More stories

  • in

    Forest fragmentation impacts the seasonality of Amazonian evergreen canopies

    Peñuelas, J., Rutishauser, T. & Filella, I. Ecology. Phenology feedbacks on climate change. Science 324, 887–888 (2009).PubMed 

    Google Scholar 
    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. Meteorol. 169, 156–173 (2013).
    Google Scholar 
    Wu, J. et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science 351, 972–976 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wright, J. S. et al. Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. USA 114, 8481–8486 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl. Acad. Sci. USA 111, 16041–16046 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Girardin, C. A. J. et al. Seasonal trends of Amazonian rainforest phenology, net primary productivity, and carbon allocation. Glob. Biogeochem. Cycles 30, 700–715 (2016).ADS 
    CAS 

    Google Scholar 
    Maeda, E. E. et al. Consistency of vegetation index seasonality across the Amazon rainforest. Int. J. Appl. Earth Obs. Geoinf. 52, 42–53 (2016).ADS 

    Google Scholar 
    Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016). vol.CAS 
    PubMed 

    Google Scholar 
    Chen, X. et al. Vapor pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across amazonian evergreen broadleaved forest. Global Biogeochem. Cycles https://doi.org/10.13140/2.1.5019.5520 (2021).Hashimoto, H. et al. New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nat. Commun. 12, 684 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brando, P. M. et al. Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proc. Natl. Acad. Sci. USA 107, 14685–14690 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, J. et al. Seasonality of Central Amazon forest leaf flush using tower-mounted RGB camera. In AGU Fall Meeting https://doi.org/10.13140/2.1.5019.5520 (2014).Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. https://doi.org/10.1029/2005GL025583 (2006).Restrepo-Coupe, N. et al. What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric. Meteorol. 182-183, 128–144 (2013).
    Google Scholar 
    Manoli, G., Ivanov, V. Y. & Fatichi, S. Dry-season greening and water stress in Amazonia: the role of modeling leaf phenology. J. Geophys. Res. Biogeosci. 123, 1909–1926 (2018).
    Google Scholar 
    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).ADS 
    CAS 

    Google Scholar 
    Lopes, A. P. et al. Leaf flush drives dry season green-up of the Central Amazon. Remote Sens. Environ. 182, 90–98 (2016).ADS 

    Google Scholar 
    Smith, M. N. et al. Seasonal and drought-related changes in leaf area profiles depend on height and light environment in an Amazon forest. N. Phytol. 222, 1284–1297 (2019).
    Google Scholar 
    Mitchell Aide, T. Herbivory as a selective agent on the timing of leaf production in a tropical understory community. Nature 336, 574–575 (1988).
    Google Scholar 
    Myneni, R. B. et al. Large seasonal swings in leaf area of Amazon rainforests. Proc. Natl. Acad. Sci. USA 104, 4820–4823 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, J. et al. Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales. Glob. Chang. Biol. 23, 1240–1257 (2017).ADS 
    PubMed 

    Google Scholar 
    Nunes, M. H. et al. Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Niño. Nat. Commun. 12, 1526 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vasconcelos, H. L. & Luizão, F. J. Litter production and litter nutrient concentrations in a fragmented Amazonian landscape. Ecol. Appl. 14, 884–892 (2004).
    Google Scholar 
    Laurance, W. F. et al. Rain forest fragmentation and the proliferation of successional trees. Ecology 87, 469–482 (2006).PubMed 

    Google Scholar 
    Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).
    Google Scholar 
    Ewers, R. M. & Banks-Leite, C. Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS One 8, e58093 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chave, J. et al. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7, 43–55 (2010).ADS 

    Google Scholar 
    Barros, F. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. N. Phytol. 223, 1253–1266 (2019).CAS 

    Google Scholar 
    Brum, M. et al. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. J. Ecol. 107, 318–333 (2019).
    Google Scholar 
    Signori-Müller, C. et al. Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nat. Commun. 12, 2310 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coelho de Souza, F. et al. Evolutionary heritage influences Amazon tree ecology. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2016.1587 (2016).Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6, eaax8574 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morton, D. C. et al. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506, 221–224 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Draper, F. C. et al. Amazon tree dominance across forest strata. Nat. Ecol. Evol. 5, 757–767 (2020).
    Google Scholar 
    Calders, K. et al. Monitoring spring phenology with high temporal resolution terrestrial LiDAR measurements. Agric. Meteorol. 203, 158–168 (2015).
    Google Scholar 
    Disney, M. Terrestrial LiDAR: a three-dimensional revolution in how we look at trees. N. Phytol. 222, 1736–1741 (2019).
    Google Scholar 
    Tang, H. & Dubayah, R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl. Acad. Sci. USA 114, 2640–2644 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laurance, W. F. et al. An Amazonian rainforest and its fragments as a laboratory of global change. Biol. Rev. Camb. Philos. Soc. 93, 223–247 (2018).PubMed 

    Google Scholar 
    Correction for Tang and Dubayah, Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl. Acad. Sci. USA 116, 9137 (2019).Ma, L. et al. Characterizing the three-dimensional spatiotemporal variation of forest photosynthetically active radiation using terrestrial laser scanning data. Agric. Meteorol. 301-302, 108346 (2021).
    Google Scholar 
    Laurans, M., Hérault, B., Vieilledent, G. & Vincent, G. Vertical stratification reduces competition for light in dense tropical forests. Ecol. Manag. 329, 79–88 (2014).
    Google Scholar 
    Garcia, M. N. et al. Importance of hydraulic strategy trade-offs in structuring response of canopy trees to extreme drought in Central Amazon. Oecologia https://doi.org/10.1007/s00442-021-04924-9 (2021).Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).ADS 
    CAS 

    Google Scholar 
    Brando, P. Tree height matters. Nat. Geosci. 11, 390–391 (2018).ADS 
    CAS 

    Google Scholar 
    Stark, S. C. et al. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecol. Lett. 15, 1406–1414 (2012).PubMed 

    Google Scholar 
    Pyle, E. H. et al. Dynamics of carbon, biomass, and structure in two Amazonian forests. J. Geophys. Res. https://doi.org/10.1029/2007JG000592 (2008).Gorgens, E. B. et al. Resource availability and disturbance shape maximum tree height across the Amazon. Glob. Chang. Biol. 27, 177–189 (2021).ADS 
    PubMed 

    Google Scholar 
    Oliveira, R. S. et al. Linking plant hydraulics and the fast-slow continuum to understand resilience to drought in tropical ecosystems. N. Phytol. 230, 904–923 (2021).
    Google Scholar 
    Falster, D. S. & Westoby, M. Leaf size and angle vary widely across species: what consequences for light interception? N. Phytol. 158, 509–525 (2003).
    Google Scholar 
    Chavana-Bryant, C. et al. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements. N. Phytol. 214, 1049–1063 (2017).CAS 

    Google Scholar 
    Brando, P. M. et al. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1839–1848 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, D., Momo Takoudjou, S. & Casella, E. LeWoS: a universal leaf-wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR. Methods Ecol. Evol. 11, 376–389 (2020).
    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).CAS 
    PubMed 

    Google Scholar 
    Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Chang. 9, 384–388 (2019).ADS 

    Google Scholar 
    Lohbeck, M. et al. Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94, 1211–1216 (2013).PubMed 

    Google Scholar 
    Lambers, H. & Oliveira, R. S. in Plant Physiological Ecology (eds. Lambers, H. & Oliveira, R. S.) 385–449 (Springer International Publishing, 2019).Reich, P. B. Key canopy traits drive forest productivity. Proc. Biol. Sci. 279, 2128–2134 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Albiero-Júnior, A., Venegas-González, A., Camargo, J. L. C., Roig, F. A. & Tomazello-Filho, M. Amazon forest fragmentation and edge effects temporarily favored understory and midstory tree growth. Trees https://doi.org/10.1007/s00468-021-02172-1 (2021).Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    San-José, M., Werden, L., Peterson, C. J., Oviedo-Brenes, F. & Zahawi, R. A. Large tree mortality leads to major aboveground biomass decline in a tropical forest reserve. Oecologia https://doi.org/10.1007/s00442-021-05048-w (2021).Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Chang. 11, 442–448 (2021).Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl. Acad. Sci. USA 112, 13172–13177 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Silva Junior, C. H. L. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3101–3112 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Park, J. Y. et al. Quantifying leaf phenology of individual trees and species in a tropical forest using unmanned aerial vehicle (UAV) images. Remote Sens. 11, 1534 (2019).ADS 

    Google Scholar 
    Dubayah, R. et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography. Egypt. J. Remote Sens. Space Sci. 1, 100002 (2020).
    Google Scholar 
    Coomes, D. A. et al. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sens. Environ. 194, 77–88 (2017).ADS 

    Google Scholar 
    Calders, K. et al. Terrestrial laser scanning in forest ecology: expanding the horizon. Remote Sens. Environ. 251, 112102 (2020).ADS 

    Google Scholar 
    Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl. Acad. Sci. USA 113, 10759–10768 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Almeida, D. R. A. et al. Persistent effects of fragmentation on tropical rainforest canopy structure after 20 yr of isolation. Ecol. Appl. 29, e01952 (2019).PubMed 

    Google Scholar 
    Wilkes, P. et al. Data acquisition considerations for terrestrial laser scanning of forest plots. Remote Sens. Environ. 196, 140–153 (2017).ADS 

    Google Scholar 
    Vincent, G. et al. Mapping plant area index of tropical evergreen forest by airborne laser scanning. A cross-validation study using LAI2200 optical sensor. Remote Sens. Environ. 198, 254–266 (2017).ADS 

    Google Scholar 
    Pimont, F., Allard, D., Soma, M. & Dupuy, J.-L. Estimators and confidence intervals for plant area density at voxel scale with T-LiDAR. Remote Sens. Environ. 215, 343–370 (2018).ADS 

    Google Scholar 
    Vincent, G., Pimont, F. & Verley, P. A note on PAD/LAD Estimators Implemented in AMAPVox 1.7.https://doi.org/10.23708/1AJNMP (2021)Ross, J. The radiation regime and architecture of plant stands (Springer, 1981).Béland, M., Widlowski, J.-L., Fournier, R. A., Côté, J.-F. & Verstraete, M. M. Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurements. Agric. Meteorol. 151, 1252–1266 (2011).
    Google Scholar 
    Almeida, D. R. Ade et al. Optimizing the remote detection of tropical rainforest structure with airborne LiDAR: leaf area profile sensitivity to pulse density and spatial sampling. Remote Sens. 11, 92 (2019).ADS 

    Google Scholar 
    Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Росс, Ю. & Ross, J. The radiation regime and architecture of plant stands (Springer Science & Business Media, 1981).Berry, Z. C. & Goldsmith, G. R. Diffuse light and wetting differentially affect tropical tree leaf photosynthesis. N. Phytol. 225, 143–153 (2020).CAS 

    Google Scholar 
    Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    USGS. LP DAAC—MCD18A1. https://lpdaac.usgs.gov/products/mcd18a1v006/ (2008).Maeda, E. E. et al. Large-scale commodity agriculture exacerbates the climatic impacts of Amazonian deforestation. Proc. Natl. Acad. Sci. USA 118, e2023787118 (2021).Engelbrecht, B. M. J. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wild, J. et al. Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agric. Meteorol. 268, 40–47 (2019).
    Google Scholar 
    Camargo, J. L. C. & Kapos, V. Complex edge effects on oil moisture and microclimate in Central Amazonian forest. J. Trop. Ecol. 11, 205–221 (1995).
    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).Malhi, Y., Phillips, O. L. & Laurance, W. F. Forest-climate interactions in fragmented tropical landscapes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 345–352 (2004).
    Google Scholar  More

  • in

    Automating insect monitoring using unsupervised near-infrared sensors

    Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth? (2017). https://doi.org/10.1146/annurev-ento-020117.Scudder, G. Insect Biodiversity: Science and Society—Google Books (Wiley-Blackwell, 2009).
    Google Scholar 
    Lami, F., Boscutti, F., Masin, R., Sigura, M. & Marini, L. Seed predation intensity and stability in agro-ecosystems: Role of predator diversity and soil disturbance. Agric. Ecosyst. Environ. 288, 106720 (2020).
    Google Scholar 
    Gallai, N., Salles, J. M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).
    Google Scholar 
    Consoli, F. L., Parra, J. R. P. & Zucchi, R. A. Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma (Springer Science, 2010).
    Google Scholar 
    Sánchez-Guillén, R. A., Córdoba-Aguilar, A., Hansson, B., Ott, J. & Wellenreuther, M. Evolutionary consequences of climate-induced range shifts in insects. Biol. Rev. 91, 1050–1064 (2016).PubMed 

    Google Scholar 
    Zalucki, M. P. et al. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): Just how long is a piece of string?. J. Econ. Entomol. 105, 1115–1129 (2012).PubMed 

    Google Scholar 
    Dornelas, M. & Daskalova, G. N. Nuanced changes in insect abundance. Science (80-). 368, 368–369 (2020).CAS 
    ADS 

    Google Scholar 
    Didham, R. K. et al. Interpreting insect declines: Seven challenges and a way forward. Insect Conserv. Divers. 13, 103–114 (2020).
    Google Scholar 
    Greenwood, B. M., Bojang, K. & Whitty, C. J. M. Malaria. Lancet 365, 98 (2005).
    Google Scholar 
    Dangles, O. & Casas, J. Ecosystem services provided by insects for achieving sustainable development goals. Ecosyst. Serv. 35, 109–115 (2019).
    Google Scholar 
    Burkholder, W. E. & Ma, M. Pheromones for monitoring and control of stored-product insects. Annu. Rev. Entomol. 30, 257–272 (1985).CAS 

    Google Scholar 
    Morris, R. F. Sampling insect populations. Annu. Rev. Entomol. 5, 243–264 (1960).
    Google Scholar 
    Strickland, A. H. Sampling crop pests and their hosts. Annu. Rev. Entomol. 6, 201–220 (1961).
    Google Scholar 
    Bannerman, J. A., Costamagna, A. C., McCornack, B. P. & Ragsdale, D. W. Comparison of relative bias, precision, and efficiency of sampling methods for natural enemies of soybean aphid (Hemiptera: Aphididae). J. Econ. Entomol. 108, 1381–1397 (2015).CAS 
    PubMed 

    Google Scholar 
    Osborne, J. L. et al. Harmonic radar: A new technique for investigating bumblebee and honey bee foraging flight. VII Int. Symp. Pollinat. 437, 159–164 (1996).
    Google Scholar 
    Zink, A. G. & Rosenheim, J. A. State-dependent sampling bias in insects: Implications for monitoring western tarnished plant bugs. Entomol. Exp. Appl. 113, 117–123 (2004).
    Google Scholar 
    Rancourt, B., Vincent, C. & De Oliveira, A. D. Circadian activity of Lygus lineolaris (Hemiptera: Miridae) and effectiveness of sampling techniques in strawberry fields. J. Econ. Entomol 93, 1160–1166 (2000).CAS 
    PubMed 

    Google Scholar 
    Binns, M. R. & Nyrop, J. P. Sampling insect populations for the purpose of IPM decision making. Annu. Rev. Entomol. 37, 427–453. https://doi.org/10.1146/annurev.ento.37.1.427 (1992).Article 

    Google Scholar 
    Portman, Z. M., Bruninga-Socolar, B. & Cariveau, D. P. The state of bee monitoring in the United States: A call to refocus away from bowl traps and towards more effective methods. Ann. Entomol. Soc. Am. 113, 337–342 (2020).
    Google Scholar 
    Montgomery, G. A., Belitz, M. W., Guralnick, R. P. & Tingley, M. W. Standards and best practices for monitoring and benchmarking insects. Front. Ecol. Evolut. 8, 579193 (2021).
    Google Scholar 
    Bick, E., Dryden, D. M., Nguyen, H. D. & Kim, H. A novel CO2-based insect sampling device and associated field method evaluated in a strawberry agroecosystem. J. Econ. Entomol. 113, 1037–1042 (2020).CAS 
    PubMed 

    Google Scholar 
    Wen, C. & Guyer, D. Image-based orchard insect automated identification and classification method. Comput. Electron. Agric. 89, 110–115 (2012).
    Google Scholar 
    Chen, Y., Why, A., Batista, G., Mafra-Neto, A. & Keogh, E. Flying insect classification with inexpensive sensors. J. Insect Behav. 27, 657–677 (2014).
    Google Scholar 
    Potamitis, I. & Rigakis, I. Novel noise-robust optoacoustic sensors to identify insects through wingbeats. IEEE Sens. J. 15, 4621–4631 (2015).CAS 
    ADS 

    Google Scholar 
    Eliopoulos, P. A., Potamitis, I., Kontodimas, D. C. & Givropoulou, E. G. Detection of adult beetles inside the stored wheat mass based on their acoustic emissions. J. Econ. Entomol. 108, 2808–2814 (2015).CAS 
    PubMed 

    Google Scholar 
    Ärje, J. et al. Automatic image-based identification and biomass estimation of invertebrates. Methods Ecol. Evol. 11, 922–931 (2020).
    Google Scholar 
    Hobbs, S. E. & Hodges, G. An optical method for automatic classification and recording of a suction trap catch. Bull. Entomol. Res. 83, 47–51 (1993).
    Google Scholar 
    O’Neill, M. A., Gauld, I. D., Gaston, K. J. & Weeks, P. Daisy: An automated invertebrate identification system using holistic vision techniques. in Proceedings of the Inaugural Meeting BioNET-INTERNATIONAL Group for Computer-Aided Taxonomy (BIGCAT) 13–22 (1997).Chesmore, E. D. Methodologies for automating the identification of species. in First BioNet-International Work. Gr. Autom. Taxon. 3–12 (2000).Martineau, M. et al. A survey on image-based insect classification. Pattern Recognit. 65, 273–284 (2017).ADS 

    Google Scholar 
    Silva, D. F., De Souza, V. M. A., Batista Geapa, K. E. & Ellis, D. P. W. Applying machine learning and audio analysis techniques to insect recognition in intelligent traps. in Proceedings—2013 12th International Conference on Machine Learning and Applications, ICMLA 2013. (2013).Capinera, J. L. & Walmsley, M. R. Visual responses of some sugarbeet insects to sticky traps and water pan traps of various colors. J. Econ. Entomol., 71(6), 926–927 (1978).
    Google Scholar 
    Moore, A., Miller, J. R., Tabashnik, B. E. & Gage, S. H. Automated identification of flying insects by analysis of wingbeat frequencies. J. Econ. Entomol. 79, 1703–1706 (1986).
    Google Scholar 
    Riley, J. R. Angular and temporal variations in the radar cross-sections of insects. Proc. Inst. Electr. Eng. (IET) 120, 1229–1232 (1973).
    Google Scholar 
    Reed, S. C., Williams, C. M. & Chadwick, L. E. Frequency of wing-beat as a character for separating species races and geographic varieties of Drosophila. Genetics 27, 349 (1942).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mankin, R. W., Hagstrum, D. W., Smith, M. T., Roda, A. L. & Kairo, M. T. K. Perspective and promise: a century of insect acoustic detection and monitoring. Am. Entomol. 57(1), 30–44 (2011).
    Google Scholar 
    Drake, V. A. & Reynolds, D. R. Radar Entomology: Observing Insect Flight and Migration (Cabi, 2012).
    Google Scholar 
    Long, T. et al. Entomological radar overview: System and signal processing. IEEE Aerosp. Electron. Syst. Mag. 35, 20–32 (2020).
    Google Scholar 
    Drake, V. A., Hatty, S., Symons, C. & Wang, H. Insect monitoring radar: Maximizing performance and utility. Remote Sens. 12, 596 (2020).ADS 

    Google Scholar 
    Brydegaard, M. & Jansson, S. Advances in entomological laser radar. IET Int. Radar Conf. https://doi.org/10.1049/joe.2019.0598 (2018).Article 

    Google Scholar 
    Jansson, S. Entomological Lidar: Target Characterization and Field Applications (Department of Physics, Lund University, 2020).
    Google Scholar 
    Malmqvist, E. From Fauna to Flames: Remote Sensing with Scheimpflug-Lidar (Department of Physics, Lund University, 2019).
    Google Scholar 
    Mankin, R. W., Hagstrum, D. W., Smith, M. T., Roda, A. L. & Kairo, M. T. K. Perspective and promise: A century of insect acoustic detection and monitoring. Am. Entomol. 57, 30–44 (2011).
    Google Scholar 
    Miller-Struttmann, N. E., Heise, D., Schul, J., Geib, J. C. & Galen, C. Flight of the bumble bee: Buzzes predict pollination services. PLoS ONE 12, 1–14 (2017).
    Google Scholar 
    Li, Y. et al. Mosquito detection with low-cost smartphones: Data acquisition for malaria research. arXiv:1711.06346 [stat.ML] (2017).Mukundarajan, H., Hol, F. J. H., Castillo, E. A., Newby, C. & Prakash, M. Using mobile phones as acoustic sensors for high-throughput mosquito surveillance. Elife 6, 1–26 (2017).
    Google Scholar 
    Osborne, J. L. et al. A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J. Appl. Ecol. 36, 519–533 (1999).
    Google Scholar 
    Smith, A. D., Riley, J. R. & Gregory, R. D. A method for routine monitoring of the aerial migration of insects by using a vertical-looking radar. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 340, 393–404 (1993).
    Google Scholar 
    Chapman, J. W., Smith, A. D., Woiwod, I. P., Reynolds, D. R. & Riley, J. R. Development of vertical-looking radar technology for monitoring insect migration. Comput. Electron. Agric. 35(2–3), 95–110 (2002).
    Google Scholar 
    Schaefer, G. W. & Bent, G. A. An infra-red remote sensing system for the active detection and automatic determination of insect flight trajectories (IRADIT). Bull. Entomol. Res. 74, 261–278 (1984).
    Google Scholar 
    Farmery, M. J. Optical studies of insect flight at low altitude. (Doctoral dissertation, University of York, 1981).Farmery, M. J. The effect of air temperature on wingbeat frequency of naturally flying armyworm moth (Spodoptera exempta). Entomol. Exp. Appl. 32, 193–194 (1982).
    Google Scholar 
    Malmqvist, E. & Brydegaard, M. Applications of KHZ-CW lidar in ecological entomology. EPJ Web Conf. 119, 25016. https://doi.org/10.1051/epjconf/2016I11925016 (2016).Article 

    Google Scholar 
    Brydegaard, M. et al. Lidar reveals activity anomaly of malaria vectors during pan-African eclipse. Sci. Adv. 6, eaay5487 (2020).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Malmqvist, E. et al. The bat–bird–bug battle: Daily flight activity of insects and their predators over a rice field revealed by high-resolution Scheimpflug Lidar. Roy. Soc. Open Sci. 5(4), 172303 (2018).ADS 

    Google Scholar 
    Fristrup, K. M., Shaw, J. A. & Tauc, M. J. Development of a wing-beat-modulation scanning lidar system for insect studies. Lidar Remote Sens. Environ. Monit. 2017, 15. https://doi.org/10.1117/12.2274656 (2017).Article 

    Google Scholar 
    Hoffman, D. S., Nehrir, A. R., Repasky, K. S., Shaw, J. A. & Carlsten, J. L. Range-resolved optical detection of honeybees by use of wing-beat modulation of scattered light for locating land mines. Appl. Opt. 46, 3007–3012 (2007).PubMed 
    ADS 

    Google Scholar 
    Jansson, S., Malmqvist, E. & Mlacha, Y. Real-time dispersal of malaria vectors in rural Africa monitored with lidar. Plos one. 16(3), e0247803 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jansson, S. & Brydegaard, M. Passive kHz lidar for the quantification of insect activity and dispersal. Anim. Biotelemet. 6, 6 (2018).
    Google Scholar 
    Jansson, S. P. & Sørensen, M. B. An optical remote sensing system for detection of aerial and aquatic fauna. U.S. Patent Application No. 16/346,322 (2019).Malmqvist, E., Jansson, S., Török, S. & Brydegaard, M. Effective parameterization of laser radar observations of atmospheric fauna. IEEE J. Sel. Top. Quant. Electron. 22, 1 (2015).
    Google Scholar 
    Drake, V. A., Wang, H. K. & Harman, I. T. Insect Monitoring Radar: Remote and network operation. Comput. Electron. Agric. 35, 77–94 (2002).
    Google Scholar 
    Kirkeby, C. et al. Advances in automatic identification of flying insects using optical sensors and machine learning. Sci. Rep. 11, 1555 (2021).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Jacques, S. L. Erratum: Optical properties of biological tissues: A review (Physics in Medicine and Biology (2013) 58). Phys. Med. Biol. 58, 5007–5008 (2013).
    Google Scholar 
    Li, M. et al. Bark beetles as lidar targets and prospects of photonic surveillance. J. Biophoton. https://doi.org/10.1002/jbio.202000420 (2020).Article 

    Google Scholar 
    Brydegaard, M. Advantages of shortwave infrared LIDAR entomology. in Laser Applications to Chemical, Security and Environmental Analysis LW2D-6 (Optical Society of America, 2014).
    Google Scholar 
    Brydegaard, M., Jansson, S., Schulz, M. & Runemark, A. Can the narrow red bands of dragonflies be used to perceive wing interference patterns? Ecol. Evol. 8(11), 5369–5384 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Gebru, A. et al. Multiband modulation spectroscopy for the determination of sex and species of mosquitoes in flight. J. Biophotonics 11(8), e201800014 (2018).PubMed 

    Google Scholar 
    Potamitis, I. Classifying insects on the fly. Ecol. Inform. 21, 40–49 (2014).
    Google Scholar 
    Heathcote, G. D. The comparison of yellow cylindrical, flat and water traps, and of Johnson suction traps, for sampling aphids. Ann. Appl. Biol. 45, 133–139 (1957).
    Google Scholar 
    Vaishampayan, S. M., Kogan, M., Waldbauer, G. P. & Woolley, J. Spectral specific responses in the visual behavior of the greenhouse whitefly, Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Entomol. Exp. Appl. 18, 344–356 (1975).
    Google Scholar 
    Mound, L. A. Studies on the olfaction and colour sensitivity of Bemisia tabaci (Genn.) (Homoptera, Aleyrodidae). Entomol. Exp. Appl. 5, 99–104 (1962).
    Google Scholar 
    Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Der Kooi, C. J., Stavenga, D. G., Arikawa, K., Belušič, G. & Kelber, A. Evolution of insect color vision: From spectral sensitivity to visual ecology. Annu. Rev. Entomol. 66, 435–461 (2021).PubMed 

    Google Scholar  More

  • in

    Effect of contrasting phosphorus levels on nitrous oxide and carbon dioxide emissions from temperate grassland soils

    Site descriptionThis experiment was conducted in two long-term P-trial grassland sites (Site A and Site B) situated in proximity (~ 350 m) to each other in the dairy farm at Johnstown Castle, Wexford, Co. Wexford, Ireland (6°49′ W, 52°29′ N). The sites were grazed permanent grasslands before establishment. When the experiment was established in 1995, 16 (10 m × 2 m) plots were formed in each site in a fully randomised block design with four replicates. The two sites established were selected to represent different soil types and drainage classes. Site A is a moderately drained brown earth and site B is an imperfectly drained gley soil31. Each year in February, each plot received one of the four phosphorous (P) fertilization rates (16% P superphosphate): 0 (P0), 15 (P15), 30 (P30), and 45 (P45) kg P ha−1 year−1. All plots were initially sown with Lolium perenne and reseeded in 2016 with the same species. However, plant species such as Poa trivialis, Agropyron repens, Trifolium repens were present to a lesser extent. Above-ground biomass is harvested each month between February and August followed by 40 kg N ha−1 fertilizer applications. In the year (2019) of this experiment and the years before, SulCAN as a solid was applied at the first or second week of each month during February-August and potassium (K) as muriate of potash (KCl) was applied in February at a rate of 125 kg K ha−1. SulCAN contains 26.7% N in the form of nitric and ammoniacal nitrogen and 5% water soluble Sulphur. For this study plots receiving P0, P15 and P45 at the two field sites were set up to carry out this experiment. The two sites were selected as they had slightly different soil properties and thus there was an opportunity to consider a soil × treatment effect in the experiment.Experimental designFertilizer N and substrate C were applied on 8 May and 12 June in the experiment undertaken between May and July 2019, which represents the main growing season in Ireland. Within each plot, an area of 1 m × 1 m was selected. Following N fertilizer application (40 kg N ha−1) to all plots, carbon substrate [mixture of glucose (40%), sodium acetate (30%) and methanol (30%)] was applied once within the selected area using a sprayer watering can. Labile C available in animal excreta usually contains carbohydrates, volatile fatty acids, and alcohols32; as such different carbon substrates were applied to mimic this. Our review of the literature also indicated that C source types could differentially affect denitrifying communities and consequently denitrification rate. Thus, a mixture of three C sources was used to decrease bias of one microbial group over another as a result of single substrate use. Carbon was supplied to alleviate C-limitations of denitrification and nitrification processes as observed by O’Neill et al.29 in soils from this trial and to ensure equal substrate availability across all soil P levels. Equivalent C input rate of 0.63 g C m−2 day−1 was added to represent a daily rate of plant carbon input from Lolium perenne dominated ecosystem33. Soil samples were collected on eight occasions throughout the experimental period. Soil was sampled from across each selected area to a depth of 10 cm, sieved through 4 mm sieve and analysed for soil mineral N and microbial biomass.Soil properties, plant biomass and climate parametersPhysico-chemical soil properties were characterized by taking samples from 10 cm depth from each plot in the two sites before the commencement of the experiment. Soil pH was measured in water (2:1, water volume:soil mass) using Sally pH Auto analyser Dilution System (Gilson 215, Gilson, Dunstable, England). Soil organic matter (SOM) content was determined from mass loss on ignition at 550 °C for 7 h. Total C and total N concentrations were measured using a TrueSpec C/N analyser (TruSpec, LECO Corporation, Michigan, USA). Plant available P, potassium (K), and magnesium (Mg) were estimated using Morgan’s extraction34 and analysed using a Lachat QuickChem 8500 Series 2 Flow injection Analyzer (Lachat, QuickChem, 5600 Loveland, Colorado, USA). Particle size analysis was performed using the Pipette method35, where 2 mm sieved dry soil (20 g) was pre-treated with 6% H2O2, 3% NH4OH, and 5% sodium hexametaphosphate before separating soil aliquots into particle sizes. Water Holding Capacity (WHC) was determined from the mass difference between water-saturated and then overnight dried (105 °C) soil. Bulk density was determined by dividing weight of oven-dried soil by the total soil volume.To determine the mineral N concentrations, ten gram fresh soil was extracted with 50 mL 2 M KCl (5:1 solution to soil ratio). The supernatant was filtered through Whatman No. 1 filter paper and filtrates were stored in a cold room at 4 °C for about a week until analysis. Ammonium (NH4+) and nitrate (NO3−) concentrations in the extracts were analysed by the Aquakem 600 discrete analyser.Above-ground plant biomass from each plot of both sites was harvested twice during the experiment period (June 10 and July 11, 2019) to a height of ~ 5 cm using a Haldrup plot harvester. The total harvested biomass weight from each plot was recorded and a 100 g sub-sample was taken for dry matter (DM) analysis. Each fresh herbage sub-sample was weighed and placed in an oven at 70 °C for 3 days, and dry weight of the biomass was determined after re-weighing.Rainfall records for the experiment period were obtained from a Met Éireann weather observing station located in Teagasc dairy farm in Johnstown Castle, Co. Wexford., situated within a 100 m distance from the experimental sites. Volumetric soil moisture content and temperature was measured to 5 cm depth on individual plots on each gas sampling occasion using a handheld theta probe (WET-2 WET Sensor, Delta-T Devices, Cambridge, England). Water-filled pore space (WFPS) were calculated from the soil moisture values, bulk density of the soils, and soil particle density (2.65 g cm−3).Microbial biomass, glomalin-related soil protein and potential denitrification activitySoils were analysed for microbial biomass nitrogen (MBN), phosphorus (MBP) and carbon (MBC) using the fumigation extraction method as described respectively in (Brooks et al.36,37, and Vance et al.38). Five gram fumigated (24 h) and non-fumigated soil samples were extracted with 100 mL 0.5 M NaHCO3 and analysed for P colorimetrically using an Aquakem 600 discrete analyser (Thermo Electron OY, Vantaa, Finland). In order to avoid the spike readings by the instrument due to the effervescent nature of NaHCO3, one millilitre of 10% HCl was added to 10 mL extracts and diluted to 50 mL using distilled water. Microbial P was calculated by subtracting the P concentration of non-fumigated samples from fumigated samples, and dividing the result by an extraction factor of 0.437.Microbial biomass C and N were determined similarly using chloroform fumigation method with extraction period of 48 h with 0.5 M K2SO438. The extracts of the fumigated and non-fumigated samples were analysed for total C and N using a TOC-L CPH/CPN analyser (Shimadzu, Tokyo, Japan), and the differences, divided by correction factors of 0.45 and 0.54, were used to estimate the microbial biomass C and N, respectively.Glomalin is a glycoprotein produced by AMF and can be used as an indicator of mycorrhizal colonization in the plant root-soil interface39. Total glomalin-related soil protein (GRPS) was extracted by 90 min of autoclaving (121 °C) of 1 g air-dried soil in 8 mL of 50 mM sodium citrate adjusted to pH 8.0 with HCl40. Three additional sequential extractions were performed with the sodium citrate solution by autoclaving for 60 min until no red-brown color was visible in the last supernatant. After autoclaving, the samples were centrifuged at 10,000 revolutions per minute (rpm) for 5 min. The amounts of glomalin in the extracts were quantified using the Bradford dye-binding assay with bovine serum albumin (BSA) as the standard (2 mg mL−1). In a 96-well plate, replicated 200 µL of standard or extracts and 50 µL of dye reagent were added in each well and mixed using a microplate mixer. The Bradford-reactive substance was determined by measuring absorbance at 600 nm using Microplate Reader (Modulus Microplate Multimode Reader, Turner BioSystems, Sunnyvale, California, USA). Sample concentrations were determined using the standard curve. Potential denitrification activity (PDA) was determined using the acetylene inhibition method, modified from Pell et al.41. Briefly, replicated 20 g fresh soils were added into two identical flasks from a sample of soil. The flasks were then sealed with a rubber stopper and flushed and filled with helium after evacuating the headspace air. In one of the replicas, 10% of the headspaces were removed and replaced by acetylene. All flasks were incubated at 15 °C on an orbital shaker at 175 rpm for 30 min followed by the addition of a nutrient solution containing 75 mmol L−1 KNO3, 37.5 mmol L−1 Na-succinate, 25 mmol L−1 glucose, and 75 mM Na-acetate. Gas samples were taken from the headspace every 1 h for 5 h. N2O concentrations were determined using a gas chromatograph (Bruker, Scion 456-GC, Livingston, Scotland), and PDA was calculated from the rate of change of N2O concentrations over time from acetylene amended flasks.N2O and CO2 flux measurementsGas samples (N2O and CO2 fluxes) were measured before and after the application of N fertilizer and C substrates, with a daily sampling for 10 days directly after C + N additions and 3–4 times a week in the third and fourth week and 2–3 times a week in the subsequent weeks. A rectangular (40 × 40 cm) static collar, made of stainless steel (opaque), was anchored 5 cm deep into the soil within the marked area of 1 m × 1 m in each of the selected plots. During gas sampling, a 10 cm tall chamber lid fitted with two septa on top was placed on the collar lined with neoprene rubber band. To ensure hermetic sealing of the headspace during sampling, the ring area of the collar was half-filled with water, and a 10 kg weight was placed on the top of the lid to compress the seal. Gas samples were collected between 09:30 and 11:30 local time using a 10 mL Luer lock syringe fitted with a hypodermic needle via one of the septa at 0, 20, and 40 min after chamber closure. Prior to transferring the final sample into a pre-evacuated 7 mL glass vial, air in the chamber headspace was mixed by flushing the syringe three times. Gas samples were analysed using a gas chromatograph (Bruker, Scion 456-GC, Livingston, Scotland) fitted with an electron capture detector to analyse for N2O concentrations and a thermal conductivity detector to analyse for CO2 concentrations. Daily Fluxes (F) were calculated for each plot using the following equation:$$ F = left( {frac{Delta C}{{Delta t}}} right) times left( {frac{M times P}{{T times R}}} right) times left( frac{V}{A} right) $$where ∆C is the change in gas concentration in the chamber headspace during chamber enclosure period in ppbv, ∆t is chamber closing period in minutes, so ∆C/∆t is the slope of the gas concentration with time. M is the molar mass of N2O-N (28 g mol−1) and CO2-C (12 g mol−1), P and T are the atmospheric pressure (Pa) and temperature (K). Atmospheric pressure values were obtained from the nearby weather station whereas for T, wet sensor values were used. V is the headspace volume of the closed chamber (m3) and A is surface are of the chamber (m3). R is the ideal gas constant (8.314 J K−1 mol−1). Daily flux for each treatment is reported as the average of the replicates.Cumulative N2O and CO2 emissions were calculated over each application period by multiplying the daily N2O and CO2 fluxes by the number of days between two consecutive measurements. A summation of the cumulative flux of each application period is reported as the total cumulative flux.Statistical analysisANOVAs with repeated measures were used to test for the C + N addition effect on N2O and CO2 emissions, MBC, MBN, MBP, NO3−, and NH4+ with P treatment, site, and day of measurement as fixed effects, and individual plots as a random effect. Two-way ANOVA was applied to test for main and interaction effects of P treatment and site on cumulative N2O and CO2 emissions, soil property parameters (Table 1), plant biomass, and GRSP. Prior to analysis, response variables were checked for normality (sphericity for repeated ANOVA) and homogeneity of variance, and log transformed when required. Tukey’s HSD post-hoc tests were conducted to identify pair-wise comparisons of significant effects at P  More

  • in

    The Black Death devastated parts of Europe — but spared others

    .readcube-buybox { display: none !important;}

    The fourteenth-century pandemic known as the Black Death might not have been as devastating as was previously thought, an analysis of ancient pollen suggests1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-022-00435-6

    ReferencesIzdebski, A. et al. Nature Ecol. Evol. https://doi.org/10.1038/s41559-021-01652-4 (2022).
    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    Brazil opens highly protected caves to mining, risking fauna
    Correspondence 15 FEB 22

    Richard Leakey (1944–2022)
    Obituary 28 JAN 22

    Emphasizing declining populations in the Living Planet Report
    Matters Arising 26 JAN 22

    Jobs

    Director of Microscopy Operations

    St. Jude Children’s Research Hospital (St. Jude)
    Memphis, TN, United States

    POSTDOCTORAL POSITIONS IN NATURAL LANGUAGE PROCESSING

    KU Leuven
    Leuven, Belgium

    MRC Postdoctoral Research Scientist

    Medical Research Council
    London, United Kingdom

    Postdoctoral fellow in X-ray multibeam ptychographic imaging at PETRA III/MAX IV

    German Electron Synchrotron (DESY)
    Hamburg, Germany More

  • in

    Sympatric cleptobiotic stingless bees have species-specific cuticular profiles that resemble their hosts

    Breed, M.D., Cook, C. & Krasnec, M.O. Cleptobiosis in social insects. Psyche 484765 (2012).Sakagami, S., Roubik, D. & Zucchi, R. Ethology of the robber stingless bee, Lestrimelitta limao (Hymenoptera: Apidae). Sociobiology 21, 237–277 (1993).
    Google Scholar 
    Rasmussen, C. & Cameron, S. A. Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol. J. Lin. Soc. 99, 206–232 (2010).
    Google Scholar 
    Roubik, D. W. Ecology and Natural History of Tropical Bees (Cambridge University Press, 1989).
    Google Scholar 
    Camargo, J. M. F. & Pedro, S. R. M. Meliponini Lepeletier, 1836. in Catalogue of the Bees (Hymenoptera, Apoidea) in the Neotropical Region (ed Moure, J. S.). 272–578. (Sociedade Brasileira de Entomologia, 2007).Nogueira-Neto. P. Behavior problems related to the pillages made by some parasitic stingless bees (Meliponinae, Apidae). in Development and Evolution of Behavior: Essays in Memory of T.C. Schneirla (ed. Aronson, L.R.). 416–434. (W. H. Freeman, 1970).Quezada-Euán, J. J. G. & González-Acereto, J. Notes on the nest habits and host range of cleptobiotic Lestrimelitta niitkib (Ayala 1999) (Hymenoptera: Meliponini) from the Yucatan Peninsula, Mexico. Acta Zool. Mexicana 86, 245–249 (2002).
    Google Scholar 
    Rech, A. R., Schwade, M. A. & Schwade, M. R. M. Abelhas-sem-ferrão amazônicas defendem meliponarios contra saques de outras abelhas. Acta Amazon. 43, 389–394 (2013).
    Google Scholar 
    Grüter, C., von Zuben, L. G., Segers, F. H. I. D. & Cunningham, J. P. Warfare in stingless bees. Insect. Soc. 63, 223–236 (2016).
    Google Scholar 
    Cini, A., Bruschini, C., Poggi, L. & Cervo, R. Fight or fool? Physical strength, instead of sensory deception, matters in host nest invasion by a wasp social parasite. Anim. Behav. 81, 1139–1145 (2011).
    Google Scholar 
    Quezada-Euán, J. J. G. et al. Does sensory deception matter in eusocial obligate food robber systems? A study of Lestrimelitta and stingless bee hosts. Anim. Behav. 85, 817–823 (2013).
    Google Scholar 
    van Zweden, J. S. & D’Ettorre, P. Nestmate recognition in social insects and the role of hydrocarbons. In Insect hydrocarbons: biology, biochemistry, and chemical ecology (eds Blomquist, G. J. & Bagnères, A. G.) 222–243 (Cambridge University Press, 2010).
    Google Scholar 
    Blomquist, G. J. & Bagnères, A. G. Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology (Cambridge University Press, 2010).
    Google Scholar 
    Nash, D. R. & Boomsma, J. J. Communication between hosts and social parasites. In Sociobiology of Communication: An Interdisciplinary Perspective (eds d’Etorre, P. & Hughes, D. P.) 55–79 (Oxford University Press, 2008).
    Google Scholar 
    Martin, S. J., Shemilt, S., da S Lima, C. B. & de Carvalho, C. A. L. Are isomeric alkenes used in species recognition among neo-tropical stingless bees (Melipona spp). J. Chem. Ecol. 43, 1066–1072 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chung, H. & Carroll, S. B. Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37, 822–830 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finck, J., Berdan, E. L., Mayer, F., Ronacher, B. & Geiselhardt, S. Divergence of cuticular hydrocarbons in two sympatric grasshopper species and the evolution of fatty acid synthases and elongases across insects. Nat. Sci. Rep. 6, 33695 (2016).ADS 
    CAS 

    Google Scholar 
    Buellesback, J., Vetter, S. G. & Schmitt, T. Differences in the reliance on cuticular hydrocarbons as sexual signaling and species discrimination cues in parasitoid wasps. Front. Zool. 15, 22 (2018).
    Google Scholar 
    Medina-Medina, L.A. & Gonzalez-Acereto, J.A. La respuesta defensiva de Scaptotrigona pectoralis como un contundente escudo de protección contra las incursiones de Lestrimelitta niitkib dirigidas a otras especies de abejas sin aguijón. in VI Congreso Iberoamericano de Apicultura. 171–173. (1998).National Institute of Standards and Technology. Mass Spectral Library. (NIST/EPA/NIH, 2011).Tabachnick, B. G. & Fidell, L. S. Using Multivariate Statistics (Harper Collins College, 1996).
    Google Scholar 
    SAS Institute. SAS/STAT 9.2 User’s Guide. (SAS Institute Cary, 2008).Rasband, W.S. ImageJ. (U.S. National Institutes of Health, 1997–2012).Quezada-Euán, J.J.G., Paxton, R.J., Palmer, K.A., May-Itzá, W.D.J., Tay, W.T. & Oldroyd, B.P. Morphological and molecular characters reveal differentiation in a Neotropical social bee, Melipona beecheii (Apidae: Meliponini). Apidologie 38, 247–258 (2007).Rohlf, F. J. TPSDIG: Version 2.12. (New York State University, 2008).Klingenberg, C. P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).PubMed 

    Google Scholar 
    Francoy, T.M., Grassi, M.L., Imperatriz-Fonseca, V.L., May-Itzá, W.D.J. & Quezada-Euán, J.J.G. Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie 42, 499–507 (2011).Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE 8, e66213 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hurtado-Burillo, M., Ruiz, C., May-Itzá, W.D.J., Quezada-Eúan, J.J.G., & De la Rúa, P. Barcoding stingless bees: Genetic diversity of the economically important genus Scaptotrigona in Mesoamerica. Apidologie 44, 1–10 (2013).Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrigenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 3, 294–299 (1994).CAS 

    Google Scholar 
    Packer, L., Sheffield, C.S., Gibbs, J., de Silva, N., Best, L.R. et al. The campaign to barcode the bees of the world: progress, problems and prognosis. in Memorias VI Congreso Mesoamericano Sobre Abejas Nativas, Guatemala. 178–180. (2009).Tamura, K., Stecher, G., & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evolut. https://doi.org/10.1093/molbev/msab120. (2021)Oliveira, F.F.d. & Marchi, P. Três espécies novas de Lestrimelitta Friese (Hymenoptera, Apidae) da Costa Rica, Panamá e Guiana Francesa. Rev. Bras. Entomol. 49, 1–6 (2005).González, V. H. & Griswold, T. L. New species and previously unknown males of neotropical cleptobiotic stingless bees (Hymenoptera, Apidae, Lestrimelitta). Caldasia 34, 227–245 (2012).
    Google Scholar 
    Marchi, P. & Melo, G.A.R. Revisão taxonômica das espêcies brasileiras do gênero Lestrimelitta Friese (Hymenoptera, Apidae, Meliponina). Rev. Bras. Entomol. 50, 6–30 (2006).Gonzalez, V., Rasmussen, C. & Velasquez, A. Una especie nueva de Lestrimelitta y un cambio de nombre en Lasioglossum (Hymenoptera: Apidae, Halictidae). Rev. Colomb. Entomol. 36, 319–324 (2010).
    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system (https://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).Ayala, R. Revisión de las abejas sin aguijón de México (Hymenoptera: Apidae: Meliponini). Folia Entomol. Mexicana 106, 1–123 (1999).
    Google Scholar 
    Ruano, F. & Tinaut, A. The assault process of the slave-making ant Rossomyrmex minuchae (Hymenoptera: Formicidae). Sociobiology 43, 201–209 (2004).
    Google Scholar 
    Errard, C. et al. Coevolution-driven cuticular hydrocarbon variation between the slave-making ant Rossomyrmex minuchae and its host Proformica longiseta (Hymenoptera: Formicidae). Chemoecology 16, 235–240 (2006).CAS 

    Google Scholar 
    Dettner, K. & Liepert, C. Chemical mimicry and camouflage. Annu. Rev. Entomol. 39, 129–154 (1994).CAS 

    Google Scholar 
    Lenoir, A., d’Ettorre, P. & Errard, C. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46, 573–599 (2001).CAS 
    PubMed 

    Google Scholar 
    Von Beeren, C., Pohl, S. & Witte, V. On the use of adaptive resemblance terms in chemical ecology. Psyche 2012, 635761 (2012).Lambardi, D., Dani, F. R., Turillazzi, S. & Boomsma, J. J. Chemical mimicry in an incipient leaf-cutting ant social parasite. Behav. Ecol. Sociobiol. 61, 843–851 (2007).
    Google Scholar 
    Uboni, A., Bagnères, A. G., Christidès, J. P. & Lorenzi, M. C. Cleptoparasites, social parasites and a common host: Chemical insignificance for visiting host nests, chemical mimicry for living in. J. Insect Physiol. 58, 1259–1264 (2012).CAS 
    PubMed 

    Google Scholar 
    Quezada-Euán, J. J. G. et al. Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insect. Soc. 58, 31–38 (2011).
    Google Scholar 
    Nunes, T. M., Mateus, S., Turatti, I. C., Morgan, E. & Zucchi, R. Nestmate recognition in the stingless bee Frieseomelitta varia (Hymenoptera, Apidae, Meliponini): Sources of chemical signals. Anim. Behav. 81, 463–467 (2011).
    Google Scholar 
    Gutiérrez, E., Ruiz, D., Solís, T., May-Itzá, W.d.J., Moo-Valle, H. & Quezada-Euán, J.J.G. Does larval food affect cuticular profiles and recognition in eusocial bees? A test on Scaptotrigona gynes (Hymenoptera: Meliponini). Behav. Ecol. Sociobiol. 70, 871–879 (2016).Jones, S. M. et al. The role of wax and resin in the nestmate recognition system of a stingless bee, Tetragonisca angustula. Behav. Ecol. Sociobiol. 66, 1–12 (2012).
    Google Scholar 
    Leonhardt, S.D. Chemical ecology of stingless bees. J. Chem. Ecol. 43, 385–402 (2021).Akino, T. Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecol. News 11, 173–181 (2008).
    Google Scholar 
    Lenoir, A., Hefetz, A., Simon, T. & Soroker, V. Comparative dynamics of gestalt odour formation in two ant species Camponotus fellah and Aphaenogaster senilis (Hymenoptera: Formicidae). Physiol. Entomol. 26, 275–283 (2001).
    Google Scholar 
    Von Beeren, C. et al. Chemical and behavioral integration of army ant-associated rove beetles—A comparison between specialists and generalists. Front. Zool. 15, 8 (2018).
    Google Scholar 
    Kather, R. & Martin, S. J. Cuticular hydrocarbon profiles as a taxonomic tool: Advantages, limitations and technical aspects. Physiol. Entomol. 37, 25–32 (2012).CAS 

    Google Scholar 
    Menzel, F., Blaimer, B. B. & Schmitt, T. How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proc. R. Soc. B-Biol. Sci. 284, 20161727 (2017).
    Google Scholar 
    Savolainen, R. & Vepsäläinen, K. Sympatric speciation through intraspecific social parasitism. Proc. Nat. Acad. Sci. 100, 7169–7174 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hartke, J., Sprenger, P.P., Sahm, J, Winterberg, H., Orivel, J. et al. Cuticular hydrocarbons as potential mediators of cryptic species divergence in a mutualistic ant association. Ecol. Evolut. 9, 9160–9176 (2019).Doebeli, M. & Dieckmann, U. Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am. Nat. 156, S77–S101 (2000).PubMed 

    Google Scholar 
    Thibert-Plante, X. & Gavrilets, S. Evolution of mate choice and the so-called magic traits in ecological speciation. Ecol. Lett. 16, 1004–1013 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Cabej, N. R. Epigenetic Principles of Evolution (Elsevier, 2012).
    Google Scholar 
    Quezada-Euán, J. J. G. Stingless Bees of Mexico: The Biology, Management and Conservation of an Ancient Heritage (Springer, 2018).
    Google Scholar 
    Von Zuben, L. G. et al. Interspecific chemical communication in raids of the robber bee Lestrimelitta limao. Insect. Soc. 63, 339–347 (2016).
    Google Scholar  More

  • in

    Glucocorticoids coordinate changes in gut microbiome composition in wild North American red squirrels

    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535, 65–74 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ezenwa, V. O., Gerardo, N. M., Inouye, D. W., Medina, M. & Xavier, J. B. Microbiology. Animal behavior and the microbiome. Science 338, 198–199 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sampson, T. R. & Mazmanian, S. K. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 17, 565–576 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Voigt, R. M., Forsyth, C. B., Green, S. J., Engen, P. A. & Keshavarzian, A. Circadian rhythm and the gut microbiome. Int. Rev. Neurobiol. 131, 193–205 (2016).CAS 
    PubMed 

    Google Scholar 
    Backhed, F. Programming of host metabolism by the gut microbiota. Endocr. Abstr. https://doi.org/10.1530/endoabs.32.s20.2 (2013).Article 

    Google Scholar 
    Mallott, E. K., Borries, C., Koenig, A., Amato, K. R. & Lu, A. Reproductive hormones mediate changes in the gut microbiome during pregnancy and lactation in Phayre’s leaf monkeys. Sci. Rep. 10, 9961 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, E. A., Livermore, J. A., Alberts, S. C., Tung, J. & Archie, E. A. Ovarian cycling and reproductive state shape the vaginal microbiota in wild baboons. Microbiome. 5, 8 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Gomez-Arango, L. F. et al. Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women. Diabetes 65, 2214–2223 (2016).CAS 
    PubMed 

    Google Scholar 
    Shin, J.-H. et al. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res. Microbiol. 170, 192–201 (2019).CAS 
    PubMed 

    Google Scholar 
    Burokas, A., Moloney, R. D., Dinan, T. G. & Cryan, J. F. Microbiota regulation of the mammalian gut–brain axis. Adv. Appl. Microbiol. 91, 1–62. (2015).Sudo, N. The hypothalamic–pituitary–adrenal axis and gut microbiota. Gut–Brain Axis. https://doi.org/10.1016/b978-0-12-802304-4.00013-x (2016).Article 

    Google Scholar 
    Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).CAS 
    PubMed 

    Google Scholar 
    Hau, M., Casagrande, S., Ouyang, J. Q. & Baugh, A. T. Glucocorticoid-mediated phenotypes in vertebrates: Multilevel variation and evolution. Adv. Stud. Behav. 48, 41–115 (2016).
    Google Scholar 
    Sprague, R. S. & Breuner, C. W. Timing of fledging is influenced by glucocorticoid physiology in Laysan Albatross chicks. Horm. Behav. 58, 297–305 (2010).CAS 
    PubMed 

    Google Scholar 
    Fletcher, Q. E., Dantzer, B. & Boonstra, R. The impact of reproduction on the stress axis of free-living male northern red backed voles (Myodes rutilus). Gen. Comp. Endocrinol. 224, 136–147 (2015).CAS 
    PubMed 

    Google Scholar 
    Romero, L. M. & Wikelski, M. Corticosterone levels predict survival probabilities of Galapagos marine iguanas during El Nino events. Proc. Natl. Acad. Sci. USA. 98, 7366–7370 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).CAS 
    PubMed 

    Google Scholar 
    Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baniel, A. et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome. 9, 26 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Kohl, K. D., Amaya, J., Passement, C. A., Dearing, M. D. & McCue, M. D. Unique and shared responses of the gut microbiota to prolonged fasting: A comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol. 90, 883–894 (2014).CAS 
    PubMed 

    Google Scholar 
    Stecher, B. et al. Like will to like: Abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1000711 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Das, B. & Nair, G. B. Homeostasis and dysbiosis of the gut microbiome in health and disease. J. Biosci. 44(5), 1–8 (2019). https://www.ncbi.nlm.nih.gov/pubmed/31719226.CAS 

    Google Scholar 
    Noguera, J. C., Aira, M., Pérez-Losada, M., Domínguez, J. & Velando, A. Glucocorticoids modulate gastrointestinal microbiome in a wild bird. R. Soc. Open Sci. https://doi.org/10.1098/rsos.171743 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    UrenWebster, T. M., Rodriguez-Barreto, D., Consuegra, S. & GarciadeLeaniz, C. Cortisol-related signatures of stress in the fish microbiome. Front. Microbiol. 11, 1621 (2020).
    Google Scholar 
    Stothart, M. R., Palme, R. & Newman, A. E. M. It’s what’s on the inside that counts: stress physiology and the bacterial microbiome of a wild urban mammal. Proc. Biol. Sci. 286, 20192111 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Vlčková, K. et al. Impact of stress on the gut microbiome of free-ranging western lowland gorillas. Microbiology 164, 40–44 (2018).PubMed 

    Google Scholar 
    Dantzer, B. et al. Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. Science 340, 1215–1217 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sarkar, A. et al. Microbial transmission in animal social networks and the social microbiome. Nat. Ecol. Evol. 4, 1020–1035 (2020).PubMed 

    Google Scholar 
    Kruuk, L. E. B., Merilä, J. & Sheldon, B. C. When environmental variation short-circuits natural selection. Trends Ecol. Evol. 18, 207–209 (2003).
    Google Scholar 
    Stinchcombe, J. R. et al. Testing for environmentally induced bias in phenotypic estimates of natural selection: Theory and practice. Am. Nat. 160, 511–523 (2002).PubMed 

    Google Scholar 
    Rausher, M. D. The measurement of selection on quantitative traits: Biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).PubMed 

    Google Scholar 
    Lamontagne, J. M. & Boutin, S. Local-scale synchrony and variability in mast seed production patterns of Picea glauca. J. Ecol. https://doi.org/10.1111/j.1365-2745.2007.01266.x (2007).Article 

    Google Scholar 
    Fletcher, Q. E. et al. Reproductive timing and reliance on hoarded capital resources by lactating red squirrels. Oecologia https://doi.org/10.1007/s00442-013-2699-3 (2013).Article 
    PubMed 

    Google Scholar 
    Fletcher, Q. E. et al. The functional response of a hoarding seed predator to mast seeding. Ecology 91, 2673–2683 (2010).PubMed 

    Google Scholar 
    Boutin, S. et al. Anticipatory reproduction and population growth in seed predators. Science 314, 1928–1930 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Haines, J. A. et al. Sexually selected infanticide by male red squirrels in advance of a mast year. Ecology 99, 1242–1244 (2018).PubMed 

    Google Scholar 
    Dantzer, B., McAdam, A. G., Humphries, M. M., Lane, J. E. & Boutin, S. Decoupling the effects of food and density on life-history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel. J. Anim. Ecol. 89, 2397–2414 (2020).PubMed 

    Google Scholar 
    Hestbeck, J. B. A Mathematical Model of Population Regulation in Cyclic Mammals. Population Biology 290–297 (Springer, 1983).
    Google Scholar 
    Dantzer, B., Boutin, S., Humphries, M. M. & McAdam, A. G. Behavioral responses of territorial red squirrels to natural and experimental variation in population density. Behav. Ecol. Sociobiol. 66, 865–878 (2012).
    Google Scholar 
    Siracusa, E. et al. Familiarity with neighbours affects intrusion risk in territorial red squirrels. Anim. Behav. 133, 11–20 (2017).
    Google Scholar 
    Guindre-Parker, S. et al. Individual variation in phenotypic plasticity of the stress axis. Biol. Lett. 15, 20190260 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Laughlin, D. & Grace, J. Discoveries and novel insights in ecology using structural equation modeling. Ideas Ecol. Evol. https://doi.org/10.24908/iee.2019.12.5.c (2019).Article 

    Google Scholar 
    Pugesek, B. H., Tomer, A. & von Eye, A. Structural Equation Modeling: Applications in Ecological and Evolutionary Biology (Cambridge University Press, 2003).MATH 

    Google Scholar 
    Pearl, J. The causal foundations of structural equation modeling. (2012). https://doi.org/10.21236/ada557445Leftwich, P. T., Clarke, N. V. E., Hutchings, M. I. & Chapman, T. Gut microbiomes and reproductive isolation in Drosophila. Proc. Natl. Acad. Sci. USA. 114, 12767–12772 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Markle, J. G. M. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reveles, K. R., Patel, S., Forney, L. & Ross, C. N. Age-related changes in the marmoset gut microbiome. Am. J. Primatol. https://doi.org/10.1002/ajp.22960 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dantzer, B. et al. Fecal cortisol metabolite levels in free-ranging North American red squirrels: Assay validation and the effects of reproductive condition. Gen. Comp. Endocrinol. 167, 279–286 (2010).CAS 
    PubMed 

    Google Scholar 
    Fletcher, Q. E. et al. Seasonal stage differences overwhelm environmental and individual factors as determinants of energy expenditure in free-ranging red squirrels. Funct. Ecol. https://doi.org/10.1111/j.1365-2435.2012.01975.x (2012).Article 

    Google Scholar 
    Lane, J. E., Boutin, S., Gunn, M. R., Slate, J. & Coltman, D. W. Female multiple mating and paternity in free-ranging North American red squirrels. Anim. Behav. 75, 1927–1937 (2008).
    Google Scholar 
    Ren, T. et al. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome. 5, 163 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Backhans, A., Fellström, C. & Lambertz, S. T. Occurrence of pathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis in small wild rodents. Epidemiol. Infect. 139, 1230–1238 (2011).CAS 
    PubMed 

    Google Scholar 
    Bižanov, G. & Dobrokhotova, N. D. Experimental infection of ground squirrels (Citellus pygmaeus Pallas) with Yersinia pestis during hibernation. J. Infect. 54, 198–203 (2007).PubMed 

    Google Scholar 
    Stothart, M. R. et al. Stress and the microbiome: Linking glucocorticoids to bacterial community dynamics in wild red squirrels. Biol. Lett. 12, 20150875 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rocca, J. D., Simonin, M., Bernhardt, E. S., Washburne, A. D. & Wright, J. P. Rare microbial taxa emerge when communities collide: Freshwater and marine microbiome responses to experimental mixing. Ecology https://doi.org/10.1002/ecy.2956 (2020).Article 
    PubMed 

    Google Scholar 
    Shade, A. et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. MBio https://doi.org/10.1128/mbio.01371-14 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dinan, T. G. & Cryan, J. F. The microbiome–gut–brain axis in health and disease. Gastroenterol. Clin. N. Am. 46, 77–89 (2017).
    Google Scholar 
    Claus, S. P. et al. Colonization-induced host–gut microbial metabolic interaction. MBio 2, e00271-e310 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Bangsgaard Bendtsen, K. M. et al. Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PLoS ONE 7, e46231 (2012).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).CAS 
    PubMed 

    Google Scholar 
    McLaren, M. R. & Callahan, B. J. Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philos. Trans. R Soc. Lond. B Biol. Sci. 375, 20190592 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rivera-Chávez, F. et al. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella. Cell Host Microbe. 19, 443–454 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Meerburg, B. G. & Kijlstra, A. Role of rodents in transmission of Salmonella and Campylobacter. J. Sci. Food Agric. https://doi.org/10.1002/jsfa.3004 (2007).Article 

    Google Scholar 
    Jalal, M. S. et al. Antibiotic resistant zoonotic bacteria in Irrawaddy squirrel (Callosciurus pygerythrus). Vet. Med. Sci. 5, 260–268 (2019).CAS 
    PubMed 

    Google Scholar 
    Petrosus, E., Silva, E. B., Lay, D. Jr. & Eicher, S. D. Effects of orally administered cortisol and norepinephrine on weanling piglet gut microbial populations and Salmonella passage. J. Anim. Sci. 96, 4543–4551 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12512 (2016).Article 

    Google Scholar 
    Raulo, A. et al. Social networks strongly predict the gut microbiota of wild mice. ISME J. https://doi.org/10.1038/s41396-021-00949-3 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, C. D. et al. Microbiome structural and functional interactions across host dietary niche space. Integr. Comp. Biol. 57, 743–755 (2017).CAS 
    PubMed 

    Google Scholar 
    Galley, J. D. et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol. 14, 189 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Wu, C.-S. et al. Age-dependent remodeling of gut microbiome and host serum metabolome in mice. Aging 13, 6330–6345 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altmann, J., Gesquiere, L., Galbany, J., Onyango, P. O. & Alberts, S. C. Life history context of reproductive aging in a wild primate model. Ann. NY Acad. Sci. https://doi.org/10.1111/j.1749-6632.2010.05531.x (2010).Article 
    PubMed 

    Google Scholar 
    Sylvia, K. E., Jewell, C. P., Rendon, N. M., St John, E. A. & Demas, G. E. Sex-specific modulation of the gut microbiome and behavior in Siberian hamsters. Brain Behav. Immun. 60, 51–62 (2017).PubMed 

    Google Scholar 
    Grieneisen, L. E., Livermore, J., Alberts, S., Tung, J. & Archie, E. A. Group living and male dispersal predict the core gut microbiome in wild baboons. Integr. Comp. Biol. 57, 770–785 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Peckett, A. J., Wright, D. C. & Riddell, M. C. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 60, 1500–1510 (2011).CAS 
    PubMed 

    Google Scholar 
    Wu, T. et al. Chronic glucocorticoid treatment induced circadian clock disorder leads to lipid metabolism and gut microbiota alterations in rats. Life Sci. 192, 173–182 (2018).CAS 
    PubMed 

    Google Scholar 
    Deaver, J. A., Eum, S. Y. & Toborek, M. Circadian disruption changes gut microbiome taxa and functional gene composition. Front. Microbiol. 9, 737 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Schroeder, B. O. Fight them or feed them: How the intestinal mucus layer manages the gut microbiota. Gastroenterol. Rep. 7, 3–12 (2019).
    Google Scholar 
    Huang, E. Y. et al. Using corticosteroids to reshape the gut microbiome: Implications for inflammatory bowel diseases. Inflamm. Bowel Dis. 21, 963–972 (2015).PubMed 

    Google Scholar 
    Carabotti, M., Scirocco, A., Maselli, M. A. & Severi, C. The gut–brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. Hepatol. 28, 203–209 (2015).
    Google Scholar 
    de Weerth, C. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci. Biobehav. Rev. 83, 458–471 (2017).PubMed 

    Google Scholar 
    Luo, Y. et al. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Transl. Psychiatry. 8, 187 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Cryan, J. F. et al. The microbiota–gut–brain axis. Physiol. Rev. 99, 1877–2013 (2019).CAS 
    PubMed 

    Google Scholar 
    McAdam, A. G., Boutin, S., Sykes, A. K. & Humphries, M. M. Life histories of female red squirrels and their contributions to population growth and lifetime fitness. Ecoscience 14, 362–369 (2007).
    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 

    Google Scholar 
    Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).ADS 
    PubMed 

    Google Scholar 
    Touma, C., Sachser, N., Möstl, E. & Palme, R. Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. Gen. Comp. Endocrinol. 130, 267–278 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Kesteren, F. et al. Experimental increases in glucocorticoids alter function of the HPA axis in wild red squirrels without negatively impacting survival and reproduction. Physiol. Biochem. Zool. 92, 445–458 (2019).PubMed 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. Package, “phyloseq”. Gan. 2, 7 (2013).
    Google Scholar 
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 

    Google Scholar 
    Zhang, X. & Yi, N. NBZIMM: Negative binomial and zero-inflated mixed models, with application to microbiome/metagenomics data analysis. BMC Bioinform. 21, 488 (2020).CAS 

    Google Scholar 
    Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl. Acad. Sci. USA. 107, 5881–5886 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Genome-resolved metagenomics identifies the particular genetic traits of phosphate-solubilizing bacteria in agricultural soil

    Mogollón JM, Bouwman AF, Beusen AH, Lassaletta L, van Grinsven HJ, Westhoek H. More efficient phosphorus use can avoid cropland expansion. Nat Food. 2021;2:509–18.Article 

    Google Scholar 
    Goldhammer T, Brüchert V, Ferdelman TG, Zabel M. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nat Geosci. 2010;3:557–61.CAS 
    Article 

    Google Scholar 
    Oliverio AM, Bissett A, McGuire K, Saltonstall K, Turner BL, Fierer N. The role of phosphorus limitation in shaping soil bacterial communities and their metabolic capabilities. mBio. 2020;11:e01718–20.CAS 
    Article 

    Google Scholar 
    Wu X, Rensing C, Han D, Xiao KQ, Dai Y, Tang Z, et al. Genome-resolved metagenomics reveals distinct phosphorus acquisition strategies between soil microbiomes. mSystems. 2022;7:e01107–21.PubMed Central 

    Google Scholar 
    Long XE, Yao H, Huang Y, Wei W, Zhu YG. Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilizing microbial community in a paddy soil. Soil Bio Biochem. 2018;118:103–14.CAS 
    Article 

    Google Scholar 
    Dai Z, Liu G, Chen H, Chen C, Wang J, Ai S, et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME J. 2020;14:757–70.CAS 
    Article 

    Google Scholar 
    Liang J, Liu J, Jia P, Yang T, Zeng Q, Zhang S, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 2020;14:1600–13.CAS 
    Article 

    Google Scholar 
    Willsky GR, Bennett RL, Malamy MH. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J Bacteriol. 1973;113:529–39.CAS 
    Article 

    Google Scholar 
    Wanner BL. Gene regulation by phosphate in enteric bacteria. J Cell Biochem. 1993;51:47–54.CAS 
    Article 

    Google Scholar 
    Li J, Lu J, Wang H, Fang Z, Wang X, Feng S, et al. A comprehensive synthesis unveils the mysteries of phosphate‐solubilizing microbes. Biol Rev. 2021;96:2771–93.Article 

    Google Scholar 
    Hessen DO, Jeyasingh PD, Neiman M, Weider LJ. Genome streamlining and the elemental costs of growth. Trends Ecol Evol. 2010;25:75–80.Article 

    Google Scholar 
    Li J, Mau RL, Dijkstra P, Koch BJ, Schwartz E, Liu XA, et al. Predictive genomic traits for bacterial growth in culture versus actual growth in soil. ISME J. 2019;13:2162–72.Article 

    Google Scholar 
    Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.Article 

    Google Scholar 
    Ye L, Mei R, Liu WT, Ren H, Zhang XX. Machine learning-aided analyses of thousands of draft genomes reveal specific features of activated sludge processes. Microbiome. 2020;8:1–13.Article 

    Google Scholar 
    Farhat MB, Boukhris I, Chouayekh H. Mineral phosphate solubilization by Streptomyces sp. CTM396 involves the excretion of gluconic acid and is stimulated by humic acids. FEMS Microbiol Lett. 2015;362:1–8.Article 

    Google Scholar 
    Bücking H, Shachar-Hill Y. Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol. 2005;165:899–912.Article 

    Google Scholar 
    Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate‐solubilizing bacterium. New Phytol. 2016;210:1022–32.CAS 
    Article 

    Google Scholar 
    Spohn M, Kuzyakov Y. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol Biochem. 2013;61:69–75.CAS 
    Article 

    Google Scholar 
    Huang Y, Dai Z, Lin J, Li D, Ye H, Dahlgren RA, et al. Labile carbon facilitated phosphorus solubilization as regulated by bacterial and fungal communities in Zea mays. Soil Biol Biochem. 2021;163:108465.CAS 
    Article 

    Google Scholar 
    Yao Q, Li Z, Song Y, Wright SJ, Guo X, Tringe SG, et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat Ecol Evol. 2018;2:499–509.Article 

    Google Scholar  More

  • in

    A database of common vampire bat reports

    Geoffrey, E. Sur les Phyllostomes et les Megadermes, deux Genres de la famille des Chauve-souris. in Annales du Museum d’histoire (ed. Dufour, G.) vol. 15, 181 (d’Ocagne, 1810).Wilson, D. E. & Mittermeier, R. A. Bats. in Handbook of the Mammals of the World. Vol. 9. (eds. Wilson, D. E. & Mittermeier, R. A.) 1008 (Springer International Publishing, 2019).Hilaire, É. G. S., Pupuya, I. D. E., Del, R. & Higgins, L. B. O. Ampliación del rango de distribución sur de Desmodus rotundus. Boletín del Mus. Nac. Hist. Nat. 68, 5–12 (2019).
    Google Scholar 
    Kwon, M. & Gardner, A. L. Subfamily Desmodontinae. in Mammals of South America, Volume 1: Marsupials, Xenarthrans, Shrews and Bats (ed. Gardner, A. L.) 218–223 (The University of Chicago Press, 2008).Arellano-Sota, C. Vampire bat-transmitted rabies in cattle. Rev. Infect. Dis. 10, 707–709 (1988).
    Google Scholar 
    Fernandes, M. E. B., Da Costa, L. J. C., De Andrade, F. A. G. & Silva, L. P. Rabies in humans and non-human in the state of Pará, Brazilian Amazon. Brazilian J. Infect. Dis. 17, 251–253 (2013).
    Google Scholar 
    Andrade, F. A. G., Franca, E. S., Souza, V. P., Barreto, M. S. O. D. & Fernandes, M. E. B. Spatial and temporal analysis of attacks by common vampire bats (Desmodus rotundus) on humans in the rural Brazilian Amazon basin. Acta Chiropterologica 17, 393–400 (2015).
    Google Scholar 
    Greenhall, A. M., Joermann, G. & Schmidt, U. Desmodus rotundus. Mamm. Species 202, 1–6 (1983).
    Google Scholar 
    Herrera, L. G., Fleming, T. H. & Sternberg, L. S. Trophic relationships in a neotropical bat community: A preliminary study using carbon and nitrogen isotopic signatures. Trop. Ecol. 39, 23–29 (1998).
    Google Scholar 
    Dantas Torres, F., Valença, C. & De Andrade Filho, G. V. First record of Desmodus rotundus in urban area from the city of Olinda, Pernambuco, Northeastern Brazil: A case report. Rev. Inst. Med. Trop. Sao Paulo 47, 107–108 (2005).PubMed 

    Google Scholar 
    Flores-Crespo, R. & Arellano-Sota, C. Biology and control of the vampire bat. in The natural history of rabies (ed. Baer, G. M.) 461–476 (CRC Press Inc, 1991).Flores-Crespo, R. & Arellano-Sota, C. Biology and control of the vampire bat. Nat. Hist. Rabies, 2nd Ed. 10, 461–476 (2017).
    Google Scholar 
    Bolívar-Cimé, B., Flores-Peredo, R., García-Ortíz, S. A., Murrieta-Galindo, R. & Laborde, J. Influence of landscape structure on the abundance of Desmodus rotundus (Geoffroy 1810) in Northeastern Yucatan, Mexico. Ecosistemas y Recur. Agropecu. 6, 263 (2019).
    Google Scholar 
    Koopman, K. F. Systematics and distribution. in Natural History of Vampire Bats (eds. Greenhall, A. M. & Schmidt, U.) 4–28 (CRC Press, 1988).Dalquest, W. W. Natural history of the vampire bats of Eastern Mexico. Am. Midl. Nat. 53, 79–87 (1955).
    Google Scholar 
    Kalko, E. K. V. & Handley, C. O. Neotropical bats in the canopy: Diversity, community structure, and implications for conservation. Plant Ecol. 153, 319–333 (2001).
    Google Scholar 
    García-Morales, R., Badano, E. I. & Moreno, C. E. Response of neotropical bat assemblages to human land use. Conserv. Biol. 27, 1096–1106 (2013).PubMed 

    Google Scholar 
    Barquez, R.M., Perez, S., Miller, B. & Diaz, M. M. Desmodus rotundus. The IUCN Red List of Threatened Species 2015 e.T6510A21979045, https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T6510A21979045.en (2015).Becker, D. J. et al. Genetic diversity, infection prevalence, and possible transmission routes of Bartonella spp. in vampire bats. PLoS Negl. Trop. Dis. 12, e0006786 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Brandão, P. E. et al. A coronavirus detected in the vampire bat Desmodus rotundus. Brazilian J. Infect. Dis. 12, 466–468 (2008).
    Google Scholar 
    Alves, R. S. et al. Detection of coronavirus in vampire bats (Desmodus rotundus) in southern Brazil. Transbound. Emerg. Dis. 00, 1–6 (2021).
    Google Scholar 
    Rocha, F. & Dias, R. A. The common vampire bat Desmodus rotundus (Chiroptera: Phyllostomidae) and the transmission of the rabies virus to livestock: A contact network approach and recommendations for surveillance and control. Prev. Vet. Med. 174, e104809 (2020).
    Google Scholar 
    Raoult, D. et al. Diagnosis of 22 new cases of Bartonella endocarditis. Ann. Intern. Med. 125, 646–652 (1996).CAS 
    PubMed 

    Google Scholar 
    Raoult, D. et al. Outcome and treatment of Bartonella endocarditis. Arch. Int. Med. 163, 226–230 (2003).
    Google Scholar 
    Neely, B. A. et al. Surveying the vampire bat (Desmodus rotundus) serum proteome: A resource for identifying immunological proteins and detecting pathogens. J. Proteome Res. 20, 2547–2559 (2021).CAS 
    PubMed 

    Google Scholar 
    Rupprecht, C. E., Hanlon, C. A. & Hemachudha, T. Rabies re-examined. Lancet Infect. Dis. 2, 327–343 (2002).PubMed 

    Google Scholar 
    World Health Organization. Rabies. WHO https://www.who.int/news-room/fact-sheets/detail/rabies (2020).Lee, D. N., Papeş, M. & Van Den Bussche, R. A. Present and potential future distribution of common vampire bats in the Americas and the associated risk to cattle. PLoS One 7, e42466 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Acha, P. N. & Malaga-Alba, A. Economic losses due to Desmodus rotundus. in Natural History of Vampire Bats (eds. Greenhall, A. M. & Schmidt, U.) 207–214 (CRC Press, 1968).Kotait, I. & Gonçalves, C. Manual Técnico MAPA – Controle da raiva dos herbívoros in Manual técnico dos herbívoros (Ministério da Agricultura, Pecuária e Abastecimento, 2009).Johnson, N., Aréchiga-Ceballos, N. & Aguilar-Setien, A. Vampire bat rabies: Ecology, epidemiology and control. Viruses 6, 1911–1928 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Blackwood, J. C., Streicker, D. G., Altizer, S. & Rohani, P. Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc. Natl. Acad. Sci. 110, 20837–20842 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Streicker, D. G. et al. Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proc. Natl. Acad. Sci. USA 113, 10926–10931 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zarza, H., Martínez-Meyer, E., Suzán, G. & Ceballos, G. Geographic distribution of Desmodus rotundus in Mexico under current and future climate change scenarios: Implications for bovine paralytic rabies infection. Vet. Mex. 4, 3–16 (2017).
    Google Scholar 
    Hayes, M. A. & Piaggio, A. J. Assessing the potential impacts of a changing climate on the distribution of a rabies virus vector. PLoS One 13, e0192887 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Nunez, G. B., Becker, D. J., Lawrence, R. L. & Plowright, R. K. Synergistic effects of grassland fragmentation and temperature on bovine rabies emergence. EcoHealth 17, 203–216 (2020).PubMed Central 

    Google Scholar 
    da Rosa, E. S. T. et al. Bat-transmitted human rabies outbreaks, Brazilian Amazon. Emerg. Infect. Dis. 12, 1197–1202 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Rocha, S. M., de Oliveira, S. V., Heinemann, M. B. & Gonçalves, V. S. P. Epidemiological profile of wild rabies in Brazil (2002–2012). Transbound. Emerg. Dis. 64, 624–633 (2017).CAS 
    PubMed 

    Google Scholar 
    Schneider, M. C. et al. Rabies transmitted by vampire bats to humans: An emerging zoonotic disease in Latin America? Pan Am. J. Public Health. 25, 260–269 (2009).
    Google Scholar 
    VERA. Vigilancia epidemiológica de la rabia en las Américas. Organ. Panam. la Salud. 34, 14–42 (2020).
    Google Scholar 
    World Health Organization. WHO expert consultation on rabies, second report. WHO Tech. Rep. Ser. 982, 1–139 (2013).
    Google Scholar 
    Gilbert, A. T. et al. Evidence of rabies virus exposure among humans in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 87, 206–215 (2012).
    Google Scholar 
    Fahl, W. O. et al. Desmodus rotundus and Artibeus spp. bats might present distinct rabies virus lineages. Brazilian J. Infect. Dis. 16, 545–551 (2012).
    Google Scholar 
    Berger, F. et al. Rabies risk: Difficulties encountered during management of grouped cases of bat bites in 2 isolated villages in French Guiana. PLoS Negl. Trop. Dis. 7, e2258 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Linhart, S. B., Flores Crespo, R. & Mitchell, G. C. Control de murciélagos vampiros por medio de un anticoagulante. Bull Pan Am Health Organ. 73, 100–109 (1972).CAS 

    Google Scholar 
    Streicker, D. G. et al. Ecological and anthropogenic drivers of rabies exposure in vampire bats: Implications for transmission and control. Proc. R. Soc. B Biol. Sci. 279, 3384–3392 (2012).
    Google Scholar 
    Henry, M., Cosson, J. F. & Pons, J. M. Modelling multi-scale spatial variation in species richness from abundance data in a complex neotropical bat assemblage. Ecol. Modell. 221, 2018–2027 (2010).
    Google Scholar 
    Bárcenas-Reyes, I. et al. Comportamiento epidemiológico de la rabia paralítica bovina en la región central de México, 2001-2013. Pan Am. J. Public Health. 38, 396–402 (2015).
    Google Scholar 
    Benavides, J. A., Valderrama, W. & Streicker, D. G. Spatial expansions and travelling waves of rabies in vampire bats. Proc. R. Soc. B 283, e20160328 (2016).
    Google Scholar 
    Van de Vuurst, P. et al. Desmodus rotundus Occurrence Record Database. figshare https://doi.org/10.6084/m9.figshare.15025296.v6 (2021).Wieczorek, J. et al. Darwin core: An evolving community-developed biodiversity data standard. PLoS One 7, e29715 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robertson, T. et al. The GBIF integrated publishing toolkit: Facilitating the efficient publishing of biodiversity data on the internet. PLoS One 9, e102623 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marcial, L. H. & Hemminger, B. M. Scientific data repositories on the web: An initial survey. J. Am. Soc. Inf. Sci. Technol. 61, 2029–2048 (2010).
    Google Scholar 
    GBIF.org. GBIF Occurrence Download. Global Biodiversity Information Facility. GBIF https://doi.org/10.15468/dl.my64ap (2020).Grattarola, F. et al. Biodiversidata: An open-access biodiversity database for Uruguay. Biodivers. Data J. 7, e36226 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    CRIA. speciesLink Data Download. Centro de Referência em Informação Ambiental. https://specieslink.net/search/download/20210909104533-0016416 (2021).Cambon, J. Package ‘ tidygeocoder’. CRAN 2–13 (2021).Wickham, H., Francois, R., Henry, L. & Muller, K. Package ‘ dplyr’: A grammar of data manipulation. CRAN 3–88 (2020).R Core Team. R: A language and environment for statisitical computing. https://www.R-project.org/ (2019).Zizka, A. et al. Package ‘ CoordinateCleaner’. CRAN 13-152 (2019).Wickham, H. ggplot2: Elegant graphics for data analysis. (Springer-Verlag, 2016).ESRI Inc. ArcGIS Desktop Pro, version 2.4.3. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (2019). More