu, X., Song, H., Bond, D. P. G., Tong, J. & Benton, M. J. Migration controls extinction and survival patterns of foraminifers during the Permian–Triassic crisis in south China. Earth Sci. Rev. 209, 103329 (2020).
    Google Scholar 
    Chen, Z. Q. et al. Environmental and biotic turnover across the Permian–Triassic boundary on a shallow carbonate platform in western Zhejiang, south China. Aust. J. Earth Sci. 56, 775–797 (2009).
    Google Scholar 
    He, W. H. et al. Late Permian marine ecosystem collapse began in deeper waters: evidence from brachiopod diversity and body size changes. Geobiology 13, 123–138 (2015).
    Google Scholar 
    Burgess, S. D., Bowring, S. & Shen, S. Z. High-precision timeline for Earth’s most severe extinction. Proc. Natl Acad. Sci. USA 111, 3316–3321 (2014).
    Google Scholar 
    Yang, H. et al. Composition and structure of microbialite ecosystems following the end-Permian mass extinction in south China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 308, 111–128 (2011).
    Google Scholar 
    Tian, L. et al. Distribution and size variation of ooids in the aftermath of the Permian–Triassic mass extinction. Palaios 30, 714–727 (2015).
    Google Scholar 
    Retallack, G. J. Permian–Triassic life crisis on land. Science 267, 77–80 (1995).
    Google Scholar 
    Looy, C. V., Brugman, W. A., Dilcher, D. L. & Visscher, H. The delayed resurgence of equatorial forests after the Permian–Triassic ecologic crisis. Proc. Natl Acad. Sci. USA 96, 13857–13862 (1999).
    Google Scholar 
    Hermann, E. et al. Terrestrial ecosystems on North Gondwana following the end-Permian mass extinction. Gondwana Res. 20, 630–637 (2011).
    Google Scholar 
    Cascales-Miñana, B., Diez, J. B., Gerrienne, P. & Cleal, C. J. A palaeobotanical perspective on the great end-Permian biotic crisis. Hist. Biol. 28, 1066–1074 (2016).
    Google Scholar 
    Yu, J. et al. Vegetation changeover across the Permian–Triassic boundary in southwest China. Extinction, survival, recovery and palaeoclimate: a critical review. Earth Sci.Rev. 149, 203–224 (2015).
    Google Scholar 
    Vajda, V. et al. End-Permian (252 Mya) deforestation, wildfires and flooding—an ancient biotic crisis with lessons for the present. Earth Planet. Sci. Lett. 529, 115875 (2020).
    Google Scholar 
    Schneebeli-Hermann, E., Hochuli, P. A. & Bucher, H. Palynofloral associations before and after the Permian–Triassic mass extinction, Kap Stosch, East Greenland. Glob. Planet. Change 155, 178–195 (2017).
    Google Scholar 
    Nowak, H., Schneebeli-Hermann, E. & Kustatscher, E. No mass extinction for land plants at the Permian–Triassic transition. Nat. Commun. 10, 384 (2019).
    Google Scholar 
    Chu, D. et al. Biostratigraphic correlation and mass extinction during the Permian–Triassic transition in terrestrial-marine siliciclastic settings of south China. Glob. Planet. Change 146, 67–88 (2016).
    Google Scholar 
    Zhang, H. et al. The terrestrial end-Permian mass extinction in south China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 108–124 (2016).
    Google Scholar 
    Krassilov, V. & Karasev, E. Paleofloristic evidence of climate change near and beyond the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 284, 326–336 (2009).
    Google Scholar 
    Mcloughlin, S., Lindström, S. & Drinnan, A. N. Gondwanan floristic and sedimentological trends during the Permian–Triassic transition: new evidence from the Amery Group, northern Prince Charles Mountains, east Antarctica. Antarctic Sci. 9, 281–298 (1997).
    Google Scholar 
    Kerp, H., Hamad, A. A., Vörding, B. & Bandel, K. Typical Triassic Gondwanan floral elements in the Upper Permian of the paleotropics. Geology 34, 265–268 (2006).
    Google Scholar 
    Eshet, Y., Rampino, M. R. & Visscher, H. Fungal event and palynological record of ecological crisis and recovery across the Permian–Triassic boundary. Geology 23, 967–970 (1995).
    Google Scholar 
    Visscher, H. et al. Environmental mutagenesis during the end-Permian ecological crisis. Proc. Natl Acad. Sci. USA 101, 12952–12956 (2004).
    Google Scholar 
    Looy, C. V., Collinson, M. E., Van Konijnenburg-Van Cittert, J. H. A., Visscher, H. & Brain, A. P. R. The ultrastructure and botanical affinity of end-Permian spore tetrads. Int. J. Plant Sci. 166, 875–887 (2005).
    Google Scholar 
    Foster, C. B. & Afonin, S. A. Abnormal pollen grains: an outcome of deteriorating atmospheric conditions around the Permian–Triassic boundary. J. Geol. Soc. 162, 653–659 (2005).
    Google Scholar 
    Hochuli, P. A., Schneebeli-Hermann, E., Mangerud, G. & Bucher, H. Evidence for atmospheric pollution across the Permian–Triassic transition. Geology 45, 1123–1126 (2017).
    Google Scholar 
    Rampino, M. R. & Eshet, Y. The fungal and acritarch events as time markers for the latest Permian mass extinction: an update. Geosci. Front. 9, 147–154 (2018).
    Google Scholar 
    Benca, J. P., Duijnstee, I. A. P. & Looy, C. V. UV-B–induced forest sterility: implications of ozone shield failure in Earth’s largest extinction. Sci. Adv. 4, e1700618 (2018).
    Google Scholar 
    Chu, D. et al. Metal-induced stress in survivor plants following the end-Permian collapse of land ecosystems. Geology 49, 657–661 (2021).
    Google Scholar 
    Schneebeli-Hermann, E. et al. Vegetation history across the Permian–Triassic boundary in Pakistan (Amb section, Salt Range). Gondwana Res. 27, 911–924 (2015).
    Google Scholar 
    Visscher, H. et al. The terminal paleozoic fungal event: evidence of terrestrial ecosystem destabilization and collapse. Proc. Natl Acad. Sci. USA 93, 2155–2158 (1996).
    Google Scholar 
    Visscher, H., Sephton, M. A. & Looy, C. V. Fungal virulence at the time of the end-Permian biosphere crisis? Geology 39, 883–886 (2011).
    Google Scholar 
    Looy, C. V., Twitchett, R. J., Dilcher, D. L., Van Konijnenburg-Van Cittert, J. H. A. & Visscher, H. Life in the end-Permian dead zone. Proc. Natl Acad. Sci. USA 98, 7879–7883 (2001).
    Google Scholar 
    Bercovici, A. & Vajda, V. Terrestrial Permian–Triassic boundary sections in south China. Glob. Planet. Change 143, 31–33 (2016).
    Google Scholar 
    Hochuli, P. A. Interpretation of “fungal spikes” in Permian–Triassic boundary sections. Glob. Planet. Change 144, 48–50 (2016).
    Google Scholar 
    Angielczyk, K. D., Roopnarine, P. D. & Wang, S. C. Modeling the role of primary productivity disruption in end-Permian extinctions, Karoo basin, South Africa. New Mex. Mus. Nat. Hist. Sci. Bull. 30, 16–23 (2005).
    Google Scholar 
    Labandeira, C. C. & Sepkoski, J. J. Insect diversity in the fossil record. Science 261, 310–315 (1993).
    Google Scholar 
    Shcherbakov, D. E. On Permian and Triassic insect faunas in relation to biogeography and the Permian-Triassic crisis. Paleontol. J. 42, 15–31 (2008).
    Google Scholar 
    Condamine, F. L., Clapham, M. E. & Kergoat, G. J. Global patterns of insect diversification: towards a reconciliation of fossil and molecular evidence? Sci. Rep. 6, 19208 (2016).
    Google Scholar 
    Smith, R. M. H. & Ward, P. D. Pattern of vertebrate extinctions across an event bed at the Permian–Triassic boundary in the Karoo basin of South Africa. Geology 29, 1147 (2001).
    Google Scholar 
    Benton, M. J., Tverdokhlebov, V. P. & Surkov, M. V. Ecosystem remodelling among vertebrates at the Permian–Triassic boundary in Russia. Nature 432, 97–100 (2004).
    Google Scholar 
    Viglietti, P. A. et al. Evidence from South Africa for a protracted end-Permian extinction on land. Proc. Natl Acad. Sci. USA 118, e2017045118 (2021).
    Google Scholar 
    Sennikov, A. G. & Golubev, V. K. Vyazniki biotic assemblage of the terminal Permian. Paleontol. J. 40, S475–S481 (2006).
    Google Scholar 
    Sennikov, A. G. & Golubev, V. K. On the faunal verification of the Permo–Triassic boundary in continental deposits of eastern Europe: 1. Gorokhovets–Zhukov ravine. Paleontol. J. 46, 313–323 (2012).
    Google Scholar 
    Zhu, Z. et al. Altered fluvial patterns in north China indicate rapid climate change linked to the Permian–Triassic mass extinction. Sci. Rep. 9, 16818 (2019).
    Google Scholar 
    Shen, S. Z. et al. Calibrating the end-Permian mass extinction. Science 334, 1367–1372 (2011).
    Google Scholar 
    Twitchett, R. J., Looy, C. V., Morante, R., Visscher, H. & Wignall, P. B. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology 29, 351–354 (2001).
    Google Scholar 
    Biswas, R. K., Kaiho, K., Saito, R., Tian, L. & Shi, Z. Terrestrial ecosystem collapse and soil erosion before the end-Permian marine extinction: organic geochemical evidence from marine and non-marine records. Glob. Planet. Change 195, 103327 (2020).
    Google Scholar 
    Aftabuzzaman, M. D. et al. End-Permian terrestrial disturbance followed by the complete plant devastation, and the vegetation proto-recovery in the earliest-Triassic recorded in coastal sea sediments. Glob. Planet. Change 205, 103621 (2021).
    Google Scholar 
    Gastaldo, R. A., Neveling, J., Geissman, J. W., Kamo, S. L. & Looy, C. V. A tale of two Tweefonteins: what physical correlation, geochronology, magnetic polarity stratigraphy, and palynology reveal about the end-Permian terrestrial extinction paradigm in South Africa. GSA Bull. https://doi.org/10.1130/b35830.1 (2021).Yan, Z. et al. Frequent and intense fires in the final coals of the Paleozoic indicate elevated atmospheric oxygen levels at the onset of the end-Permian mass extinction event. Int. J.Coal Geol. 207, 75–83 (2019).
    Google Scholar 
    DiMichele, W. A., Bashforth, A. R., Falcon-Lang, H. J. & Lucas, S. G. Uplands, lowlands, and climate: taphonomic megabiases and the apparent rise of a xeromorphic, drought-tolerant flora during the Pennsylvanian–Permian transition. Palaeogeogr. Palaeoclimatol. Palaeoecol. 559, 109965 (2020).
    Google Scholar 
    Smith, R. M. H. & Botha-Brink, J. Anatomy of a mass extinction: sedimentological and taphonomic evidence for drought-induced die-offs at the Permo-Triassic boundary in the main Karoo basin, South Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol. 396, 99–118 (2014).
    Google Scholar 
    Xiong, C. & Wang, Q. Permian–Triassic land-plant diversity in south China: was there a mass extinction at the Permian/Triassic boundary? Paleobiology 37, 157–167 (2011).
    Google Scholar 
    Yu, J. et al. Terrestrial events across the Permian–Triassic boundary along the Yunnan–Guizhou border, SW China. Glob. Planet. Change 55, 193–208 (2007).
    Google Scholar 
    Becker, L., Poreda, R. J., Hunt, A. G., Bunch, T. E. & Rampino, M. Impact event at the Permian–Triassic boundary: evidence from extraterrestrial noble gases in fullerenes. Science 291, 1530–1533 (2001).
    Google Scholar 
    Basu, A. R., Petaev, M. I., Poreda, R. J., Jacobsen, S. B. & Becker, L. Chondritic meteorite fragments associated with the Permian–Triassic boundary in Antarctica. Science 302, 1388–1392 (2003).
    Google Scholar 
    Isozaki, Y. Permo–Triassic boundary superanoxia and stratified superocean: records from lost deep sea. Science 276, 235–238 (1997).
    Google Scholar 
    French, B. M. & Koeberl, C. The convincing identification of terrestrial meteorite impact structures: what works, what doesn’t, and why. Earth Sci. Rev. 98, 123–170 (2010).
    Google Scholar 
    Saunders, A. D., England, R. W., Reichow, M. K. & White, R. V. A mantle plume origin for the Siberian traps: uplift and extension in the west Siberian basin, Russia. Lithos 79, 407–424 (2005).
    Google Scholar 
    Reichow, M. K. et al. Petrogenesis and timing of mafic magmatism, south Taimyr, Arctic Siberia: a northerly continuation of the Siberian Traps? Lithos 248–251, 382–401 (2016).
    Google Scholar 
    Naldrett, A. J., Lightfoot, P. C., Fedorenko, V., Doherty, W. & Gorbachev, N. S. Geology and geochemistry of intrusions and flood basalts of the Noril’sk region, USSR, with implications for the origin of the Ni-Cu ores. Econ. Geol. 87, 975–1004 (1992).
    Google Scholar 
    Hawkesworth, C. J. et al. Magma differentiation and mineralisation in the Siberian continental flood basalts. Lithos 34, 61–88 (1995).
    Google Scholar 
    Fedorenko, V. A. et al. Petrogenesis of the flood-basalt sequence at Noril’sk, north central Siberia. Int. Geol. Rev. 38, 99–135 (1996).
    Google Scholar 
    Arndt, N., Chauvel, C., Czamanske, G. & Fedorenko, V. Two mantle sources, two plumbing systems: tholeiitic and alkaline magmatism of the Maymecha River basin, Siberian flood volcanic province. Contribut. Mineral. Petrol. 133, 297–313 (1998).
    Google Scholar 
    Sobolev, S. V. et al. Linking mantle plumes, large igneous provinces and environmental catastrophes. Nature 477, 312–316 (2011).
    Google Scholar 
    Sobolev, A. V., Arndt, N. T., Krivolutskaya, N. A., Kuzmin, D. V. & Sobolev, S. V. in Volcanism and Global Environmental Change (eds Schmidt, A. Fristad, K. & Elkins-Tanton, L.) 147–163 (Cambridge Univ. Press, 2015).Black, B. A., Elkins-Tanton, L. T., Rowe, M. C. & Peate, I. U. Magnitude and consequences of volatile release from the Siberian Traps. Earth Planet. Sci. Lett. 317–318, 363–373 (2012).
    Google Scholar 
    Broadley, M. W., Barry, P. H., Ballentine, C. J., Taylor, L. A. & Burgess, R. End-Permian extinction amplified by plume-induced release of recycled lithospheric volatiles. Nat. Geosci. 11, 682–687 (2018).
    Google Scholar 
    Elkins-Tanton, L. T. et al. Field evidence for coal combustion links the 252 Ma Siberian Traps with global carbon disruption. Geology 48, 986–991 (2020).
    Google Scholar 
    Grasby, S. E. & Beauchamp, B. Latest Permian to Early Triassic basin-to-shelf anoxia in the Sverdrup basin, Arctic Canada. Chem. Geol. 264, 232–246 (2009).
    Google Scholar 
    Grasby, S. E., Sanei, H. & Beauchamp, B. Catastrophic dispersion of coal fly ash into oceans during the latest Permian extinction. Nat. Geosci. 4, 104–107 (2011).
    Google Scholar 
    Sanei, H., Grasby, S. E. & Beauchamp, B. Latest Permian mercury anomalies. Geology 40, 63–66 (2012).
    Google Scholar 
    Reichow, M. K., Saunders, A. D., White, R. V., Al’Mukhamedov, A. I. & Medvedev, A. Y. Geochemistry and petrogenesis of basalts from the west Siberian basin: an extension of the Permo–Triassic Siberian Traps, Russia. Lithos 79, 425–452 (2005).
    Google Scholar 
    Jerram, D. A., Svensen, H. H., Planke, S., Polozov, A. G. & Torsvik, T. H. The onset of flood volcanism in the north-western part of the Siberian Traps: explosive volcanism versus effusive lava flows. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 38–50 (2016).
    Google Scholar 
    Svensen, H. et al. Siberian gas venting and the end-Permian environmental crisis. Earth Planet. Sci.Lett. 277, 490–500 (2009).
    Google Scholar 
    Svensen, H. H. et al. Sills and gas generation in the Siberian Traps. Phil. Trans. R. Soc. A 376, 20170080 (2018).
    Google Scholar 
    Davydov, V. I. Tunguska сoals, Siberian sills and the Permian–Triassic extinction. Earth Sci. Rev. 212, 103438 (2021).
    Google Scholar 
    Callegaro, S. et al. Geochemistry of deep Tunguska basin sills, Siberian Traps: correlations and potential implications for the end-Permian environmental crisis. Contribut. Mineral. Petrol. 176, 49 (2021).
    Google Scholar 
    Wooden, J. L. et al. Isotopic and trace-element constraints on mantle and crustal contributions to Siberian continental flood basalts, Noril’sk area, Siberia. Geochim. Cosmochim. Acta 57, 3677–3704 (1993).
    Google Scholar 
    Arndt, N. T., Czmanske, G. K., Walker, R. J., Chauvel, C. & Fedorenko, V. A. Geochemistry and origin of the intrusive hosts of the Noril’sk-Talnakh Cu-Ni-PGE sulfide deposits. Eco. Geol. 98, 495–515 (2003).
    Google Scholar 
    Pang, K. N. et al. A petrologic, geochemical and Sr-Nd isotopic study on contact metamorphism and degassing of Devonian evaporites in the Norilsk aureoles, Siberia. Contrib. Mineral. Petrol. 165, 683–704 (2013).
    Google Scholar 
    Yao, Z. S. & Mungall, J. E. Linking the Siberian flood basalts and giant Ni-Cu-PGE sulfide deposits at Norilsk. J. Geophys. Res. Solid Earth 126, e2020JB020823 (2021).
    Google Scholar 
    Sibik, S., Edmonds, M., Maclennan, J. & Svensen, H. Magmas erupted during the main pulse of Siberian Traps volcanism were volatile-poor. J. Petrol. 56, 2089–2116 (2015).
    Google Scholar 
    Retallack, G. J. & Jahren, A. H. Methane release from igneous intrusion of coal during late Permian extinction events. J. Geol. 116, 1–20 (2008).
    Google Scholar 
    Iacono-Marziano, G. et al. Gas emissions due to magma-sediment interactions during flood magmatism at the Siberian Traps: gas dispersion and environmental consequences. Earth Planet. Sci. Lett. 357–358, 308–318 (2012).
    Google Scholar 
    Fristad, K. E., Svensen, H. H., Polozov, A. & Planke, S. Formation and evolution of the end-Permian Oktyabrsk volcanic crater in the Tunguska basin, eastern Siberia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 468, 76–87 (2017).
    Google Scholar 
    Polozov, A. G. et al. The basalt pipes of the Tunguska basin (Siberia, Russia): high temperature processes and volatile degassing into the end-Permian atmosphere. Palaeogeogr. Palaeoclimatol. Palaeoecol. 441, 51–64 (2016).
    Google Scholar 
    Elkins-Tanton, L. T. et al. The last lavas erupted during the main phase of the Siberian flood volcanic province: results from experimental petrology. Contribut. Mineral. Petrol. 153, 191–209 (2007).
    Google Scholar 
    Schmidt, A. et al. Selective environmental stress from sulphur emitted by continental flood basalt eruptions. Nat. Geosci. 9, 77–82 (2016).
    Google Scholar 
    Black, B. A. et al. Systemic swings in end-Permian climate from Siberian Traps carbon and sulfur outgassing. Nat. Geosci. 11, 949–954 (2018).
    Google Scholar 
    Schobben, M., Joachimski, M. M., Korn, D., Leda, L. & Korte, C. Palaeotethys seawater temperature rise and an intensified hydrological cycle following the end-Permian mass extinction. Gondwana Res. 26, 675–683 (2014).
    Google Scholar 
    Chen, J. et al. Abrupt warming in the latest Permian detected using high-resolution in situ oxygen isotopes of conodont apatite from Abadeh, central Iran. Palaeogeogr. Palaeoclimatol. Palaeoecol. 560, 109973 (2020).
    Google Scholar 
    Joachimski, M. M., Alekseev, A. S., Grigoryan, A. & Gatovsky, Y. A. Siberian trap volcanism, global warming and the Permian–Triassic mass extinction: new insights from Armenian Permian–Triassic sections. Bull. Geol. Soc. Am. 132, 427–443 (2020).
    Google Scholar 
    Sun, Y. et al. Lethally hot temperatures during the early Triassic greenhouse. Science 338, 366–370 (2012).
    Google Scholar 
    Joachimski, M. M. et al. Climate warming in the latest Permian and the Permian–Triassic mass extinction. Geology 40, 195–198 (2012).
    Google Scholar 
    Jiang, H., Joachimski, M. M., Wignall, P. B., Zhang, M. & Lai, X. A delayed end-Permian extinction in deep-water locations and its relationship to temperature trends (Bianyang, Guizhou province, south China). Palaeogeogr. Palaeoclimatol. Palaeoecol. 440, 690–695 (2015).
    Google Scholar 
    Chen, J. et al. High-resolution SIMS oxygen isotope analysis on conodont apatite from south China and implications for the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 448, 26–38 (2016).
    Google Scholar 
    Shen, S. et al. Permian integrative stratigraphy and timescale of China. Sci. China Earth Sci. 62, 154–188 (2019).
    Google Scholar 
    Pörtner, H. O. Oxygen- And capacity-limitation of thermal tolerance: a matrix for integrating climate-related stressor effects in marine ecosystems. J. Exp. Biol. 213, 881–893 (2010).
    Google Scholar 
    Pörtner, H. O. Integrating climate-related stressor effects on marine organisms: unifying principles linking molecule to ecosystem-level changes. Mar. Ecol. Progr. Ser. 470, 273–290 (2012).
    Google Scholar 
    Bijma, J., Pörtner, H. O., Yesson, C. & Rogers, A. D. Climate change and the oceans — what does the future hold? Mar. Pollut. Bull. 74, 495–505 (2013).
    Google Scholar 
    Song, H. et al. Flat latitudinal diversity gradient caused by the Permian–Triassic mass extinction. Proc. Natl Acad. Sci. USA 117, 17578–17583 (2020).
    Google Scholar 
    Penn, J. L., Deutsch, C., Payne, J. L. & Sperling, E. A. Temperature-dependent hypoxia explains biogeography and severity of end-Permian marine mass extinction. Science 362, eaat1327 (2018).
    Google Scholar 
    Benton, M. J. Hyperthermal-driven mass extinctions: killing models during the Permian–Triassic mass extinction. Phil. Trans. R. Soc. A 376, 20170076 (2018).
    Google Scholar 
    Teskey, R. et al. Responses of tree species to heat waves and extreme heat events. Plant Cell Envir. 38, 1699–1712 (2015).
    Google Scholar 
    Cai, Y. F., Zhang, H., Feng, Z. & Shen, S. Z. Intensive wildfire associated with volcanism promoted the vegetation changeover in southwest china during the Permian−Triassic transition. Front. Earth Sci. 9, 615841 (2021).
    Google Scholar 
    Grasby, S. E. et al. Progressive environmental deterioration in northwestern Pangea leading to the latest Permian extinction. Bull. Geol. Soc. Am. 127, 1331–1347 (2015).
    Google Scholar 
    Beauchamp, B. & Grasby, S. E. Permian lysocline shoaling and ocean acidification along NW Pangea led to carbonate eradication and chert expansion. Palaeogeogr. Palaeoclimatol. Palaeoecol. 350–352, 73–90 (2012).
    Google Scholar 
    Wignall, P. B. & Twitchett, R. J. Oceanic anoxia and the end Permian mass extinction. Science 272, 1155–1158 (1996).
    Google Scholar 
    Wignall, P. B. et al. Ultra-shallow-marine anoxia in an Early Triassic shallow-marine clastic ramp (Spitsbergen) and the suppression of benthic radiation. Geol. Mag. 153, 316–331 (2016).
    Google Scholar 
    Proemse, B. C., Grasby, S. E., Wieser, M. E., Mayer, B. & Beauchamp, B. Molybdenum isotopic evidence for oxic marine conditions during the latest Permian extinction. Geology 41, 967–970 (2013).
    Google Scholar 
    Grasby, S. E. et al. Transient Permian–Triassic euxinia in the southern Panthalassa deep ocean. Geology 49, 889–893 (2021).
    Google Scholar 
    Wignall, P. B. et al. An 80 million year oceanic redox history from Permian to Jurassic pelagic sediments of the Mino-Tamba terrane, SW Japan, and the origin of four mass extinctions. Glob. Planet. Change 71, 109–123 (2010).
    Google Scholar 
    Song, H. et al. Geochemical evidence from bio-apatite for multiple oceanic anoxic events during Permian–Triassic transition and the link with end-Permian extinction and recovery. Earth Planet. Sci. Lett. 353–354, 12–21 (2012).
    Google Scholar 
    Grasby, S. E., Beauchamp, B., Embry, A. & Sanei, H. Recurrent Early Triassic ocean anoxia. Geology 41, 175–178 (2013).
    Google Scholar 
    Takahashi, S., Yamasaki, S. I., Ogawa, K., Kaiho, K. & Tsuchiya, N. Redox conditions in the end-Early Triassic Panthalassa. Palaeogeogr. Palaeoclimato. Palaeoecol. 432, 15–28 (2015).
    Google Scholar 
    Brennecka, G. A., Herrmann, A. D., Algeo, T. J. & Anbar, A. D. Rapid expansion of oceanic anoxia immediately before the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 108, 17631–17634 (2011).
    Google Scholar 
    Takahashi, S. et al. Bioessential element-depleted ocean following the euxinic maximum of the end-Permian mass extinction. Earth Planet. Sci. Lett 393, 94–104 (2014).
    Google Scholar 
    Newton, R. J., Pevitt, E. L., Wignall, P. B. & Bottrell, S. H. Large shifts in the isotopic composition of seawater sulphate across the Permo–Triassic boundary in northern Italy. Earth Planet. Sci. Lett. 218, 331–345 (2004).
    Google Scholar 
    Grice, K. et al. Photic zone euxinia during the Permian–Triassic superanoxic event. Science 307, 706–709 (2005).
    Google Scholar 
    Ingall, E. & Jahnke, R. Evidence for enhanced phosphorus regeneration from marine sediments overlain by oxygen depleted waters. Geochim. Cosmochim. Acta 58, 2571–2575 (1994).
    Google Scholar 
    Sun, Y. D. et al. Ammonium ocean following the end-Permian mass extinction. Earth Planet. Sci. Lett. 518, 211–222 (2019).
    Google Scholar 
    Grasby, S. E., Beauchamp, B. & Knies, J. Early Triassic productivity crises delayed recovery from world’s worst mass extinction. Geology 44, 779–782 (2016).
    Google Scholar 
    Schoepfer, S. D., Henderson, C. M., Garrison, G. H. & Ward, P. D. Cessation of a productive coastal upwelling system in the Panthalassic Ocean at the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 313–314, 181–188 (2012).
    Google Scholar 
    Schobben, M. et al. Flourishing ocean drives the end-Permian marine mass extinction. Proc. Natl Acad. Sci. USA 112, 10298–10303 (2015).
    Google Scholar 
    Grasby, S. E. et al. Global warming leads to Early Triassic nutrient stress across northern Pangea. Bull. Geol. Soc. Am. 132, 943–954 (2020).
    Google Scholar 
    Song, H. et al. Conodont calcium isotopic evidence for multiple shelf acidification events during the Early Triassic. Chem. Geol. 562, 120038 (2021).
    Google Scholar 
    Jurikova, H. et al. Permian–Triassic mass extinction pulses driven by major marine carbon cycle perturbations. Nat. Geosci. 13, 745–750 (2020).
    Google Scholar 
    Garbelli, C., Angiolini, L. & Shen, S. Z. Biomineralization and global change: a new perspective for understanding the end-Permian extinction. Geology 45, 19–22 (2017).
    Google Scholar 
    Clarkson, M. O. et al. Ocean acidification and the Permo–Triassic mass extinction. Science 348, 229–232 (2015).
    Google Scholar 
    Zhang, S. et al. Investigating controls on boron isotope ratios in shallow marine carbonates. Earth Planet. Sci. Lett. 458, 380–393 (2017).
    Google Scholar 
    Hinojosa, J. L. et al. Evidence for end-Permian ocean acidification from calcium isotopes in biogenic apatite. Geology 40, 743–746 (2012).
    Google Scholar 
    Komar, N. & Zeebe, R. E. Calcium and calcium isotope changes during carbon cycle perturbations at the end-Permian. Paleoceanography 31, 115–130 (2016).
    Google Scholar 
    Silva-Tamayo, J. C. et al. Global perturbation of the marine calcium cycle during the Permian–Triassic transition. Bull. Geol. Soc. Am. 130, 1323–1338 (2018).
    Google Scholar 
    Payne, J. L. et al. Calcium isotope constraints on the end-Permian mass extinction. Proc. Natl Acad. Sci. USA 107, 8543–8548 (2010).
    Google Scholar 
    Lau, K. V. et al. The influence of seawater carbonate chemistry, mineralogy, and diagenesis on calcium isotope variations in Lower–Middle Triassic carbonate rocks. Chem. Geol. 471, 13–37 (2017).
    Google Scholar 
    Wang, J. et al. Coupled δ44/40Ca, δ88/86Sr, and 87Sr/86Sr geochemistry across the end-Permian mass extinction event. Geochim. Cosmochim. Acta 262, 143–165 (2019).
    Google Scholar 
    Kiessling, W. & Simpson, C. On the potential for ocean acidification to be a general cause of ancient reef crises. Glob. Change Biol. 17, 56–67 (2011).
    Google Scholar 
    Chen, Z. Q., Kaiho, K. & George, A. D. Early Triassic recovery of the brachiopod faunas from the end-Permian mass extinction: a global review. Palaeogeogr. Palaeoclimatol. Palaeoecol. 224, 270–290 (2005).
    Google Scholar 
    Dai, X., Korn, D. & Song, H. Morphological selectivity of the Permian–Triassic ammonoid mass extinction. Geology 49, 1112–1116 (2021).
    Google Scholar 
    Fijałkowska-Mader, A. in Morphogenesis, Environmental Stress and Reverse Evolution (eds Guex, J., Torday, J. S. & Miller, W. B. Jr) 23–35 (Springer, 2020).Beerling, D. J., Harfoot, M., Lomax, B. & Pyle, J. A. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Phil. Trans. R. Soc. A 365, 1843–1866 (2007).
    Google Scholar 
    Svensen, H., Schmidbauer, N., Roscher, M., Stordal, F. & Planke, S. Contact metamorphism, halocarbons, and environmental crises of the past. Environ. Chem. 6, 466–471 (2009).
    Google Scholar 
    Black, B. A., Lamarque, J. F., Shields, C. A., Elkins-Tanton, L. T. & Kiehl, J. T. Acid rain and ozone depletion from pulsed siberian traps magmatism. Geology 42, 67–70 (2014).
    Google Scholar 
    Likens, G. E. & Butler, T. J. in Encyclopedia of the Anthropocene (eds Dellasala, D. A. & Goldstein, M. I.) 23–31 (Elsevier, 2018).Sephton, M. A., Jiao, D., Engel, M. H., Looy, C. V. & Visscher, H. Terrestrial acidification during the end-Permian biosphere crisis? Geology 43, 159–162 (2015).
    Google Scholar 
    Sheldon, N. D. Abrupt chemical weathering increase across the Permian–Triassic boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 231, 315–321 (2006).
    Google Scholar 
    Maruoka, T., Koeberl, C., Hancox, P. J. & Reimold, W. U. Sulfur geochemistry across a terrestrial Permian–Triassic boundary section in the Karoo basin, South Africa. Earth Planet. Sci. Lett. 206, 101–117 (2003).
    Google Scholar 
    Grasby, S. E., Them, T. R., Chen, Z., Yin, R. & Ardakani, O. H. Mercury as a proxy for volcanic emissions in the geologic record. Earth Sci. Rev. 196, 102880 (2019).
    Google Scholar 
    Dal Corso, J. et al. Permo–Triassic boundary carbon and mercury cycling linked to terrestrial ecosystem collapse. Nat. Commun. 11, 2962 (2020).
    Google Scholar 
    Rugenstein, M. A. A., Sedláček, J. & Knutti, R. Nonlinearities in patterns of long-term ocean warming. Geophys. Res. Lett. 43, 3380–3388 (2016).
    Google Scholar 
    Yang, H. & Zhu, J. Equilibrium thermal response timescale of global oceans. Geophys. Res. Lett. 38, L14711 (2011).
    Google Scholar 
    Song, H. et al. Anoxia/high temperature double whammy during the Permian–Triassic marine crisis and its aftermath. Sci. Rep. 4, 4132 (2014).
    Google Scholar 
    Alroy, J. Accurate and precise estimates of origination and extinction rates. Paleobiology 40, 374–397 (2014).
    Google Scholar 
    Scotese, C. R. Atlas of Permo-Triassic paleogeographic maps (Mollweide projection), maps 43–52, vol. 3/4 of the PALEOMAP Atlas. ResearchGate https://doi.org/10.13140/2.1.2609.9209 (2014).Zhang, F. et al. Two distinct episodes of marine anoxia during the Permian–Triassic crisis evidenced by uranium isotopes in marine dolostones. Geochim. Cosmochim. Acta 287, 165–179 (2020).
    Google Scholar 
    Wu, Y. et al. Six-fold increase of atmospheric pCO2 during the Permian–Triassic mass extinction. Nat. Commun. 12, 2137 (2021).
    Google Scholar 
    Grossman, E. L. & Joachimski, M. M. Oxygen isotope stratigraphy. Geol. Time Scale 1, 279–307 (2020).
    Google Scholar 
    Trotter, J. A., Williams, I. S., Barnes, C. R., Männik, P. & Simpson, A. New conodont δ18O records of Silurian climate change: implications for environmental and biological events. Palaeogeogr. Palaeoclimatol. Palaeoecol. 443, 34–48 (2016).
    Google Scholar 
    Kaiho, K. et al. End-Permian catastrophe by a bolide impact: evidence of a gigantic release of sulfur from the mantle. Geology 29, 815–818 (2001).
    Google Scholar 
    Chu, D. et al. Lilliput effect in freshwater ostracods during the Permian–Triassic extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 435, 38–52 (2015).
    Google Scholar 
    Shen, J. et al. Mercury evidence of intense volcanic effects on land during the Permian–Triassic transition. Geology 47, 1117–1121 (2019).
    Google Scholar 
    Cao, C., Wang, W., Liu, L., Shen, S. & Summons, R. E. Two episodes of 13C-depletion in organic carbon in the latest Permian: evidence from the terrestrial sequences in northern Xinjiang, China. Earth Planet. Sci. Lett. 270, 251–257 (2008).
    Google Scholar 
    Shen, J. et al. Evidence for a prolonged Permian–Triassic extinction interval from global marine mercury records. Nat. Commun. 10, 1563 (2019).
    Google Scholar 
    Wang, X. et al. Mercury anomalies across the end Permian mass extinction in south China from shallow and deep water depositional environments. Earth Planet Sci.Lett. 496, 159–167 (2018).
    Google Scholar 
    Holser, W. T. et al. A unique geochemical record at the Permian/Triassic boundary. Nature 337, 39–44 (1989).
    Google Scholar 
    Korte, C. & Kozur, H. W. Carbon-isotope stratigraphy across the Permian–Triassic boundary: a review. J. Asian Earth Sci. 39, 215–235 (2010).
    Google Scholar 
    Luo, G. et al. Stepwise and large-magnitude negative shift in δ13Ccarb preceded the main marine mass extinction of the Permian–Triassic crisis interval. Palaeogeogr. Palaeoclimatol. Palaeoecol. 299, 70–82 (2011).
    Google Scholar 
    Shen, S. Z. et al. High-resolution δ13Ccarb chemostratigraphy from latest Guadalupian through earliest Triassic in south China and Iran. Earth Planet. Sci. Lett. 375, 156–165 (2013).
    Google Scholar 
    Hermann, E. et al. A close-up view of the Permian-Triassic boundary based on expanded organic carbon isotope records from Norway (Trøndelag and Finnmark platform). Glob. Planet. Change 74, 156–167 (2010).
    Google Scholar 
    Luo, G. et al. Vertical δ13Corg gradients record changes in planktonic microbial community composition during the end-Permian mass extinction. Palaeogeogr. Palaeoclimatol. Palaeoecol. 396, 119–131 (2014).
    Google Scholar 
    Schneebeli-Hermann, E. et al. Evidence for atmospheric carbon injection during the end-Permian extinction. Geology 41, 579–582 (2013).
    Google Scholar 
    Williams, M. L., Jones, B. G. & Carr, P. F. The interplay between massive volcanism and the local environment: geochemistry of the Late Permian mass extinction across the Sydney basin, Australia. Gondwana Res. 51, 149–169 (2017).
    Google Scholar 
    Wu, Y. et al. Organic carbon isotopes in terrestrial Permian–Triassic boundary sections of North China: implications for global carbon cycle perturbations. Bull. Geol. Soc. Am. 132, 1106–1118 (2020).
    Google Scholar 
    Grasby, S. E., Liu, X., Yin, R., Ernst, R. E. & Chen, Z. Toxic mercury pulses into late Permian terrestrial and marine environments. Geology 48, 830–833 (2020).
    Google Scholar  More

  • in

    Microbotanical residues for the study of early hominin tools

    Mercader, J., Panger, M. & Boesch, C. Excavation of a Chimpanzee stone tool site in the African rainforest. Science 296, 1452–1455 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Mercader, J. et al. 4,300-year-old chimpanzee sites and the origins of percussive stone technology. PNAS 104, 3043–3048 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haslam, M. et al. Primate archaeology. Nature 460, 339–344 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Plummer, T. W. & Finestone, E. Rethinking Human Evolution (ed. Schwartz, J.). 267–296. (MIT Press, 2018).Toth, N. & Schick, K. An overview of the cognitive implications of the Oldowan industrial complex. Azania Archaeol. Res. Afr. 53, 3–39 (2018).Plummer, T. Flaked stones and old bones: Biological and cultural evolution at the dawn of technology. Yearb. Phys. Anthropol. 47, 118–164 (2004).
    Google Scholar 
    Ferraro, J. V. et al. Earliest archaeological evidence of persistent hominin carnivory. PLoS ONE 8, e62174 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Braun, D. R. et al. Early hominin diet included diverse terrestrial and aquatic animals 1.95 Ma in East Turkana, Kenya. Proc. Natl. Acad. Sci. 107, 10002–10007 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sahnouni, M. et al. 1.9-million- and 2.4-million-year-old artefacts and stone tool-cutmarked bones from Ain Boucherit, Algeria. Science 362, 1297–1301 (2018).Stahl, A. B. Hominid dietary selection before fire. Curr. Anthropol. 25, 151–168 (1984).
    Google Scholar 
    Laden, G. & Wrangham, R. The rise of hominids as an adaptive shift in fallback foods: Plant underground storage organs (USOs) and Australopith origins. J. Hum. Evol. 49, 482–498 (2005).PubMed 

    Google Scholar 
    Peters, C. & Vogel, J. Africa’s wild C4 plant foods and possible early hominid diets. J. Hum. Evol. 48, 219–236 (2005).PubMed 

    Google Scholar 
    Copeland, S. R. Vegetation and plant food reconstruction of lowermost bed II, Olduvai Gorge, using modern analogs. J. Hum. Evol. 53, 146–175 (2007).PubMed 

    Google Scholar 
    Domínguez Rodrigo, M. Interdisciplinary Approaches to the Oldowan (eds. Hovers, E. & Braun, D.R.). 129–147. (Springer, 2009).Hovers, E. Origins of Human Innovation and Creativity (ed Elias, S.). 51–68. (Elsevier, 2012).Domínguez Rodrigo, M. Meat eating by early hominids at the FLK 22 Zinjanthropus site, Olduvai Gorge, Tanzania: An experimental approach using cut mark data. J. Hum. Evol. 33, 669–690 (1997).PubMed 

    Google Scholar 
    Pobiner, B. L., Rogers, M. J., Monahan, C. M. & Harris, J. W. New evidence for hominin carcass processing strategies at 1.5 Ma, Koobi Fora, Kenya. J. Hum. Evolut. 55, 103–130 (2018).
    Google Scholar 
    Marreiros, J. et al. Rethinking use-wear analysis and experimentation as applied to the study of past hominin tool use. J. Paleolithic Archaeol. 3, 475–502 (2020).
    Google Scholar 
    de la Torre, I., Benito-Calvo, A., Arroyo, A., Zupancich, A. & Proffitt, T. Experimental protocols for the study of battered stone anvils from Olduvai Gorge (Tanzania). J. Archaeol. Sci. 40, 313–332. https://doi.org/10.1016/j.jas.2012.08.007 (2013).Article 

    Google Scholar 
    Caruana, M. V., Carvalho, S., Braun, D. R., Presnyakova, D. & Haslam, M. Quantifying traces of tool use: A novel morphometric analysis of damage patterns on percussive tools. PLoS ONE 9, e113856 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Benito-Calvo, A., Carvalho, S., Arroyo, A., Matsuzawa, T. & de la Torre, I. First GIS analysis of modern stone tools used by wild chimpanzees (Pan troglodytes verus) in Bossou, Guinea, West Africa (PLOS One, 2015). https://doi.org/10.1371/journal.pone.0121613.Book 

    Google Scholar 
    Sánchez-Yustos, P. et al. Production and use of percussive stone tools in the Early Stone Age: Experimental approach to the lithic record of Olduvai Gorge, Tanzania. J. Archaeol. Sci. Rep. 2, 367–383 (2015).
    Google Scholar 
    Arroyo, A., Hirata, S., Matsuzawa, T. & De La Torre, I. Nut cracking tools used by captive chimpanzees (Pan troglodytes) and their comparison with Early Stone Age percussive artefacts from Olduvai Gorge. PLoS ONE 11, e0166788 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Arroyo, A. & de la Torre, I. Assessing the function of pounding tools in the early stone age: A microscopic approach to the analysis of percussive artefacts from beds I and II, Olduvai Gorge (Tanzania). J. Archaeol. Sci. 74, 23–34 (2016).
    Google Scholar 
    Proffitt, T. et al. Analysis of wild macaque stone tools used to crack oil palm nuts 5, 1–16 (2018).
    Google Scholar 
    Titton, S. et al. Active percussion tools from the Oldowan site of Barranco León (Orce, Andalusia, Spain): The fundamental role of pounding activities in hominin lifeways. J. Archaeol. Sci. 96, 131–147 (2018).
    Google Scholar 
    Lemorini, C. et al. Old stones’ song: Use-wear experiments and analysis of the Oldowanquartz and quartzite assemblage from Kanjera South (Kenya). J. Hum. Evol. 72, 10–25 (2014).PubMed 

    Google Scholar 
    Keeley, L. H. & Toth, N. Microwear polishes on early stone tools from Koobi Fora, Kenya. Nature 293, 464–465 (1981).ADS 

    Google Scholar 
    Longo, L. et al. A multi-dimensional approach to investigate use-related biogenic residues on palaeolithic ground stone tools. Environ. Archaeol. 21, 1–29 (2021).
    Google Scholar 
    Langejans, G. H. J. Remains of the day-preservation of organic micro-residues on stone tools. J. Archaeol. Sci. 37, 971–985 (2010).
    Google Scholar 
    Langejans, G. H. J. Micro-residue analysis on early stone age tools from Sterkfontein, South Africa: A methodological enquiry. S. Afr. Archaeol. Bull. 67, 200–213 (2012).
    Google Scholar 
    Pedergnana, A. & Ollé, A. Building an experimental comparative reference collection for lithic micro-residue analysis based on a multi-analytical approach. J. Archaeol. Method Theory 25, 117–154 (2018).
    Google Scholar 
    Crowther, A., Haslam, M., Oakden, N., Walde, D. & Mercader, J. Documenting contamination in ancient starch laboratories. J. Archaeol. Sci. 49, 90–104 (2014).CAS 

    Google Scholar 
    Pedergnana, A., Asryan, L., Fernández-Marchena, J. L. & Ollé, A. Modern contaminants affecting microscopic residue analysis on stone tools: A word of caution. Micron 86, 1–21. https://doi.org/10.1016/j.micron.2016.04.003 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mercader, J. et al. Starch contamination landscapes in field archaeology: Olduvai Gorge, Tanzania. Boreas 46, 918–934. https://doi.org/10.1111/bor.12241.ISSN0300-9483 (2017).Article 

    Google Scholar 
    Barton, H., Torrence, R. & Fullagar, R. Clues to stone tool function re-examined: Comparing starch grain frequencies on used and unused obsidian artefacts. J. Archaeol. Sci. 25, 1231–1238 (1998).
    Google Scholar 
    Atchison, J. & Fullagar, R. A Closer Look: Recent Australian Studies of Stone Tools Sydney University Archaeological Methods Series (ed Fullagar, R.). Chap. 8. 110–125. (1998).Hardy, B. L. & Garufi, G. T. Identification of woodworking on stone tools through residue and use-wear analyses: Experimental results. J. Archaeol. Sci. 25, 177–184 (1998).
    Google Scholar 
    Kealhofer, L., Torrence, R. & Fullagar, R. Integrating phytoliths within use-wear/residue studies of stone tools. J. Archaeol. Sci. 26, 527–546 (1999).
    Google Scholar 
    Fullagar, R. et al. Evidence for Pleistocene seed grinding at Lake Mungo, south-eastern Australia. Archaeol. Ocean. 50, 3–19 (2015).
    Google Scholar 
    Ma, Z., Perry, L., Li, Q. & Yang, X. Morphological changes in starch grains after dehusking and grinding with stone tools. Sci. Rep. 9, 2355 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Briuer, F. L. New clues to stone tool function: Plant and animal residues. Am. Antiq. 41, 478–484 (1976).
    Google Scholar 
    Mora, R. & de la Torre, I. Percussion tools in Olduvai Beds I and II (Tanzania): Implication for early human activities. J. Anthropol. Archaeol. 24, 179–192 (2005).
    Google Scholar 
    Diez-Martín, F., Sánchez, P., Domínguez-Rodrigo, M., Mabulla, A. & Barba, R. Were Olduvai Hominins making butchering tools or battering tools? Analysis of a recently excavated lithic assemblage from BK (Bed II, Olduvai Gorge, Tanzania). J. Anthropol. Archaeol. 28, 274–289 (2009).
    Google Scholar 
    McHenry, L. J. & de la Torre, I. Hominin raw material procurement in the Oldowan-Acheulean transition at Olduvai Gorge. J. Hum. Evol. https://doi.org/10.1016/j.jhevol.2017.11.010 (2018).Article 
    PubMed 

    Google Scholar 
    Soto, M. et al. Systematic sampling of quartzite in sourcing analysis: intra-outcrop variability at Naibor Soit, Tanzania (part I). Archaeol. Anthropol. Sci. 12, 1–14 (2020).
    Google Scholar 
    Zupancich, A. & Cristiani, E. Functional analysis of sandstone ground stone tools: Arguments for a qualitative and quantitative synergetic approach. Sci. Rep. 10, 1–13 (2020).
    Google Scholar 
    Mercader, J. et al. Soil and plant phytoliths from the Acacia-Commiphora mosaics at Oldupai Gorge (Tanzania). PeerJ 7, e8211 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Krumbein, W. C. Measurement and geological significance of shape and roundness of sedimentary particles. Journal of Sedimentary Research 11, 64–72 (1941).CAS 

    Google Scholar 
    Favreau, J. et al. Petrographic Characterization of Raw Material Sources at Oldupai Gorge, Tanzania. Frontiers in Earth Science 8, 1–26, https://doi.org/10.31219/osf.io/s2vgr (2020).Article 

    Google Scholar 
    Soto, M. et al. Fingerprinting of quartzitic outcrops at Oldupai Gorge, Tanzania. Journal of Archaeological Science: Reports 29, 102010 (2020).
    Google Scholar 
    Anderson, G. D. & Talbot, L. M. Soil Factors Affecting the Distribution of the Grassland Types and their Utilization by Wild Animals on the Serengeti Plains, Tanganyika. Journal of Ecology 53, 33–56 (1965).
    Google Scholar 
    Leakey, M. D. Olduvai Gorge Vol. 3: Excavations in Beds I and II, 1960–1963. (Cambridge University Press, 1971).Dorn, R. I. Rock Coatings. Vol. 6 (Elsevier, 1998).Madella, M., Alexandre, A. & Ball, T. International code for phytolith nomenclature 10. Ann. Bot. 96, 253–260 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mercader, J. et al. Morphometrics of Starch Granules From Sub-Saharan Plants and the Taxonomic Identification of Ancient Starch. Frontiers in Earth Science 6, https://doi.org/10.3389/feart.2018.00146 (2018).ADS 
    Article 

    Google Scholar 
    Rots, V., Hayes, E., Cnuts, D., Lepers, C. & Fullagar, R. Making sense of residues on flaked stone artefacts: learning from blind tests. PLOS One 11, e0150437. https://doi.org/10.1371/journal.pone.0150437 (2016).Hayes, E. & Rots, V. Documenting scarce and fragmented residues on stone tools: an experimental approach using optical microscopy and SEM-EDS. Archaeological and Anthropological Sciences 11, 3065–3099 (2019).
    Google Scholar 
    Stoodley, P., Sauer, K., Davies, D. G. & Costerton, J. W. Biofilms as Complex Differentiated Communities. Annual Review of Microbiology 56, 187–209 (2002).CAS 
    PubMed 

    Google Scholar 
    Krumbein, W. E., Paterson, D. M. & Zavarzin, G. A. Fossil and Recent Biofilms: A Natural History of Life on Earth. (Springer Science & Business Media, 2003).Wanger, G., Southam, G. & Onstott, T. C. Structural and Chemical Characterization of a Natural Fracture Surface from 2.8 Kilometers Below Land Surface: Biofilms in the Deep Subsurface. Geomicrobiology Journal 23, 443-452 (2006).CAS 

    Google Scholar 
    Anders, M. H., Laubach, S. E. & Scholz, C. H. Microfractures: A Review. Journal of Structural Geology 69, 377–394 (2014).Fletcher, M. Attachment of Pseudomonas fluorescens to glass and influence of electrolytes on bacterium substratum separation distance. Journal of Bacteriology 170, 2027–2030 (1988).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fong, J. N. & Tildiz, F. H. Biofilm Matrix Proteins. Microbiology Spectrum 3, 1–16 (2015).CAS 

    Google Scholar 
    Cnuts, D. & Rots, V. Extracting residues from stone tools for optical analysis: towards an experiment-based protocol. Archaeological and Anthropological Sciences 10, 1717–1736 (2018).
    Google Scholar 
    Xhauflair, H. et al. Use-related or contamination? Residue and use-wear mapping on stone tools used for experimental processing of plants from Southeast Asia. Quaternary International 427, 80–93 (2017).Pedergnana, A. “All that glitters is not gold”: Evaluating the Nature of the Relationship Between Archeological Residues and Stone Tool Function. Journal of Paleolithic Archaeology 3, 225–254 (2019).
    Google Scholar  More

  • in

    Marching in the streets for climate-crisis action

    CAREER Q&A
    22 February 2022

    Marching in the streets for climate-crisis action

    Conservationist Charlie Gardner explains why he joined Scientists for Extinction Rebellion and its civil-disobedience protests.

    Christine Ro

    0

    Christine Ro

    Christine Ro is a freelance journalist based in Buenos Aires.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    Charlie Gardner speaks at an Extinction Rebellion protest.Credit: Louise Jasper Photography

    Conservationist, consultant and activist Charlie Gardner is a lecturer in conservation biology at the Durrell Institute of Conservation and Ecology at the University of Kent in Canterbury, UK. He regularly participates in protests with Scientists for Extinction Rebellion, an offshoot of a broader movement that uses nonviolent civil disobedience to push for action on the climate and biodiversity crises. He has also advised on legislation such as the UK Climate and Ecological Emergency Bill, which seeks to curb UK greenhouse-gas emissions and biodiversity loss, and is currently making its way through Parliament. What drove you to activism? Teaching. Five or six years ago, I was standing in front of a lecture theatre, full of young people who are going to suffer the consequences of climate change much more than I am. I couldn’t stand that I wasn’t doing everything I could. When Extinction Rebellion (XR) was launched in the United Kingdom in October 2018, it felt like the answer. As conservationists, we silently wish that members of the general public cared more about the destruction of nature. Now they are taking to the streets and I have this moral obligation to be there in support.How have you been working with Scientists for XR?In October 2019, a group of scientists came together to create Scientists for XR, which has carried out many actions. These include pasting scientific papers to the walls of the London headquarters of News Corp in 2021 in protest against inadequate climate-change coverage in the company’s newspapers. The group has different functions. One is to provide scientific support for the wider XR movement, so that it remains founded on solid scientific ground. And a second is to advocate. Scientists vocally supporting XR sends a powerful message. Society trusts scientists. A third function is direct action. Scientists for XR groups have been involved in a number of XR events, such as marches and roadblocks. For example, at the 2021 opening of a London Science Museum exhibition sponsored by oil and gas company Shell, some scientists locked themselves to parts of the exhibition in protest against the sponsorship, while our scientist group set up a table outside to demonstrate principles of atmospheric cooling to engage with the public. Events such as this serve to highlight the issue of science museums accepting sponsorship from fossil-fuel companies.How can scientists dip their toes into this type of work?What the public sees of these direct actions is the tip of the iceberg. For every person out on the streets, there are 20 more behind the scenes involved in other tasks: organizing, producing press releases, baking cakes for marchers. Whatever you enjoy doing and have skills in, there is a role for you. Taking part does not have to involve engaging in civil disobedience yourself, or putting yourself in a risky position. One of the most important jobs at a protest is for people to stand at the edges, engaging the public in conversations. That’s a role that scientists can perform fantastically.How have your advocacy and activism benefited you?There’s this crazy notion that scientists shouldn’t speak out because it will damage their reputations. But activism has had the opposite effect on my career. My research is based on conservation in Madagascar; it’s fairly niche. I previously had no global reputation. Since becoming a vocal scientist-activist, my reputation and my visibility as a scientist have soared. Also, activism is great for my mental health. Knowing I’m doing what I can is important to me. There are simply the best people in these movements, and there’s a sense of community. Does being a vocal activist diminish your scientific credibility?Popular perception holds that scientists must be neutral purveyors of information and not speak up about what that information means. Somehow, if we do so, it could damage our credibility.But when scientists take personal risks and make personal sacrifices, that communicates the urgency of the situation in an important way. If scientists are saying that it’s time for action, but not acting themselves, that undermines their own arguments. How do you balance your academic responsibilities with advocacy?For five years, I worked half-time at the University of Kent. I did this deliberately, to allow me the freedom to engage in other activities, including conservation consultancy, activism and writing popular non-fiction. I left that post last year, partly to focus on activism and writing, and partly out of frustration with the precarity of academic life.There are things that enable me to be less single-minded in the pursuit of my career: I come from a position of relative privilege; I’m not interested in accumulating money; and I don’t have children. So I think academia has been a good fit for me, but only because it doesn’t fill my life.

    doi: https://doi.org/10.1038/d41586-022-00518-4This interview has been edited for length and clarity.

    Related Articles

    How junior scientists can land a seat at the leadership table

    An IPCC reviewer shares his thoughts on the climate debate

    A ‘no-brainer’ decision to become a COVID-19 vaccine-centre volunteer

    Subjects

    Policy

    Ethics

    Conservation biology

    Latest on:

    Policy

    Two scientists will replace disgraced US science adviser Eric Lander
    News 17 FEB 22

    NIH issues a seismic mandate: share data publicly
    News 16 FEB 22

    China: reform research-evaluation criteria
    Correspondence 15 FEB 22

    Ethics

    Global Disability Summit demands health equity
    Correspondence 17 FEB 22

    Expand diversity definitions beyond their Western perspective
    Correspondence 08 FEB 22

    Research evaluation needs to change with the times
    Editorial 11 JAN 22

    Jobs

    Research Fellow

    Dana-Farber Cancer Institute (DFCI)
    Boston, MA, United States

    Post Doctoral Associate

    University of Massachusetts Medical School (UMass Medical School)
    Worcester, MA, United States

    Senior Research Scientist – Artificial Molecular Machinery Lab

    Francis Crick Institute
    London, United Kingdom

    Call for Applications: Clinical and Public Health Fellowships

    Wellcome Trust/DBT India Alliance
    India, India More

  • in

    The role of the endolithic alga Ostreobium spp. during coral bleaching recovery

    Moberg, F. & Folke, C. Ecological goods and services of coral reef ecosystems. Ecol. Econ. 29, 215–233 (1999).
    Google Scholar 
    Hoegh-Guldberg, O. et al. Coral reefs under rapid climate change and ocean acidification. Science 318, 1737–1742 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Muscatine, L., Pool, R. R. & Trench, R. K. Symbiosis of algae and invertebrates: Aspects of the symbiont surface and the host-symbiont interface. Trans. Am. Microsc. Soc. 94, 450–469 (1975).CAS 
    PubMed 

    Google Scholar 
    Muscatine, L. & Porter, J. W. Reef corals: Mutualistic symbioses adapted to nutrient-poor environments. Bioscience 27, 454–460 (1977).
    Google Scholar 
    LaJeunesse, T. C. et al. Systematic revision of Symbiodiniaceae highlights the antiquity and diversity of coral endosymbionts. Curr. Biol. https://doi.org/10.1016/j.cub.2018.07.008 (2018).Article 
    PubMed 

    Google Scholar 
    Colombo-Pallotta, M. F., Rodríguez-Román, A. & Iglesias-Prieto, R. Calcification in bleached and unbleached Montastraea faveolata: Evaluating the role of oxygen and glycerol. Coral Reefs 29, 899–907 (2010).ADS 

    Google Scholar 
    Hoegh-Guldberg, O. & Smith, G. J. The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylphora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Biol. Ecol. 129, 279–303 (1989).
    Google Scholar 
    Iglesias-Prieto, R., Matta, J. L., Robins, W. A. & Trench, R. K. Photosynthetic response to elevated temperature in the symbiotic dinoflagellate Symbiodinium microadriaticum in culture. Proc. Natl. Acad. Sci. 89, 10302–10305 (1992).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Scheufen, T., Krämer, W. E., Iglesias-Prieto, R. & Enríquez, S. Seasonal variation modulates coral sensibility to heat-stress and explains annual changes in coral productivity. Sci. Rep. 7, 1–15 (2017).CAS 

    Google Scholar 
    Enríquez, S., Méndez, E. R. & Iglesias-Prieto, R. Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol. Oceanogr. 50, 1025–1032 (2005).ADS 

    Google Scholar 
    Terán, E., Méndez, E. R., Enríquez, S. & Iglesias-Prieto, R. Multiple light scattering and absorption in reef-building corals. Appl. Opt. 49, 5032 (2010).ADS 
    PubMed 

    Google Scholar 
    Swain, T. D. et al. Skeletal light-scattering accelerates bleaching response in reef-building corals. BMC Ecol. 16, 1–18 (2016).
    Google Scholar 
    Rodríguez-Román, A., Hernández-Pech, X., E Thome, P., Enríquez, S. & Iglesias-Prieto, R. Photosynthesis and light utilization in the Caribbean coral Montastraea faveolata recovering from a bleaching event. Limnol. Oceanogr. 51, 2702–2710 (2006).ADS 

    Google Scholar 
    Kemp, D. W., Hernandez-Pech, X., Iglesias-Prieto, R., Fitt, W. K. & Schmidt, G. W. Community dynamics and physiology of Symbiodinium spp. before, during, and after a coral bleaching event. Limnol. Oceanogr. 59, 788–797 (2014).ADS 
    CAS 

    Google Scholar 
    Thornhill, D. J., LaJeunesse, T. C., Kemp, D. W., Fitt, W. K. & Schmidt, G. W. Multi-year, seasonal genotypic surveys of coral-algal symbioses reveal prevalent stability or post-bleaching reversion. Mar. Biol. 148, 711–722 (2006).
    Google Scholar 
    Schoepf, V. et al. Annual coral bleaching and the long-term recovery capacity of coral. Proc. R. Soc. B Biol. Sci. 282, 20151887 (2015).
    Google Scholar 
    Hughes, T. P. et al. Global warming and recurrent mass bleaching of corals. Nature 543, 373–377 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the world’s coral reefs. Mar. Freshw. Res. https://doi.org/10.1071/MF99078 (1999).Article 

    Google Scholar 
    Scheufen, T., Iglesias-Prieto, R. & Enríquez, S. Changes in the number of symbionts and Symbiodinium cell pigmentation modulate differentially coral light absorption and photosynthetic performance. Front. Mar. Sci. 4, 309 (2017).
    Google Scholar 
    Warner, M. E., Fitt, W. K. & Schmidt, G. W. Damage to photosystem II in symbiotic dinoflagellates: A determinant of coral bleaching. Proc. Natl. Acad. Sci. U. S. A. 96, 8007–8012 (1999).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Takahashi, S., Nakamura, T., Sakamizu, M., van Woesik, R. & Yamasaki, H. Repair machinery of symbiotic photosynthesis as the primary target of heat stress for reef-building corals. Plant Cell Physiol. 45, 251–255 (2004).CAS 
    PubMed 

    Google Scholar 
    Bollati, E. et al. Optical feedback loop involving dinoflagellate symbiont and scleractinian host drives colorful coral bleaching. Curr. Biol. https://doi.org/10.1016/j.cub.2020.04.055 (2020).Article 
    PubMed 

    Google Scholar 
    Dove, S. G., Hoegh-Guldberg, O. & Ranganathan, S. Major colour patterns of reef-building corals are due to a family of GFP-like proteins. Coral Reefs 19, 197–204 (2001).
    Google Scholar 
    Salih, A., Larkum, A., Cox, G., Kühl, M. & Hoegh-Guldberg, O. Fluorescent pigments in corals are photoprotective. Nature 408, 850–853 (2000).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fine, M. & Loya, Y. Endolithic algae: An alternative source of photoassimilates during coral bleaching. Proc. Biol. Sci. 269, 1205–1210 (2002).PubMed 
    PubMed Central 

    Google Scholar 
    Carilli, J. E., Godfrey, J., Norris, R. D., Sandin, S. A. & Smith, J. E. Periodic endolithic algal blooms in Montastraea faveolata corals may represent periods of low-level stress. Bull. Mar. Sci. 86, 10 (2010).
    Google Scholar 
    Le Campion-Alsumard, T., Golubic, S. & Hutchings, P. Microbial endoliths in skeletons of live and dead corals: Porites lobata (Moorea, French Polynesia). Mar. Ecol. Prog. Ser. 117, 149–157 (1995).ADS 

    Google Scholar 
    Schlichter, D., Kampmann, H. & Conrady, S. Trophic potential and photoecology of endolithic algae living within coral skeletons. Mar. Ecol. 18, 299–317 (1997).ADS 

    Google Scholar 
    Sangsawang, L. et al. 13C and 15N assimilation and organic matter translocation by the endolithic community in the massive coral Porites lutea. R. Soc. Open Sci. 4, 171201 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Yamazaki, S. S., Nakamura, T. & Yamasaki, H. Photoprotective role of endolithic algae colonized in coral skeleton for the host photosynthesis. In Photosynthesis. Energy from the Sun (eds. Allen, J. F., et al.) 1391–1395 (Springer Netherlands, 2008). https://doi.org/10.1007/978-1-4020-6709-9_300.Halldal, P. Photosynthetic capacities and photosynthetic action spectra of endozoic algae of the massive coral Favia. Biol. Bull. 134, 411–424 (1968).CAS 

    Google Scholar 
    Koehne, B., Elli, G., Jennings, R. C., Wilhelm, C. & Trissl, H.-W. Spectroscopic and molecular characterization of a long wavelength absorbing antenna of Ostreobium sp. Biochim. Biophys. Acta BBA Bioenerg. 1412, 94–107 (1999).CAS 

    Google Scholar 
    Wangpraseurt, D. et al. In vivo microscale measurements of light and photosynthesis during coral bleaching: Evidence for the optical feedback loop?. Front. Microbiol. 8, 59 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Lukas, K. J. Two species of the chlorophyte genus Ostreobium from skeletons of Atlantic and Caribbean reef corals. J. Phycol. 10, 331–335 (1974).
    Google Scholar 
    Fork, D. C. & Larkum, A. W. D. Light harvesting in the green alga Ostreobium sp., a coral symbiont adapted to extreme shade. Mar. Biol. 103, 381–385 (1989).
    Google Scholar 
    Massé, A., Domart-Coulon, I., Golubic, S., Duché, D. & Tribollet, A. Early skeletal colonization of the coral holobiont by the microboring Ulvophyceae Ostreobium sp. Sci. Rep. 8, 1–11 (2018).
    Google Scholar 
    Godinot, C., Tribollet, A., Grover, R. & Ferrier-Pagès, C. Bioerosion by euendoliths decreases in phosphate-enriched skeletons of living corals. Biogeosci. Discuss. 9, 2425–2444 (2012).ADS 

    Google Scholar 
    Vásquez-Elizondo, R. M. et al. Absorptance determinations on multicellular tissues. Photosynth. Res. 132, 311–324 (2017).PubMed 

    Google Scholar 
    Tribollet, A. The boring microflora in modern coral reef ecosystems: A review of its roles. In Current Developments in Bioerosion (eds. Wisshak, M. & Tapanila, L.) 67–94 (Springer Berlin Heidelberg, 2008). https://doi.org/10.1007/978-3-540-77598-0_4.Fine, M., Meroz-Fine, E. & Hoegh-Guldberg, O. Tolerance of endolithic algae to elevated temperature and light in the coral Montipora monasteriata from the southern Great Barrier Reef. J. Exp. Biol. 208, 75–81 (2005).PubMed 

    Google Scholar 
    Pernice, M. et al. Down to the bone: The role of overlooked endolithic microbiomes in reef coral health. ISME J. 14, 325–334 (2020).PubMed 

    Google Scholar 
    Schlichter, D., Zscharnack, B. & Krisch, H. Transfer of photoassimilates from endolithic algae to coral tissue. Naturwissenschaften 82, 564–567 (1995).ADS 

    Google Scholar 
    Kühl, M., Cohen, Y., Dalsgaard, T., Barker Jorgersen, B. & Revsbech, N. P. Microenvironment and photosynthesis of zooxanthellae in scleractinian corals studied with microsensors for O2, pH and light. Mar. Ecol. Prog. Ser. 117, 159–172 (1995).ADS 

    Google Scholar 
    Marcelino, L. A. et al. Modulation of light-enhancement to symbiotic algae by light-scattering in corals and evolutionary trends in bleaching. PLoS One 8, e61492 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wangpraseurt, D. et al. Lateral light transfer ensures efficient resource distribution in symbiont-bearing corals. J. Exp. Biol. 217, 489–498 (2014).PubMed 

    Google Scholar 
    Wangpraseurt, D., Jacques, S. L., Petrie, T. & Kühl, M. Monte Carlo modeling of photon propagation reveals highly scattering coral tissue. Front. Plant Sci. 7, 1404 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Carilli, J., Donner, S. D. & Hartmann, A. C. Historical temperature variability affects coral response to heat stress. PLoS One 7, e34418 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marcelino, V. R. & Verbruggen, H. Multi-marker metabarcoding of coral skeletons reveals a rich microbiome and diverse evolutionary origins of endolithic algae. Sci. Rep. 6, 1–9 (2016).
    Google Scholar 
    del Campo, J., Pombert, J.-F., Šlapeta, J., Larkum, A. & Keeling, P. J. The ‘other’ coral symbiont: Ostreobium diversity and distribution. ISME J. 11, 296–299 (2017).PubMed 

    Google Scholar 
    Massé, A. et al. Functional diversity of microboring Ostreobium algae isolated from corals. Environ. Microbiol. 22, 4825–4846 (2020).PubMed 

    Google Scholar 
    Iglesias-Prieto, R., Beltran, V. H., LaJeunesse, T. C., Reyes-Bonilla, H. & Thome, P. E. Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc. R. Soc. B Biol. Sci. 271, 1757–1763 (2004).CAS 

    Google Scholar 
    Fisher, P. L., Malme, M. K. & Dove, S. The effect of temperature stress on coral–Symbiodinium associations containing distinct symbiont types. Coral Reefs 31, 473–485 (2012).ADS 

    Google Scholar 
    Jeffrey, S. W. & Humphrey, G. F. New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. BPP 167, 191–194 (1975).CAS 

    Google Scholar 
    Marsh, J. A. Primary productivity of reef-building calcareous red algae. Ecology 51, 255–263 (1970).
    Google Scholar 
    Shibata, K. Pigments and a UV-absorbing substance in corals and a blue-green alga living in the Great Barrier Reef1. Plant Cell Physiol. https://doi.org/10.1093/oxfordjournals.pcp.a074411 (1969).Article 

    Google Scholar 
    López-Londoño, T. et al. Physiological and ecological consequences of the water optical properties degradation on reef corals. Coral Reefs 40, 1243–1256 (2021).
    Google Scholar  More