More stories

  • in

    Soil fungal communities affect the chemical quality of flue-cured tobacco leaves in Bijie, Southwest China

    Wu, X. et al. Effects of bio-organic fertiliser fortified by Bacillus cereus QJ-1 on tobacco bacterial wilt control and soil quality improvement. Biocontrol Sci. Technol. 30, 351–369 (2020).
    Google Scholar 
    Hu, W. et al. Flue-cured tobacco (Nicotiana tabacum L.) leaf quality can be improved by grafting with potassium-efficient rootstock. Field Crop. Res. 274, 108305 (2021).
    Google Scholar 
    Wu, X. et al. Bioaugmentation of Bacillus amyloliquefaciens-Bacillus kochii co-cultivation to improve sensory quality of flue-cured tobacco. Arch. Microbiol. 203, 5723–5733 (2021).CAS 
    PubMed 

    Google Scholar 
    Jiang, C. et al. Optimal lime application rates for ameliorating acidic soils and improving the yield and quality of tobacco leaves. Appl. Ecol. Environ. Res. 18, 5411–5423 (2020).
    Google Scholar 
    Yin, Q. et al. Investigation of associations between rhizosphere microorganisms and the chemical composition of flue-cured tobacco leaves using canonical correlation analysis. Commun. Soil Sci. Plant 44, 1524–1539 (2013).CAS 

    Google Scholar 
    Shen, H. et al. Promotion of lateral root growth and leaf quality of flue-cured tobacco by the combined application of humic acids and npk chemical fertilizers. Exp. Agric. 53, 59–70 (2017).CAS 

    Google Scholar 
    Hu, W. Q. et al. Grafting alleviates potassium stress and improves growth in tobacco. BMC Plant Biol. 19, 130 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zhong, J. Study of K+ uptake kinetics of flue-cured tobacco in K+-enriched and conventional tobacco genotypes. J. Plant Nutr. 42(7), 1–7 (2019).
    Google Scholar 
    Tang, Z. et al. Climatic factors determine the yield and quality of Honghe flue-cured tobacco. Sci. Rep. 10, 19868 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yan, S. et al. Correlation between soil microbial communities and tobacco aroma in the presence of different fertilizers. Ind. Crop. Prod. 151, 112454 (2020).CAS 

    Google Scholar 
    Tabaxi, I. Effect of organic fertilization on quality and yield of oriental tobacco (Nicotiana tabacum L.) under Mediterranean conditions. Asian J. Agric. Biol. https://doi.org/10.35495/ajab.2020.05.274 (2021).Article 

    Google Scholar 
    Chen, Y. L. et al. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Mol. Ecol. 26, 6608–6620 (2017).CAS 
    PubMed 

    Google Scholar 
    Wagg, C. et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A. 111, 5266–5270 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    French, E. et al. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).PubMed 

    Google Scholar 
    Cui, Y. et al. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau. Geoderma 338, 118–127 (2019).ADS 
    CAS 

    Google Scholar 
    Zheng, J. et al. The effects of tetracycline residues on the microbial community structure of tobacco soil in pot experiment. Sci. Rep. 10, 8804 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. Effects of tobacco planting systems on rates of soil N transformation and soil microbial community. Int. J. Agric. Biol. 19, 992–998 (2017).CAS 

    Google Scholar 
    Yang, Y. et al. Metagenomic insights into effects of wheat straw compost fertiliser application on microbial community composition and function in tobacco rhizosphere soil. Sci. Rep. 9, 6168 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, S. et al. Response of soil fungal communities to continuous cropping of flue-cured tobacco. Sci. Rep. 10, 19911 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finlay, B. J. Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ehrmann, J. & Ritz, K. Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376, 1–29 (2013).
    Google Scholar 
    Liu, H. et al. Response of soil fungal community structure to long-term continuous soybean cropping. Front. Microbiol. 9, 3316 (2018).PubMed 

    Google Scholar 
    Gao, Z. et al. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Front. Microbiol. 10, 2269 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Li, J. Analysis on the method selection of tobacco disease control. South China Agric. 15, 49–50 (2021).
    Google Scholar 
    Dai, C. et al. Comprehensive evaluation of soil fertility status of tobacco-planting district in Bijie area. Acta Agric. Jiangxi 23, 9–11 (2011).
    Google Scholar 
    Wang, Z. et al. Time-course relationship between environmental factors and microbial diversity in tobacco soil. Sci. Rep. 9, 19969 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X. et al. Study on the primary chemical components, sensory quality of flue-cured tobacco and their correlativity in Bijie. J. Henan Agric. Sci. 41, 58–61 (2012).
    Google Scholar 
    Zhang, S. et al. Analysis of variation characteristics and coordination of conventional chemical components of flue-cured tobacco in Youyang County, Chongqing City. Acta Agric. Jiangxi 32, 75–86 (2020).
    Google Scholar 
    Lakatos, L. et al. The influence of meteorological variables on sour cherry quality parameters. In Vi International Cherry Symposium (Int Soc Horticultural Science, Leuven 1), Vol. 1020, 287–292 (2014).Zhao, Z. et al. Why does potassium concentration in flue-cured tobacco leaves decrease after apex excision? Field Crop. Res. 116, 86–91 (2010).
    Google Scholar 
    Travlos, I. S. et al. Green manure and pendimethalin impact on oriental sun-cured tobacco. Agron. J. 106, 1225–1230 (2014).
    Google Scholar 
    Bilalis, D. et al. Effect of organic fertilization on soil characteristics, yield and quality of Virginia Tobacco in Mediterranean area. Emir. J. Food Agric. https://doi.org/10.9755/ejfa.2020.v32.i8.2138 (2020).Article 

    Google Scholar 
    Henry, J. B., Vann, M. C. & Lewis, R. S. Agronomic practices affecting nicotine concentration in flue-cured tobacco: A review. Agron. J. 111, 3067–3075 (2019).CAS 

    Google Scholar 
    Lamarre, M. & Payette, S. Influence of nitrogen-fertilization on Quebec flue-cured tobacco production. Can. J. Plant Sci. 72, 411–419 (1992).CAS 

    Google Scholar 
    Zhang, L. et al. Dynamic changes of nutrients in tobacco-planting soils in Bijie City during 2014–2016. Guizhou Agric. Sci. 45, 51–55 (2017).CAS 

    Google Scholar 
    Lisuma, J. B., Mbega, E. R. & Ndakidemi, P. A. Dynamics of nicotine across the soil–tobacco plant interface is dependent on agro-ecology, nitrogen source, and rooting depth. Rhizosphere 12, 100175 (2019).
    Google Scholar 
    Cosme, M. & Wurst, S. Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biol. Biochem. 57, 436–443 (2013).CAS 

    Google Scholar 
    Chandanie, W. A., Kubota, M. & Hyakumachi, M. Interactions between the arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.). Appl. Soil Ecol. 41, 336–341 (2009).
    Google Scholar 
    Liu, D. et al. Geographic distance and soil microbial biomass carbon drive biogeographical distribution of fungal communities in Chinese Loess Plateau soils. Sci. Total Environ. 660, 1058–1069 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, S. & Wu, F. Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01521 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. Chaetosemins A-E, new chromones isolated from an Ascomycete Chaetomium seminudum and their biological activities. RSC Adv. 5, 29185–29192 (2015).ADS 
    CAS 

    Google Scholar 
    Gorte, O., Kugel, M. & Ochsenreither, K. Optimization of carbon source efficiency for lipid production with the oleaginous yeast Saitozyma podzolica DSM 27192 applying automated continuous feeding. Biotechnol. Biofuels 13, 181 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. et al. Biochar applied to consolidated land increased the quality of an acid surface soil and tobacco crop in Southern China. J. Soil. Sediment. 20, 3091–3102 (2019).
    Google Scholar 
    Zong, J. et al. Effect of two drying methods on chemical transformations in flue-cured tobacco. Dry Technol. https://doi.org/10.1080/07373937.2020.1779287 (2020).Article 

    Google Scholar 
    Ismail, E. et al. Evaluation of in vitro antifungal activity of potassium bicarbonate on Rhizoctonia solani AG 4 HG-I, Sclerotinia sclerotiorum and Trichoderma sp.. Afr. J. Biotechnol. 10, 8605–8612 (2011).
    Google Scholar 
    d’Aquino, L. et al. Effect of some rare earth elements on the growth and lanthanide accumulation in different Trichoderma strains. Soil Biol. Biochem. 41, 2406–2413 (2009).CAS 

    Google Scholar 
    Bijie Municipal Government. Statistical Yearbooks of Bijie City (2016)He, R., Liu, S. & Liu, Y. Application of SD model in analyzing the cultivated land carrying capacity: A case study in Bijie Prefecture, Guizhou Province, China. Procedia Environ. Sci. 10, 1985–1991 (2011).
    Google Scholar 
    Wang, M. et al. Spatial variation and fractionation of fluoride in tobacco-planted soils and leaf fluoride concentration in tobacco in Bijie City, Southwest China. Environ. Sci. Pollut. Res. 28, 26112–26123 (2021).CAS 

    Google Scholar 
    Wang, J. T. et al. Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan Plateau. Microb. Ecol. 69, 135–145 (2015).PubMed 

    Google Scholar 
    Zhang, Q. et al. Soil available phosphorus content drives the spatial distribution of archaeal communities along elevation in acidic terrace paddy soils. Sci. Total Environ. 658, 723–731 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cui, Q. et al. Sulfur application improved leaf yield and quality of flue-cured tobacco by maintaining soil sulfur balance. Int. J. Agric. Biol. 23, 357–363 (2020).CAS 

    Google Scholar 
    Cao, X. et al. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties. Environ. Pollut. 252, 733–741 (2019).CAS 
    PubMed 

    Google Scholar 
    Wang, C. et al. Prevalence of antibiotic resistance genes and bacterial pathogens along the soil-mangrove root continuum. J. Hazard. Mater. 408, 124985 (2021).CAS 
    PubMed 

    Google Scholar 
    Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).CAS 
    PubMed 

    Google Scholar 
    Wang, Q. et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).CAS 
    PubMed 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindstrom, E. S. et al. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl. Environ. Microbiol. 71, 8201–8206 (2005).ADS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Two new Russula species (fungi) from dry dipterocarp forest in Thailand suggest niche specialization to this habitat type

    Phylogenetic analysesA total of 21 sequences were newly generated and deposited in GenBank (Supplementary Table 1). The concatenated sequence alignment of the three loci comprised 100 sequences (38 for ITS, 30 for rpb2 and 32 for mtSSU) from 43 collections (Supplementary Table 1). The alignment was 2,004 characters long, including gaps. Multi-locus trees generated from ML and BI analyses showed similar topologies without any supported topological conflict. The multi-locus phylogeny (Fig. 1) confirmed placement of all Thai collections within the well-supported R. subsect. Amoeninae (ML = 99, BI = 1.0). Five collections from northeastern Thailand and two collections from northern Thailand form two strongly supported clades and are described below as the new species R. bellissima sp. nov. and R. luteonana sp. nov. The new species are not resolved as sister. The first species, R. bellissima, is strongly supported as sister to a clade of Australian sequestrate species that includes R. variispora T. Lebel and an undescribed Russula sp. labeled as Macowanites sp. The Indian species R. intervenosa S. Paloi, A.K. Dutta & K. Acharya is placed as sister to them with bootstrap support of 77. The second species, R. luteonana, is placed with moderate support as sister to the sequestrate European species R. andaluciana T.F. Elliott & Trappe.Figure 1ML phylogenetic tree inferred from the three-gene dataset (ITS, rpb2, mtSSU) of Russula subsection Amoeninae species, using ML and BI analyses. Three members of R. subg. Heterophyllidiae are used as outgroup. Species in boldface are new species in this study. Bootstrap support values (BS ≥ 50%) and posterior probabilities (PP ≥ 0.90) are shown at the supported branches.Full size imageThe ITS tree (Fig. 2) shows a similar topology and relationships for the studied specimens. In addition, R. intervenosa received good support (ML = 84, BI = 0.99) as sister to the clade of R. bellissima and R. variispora. Five additional ITS sequences that are grouped with strong support within R. bellissima species clade were recovered, three from Thailand, one from Laos, and one from Singapore. We did not recover any other Amoeninae ITS sequences from Thailand.Figure 2ML phylogenetic tree inferred from the ITS region of Russula subsection Amoeninae species and allied groups, using ML and BI methods. Samples in boldface are new species in this study. Bootstrap support values (BS ≥ 50%) and posterior probabilities (PP ≥ 0.90) are shown at the supported branches.Full size imageTaxonomy
    Russula bellissima Manz & F. Hampe sp. nov.
    Mycobank: MB 840549Holotype THAILAND, Theong district, Chiang Rai, 19°36′45”N 100°4′00”E, alt. 500 m, dry dipterocarpus forest in small groups on loamy soil, 12 July 2012, F. Hampe (Holotype: GENT FH 12-127; Isotype: MFLU12-0619).Etymology ’bellus’ = latin for beautiful, pretty, lovely; ’bellissima’ = the most beautiful. Resembling the species Russula bella which is also belonging to Russula subsection Amoeninae.Diagnosis Pileus small to medium-sized; cuticle dry, smooth, matt and pruinose, red; stipe white or with a red flush; spore ornamentation of moderately distant to dense amyloid spines or warts, frequently fused into short crests or even long wings; suprahilar spot inamyloid; hymenial cystidia and pileocystidia absent.Pileus (Fig. 3) small to medium sized, 10–50 mm diam., young hemispherical or convex, becoming plane and depressed at the centre; margin first even, when old distinctly tuberculate-striate up to 10 mm from the margin, often radially cracking; cuticle hardly peeling, radially disrupted into small patches, pruinose when young, later dry, smooth, matt and pruinose in the centre, colour near the margin when young varnish red (9C8), later red to coral red (9B6-7); near the centre deep red, blood red, dark red (10C7-8), raspberry red (10D7), strawberry red (10D8) or purple brown (10E-F8). Lamellae: 3–5 mm deep, thin, moderately dense, 6–8 at 1 cm near the pileus margin, adnexed, white, slightly anastomosing at the base; lamellulae absent, occasionally forked near the stipe; edges concolorous, entire but pruinose under lens. Stipe: 10–30 × 3–7 mm, usually narrowed towards the base, sometimes cylindrical, surface smooth, white and mainly with a distinct pastel red to red flush, occasionally completely white or sometimes also almost completely red, interior stuffed. Context: white, fragile, unchanging when damaged, reaction with guaiac after 5 s negative on both stipe and lamellae surfaces, reaction to FeSO4 and sulfovanillin negative; taste mild; odour inconspicuous. Spore print: not observed.Figure 3Basidiomata of Russula bellissima. (A) FH12-127 (Holotype). (B) FH12-158. Scale bar = 1 cm. Photos by Felix Hampe.Full size imageSpores (Figs. 4, 5) (6.9–)7.3–7.8–8.3(–8.9) × (6.1–)6.8–7.2–7.6(–8.4) µm, subglobose to broadly ellipsoid, Q = 1.01–1.1–1.2(–1.29); ornamentation of moderately distant [(4–)5–6(–7) in a 3 µm diam. circle] amyloid spines or warts, (1.1–)1.2–1.4–1.6(–1.7) µm high, fused or connected by fine line connections into often long crests or wings, [(0–)1–3(–4) fusions and the same number of line connections in a 3 µm diam. circle], crests and wings frequently branched and occasionally form closed loops, isolated elements dispersed, edge of crests and wings irregularly wavy; suprahilar spot moderately large, inamyloid. Basidia: (30.5–)34.5–44.1–53.5(–65.0) × (10.5–)11.5–12.6–14.0(–16.0) µm, broadly clavate or obpyriform, 4-spored; basidiola cylindrical, ellipsoid or broadly clavate, ca. 5–10 µm wide. Hymenial cystidia on lamellae sides: absent. Lamellae edges: covered by densely arranged or fasciculate marginal cells. Marginal cells: (27.0–)38.5–46.4–54.5(–61.0) × (5.0–)5.5–6.7–7.5(–9.0) µm; subulate or narrowly lageniform, apically attenuated and constricted to ca. 1–2 µm, sometimes slightly moniliform or flexuous. Pileipellis: (Fig. 6) orthochromatic in Cresyl Blue, gradually passing to the underlying context, 200–300 µm deep; suprapellis 60–130 µm deep, composed of erect or ascending hyphal terminations forming a dry trichoderm, well delimited from 140 to 210 µm deep subpellis composed of horizontally oriented, strongly gelatinized narrow hyphae. Subpellis not well delimited from the underlying context, elongate hyphae gradually changing to sphaerocytes. Acid- resistant incrustations: absent. Hyphal terminations near the pileus margin: composed of long apically attenuated terminal cell and a chain of 1–4 ovoid to barrel shaped, short unbranched cells with one distinctly longer apical cell; constricted on septa, usually not flexuous, oriented towards the pileus surface, usually thin-walled, sometimes slightly thick-walled (up to 1 µm thick); terminal cells mainly subulate or lageniform, apically attenuated and acute, measuring (19–)27.5–38.3–49.0(–66.5) × (3.3–)4.5–5.8–7.0(–9.0) µm, rarely with a forked apex, mixed with dispersed, cylindrical or ellipsoid, distinctly shorter, obtuse terminal cells measuring (7.5–)11.5–17.8–29.5(–42.5) × (3.0–)4.0–4.5–5.0 µm; subterminal cells measuring (4.5–)5.5–8.3–11.5(–16.0) × 4.5–5.3–6.0(–7.0) µm. Hyphal terminations near the pileus centre: similar in shape and also with a mixture of long acute and short obtuse terminal cells, acute ones measuring (12.0–)22.0–35.2–48.5(–79.0) × (2.5–)3.5–4.9–6.5(–8.0) µm, obtuse ones more frequent, measuring (6.5–)8.5–12.0–15.5(–22.0) × (3.5–)4.0–4.9–6.0(–7.5) µm. Primordial hyphae or pileocystidia: absent. Cystidioid hyphae and oleipherous hyphae not observed.Figure 4Hymenial elements of Russula bellissima (holotype, FH 12-127). (A) Basidia and basidiolae. (B) Marginal cells. (C) Spores as seen in Melzer’s reagent. Scale bar = 10 µm, but only 5 µm for spores.Full size imageFigure 5Scanning electron microscope photo of spore ornamentation. Russula bellissima (holotype, FH 12-127). Scale bar = 2 μm.Full size imageFigure 6Elements of the pileipellis of Russula bellissima (holotype, FH 12-127). (A) Hyphal terminations near the pileus margin. (B) Hyphal terminations near the pileus centre. Scale bar = 10 μm.Full size imageAdditional material studied THAILAND, Chiang Mai Province, Mae On District, about 3 km from Tharnthong lodges, 18° 51′ 55″ N 99° 17′ 23″ E, alt. 725 m, Dipterocarpaceae dominated forest with the presence of some Castanopsis trees, in small groups on loamy soil, 17 July 2012, F. Hampe (GENT FH 12-158, duplicate: MFLU12-0648).Note Russula bellissima is a small species with a bright red pileus and pink colour on the stipe. This colour is distinctive and resembles North American R. mariae, Indian R. intervenosa and Asian R. bella. It is very unlikely that the distribution of any European or North American species is overlapping with the Thai species. However, little is known about the distributional ranges and the ecological niches of other Asian Russula species. Therefore discussing the morphological distinguishing characters between Asian species and R. bellissima is more relevant. Russula bellissima is not closely related to R. bella and it differs from this species by larger spores with a more prominent spore ornamentation, absence of hymenial cystidia on lamellae sides, and subterminally short, ellipsoid cells in the suprapellis arranged in unbranched chains of up to four7. The Thai species resembles and is closely related to the Indian R. intervenosa, but it has a more prominent spore ornamentation, hymenial cystidia (on lamellae sides) are absent, and hyphal terminations in the pileipellis are wider22.
    Russula luteonana M. Pobkwamsuk & K. Wisitrassameewong sp. nov.
    Mycobank: MB 840550Holotype: THAILAND, Amnat Charoen province, Hua Taphan district, Junction near Watbochaneng , dry dipterocarp forest, alt. 145 m, 15° 41′ 28″ N 104° 31′ 41″ E, 13 July 2016, Thitiya Boonpratuang, Rattaket Choeyklin, Prapapan Sawhasan, Maneerat Pobkwamsuk, Pattrachai Juthamas, Nattawut Wiriyathanawudhiwong, Patcharee Patangwesa (BBH41120).Etymology ‘Luteolus’ = yellow colour, ‘Nanus’ = small. Refer to pileus color and size of the species.Diagnosis Pileus medium-sized, dry, usually yellow, spores with subreticulate amyloid ornamentation and inamyloid suprahilar spot, hymenial cystidia on lamellae sides large, lamellae edges with combination of subulate, clavate and pyriform marginal cells.Pileus (Fig. 7) medium-sized, 28‒53 mm diam., plano-convex with depressed centre, infundibuliform when mature; margin striated and radially cracking in dry condition; cuticle dry, peeling to almost ½ of radius, smooth to minutely wrinkled, dull in dry condition, color very variable, some collections pale cream and with darker pale brownish-yellow centre, other yellow brownish and with darker orange-brown centre, sometimes also bright red-brown and with discolored centre, always with rusty-brown spots especially when near the centre. Lamellae: 3‒5 mm deep, moderately distant, intervenose, forking near the stipe, white to cream, edges even, concolorous. Stipe: 26‒40 × 6‒9 mm, cylindrical or narrowed at the base, surface dry, longitudinally wrinkled, white, turning brown when bruised. Context: 2‒4 mm in at the half pileus radius, soft, solid, becoming partially hollow when mature, white, unchanging when cut. Taste mild; odour rather strong, fishy. Spore print: not observed.Figure 7Basidiomata of Russula luteonana. (A) BBH41120 (Holotype). (B) BBH41121. (C) BBH41122. (D) BBH42510. Scale bar = 1 cm. Photos by Thitiya Boonpratuang.Full size imageSpores (Figs. 8, 9) (7.4‒)8.1‒8.6‒9(‒10.1) × (6.1‒)7.4‒7.5‒7.9(‒9.1) μm, subglobose to broadly ellipsoid, Q = (1.03‒)1.09‒1.15‒1.20(‒1.30), ornamentation of moderately distant, obtuse, (0.7‒)1.1‒1.3‒1.5(‒1.9) μm high spines, connected by abundant line connections [(0‒)3‒6(‒8) in in a 3 µm diam. circle], branched, forming an incomplete reticulum, crest irregularly wavy and occasionally fused [(0‒)1‒2(‒5) fusions in the circle], isolated elements rare; suprahilar spot inamyloid. Basidia: (29‒)34.5‒39.1‒44(‒51.5) × (10‒)12‒13.2‒14.5(‒16.5) μm, clavate, 4-spored, rarely 2-spored, basidiola subcylindrical to subclavate, (25.5‒)30‒35.4‒41(‒47) × (9‒)11‒12.2‒14 (‒16) μm. Hymenial cystidia on lamellae sides: usually protruding over other elements of hymenium, widely dispersed ( More

  • in

    Long horns protect Hestina japonica butterfly larvae from their natural enemies

    Lincoln, G. A. Teeth, horns and antlers: the weapons of sex. In The Differences between the Sexes (eds R. V. Short & E. Balaban) 131–158 (Cambridge Univ. Press, 1994).Lundrigan, B. Morphology of horns and fighting behavior in the family bovidae. J. Mammal. 77, 462–475 (1996).Article 

    Google Scholar 
    Bro-Jorgensen, J. The intensity of sexual selection predicts weapon size in male bovids. Evolution 61, 1316–1326 (2007).Article 

    Google Scholar 
    Plard, F., Bonenfant, C. & Gaillard, J. M. Revisiting the allometry of antlers among deer species: male-male sexual competition as a driver. Oikos 120, 601–606 (2011).Article 

    Google Scholar 
    Okada, K. & Miyatake, T. Sexual dimorphism in mandibles and male aggressive behavior in the presence and absence of females in the beetle Librodor japonicus (Coleoptera: Nitidulidae). Ann. Entomol. Soc. Am. 97, 1342–1346 (2004).Article 

    Google Scholar 
    Emlen, D. J., Marangelo, J., Ball, B. & Cunningham, C. W. Diversity in the weapons of sexual selection: Horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae). Evolution 59, 1060–1084 (2005).CAS 
    Article 

    Google Scholar 
    Pomfret, J. C. & Knell, R. J. Sexual selection and horn allometry in the dung beetle Euoniticellus intermedius. Anim. Behav. 71, 567–576 (2006).Article 

    Google Scholar 
    McCullough, E. L., Weingarden, P. R. & Emlen, D. J. Costs of elaborate weapons in a rhinoceros beetle: how difficult is it to fly with a big horn?. Behav. Ecol. 23, 1042–1048 (2012).Article 

    Google Scholar 
    David, P., Bjorksten, T., Fowler, K. & Pomiankowski, A. Condition-dependent signalling of genetic variation in stalk-eyes flies. Nature 406, 186–188 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Baker, R. H. & Wilkinson, G. S. Phylogenetic analysis of sexual dimorphism and eye-span allometry in stalk-eyed flies (Diopsidae). Evolution 55, 1373–1385 (2001).CAS 
    Article 

    Google Scholar 
    Stankowich, T. Armed and dangerous: predicting the presence and function of defensive weaponry in mammals. Adapt. Behav. 20, 32–43 (2012).Article 

    Google Scholar 
    Hashimoto, K. & Hayashi, F. Structure and function of the large pronotal horn of the sand-living anthicid beetle Mecynotarsus tenuipes. Entomol. Sci. 15, 274–279 (2012).Article 

    Google Scholar 
    Hayashi, M. & Ohba, S. Y. Mouth morphology of the diving beetle Hyphydrus japonicus (Dytiscidae: Hydroporinae) is specialized for predation on seed shrimps. Biol. J. Linn. Soc. 125, 315–320 (2018).Article 

    Google Scholar 
    Stocker, R. F. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res. 275, 3–26 (1994).CAS 
    Article 

    Google Scholar 
    Dweck, H. K. M. Antennal sensory receptors of Pteromalus puparum female (Hymenoptera: Pteromalidae), a gregarious pupal endoparasitoid of Pieris rapae. Micron 40, 769–774 (2009).Article 

    Google Scholar 
    Crespo, J. G. A review of chemosensation and related behavior in aquatic insects. J. Insect Sci. 11, 1–39 (2011).Article 

    Google Scholar 
    Stoffolano, J. G. Jr., Rice, M. & Murphy, W. L. The importance of antennal mechanosensilla of Sepedon fuscipennis (Diptera: Sciomyzidae). Can. Entomol. 145, 265–272 (2013).Article 

    Google Scholar 
    Gabel, B. et al. Floral volatiles of Tanacetum vulgare L. attractive to Lobesia botrana Den. et Schiff. females. J. Chem. Ecol. 18, 693–701 (1992).CAS 
    Article 

    Google Scholar 
    Fox, H. Barbels and barbel-like tentacular structures in sub-mammalian vertebrates: a review. Hydrobiologia 403, 153–193 (1999).Article 

    Google Scholar 
    Plepys, D., Ibarra, F., Francke, W. & Lofstedt, C. Odour-mediated nectar foraging in the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae): behavioural and electrophysiological responses to floral volatiles. Oikos 99, 75–82 (2002).CAS 
    Article 

    Google Scholar 
    Stankowich, T. & Caro, T. Evolution of weaponry in female bovids. Proc. R. Soc. Lond. Ser. B Biol. Sci. 276, 4329–4334 (2009).Bergmann, P. J. & Berk, C. P. The Evolution of Positive Allometry of Weaponry in Horned Lizards (Phrynosoma). Evol. Biol. 39, 311–323 (2012).Article 

    Google Scholar 
    Damman, H. The osmaterial glands of the swallowtail butterfly Eurytide marcellus as a defense against natural enemies. Ecol. Entomol. 11, 261–265 (1986).Article 

    Google Scholar 
    Berenbaum, M. R., Moreno, B. & Green, E. Soldier bug predation on swallowtail caterpillars (Lepidoptera, Papilionidae): circumvention of defensive chemistry. J. Insect Behav. 5, 547–553 (1992).Article 

    Google Scholar 
    Juma, G. et al. Distribution of chemo- and mechanoreceptors on the antennae and maxillae of Busseola fusca larvae. Entomol. Exp. Appl. 128, 93–98 (2008).Article 

    Google Scholar 
    Liu, Z., Hua, B.-Z. & Liu, L. Ultrastructure of the sensilla on larval antennae and mouthparts in the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae). Micron 42, 478–483 (2011).Article 

    Google Scholar 
    Kandori, I., Tsuchihara, K., Suzuki, T. A., Yokoi, T. & Papaj, D. R. Long frontal projections help Battus philenor (Lepidoptera: Papilionidae) larvae find host plants. PLoS ONE 10, e0131596 (2015).Article 

    Google Scholar 
    Greeney, H. F., Dyer, L. A. & Smilanich, A. M. Feeding by lepidopteran larvae is dangerous: A review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. ISJ Invert. Surviv. J. 9, 7–34 (2012).
    Google Scholar 
    Sugiura, S. Predators as drivers of insect defenses. Entomol. Sci. 23, 316–337 (2020).Article 

    Google Scholar 
    Martin, W. R. & Nordlund, D. A. Ovipositional behavior of the parasitoid Palexorista laxa (Diptera, Tachinidae) on Heliothis zea (Lepidoptera, Noctuidae) larvae. J. Entomol. Sci. 24, 460–464 (1989).Article 

    Google Scholar 
    Constantino, L. M. Notes on Haetera from Colombia, with description of the immature stages of Haetera piera (Lepidoptera:Nymphalidae: Satyrinae). Trop. Lepid. 4(1), 13–15 (1993).
    Google Scholar 
    Devries, P. J., Kitching, I. J. & Vanewright, R. I. The systematic position of Antirrhea and Caerois, with comments on the classification of the Nymphalidae (Lepidoptera). Syst. Entomol. 10, 11–32. https://doi.org/10.1111/j.1365-3113.1985.tb00561.x (1985).Article 

    Google Scholar 
    Dias, F. M. S., Casagrande, M. M. & Mielke, O. H. H. Biology and external morphology of immature stages of Memphis appias (Hubner) (Lepidoptera: Nymphalidae: Charaxinae). Zootaxa, 21–32 (2010).Dias, F. M. S., Casagrande, M. M. & Mielke, O. H. H. Biology and external morphology of the immature stages of the butterfly Callicore pygas eucale, with comments on the taxonomy of the genus Callicore (Nymphalidae: Biblidinae). J. Insect Sci. 14, doi:https://doi.org/10.1093/jis/14.1.91 (2014).Dias, F. M. S., Casagrande, M. M. & Mielke, O. H. H. Immature stages of the turquoise-banded shoemaker Archaeoprepona amphimachus pseudomeander (Fruhstorfer, 1906) and a comparative review of the Preponini (Lepidoptera: Nymphalidae). Aust. Entomol. 58, 451–462. https://doi.org/10.1111/aen.12339 (2019).Article 

    Google Scholar 
    Dias, F. M. S., de Oliveira-Neto, J. F., Casagrande, M. M. & Mielke, O. H. H. External morphology of immature stages of Zaretis strigosus (Gmelin) and Siderone galanthis catarina Dottax and Pierre comb. nov., with taxonomic notes on Siderone (Lepidoptera: Nymphalidae: Charaxinae). Rev. Bras. Entomol. 59, 307–319, doi:https://doi.org/10.1016/j.rbe.2015.07.007 (2015).Dias, F. M. S. et al. An integrative approach elucidates the systematics of Sea Hayward and Cybdelis Boisduval (Lepidoptera: Nymphalidae: Biblidinae). Syst. Entomol. 44, 226–250. https://doi.org/10.1111/syen.12327 (2019).Article 

    Google Scholar 
    Freitas, A. V. L., Barbosa, E. P. & Marin, M. A. Immature Stages and Natural History of the Neotropical Satyrine Pareuptychia ocirrhoe Interjecta (Nymphalidae: Euptychiina). J. Lepid. Soc. 70, 271–276. https://doi.org/10.18473/lepi.70i4.a4 (2016).Article 

    Google Scholar 
    Freitas, A. V. L., Kaminski, L. A., Mielke, O. H. H., Barbosa, E. P. & Silva-Brandao, K. L. A new species of Yphthimoides (Lepidoptera: Nymphalidae: Satyrinae) from the southern Atlantic forest region. Zootaxa, 31–44 (2012).Furtado, E. & Campos-Neto, F. C. Caligopsis seleucida (Hewitson) and its immature stages (Lepidoptera, Nymphalidae, Brassolinae). Rev. Bras. Zool. 21(3), 593–597 (2004).Article 

    Google Scholar 
    Greeney, H. F. et al. The early stages and natural history of Antirrhea adoptiva porphyrosticta (Watkins, 1928) in eastern Ecuador (Lepidoptera: Nymphalidae: Morphinae). J. Insect Sci. 9 (2009).Greeney, H. F. et al. Early stages and natural history of Perisama oppelii (Nymphalidae, Lepidoptera) in eastern Ecuador. Kempffiana 6(1), 16–30 (2010).
    Google Scholar 
    Greeney, H. F., Dyer, L. A. & Pyrcz, T. W. First description of the early stage biology of the genus Mygona: The natural history of the satyrine butterfly, Mygona irmina in eastern Ecuador. J. Insect Sci. 11, doi:https://doi.org/10.1673/031.011.0105 (2011).Greeney, H. F., Pyrcz, T. W., DeVries, P. J. & Dyer, L. A. The early stages of Pedaliodes poesia (Hewitson, 1862) in eastern Ecuador (Lepidoptera: Satyrinae: Pronophilina). J. Insect Sci. 9 (2009).Greeney, H. F., Whitfield, J. B., Stireman, J. O., Penz, C. M. & Dyer, L. A. Natural history of Eryphanis greeneyi (Lepidoptera: Nymphalidae) and its enemies, with a description of a new species of Braconid parasitoid and notes on its Tachinid parasitoid. Ann. Entomol. Soc. Am. 104, 1078–1090. https://doi.org/10.1603/an10064 (2011).Article 

    Google Scholar 
    Kaminski, L. A. & Freitas, A. V. L. Immature stages of the butterfly Magneuptychia libye (L.) (Lepidoptera : Nymphalidae, Satyrinae). Neotrop. Entomol. 37, 169–172, doi:https://doi.org/10.1590/s1519-566×2008000200010 (2008).Lambkin, T. & Kendall, R. The status of Yoma algina (boisduval, 1832) & Y. sabina (cramer, 1780) (Lepidoptera: Nymphalidae: Nymphalinae) in Australia. Aust. Entomol. 43 (4), 211–234 (2016).Leite, L. A. R., Casagrande, M. M., Mielke, O. H. H. & Freitas, A. V. L. Immature stages of the Neotropical butterfly, Dynamine agacles agacles. J. Insect Sci. 12 (2012).Leite, L. A. R., Dias, F. M. S., Carneiro, E., Casagrande, M. M. & Mielke, O. H. H. Immature stages of the Neotropical cracker butterfly, Hamadryas epinome. J. Insect Sci. 12 (2012).Murillo, L. R. & Nishida, K. Life history of Manataria maculata (Lepidoptera : Satyrinae) from Costa Rica. Rev. Biol. Trop. 51, 463–469 (2003).PubMed 

    Google Scholar 
    Nakahara, S., Janzen, D. H., Hallwachs, W. & Espeland, M. Description of a new genus for Euptychia hilara (C. Felder & R. Felder, 1867) (Lepidoptera: Nymphalidae: Satyrinae). Zootaxa 4012, 525-541, doi:https://doi.org/10.11646/zootaxa.4012.3.7 (2015).Penz, C. M., Freitas, A. V. L., Kaminski, L. A., Casagrande, M. M. & Devries, P. J. Adult and early-stage characters of Brassolini contain conflicting phylogenetic signal (Lepidoptera, Nymphalidae). Syst. Entomol. 38, 316–333. https://doi.org/10.1111/syen.12000 (2013).Article 

    Google Scholar 
    Pyrcz, T. W. et al. Uncovered diversity of a predominantly Andean butterfly clade in the Brazilian Atlantic forest: a revision of the genus Praepedaliodes Forster (Lepidoptera: Nymphalidae, Satyrinae, Satyrini). Neotrop. Entomol. 47, 211–255. https://doi.org/10.1007/s13744-017-0543-x (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shirai, L. T. et al. Natural history of Selenophanes cassiope guarany (Lepidoptera: Nymphalidae: Brassolini): an integrative approach, from molecules to ecology. Ann. Entomol. Soc. Am. 110, 145–159. https://doi.org/10.1093/aesa/saw068 (2017).Article 

    Google Scholar 
    Silva, P. L. et al. Immature Stages of the Brazilian Crescent Butterfly Ortilia liriope (Cramer) (Lepidoptera: Nymphalidae). Neotrop. Entomol. 40, 322–327. https://doi.org/10.1590/s1519-566×2011000300006 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Song-yun, L. Immature stages of Faunis aerope (Leech, 1890) (Lepidoptera, Nymphalidae). Atalanta 42, 221–222 (2011).
    Google Scholar 
    Steiner, H. Life history of Melanocyma faunula in Malaysia (Lepidoptera: Nymphalidae: Morphinae). Trop. Lepid. Res. 16, 23–26 (2005).
    Google Scholar 
    Velez, P. D., Montoya, H. H. V. & Wolff, M. Immature stages and natural history of the Andean butterfly Altinote ozomene (Nymphalidae: Heliconiinae: Acraeini). Zoologia 28, 593–602. https://doi.org/10.1590/s1984-46702011000500007 (2011).Article 

    Google Scholar 
    Wahlberg, N. et al. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc. R. Soc. Lond. Ser. B Biol. Sci. 276, 4295–4302, doi:https://doi.org/10.1098/rspb.2009.1303 (2009).Willmott, K. R., Elias, M. & Sourakov, A. Two possible caterpillar mimicry complexes in neotropical Danaine butterflies (Lepidoptera: Nymphalidae). Ann. Entomol. Soc. Am. 104, 1108–1118. https://doi.org/10.1603/an10086 (2011).Article 

    Google Scholar 
    Willmott, K. R. & Freitas, A. V. L. Higher-level phylogeny of the Ithomiinae (Lepidoptera : Nymphalidae): classification, patterns of larval hostplant colonization and diversification. Cladistics 22, 297–368. https://doi.org/10.1111/j.1096-0031.2006.00108.x (2006).Article 
    PubMed 

    Google Scholar 
    Zacca, T. et al. Revision of Godartiana Forster (Lepidoptera: Nymphalidae), with the description of a new species from northeastern Brazil. Aust. Entomol. 56, 169–190. https://doi.org/10.1111/aen.12223 (2017).Article 

    Google Scholar 
    Bossart, J.L., Fetzner Jr., J.F. & Rawlins, J.E. Ghana Butterfly Biodiversity Project website. https://www.invertebratezoology.org/GhanaBfly/default.asp (2007).Butterflies and Moths of North America project. Butterflies and Moths of North America website. https://www.butterfliesandmoths.org/ (2021).Dauphin, D. & Dauphin, J. The Rio Grande Valley’s Nature Site website. http://www.thedauphins.net (2021).Eeles, P. UK Butterflies website. https://www.ukbutterflies.co.uk/index.php. (2021).Florida Museum of Natural History. Florida Museum website. https://www.floridamuseum.ufl.edu/ (2021).Khew, S. K. et al. Butterflies of Singapore website. https://butterflycircle.blogspot.com/ (2021).Kunte, K., Sondhi, S. & Roy, P. Butterflies of India, v. 3.24. Indian Foundation for Butterflies website. https://www.ifoundbutterflies.org (2021).Miller, S. & Morrison, C. Parasitoid-Caterpillar-Plant Interactions in the Americas website. https://caterpillars.myspecies.info/ (2021).National Biodiversity Network Trust. iNaturalistUK website. https://uk.inaturalist.org/ (2021).Nature Picture Library Limited. Nature Picture Library website. https://www.naturepl.com/blog/ (2021).Project Noah Team. Project Noah website. https://www.projectnoah.org/ (2021).Shiraiwa, K. Pteron World. The encyclopedia website of the butterflies. https://www.pteron-world.com/index.html (2021).Wagner, W. Lepidoptera and Their Ecology website. http://www.pyrgus.de/ (2021).Wahlberg, N. & Peña, C. Nymphalidae.net. website. http://www.nymphalidae.net/ (2021).Wikimedia Foundation, Inc. Wikimedia Commons website. https://commons.wikimedia.org/ (2021).Matsuura, M. Social Wasps of Japan in Color. (in Japanese) (Hokkaido university press 2015).IBM SPSS. SPSS Base 25.0 User’s Guide. (SPSS Inc., 2017). More

  • in

    Thermophiles and carbohydrate-active enzymes (CAZymes) in biofilm microbial consortia that decompose lignocellulosic plant litters at high temperatures

    Phyla Bdellovibrionota, Fusobacteriota, and Myxococcota were present in the green microbial mat but in negligible quantities in the brown mat. The unique phyla detected in the brown mat, but not in the green microbial mat, included Caldatribacteriota, Thermodesulfobacteriota, Dictyoglomota, Elusimicrobiota, Thermotogota, Candidatus Calescamantes, Fervidibacteria, Hydrothermae, GAL15 and TA06. The Candidatus Caldatribacterium (phyla Caldatribacteriota), earlier named OP9 was also detected in this work. Using single-cell and metagenome sequencing, data elucidated that Ca. Caldatribacterium conducts anaerobic sugar fermentation and exhibited diverse glycosyl hydrolases, including endoglucanase37.Cyanobacteria and Chloroflexota were the main identified phyla in the green microbial mat. Because the hot spring is almost stagnant, undisturbed, and the water surface temperature ( More

  • in

    Morpho-physiological adaptations of Leptocylindrus aporus and L. hargravesii to phosphate limitation in the northern Adriatic

    Nanjappa, D., Kooistra, W. H. & Zingone, A. A reappraisal of the genus Leptocylindrus (B acillariophyta), with the addition of three species and the erection of Tenuicylindrus gen. nov. J. Phycol. 49, 917–936 (2013).Article 

    Google Scholar 
    Hasle, G. & Syvertsen, E. (Academic Press, 1997).Gómez, F., Simão, T. L., Utz, L. R. & Lopes, R. M. The nature of the diatom Leptocylindrus mediterraneus (Bacillariophyceae), host of the enigmatic symbiosis with the stramenopile Solenicola setigera. Phycologia 55, 265–273 (2016).Article 

    Google Scholar 
    Ivančić, I. et al. Survival mechanisms of phytoplankton in conditions of stratification-induced deprivation of orthophosphate: Northern Adriatic case study. Limnol. Oceanogr. https://doi.org/10.4319/lo.2012.57.6.0000 (2012).Article 

    Google Scholar 
    Ivančić, I. et al. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions. Prog. Oceanogr. 146, 175–186. https://doi.org/10.1016/j.pocean.2016.07.003 (2016).ADS 
    Article 

    Google Scholar 
    Smodlaka, N. Primary production of the organic matter as an indicator of the eutrophication in the northern Adriatic sea. Sci. Total Environ. 56, 211–220. https://doi.org/10.1016/0048-9697(86)90325-6 (1986).ADS 
    CAS 
    Article 

    Google Scholar 
    Degobbis, D. & Gilmartin, M. Nitrogen, phosphorus, and biogenic silicon budgets for the northern Adriatic Sea. Oceanol. Acta 13, 31–45 (1990).CAS 

    Google Scholar 
    Zavatarelli, M., Raicich, F., Bregant, D., Russo, A. & Artegiani, A. Climatological biogeochemical characteristics of the Adriatic Sea. J. Mar. Syst. 18, 227–263 (1998).Article 

    Google Scholar 
    Socal, G. et al. Hydrological and biogeochemical features of the Northern Adriatic Sea in the period 2003–2006. Mar. Ecol. 29, 449–468. https://doi.org/10.1111/J.1439-0485.2008.00266.X (2008).ADS 
    CAS 
    Article 

    Google Scholar 
    Giani, M. et al. Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuar. Coast. Shelf Sci. 115, 1–13. https://doi.org/10.1016/j.ecss.2012.08.023 (2012).ADS 
    Article 

    Google Scholar 
    Marić, D. et al. Phytoplankton response to climatic and anthropogenic influences in the north-eastern Adriatic during the last four decades. Estuar. Coast. Shelf Sci. 115, 98–112. https://doi.org/10.1016/J.Ecss.2012.02.003 (2012).ADS 
    Article 

    Google Scholar 
    Smodlaka Tanković, M. et al. Insights into the life strategy of the common marine diatom Chaetoceros peruvianus Brightwell. PLoS ONE 13, e0203634 (2018).Article 

    Google Scholar 
    Marić Pfannkuchen, D. et al. The ecology of one cosmopolitan, one newly introduced and one occasionally advected species from the genus Skeletonema in a highly structured ecosystem, the northern Adriatic. Microb. Ecol. 75, 674–687 (2018).Article 

    Google Scholar 
    Benitez-Nelson, C. R. The biogeochemical cycling of phosphorus in marine systems. Earth Sci. Rev. 51, 109–135 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Paytan, A. & McLaughlin, K. The oceanic phosphorus cycle. Chem. Rev. 107, 563–576 (2007).CAS 
    Article 

    Google Scholar 
    Price, N. M. & Morel, F. M. Role of extracellular enzymatic reactions in natural waters. (1990).Hoppe, H.-G. Phosphatase activity in the sea. Hydrobiologia 493, 187–200 (2003).CAS 
    Article 

    Google Scholar 
    Fields, M. W. et al. Sources and resources: Importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl. Microbiol. Biotechnol. 98, 4805–4816 (2014).CAS 
    Article 

    Google Scholar 
    Van Mooy, B. A. S. et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458, 69–72 (2009).ADS 
    Article 

    Google Scholar 
    Gašparović, B. et al. Adaptation of marine plankton to environmental stress by glycolipid accumulation. Mar. Environ. Res. 92, 120–132. https://doi.org/10.1016/J.Marenvres.2013.09.009 (2013).Article 
    PubMed 

    Google Scholar 
    Gašparović, B. et al. Factors influencing particulate lipid production in the East Atlantic Ocean. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 89, 56–67. https://doi.org/10.1016/j.dsr.2014.04.005 (2014).CAS 
    Article 

    Google Scholar 
    Finenko, Z. & Krupatkina-Akinina, D. Effect of inorganic phosphorus on the growth rate of diatoms. Mar. Biol. 26, 193–201 (1974).CAS 
    Article 

    Google Scholar 
    Lombardi, A. & Wangersky, P. Influence of phosphorus and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Mar. Ecol. Prog. Ser. Oldendorf 77, 39–47 (1991).ADS 
    CAS 
    Article 

    Google Scholar 
    Pan, Y., Subba Rao, D. V. & Mann, K. H. Changes in domoic acid production and cellular chemical composition of the toxigenic diatom Pseudo-nitzschia miltiseries under phosphate limitation. J. Phycol. 32, 371–381 (1996).CAS 
    Article 

    Google Scholar 
    Liu, S., Guo, Z., Li, T., Huang, H. & Lin, S. Photosynthetic efficiency, cell volume, and elemental stoichiometric ratios in Thalassirosira weissflogii under phosphorus limitation. Chin. J. Oceanol. Limnol. 29, 1048 (2011).CAS 
    Article 

    Google Scholar 
    Alipanah, L. et al. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum. PLoS ONE 13, e0193335 (2018).Article 

    Google Scholar 
    Guillard, R. R. L. in Culture of Marine Invertebrate Animals (eds W.L. Smith & M.H. Chanley) 29–60 (Plenum Press, New York, USA, 1975).Utermöhl, H. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen des Internationale Vereinigung für theoretische und angewandte Limnologie 9, 1–38 (1958).
    Google Scholar 
    Keller, M. D., Bellows, W. K. & Guillard, R. R. L. Microwave treatment for sterilization of phytoplankton culture media. J. Exp. Mar. Biol. Ecol. 117, 279–283. https://doi.org/10.1016/0022-0981(88)90063-9 (1988).Article 

    Google Scholar 
    Gračan, R., Mladineo, I., Kučinić, M., Lazar, B. & Lacković, G. Gastrointestinal helminth community of loggerhead sea turtle Caretta caretta in the Adriatic Sea. Dis. Aquat. Org. 99, 227–236 (2012).Article 

    Google Scholar 
    Anonymous, X. Proposals for a standardization of diatom terminology and diagnoses. Nova Hedwig. Beih. 53, 323–354 (1975).
    Google Scholar 
    Ross, R. et al. An amended terminology for the siliceous components of the diatom cell. (1979).Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).Article 

    Google Scholar 
    Alverson, A. J. Molecular systematics and the diatom species. Protist 159, 339 (2008).Article 

    Google Scholar 
    Macgillivary, M. & Kaczmarska, I. Survey of the Efficacy of a Short Fragment of the rbcL Gene as a Supplemental DNA Barcode for Diatoms. Vol. 58 (2011).Zimmermann, J., Jahn, R. & Gemeinholzer, B. Barcoding diatoms: Evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org. Divers. Evol. 11, 173–192 (2011).Article 

    Google Scholar 
    Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England) 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).Article 

    Google Scholar 
    Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS 
    Article 

    Google Scholar 
    Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).CAS 
    Article 

    Google Scholar 
    Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS 
    Article 

    Google Scholar 
    Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using R. PLoS ONE 10, e0146021. https://doi.org/10.1371/journal.pone.0146021 (2016).CAS 
    Article 

    Google Scholar 
    Lomas, M. W., Swain, A., Shelton, R. & Ammerman, J. W. Taxonomic variability of phosphorus stress in Sargasso Sea phytoplankton. Limnol. Oceanogr. 49, 2303–2310 (2004).ADS 
    Article 

    Google Scholar 
    Yamaguchi, H., Yamaguchi, M. & Adachi, M. Specific-detection of alkaline phosphatase activity in individual species of marine phytoplankton. Plankon Benthos Res. 1, 2014–2217 (2006).Article 

    Google Scholar 
    Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Snalysis. (Fisheries Resrach Board of Canada, 1972).Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37, 911–917 (1959).CAS 
    Article 

    Google Scholar 
    Gašparović, B., Kazazić, S. P., Cvitešić, A., Penezić, A. & Frka, S. Improved separation and analysis of glycolipids by Iatroscan thin-layer chromatography–flame ionization detection. J. Chromatogr. A 1409, 259–267 (2015).Article 

    Google Scholar 
    Gašparović, B., Kazazić, S. P., Cvitešić, A., Penezić, A. & Frka, S. Corrigendum to “Improved separation and analysis of glycolipids by Iatroscan thin-layer chromatography–flame ionization detection”[J. Chromatogr. A 1409 (2015) 259–267]. (2017).Fonda Umani, S. et al. Inter-annual variations of planktonic food webs in the northern Adriatic Sea. Sci. Total Environ. 353, 218–231. https://doi.org/10.1016/j.scitotenv.2005.09.016 (2005).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2015).Sprouffske, K. & Wagner, A. Growthcurver: An R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 17, 172. https://doi.org/10.1186/s12859-016-1016-7 (2016).Article 

    Google Scholar 
    Schlitzer, R. Ocean Data View. http://odv.awi.de (2018).Smodlaka Tanković, M. et al. Experimental evidence for shaping and bloom inducing effects of decapod larvae of Xantho poressa (Olivi, 1792) on marine phytoplankton. J. Mar. Biol. Assoc. United Kingdom 98, 1881–1887 (2018).Article 

    Google Scholar 
    Dyhrman, S. T. et al. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS ONE 7, e33768 (2012).ADS 
    CAS 
    Article 

    Google Scholar 
    Novak, T. et al. Global warming and oligotrophication lead to increased lipid production in marine phytoplankton. Sci Total Environ 668, 171–183 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Martin, P., Van Mooy, B. A., Heithoff, A. & Dyhrman, S. T. Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana. ISME J. 5, 1057–1060 (2011).CAS 
    Article 

    Google Scholar 
    Abida, H. et al. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol. 167, 118–136 (2015).CAS 
    Article 

    Google Scholar 
    Ivančić, I. & Degobbis, D. Mechanisms of production and fate of organic phosphorus in the northern Adriatic Sea. Mar. Biol. 94, 117–125 (1987).
    Article 

    Google Scholar 
    Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).ADS 
    CAS 
    Article 

    Google Scholar 
    Hutchinson, G. E. The paradox of the plankton. Am Nat 95, 137–145 (1961).Article 

    Google Scholar  More

  • in

    Host-trailing satellite flight behaviour is associated with greater investment in peripheral visual sensory system in miltogrammine flies

    Chapman, R. F. Chemoreception: The significance of receptor numbers. Adv. Insect Physiol. 16, 247–356 (1982).CAS 

    Google Scholar 
    Greenfield, M. D. Signalers and Receivers: Mechanisms and Evolution of Arthropod Communication (Oxford University Press, 2002).
    Google Scholar 
    Wyatt, T. D. Pheromones and Animal Behavior: Chemical Signals and Signatures (Cambridge University Press, 2014).
    Google Scholar 
    Elgar, A. et al. Insect antennal morphology: The evolution of diverse solutions to odorant perception. Yale J. Biol. Med. 91, 457–469 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Dötterl, S. & Vereecken, N. J. The chemical ecology and evolution of bee-flower interactions: a review and perspectives. Can. J. Zool. 88, 668–697 (2010).
    Google Scholar 
    Leonard, A. S., Dornhaus, A. & Papaj, D. R. Why are floral signals complex, an outline of functional hypotheses. In Evolution of Plant-Pollinator Relationships (ed. Patiny, S.) (Cambridge University Press, USA, 2012).
    Google Scholar 
    Colazza, S., Peri, E., Salerno, G. & Conti, E. Host Searching by Egg Parasitoids: Exploitation of Host Chemical Cues. In Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma (eds Consoli, F. L. et al.) 97–147 (Springer, 2010).
    Google Scholar 
    Kelber, A. et al. Light intensity limits the foraging activity in nocturnal and crepuscular bees. Behav. Ecol. 17, 63–72 (2006).
    Google Scholar 
    Polidori, C., Jorge, A. & Ornosa, C. Antennal morphology and sensillar equipment vary with pollen diet specialization in Andrena bees. Arthropod Struct. Develop. 57, 100950 (2020).
    Google Scholar 
    Spaethe, J., Brockmann, A., Halbig, C. & Tautz, J. Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften. 94, 733–739 (2007).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Warrant, E. J., Kelber, A., Wallén, R. & Wcislo, W. The physiological optics of ocelli in nocturnal and diurnal bees and wasps. Arthropod Struct. Dev. 35, 293–305 (2006).PubMed 

    Google Scholar 
    Keesey, I. W. et al. Inverse resource allocation between vision and olfaction across the genus Drosophila. Nat. Commun. 10, 1162. https://doi.org/10.1038/s41467-019-09087-z (2019).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Keil, T. A. Morphology and Development of the Peripheral Olfactory Organs. In Insect Olfaction (ed. Hansson, B. S.) 5–47 (Springer, 1999).
    Google Scholar 
    Stöckl, A. et al. Differential investment in visual and olfactory brain areas reflects behavioural choices in hawk moths. Sci. Rep. 6, 26041. https://doi.org/10.1038/srep26041 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Bulova, S., Purce, K., Khodak, P., Sulger, E. & O’Donnell, S. Into the black and back: The ecology of brain investment in Neotropical army ants (Formicidae: Dorylinae). Sci. Nat. 103, 31. https://doi.org/10.1007/s00114-016-1353-4 (2016).CAS 
    Article 

    Google Scholar 
    Freelance, C. B. et al. The eyes have it: Dim-light activity is associated with the morphology of eyes but not antennae across insect orders. Biol. J. Linn. Soc. 134, 303–315 (2021).
    Google Scholar 
    Barrett, M. et al. Neuroanatomical differentiation associated with alternative reproductive tactics in male arid land bees, Centris pallida and Amegilla dawsoni. J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol. 207, 497–504 (2021).PubMed 

    Google Scholar 
    Newland, P. Physiological properties of afferents from tactile hairs on the hindlegs of the locust. J. Exp. Biol. 155, 487–503 (1991).CAS 
    PubMed 

    Google Scholar 
    Dahake, A., Stöckl, A., Foster, J., Sane, S. P. & Kelber, A. The roles of vision and antennal mechanoreception in hawkmoth flight control. eLife e37606 (2018).Sane, S. P., Dieudonné, A., Willis, M. A. & Daniel, T. L. Antennal mechanosensors mediate flight control in moths. Science 315, 863–866 (2007).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Land, M. F. Compound Eye Structure: Matching Eye to Environment. In Adaptive Mechanisms in the Ecology of Vision (eds Archer, S. et al.) 51–72 (Kluwer Academic Publishers, 1998).
    Google Scholar 
    Land, M. F. Visual acuity in insects. Ann. Rev. Entomol. 42, 147–177 (1997).CAS 

    Google Scholar 
    Land, M. F. & Nilsson, D. E. Animal Eyes (Oxford University Press, 2003).
    Google Scholar 
    Jander, U. & Jander, R. Allometry and resolution of bee eyes (Apoidea). Arthropod Struct. Dev. 30, 179–193 (2002).PubMed 

    Google Scholar 
    Berry, R., van Kleef, J. & Stange, G. The mapping of visual space by dragonfly lateral ocelli. J. Comp. Physiol. A 193, 495–513 (2007).
    Google Scholar 
    Hung, Y. S. & Ibbotson, M. R. Ocellar structure and neural innervation in the honeybee. Front. Neuroanat. https://doi.org/10.3389/fnana.2014.00006 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Greiner, B. Visual adaptations in the night-active wasp Apoica pallens. J. Comp. Neurol. 495, 255–262 (2006).PubMed 

    Google Scholar 
    Klotz, J. H., Reid, B. L. & Gordon, W. C. Variation of ommatidia number as a function of worker size in Camponotus pennsylvanicus (DeGeer) (Hymenoptera, Formicidae). Insect Soc. 39, 233–236 (1992).
    Google Scholar 
    Narendra, A. et al. Caste-specific visual adaptations to distinct daily activity schedules in Australian Myrmecia ants. Proc. R. Soc. B 278, 1141–1149 (2011).PubMed 

    Google Scholar 
    Piwczyński, M. et al. Molecular phylogeny of Miltogramminae (Diptera: Sarcophagidae): Implications for classification, systematics and evolution of larval feeding strategies. Mol. Phyl. Evol. 116, 49–60 (2017).
    Google Scholar 
    Spofford, M. G. & Kurczewski, F. E. Comparative larvipositional behaviors and cleptoparasitic frequencies of Nearctic species of Miltogrammini (Diptera, Sarcophagidae). J. Nat. Hist. 24, 731–755 (1990).
    Google Scholar 
    Alcock, J. The natural history of a miltogrammine fly, Miltogramma rectangularis (Diptera: Sarcophagidae). J. Kansas Entomol. Soc. 73, 208–219 (2000).
    Google Scholar 
    Newcomer, E. J. Notes on the habits of a digger wasp and its inquiline flies. Ann. Entomol. Soc. Am. 23, 552–563 (1930).
    Google Scholar 
    Ristich, S. S. The host relationship of a miltogrammid fly Senotainia trilineata (VDW). Ohio J. Sci. 56, 271–274 (1956).
    Google Scholar 
    Giordani, G. Contributo alla conoscenza della Senotainia tricuspis Meig, dittero sarcofagide, endoparassita dell’ape domestica. Boll. Istit. Entomol. Univ. Bologna 21, 61–84 (1955).
    Google Scholar 
    Povolný, D. & Verves, Yu. G. The flesh-flies of Central Europe (Insecta, Diptera, Sarcophagidae). Spixiana (Supplement) 24, 1–260 (1997).
    Google Scholar 
    Evans, H. E. & O’Neill, K. M. The sand wasps: Natural history and behavior (Harvard University Press, 2007).
    Google Scholar 
    O’Neill, K. M. Solitary Wasps: Natural History and Behavior (Cornell University Press, 2001).
    Google Scholar 
    Pape, T. The Sarcophagidae (Diptera) of Fennoscandia and Denmark. Fauna Entomol. Scand. 19, 1–203 (1987).
    Google Scholar 
    Polidori, C., Ouadragou, M., Gadallah, N. & Andrietti, F. Potential role of evasive flights and nest closures in an African sand wasp, Bembix sp. near capensis Lepeletier 1845 (Hymenoptera Crabronidae), against a parasitic satellite fly. Trop. Zool. 22, 1–14 (2009).
    Google Scholar 
    Polidori, C. Interactions between the social digger wasp, Cerceris rubida, and its brood parasitic flies at a Mediterranean nest aggregation. J. Insect Behav. 30, 86–102 (2017).
    Google Scholar 
    Pape, T. A new species of Hoplacephala Macquart (Diptera: Sarcophagidae) from Namibia, with a discussion of generic monophyly. Zootaxa 1183, 57–68 (2006).
    Google Scholar 
    Haynie, J. L. & Bryant, P. J. Development of the eye-antenna imaginal disc and morphogenesis of the adult head in Drosophila melanogaster. J. Exp. Zool. 237, 293–308 (1986).CAS 
    PubMed 

    Google Scholar 
    Hódar, J. A. The use of regression equations for estimation of arthropod biomass in ecological studies. Acta Oecol. 17, 421–433 (1996).
    Google Scholar 
    Hogue, J. N. & Hawkins, C. P. Morphological variation in adult aquatic insects: Associations with developmental temperature and seasonal growth patterns. J. N. Am. Benthol. Soc. 10, 309–321 (1991).
    Google Scholar 
    Seidl, R. & Kaiser, W. Visual field size, binocular domain and the ommatidial array of the compound eyes in worker honey bees. J. Comp. Physiol. A 143, 17–26 (1981).
    Google Scholar 
    Stuckenberg, B. R. Antennal evolution in the Brachycera (Diptera), with a reassessment of terminology relating to the flagellum. Stud. Dipterol. 6, 33–48 (1999).
    Google Scholar 
    Lemmon, A. R., Emme, S. A. & Lemmon, E. M. Anchored hybrid enrichment for massively high-throughput phylogenomics. Syst. Biol. 61, 727–744 (2012).CAS 
    PubMed 

    Google Scholar 
    Young, A. D. et al. Anchored enrichment dataset for true flies (order Diptera) reveals insights into the phylogeny of flower flies (family Syrphidae). BMC Evol. Biol. 16, 1–13 (2016).
    Google Scholar 
    Gillung, J. P. et al. Anchored phylogenomics unravels the evolution of spider flies (Diptera, Acroceridae) and reveals discordance between nucleotides and amino acids. Mol. Phyl. Evol. 128, 233–245 (2018).CAS 

    Google Scholar 
    Buenaventura, E., Szpila, K., Cassel, B. K., Wiegmann, M. & Pape, T. An anchored hybrid enrichment-based dataset challenges the traditional classification of flesh flies (Diptera: Sarcophagidae). Syst. Entomol. 45, 281–301 (2020).
    Google Scholar 
    Grzywacz, A. et al. Towards a new classification of Muscidae (Diptera): A comparison of hypotheses based on multiple molecular phylogenetic approaches. Syst. Entomol. 46, 508–525 (2021).
    Google Scholar 
    Misof, B. et al. Phylogenomics resolves the timing and pattern of insect evolution. Science 346, 763–767 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Nguyen, L. T., Schmidt, H. A., Von Haeseler, A. & Minh, B. Q. IQ-TREE: A fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol. Biol. Evol. 32, 268–274 (2015).CAS 
    PubMed 

    Google Scholar 
    Yan, L. et al. A phylotranscriptomic framework for flesh fly evolution (Diptera, Calyptratae, Sarcophagidae). Cladistics https://doi.org/10.1111/cla.12449 (2020).Article 
    PubMed 

    Google Scholar 
    Paradis, E. & Schliep, K. ape 5.0: An environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 35, 526–528 (2019).CAS 
    PubMed 

    Google Scholar 
    Maddison, W. P. & Maddison, D. R. Mesquite: A Modular System for Evolutionary analysis. Version 3.61. http://www.mesquiteproject.org (2019).Hansen, T. F. Stabilizing selection and the comparative analysis of adaptation. Evolution 51, 1341–1351 (1997).PubMed 

    Google Scholar 
    Hansen, T. F., Pienaar, J. & Orzack, S. H. A comparative method for studying adaptation to a randomly evolving environment. Evolution 62, 1965–1977 (2008).PubMed 

    Google Scholar 
    Labra, A., Pienaar, J. & Hansen, T. F. Evolution of thermal physiology in Liolaemus lizards: Adaptation, phylogenetic inertia and niche tracking. Am. Nat. 174, 204–220 (2009).PubMed 

    Google Scholar 
    Hansen, T. F. Use and Misuse of Comparative Methods in the Study of Adaptation. In Modern Phylogenetic Comparative Methods and Their Application in Evolutionary Biology: Concepts and Practice (ed. Garamszegi, L. Z.) 351–379 (Springer, 2014).
    Google Scholar 
    Greiner, B., Ribi, W. A. & Warrant, E. J. Retinal and optical adaptations for nocturnal vision in the halictid bee Megalopta genalis. Cell Tissue Res. 316, 377–390 (2004).PubMed 

    Google Scholar 
    Warrant, E. J. et al. Nocturnal vision and landmark orientation in a tropical halictid bee. Curr. Biol. 14, 1309–1318 (2004).CAS 
    PubMed 

    Google Scholar 
    Somanathan, H., Kelber, A., Wallén, R., Borges, R. M. & Warrant, E. J. Visual ecology of Indian carpenter bees II: Visual adaptations to nocturnal and diurnal lifestyles. J. Comp. Physiol. A 195, 571–583 (2009).
    Google Scholar 
    Menzi, U. Visual adaptation in nocturnal and diurnal ants. J. Comp. Physiol. 160, 11–21 (1987).
    Google Scholar 
    Moser, J. C. et al. Eye size and behaviour of day and night-flying leafcutting ant alates. J. Zool. 264, 69–75 (2004).
    Google Scholar 
    Greiner, B. et al. Eye structure correlates with distinct foraging-bout timing in primitive ants. Curr. Biol. 17, R879–R880 (2007).CAS 
    PubMed 

    Google Scholar 
    Warrant, E. J. Seeing in the dark: Vision and visual behaviour in nocturnal bees and wasps. J. Exp. Biol. 211, 1737–1746 (2008).PubMed 

    Google Scholar 
    Leys, R. & Hogendoorn, K. Correlated evolution of mating behaviour and morphology in large carpenter bees (Xylocopa). Apidologie 39, 119–132 (2008).
    Google Scholar 
    Snyder, A. W. Physics of Vision in Compound Eyes. In Handbook of Sensory Physiology: Vision in Invertebrates (ed. Autrum, H. J.) (Springer, 1979).
    Google Scholar 
    McCorquodale, D. B. Digger wasp provisioning flights as a defense against a nest parasite, Senotainia trilineata. Can. J. Zool. 64, 1620–1627 (1986).
    Google Scholar 
    Gilbert, C. & Strausfeld, N. J. The functional organization of male-specific visual neurons in flies. J. Comp. Physiol. A 169, 395–411 (1991).CAS 
    PubMed 

    Google Scholar 
    Trischler, C., Boeddeker, N. & Egelhaaf, M. Characterisation of a blowfly male-specific neuron using behaviourally generated visual stimuli. J. Comp. Physiol. A 193, 559–572 (2007).
    Google Scholar 
    Taylor, G. J. et al. The dual function of orchidbee ocelli as revealed by X-Ray microtomography. Curr. Biol. 26, 1319–1324 (2016).CAS 
    PubMed 

    Google Scholar 
    Hengstenberg, R. Multisensory Control in Insect Oculomotor Systems. In Visual Motion and Its Role in the Stabilization of Gaze (eds Miles, F. A. & Wallmann, J.) (Elsevier, 1993).
    Google Scholar 
    Schuppe, H. & Hengstenberg, R. Optical properties of the ocelli of Calliphora erythrocephala and their role in the dorsal light response. J. Comp. Physiol. A 173, 143–149 (1993).
    Google Scholar 
    Crosskey, R. W. & Lane, R. P. Introduction to Diptera. In Medical Insects and Arachnids (eds Lane, R. P. & Crosskey, R. W.) (Chapman and Hall, 1993).
    Google Scholar 
    Abouzied, E. M. Antennal and maxillary palp sensillae of male and female Liosarcophaga babiyari Lehrer (Diptera: Sarcophagidae). Bull. Ent. Soc. Egypt 85, 29–48 (2008).
    Google Scholar 
    Wasserman, S. L. & Itagaki, H. The olfactory responses of the antenna and maxillary palp of the fleshfly, Neobellieria bullata (Diptera: Sarcophagidae), and their sensitivity to blockage of nitric oxide synthase. J. Insect Physiol. 49, 271–280 (2003).CAS 
    PubMed 

    Google Scholar 
    Khedre, A. M. Olfactory sensilla on the antennae and maxillary palps of the fleshfly Wohlfahrtia nuba (Wied.) (Diptera: Sarcophagidae). J. Egypt Ger. Soc. Zool. 24, 171–193 (1997).
    Google Scholar 
    Pezzi, M. et al. Ultrastructural morphology of the antenna and maxillary palp of Sarcophaga tibialis (Diptera: Sarcophagidae). J. Med. Entomol. 53, 807–814 (2016).CAS 
    PubMed 

    Google Scholar 
    Smallegange, R. C., Kelling, F. J. & Den Otter, C. J. Types and numbers of sensilla on antennae and maxillary palps of small and large houseflies, Musca domestica (Diptera, Muscidae). Microsc. Res. Tech. 71, 880–886 (2008).PubMed 

    Google Scholar 
    Zhang, D., Wang, Q. K., Yang, Y. Z., Chen, Y. O. & Li, K. Sensory organs of the antenna of two Fannia species (Diptera: Fanniidae). Parasitol. Res. 112, 2177–2185 (2013).CAS 
    PubMed 

    Google Scholar 
    Been, T. H., Schomaker, C. H. & Thomas, G. Olfactory sensilla on the antenna and maxillary palp of the sheep head fly, Hydrotaea irritans (Fallen) (Diptera: Muscidae). Int. J. Insect Morphol. Embryol. 17, 121–133 (1998).
    Google Scholar 
    Zacharuk, R. Y. & Antennal, S. Comparative Insect Physiology, Biochemistry and Pharmacology. In Pergamon Press (eds Kerkut, G. A. & Gilbert, L. I.) (1985).
    Google Scholar 
    Sukontason, K. et al. Antennal sensilla of some forensically important flies in families Calliphoridae Sarcophagidae and Muscidae. Micron 35, 671–679 (2004).PubMed 

    Google Scholar 
    Mamiya, A., Straw, A. D., Tómasson, E. & Dickinson, M. H. Active and passive antennal movements during visually guided steering in flying Drosophila. J Neurosci 31, 6900–6914 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuller, S. B., Straw, A. D., Peek, M. Y., Murray, R. M. & Dickinson, M. H. Flying Drosophila stabilize their vision-based velocity controller by sensing wind with their antennae. Proc. Nat. Acad. Sci. 111, E1182–E1191 (2014).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Nalbach, G. Extremely non-orthogonal axes in a sense organ for rotation: Behavioural analysis of the dipteran haltere system. Neuroscience 61, 149–163 (1994).CAS 
    PubMed 

    Google Scholar 
    Rozanski, A. N. et al. Differential investment in visual and olfactory brain regions is linked to the sensory needs of a wasp social parasite and its host. J. Comp. Neurol. https://doi.org/10.1002/cne.25242 (2021).Article 
    PubMed 

    Google Scholar  More

  • in

    Tropical forest restoration under future climate change

    Tropical forest restoration areaTo determine the geographic distribution of land available for tropical forest restoration, we used a widely applied global forest restoration map2. This dataset limits potential restoration area to regions that are biogeophysically suitable for forest, and excludes croplands. To define the tropics, we masked the potential restoration map with the following three ecoregions from the Ecoregions2017 vegetation map34: ‘Tropical and Subtropical Moist Broadleaf Forests’, ‘Tropical and Subtropical Dry Broadleaf Forests’, and ‘Tropical and Subtropical Coniferous Forests’. The resulting restoration mask includes all tropical and subtropical forest ecoregions with some that are outside the tropical latitudes, but excludes wetlands and high mountain areas (Extended Data Fig. 4). The restoration mask was converted from a presence–absence raster at its native ~350 m resolution to a 0.5° geographical grid by aggregating to the fraction of each 0.5° grid cell available for restoration. Any uncertainties in the allocation of restorable area, distinguishing crop and pasture, and forest to non-forest classification from the original forest restoration map were also implicitly included in our restoration extent. While the resulting restoration area is relatively small, its spatial distribution is representative for most of the humid tropics.To prioritize for carbon uptake capacity, we selected all grid cells with restoration area greater than 1 ha and ranked these by carbon storage density (above ground and below ground; g m−2) at 2100 under the default scenario. We then selected the top n grid cells with greatest carbon density until cumulatively 64 Mha of restored area was reached. Similarly, for cost we calculated the restoration cost for each grid cell following ref. 27 and sorted the grid cells by their cost, beginning with the lowest value, until 64 Mha were reached. To consider the combined impact of carbon uptake and restoration costs, we divided our restoration cost layer by the total carbon uptake per grid cell from restoration and ranked the cost per carbon uptake from cheapest to most expensive, selecting the n grid cells with the lowest values until 64 Mha were reached. We then used the selected grid cells to mask carbon uptake under the various climate change and CO2 fertilization scenarios. To factor in climate change in the prioritization process, we used the same restoration cost layer but used the carbon density and total carbon uptake layers with climate change impacts in CO22014 for the year 2100.Vegetation modelWe used the LPJ-LMfire DGVM19, a version of the Lund-Potsdam-Jena DGVM (LPJ)35. LPJ-LMfire is driven by gridded fields of climate, soil texture and topography at 0.5° resolution, and with a time series of atmospheric CO2 concentrations (see Supplementary Information). To simulate land use, LPJ-LMfire separates grid cells into fractional tiles of ‘unmanaged’ land that has never been under land use, ‘managed’ land, and areas ‘recovering’ from land use36. Restoration removes land from the ‘managed’ tile and transfers it to the ‘recovering’ tile; land is never reallocated to the ‘unmanaged’ tile. The tiles are treated differently with respect to wildfire: on the ‘unmanaged’ and ‘recovering’ tiles, lightning-ignited wildfires are not suppressed, while fire is excluded from ‘managed’ tiles. For our analysis of total carbon (above and below ground), we only used the ‘recovering’ tile.Climate dataClimate forcing used to drive LPJ-LMfire comes from the output of 13 GCMs in simulations produced for the CMIP6 Supplementary Table 2 (refs. 37,38). For each GCM, we obtained simulations for the historical period (1850–2014) and four future SSPs (SSP1-26, SSP2-45, SSP3-70 and SSP5-85 covering 2015–2100). We used only GCMs that archived all seven climate variables needed to run LPJ-LMfire: 2 m temperature (tas, K), precipitation (pr, kg m−2 s−1), convective precipitation (prc, kg m−2 s−1), cloud cover (clt, %), minimum and maximum daily temperature (tmin, tmax, K), and 10 m surface wind speed (sfcWind, m s−1) (Supplementary Fig. 2). For each model, we concatenated the historical simulation with a future scenario, calculated anomalies with respect to 1971–1990 and added those to observed 30 year climatologies to create bias-corrected monthly climate time series covering 1850–2100 (see Supplementary Information). Where multiple ensemble members were available from a GCM, we chose the first simulation.Simulation protocolWe drove LPJ-LMfire with the GCM simulations described in the previous section, and the same atmospheric CO2 concentrations and land use boundary conditions as those used in the CMIP6 simulations. All forcings cover the historical period (1850–2014) and the individual future SSPs (2015–2100). Each LPJ-LMfire simulation was initialized for 1,020 years with 1850 atmospheric CO2 and land use, and the 1850s climatology of each CMIP6 GCM. This was followed by simulations with transient climate from 1850 to 2100 for each CMIP6 GCM under each of the four SSPs. For each the 13 CMIP6 GCMs running each of the SSP scenarios, we conducted two CO2 experiments (CO22014 and CO2free) and two fire experiments. In total, we ran 221 vegetation model simulations covering the range of future climate, CO2 and fire scenarios.Atmospheric CO2 in these simulations either followed the CMIP6 historical and SSP trajectory for the entire 1850–2100 run (CO2free), or followed the historical CMIP6 trajectory until 2014, and was then fixed at 2014 concentrations for the remainder of the simulation (CO22014). This allowed us to test the vegetation response to future climate change in the absence of additional CO2 fertilization of photosynthesis. Our simulations ended with the standard SSP projections in 2100, 80 years after restoration begins. We therefore could not assess the fate of restored carbon beyond that point. On the basis of the trends in the multi-model mean carbon uptake rates, we estimated that only under severe climate change will carbon storage be reduced shortly after 2100 in CO22014.In control simulations, land use followed the historical CMIP6 trajectory until 2014, after which it was fixed under 2014 conditions until 2100. Land use after 2014 was fixed at 2014 levels because it is the last year with common land use between all scenarios, which allowed us to identify future climate change impacts on restoration permanence and avoid influences from land abandonment and expansion prescribed in the different SSP scenarios.In the restoration experiments, land use also followed the historical CMIP6 trajectory until 2014, but then diverged: cropland extent remained at 2014 levels until 2100, while pasture (or non-cropland land use) remained constant from 2014 to 2020 and was then linearly reduced by the restoration area from 2020 to 2030. From 2030, land use remained constant at that lower level until 2100. The amount of restoration in a grid cell was limited by the pasture area, that is, once all of the available pasture area had been restored, no additional restoration took place. Because it is highly unlikely to be practical to restore the entire target area of tropical forest at once, we linearly increased the restoration area from 2020 to 2030, which caused an expansion-driven increase in carbon uptake over the 11 year period (Extended Data Fig. 1). This means that two factors controlled carbon uptake over time in our experimental design: first the expansion of the restoration area, accounting for approximately 19.7 Pg C, and second the long-term effect of carbon accumulation (Extended Data Fig. 5).Primary climate change impacts, such as drought and heat stress that reduce carbon uptake, were implicitly included in the climate forcing data, while secondary climate change impacts from wildfire were simulated by LPJ-LMfire on the basis of climate. To quantify the contribution of wildfire on the carbon storage from restoration, we repeated the simulations described above with fires turned off in LPJ-LMfire.Restoration opportunity indexWe created a restoration opportunity index to evaluate the suitability of locations for restoration on the basis of the ability for restoration to result in net carbon uptake over 2020–2100 and to store this carbon without episodes of major loss. For each of the 13 realizations of the four SSPs in the CO22014 experiment, we identified all restoration grid cells (1) that had a net carbon uptake by 2100 relative to 2030, and (2) where temporal reductions in total carbon storage over 2030–2100 were More

  • in

    Photosynthetic performance of symbiont-bearing foraminifera Heterostegina depressa affected by sunscreens

    Pawlowski, J. et al. The evolution of early Foraminifera. Proc. Natl. Acad. Sci. 100(20), 11494–11498 (2003).ADS 
    CAS 
    Article 

    Google Scholar 
    Gupta, S. Modern Foraminifera (Springer-Verlag, 1999).
    Google Scholar 
    Narayan, G. R. et al. Response of large benthic foraminifera to climate and local changes: Implications for future carbonate production. Sedimentology 2, 2 (2021).
    Google Scholar 
    Doo, S. S., Fujita, K., Byrne, M. & Uthicke, S. Fate of calcifying tropical symbiont-bearing large benthic foraminifera: Living sands in a changing ocean. Biol. Bull. 226(3), 169–186 (2014).CAS 
    Article 

    Google Scholar 
    Fujita, K. et al. Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers. Biogeosciences 8(8), 2089–2098 (2011).ADS 
    Article 

    Google Scholar 
    Raja, R., Saraswati, P. K., Rogers, K. & Iwao, K. Magnesium and strontium compositions of recent symbiont-bearing benthic foraminifera. Mar. Micropaleontol. 58(1), 31–44 (2005).ADS 
    Article 

    Google Scholar 
    Murray, J. Ecological experiments on Foraminiferida. J. Mar. Biol. Assoc. U.K. 43(3), 621–642 (1963).Article 

    Google Scholar 
    Wukovits, J., Enge, A. J., Wanek, W., Watzka, M. & Heinz, P. Increased temperature causes different carbon and nitrogen processing patterns in two common intertidal foraminifera. Biogeosciences 14, 2815–2829 (2017).ADS 
    CAS 
    Article 

    Google Scholar 
    Lintner, M., Biedrawa, B., Wukovits, J., Wanek, W., and Heinz, P. Salinity-depending algae uptake and subsequent carbon and nitrogen metabolisms of two intertidal foraminifera (Ammonia tepida and Haynesina germanica). BG, 17, 3723–3732 (2020).Hoegh-Guldberg, O. & Bruno, J. F. The impact of climate change on the world’s marine ecosystems. Science 328, 1523–1528 (2010).ADS 
    CAS 
    Article 

    Google Scholar 
    Occhipinti-Ambrogi, A. Global change and marine communities: Alien species and climate change. Mar. Pollut. Bull. 55, 342–352 (2007).CAS 
    Article 

    Google Scholar 
    Hallock, P. Symbiont-bearing foraminifera. In Modern Foraminifera 123–139 (Springer, 1999).Chapter 

    Google Scholar 
    Renema, W. Large benthic foraminifera in low-light environments. In Mesophotic coral ecosystems 553–561 (Springer, 2019).Chapter 

    Google Scholar 
    Hallock, P. & Peebles, M. W. Foraminifera with chlorophyte endosymbionts—habitats of 6 species in the Florida Keys. Mar. Micropaleontol. 20, 277–292 (1993).ADS 
    Article 

    Google Scholar 
    Stulpinaite, R., Hyams-Kaphzan, O. & Langer, M. R. Alien and cryptogenic Foraminifera in the Mediterranean Sea: A revision of taxa as part of the EU 2020 marine strategy framework directive. Mediterr. Mar. Sci. 21(3), 719–758 (2020).
    Google Scholar 
    McCoshum, S., Schlarb, M. A. & Baum, A. K. Direct and indirect effects of sunscreen exposure for reef biota. Rev. Hydrobiology 776, 139–146 (2016).CAS 
    Article 

    Google Scholar 
    Singh, S., Jha, B., Tiwary, N. K. & Agrawal, N. K. Does using a high sun protection factor sunscreen on face, along with physical photoprotection advice, in patients with melasma, change serum vitamin D concentration in Indian conditions? A pragmatic pretest-posttest study. Indian J. Dermatol. Venereol. Leprol. 85, 282–286 (2019).Article 

    Google Scholar 
    Harjung, A. et al. High anthropogenic organic matter inputs during a festival increase river heterotrophy and refractory carbon load. Environ. Sci. Technol. 54(16), 10039–10048. https://doi.org/10.1021/acs.est.0c02259 (2020).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rai, R., Shanmuga, S. C. & Srinivas, C. Update on photoprotection. Indian J. Dermatol. 57, 335–342 (2012).Article 

    Google Scholar 
    Schiavo, S., Oliviero, M., Phillipe, A. & Manzo, S. Nanoparticles based sunscreens provoke adverse effects on marine microalgae Dunaliella tertiolecta. Environ. Sci. Nano. 12, 2 (2018).
    Google Scholar 
    Parkhill, J., Mailett, G. & Cullen, J. Fluorescence-based maximal quantim yield fpr PSII as a diagnostic of nutrient stress. J. Phycol. 37, 517–529 (2001).Article 

    Google Scholar 
    Butler, W. L. Energy distribution in the photochemical apparatus of photosynthesis. Ann. Rev. Plant. Physiol. 29, 345–378 (1978).CAS 
    Article 

    Google Scholar 
    Kroon, B., Prezelin, B. B. & Schonfield, O. Chromatic regulation of quantum yields for photosystem II charge separation, oxygen evolution and carbon fixation in Heterocapsa pygmaea. J. Phycol 29, 453–462 (1993).CAS 
    Article 

    Google Scholar 
    Casas-Beltran, D. A., Hernandez-Pedraza, M. & Alvarado-Flores, J. Estimation of the discharge of sunscreens in aquatic environments of the Mexican caribbean. Environments 7, 15 (2020).Article 

    Google Scholar 
    Danovaro, R. et al. Sunscreens cause coral bleaching by promoting viral infections. Environ. Health Perspect. 116, 441–447 (2008).CAS 
    Article 

    Google Scholar 
    Brausch, J. M. & Rand, G. M. A review of personal care products in the aquatic environment: Environmental concentrations and toxicity. Chemosphere 82, 1518–1532 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Balmer, M. E., Buser, H. R., Muller, M. D. & Poiger, T. Occurrence of the organic UV-filter compounds BP-3, 4-MBC, EHMC, and OC in wastewater, surface waters, and in fish from Swiss lakes. Environ. Sci. Technol. 39, 953–962 (2004).ADS 
    Article 

    Google Scholar 
    Godejohann, M., Berset, J. & Muff, D. Non-targeted analysis of wastewater treatment plant effluents by high-performance liquid chromatography–time slice-solid phase extraction-nuclear magnetic resonance/time-of-flight-mass spectrometry. J. Chromatogr. A 1218, 9202–9209 (2011).CAS 
    Article 

    Google Scholar 
    Hallock, P., Lidz, B. H., Cockey-Burkhard, E. M. & Donnelly, K. B. Foraminifera as bioindicators in coral reef assessment and monitoring: The FORAM index. Environ. Monit. Assess. 81(1), 221–238 (2003).Article 

    Google Scholar 
    Sharma, V. K. Aggregation and toxicity of titanium dioxide nanoparticles in aquatic environment—A Review. J. Environ. Sci. Health Part A. 44(14), 1485–2495 (2009).CAS 
    Article 

    Google Scholar 
    Hutchison, J. E. Greener nanoscience: A proactive approach to advancing applications and reducing implications of nanotechnology. ACSNano. 2(3), 395–402 (2008).CAS 

    Google Scholar 
    Soto, K., Garza, K. M. & Murr, L. E. Cytosis effects of aggregated nanomaterials. Acta Biomater. 3, 351–358 (2007).CAS 
    Article 

    Google Scholar 
    Deer, W. A., Howie, R. A. & Zussmann, J. An Introduction to the Rock Forming Minerals (Longman Group Limited, 1992).
    Google Scholar 
    Kaegi, R. et al. Synthetic TiO2 nanoparticle emission from exterior facades into the aquatic environment. Environ. Pollut. 156, 233–239 (2008).CAS 
    Article 

    Google Scholar 
    Mio, A. J. et al. Zinc oxide–engineered nanoparticles: Dissolution and toxicity to marine phytoplankton. Environ. Toxicol. Chem. 29(12), 2814–2822 (2010).Article 

    Google Scholar 
    Herzog, B. et al. In vivo and in vitro assessment of UVA protection by sunscreen formulations containing either butyl methoxy dibenzoyl methane, methylene bis-benzotriazolyl tetramethylbutylphenol, or microfine ZnO. Int. J. Cosmet. Sci. 24, 170–185 (2002).CAS 
    Article 

    Google Scholar 
    Dhas, S. P., Shiny, P. J., Mukherjee, A. & Chandrasekran, N. Toxic behavior of silver and zinc oxide nanoparticles on environmental microorganisms. J. Basic Microbiol. 53, 1–12 (2013).Article 

    Google Scholar 
    Lee, J.J. Algal symbiosis in larger foraminifera. Symbiosis. (2006). More