More stories

  • in

    Retention of deposited ammonium and nitrate and its impact on the global forest carbon sink

    Study sitesThe paired 15N-tracer experiments were conducted in 13 forest sites, of which nine were in China, two in Europe and two in the USA. These sites vary in mean annual precipitation (MAP) from 700 to 2500 mm, in mean annual temperature (MAT) from 3 to > 20 °C, and in soil types (Fig. 1, Supplementary Table 1, Supplementary Table 2). Ambient N deposition (bulk/throughfall NH4+ plus NO3−) at the sites ranged from 6 to 54 kg N ha−1 yr−1. Forest types at the experimental sites include tropical forests in southern China, subtropical forests in central China, and temperate forests in northeastern China, Europe, and the USA. Data from the sites in Europe, the USA, and six of the nine sites in China have been reported previously. Detailed descriptions of these sites and the related data source references are summarized in Supplementary Table 1. Data for forests at the other three sites in China (Xishuangbanna, Wuyishan, and Maoershan) are originally presented here. The Xishuangbanna sites, which is located Xishuangbanna National Forest Reserve in Menglun, Mengla County, Yunnan Province, is a primary mixed forest dominated by the typical tropical forest tree species Terminalia myriocarpa and Pometia tomentosa. The Wuyishan forest, which is located in the Wuyi mountains in Jiangxi Province, is also a mature subtropical forest with Tsuga chinensis var. tchekiangensis as the dominant tree species in the canopy layer. Other common tree species in the forest include Betula luminifera and Cyclobalanopsis multinervis. Maoershan is a relatively young (45 years) larch (Larix gmelinii) plantation located at Laoshan Forest Research Station of Northeast Forestry University, Heilongjiang Province. A few tree species- Juglans mandshurica, Quercus mongolica, and Betula platyphylla- coexist with Larix gmelinii in the canopy. More information about these sites is also presented in Supplementary Table 1.
    15N-tracer experimentAt all sites, small amounts of 15NH4+ or 15NO3− tracers (generally  20% in a 1-km pixel was defined as forest. Based on this, we estimated the total global forest area to be ≈42 million km2.Calculation of N-induced C sinkThe N-induced C sink was estimated via the stoichiometric upscaling method19, i.e., by multiplying the N retention in woody tissues of stems, branches, and coarse roots and in the soil with the C/N ratios in these compartments. The C sink due to NHx and or NOy deposition was calculated separately using Eq. (4) as follows:$${{{{{{mathrm{C}}}}}}}_{{{{{{mathrm{sink}}}}}}}={{{{{{mathrm{N}}}}}}}_{{{{{{mathrm{dep}}}}}}}times left(,{!}^{15}{{{{{{{mathrm{N}}}}}}}_{{{{{{mathrm{org}}}}}}}^{{{{{{mathrm{R}}}}}}}}times frac{{{{{{mathrm{C}}}}}}}{{{{{{mathrm{N}}}}}}}_{{{{{{mathrm{org}}}}}}}+{{,}^{15}}{{{{{{{mathrm{N}}}}}}}_{{{min }}}^{{{{{{mathrm{R}}}}}}}}times frac{{{{{{mathrm{C}}}}}}}{{{{{{mathrm{N}}}}}}}_{{{min }}}+{{,}^{15}}{{{{{{{mathrm{N}}}}}}}_{{{{{{mathrm{wood}}}}}}}^{{{{{{mathrm{R}}}}}}}}times frac{{{{{{mathrm{C}}}}}}}{{{{{{mathrm{N}}}}}}}_{{{{{{mathrm{wood}}}}}}}times {{{{{mathrm{f}}}}}}right)$$
    (4)
    where Ndep is NHx or NOy deposition (kg N ha−1 yr−1); ({}^{15}{{{{{{rm{N}}}}}}}_{{{{{{rm{org}}}}}}}^{{{{{{rm{R}}}}}}}), ({}^{15}{{{{{{rm{N}}}}}}}_{{{min }}}^{{{{{{rm{R}}}}}}}) and ({}^{15}{{{{{{rm{N}}}}}}}_{{{{{{rm{wood}}}}}}}^{{{{{{rm{R}}}}}}}) indicate the fraction of deposited NHx or NOy allocated to organic layer, mineral soil, and woody biomass, respectively; and ({frac{{{{{{rm{C}}}}}}}{{{{{{rm{N}}}}}}}}_{{{{{{rm{org}}}}}}}), ({frac{{{{{{rm{C}}}}}}}{{{{{{rm{N}}}}}}}}_{{{min }}}), and ({frac{{{{{{rm{C}}}}}}}{{{{{{rm{N}}}}}}}}_{{{{{{rm{wood}}}}}}}) indicate C/N ratios in the soil organic layer, soil mineral layer and woody plant biomass, respectively. f is the fraction we applied to account for flexible C/N in response to elevated N deposition. At elevated N deposition, wood C/N ratio may decrease, and N accumulates without stimulating additional ecosystem C storage. To account for this scenario, we adopted a flexible stoichiometry51, in which the effects of N deposition on wood C/N ratios are accounted for by multiplying the C/N ratios of wood with a fraction f (from 1 to 0) depending on plant growth response to different rates of N deposition level (kg N ha−1 yr−1). Results of growth responses to experimental N addition and field N gradient studies show plant growth increased with increasing N deposition, flattening near 15–30 kg N ha−1 yr−1 and a reversal toward no enhanced growth response at about 100 kg N ha−1 yr−1 (ref. 36,52). Therefore, for N deposition More

  • in

    Dynamic characteristics and synergistic effects of ecosystem services under climate change scenarios on the Qinghai–Tibet Plateau

    Study areaThe QTP is located in southwestern China (25° ~ 40°N, 75° ~ 103°E), with a total area of 2.5 million km2 and an average elevation above 4000 m (Fig. 7). The QTP is mainly covered with permafrost and grassland, with areas of glacier and desert48. The QTP, also known as the “Asian Water Tower”49, is the source of 13 major Asian rivers (e.g., the Indus, Ganges, Brahmaputra, Yangtze, and Yellow Rivers). The QTP has a clod, arid climate, with an annual average temperature below 0 °C and an annual mean precipitation of 400 mm. The seasonal distribution of precipitation is uneven, with most precipitation concentrated in the period June to September. There is a decreasing trend in precipitation from the southeast to the northwest of the plateau50. Known as the “Roof of the World” and “Third Pole”, the QTP is also an area that is sensitive to global climate change, showing increasing warming and humidification in recent decades51. In addition, the QTP contains a diversity of ecosystems and fosters a historic ecological security barrier, which nurtures the development of animal husbandry and diverse cultures.Figure 7Geographical location of the QTP. The map was created using ArcMap 10.2, URL: http://www.esri.com.Full size imageData sourcesRCP scenarios and climate change datasetThe RCP scenarios released by the IPCC 5th Assessment Report52 supply a forecasting standard for climate change research. RCP values ranging from 2.6 to 8.5 reflect radiation forcing values in 2100 relative to the beginning of the Industrial Revolution in 175053. Different radiative forcing scenarios represent different future climate scenarios. RCPs consist of one high-emission scenario (8.5 ({text{W}} cdot {text{m}}^{ – 2}), RCP8.5), two medium-emission scenarios (6.0 ({text{W}} cdot {text{m}}^{ – 2}), RCP6.0; 4.5 ({text{W}} cdot {text{m}}^{ – 2}), RCP4.5), and one low-emission scenario (2.6 ({text{W}} cdot {text{m}}^{ – 2}), RCP2.6)54. In this study, we adopted the RCP2.6, RCP4.5 and RCP8.5 climate change scenarios choosing RCP4.5 to represent the medium emission scenario in consideration of increasing activity through global initiatives in response to climate change. Specific descriptions of each scenario are shown in Table 1.Table 1 The characteristics of each RCP scenario.Full size tableWe adopted the climate change dataset outputs from five global circulation models(GCMs) (namely GFDL-ESM2M, HadGEM2-ES, IPSLCM5ALR, MIROC-ESM-CHEM, and NorESM1-M) within the fifth phase of the Coupled Model Intercomparison Project (CMIP5)55. The dataset outputs from GCMs were downscaled to a resolution of 0.5° and bias-corrected with Water and Global Change (WATCH) data (Integrated Project Water and Global Change, http:/www.eu-watch.org/data_availability)56. The baseline period of the dataset is 1950–2005 and the forecast period is 2006–2099.The climate change dataset included daily precipitation, air pressure, solar radiation, air temperature, maximum air temperature, minimum air temperature, wind speed, and relative humidity.Auxiliary dataThe auxiliary data for our research include the following. (1) The land use and land cover (LULC) map was obtained from the Resource and Environment Science and Data Center (RESDC), Chinese Academy of Sciences (https://www.resdc.cn) for 1980, 1990, 1995, 2000, 2005, 2010, 2015 and 2020 at a 1 km resolution. The LULC data have six major classes: cropland, grassland, forestland, water, built-up land and barren land. (2) The spatial distribution of soil type data, digital elevation model (DEM), watershed boundaries and normalized difference vegetation index (NDVI) data with a resolution of 1 km were obtained from the RESDC. (3) Soil physical and chemical property data (available soil water capacity, absolute depth to bedrock, silt content, clay content, sand content and soil organic carbon content) were obtained from the International Soil Reference and Information Centre (ISRIC Data Hub) (https://data.isric.org) with a 1 km spatial resolution. (4) During 1986–2005 and 1986–2098 (RCP2.6; RCP4.5; RCP8.5), the permafrost datasets in the Northern Hemisphere (https://doi.org/10.12072/ncdc.CCI.db0032.2020) and the response of the alpine grassland ecosystem to climate change (RCP2.6, RCP4.5, and RCP8.5) in the permafrost region of the Qinghai-Tibet Plateau from 1981 to 2099 (https://doi.org/10.12072/ncdc.CCI.db0006.2020) were provided by the National Cryosphere Desert Data Center (https://www.ncdc.ac.cn).Future land use simulation and validationIn this study, we used the Future Land Use Simulation model (FLUS) to simulate the LULC in 2030, 2050 and 2100 under the three RCP scenarios. This model was developed by57 and is available for download at (www.geosimulation.cn/flus.html). The FLUS model is an efficient land use simulation tool and has been widely used58,59. We selected the DEM, slope, precipitation, temperature, soil type, and permafrost distribution to calculate the suitability probability. Based on the land use transfer from 2010 to 2015, we calculated the total land use in 2030, 2050 and 2100 under three RCP scenarios by the Markov model. To validate the FLUS model, we set 2010 as the starting year and simulated the land use in 2015. The output results were compared with the real 2015 land use data, and we calculated the Kappa coefficient as follows:$$begin{array}{*{20}c} {Kappa = frac{{P_{0} – P_{C} }}{{P_{P} – P_{C} }}} \ end{array}$$
    (1)
    where (P_{0}) is the number of pixels converted correctly,(P_{C}) is the correct number of pixels to be converted in the random case, and (P_{P}) is the correct number of pixels to convert under ideal conditions.Assessment of ecosystem services under different RCP scenariosThis study assessed four ESs namely WY, SR, CS, and RMP, under climate change scenarios in 1980, 1990, 1995, 2000, 2005, 2010, 2015, and 2030 (short-term); 2050 (medium-term); and 2100 (long-term). We adopted the Integrated Valuation of Environmental Service and Tradeoffs (InVEST)60 model to assess the WY, SR, and CS ecosystem services. The InVEST model developed by the Natural Capital Project(www.naturalcapitalproject.org) is an effective model to evaluate ESs61 and is widely used in ES research on the QTP22,23,24,25. All spatial data were processed into a 1 km resolution and Albers projection by ArcGIS 10.2 before input into the InVEST model. The data requirements of the InVEST model and its processing are shown in Table S1. We use net primary productivity (NPP) to evaluate the RMP, and NPP can be used to represent the richness of biomass and the supply of organic materials. We adopted the Carnegie-Ames-Stanford Approach (CASA)62 model to estimate NPP.Water yieldWater yield is a key ecosystem service. It refers to the annual quantity of water available for human use, as measured by the supply of surface water per unit area63. We adopted the InVEST 3.9.0 water yield model to estimate WY services in the QTP region. The water yield model is based on the water balance principle64. The biophysical parameter table required by the model is shown in Table S2. The parameters in the biophysical table come from the published literature26,63,65. The annual WY is calculated as follows:$$begin{array}{*{20}{c}} {{Y_{xj}} = left( {1 – frac{{AE{T_{xj}}}}{{{P_x}}}} right){P_x}} end{array}$$
    (2)
    where (Y_{xj}) is the annual WY of land cover type j in pixel x; (P_{x}) is the annual average precipitation of pixel x; and (AET_{xj}) is the actual evapotranspiration of land cover type j in pixel x.$$begin{array}{*{20}c} {frac{{AET_{xj} }}{{P_{x} }} = frac{{1 + omega_{x} R_{xj} }}{{1 + omega_{x} R_{xj} + frac{1}{{R_{xj} }}}}} \ end{array}$$
    (3)
    where (omega_{x}) is a dimensionless nonphysical parameter representing soil properties under natural climate conditions. The calculation method is as follows:$$begin{array}{*{20}c} {omega_{x} = Zfrac{{AWC_{x} }}{{P_{x} }}} \ end{array}$$
    (4)
    where Z is a seasonal rainfall factor representing the regional precipitation distribution and other hydrogeological characteristics. The higher the Z value is, the less the seasonal constant Z affects the model results66. Since the QTP region belongs to the arid and cold climate zone in China, the Z value is set as 9. (AWC_{x}) is the soil effective water content of pixel X, which is determined by the soil depth and physical and chemical properties. (R_{xj}) is the Budyko dryness index, which is calculated as follows:$$begin{array}{*{20}c} {R_{xj} = frac{{K_{xj} cdot ET_{0} }}{{P_{x} }}} \ end{array}$$
    (5)
    where, (K_{xj}) is the reference crop evapotranspiration and (ET_{0}) is the reference evapotranspiration in pixel x. We adopted the modified Hargreaves method to calculate (ET_{0}).$$ET_{0} = 0.0013 times 0.408 times RA times (T_{av} + 17) times (TD – 0.0123P)^{0.76}$$
    (6)
    In the above formula, (T_{av}) represents the average daily maximum temperature and minimum temperature, (TD) represents the difference between the daily maximum temperature and minimum temperature, (RA) represents astronomical radiation (MJm-2d-1) and P represents precipitation (mm/month).Soil retentionSoil retention refers to the ability of various land cover types to prevent soil erosion. The InVEST 3.9.0 sediment delivery ratio (SDR) was employed to estimate SR services in the QTP region. The SDR model is based on the Revised Universal Soil Loss Equation (RUSLE)67, and the model is calculated as follows:$$begin{array}{*{20}c} {SR = R*K*LS – R*K*LS*C*P} \ end{array}$$
    (7)
    $$begin{array}{*{20}c} {L = left( {frac{gamma }{22.3}} right)^{{frac{beta }{1 + beta }}} } \ end{array}$$
    (8)
    $$begin{array}{*{20}c} {beta = frac{{sin frac{theta }{0.0896}}}{{left[ {3.0, *,left( {sin theta } right)^{0.8} +, 0.56} right]}}} \ end{array}$$
    (9)
    $$begin{array}{*{20}c} {S = 65.41*sin^{2} theta + 4.56*sin theta + 0.065} \ end{array}$$
    (10)
    where SR is the total amount of soil retention (tons ha-1 a-1), LS is the topographic factor, and LS is calculated from the slope length factor (L) and slope steepness factor (S). C is the vegetation and management factor. P is the support practice factor. C and P are shown in Table S2. R is the rainfall erosivity index(MJ mm ha-1 h-1 a-1), which was calculated via monthly precipitation28. K is the soil erodibility, which was calculated from the sand, silt, clay and organic soil moisture contents68. R and K are calculated as follows:$$begin{array}{*{20}c} {R = mathop sum limits_{i = 1}^{12} left( { – 1.5527 + 0.179P_{i} } right)} \ end{array}$$
    (11)
    $$begin{array}{*{20}c} {K = 0.1317*left{ {0.2 + 0.3*exp left[ { – 0.0256*SANleft( {1 – frac{SIL}{{100}}} right)} right]} right}} \ {*left( {frac{SIL}{{CLA – SIL}}} right)^{0.3} *left( {1 – frac{0.25*SOM}{{SOM + exp 3.72 – 2.95*SOM}}} right)} \ {quad quad*left( {1 – frac{{0.7*1 – frac{SAN}{{100}}}}{{begin{array}{*{20}c} {1 – frac{SAN}{{100}} + exp left( { – 5.51 + 22.9*left( {1 – frac{SAN}{{100}}} right)} right)} \ end{array} }}} right)} \ end{array}$$
    (12)
    where Pi is the precipitation in month i. SAN, SIL, CLA, and SOM are the contents of sand, silt, clay and organic moisture, respectively. Other parameters are shown in Table S1.Carbon storageCarbon storage services refer to the carbon that ecosystems store in vegetation, soil and debris. The InVEST 3.9.0 carbon model uses a simple method to estimate CS based on land use data. The carbon pools in this model include four categories: aboveground carbon, belowground carbon, soil organic carbon and dead organic matter. This model simplifies the carbon cycle, and the change in carbon storage is mainly caused by change in land use69. The carbon pools for land use types were set according to published literature70,71,72. The carbon storage is calculated as follows:$$begin{array}{*{20}c} {{text{C}}_{{{text{total}}}} = C_{above} + C_{below} + C_{soil} + C_{dead} } \ end{array}$$
    (13)
    where ({text{C}}_{{{text{total}}}}), (C_{above}), (C_{below}), (C_{soil}) and (C_{dead}) are the total carbon storage, aboveground carbon, belowground carbon, soil organic carbon and dead organic matter, respectively.Raw material provisionRaw material supply refers to the organic matter provided by the ecosystem for human production and life, such as pasture and wood. In this study, RMP was quantified by the annual NPP. The NPP in the QTP region is calculated by the CASA model, which is a light use efficiency model driven by climate and remote sensing data73,74. The CASA model has been widely used to estimate NPP in terrestrial ecosystems75,76. In the CASA model, NPP is calculated as follows:$$begin{array}{*{20}c} {NPPleft( {x,t} right) = APARleft( {x,t} right) times varepsilon left( {x,t} right)} \ end{array}$$
    (14)
    where, (APARleft( {x,t} right)) is the photosynthetically active radiation(MJ m-2) absorbed by pixel x in month t, (varepsilon left( {x,t} right)) is the actual light energy utilization rate(gC MJ-1), and the (APARleft( {x,t} right)) calculation method is as follows:$$begin{array}{*{20}c} {APARleft( {x,t} right) = SOLleft( {x,t} right) times FPARleft( {x,t} right) times 0.5} \ end{array}$$
    (15)
    In the formula, (SOLleft( {x,t} right)) is the total solar radiation in pixel x in month t(MJ M-2); (FPARleft( {x,t} right)) is the absorption ratio of photosynthetically active radiation by vegetation, which is determined by the normalized difference vegetation index (NDVI); and the constant 0.5 is the proportion of photosynthetically active radiation to the total radiation. (SOLleft( {x,t} right)) can be calculated by the solar shortwave radiation as follows:$$begin{array}{*{20}c} {SOLleft( {x,t} right) = a_{s} + b_{s} frac{n}{N}R_{s} } \ end{array}$$
    (16)
    where, (R_{s}) is the solar shortwave radiation(MJ M-2 d-1), n is the actual sunshine time(hours), N is the time of day(hours), and (frac{n}{N}) is the relative sunshine time; The constants (a_{s} = 0.25) and (b_{s} = 0.5).And the (varepsilon left( {x,t} right)) is calculated as follows:$$begin{array}{*{20}c} {varepsilon left( {x,t} right) = T_{varepsilon 1} left( {x,t} right) times T_{varepsilon 2} left( {x,t} right) times W_{varepsilon } left( {x,t} right) times varepsilon_{max} } \ end{array}$$
    (17)
    where, (T_{varepsilon 1}) and (T_{varepsilon 2}) are the stress factors of cold and heat, respectively; (W_{varepsilon }) is the water stress factor, reflecting the influence of water conditions; (varepsilon_{max}) is the maximum light use efficiency(gC MJ-1) under the optimal conditions, in this study, (varepsilon_{max}) is 0.389.Trend analysisThe Mann–Kendall nonparametric test and Sen’s slope estimator were used to analyze the trend of ESs in the QTP region. The Mann–Kendall method is widely used to analyze climatic and hydrological time series variation trends77. The advantage of the Mann–Kendall test is that it does not require the sample to follow a certain distribution, allows the existence of missing values, is not affected by a small number of outliers, and has strong quantitative ability78. The Mann–Kendall test is as follows:$$begin{array}{*{20}c} {S = mathop sum limits_{i}^{n – 1} mathop sum limits_{j = i + 1}^{n} sgnleft( {x_{j} – x_{i} } right)} \ end{array}$$
    (18)
    For time series data, i.e., {x1, x2, …, xn}, n is the length of the data, and (sgnleft( {x_{j} – x_{i} } right)) is derived as:$$begin{array}{*{20}c} {sgnleft( {x_{j} – x_{i} } right) = left{ {begin{array}{*{20}c} { + 1,x_{j} – x_{i} > 0} \ {0,x_{j} – x_{i} = 0} \ { – 1,x_{j} – x_{i} < 0} \ end{array} } right.} \ end{array}$$ (19) In this study, we set the significance level of (alpha = 0.05), when (left| Z right| le Z_{1 - alpha /2}) accepts the null hypothesis. Otherwise, the null hypothesis is rejected, and the trend is statistically significant.$$begin{array}{*{20}c} {Z = left{ {begin{array}{*{20}l} frac{S - 1}{{sqrt {VARleft( S right)} }},&quad S > 0 \ 0,&quad S = 0 \ frac{S + 1}{{sqrt {VARleft( S right)} }},&quad S < 0 \ end{array} } right.} \ end{array}$$ (20) $$begin{array}{*{20}c} {VARleft( S right) = left{ {nleft( {n - 1} right)left( {2n + 5} right) - mathop sum limits_{j = 1}^{p} t_{j} left( {t_{j} - 1} right)left( {2t_{j} + 5} right)} right} div 18} \ end{array}$$ (21) where p is the number of nodes in the dataset and (t_{j}) is the length of the nodes.Sen’s slope estimator is an estimation method based on the median and its insensitivity to outliers78.$$begin{array}{*{20}c} {beta = Medianleft( {frac{{x_{j} - x_{i} }}{j - i}} right)} \ end{array}$$ (22) Trade-offs and synergy analysisSynergies and trade-offs were used to describe the relationships among the ESs. A trade-off analysis was conducted to reflect the difference in ESs and their responses to climate change. Trade-offs are when ESs change in the opposite direction. Synergies are when ESs change in the same direction79. Correlation analysis is often used to evaluate trade-offs and synergies between ESs2. To analyze the trade-offs and synergies of ESs at different administrative and natural scales, we allocated the ES values at the 10 km (pixel), county and watershed scales by the “zonal statistic” module of ArcGIS 10.2, and conducted minimum–maximum normalization in R4.0.3 (www.R-project.com). To analyze the relationship between any two of the four ES types, the R package PerformanceAnalytics was adopted to measure the Spearman correlation matrix at different scales. More

  • in

    Adult mosquito predation and potential impact on the sterile insect technique

    World Health Organization. World malaria report 2020: 20 years of global progress and challenges. 299 https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020 (2020).Bhanot, K., Schroeder, D., Llewellyn, I., Luczak, N. & Munasinghe, T. Dengue spread information system (DSIS). In Proceedings of the 4th International Conference on Medical and Health Informatics 150–159 (Association for Computing Machinery, 2020). https://doi.org/10.1145/3418094.3418133.Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 14, e0007831 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carrasco, D. et al. Behavioural adaptations of mosquito vectors to insecticide control. Curr. Opin. Insect Sci. 34, 48–54 (2019).PubMed 

    Google Scholar 
    Sokhna, C., Ndiath, M. O. & Rogier, C. The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria. Clin. Microbiol. Infect. 19, 902–907 (2013).CAS 
    PubMed 

    Google Scholar 
    Flint, M. L. & Dreistadt, S. H. Natural Enemies Handbook: The Illustrated Guide to Biological Pest Control Vol. 3386 (Univ of California Press, 1998).
    Google Scholar 
    Chandra, G., Bhattacharjee, I., Chatterjee, S. N. & Ghosh, A. Mosquito control by larvivorous fish. Indian J. Med. Res. 127, 13–27 (2008).CAS 
    PubMed 

    Google Scholar 
    Dambach, P. The use of aquatic predators for larval control of mosquito disease vectors: Opportunities and limitations. Biol. Control 150, 104357 (2020).CAS 

    Google Scholar 
    Sebastian, A., Sein, M. M., Thu, M. M. & Corbet, P. S. Suppression of Aedes aegypti (Diptera: Culicidae) using augmentative release of dragonfly larvae (Odonata: Libellulidae) with community participation in Yangon, Myanmar1. Bull. Entomol. Res. 80, 223–232 (1990).
    Google Scholar 
    Harrington, R. W. & Harrington, E. S. Effects on fishes and their forage organisms of impounding a Florida salt marsh to prevent breeding by salt marsh mosquitoes. Bull. Mar. Sci. 32, 523–531 (1982).
    Google Scholar 
    Mk, D. & Rn, P. Evaluation of mosquito fish Gambusia affinis in the control of mosquito breeding in rice fields. Indian J. Malariol. 28, 171–177 (1991).
    Google Scholar 
    Rk, S., Rc, D. & Sp, S. Laboratory studies on the predatory potential of dragon-fly nymphs on mosquito larvae. J. Commun. Dis. 35, 96–101 (2003).
    Google Scholar 
    Focks, D. A., Sackett, S. R., Dame, D. A. & Bailey, D. L. Effect of weekly releases of Toxorhynchites amboinensis (Doleschall) on Aedes aegypti (L.) (Diptera: Culicidae) in New Orleans, Louisiana. J. Econ. Entomol. 78, 622–626 (1985).CAS 
    PubMed 

    Google Scholar 
    Brodman, R. & Dorton, R. The effectiveness of pond-breeding salamanders as agents of larval mosquito control. J. Freshw. Ecol. 21, 467–474 (2006).
    Google Scholar 
    Vu, S. N., Nguyen, T. Y., Kay, B. H., Marten, G. G. & Reid, J. W. Eradication of Aedes aegypti from a village in Vietnam, using copepods and community participation. Am. J. Trop. Med. Hyg. 59, 657–660 (1998).CAS 
    PubMed 

    Google Scholar 
    Canyon, D. V. & Hii, J. L. K. The gecko: An environmentally friendly biological agent for mosquito control. Med. Vet. Entomol. 11, 319–323 (1997).CAS 
    PubMed 

    Google Scholar 
    Strickman, D., Sithiprasasna, R. & Southard, D. Bionomics of the spider, Crossopriza lyoni (Araneae, Pholcidae), a predator of dengue vectors in Thailand. J. Arachnol. 25, 194–201 (1997).
    Google Scholar 
    Tkaczenko, G., Fischer, A. & Weterings, R. Prey preference of the common house geckos Hemidactylus frenatus and Hemidactylus platyurus. Herpetol. Notes 7, 482–488 (2014).
    Google Scholar 
    Weterings, R., Umponstira, C. & Buckley, H. L. Landscape variation influences trophic cascades in dengue vector food webs. Sci. Adv. 4, eaap9534 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Weterings, R., Umponstira, C. & Buckley, H. L. Predation on mosquitoes by common Southeast Asian house-dwelling jumping spiders (Salticidae). Argy 16, 122–127 (2014).
    Google Scholar 
    Puig-Montserrat, X. et al. Bats actively prey on mosquitoes and other deleterious insects in rice paddies: Potential impact on human health and agriculture. Pest Manag. Sci. 76, 3759–3769 (2020).CAS 
    PubMed 

    Google Scholar 
    May, M. L. Odonata: Who they are and what they have done for us lately: Classification and ecosystem services of dragonflies. Insects 10, 62 (2019).PubMed Central 

    Google Scholar 
    Raghavendra, K., Sharma, P. & Dash, A. P. Biological control of mosquito populations through frogs: Opportunities & constrains. Indian J. Med. Res. 128, 22–25 (2008).CAS 
    PubMed 

    Google Scholar 
    Poulin, B., Lefebvre, G. & Paz, L. Red flag for green spray: adverse trophic effects of Bti on breeding birds. Journal
    of Applied Ecology 47, 884–889 (2010).
    Google Scholar 
    Korichi, R. et al. Ecological impact of trophic diet of mantids in Ghardaïa (Algerian Sahara). Ponte Int. Sci. Res. J. 72, 94–106 (2016).
    Google Scholar 
    Prete, F. R. The Praying Mantids (Johns Hopkins University Press, 1999).
    Google Scholar 
    Dyck, V. A., Hendrichs, J. & Robinson, A. S. Sterile Insect Technique: Principles And Practice In Area-Wide Integrated Pest Management (CRC Press, 2021).
    Google Scholar 
    Bouyer, J. & Vreysen, M. J. B. Yes, irradiated sterile male mosquitoes can be sexually competitive!. Trends Parasitol. 36, 877–880 (2020).CAS 
    PubMed 

    Google Scholar 
    Parker, A., Vreysen, M., Bouyer, J. & Calkins, C. Sterile insect quality control/assurance. In Sterile Insect Technique: Principles And Practice In Area-Wide Integrated Pest Management 399–440 (2021).Lees, R., Carvalho, D. O. & Bouyer, J. Potential impact of integrating the sterile insect technique into the fight against disease-transmitting mosquitoes. In Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management 2nd edn (eds Dyck, A. V. et al.) 1082–1118 (CRC Press, 2021).
    Google Scholar 
    Bimbilé Somda, N. S. et al. Cost-effective larval diet mixtures for mass rearing of Anopheles arabiensis Patton (Diptera: Culicidae). Parasit. Vectors 10, 619 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Bimbilé Somda, N. S. B. et al. Insects to feed insects-feeding Aedes mosquitoes with flies for laboratory rearing. Sci. Rep. 9, 1–13 (2019).
    Google Scholar 
    Maïga, H. et al. Assessment of a novel adult mass-rearing cage for Aedes albopictus (Skuse) and Anopheles arabiensis (Patton). Insects 11, 801 (2020).PubMed Central 

    Google Scholar 
    Maïga, H. et al. Reducing the cost and assessing the performance of a novel adult mass-rearing cage for the dengue, chikungunya, yellow fever and Zika vector, Aedes aegypti (Linnaeus). PLOS Negl. Trop. Dis. 13, e0007775 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mamai, W. et al. Black soldier fly (Hermetia illucens) larvae powder as a larval diet ingredient for mass-rearing Aedes mosquitoes. Parasite 26, 57 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mamai, W. et al. Optimization of mass-rearing methods for Anopheles arabiensis larval stages: Effects of rearing water temperature and larval density on mosquito life-history traits. J. Econ. Entomol. 111, 2383–2390 (2018).PubMed 

    Google Scholar 
    Bellini, R., Puggioli, A., Balestrino, F., Carrieri, M. & Urbanelli, S. Exploring protandry and pupal size selection for Aedes albopictus sex separation. Parasites Vectors 11, 650 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Yamada, H. et al. Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin. Malar J. 11, 208 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Yamana, T. K. & Eltahir, E. A. B. Projected impacts of climate change on environmental suitability for malaria transmission in West Africa. Environ. Health Perspect. 121, 1179–1186 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Zacarés, M. et al. Exploring the potential of computer vision analysis of pupae size dimorphism for adaptive sex sorting systems of various vector mosquito species. Parasites Vectors 11, 656 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Culbert, N. J., Gilles, J. R. L. & Bouyer, J. Investigating the impact of chilling temperature on male Aedes aegypti and Aedes albopictus survival. PLoS ONE 14, e0221822 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Helinski, M. E., Parker, A. G. & Knols, B. G. Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar J. 5, 41 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Yamada, H. et al. Identification of critical factors that significantly affect the dose-response in mosquitoes irradiated as pupae. Parasit. Vectors 12, 1–13 (2019).CAS 

    Google Scholar 
    Culbert, N. J. et al. A rapid quality control test to foster the development of the sterile insect technique against Anopheles arabiensis. Malar. J. 19, 1–10 (2020).
    Google Scholar 
    Culbert, N. J. et al. A rapid quality control test to foster the development of genetic control in mosquitoes. Sci. Rep. 8, 1–9 (2018).CAS 

    Google Scholar 
    Bouyer, J. et al. Field performance of sterile male mosquitoes released from an uncrewed aerial vehicle. Sci. Robot. 5, eaba6251 (2020).PubMed 

    Google Scholar 
    Somda, N. S. B. et al. Ecology of reproduction of Anopheles arabiensis in an urban area of Bobo-Dioulasso, Burkina Faso (West Africa): Monthly swarming and mating frequency and their relation to environmental factors. PLoS ONE 13, e0205966 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bellini, R., Medici, A., Puggioli, A., Balestrino, F. & Carrieri, M. Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. J. Med. Entomol. 50, 317–325 (2013).CAS 
    PubMed 

    Google Scholar 
    Vavassori, L., Saddler, A. & Müller, P. Active dispersal of Aedes albopictus: A mark-release-recapture study using self-marking units. Parasites Vectors 12, 583 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zheng, X. et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61 (2019).CAS 
    PubMed 

    Google Scholar 
    Dor, A. & Liedo, P. Survival ability of Mexican fruit fly males from different strains in presence of the predatory orb-weaving spider Argiope argentata (Araneae: Araneidae). Bull. Entomol. Res. 109, 279–286 (2019).CAS 
    PubMed 

    Google Scholar 
    Rathnayake, D. N., Lowe, E. C., Rempoulakis, P. & Herberstein, M. E. Effect of natural predators on Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) control by sterile insect technique (SIT). Pest Manag. Sci. 75, 3356–3362 (2019).CAS 
    PubMed 

    Google Scholar 
    Kral, K. The functional significance of mantis peering behaviour. Eur. J. Entomol. 109, 295–301 (2012).
    Google Scholar 
    Bond, J. G. et al. Optimization of irradiation dose to Aedes aegypti and Ae. albopictus in a sterile insect technique program. PLoS ONE 14, e0212520 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Helinski, M. E., Parker, A. G. & Knols, B. G. Radiation biology of mosquitoes. Malar. J. 8, S6 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Hurd, L. E. et al. Cannibalism reverses male-biased sex ratio in adult mantids: Female strategy against food limitation?. Oikos 69, 193–198 (1994).
    Google Scholar 
    Lawrence, S. E. Sexual cannibalism in the praying mantid, Mantis religiosa: A field study. Anim. Behav. 43, 569–583 (1992).
    Google Scholar 
    Trujillo-Jiménez, P., Castro-Franco, R., Zagal, M. & Corona, Y. The Asian house gecko Hemidactylus frenatus. (2018).Tyler, M. J. On the diet and feeding habits of Hemidactylus frenatus (Dumeril and Bibron) (Reptilia:Gekkonidae) at Rangoon, Burma. Trans. R. Soc. S. Aust. 84, 45–49 (1961).
    Google Scholar 
    Dor, A., Valle-Mora, J., Rodríguez-Rodríguez, S. E. & Liedo, P. Predation of Anastrepha ludens (Diptera: Tephritidae) by Norops serranoi (Reptilia: Polychrotidae): Functional response and evasion ability. Environ. Entomol. 43, 706–715 (2014).PubMed 

    Google Scholar 
    Schmidt, J. M., Sebastian, P., Wilder, S. M. & Rypstra, A. L. The nutritional content of prey affects the foraging of a generalist arthropod predator. PLoS ONE 7, e49223 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turesson, H., Persson, A. & Brönmark, C. Prey size selection in piscivorous pikeperch (Stizostedion lucioperca) includes active prey choice. Ecol. Freshw. Fish 11, 223–233 (2002).
    Google Scholar 
    Collins, C. M., Bonds, J. A. S., Quinlan, M. M. & Mumford, J. D. Effects of the removal or reduction in density of the malaria mosquito, Anopheles gambiae s.l., on interacting predators and competitors in local ecosystems. Med. Vet. Entomol. 33, 1 (2019).CAS 
    PubMed 

    Google Scholar 
    FAO/IAEA. Guidelines for mark-release-recapture procedures of Aedes mosquitoes. Version 1.0. In (eds Bouyer, J. et al.) 22 (Food and Agriculture Organization of the United Nations International Atomic Energy Agency, 2020). More

  • in

    Social behavior mediates the use of social and personal information in wild jays

    Gil, M. A., Hein, A. M., Spiegel, O., Baskett, M. L. & Sih, A. Social information links individual behavior to population and community dynamics. Trends Ecol. Evol. 33, 535–548 (2018).PubMed 

    Google Scholar 
    Shettleworth, S. J. Cognition, Evolution, and Behavior (Oxford University Press, 2010).
    Google Scholar 
    Papini, M. Pattern and process in the evolution of learning. Psychol. Rev. 109, 186–201 (2002).PubMed 

    Google Scholar 
    Wagner, R. H. & Danchin, E. A taxonomy of biological information. Oikos 119, 203–209 (2010).
    Google Scholar 
    Heyes, C. Social learning in animals: Categories and mechanisms. Biol. Rev. Camb. Philos. Soc. 69, 207–231 (1994).CAS 
    PubMed 

    Google Scholar 
    Ladds, Z., Hoppitt, W. & Boogert, N. J. Social learning in otters. R. Soc. Open Sci. 4, 170489 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morand-Ferron, J., Cole, E. F., Rawles, J. E. C. & Quinn, J. L. Who are the innovators? A field experiment with 2 passerine species. Behav. Ecol. 22, 1241–1248 (2011).
    Google Scholar 
    Coussi-Korbel, S. & Fragaszy, D. M. On the relation between social dynamics and social learning. Anim. Behav. 50, 1441–1453 (1995).
    Google Scholar 
    Giraldeau, L.-A. & Lefebvre, L. Is social learning an adaptive specialization? In Social Learning in Animals: The Roots of Culture (eds Heyes, C. M. & Galef, B. G.) 107–128 (Academic Press, inc., 1996).
    Google Scholar 
    Giraldeau, L.-A., Valone, T. J. & Templeton, J. J. Potential disadvantages of using socially acquired information. Philos. Trans. R. Soc. B Biol. Sci. 357, 1559–1566 (2002).
    Google Scholar 
    Reader, S. M. & Biro, D. Experimental identification of social learning in wild animals. Learn. Behav. 38, 265–283 (2010).PubMed 

    Google Scholar 
    Laland, K. N. COMMENTARIES is social learning always locally adaptive? Anim. Behav. 52, 637–640 (1996).
    Google Scholar 
    Whitehead, H. Conserving and managing animals that learn socially and share cultures. Learn. Behav. 38, 329–336 (2010).PubMed 

    Google Scholar 
    Kenward, B., Rutz, C., Weir, A. A. S. & Kacelnik, A. Development of tool use in New Caledonian crows: Inherited action patterns and social influences. Anim. Behav. 72, 1329–1343 (2006).
    Google Scholar 
    Mann, J., Stanton, M. A., Patterson, E. M., Bienenstock, E. J. & Singh, L. O. Social networks reveal cultural behaviour in tool-using dolphins. Nat. Commun. 3, 980 (2012).ADS 
    PubMed 

    Google Scholar 
    Musgrave, S., Morgan, D., Lonsdorf, E., Mundry, R. & Sanz, C. Tool transfers are a form of teaching among chimpanzees. Sci. Rep. 6, 34783 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thornton, A. & McAuliffe, K. Teaching in wild meerkats. Science 313, 227–229 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Faegre, S., Nietmann, L., Hannon, P., Ha, J. C. & Ha, R. R. Age-related differences in diet and foraging behavior of the critically endangered Mariana Crow (Corvus kubaryi), with notes on the predation of Coenobita hermit crabs. J. Ornithol. 161, 149–158 (2019).
    Google Scholar 
    Laland, K. N. Social learning strategies. Learn. Behav. 32, 4–14 (2004).PubMed 

    Google Scholar 
    Byrne, R. W. Machiavellian intelligence. Evol. Anthropol. 5, 172–180 (1997).
    Google Scholar 
    Heyes, C. What’s social about social learning? J. Comp. Psychol. 126, 193–202 (2012).PubMed 

    Google Scholar 
    Dawson, E. H., Avarguès-Weber, A., Chittka, L. & Leadbeater, E. Learning by observation emerges from simple associations in an insect model. Curr. Biol. 23, 727–730 (2013).CAS 
    PubMed 

    Google Scholar 
    Coolen, I., Giraldeau, L.-A. & Lavoie, M. Head position as an indicator of producer and scrounger tactics in a ground-feeding bird. Anim. Behav. 61, 895–903 (2001).
    Google Scholar 
    Scheid, C., Range, F. & Bugnyar, T. When, what, and whom to watch? Quantifying attention in ravens (Corvus corax) and jackdaws (Corvus monedula). J. Comp. Psychol. 121, 380–386 (2007).PubMed 

    Google Scholar 
    Hoppitt, W. & Laland, K. N. Social Learning: An Introduction to Mechanisms, Methods, and Models (Princeton University Press, 2013).
    Google Scholar 
    Whiten, A. The burgeoning reach of animal culture. Science 372 (2021).Penn, D. C. & Povinelli, D. J. On the lack of evidence that non-human animals possess anything remotely resembling a ‘theory of mind’. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 731–744 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Whiten, A. Humans are not alone in computing how others see the world. Anim. Behav. 86, 213–221 (2013).
    Google Scholar 
    Zentall, T. R. Social learning mechanisms: Implications for a cognitive theory of imitation. Interact. Stud. 12, 233–261 (2011).
    Google Scholar 
    Akins, C. K. & Zentall, T. R. Imitative learning in male Japanese quail (Coturnix japonica) using the two-action method. J. Comp. Psychol. 110, 316–320 (1996).CAS 
    PubMed 

    Google Scholar 
    Heyes, C. & Saggerson, A. Testing for imitative and nonimitative social learning in the budgerigar using a two-object/two-action test. Anim. Behav. 64, 851–859 (2002).
    Google Scholar 
    McGrew, W. C. Social and cognitive capabilities of nonhuman primates: Lessons from the wild to captivity. Int. J. Study Anim. Probl. 2, 138–149 (1981).
    Google Scholar 
    Chapman, B. B., Ward, A. J. W. & Krause, J. Schooling and learning: Early social environment predicts social learning ability in the guppy, Poecilia reticulata. Anim. Behav. 76, 923–929 (2008).
    Google Scholar 
    Arnold, C. & Taborsky, B. Social experience in early ontogeny has lasting effects on social skills in cooperatively breeding cichlids. Anim. Behav. 79, 621–630 (2010).
    Google Scholar 
    McCune, K. B., Jablonski, P. G., Lee, S. & Ha, R. R. Captive jays exhibit reduced problem-solving performance compared to wild conspecifics. R. Soc. Open Sci. 6, 181311 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilkinson, A., Kuenstner, K., Mueller, J. & Huber, L. Social learning in a non-social reptile (Geochelone carbonaria). Biol. Lett. 6, 614–616 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Leadbeater, E. What evolves in the evolution of social learning? J. Zool. 295, 4–11 (2015).
    Google Scholar 
    Doody, J. S. et al. Aggregated drinking behavior of radiated tortoises (Astrochelys radiata) in arid southwestern Madagascar. Chelonian Conserv. Biol. 10, 145–146 (2011).
    Google Scholar 
    Wendland, L. D. et al. Social behavior drives the dynamics of respiratory disease in threatened tortoises. Ecology 91, 1257–1262 (2010).PubMed 

    Google Scholar 
    Whiten, A. & Mesoudi, A. Establishing an experimental science of culture: Animal social diffusion experiments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3477–3488 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Slagsvold, T. & Wiebe, K. L. Social learning in birds and its role in shaping a foraging niche. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 969–977 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Galef, B. G. & Whiten, A. The comparative psychology of social learning. In APA Handbook of Comparative Psychology: Vol. 2. Evolution, Development, and Neural Substrate (ed. Call, J.) 411–439 (American Psychological Association, 2017). https://doi.org/10.1037/0000012-019.Chapter 

    Google Scholar 
    Prum, R. O., Robinson, S. K. & Gill, F. B. Ornithology (Macmillan Learning, 2019).
    Google Scholar 
    Curry, R. L., Townsend Peterson, A. & Langen, T. A. California scrub-jay (Aphelocoma californica). In Birds of North America (eds Poole, A. & Gill, F.) (The Birds of North America, Inc, 2017).
    Google Scholar 
    Brown, J. L. Mexican jay (Aphelocoma ultramarina). In The Birds of North America (eds Poole, A. & Gill, F.) (The Birds of North America, Inc, 1994).
    Google Scholar 
    Rice, N. H., Martínez-Meyer, E. & Peterson, A. T. Ecological niche differentiation in the Aphelocoma jays: A phylogenetic perspective. Biol. J. Linn. Soc. 80, 369–383 (2003).
    Google Scholar 
    de Kort, S. R. & Clayton, N. S. An evolutionary perspective on caching by corvids. Proc. R. Soc. B Biol. Sci. 273, 417–423 (2006).
    Google Scholar 
    Pesendorfer, M. B. & Koenig, W. D. Competing for seed dispersal: Evidence for the role of avian seed hoarders in mediating apparent predation among oaks. Funct. Ecol. 31, 622–631 (2017).
    Google Scholar 
    Zentall, T. R. Perspectives on observational learning in animals. J. Comp. Psychol. 126, 114–128 (2012).PubMed 

    Google Scholar 
    Aplin, L. M. et al. Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518, 538–541 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    McCormack, J. E., Jablonski, P. G. & Brown, J. L. Producer-scrounger roles and joining based on dominance in a free-living group of Mexican jays (Aphelocoma ultramarina). Behaviour 144, 967–982 (2007).
    Google Scholar 
    Logan, C. J., Breen, A. J., Taylor, A. H., Gray, R. D. & Hoppitt, W. How New Caledonian crows solve novel foraging problems and what it means for cumulative culture. Learn. Behav. 44, 18–28 (2016).PubMed 

    Google Scholar 
    Ashton, B. J., Thornton, A. & Ridley, A. R. Larger group sizes facilitate the emergence and spread of innovations in a group-living bird. Anim. Behav. 158, 1–7 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Griffin, A. S. & Diquelou, M. C. Innovative problem solving in birds: A cross-species comparison of two highly successful passerines. Anim. Behav. 100, 84–94 (2015).
    Google Scholar 
    Therneau, T. M., Crowson, C. & Atkinson, E. Using time dependent covariates and time dependent coefficents in the Cox model. Survival Vignettes, 2, 3 (2017).
    Google Scholar 
    Barrett, B. J., McElreath, R. L. & Perry, S. E. Pay-off-biased social learning underlies the diffusion of novel extractive foraging traditions in a wild primate. Proc. R. Soc. B Biol. Sci. 284, 20170358 (2017).
    Google Scholar 
    Therneau, T. M. Coxme: Mixed Effects Cox Models (R Package, 2018).
    Google Scholar 
    Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002). https://doi.org/10.1016/j.ecolmodel.2003.11.004.Book 
    MATH 

    Google Scholar 
    Clayton, N. S., Dally, J. M. & Emery, N. J. Social cognition by food-caching corvids. The western scrub-jay as a natural psychologist. Philos. Trans. R. Soc. B Biol. Sci. 362, 507–522 (2007).
    Google Scholar 
    Hare, B., Call, J., Agnetta, B. & Tomasello, M. Chimpanzees know what conspecifics do and do not see. Anim. Behav. 59, 771–785 (2000).CAS 
    PubMed 

    Google Scholar 
    Emery, N. J., Seed, A. M., von Bayern, A. M. P. & Clayton, N. S. Cognitive adaptations of social bonding in birds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 489–505 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Westcott, P. W. Relationships among three species of jays wintering in southeastern Arizona. Condor 71, 353–359 (1969).
    Google Scholar 
    Kulahci, I. G. et al. Social networks predict selective observation and information spread in ravens. R. Soc. Open Sci. 3, 160256 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boucherie, P. H., Loretto, M. C., Massen, J. J. M. & Bugnyar, T. What constitutes “social complexity” and “social intelligence” in birds? Lessons from ravens. Behav. Ecol. Sociobiol. 73, 12 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Emery, N. J. Cognitive ornithology: The evolution of avian intelligence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 23–43 (2006).PubMed 

    Google Scholar 
    Maclean, E. L. et al. How does cognition evolve? Phylogenetic comparative psychology. Anim. Cogn. 15, 223–238 (2012).PubMed 

    Google Scholar 
    Edwards, S. V. & Naeem, S. The phylogenetic component of cooperative breeding in perching birds. Am. Nat. 141, 754–789 (1993).CAS 
    PubMed 

    Google Scholar 
    Berg, E. C., Aldredge, R. A., Peterson, A. T. & McCormack, J. E. New phylogenetic information suggests both an increase and at least one loss of cooperative breeding during the evolutionary history of Aphelocoma jays. Evol. Ecol. 26, 43–54 (2012).
    Google Scholar 
    Ekman, J. & Ericson, P. G. P. Out of Gondwanaland; the evolutionary history of cooperative breeding and social behaviour among crows, magpies, jays and allies. Proc. R. Soc. B Biol. Sci. 273, 1117–1125 (2006).
    Google Scholar 
    Midford, P., Hailman, J. & Woolfenden, G. E. Social learning of a novel foraging patch in families of free-living Florida scrub-jays. Anim. Behav. 59, 1199–1207 (2000).CAS 
    PubMed 

    Google Scholar 
    Alcock, J. Animal Behavior (Sinauer Associates, Inc, 2009).
    Google Scholar 
    Burkart, J. M., Kupferberg, A., Glasauer, S. & van Schaik, C. P. Even simple forms of social learning rely on intention attribution in marmoset monkeys (Callithrix jacchus). J. Comp. Psychol. 126, 129–138 (2012).PubMed 

    Google Scholar 
    Burkart, J. M. & van Schaik, C. P. Cognitive consequences of cooperative breeding in primates? Anim. Cogn. 13, 1–19 (2010).PubMed 

    Google Scholar 
    Danchin, E., Giraldeau, L.-A., Valone, T. J. & Wagner, R. H. Public information: From nosy neighbors to cultural evolution. Science 305, 487–491 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gil, M. A., Emberts, Z., Jones, H. & St. Mary, C. M. Social information on fear and food drives animal grouping and fitness. Am. Nat. 189, 227–241 (2017).PubMed 

    Google Scholar 
    Call, J. & Tomasello, M. Does the chimpanzee have a theory of mind? 30 years later. Trends Cogn. Sci. 12, 187–192 (2008).PubMed 

    Google Scholar 
    Seyfarth, R. M. & Cheney, D. L. Social cognition. Anim. Behav. 103, 191–202 (2015).
    Google Scholar 
    Huber, L., Rechberger, S. & Taborsky, M. Social learning affects object exploration and manipulation in keas, Nestor notabilis. Anim. Behav. 62, 945–954 (2001).
    Google Scholar 
    Gajdon, G. K., Fijn, N. & Huber, L. Testing social learning in a wild mountain parrot, the kea (Nestor notabilis). Learn. Behav. 32, 62–71 (2004).PubMed 

    Google Scholar 
    McCowan, B., Anderson, K., Heagarty, A. & Cameron, A. Utility of social network analysis for primate behavioral management and well-being. Appl. Anim. Behav. Sci. 109, 396–405 (2008).
    Google Scholar 
    Williams, E., Bremner-Harrison, S. & Ward, S. Can we meet the needs of social species in zoos? An overview of the impact of group housing on welfare in socially housed zoo mammals. In Zoo Animals: Husbandry, Welfare and Public Interactions (eds. Berger, M. & Corbett, S.) (Nova Science Publishers, 2018).
    Google Scholar 
    Hoppitt, W., Samson, J., Laland, K. N. & Thornton, A. Identification of learning mechanisms in a wild Meerkat population. PLoS ONE 7, 1–11 (2012).
    Google Scholar 
    Kendal, R. L., Galef, B. G. & van Schaik, C. P. Social learning research outside the laboratory: How and why? Learn. Behav. 38, 187–194 (2010).PubMed 

    Google Scholar 
    Thornton, A. & Lukas, D. Individual variation in cognitive performance: Developmental and evolutionary perspectives. Philos. Trans. R. Soc. B Biol. Sci. 367, 2773–2783 (2012).
    Google Scholar 
    Herrmann, E., Call, J., Hernandez-Lloreda, M. V., Hare, B. & Tomasello, M. Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science 317, 1360–1366 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Balda, R. P. & Kamil, A. C. Spatial and social cognition in corvids: An evolutionary approach. In The Cognitive Animal: Empirical and Theoretical Perspectives on Animal Cognition (eds. Bekoff, M., Burghardt, G. & Allen, C.) (Bradford Book, 2002).
    Google Scholar 
    Greggor, A. L., Thornton, A. & Clayton, N. S. Harnessing learning biases is essential for applying social learning in conservation. Behav. Ecol. Sociobiol. 71, 1–12 (2017).
    Google Scholar 
    Brakes, P. et al. A deepening understanding of animal culture suggests lessons for conservation. Proc. R. Soc. B Biol. Sci. 288, 20202718 (2021).
    Google Scholar 
    Brakes, P. et al. Animal cultures matter for conservation. Science 363, 1032–1034 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barrett, B. J., Zepeda, E., Pollack, L., Munson, A. & Sih, A. Counter-culture: Does social learning help or hinder adaptive response to human-induced rapid environmental change? Front. Ecol. Evol. 7, 1–18 (2019).
    Google Scholar 
    Rushworth, M. F. S., Mars, R. B. & Sallet, J. Are there specialized circuits for social cognition and are they unique to humans? Curr. Opin. Neurobiol. 23, 436–442 (2013).CAS 
    PubMed 

    Google Scholar 
    van Schaik, C. P. & Burkart, J. M. Social learning and evolution: The cultural intelligence hypothesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 1008–1016 (2011).PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Global patterns in functional rarity of marine fish

    We used AquaMaps18,32 to obtain species occurrence data, and extracted eleven ecologically and biologically relevant traits (seven continuous and four categorical) from FishBase19. All calculations were done separately for the two group of fishes (bony fishes and cartilaginous fishes). Our workflow is in Supplementary Fig. 1.Step 1- InputOccupancy Data (assemblage matrix)We extracted occupancy data from AquaMaps18,32. This online database provides half-degree grid cell species occurrences based on data from GBIF44 and OBIS45 complemented with information from FishBase19 and SeaLifeBase46. AquaMaps gives probabilities of the occurrence of a given species between 0 (based on the environmental envelope indicating there is no chance of finding the species in that grid cell) to 1 (highest probability to find the species in that grid cell)32.These occurrence data are then combined with an algorithm implemented by AquaMaps using “estimates of environmental preferences with respect to depth, water temperature, salinity, primary productivity, and association with sea ice or coastal areas”. For more information see Kesner-Reyes, et al.32.In our analysis, we selected occurrence data (the presence of a given species in a certain half degree grid cell) with a probability >0.9. To ensure our results were not simply an artefact of using a high probability of occurrence we also examined probabilities higher than 0.7 and 0.5. Further analyses were repeated independently for each of these probabilities. After this initial step, we allocated each half-degree grid cell to a 2° grid cell. We created the 2° grid cells using features available in ArcGIS47. These occupancy data also allowed us to compute the species richness of each 2° grid cell.We applied all analyses described here (see Supplementary Fig. 1) separately for the Coastal Systems and High Seas of each of the Seven Oceanic Regions (see Supplementary Fig. 3). This gives us seven Coastal Systems and seven High Seas, a total of 14 assemblage matrices for each of the probabilities (probability  > 0.9, 0.7 and 0.5).Trait Data Compilation (trait matrix)Our final occurrence data (each of the 14 systems) were split between marine bony fishes (11,961 Actinopterygii species) and cartilaginous fishes (866 Elasmobranchii species). For each species in both groups of fish we assembled biologically and ecologically relevant traits from the most recent version of the FishBase database19. This gave us seven continuous and four categorical traits that are largely uncorrelated with one another, (see Supplementary Fig. 9a and b):Environmental Traits: (1) Position in Water Column—The vertical position of a species indicates its feeding habitat19 and its influence on the process of transferring nutrients through the water column48,49. This trait has 8 categories. (2) Maximum Depth (m)—This trait reflects the environmental conditions that each species occur27. (3) Mean Temperature Preference (°C)—Thermal variations in preferences indicates the species tolerances to changes in temperature50,51,52.Life History Traits: (4) Growth (k)—This coefficient parameter (k = 1 year−1) is derived from the von Bertalanffy growth function (Lt = L ∞ (1-exp(−K(t−t0)))). Faster growth rates are associated with higher k values19. (5) (Q/B)—this trait represents the proportional ratio between food consumption (Q) and biomass (B) and can be used as a proxy for trophic interactions, evidencing the flow of energy in the system53,54. (6) Trophic Level—the position of a given species in the food chain is expressed as its trophic level and as discussed by Froese and Pauly19 can be assessed as the amount of “energy-transfer steps to that level”. The trophic level also gives information on interactions between species, for example predator-prey and trophic cascades55.Morphological Traits: (7) Body Shape—The body shape of a species relates to ecological behaviours, such as migration patterns56. We divided this trait into 38 categories (see Supplementary Table 1). (8) Swimming Mode—the mobile strategy adopted by fish species has a direct relationship with ecology and behaviour57. Following FishBase we used 12 different swimming modes (see Supplementary Table 1) based on anatomical and morphological features; these traits provide information on the functional role that each species plays.Reproductive Traits: (9) Generation Time—defined by FishBase as “the time period from birth to average age of reproduction”. (10) Length of First Maturity (mm)—body length when around 50% of a given species becomes mature58,59. (11) Reproductive Guild—15 categories of reproductive guild as defined by FishBase (see Supplementary Table 1). Reproductive traits have a direct influence on population dynamics and species resilience60,61, and are therefore commonly used in fisheries management62.These traits were selected for their ecological and biological relevance as described above. We tested the correlations of the traits to ensure complementarity, and as shown in the (Supplementary Fig. 9a and b), these traits are largely uncorrelated. We also took into consideration the data gaps inevitable in a large data set such as FishBase (traits were selected if a maximum of 30% of data were missing). To overcome this limitation we applied random forest algorithms to fill the missing traits63, by using the package “missForest”64.Step 2—Rarity indicesSpecies restrictednessWe calculated species restrictedness (Resi) by dividing the species geographical extent (GE = number of 2° grid cells that a species occurs in based on the assemblage matrix compiled from AquaMaps) by the total number of grid cells (TOT), minus one (see Supplementary Fig. 2). We scaled the values between 0 (species occurring in all 2° grid cells) and 1 (the most restricted species). We used the function “restrictedness” in the “funrar” package to do this calculation16.Functional distinctivenessFunctional distinctiveness (Disi) quantifies the level of dissimilarity in trait combination between species16,22 (see Supplementary Fig. 2). This index is the average of functional distance of a given species compared with all other species in the assemblage16.We calculated how distinct or common each species is by using the function “distinctiveness_global” available in the “funrar” package16. We then scaled the values found between 0 (species with common combinations of traits) and 1 (species with the most dissimilar combination of traits). This analysis was conducted using presence/absence data.Functional uniquenessFunctional uniqueness quantifies the level of species isolation in the multidimensional functional space16,17. This index is calculated by quantifying the distance of each species in relation to its nearest neighbour16. This mathematical approach applied to multidimensional functional space was adapted from the mean nearest neighbour distance developed initially to calculate the phylogenetic distance between species65 (see equation descriptions at the Supplementary Fig. 2).Step 3—Selecting rare species & Step 4—Rarity biogeographyQuartile analysisWe examined the distribution of values for species restrictedness and functional distinctiveness (or species restrictedness and functional uniqueness) and used the quartile criterion (performed using the base R function “quantile” from the package “stats” in R Core Team66) as proposed by Gaston20 to identify the rare species. By this definition the species considered rare lie in the top quartile of both metrics (i.e. values between 0 (less restricted) and 1 (more restricted)). We next assigned the observed number of rare species (Step 4), as defined above, to each 2° grid cell. The analysis was undertaken separately for Actinopterygii and Elasmobranchii.Step 5—Null modelDoes the number of rare species in a given grid cell differ from the null expectation? To answer this question we applied a null model approach based on the curveball algorithm67. This algorithm keeps constant the total number of species (rare + non-rare) and the number of grid cells that each species occurs. It then randomizes the presence and absence of all species following these thresholds. We ran the model for 2000 iterations; in each loop it randomizes the occurrences of all species, identifies where the rare species are falling and then counts the total number of rare species in each grid cell.To quantify how the observed number of rare species differ from the null expectation we then use Standardized Effect Sizes (SES) as follows:$${{{{{rm{SES}}}}}}=({{{{{rm{X}}}}}}-{{{{{rm{Y}}}}}})/{{{{{rm{Z}}}}}}$$X as the number of rare species observed in each grid cell,Y as the average of rare species found from the null model after 2000 interactions andZ as the standard deviation from Y.A positive SES indicates more rare species than would be expected by chance and a negative SES fewer than expected.We are using 14 different systems (7 Coastal Systems and 7 High Seas (see Supplementary Fig. 3)) for 2 groups of organisms (bony and cartilaginous fish), 2 functional rarity indices (distinctiveness and uniqueness), and using 3 different probabilities of occurrences (prob. >0.9, >0.7 and >0.5).We then have the following “roadmap”:

    i.

    Scales—7 Coastal Systems and 7 High Seas.

    ii.

    Groups—bony and cartilaginous fish.

    iii.

    Indices—distinctiveness and uniqueness.

    iv.

    Probability of occurrences— >0.9, >0.7 and >0.5.

    v.

    Total—168 independent cases analysis (each having its own assemblage and trait matrices.

    Therefore, as mentioned above, the null model ran for 2000 iterations in each of those independent cases. The final matrices from these initial steps contain grid cells as rows and as columns we have the raw number of rare species along with the SES values for each. These matrices were important to map our results.Step 6—Mapping the resultsAfter the above steps (and using the matrices with the results), to visualise the results for Coastal Systems we plotted the geographic distribution of rarity, measured using the observed number of rare species, based on species Restrictedness and functional Distinctiveness using Fig. 1a, c, and the results from the SES using Fig. 1b, d. Meanwhile in Fig. 2 we constructed the same plots for the High Seas. The complementary results of the alternative approach using species Restrictedness and functional Uniqueness are shown in Supplementary Fig. 4 (for Coastal Systems) and Supplementary Fig. 5 (for High Seas).The flow chart in Supplementary Fig. 1 provides step by step details of what was done for each of the 168 independent cases explained at the “roadmap” above. The comprehensive list of all rare fish species found for each system is available in Supplementary Table 2.Further analysesLatitudinal rarity biogeographyWe then produced the density plots of the positive SES values (using the function geom_density from the package ggplot268) to further understand these patterns in relation to latitude (Fig. 3, from c to j). These were compared with the latitudinal gradient of species richness (Fig. 3a, b). The main text discusses results focused on rarity measured using the probability of occurrence higher than 0.9 (Fig. 3). We also examined density of positive SES values across the latitudinal distribution using the probability of occurrences higher than 0.7 and 0.5 (see Supplementary Fig. 6a–d for probability >0.7 and Supplementary Fig. 6e–f for probability >0.5).Spatial autocorrelationWe constructed distance decay plots to examine spatial autocorrelation, and fitted a quantile regression to these relationships. The results are illustrated in Supplementary Fig. 7, which shows the distance decay calculated by pairwise differences (Supplementary Fig. 7a—Coastal Systems and b—High Seas for bony fish, and Supplementary Fig. 7c—Coastal Systems and d—High Seas for cartilaginous fish) between a given grid cell and all other grid cells present in the Northwest Pacific Ocean. These plots provide reassurance that spatial autocorrelation is not obscuring the results we report.Sensitivity analysisWe performed a sensitivity analysis to ensure that the environmental traits “Depth” and “Mean Temperature Preference” had no major influence on determining the level of distinctiveness and uniqueness of the species. We did this by excluding each trait in turn from the analysis (each of those were removed individually and a third time without both together) and compared the results with the full analysis. We found strong correlations in rarity estimates in all cases (see Supplementary Fig. 8a, b (for bony fish (distinctiveness and uniqueness) respectively, c and d (for cartilaginous fish (distinctiveness and uniqueness)).Trait correlation analysisWe tested the correlation between traits to ensure that those were largely uncorrelated, as shown in Supplementary Fig. 9a, b.Supplementary analysisWe tested the possible influence of sampling effect on the rarity hotspots observed by creating random fill matrices and comparing those with the observed matrices from four scenarios: Northwest Pacific Coast (bony and cartilaginous fish species) and Southwest Pacific Coast (bony and cartilaginous species). The subsequent results showed no evidence of sampling effect (see Supplementary Fig. 11).Mapping marine protected areas (MPAs)We used the MPAs shapefiles provided by the UNEP-WCMC and IUCN69 to measure the level of congruence between marine protected areas and hotspots of rarity. The distances between each MPA and the centroid of each grid cell were calculated using the spatial analysis tool in ArcGIS (the unit of the distance calculated is in decimal degrees). We then assigned each MPA to its nearest 2° degree grid cell centroid (the distance cut point used was < 0.75 decimal degrees (the distance from a given MPA to a grid cell centroid)). We plotted these global spatial patterns from the 2° grid cells indicating either congruence or mismatches between Marine Protected Areas (MPAs) and Rarity Hotspots (species rare in both dimensions of biodiversity; taxonomically—highest restrictedness and functionally—highest distinctiveness) (Fig. 4a and b, bony and cartilaginous fish respectively).Habitat specializationAll species were classified according to their position in the water column (bathydemersal, bathypelagic, benthopelagic, demersal, pelagic neritic, pelagic oceanic and reef associated (as categorized in FishBase19)); here we are using this trait as a proxy for “habitat specialization”. We then used a G test, and Cramer’s V (using the functions GTest and CramerV from the package DescTools70) to compare the frequency distribution in habitat specialization between rare and non-rare species (see Supplementary Fig. 10 for all frequency distributions and statistical results).Forms of functional rarity classification schemeIn their 2017 paper Violle et al.17, suggested 12 forms of functional rarity. We believe that the approach applied here is similar to the classification scheme they described as: “Rare traits irrespective of the scale and the species pool”. The authors pointed to two possible extremes: rare traits (exhibited by range-restricted species) and common traits (supported by many widespread species). In this case, our approach identifies species that are both geographically restricted within each of the 14 systems (coastal and high seas systems) and present a distinct (or unique) combination of traits. Our approach to the classification of rarity differs slightly, however, in that we follow Gaston’s approach20 of quantile distribution as illustrated in Supplementary Fig. 1, step 3 QUARTILES.Reporting summaryFurther information on research design is available in the Nature Research Reporting Summary linked to this article. More

  • in

    Niche partitioning of the ubiquitous and ecologically relevant NS5 marine group

    Hutchinson GE. Concluding remarks. Cold Spring Harb Symp Quant Biol. 1957;22:415–27.
    Google Scholar 
    Hutchinson GE. An introduction to population biology. New Haven, CT: Yale University Press; 1978.Larkin AA, Martiny AC. Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environ Microbiol Rep. 2017;9:55–70.CAS 
    PubMed 

    Google Scholar 
    Mena C, Reglero P, Balbín R, Martín M, Santiago R, Sintes E. Seasonal niche partitioning of surface temperate open ocean prokaryotic communities. Front Microbiol. 2020;11:1749.PubMed 
    PubMed Central 

    Google Scholar 
    Sarmento H, Morana C, Gasol JM. Bacterioplankton niche partitioning in the use of phytoplankton-derived dissolved organic carbon: quantity is more important than quality. ISME J. 2016;10:2582–92.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Auladell A, Barberán A, Logares R, Garcés E, Gasol JM, Ferrera I. Seasonal niche differentiation among closely related marine bacteria. ISME J. 2022;16:178–89.CAS 
    PubMed 

    Google Scholar 
    Avcı B, Krüger K, Fuchs BM, Teeling H, Amann RI. Polysaccharide niche partitioning of distinct Polaribacter clades during North Sea spring algal blooms. ISME J. 2020;14:1369–83.PubMed 
    PubMed Central 

    Google Scholar 
    Ghiglione J-F, Galand PE, Pommier T, Pedrós-Alió C, Maas EW, Bakker K, et al. Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci USA. 2012;109:17633–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EMS, Chisholm SW. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science. 2006;311:1737–40.CAS 
    PubMed 

    Google Scholar 
    Wang Z, Juarez DL, Pan J-F, Blinebry SK, Gronniger J, Clark JS, et al. Microbial communities across nearshore to offshore coastal transects are primarily shaped by distance and temperature. Environ Microbiol. 2019;21:3862–72.CAS 
    PubMed 

    Google Scholar 
    Herlemann DP, Labrenz M, Jürgens K, Bertilsson S, Waniek JJ, Andersson AF. Transitions in bacterial communities along the 2000 km salinity gradient of the Baltic Sea. ISME J. 2011;5:1571–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Delmont TO, Kiefl E, Kilinc O, Esen OC, Uysal I, Rappé MS, et al. Single-amino acid variants reveal evolutionary processes that shape the biogeography of a global SAR11 subclade. eLife. 2019;8:e46497.PubMed 
    PubMed Central 

    Google Scholar 
    Teeling H, Fuchs BM, Bennke CM, Krüger K, Chafee M, Kappelmann L, et al. Recurring patterns in bacterioplankton dynamics during coastal spring algae blooms. eLife. 2016;5:e11888.PubMed 
    PubMed Central 

    Google Scholar 
    Teeling H, Fuchs BM, Becher D, Klockow C, Gardebrecht A, Bennke CM, et al. Substrate-controlled succession of marine bacterioplankton populations induced by a phytoplankton bloom. Science. 2012;336:608–11.CAS 
    PubMed 

    Google Scholar 
    Alonso C, Warnecke F, Amann R, Pernthaler J. High local and global diversity of flavobacteria in marine plankton. Environ Microbiol. 2007;9:1253–66.CAS 
    PubMed 

    Google Scholar 
    Ngugi DK, Stingl U. High-quality draft single-cell genome sequence of the NS5 Marine Group from the Coastal Red Sea. Genome Announc. 2018;26:e00565-18.
    Google Scholar 
    Meziti A, Kormas KA, Moustaka-Gouni M, Karayanni H. Spatially uniform but temporally variable bacterioplankton in a semi-enclosed coastal area. Syst Appl Microbiol. 2015;38:358–67.
    Google Scholar 
    Milici M, Vital M, Tomasch J, Badewien TH, Giebel H-A, Plumeier I, et al. Diversity and community composition of particle-associated and free-living bacteria in mesopelagic and bathypelagic Southern Ocean water masses: evidence of dispersal limitation in the Bransfield Strait. Limnol Oceanogr. 2017;62:1080–95.
    Google Scholar 
    Beman JM, Vargas SM, Vazquez S, Wilson JM, Yu A, Cairo A, et al. Biogeochemistry and hydrography shape microbial community assembly and activity in the eastern tropical North Pacific Ocean oxygen minimum zone. Environ Microbiol. 2020;23:2765–81.PubMed 

    Google Scholar 
    Rapp JZ, Fernández-Méndez M, Bienhold C, Boetius A. Effects of ice-algal aggregate export on the connectivity of bacterial communities in the Central Arctic Ocean. Front Microbiol. 2018;9:01035.
    Google Scholar 
    Gómez-Pereira PR, Fuchs BM, Alonso C, Oliver MJ, van Beusekom JEE, Amann R. Distinct flavobacterial communities in contrasting water masses of the North Atlantic Ocean. ISME J. 2010;4:472–87.PubMed 

    Google Scholar 
    Choi DH, An SM, Yang EC, Lee H, Shim J, Jeong J, et al. Daily variation in the prokaryotic community during a spring bloom in shelf waters of the East China Sea. FEMS Microbiol Ecol. 2018;94:fiy134.CAS 
    PubMed Central 

    Google Scholar 
    Yang C, Li Y, Zhou B, Zhou Y, Zheng W, Tian Y, et al. Illumina sequencing-based analysis of free-living bacterial community dynamics during an Akashiwo sanguine bloom in Xiamen sea, China. Sci Rep. 2015;5:8476.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Díez‐Vives C, Nielsen S, Sánchez P, Palenzuela O, Ferrera I, Sebastián M, et al. Delineation of ecologically distinct units of marine Bacteroidetes in the Northwestern Mediterranean Sea. Mol Ecol. 2019;28:2846–59.PubMed 

    Google Scholar 
    Seo J-H, Kang I, Yang S-J, Cho J-C. Characterization of spatial distribution of the bacterial community in the South Sea of Korea. PLoS ONE. 2017;12:e0174159.PubMed 
    PubMed Central 

    Google Scholar 
    Alonso‐Sáez L, Díaz‐Pérez L, Morán XAG. The hidden seasonality of the rare biosphere in coastal marine bacterioplankton. Environ Microbiol. 2015;17:3766–80.PubMed 

    Google Scholar 
    Priest T, Orellana LH, Huettel B, Fuchs BM, Amann R. Microbial metagenome-assembled genomes of the Fram Strait from short and long read sequencing platforms. PeerJ. 2021;9:e11721.PubMed 
    PubMed Central 

    Google Scholar 
    Zhou J, Bruns MA, Tiedje JM. DNA recovery from soils of diverse composition. Appl Environ Microbiol. 1996;62:316–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: a fast and scalable metagenome assembler driven by advanced methodologies and community practices. Methods. 2016;102:3–11.CAS 
    PubMed 

    Google Scholar 
    Kolmogorov M, Bickhart DM, Behsaz B, Gurevich A, Rayko M, Shin SB, et al. metaFlye: scalable long-read metagenome assembly using repeat graphs. Nat Methods. 2020;17:1103–10.CAS 
    PubMed 

    Google Scholar 
    Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning metagenomic contigs by coverage and composition. Nat Methods. 2014;11:1144–6.CAS 
    PubMed 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: an adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 

    Google Scholar 
    Wu Y-W, Simmons BA, Singer SW. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. Bioinformatics. 2016;32:605–7.CAS 
    PubMed 

    Google Scholar 
    Sieber CMK, Probst AJ, Sharrar A, Thomas BC, Hess M, Tringe SG, et al. Recovery of genomes from metagenomes via a dereplication, aggregation and scoring strategy. Nat Microbiol. 2018;3:836–43.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 2015;25:1043–55.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chaumeil P-A, Mussig AJ, Hugenholtz P, Parks DH. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics. 2020;36:1925–7.CAS 

    Google Scholar 
    Parks DH, Chuvochina M, Chaumeil P-A, Rinke C, Mussig AJ, Hugenholtz P. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat Biotechnol. 2020;38:1079–86.CAS 
    PubMed 

    Google Scholar 
    Krüger K, Chafee M, Ben Francis T, Glavina del Rio T, Becher D, Schweder T, et al. In marine Bacteroidetes the bulk of glycan degradation during algae blooms is mediated by few clades using a restricted set of genes. ISME J. 2019;13:2800–16.PubMed 
    PubMed Central 

    Google Scholar 
    Francis TB, Bartosik D, Sura T, Sichert A, Hehemann J-H, Markert S, et al. Changing expression patterns of TonB-dependent transporters suggest shifts in polysaccharide consumption over the course of a spring phytoplankton bloom. ISME J. 2021;15:2336–50.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jain C, Rodriguez-R LM, Phillippy AM, Konstantinidis KT, Aluru S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat Commun. 2018;9:5114.PubMed 
    PubMed Central 

    Google Scholar 
    Winkelmann N, Harder J. An improved isolation method for attached-living Planctomycetes of the genus Rhodopirellula. J Microbiol Methods. 2009;77:276–84.CAS 
    PubMed 

    Google Scholar 
    Hahnke RL, Bennke CM, Fuchs BM, Mann AJ, Rhiel E, Teeling H, et al. Dilution cultivation of marine heterotrophic bacteria abundant after a spring phytoplankton bloom in the North Sea. Environ Microbiol. 2015;17:3515–26.PubMed 

    Google Scholar 
    Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, et al. A new view of the tree of life. Nat Microbiol. 2016;1:1–6.
    Google Scholar 
    Edgar RC. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32:1792–7.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.PubMed 
    PubMed Central 

    Google Scholar 
    Price MN, Dehal PS, Arkin AP. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE. 2010;5:e9490.PubMed 
    PubMed Central 

    Google Scholar 
    Seeman T. Barrnap 0.9 (version 3): rapid ribosomal RNA prediction. 2017. https://github.com/tseemann/barrnap.Ludwig W, Strunk O, Westram R, Richter L, Meier H, Yadhukumar, et al. ARB: a software environment for sequence data. Nucleic Acids Res. 2004;32:1363–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pruesse E, Peplies J, Glöckner FO. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics. 2012;28:1823–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amann RI, Krumholz L, Stahl DA. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J Bacteriol. 1990;172:762–70.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pernthaler A, Pernthaler J, Amann R. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol. 2002;68:3094–101.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pesant S, Not F, Picheral M, Kandels-Lewis S, Le Bescot N, Gorsky G, et al. Open science resources for the discovery and analysis of Tara Oceans data. Sci Data. 2015;2:150023.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bushnell B. BBTools software package. 2017. https://sourceforge.net/projects/bbmap/.Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.CAS 
    PubMed 

    Google Scholar 
    RStudio Team. RStudio: integrated development of R. Boston, MA: RStudio Inc.; 2015.South A. rnaturalearth: World map data from Natural Earth. R packag version 0.1.0; 2017.Pebesma E. Simple features for R: standardized support for spatial vector data. R J. 2018;10:439–46.
    Google Scholar 
    Wickham H. ggplot2: elegant graphics for data analysis. New York: Springer-Verlag; 2016.Orellana LH, Francis TB, Ferraro M, Hehemann J-H, Fuchs BM, Amann RI. Verrucomicrobiota are specialist consumers of sulfated methyl pentoses during diatom blooms. ISME J. 2021.Chafee M, Fernàndez-Guerra A, Buttigieg PL, Gerdts G, Eren AM, Teeling H, et al. Recurrent patterns of microdiversity in a temperate coastal marine environment. ISME J. 2018;12:237–52.PubMed 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, et al. Vegan community ecology package version 2.5, 7 November. 2020.Aramaki T, Blanc-Mathieu R, Endo H, Ohkubo K, Kanehisa M, Goto S, et al. KofamKOALA: KEGG Ortholog assignment based on profile HMM and adaptive score threshold. Bioinformatics. 2020;36:2251–2.CAS 
    PubMed 

    Google Scholar 
    Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, et al. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 2014;42:D206–14.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:95–101.
    Google Scholar 
    Buchfink B, Xie C, Huson DH. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12:59–60.CAS 

    Google Scholar 
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:490–5.
    Google Scholar 
    Barbeyron T, Brillet-Guéguen L, Carré W, Carrière C, Caron C, Czjzek M, et al. Matching the diversity of sulfated biomolecules: creation of a classification database for sulfatases reflecting their substrate specificity. PLoS ONE. 2016;11:e0164846.PubMed 
    PubMed Central 

    Google Scholar 
    Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018;46:624–32.
    Google Scholar 
    Wilkins D. gggenes: Draw Gene Arrow Maps in ‘ggplot2’. R package version 0.4.1; 2020.de Vries A, Ripley BD. ggdendro: create dendrograms and tree diagrams using ‘ggplot2’. 2020.Kappelmann L, Krüger K, Hehemann J-H, Harder J, Markert S, Unfried F, et al. Polysaccharide utilization loci of North Sea Flavobacteriia as basis for using SusC/D-protein expression for predicting major phytoplankton glycans. ISME J. 2019;13:76–91.CAS 
    PubMed 

    Google Scholar 
    Katoh K, Misawa K, Kuma K, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30:3059–66.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Letunic I, Bork P. Interactive tree of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 2019;47:256–9.
    Google Scholar 
    Yarza P, Yilmaz P, Pruesse E, Glöckner FO, Ludwig W, Schleifer K-H, et al. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat Rev Microbiol. 2014;12:635–45.CAS 
    PubMed 

    Google Scholar 
    Konstantinidis KT, Rosselló-Móra R, Amann R. Uncultivated microbes in need of their own taxonomy. ISME J. 2017;11:2399–406.PubMed 
    PubMed Central 

    Google Scholar 
    Bjursell MK, Martens EC, Gordon JI. Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period. J Biol Chem. 2006;281:36269–79.CAS 
    PubMed 

    Google Scholar 
    Ficko-Blean E, Préchoux A, Thomas F, Rochat T, Larocque R, Zhu Y, et al. Carrageenan catabolism is encoded by a complex regulon in marine heterotrophic bacteria. Nat Commun. 2017;8:1685.PubMed 
    PubMed Central 

    Google Scholar 
    Johnson ET, Baron DB, Naranjo B, Bond DR, Schmidt-Dannert C, Gralnick JA. Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Appl Environ Microbiol. 2010;76:4123–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dubinsky V, Haber M, Burgsdorf I, Saurav K, Lehahn Y, Malik A, et al. Metagenomic analysis reveals unusually high incidence of proteorhodopsin genes in the ultraoligotrophic Eastern Mediterranean Sea. Environ Microbiol. 2017;19:1077–90.CAS 
    PubMed 

    Google Scholar 
    Fernández-Gómez B, Richter M, Schüler M, Pinhassi J, Acinas SG, González JM, et al. Ecology of marine Bacteroidetes: a comparative genomics approach. ISME J. 2013;7:1026–37.PubMed 
    PubMed Central 

    Google Scholar 
    Heins A, Reintjes G, Amann RI, Harder J. Particle collection in Imhoff sedimentation cones enriches both motile chemotactic and particle-attached bacteria. Front Microbiol. 2021;12:643730.PubMed 
    PubMed Central 

    Google Scholar 
    Unfried F, Becker S, Robb CS, Hehemann J-H, Markert S, Heiden SE, et al. Adaptive mechanisms that provide competitive advantages to marine Bacteroidetes during microalgal blooms. ISME J. 2018;12:2894–906.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bauer M, Kube M, Teeling H, Richter M, Lombardot T, Allers E, et al. Whole genome analysis of the marine Bacteroidetes ‘Gramella forsetii’ reveals adaptations to degradation of polymeric organic matter. Environ Microbiol. 2006;8:2201–13.CAS 
    PubMed 

    Google Scholar 
    Kabisch A, Otto A, König S, Becher D, Albrecht D, Schüler M, et al. Functional characterization of polysaccharide utilization loci in the marine Bacteroidetes ‘Gramella forsetii’ KT0803. ISME J. 2014;8:1492–502.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reintjes G, Arnosti C, Fuchs B, Amann R. Selfish, sharing and scavenging bacteria in the Atlantic Ocean: a biogeographical study of bacterial substrate utilisation. ISME J. 2019;13:1119–32.CAS 
    PubMed 

    Google Scholar 
    Thomas F, Barbeyron T, Tonon T, Génicot S, Czjzek M, Michel G. Characterization of the first alginolytic operons in a marine bacterium: from their emergence in marine Flavobacteriia to their independent transfers to marine Proteobacteria and human gut Bacteroides. Environ Microbiol. 2012;14:2379–94.CAS 
    PubMed 

    Google Scholar 
    Hehemann J-H, Arevalo P, Datta MS, Yu X, Corzett CH, Henschel A, et al. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat Commun. 2016;7:12860.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Deniaud-Bouët E, Hardouin K, Potin P, Kloareg B, Hervé C. A review about brown algal cell walls and fucose-containing sulfated polysaccharides: cell wall context, biomedical properties and key research challenges. Carbohydr Polym. 2017;175:395–408.PubMed 

    Google Scholar 
    Sichert A, Corzett CH, Schechter MS, Unfried F, Markert S, Becher D, et al. Verrucomicrobia use hundreds of enzymes to digest the algal polysaccharide fucoidan. Nat Microbiol. 2020;5:1026–39.CAS 
    PubMed 

    Google Scholar 
    Duerschlag J, Mohr W, Ferdelman TG, LaRoche J, Desai D, Croot PL, et al. Niche partitioning by photosynthetic plankton as a driver of CO2-fixation across the oligotrophic South Pacific Subtropical Ocean. ISME J. 2022;15:465–76.
    Google Scholar 
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015;348:1261359.PubMed 

    Google Scholar 
    Raes J, Letunic I, Yamada T, Jensen LJ, Bork P. Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data. Mol Syst Biol. 2011;7:473.PubMed 
    PubMed Central 

    Google Scholar 
    Baas Becking L. G. M.. Geobiologie of inleiding tot de milieukunde. WP Van Stock Zoon, Den Haag; 1934.Gibbons SM, Caporaso JG, Pirrung M, Field D, Knight R, Gilbert JA. Evidence for a persistent microbial seed bank throughout the global ocean. Proc Natl Acad Sci USA. 2013;110:4651–5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lennon JT, Jones SE. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat Rev Microbiol. 2011;9:119–30.CAS 
    PubMed 

    Google Scholar  More

  • in

    Apex scavengers from different European populations converge at threatened savannah landscapes

    Skarpe, C. Dynamics of savanna ecosystems. J. Veg. Sci. 3, 293–300 (1992).
    Google Scholar 
    Solbrig, O. T. The diversity of the savanna ecosystem. In Biodiversity and Savanna Ecosystem Processes: A Global Perspective Vol. 21 (eds Solbrig, O. T. et al.) 1–27 (Springer, Berlin, 1996).
    Google Scholar 
    Fynn, R. W. S., Augustine, D. J., Peel, M. J. S. & de Garine-Wichatitsky, M. Strategic management of livestock to improve biodiversity conservation in African savannahs: A conceptual basis for wildlife–livestock coexistence. J Appl Ecol 53, 388–397 (2016).
    Google Scholar 
    Turner, M. D. & Schlecht, E. Livestock mobility in sub-Saharan Africa: A critical review. Pastoralism 9, 13 (2019).
    Google Scholar 
    Moreno, G. et al. Exploring the causes of high biodiversity of Iberian dehesas: The importance of wood pastures and marginal habitats. Agrofor. Syst. 90, 87–105 (2015).
    Google Scholar 
    Spiegel, O. et al. Moving beyond curve fitting: Using complementary data to assess alternative explanations for long movements of three vulture species. Am. Nat. 185, E44–E54 (2015).
    Google Scholar 
    Houston, D. C. Food searching behaviour in griffon vultures. Afr. J. Ecol. 12, 63–77 (1974).
    Google Scholar 
    Fryxell, J. M. & Sinclair, A. R. E. Causes and Consequences of Migration by Large Herbivores. Trens Ecol. Evol. 3, 237–241 (1988).CAS 

    Google Scholar 
    Joly, K. et al. Longest terrestrial migrations and movements around the world. Sci. Rep. 9, 15333 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Naveh, Z. Mediterranean ecosystems and vegetation types in California and Israel. In Transdisciplinary Challenges in Landscape Ecology and Restoration Ecology. Landscape Series, vol 6. (Springer, Dordrecht, 1967), vol 48, pp. 445–459.Pereira, P. M. & Pires da Fonseca, M. Nature vs. nurture: The making of the montado ecosystem. Conserv. Ecol. 7, 7 (2003).
    Google Scholar 
    Blondel, J. The ‘design’ of Mediterranean landscapes: A millennial story of humans and ecological systems during the historic period. Hum. Ecol. 34, 713–729 (2006).
    Google Scholar 
    Díaz, M., Campos, P. & Pulido, F. J. The Spanish dehesas: A diversity of land use and wildlife. In Farming and birds in Europe: The Common Agricultural Policy and its implications for bird conservation (eds Pain, D. & Pienkowski, M.) 178–209 (Academic Press, London, 1997).
    Google Scholar 
    Campos, P. et al. Mediterranean Oak Woodland Working Landscapes: Dehesas of Spain and Ranchlands of California (Springer, 2013).
    Google Scholar 
    Plieninger, T. & Bieling, C. Resilience and the Cultural Landscape: Understanding and Managing Change in Human-Shaped Environments (Cambridge University Press, 2012).
    Google Scholar 
    Lomba, A. et al. Back to the future: Rethinking socioecological systems underlying high nature value farmlands. Front. Ecol. Environ. 18, 36–42 (2020).
    Google Scholar 
    Ogada, D. et al. Another continental vulture crisis: Africa’s vultures collapsing toward extinction. Conserv. Lett. 9, 89–97 (2016).ADS 

    Google Scholar 
    Buechely, E. & Şekercioğlu, Ç. H. The avian scavenger crisis: Looming extinctions, trophic cascades, and loss of critical ecosystem functions. Biol. Conserv. 198, 220–228 (2016).
    Google Scholar 
    Safford, R. et al. Vulture conservation: The case for urgent action. Bird Conserv. Int. 29, 1–9 (2019).
    Google Scholar 
    García-Alfonso, M., Donázar, J. A., Serrano, D. Individual and environmental drivers of resource use in endangered vulture: Integrating movement, spatial and social ecology. PhD Thesis. Universidad de Sevilla, Seville, Spain.Ogada, D. L., Keesing, F. & Virani, M. Z. Dropping dead: Causes and consequences of vulture population declines worldwide. Ann. NY Acad. Sci. 1249, 57–71 (2012).ADS 
    PubMed 

    Google Scholar 
    Blanco, G., Cortés-Avizanda, A., Frías, Ó., Arrondo, E. & Donázar, J. A. Livestock farming practices modulate vulture diet-disease interactions. Glob. Ecol. 17, e00518 (2019).
    Google Scholar 
    Olea, P. P., Mateo-Tomas, P. & Sánchez Zapata, J. A. Carrion Ecology and Management (Springer Nature, 2019).
    Google Scholar 
    Montsarrat, S. et al. How predictability of feeding patches affects home range and foraging habitat selection in avian social scavengers?. PLoS ONE 8, e53077 (2013).ADS 

    Google Scholar 
    Arrondo, E. et al. Invisible barriers: Differential sanitary regulations constrain vulture movements across country borders. Biol. Conserv. 219, 46–52 (2018).
    Google Scholar 
    Houston, D. C. Breeding of the white-backed and Rüppell’s griffon vultures, Gyps africanus and G. rueppellii. Ibis 118, 14–40 (1976).
    Google Scholar 
    Houston, D. C. A change in the breeding season of Rüppell’s griffon vultures Gyps rueppellii in the Serengeti in response to changes in ungulate populations. Ibis 132, 36–41 (1990).
    Google Scholar 
    Kendall, C. J., Virani, M. Z., Hopcraft, J. G. C., Bildstein, K. L. & Rubenstein, D. I. African vultures don’t follow migratory herds: Scavenger habitat use is not mediated by prey abundance. PLoS ONE 9, e83470 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carrete, M. & Donázar, J. A. Application of central-place foraging theory shows the importance of Mediterranean dehesas for the conservation of the cinereous vulture, Aegypius monachus. Biol. Conserv. 126, 582–590 (2005).
    Google Scholar 
    Martín-Díaz, P. et al. Rewilding processes shape the use of Mediterranean landscapes by an avian top scavenger. Sci. Rep. 10, 2853 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Botha, A. et al. Multi-species action plan to conserve African-Eurasian vultures (vulture MSAP). CMS Raptors MOU Technical Publication 5, 2–162 (2017).
    Google Scholar 
    Cortés-Avizanda, A. et al. Supplementary feeding and endangered avian scavengers: Benefits, caveats, and controversies. Front. Ecol. Environ. 14, 191–199 (2016).
    Google Scholar 
    Fluhr, J., Benhamou, S., Riotte-Lambert, L. & Duriez, O. Assessing the risk for an obligate scavenger to be dependent on predictable feeding sources. Biol. Conserv. 215, 92–98 (2017).
    Google Scholar 
    Schabo, D. G. et al. Long-term data indicates that supplementary food enhances the number of breeding pairs in a Cape Vulture Gyps coprotheres colony. Bird Conserv. Int. 27, 1–13 (2016).
    Google Scholar 
    Louzao, M. et al. Conserving pelagic habitats: Seascape modelling of an oceanic predator. J. Appl. Ecol. 48, 121–132 (2011).
    Google Scholar 
    Buechley, E. R. et al. Identifying critical migratory bottlenecks and high-use areas for an endangered migratory soaring bird across three continents. J. Avian Biol. 49, e01629 (2018).
    Google Scholar 
    Morales-Reyes, Z. et al. Supplanting ecosystem services provided by scavengers raises greenhouse gas emissions. Sci. Rep. 5, 7811 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mateo-Tomás, P., Olea, P. P., Moleón, M., Selva, N. & Sánchez-Zapata, J. A. Both rare and common species support ecosystem services in scavenger communities. Glob. Ecol. 26, 1459–1470 (2017).
    Google Scholar 
    Aguilera-Alcalá, N., Morales-Reyes, Z., Martín-López, B., Moléon, M. & Sánchez-Zapata, J. A. Role of scavengers in providing non-material contributions to people. Ecol. Indic. 117, 106643 (2020).
    Google Scholar 
    Margalida, A. et al. Uneven large-scale movement patterns in wild and reintroduced pre-adult bearded vultures: Conservation implications. PLoS ONE 8, e65857 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Griesinger, J. Juvenile dispersion and migration among Griffon Vultures Gyps fulvus in Spain. Holartic Birds of Prey (1998).Plieninger, T. et al. Dehesas as high nature value farming systems: A social-ecological synthesis of drivers, pressures, state, impacts, and responses. Ecology 26, 23 (2021).
    Google Scholar 
    Virani, M. Z., Monadjem, A., Thomsett, S. & Kendall, C. Seasonal variation in breeding Rüppell’s Vultures Gyps rueppellii at Kwenia, southern Kenya and implications for conservation. Bird. Conserv. Int. 22, 260–269 (2012).
    Google Scholar 
    Morales-Reyes, Z. et al. Evaluation of the network of protection areas for the feeding of scavengers in Spain: From biodiversity conservation to greenhouse gas emission savings. J. Appl. Ecol. 54, 1120–1129 (2017).CAS 

    Google Scholar 
    Mateo-Tomás, P. & Olea, P. When hunting benefits raptors: A case study of game species and vultures. Eur. J. Wildl. Res. 56, 519–528 (2010).
    Google Scholar 
    Pereira, H. M. & Navarro, L. M. Rewilding European Landscapes (Springer, 2015).
    Google Scholar 
    Margalida, A., Carrete, M., Sánchez-Zapata, J. A. & Donázar, J. A. Good news for European vultures. Science 335, 284 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Paredes, R. et al. Proximity to multiple foraging habitats enhances seabirds’ resilience to local food shortages. Mar. Ecol. Prog. Ser. 471, 253–269 (2012).ADS 

    Google Scholar 
    Gomo, G., Mattisson, J., Hagen, B. R., Moa, P. F. & Willebrand, T. Scavenging on a pulsed resource. Quality matters for corvids but density for mammals. BMC Ecol. 17, 22 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Navarro, L. M. & Pereira, H. M. Rewilding abandoned landscapes in Europe. Ecosystems 15, 900–912 (2012).
    Google Scholar 
    Arrondo, E. et al. Rewilding traditional grazing areas affects scavenger assemblages and carcass consumption patterns. Basic Appl. Ecol. 41, 56–66 (2019).
    Google Scholar 
    Cortés-Avizanda, A., Donázar, J. A. & Pereira, H. M. Top scavengers in a wilder Europe. In Rewilding European Landscapes (eds Pereira, H. M. & Navarro, L.) 85–106 (Springer, Berlin, 2015).
    Google Scholar 
    Harel, R. et al. Decision-making by a soaring bird: Time, energy and risk considerations at different spatio-temporal scales. Philos. Trans. R. Soc. B 371, 20150397 (2016).
    Google Scholar 
    Austin, R. E. et al. A sex-influenced flexible foraging strategy in a tropical seabird, the magnificent frigatebird. Mar. Ecol. Prog. Ser. 611, 203–214 (2019).ADS 

    Google Scholar 
    Weimerskirch, H., Cherel, Y., Cuenot-Chaillet, F. & Ridoux, V. Alternative foraging strategies and resource allocation by maIe and female wandering albatrosses. Ecology 78, 2051–2063 (1997).
    Google Scholar 
    Gangoso, L. et al. Avian scavengers living in anthropized landscapes have shorter telomeres and higher levels of glucocorticoid hormones. Sci. Total Environ. 782, 146920 (2021).ADS 
    CAS 

    Google Scholar 
    Lambertucci, S. A., Carrete, M., Donázar, J. A. & Hiraldo, F. Large-scale age-dependent skewed sex ratio in a sexually dimorphic avian scavenger. PLoS ONE 7, e46347 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, A. L., Ruxton, G. D. & Houston, D. C. The effect of social facilitation on foraging success in vultures: A modelling study. Biol. Lett. 4, 311–313 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Deygout, C., Gault, A., Duriez, O., Sarrazin, F. & Bessa-Gomes, C. Impact of food predictability on social facilitation by foraging scavengers. Behav. Ecol. 21, 1131–1139 (2010).
    Google Scholar 
    Harel, R., Spiegel, O., Getz, W. M. & Nathan, R. Social foraging and individual consistency in following behaviour: Testing the information centre hypothesis in free-ranging vultures. Proc. R. Soc. B 284, 20162654 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    van Overveld, T. et al. Integrating vulture social behavior into conservation practice. The Condor 122, 1–20 (2020).
    Google Scholar 
    Genero, F., Franchini, M., Fanin, Y. & Filacorda, S. Spatial ecology of non-breeding Eurasian Griffon Vultures Gyps fulvus in relation to natural and artificial food availability. Bird Study 67, 1–18 (2020).
    Google Scholar 
    Sherub, S., Fiedler, W., Duriez, O. & Wikelski, M. Bio-Logging – New Technologies to study conservation physiology on the move: A case study on annual survival of Himalayan Vultures. J. Comp. Physiol. 203, 531–542 (2017).
    Google Scholar 
    Olea, P. P. & Mateo-Tomás, P. The role of traditional farming practices in ecosystem conservation: The case of transhumance and vultures. Biol. Conserv. 142, 1844–1853 (2009).
    Google Scholar 
    Aguilera-Alcalá, N. et al. The value of transhumance for biodiversity conservation: Vulture foraging in relation to livestock movements. (Ambio, 2021).
    Google Scholar 
    Clement, V. Spanish wood pasture: Origin and durability of an historical wooded landscape in Mediterranean Europe. Environ. Hist. Camb. 14, 67–87 (2008).
    Google Scholar 
    Arrondo, E. et al. Landscape anthropization shapes the survival of a top avian scavenger. Biodivers. Conserv. 29, 1411–1425 (2020).
    Google Scholar 
    Block, T. A., Lyon, B. E., Mikalonis, Z., Chaine, A. S. & Shizuka, D. Social migratory connectivity: Do birds that socialize in winter breed together?. BioRxiv 17, 76 (2021).
    Google Scholar 
    Thaxter, C. B. et al. Seabird foraging ranges as a preliminary tool for identifying candidate Marine Protected Areas. Biol. Conserv. 156, 53–61 (2012).
    Google Scholar 
    Santangeli, A. et al. Priority areas for conservation of Old World vultures. Conserv. Biol. 33, 1056–1065 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Costa, A., Pereira, H. & Madeira, M. Landscape dynamics in endangered cork oak woodlands in Southwestern Portugal (1958–2005). Agrofor. Syst. 77, 83–96 (2009).
    Google Scholar 
    Del Moral, J. C. & Molina, B. (eds) El buitre leonado en España, población reproductora en 2018 y método de censo (SEO/BirdLife, 2018).
    Google Scholar 
    Zuberogoitia, I. et al. The flight feather molt of griffon vultures (Gyps fulvus) and associated biological consequences. J. Raptor Res. 47, 292–304 (2013).
    Google Scholar 
    Fluhr, J., Benhamou, S., Peyrusque, D. & Duriez, O. Space use and time budget in two populations of Griffon Vultures in contrasting landscapes. J. Raptor Res. 55, 13 (2021).
    Google Scholar 
    Arrondo, E. et al. Use of avian GPS tracking to mitigate human fatalities from bird strikes caused by large soaring birds. J. Appl. Ecol. 58, 1411–1420 (2021).
    Google Scholar 
    Serrano, D. Dispersal in raptors. In Birds of Prey. Biology and Conservation in the XXI Century (eds HernánSarasola, J. et al.) 95–121 (Springer, 2018).
    Google Scholar 
    Williams, H. J. et al. Vultures respond to challenges of near-ground thermal soaring by varying bank angle. J. Exp. Biol. 221, 174995 (2018).
    Google Scholar 
    García-Barón, I. et al. How to fit the distribution of apex scavengers into land-abandonment scenarios? The Cinereous vulture in the Mediterranean biome. Divers. Distrib. 24, 1018–1031 (2018).
    Google Scholar 
    Donázar, J. A., Ceballos, O. & Cortés-Avizanda, A. Tourism in protected areas: Disentangling road and traffic effects on intra-guild scavenging processes. Sci. Total Environ. 630, 600–608 (2018).ADS 
    PubMed 

    Google Scholar 
    Daoud, J. I. Multicollinearity and Regression Analysis. J. Phys. Conf. Ser. 949, 012009 (2017).
    Google Scholar 
    Burnham, K. P., Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (2002).Symonds, M. R. E. & Moussalli, A. A brief guide to model selection, multimodel inference and model averaging in behavioural ecology using Akaike’s information criterion. Behav. Ecol. Sociobiol. 65, 13–21 (2011).
    Google Scholar 
    Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models (2020).R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, (2018), https://www.r-project.org/Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S 4th edn. (Springer, New York, 2002).MATH 

    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Warnes, G. R., Bolker, B., Lumley, T., Johnson, R. C. gmodels: Various R programming tools for model fitting (2018).Mazerolle, M. J. AICcmodavg: Model selection and multimodel inference based on (Q)AIC(c). R package version 2.2-2 (2019).K. Barton, MuMIn: Multimodel inference. R package version 1.43.6.557. (2019).QGIS.org, QGIS Geographic Information System. QGIS Association, (2019), http://www.qgis.orgBouten, W., Baaij, E. W., Shammoun-Baranes, J. & Camphuysen, K. C. J. A flexible GPS tracking system for studying bird behaviour at multiple scales. J. Ornithol. 154, 571–580 (2012).
    Google Scholar 
    ASTER GDEM Validation Team, ASTER Global Digital Elevation Model Version 2 ‐ Summary of Validation Results (2011).Ruiz de la Torre, J. Mapa Forestal de España, 1:200.000, Memoria General, (ICONA, Madrid, 1990).INE, Anuario estadístico. Madrid, Spain: Instituto Nacional de Estadística, Ministerio de Economía y Hacienda (2006). More

  • in

    Physiological response and proteomics analysis of Reaumuria soongorica under salt stress

    Effects of NaCl concentrations on growth indicators of R. soongorica seedlingsAs shown in Table 1, when compared with control A (i.e., 0 mM NaCl), both the fresh weight and root/shoot ratio of R. soongorica in group B (i.e., 200 mM NaCl) were significantly higher. However, both fresh weight and root/shoot ratio gradually decreased in group C (i.e., 500 mM NaCl). When the NaCl concentration reached that of group C (i.e., 500 mM NaCl), the growth of R. soongorica was significantly inhibited. The fresh weight of above-ground and root tissues was respectively 43.82% and 50.99% that of the control, and these differences were significant (P  More