More stories

  • in

    Experimental evaluation of ecological principles to understand and modulate the outcome of bacterial strain competition in gut microbiomes

    Brugiroux S, Beutler M, Pfann C, Garzetti D, Ruscheweyh HJ, Ring D, et al. Genome-guided design of a defined mouse microbiota that confers colonization resistance against Salmonella enterica serovar Typhimurium. Nat Microbiol. 2016;2:16215.CAS 
    PubMed 

    Google Scholar 
    Buffie CG, Bucci V, Stein RR, McKenney PT, Ling L, Gobourne A, et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 2015;517:205–8.CAS 
    PubMed 

    Google Scholar 
    He M, Shi B. Gut microbiota as a potential target of metabolic syndrome: the role of probiotics and prebiotics. Cell Biosci. 2017;7:54.PubMed 
    PubMed Central 

    Google Scholar 
    Ma W, Mao Q, Xia W, Dong G, Yu C, Jiang F. Gut microbiota shapes the efficiency of cancer therapy. Front Microbiol. 2019;10:1050.PubMed 
    PubMed Central 

    Google Scholar 
    Rodriguez J, Hiel S, Neyrinck AM, Le Roy T, Potgens SA, Leyrolle Q, et al. Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients. Gut 2020;69:1975–87.CAS 
    PubMed 

    Google Scholar 
    Schubert AM, Sinani H, Schloss PD. Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile. mBio 2015;6:e00974.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, et al. Gut microbiota and cancer: From pathogenesis to therapy. Cancers (Basel). 2019;11:38.Pasolli E, Truong DT, Malik F, Waldron L, Segata N. Machine learning meta-analysis of large metagenomic datasets: Tools and biological insights. PLoS Comput Biol. 2016;12:e1004977.PubMed 
    PubMed Central 

    Google Scholar 
    Walters WA, Xu Z, Knight R. Meta-analyses of human gut microbes associated with obesity and IBD. FEBS Lett. 2014;588:4223–33.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rastelli M, Knauf C, Cani PD. Gut microbes and health: A focus on the mechanisms linking microbes, obesity, and related disorders. Obes (Silver Spring) 2018;26:792–800.
    Google Scholar 
    Sonnenburg JL, Backhed F. Diet-microbiota interactions as moderators of human metabolism. Nature 2016;535:56–64.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Costello EK, Stagaman K, Dethlefsen L, Bohannan BJ, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science 2012;336:1255–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koskella B, Hall LJ, Metcalf CJE. The microbiome beyond the horizon of ecological and evolutionary theory. Nat Ecol Evol. 2017;1:1606–15.PubMed 

    Google Scholar 
    Walter J, Ley R. The human gut microbiome: Ecology and recent evolutionary changes. Annu Rev Microbiol. 2011;65:411–29.CAS 
    PubMed 

    Google Scholar 
    Walter J, Maldonado-Gomez MX, Martinez I. To engraft or not to engraft: An ecological framework for gut microbiome modulation with live microbes. Curr Opin Biotechnol. 2018;49:129–39.CAS 
    PubMed 

    Google Scholar 
    Le Roy T, Debedat J, Marquet F, Da-Cunha C, Ichou F, Guerre-Millo M, et al. Comparative evaluation of microbiota engraftment following fecal microbiota transfer in mice models: Age, kinetic and microbial status matter. Front Microbiol. 2018;9:3289.PubMed 

    Google Scholar 
    Maldonado-Gomez MX, Martinez I, Bottacini F, O’Callaghan A, Ventura M, van Sinderen D, et al. Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe. 2016;20:515–26.CAS 
    PubMed 

    Google Scholar 
    Martinez I, Maldonado-Gomez MX, Gomes-Neto JC, Kittana H, Ding H, Schmaltz R, et al. Experimental evaluation of the importance of colonization history in early-life gut microbiota assembly. Elife. 2018;7:e36521.Podlesny D, Durdevic M, Paramsothy S, Kaakoush NO, Högenauer C, Gorkiewicz G, et al. Intraspecies strain exclusion, antibiotic pretreatment, and donor selection control microbiota engraftment after fecal transplantation. medRxiv. 2021;08.18.21262200.Li SS, Zhu A, Benes V, Costea PI, Hercog R, Hildebrand F, et al. Durable coexistence of donor and recipient strains after fecal microbiota transplantation. Science 2016;352:586–89.CAS 
    PubMed 

    Google Scholar 
    Seekatz AM, Aas J, Gessert CE, Rubin TA, Saman DM, Bakken JS, et al. Recovery of the gut microbiome following fecal microbiota transplantation. mBio 2014;5:e00893–00814.PubMed 
    PubMed Central 

    Google Scholar 
    Shahinas D, Silverman M, Sittler T, Chiu C, Kim P, Allen-Vercoe E, et al. Toward an understanding of changes in diversity associated with fecal microbiome transplantation based on 16S rRNA gene deep sequencing. mBio. 2012;3:e00338–12.Hardin G. The competitive exclusion principle. Science 1960;131:1292–7.CAS 
    PubMed 

    Google Scholar 
    Stecher B, Chaffron S, Kappeli R, Hapfelmeier S, Freedrich S, Weber TC, et al. Like will to like: Abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. 2010;6:e1000711.PubMed 
    PubMed Central 

    Google Scholar 
    Chesson P. Mechanisms of maintenance of species diversity. Annu Rev Ecol Syst. 2000;31:343–66.
    Google Scholar 
    Grainger TN, Letten AD, Gilbert B, Fukami T. Applying modern coexistence theory to priority effects. Proc Natl Acad Sci USA. 2019;116:6205–10.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lee SM, Donaldson GP, Mikulski Z, Boyajian S, Ley K, Mazmanian SK. Bacterial colonization factors control specificity and stability of the gut microbiota. Nature 2013;501:426–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Onderdonk A, Marshall B, Cisneros R, Levy SB. Competition between congenic Escherichia coli K-12 strains in vivo. Infect Immun. 1981;32:74–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci USA. 2013;110:9066–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shin NR, Lee JC, Lee HY, Kim MS, Whon TW, Lee MS, et al. An increase in the Akkermansia spp. population induced by metformin treatment improves glucose homeostasis in diet-induced obese mice. Gut 2014;63:727–35.CAS 

    Google Scholar 
    Dingemanse C, Belzer C, van Hijum SA, Gunthel M, Salvatori D, den Dunnen JT, et al. Akkermansia muciniphila and Helicobacter typhlonius modulate intestinal tumor development in mice. Carcinogenesis 2015;36:1388–96.CAS 
    PubMed 

    Google Scholar 
    Png CW, Linden SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI, et al. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol. 2010;105:2420–8.CAS 
    PubMed 

    Google Scholar 
    Zhai R, Xue X, Zhang L, Yang X, Zhao L, Zhang C. Strain-specific anti-inflammatory properties of two Akkermansia muciniphila strains on chronic colitis in mice. Front Cell Infect Microbiol. 2019;9:239.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martens EC, Lowe EC, Chiang H, Pudlo NA, Wu M, McNulty NP, et al. Recognition and degradation of plant cell wall polysaccharides by two human gut symbionts. PLoS Biol. 2011;9:e1001221.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pudlo NA, Urs K, Crawford R, Pirani A, Atherly T, Jimenez R, et al. Phenotypic and genomic diversification in complex carbohydrate-degrading human gut bacteria. mSystems. 2022;7:e0094721.Lagkouvardos I, Pukall R, Abt B, Foesel BU, Meier-Kolthoff JP, Kumar N, et al. The mouse intestinal bacterial collection (miBC) provides host-specific insight into cultured diversity and functional potential of the gut microbiota. Nat Microbiol. 2016;1:16131.CAS 
    PubMed 

    Google Scholar 
    Weldon L, Abolins S, Lenzi L, Bourne C, Riley EM, Viney M. The gut microbiota of wild mice. PLoS One. 2015;10:e0134643.PubMed 
    PubMed Central 

    Google Scholar 
    Segura Munoz RR, Quach T, Gomes-Neto JC, Xian Y, Pena PA, Weier S, et al. Stearidonic-enriched soybean oil modulates obesity, glucose metabolism, and fatty acid profiles independently of Akkermansia muciniphila. Mol Nutr Food Res. 2020;64:e2000162.PubMed 
    PubMed Central 

    Google Scholar 
    Bindels LB, Segura Munoz RR, Gomes-Neto JC, Mutemberezi V, Martinez I, Salazar N, et al. Resistant starch can improve insulin sensitivity independently of the gut microbiota. Microbiome 2017;5:12.PubMed 
    PubMed Central 

    Google Scholar 
    Chen IA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res. 2019;47:D666–D677.CAS 
    PubMed 

    Google Scholar 
    Rozen S, Skaletsky H. Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol. 2000;132:365–86.CAS 
    PubMed 

    Google Scholar 
    Mukherjee S, Stamatis D, Bertsch J, Ovchinnikova G, Katta HY, Mojica A, et al. Genomes OnLine database (GOLD) v.7: Updates and new features. Nucleic Acids Res.2019;47:D649–D659.CAS 
    PubMed 

    Google Scholar 
    Schneeberger M, Everard A, Gomez-Valades AG, Matamoros S, Ramirez S, Delzenne NM, et al. Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep. 2015;5:16643.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomes-Neto JC, Mantz S, Held K, Sinha R, Segura Munoz RR, Schmaltz R, et al. A real-time PCR assay for accurate quantification of the individual members of the Altered Schaedler Flora microbiota in gnotobiotic mice. J Microbiol Methods. 2017;135:52–62.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gomes-Neto JC, Kittana H, Mantz S, Segura Munoz RR, Schmaltz RJ, Bindels LB, et al. A gut pathobiont synergizes with the microbiota to instigate inflammatory disease marked by immunoreactivity against other symbionts but not itself. Sci Rep. 2017;7:17707.PubMed 
    PubMed Central 

    Google Scholar 
    Wingett SW, Andrews S. FastQ Screen: A tool for multi-genome mapping and quality control. F1000Res. 2018;7:1338.PubMed 
    PubMed Central 

    Google Scholar 
    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 2009;25:1754–60.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garcia-Alcalde F, Okonechnikov K, Carbonell J, Cruz LM, Gotz S, Tarazona S, et al. Qualimap: evaluating next-generation sequencing alignment data. Bioinformatics 2012;28:2678–79.CAS 
    PubMed 

    Google Scholar 
    Thomsen MCF, Hasman H, Westh H, Kaya H, Lund O. RUCS: rapid identification of PCR primers for unique core sequences. Bioinformatics 2017;33:3917–21.PubMed 
    PubMed Central 

    Google Scholar 
    Darling AC, Mau B, Blattner FR, Perna NT. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 2004;14:1394–1403.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kang DD, Li F, Kirton E, Thomas A, Egan R, An H, et al. MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. PeerJ. 2019;7:e7359.PubMed 
    PubMed Central 

    Google Scholar 
    Genome [Internet] (2004). National Library of Medicine (US), National Center for Biotechnology Information: Bethesda (MD). https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/1218/Genome [Internet] (2004). National Library of Medicine (US), National Center for Biotechnology Information: Bethesda (MD). https://www.ncbi.nlm.nih.gov/genome/browse/#!/prokaryotes/1598/Beghini F, McIver LJ, Blanco-Miguez A, Dubois L, Asnicar F, Maharjan S, et al. Integrating taxonomic, functional, and strain-level profiling of diverse microbial communities with bioBakery 3. Elife. 2021;10:e65088.Asnicar F, Weingart G, Tickle TL, Huttenhower C, Segata N. Compact graphical representation of phylogenetic data and metadata with GraPhlAn. PeerJ 2015;3:e1029.PubMed 
    PubMed Central 

    Google Scholar 
    Varghese NJ, Mukherjee S, Ivanova N, Konstantinidis KT, Mavrommatis K, Kyrpides NC, et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res 2015;43:6761–71.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mavromatis K, Chu K, Ivanova N, Hooper SD, Markowitz VM, Kyrpides NC. Gene context analysis in the Integrated Microbial Genomes (IMG) data management system. PLoS One 2009;4:e7979.PubMed 
    PubMed Central 

    Google Scholar 
    El-Gebali S, Mistry J, Bateman A, Eddy SR, Luciani A, Potter SC, et al. The Pfam protein families database in 2019. Nucleic Acids Res 2019;47:D427–D432.CAS 
    PubMed 

    Google Scholar 
    The UniProt Consortium. The universal protein resource (UniProt). Nucleic Acids Res 2008;36:D190–195.
    Google Scholar 
    Obadia B, Guvener ZT, Zhang V, Ceja-Navarro JA, Brodie EL, Ja WW, et al. Probabilistic invasion underlies natural gut microbiome stability. Curr Biol 2017;27:1999–2006 e1998.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Meszena G, Gyllenberg M, Pasztor L, Metz JA. Competitive exclusion and limiting similarity: A unified theory. Theor Popul Biol. 2006;69:68–87.PubMed 

    Google Scholar 
    Cavender-Bares J, Kozak KH, Fine PV, Kembel SW. The merging of community ecology and phylogenetic biology. Ecol Lett. 2009;12:693–715.PubMed 

    Google Scholar 
    Tramontano M, Andrejev S, Pruteanu M, Klunemann M, Kuhn M, Galardini M, et al. Nutritional preferences of human gut bacteria reveal their metabolic idiosyncrasies. Nat Microbiol 2018;3:514–22.CAS 
    PubMed 

    Google Scholar 
    Derrien M, Vaughan EE, Plugge CM, de Vos WM. Akkermansia muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading bacterium. Int J Syst Evol Microbiol 2004;54:1469–1476.CAS 
    PubMed 

    Google Scholar 
    Walker AW, Lawley TD. Therapeutic modulation of intestinal dysbiosis. Pharm Res 2013;69:75–86.CAS 

    Google Scholar 
    Livanos AE, Greiner TU, Vangay P, Pathmasiri W, Stewart D, McRitchie S, et al. Antibiotic-mediated gut microbiome perturbation accelerates development of type 1 diabetes in mice. Nat Microbiol 2016;1:16140.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perez-Cobas AE, Gosalbes MJ, Friedrichs A, Knecht H, Artacho A, Eismann K, et al. Gut microbiota disturbance during antibiotic therapy: A multi-omic approach. Gut 2013;62:1591–1601.CAS 
    PubMed 

    Google Scholar 
    Adler PB, Hillerislambers J, Levine JM. A niche for neutrality. Ecol Lett. 2007;10:95–104.PubMed 

    Google Scholar 
    Levine JM, HilleRisLambers J. The importance of niches for the maintenance of species diversity. Nature 2009;461:254–57.CAS 
    PubMed 

    Google Scholar 
    Forstner G. Signal transduction, packaging and secretion of mucins. Annu Rev Physiol. 1995;57:585–605.CAS 
    PubMed 

    Google Scholar 
    Ottman N, Davids M, Suarez-Diez M, Boeren S, Schaap PJ, Martins Dos Santos VAP, et al. Genome-scale model and omics analysis of metabolic capacities of Akkermansia muciniphila reveal a preferential mucin-degrading lifestyle. Appl Environ Microbiol. 2017;83:e01014-17.Duar RM, Frese SA, Lin XB, Fernando SC, Burkey TE, Tasseva G et al. Experimental evaluation of host adaptation of Lactobacillus reuteri to different vertebrate species. Appl Environ Microbiol. 2017;83:e00132–17.Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, Zhang M, et al. The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet. 2011;7:e1001314.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosshart SP, Vassallo BG, Angeletti D, Hutchinson DS, Morgan AP, Takeda K, et al. Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell 2017;171:1015–1028 e1013.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Karcher N, Nigro E, Puncochar M, Blanco-Miguez A, Ciciani M, Manghi P, et al. Genomic diversity and ecology of human-associated Akkermansia species in the gut microbiome revealed by extensive metagenomic assembly. Genome Biol. 2021;22:209.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rosshart SP, Herz J, Vassallo BG, Hunter A, Wall MK, Badger JH, et al. Laboratory mice born to wild mice have natural microbiota and model human immune responses. Science. 2019;365.Mark Welch JL, Hasegawa Y, McNulty NP, Gordon JI, Borisy GG. Spatial organization of a model 15-member human gut microbiota established in gnotobiotic mice. Proc Natl Acad Sci USA. 2017;114:E9105–E9114.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Whitaker WR, Shepherd ES, Sonnenburg JL. Tunable expression tools enable single-cell strain distinction in the gut microbiome. Cell 2017;169:538–546. e512.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Becken B, Davey L, Middleton DR, Mueller KD, Sharma A, Holmes ZC, et al. Genotypic and phenotypic diversity among human isolates of Akkermansia muciniphila. mBio. 2021;12:e00478–21.Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res. 2017;27:626–38.
    Google Scholar 
    Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, et al. The long-term stability of the human gut microbiota. Science 2013;341:1237439.PubMed 
    PubMed Central 

    Google Scholar 
    Mehta RS, Abu-Ali GS, Drew DA, Lloyd-Price J, Subramanian A, Lochhead P, et al. Stability of the human faecal microbiome in a cohort of adult men. Nat Microbiol. 2018;3:347–355.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferretti P, Pasolli E, Tett A, Asnicar F, Gorfer V, Fedi S, et al. Mother-to-infant microbial transmission from different body sites shapes the developing infant gut microbiome. Cell Host Microbe. 2018;24:133–45 e135.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korpela K, Costea P, Coelho LP, Kandels-Lewis S, Willemsen G, Boomsma DI, et al. Selective maternal seeding and environment shape the human gut microbiome. Genome Res. 2018;28:561–8.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Freitag TL, Hartikainen A, Jouhten H, Sahl C, Meri S, Anttila VJ, et al. Minor effect of antibiotic pre-treatment on the engraftment of donor microbiota in fecal transplantation in mice. Front Microbiol. 2019;10:2685.PubMed 
    PubMed Central 

    Google Scholar 
    Ji SK, Yan H, Jiang T, Guo CY, Liu JJ, Dong SZ, et al. Preparing the gut with antibiotics enhances gut microbiota reprogramming efficiency by promoting xenomicrobiota colonization. Front Microbiol. 2017;8:1208.PubMed 
    PubMed Central 

    Google Scholar 
    Divya Ganeshan S, Hosseinidoust Z. Phage therapy with a focus on the human microbiota. Antibiotics (Basel). 2019;8:131.Ramachandran G, Bikard D. Editing the microbiome the CRISPR way. Philos Trans R Soc Lond B Biol Sci. 2019;374:20180103.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    How colonialism fed the flames of Australia’s catastrophic wildfires

    .readcube-buybox { display: none !important;}

    The unprecedented fires that devastated parts of Australia in 2020 can be attributed in part to colonialism1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-022-00509-5

    ReferencesMariani, M. et al. Front. Ecol. Environ. https://doi.org/10.1002/fee.2395 (2022).Article 

    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    Apply Singapore Index on Cities’ Biodiversity at scale
    Correspondence 22 FEB 22

    Marching in the streets for climate-crisis action
    Career Q&A 22 FEB 22

    From the archive
    News & Views 22 FEB 22

    Jobs

    PhD position (m/f/d) – Metabolomics

    Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V. (ISAS)
    Dortmund, Germany

    PhD position (m/f/d) – Computational Mass spectrometry and Metabolomics

    Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V. (ISAS)
    Dortmund, Germany

    Laboratory technician – Metabolomics Platform

    University of Luxembourg
    Luxembourg, Luxembourg

    PhD Position – Protein Phase Separation and Microbiology

    The University of British Columbia (UBC)
    Vancouver, Canada More

  • in

    Alternative stable states of the forest mycobiome are maintained through positive feedbacks

    van der Heijden, M. G. A., Martin, F. M., Selosse, M.-A. & Sanders, I. R. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205, 1406–1423 (2015).Article 

    Google Scholar 
    McGuire, K. L. Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88, 567–574 (2007).Article 

    Google Scholar 
    Selosse, M.-A., Richard, F., He, X. & Simard, S. W. Mycorrhizal networks: des liaisons dangereuses? Trends Ecol. Evol. 21, 621–628 (2006).Article 

    Google Scholar 
    Simard, S. W. et al. Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579–582 (1997).CAS 
    Article 

    Google Scholar 
    Klein, T., Siegwolf, R. T. W. & Korner, C. Belowground carbon trade among tall trees in a temperate forest. Science 352, 342–344 (2016).CAS 
    Article 

    Google Scholar 
    Franklin, O., Näsholm, T., Högberg, P. & Högberg, M. N. Forests trapped in nitrogen limitation—an ecological market perspective on ectomycorrhizal symbiosis. New Phytol. 203, 657–666 (2014).CAS 
    Article 

    Google Scholar 
    Phillips, R. P., Brzostek, E. & Midgley, M. G. The mycorrhizal-associated nutrient economy: a new framework for predicting carbon–nutrient couplings in temperate forests. New Phytol. 199, 41–51 (2013).CAS 
    Article 

    Google Scholar 
    Cheng, L. et al. Arbuscular mycorrhizal fungi increase organic carbon decomposition under elevated CO2. Science 337, 1084–1087 (2012).CAS 
    Article 

    Google Scholar 
    Averill, C. & Hawkes, C. V. Ectomycorrhizal fungi slow soil carbon cycling. Ecol. Lett. 19, 937–947 (2016).Article 

    Google Scholar 
    Fukami, T. Historical contingency in community assembly: integrating niches, species pools, and priority effects. Annu. Rev. Ecol. Evol. Syst. 46, 1–23 (2015).Article 

    Google Scholar 
    Steidinger, B. S. et al. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Nature 569, 404–408 (2019).CAS 
    Article 

    Google Scholar 
    Averill, C., Turner, B. L. & Finzi, A. C. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature 505, 543–545 (2014).CAS 
    Article 

    Google Scholar 
    Terrer, C., Vicca, S., Hungate, B. A., Phillips, R. P. & Prentice, I. C. Mycorrhizal association as a primary control of the CO2 fertilization effect. Science 353, 72–74 (2016).CAS 
    Article 

    Google Scholar 
    Read, D. J. Mycorrhizas in ecosystems. Experientia 47, 376–391 (1991).Article 

    Google Scholar 
    Lu, M. & Hedin, L. O. Global plant–symbiont organization and emergence of biogeochemical cycles resolved by evolution-based trait modelling. Nat. Ecol. Evol. 3, 239–250 (2019).Blanchet, F. G., Cazelles, K. & Gravel, D. Co‐occurrence is not evidence of ecological interactions. Ecol. Lett. 23, 1050–1063 (2020).Article 

    Google Scholar 
    Connor, E. F. & Simberloff, D. The assembly of species communities: chance or competition? Ecology 60, 1132 (1979).Article 

    Google Scholar 
    Molofsky, J. & Bever, J. D. A novel theory to explain species diversity in landscapes: positive frequency dependence and habitat suitability. Proc. R. Soc. Lond. B 269, 2389–2393 (2002).Article 

    Google Scholar 
    Mayfield, M. M. & Levine, J. M. Opposing effects of competitive exclusion on the phylogenetic structure of communities: phylogeny and coexistence. Ecol. Lett. 13, 1085–1093 (2010).Article 

    Google Scholar 
    Beisner, B., Haydon, D. & Cuddington, K. Alternative stable states in ecology. Front. Ecol. Environ. 1, 376–382 (2003).Article 

    Google Scholar 
    Averill, C., Dietze, M. C. & Bhatnagar, J. M. Continental-scale nitrogen pollution is shifting forest mycorrhizal associations and soil carbon stocks. Glob. Change Biol. 24, 4544–4553 (2018).Article 

    Google Scholar 
    Frelich, L. E., Calcote, R. R., Davis, M. B. & Pastor, J. Patch formation and maintenance in an old-growth hemlock-hardwood forest. Ecology 74, 513–527 (1993).Article 

    Google Scholar 
    Davis, M. B., Calcote, R. R., Sugita, S. & Takahara, H. Patchy invasion and the origin of a hemlock-hardwood forest mosaic. Ecology 79, 2641–2659 (1998).
    Google Scholar 
    Jo, I., Fei, S., Oswalt, C. M., Domke, G. M. & Phillips, R. P. Shifts in dominant tree mycorrhizal associations in response to anthropogenic impacts. Sci. Adv. 5, eaav6358 (2019).CAS 
    Article 

    Google Scholar 
    Staver, A. C., Archibald, S. & Levin, S. A. The global extent and determinants of savanna and forest as alternative biome states. Science 334, 230–232 (2011).CAS 
    Article 

    Google Scholar 
    Chen, L. et al. Differential soil fungus accumulation and density dependence of trees in a subtropical forest. Science 366, 124–128 (2019).CAS 
    Article 

    Google Scholar 
    Averill, C., Bhatnagar, J. M., Dietze, M. C., Pearse, W. D. & Kivlin, S. N. Global imprint of mycorrhizal fungi on whole-plant nutrient economics. Proc. Natl Acad. Sci. USA 16, 23163–23168 (2019). https://doi.org/10.1073/pnas.1906655116Hodge, A. & Fitter, A. H. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl Acad. Sci. USA 107, 13754–13759 (2010).CAS 
    Article 

    Google Scholar 
    Fernandez, C. W. & Kennedy, P. G. Revisiting the ‘Gadgil effect’: do interguild fungal interactions control carbon cycling in forest soils? New Phytol. 209, 1382–1394 (2016).CAS 
    Article 

    Google Scholar 
    The Forest Inventory and Analysis Database: Database Description and User Guide Version 7.0 for Phase 2 (USDA Forest Service, 2018).Johnson, D. J., Beaulieu, W. T., Bever, J. D. & Clay, K. Conspecific negative density dependence and forest diversity. Science 336, 904–907 (2012).CAS 
    Article 

    Google Scholar 
    van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019).Article 

    Google Scholar 
    NRSP-3 (National Atmospheric Deposition Program, 2015).Wood, S. N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models: estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 73, 3–36 (2011).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2019).Hartigan, J. & Hartigan, P. The dip test of unimodality. Ann. Stat. 13, 70–84 (1985).Article 

    Google Scholar 
    Dickie, I. A., Hurst, J. M. & Bellingham, P. J. Comment on ‘conspecific negative density dependence and forest diversity’. Science 338, 469–469 (2012).CAS 
    Article 

    Google Scholar 
    Zuur, A. F., Ieno, E. N. & Elphick, C. S. A protocol for data exploration to avoid common statistical problems: data exploration. Methods Ecol. Evol. 1, 3–14 (2010).Article 

    Google Scholar 
    Omernik, J. M. & Griffith, G. E. Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environ. Manag. 54, 1249–1266 (2014).Article 

    Google Scholar 
    Masek, J. G. et al. North American forest disturbance mapped from a decadal Landsat record. Remote Sens. Environ. 112, 2914–2926 (2008).Article 

    Google Scholar 
    Averill, C. colinaverill/altSS_forest_mycorrhizas: First release to establish Zenodo DOI for Nature Ecology & Evolution. Zenodo https://zenodo.org/record/5744063 (2021). More

  • in

    Biosynthetic gene cluster profiling predicts the positive association between antagonism and phylogeny in Bacillus

    Positive correlation between biosynthetic gene cluster (BGC) and phylogenetic distance in the genus Bacillus
    BGCs are responsible for the synthesis of secondary metabolites involved in microbial interference competition. To investigate the relationship between BGC and phylogenetic distance within the genus Bacillus, we collected 4268 available Bacillus genomes covering 139 species from the NCBI database (Supplementary Data 1). Phylogenetic analysis based on the sequences of 120 ubiquitous single-copy proteins27 showed that the 139 species could be generally clustered into four clades (Fig. 1 and Supplementary Data 2; the phylogenetic tree including all the detailed species information is shown in Supplementary Fig. 1), including a subtilis clade that includes species from diverse niches and can be further divided into the subtilis and pumilus subclades, a cereus clade that contains typical pathogenic species (B. cereus, B. anthracis, B. thuringiensis, etc.), a megaterium clade, and a circulans clade.Fig. 1: Phylogram of the tested Bacillus genomes.The maximum likelihood (ML) phylogram of 4268 Bacillus genomes was based on the sequences of 120 ubiquitous single-copy proteins27. The phylogenetic tree shows that Bacillus species can be generally clustered into the subtilis (light green circle; further includes subtilis (dark green) and pumilus (blue) subclades as shown in the branches), cereus (red), megaterium (yellow), and circulans (gray) clades. For detailed information of the species, please refer to the phylogenetic tree in Supplementary Fig. 1.Full size imagePrediction using the bioinformatic tool antiSMASH15 detected 49,671 putative BGCs in the 4268 genomes, corresponding to an average of 11.6 BGCs per genome (Supplementary Data 3). The subtilis clade had the most BGCs, 13.1 BGCs per genome (Fig. 2a); the subtilis subclade especially accommodates a high abundance of BGCs as 13.6 per genome (Supplementary Fig. 2a), which corresponds to their adaptation in diverse competitive habitats such as plant rhizosphere. The cereus and megaterium clades possessed moderate number of BGCs as 11.7 and 7.4 per genome, respectively; while the circulans clade only had 4.3 BGCs/genome (Fig. 2a and Supplementary Table 1), suggesting a distinct physiological feature and niche adaptation strategy. The two most abundant BGC classes were nonribosomal peptide-synthetase (NRPS) and RiPPs, which had an abundance of 3.7 and 3.1 per genome on average, respectively (Supplementary Fig. 2b and Supplementary Table 1). Interestingly, subtilis clade accommodated significantly higher abundance of BGCs in another polyketide synthase (PKSother; 2.0 per genome vs. 0.0–1.1 per genome) and PKS-NRPS Hybrids (0.7 vs. 0.0–0.2) classes, as compared with the three other clades (Supplementary Table 1); while cereus clade had more BGCs in RiPPs than other clades on average (Supplementary Table 1). Overall, the profile of BGC products and classification was generally consistent with the phylogenetic tree (Supplementary Fig. 3).Fig. 2: Biosynthetic gene cluster (BGC) distribution is correlated with phylogeny in the genus Bacillus.a The numbers of BGCs in the 4268 Bacillus genomes from different clades as defined by antiSMASH15. In the violin plot, the centre line represents the median, violin edges show the 25th and 75th percentiles, and whiskers extend to 1.5× the interquartile range. b Hierarchal clustering among the 545 representative Bacillus genomes based on the abundance of the different biosynthesis gene cluster families (GCFs). Each column represents a GCF, which was classified through BiG-SCAPE by calculating the Jaccard index (JI), adjacency index (AI), and domain sequence similarity (DSS) of each BGC28; the color bar on the top of the heatmap represents the BGC class of each GCF, where PKS includes classes of PKSother and PKSI, PKS-NRPS means PKS-NRPS Hybrids, Others includes classes of saccharides, terpene, and others. Each row represents a Bacillus genome, and the abundance of each GCF in different genomes is shown in the heatmap. The left tree was constructed based on the distribution pattern of GCFs, which showes a similar pattern to the phylogram in Fig. 1. c The correlation between the BGC and phylogenetic distance of the 545 representative Bacillus genomes (P  More

  • in

    Influences of summer warming and nutrient availability on Salix glauca L. growth in Greenland along an ice to sea gradient

    Meredith, M. et al. Polar regions. IPCC Intergov. Panel Clim. Chang. Geneva, Switz. 3, 203–320 (2019).Raftery, A. E., Zimmer, A., Frierson, D. M. W., Startz, R. & Liu, P. Less than 2 °C warming by 2100 unlikely. Nat. Clim. Chang. 7, 637–641 (2017).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Ernakovich, J. G. et al. Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Glob. Chang. Biol. 20, 3256–3269 (2014).PubMed 
    ADS 

    Google Scholar 
    Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Myers-Smith, I. H. & Hik, D. S. Climate warming as a driver of tundra shrubline advance. J. Ecol. 106, 547–560 (2018).
    Google Scholar 
    Martin, A. C., Jeffers, E. S., Petrokofsky, G., Myers-Smith, I. & Macias-Fauria, M. Shrub growth and expansion in the Arctic tundra: An assessment of controlling factors using an evidence-based approach. Environ. Res. Lett. 12, (2017).Myers-Smith, I. H. et al. Climate sensitivity of shrub growth across the tundra biome. Nat. Clim. Chang. 5, 887–891 (2015).ADS 

    Google Scholar 
    Myers-Smith, I. H. et al. Complexity revealed in the greening of the Arctic. Nat. Clim. Chang. 10, 106–117 (2020).ADS 

    Google Scholar 
    Epstein, H. E., Myers-Smith, I. & Walker, D. A. Recent dynamics of arctic and sub-arctic vegetation. Environ. Res. Lett. 8, 015040 (2013).ADS 

    Google Scholar 
    Ackerman, D., Griffin, D., Hobbie, S. E. & Finlay, J. C. Arctic shrub growth trajectories differ across soil moisture levels. Glob. Chang. Biol. 23, 4294–4302 (2017).PubMed 

    Google Scholar 
    Carrer, M., Pellizzari, E., Prendin, A. L., Pividori, M. & Brunetti, M. Winter precipitation – not summer temperature – is still the main driver for Alpine shrub growth. Sci. Total Environ. 682, 171–179 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Xu, Y., Ramanathan, V. & Washington, W. M. Observed high-altitude warming and snow cover retreat over Tibet and the Himalayas enhanced by black carbon aerosols. Atmos. Chem. Phys. 16, 1303–1315 (2016).CAS 
    ADS 

    Google Scholar 
    Francon, L. et al. Assessing the effects of earlier snow melt-out on alpine shrub growth: The sooner the better? Ecol. Indic. 115, (2020).López-Blanco, E. et al. Exchange of CO2 in Arctic tundra: impacts of meteorological variations and biological disturbance. Biogeosciences 14, 4467–4483 (2017).ADS 

    Google Scholar 
    Lund, M. et al. Larval outbreaks in West Greenland: Instant and subsequent effects on tundra ecosystem productivity and CO2 exchange. Ambio 46, 26–38 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Prendin, A. L. et al. Immediate and carry-over effects of insect outbreaks on vegetation growth in West Greenland assessed from cells to satellite. J. Biogeogr. 47, 87–100 (2020).
    Google Scholar 
    Hobbie, S. E., Nadelhoffer, K. J. & Högberg, P. A synthesis: The role of nutrients as constraints on carbon balances in boreal and arctic regions. Plant Soil 242, 163–170 (2002).CAS 

    Google Scholar 
    Bret-Harte, M. S., Shaver, G. R. & Chapin, F. S. Primary and secondary stem growth in arctic shrubs: Implications for community response to environmental change. J. Ecol. 90, 251–267 (2002).
    Google Scholar 
    Sullivan, P. F., Ellison, S. B. Z., McNown, R. W., Brownlee, A. H. & Sveinbjörnsson, B. Evidence of soil nutrient availability as the proximate constraint on growth of treeline trees in northwest Alaska. Ecology 96, 716–727 (2015).PubMed 

    Google Scholar 
    Craine, J. M. et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 183, 980–992 (2009).CAS 
    PubMed 

    Google Scholar 
    Shaver, G. R. & Chapin, F. S. Long-term responses to factorial, NPK fertilizer treatment by Alaskan wet and moist tundra sedge species. Ecography (Cop.) 18, 259–275 (1995).
    Google Scholar 
    Choudhary, S., Blaud, A., Osborn, A. M., Press, M. C. & Phoenix, G. K. Nitrogen accumulation and partitioning in a High Arctic tundra ecosystem from extreme atmospheric N deposition events. Sci. Total Environ. 554–555, 303–310 (2016).PubMed 
    ADS 

    Google Scholar 
    Bergström, A. K. & Jansson, M. Atmospheric nitrogen deposition has caused nitrogen enrichment and eutrophication of lakes in the northern hemisphere. Glob. Chang. Biol. 12, 635–643 (2006).ADS 

    Google Scholar 
    Wild, B. et al. Plant-derived compounds stimulate the decomposition of organic matter in arctic permafrost soils. Sci. Rep. 6, 25607 (2016).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Pedersen, E. P., Elberling, B. & Michelsen, A. Foraging deeply: Depth-specific plant nitrogen uptake in response to climate-induced N-release and permafrost thaw in the High Arctic. Glob. Chang. Biol. 26, 6523–6536 (2020).PubMed 
    ADS 

    Google Scholar 
    Mack, M. C., Schuur, E. A. G. & Bret-harte, M. S. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. 431, 658–661 (2004).
    Google Scholar 
    Zamin, T. J. & Grogan, P. Birch shrub growth in the low Arctic: the relative importance of experimental warming, enhanced nutrient availability, snow depth and caribou exclusion. Environ. Res. Lett. 7, 034027 (2012).ADS 

    Google Scholar 
    DeMarco, J., MacK, M. C., Bret-Harte, M. S., Burton, M. & Shaver, G. R. Long-term experimental warming and nutrient additions increase productivity in tall deciduous shrub tundra. Ecosphere 5, 1–22 (2014).
    Google Scholar 
    Zamin, T. J., Bret-Harte, M. S. & Grogan, P. Evergreen shrubs dominate responses to experimental summer warming and fertilization in Canadian mesic low arctic tundra. J. Ecol. 102, 749–766 (2014).
    Google Scholar 
    Fenger-Nielsen, R. et al. Footprints from the past: The influence of past human activities on vegetation and soil across five archaeological sites in Greenland. Sci. Total Environ. 654, 895–905 (2019).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Forbes, B. C., Ebersole, J. J. & Strandberg, B. Anthropogenic disturbance and patch dynamics in Circumpolar Arctic ecosystems. Conserv. Biol. 15, 954–969 (2001).
    Google Scholar 
    Andersen, E. A. S. et al. Nitrogen isotopes reveal high N retention in plants and soil of old Norse and Inuit deposits along a wet-dry arctic fjord transect in Greenland. Plant Soil 455, 241–255 (2020).CAS 

    Google Scholar 
    Normand, S. et al. Legacies of historical human activities in Arctic woody plant dynamics. Annu. Rev. Environ. Resour. 42, 541–567 (2017).
    Google Scholar 
    Walker, D. A. et al. The Circumpolar Arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).
    Google Scholar 
    Cappelen, J., Vinther, B. M., Kern-Hansen, C., Laursen, E. V. & Jørgensen, P. V. Greenland-DMI Historical Climate Data Collection 1784–2020 (Danish Meteorological Institute, 2021).
    Google Scholar 
    Hollesen, J. et al. Predicting the loss of organic archaeological deposits at a regional scale in Greenland. Sci. Rep. 9, 9097 (2019).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Fenger-Nielsen, R. et al. Arctic archaeological sites threatened by climate change: A regional multi-threat assessment of sites in south-west Greenland. Archaeometry 62, 1280–1297 (2020).CAS 

    Google Scholar 
    Fettweis, X. et al. Reconstructions of the 1900–2015 Greenland ice sheet surface mass balance using the regional climate MAR model. Cryosphere 11, 1015–1033 (2017).ADS 

    Google Scholar 
    Berner, L. T. et al. Summer warming explains widespread but not uniform greening in the Arctic tundra biome. Nat. Commun. 11, 1–12 (2020).ADS 

    Google Scholar 
    Assmann, J. J. et al. Local snow melt and temperature—but not regional sea ice—explain variation in spring phenology in coastal Arctic tundra. Glob. Chang. Biol. 25, 2258–2274 (2019).PubMed 
    ADS 

    Google Scholar 
    Bhatt, U. S. et al. Climate drivers of Arctic tundra variability and change using an indicators framework. Environ. Res. Lett. 16, (2021).Hollesen, J., Matthiesen, H. & Elberling, B. The impact of Climate Change on an archaeological site in the Arctic. Archaeometry 59, 1175–1189 (2017).CAS 

    Google Scholar 
    Tolvanen, A. & Henry, G. H. R. Responses of carbon and nitrogen concentrations in high arctic plants to experimental warming. Can. J. Bot. 79, 711–718 (2001).CAS 

    Google Scholar 
    Oppen, J. et al. Annual air temperature variability and biotic interactions explain tundra shrub species abundance. J. Veg. Sci. 32, (2021).Hobbie, S. E. Temperature and plant species control over litter decomposition in Alaskan tundra. Ecol. Monogr. 66, 503–522 (1996).
    Google Scholar 
    Nadelhoffer, K. J., Giblin, A. E., Shaver, G. R. & Laundre, J. A. Effects of temperature and substrate quality on element mineralization in six Arctic soils. Ecology 72, 242–253 (1991).
    Google Scholar 
    Arens, S. J. T., Sullivan, P. F. & Welker, J. M. Nonlinear responses to nitrogen and strong interactions with nitrogen and phosphorus additions drastically alter the structure and function of a high Arctic ecosystem. J. Geophys. Res. Biogeosciences 113, 1–10 (2008).
    Google Scholar 
    Baddeley, J. A., Woodin, S. J. & Alexander, I. J. Effects of increased nitrogen and phosphorus availability on the photosynthesis and nutrient relations of three Arctic dwarf shrubs from Svalbard. Funct. Ecol. 8, 676 (1994).
    Google Scholar 
    Anadon-Rosell, A. et al. Xylem anatomical and growth responses of the dwarf shrub Vaccinium myrtillus to experimental CO2 enrichment and soil warming at treeline. Sci. Total Environ. 642, 1172–1183 (2018).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Dawes, M. A. et al. Soil warming and CO2 enrichment induce biomass shifts in alpine tree line vegetation. Glob. Chang. Biol. 21, 2005–2021 (2015).PubMed 
    ADS 

    Google Scholar 
    Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl. Acad. Sci. 103, 1342–1346 (2006).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Matthiesen, H., Fenger-Nielsen, R. F., Harmsen, H., Madsen, C. K. & Hollesen, J. The impact of vegetation on archaeological sites in the low arctic in light of climate change. Arctic 73, 141–152 (2020).
    Google Scholar 
    Dahl, M. B. et al. Warming, shading and a moth outbreak reduce tundra carbon sink strength dramatically by changing plant cover and soil microbial activity. Sci. Rep. 7, 1–13 (2017).CAS 

    Google Scholar 
    Westergaard-Nielsen, A., Karami, M., Hansen, B. U., Westermann, S. & Elberling, B. Contrasting temperature trends across the ice-free part of Greenland. Sci. Rep. 8, 1586 (2018).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Schweingruber, F. H., Börner, A. & Schulze, E.-D. Atlas of Stem Anatomy in Herbs, Shrubs and Trees. (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-642-20435-7Pellizzari, E., Camarero, J. J., Gazol, A., Sangüesa-Barreda, G. & Carrer, M. Wood anatomy and carbon-isotope discrimination support long-term hydraulic deterioration as a major cause of drought-induced dieback. Glob. Chang. Biol. 22, 2125–2137 (2016).PubMed 
    ADS 

    Google Scholar 
    Myers-Smith, I. H. et al. Methods for measuring arctic and alpine shrub growth: A review. Earth-Science Rev. 140, 1–13 (2015).ADS 

    Google Scholar 
    Stokes, M. A. & Smiley, T. L. Introduction to Tree-Ring Dating. (University of Chicago Press, 1968).Cook, E. R., Briffa, K., Shiyatov, S. & Mazepa, V. Methods of Dendrochronology: Applications in the Environmental Sciences. (Kluwer Academic Publisher, 1990).Gärtner, H. & Schweingruber, F. H. Microscopic preparation techniques for plant stem analysis. Kessel 95, 132–150 (2013).
    Google Scholar 
    von Arx, G., Crivellaro, A., Prendin, A. L., Čufar, K. & Carrer, M. Quantitative wood anatomy—practical guidelines. Front. Plant Sci. 7, 781 (2016).
    Google Scholar 
    Holmes, R. L. Computer-assisted quality control in tree- ring dating and measurement. Tree-ring Bulletin 43, 69–78 (1983).
    Google Scholar 
    Belokopytova, L. V, Babushkina, E. A., Zhirnova, D. F., Panyushkina, I. P. & Vaganov, E. A. Pine and larch tracheids capture seasonal variations of climatic signal at moisture-limited sites. Trees 33, 227–242 (2019).Büntgen, U. et al. Temperature-induced recruitment pulses of Arctic dwarf shrub communities. J. Ecol. 103, 489–501 (2015).
    Google Scholar 
    Fritts., H. C. Dendrochronology and Dendroclimatology. in Tree Rings and Climate 1–54 (1976). https://doi.org/10.1016/B978-0-12-268450-0.50006-9Briffa, K. & Jones, P. Basic chronology statistics and assessment. in Methods of Dendrochronology: Applications in the Environmental Sciences 137–152 (Kluwer Academic Publishers, 1990).Zuur, A. F., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed effects models and extensions in ecology with R. (Springer New York, 2009). https://doi.org/10.1007/978-0-387-87458-6Gazol, A. & Camarero, J. J. Mediterranean dwarf shrubs and coexisting trees present different radial-growth synchronies and responses to climate. Plant Ecol. 213, 1687–1698 (2012).
    Google Scholar 
    Crawley, M. J. Mixed-Effects Models. in R Book Second edition 681–714 (2007).Zar, J. H. Biostatistical analysis Fifth edition. USA Prentice Hall 4165 4159–4165, (1999).Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, arXiv:1406.5823 (2015).Pinheiro, J. C. & Bates, D. M. Linear Mixed-Effects Models: Basic Concepts and Examples. in Mixed-Effects Models in S and S-PLUS 3–56 (Springer-Verlag, 2000). https://doi.org/10.1007/0-387-22747-4_1Kuznetsova, A., Brockhoff, P. B. & Christensen, R. H. B. lmerTest Package: Tests in Linear Mixed Effects Models. J. Stat. Softw. 82, (2017).R Core Team (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. More

  • in

    Carex pulicaris abundance is positively associated with soil acidity, rainfall and floristic diversity in the eastern distribution range

    Lawler, J.J. Climate change adaptation strategies for resource management and conservation planning. The year in ecology and conservation biology. Ann. N.Y. Acad. Sci. 1162, 79–98. https://doi.org/10.1111/j.1749-6632.2009.04147.x (2009).Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C. & Mace, G. M. Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025), 53–58. https://doi.org/10.1126/science.1200303 (2011).CAS 
    Article 
    PubMed 
    ADS 

    Google Scholar 
    Walsworth, T. E. et al. Management for network diversity speeds evolutionary adaptation to climate change. Nat. Clim. Change 9(8), 632–636. https://doi.org/10.1038/s41558-019-0518-5 (2019).Article 

    Google Scholar 
    Morelli, T. L. et al. Climate-change refugia: Biodiversity in the slow lane. Front Ecol. Environ. 18(5), 228–234. https://doi.org/10.1002/fee.2189 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vincent, H., Bornand, C. N., Kempel, A. & Fischer, M. Rare species perform worse than widespread species under changed climate. Biol. Conserv. 246, 108586. https://doi.org/10.1016/j.biocon.2020.108586 (2020).Article 

    Google Scholar 
    Corlett, R. T. & Westcott, D. A. Will plant movements keep up with climate change?. Trends Ecol. Evol. 28(8), 482–488. https://doi.org/10.1016/j.tree.2013.04.003 (2013).Article 
    PubMed 

    Google Scholar 
    Janssen, J. & Bijlsma, R.J. Molinia meadows on calcareous, peaty or clayey-silt-laden soils (Molinion caeruleae) (6410) in the Netherlands, in: Bijlsma, R.J. et al. Defining and applying the concept of favourable reference values for species habitats under the EU Birds and Habitats Directives: examples of setting favourable reference values. Wageningen Environmental Research, Wageningen, 2929, pp. 201–203 (2019).Arnell, M., Cousins, S. A. O. & Eriksson, O. Does historical land use affect the regional distribution of fleshy-fruited woody plants?. PLoS ONE 14(12), e0225791. https://doi.org/10.1371/journal.pone.0225791 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Welk, A., Welk, E., Baudis, M., Böckelmann, J. & Bruelheide, H. Plant species range type determines local responses to biotic interactions and land use. Ecology 100(12), e02890. https://doi.org/10.1002/ecy.2890 (2019).Article 
    PubMed 

    Google Scholar 
    Caissy, P., Klemet-N’Guessan, S., Jackiw, R., Eckert, C.G. & Hargreaves, A.L. High conservation priority of range-edge plant populations not matched by habitat protection or research effort. Biol. Conserv. 249, 108732. https://doi.org/10.1101/682823 (2020).Kreyling, J. et al. Rewetting does not return drained fen peatlands to their old selves. Nat. Commun. 12, 5693. https://doi.org/10.1038/s41467-021-25619-y (2021).CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Sotek, Z. Distribution patterns, history, and dynamics of peatland vascular plants in Pomerania (NW Poland). Biodiv. Res. Conserv. 18, 1–82. https://doi.org/10.2478/v10119-010-0020-4 (2010).Article 

    Google Scholar 
    Hultén, E. & Fries, M. Atlas of north European vascular plants, North of the tropic of cancer, I, Introduction, taxonomic index to the maps (Koeltz Scientific Books, 1986).
    Google Scholar 
    Buse, J., Boch, S., Hilgers, J. & Griebeler, E. M. Conservation of threatened habitat types under future climate change—lessons from plant-distribution models and current extinction trends in southern Germany. J. Nat. Conserv. 27, 18–25. https://doi.org/10.1016/j.jnc.2015.06.001 (2015).Article 

    Google Scholar 
    Dítě, D., Melečková, Z. & Eliáš, P. jun. Flea sedge (Carex pulicaris)—a new species in the Great Fatra. Acta Carpathica Occidentalis 6, 23–27, (in Slovak) (2015).Sotek, Z. et al. Distribution and habitat properties of Carex pulicaris and Pedicularis sylvatica at their range margin in NW Poland. Acta Soc. Bot. Pol. 85(3), 3507. https://doi.org/10.5586/asbp.3507 (2016).Article 

    Google Scholar 
    Kukk, T., Kull, T., Luuk, O., Mesipuu, M. & Saar, P. Atlas of the Estonian flora 2020. Tartu, Estonia (2020).Grulich, V. Red list of vascular plants of the Czech Republic, 3rd ed. Preslia 84, 631–645 (2012).Eliáš, P. jun, Dítě, D., Kliment, J., Hrivnák, R. & Feráková, V. Red list of ferns and flowering plants of Slovakia, 5th edition (October 2014). Biologia 70(2), 218–228. https://doi.org/10.1515/biolog-2015-0018 (2015).Kaźmierczakowa, R. et al. Polish red list of pteridophytes and flowering plants. Institute of Nature Conservation of the Polish Academy of Sciences, Cracow (2016).Aronsson, M. et al. Kärlväxter—vascular plants (Tracheophyta). In The 2010 Red List of Swedish Species (ed. Gärdenfors, U.) 201–221 (ArtDatabanken, Uppsala, 2010).
    Google Scholar 
    Kalliovirta, M. et al. Vascular plants, in: Rassi, P., Hyvärinen, E., Juslén, A. & Mannerkoski, I. (Eds.), The 2010 red list of Finnish species. Ministry of the Environment and Finnish Environment Institute, Helsinki, pp. 183–203 (2010).Kull, T. et al. Kokkuvõte soontaimede ohustatuse hindamistulemustest 2017–2018. Liikide ohustatuse hindamine riigihanke 183098 osa nr 15 – Õistaimed (Anthophyta), okaspuutaimed (Coniferophyta), lehtsooneostaimed (Monilophyta) ja pärisraigastaimed (Lycopodiophyta) vastavalt lepingule nr 7–27/17/59 (16. juuni 2017.a.). Lõpparuanne Keskkonnaametile. Eesti Maaülikool. Lk 1–6 + lisa, (in Estonian). Available from https://infoleht.keskkonnainfo.ee/GetFile.aspx?id=1947479558 (2018).Bartoszek, W., Mirek, Z. & Koczur, A. Flea sedge – Carex pulicaris L., in: Kaźmierczakowa, R., Zarzycki, K. & Mirek, Z., (Eds), Polish red data book of plants. Pteridophytes and flowering plants, 3rd ed. Polish Academy of Sciences, Institute of Nature Conservation, Cracow, pp. 737–739, (in Polish) (2014).Matuszkiewicz, W. Guide to the identification of plant communities in Poland. Scientific Publisher Warsaw, Poland, (in Polish) (2006).Hájek, M., Horsák, M., Hájková, P. & Dítě, D. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardise fen terminology in ecological studies. Perspect. Plant Ecol. Evol. Syst. 8, 97–114. https://doi.org/10.1016/j.ppees.2006.08.002 (2006).Article 

    Google Scholar 
    Šefferová-Stanová, V., Šeffer, J. & Janák, M. Management of Natura 2000 habitats. 7230 Alkaline fens. Technical Report 2008 20/24. European Commission. Available from http://ec.europa.eu/environment/nature/natura2000/management/habitats/pdf/7230_Alkaline_fens.pdf. Accessed 15 June 2018 (2008).O’Connell, M., Ryan, J. B. & Macgowran, B. A. Wetland communities in Ireland: a phytosociological review. In European Mires (ed. Moore, P. D.) 303–364 (Academic Press INC, LTD, 1984).Chapter 

    Google Scholar 
    Dítě, D., Kubandová, M. & Pukajová, D. Chorological, ecological and phytocenological notes on the occurrence of flea sedge (Carex pulicaris L.) in Slovakia. Bull. Slovak Bot. Soc. 27, 77–84, (in Slovak) (2005).Hällfors, M. H. et al. Assessing the need and potential of assisted migration using species distribution models. Biol. Conserv. 196(7), 60–68. https://doi.org/10.1016/j.biocon.2016.01.031 (2016).Article 

    Google Scholar 
    Emsens, W.-J., Aggenbach, C. J. S., Rydin, H., Smolders, A. J. P. & van Diggelen, R. Competition for light as a bottleneck for endangered fen species: an introduction experiment. Biol. Conserv. 220, 76–83. https://doi.org/10.1016/j.biocon.2018.02.002 (2018).Article 

    Google Scholar 
    Kącki, Z. & Śliwiński, M. The polish vegetation database: structure, resources and development. Acta Soc. Bot. Pol. 81(2), 75–79. https://doi.org/10.5586/asbp.2012.014 (2012).Article 

    Google Scholar 
    Ellenberg, H. et al. Indicator values of plants in Central Europe. 2nd ed. Scripta Geobotanica 18, 1–258 (in Germany) (1992).PN-R-04031. Chemical and agricultural analysis of soil. Sampling of soil. Polish Committee for Standardization (1997).PN-R-04024. Chemical and agricultural analysis of soil. Determination of the Content of Available P, K, Mg and Mn in organic soils. Polish Committee for Standardization (1997).PN-R-04016-21. Chemical and Agricultural Analysis of Soil. Determination of the Content of Available Zinc, Copper, Manganese, Iron. Polish Committee for Standardization. (1992).Ostrowska, A., Gawliński, S. & Szczubiałka, Z. Methods of analysis and evaluation of soil and plant properties. Institute of Environmental Protection, Warsaw, Poland, (in Polish) (1991).WRB, I.W.G. World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Report, 106 (2014).IUNG (Institute of Soil Science and Plant Cultivation). Fertiliser Recommendations Part I. Limits for Estimating Soil Macro- and Microelement Content. Series P (44), Puławy, Poland, pp. 26–28 (1990).IUNG (Institute of Soil Science and Plant Cultivation). Evaluation of heavy metal and sulfur contamination of soils and plants. Framework guidelines for agriculture. Series P (53), Puławy, Poland, pp. 1–22 (1993).Oksanen, J. et al. Vegan: community ecology package. R package version 2.3–0. Available from https://cran.r-project.org/web/packages/vegan/vegan.pdf. Accessed date: 4 January 2021 (2019).R Core Team. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria Accessed 30 May 2020. https://www.R-project.org (2020).Hammer, Ø., Harper, D.A.T. & Ryan, P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 4 (1), 1–9; http://palaeo-electronica.org/2001_1/past/issue1_01.htm (2001).Zelnik, I. & Čarni, A. Wet meadows of the alliance Molinion and their environmental gradients in Slovenia. Biologia 63(2), 187–196. https://doi.org/10.2478/s11756-008-0042-y (2008).CAS 
    Article 

    Google Scholar 
    Lindén, C. Local plant species diversity in coastal grasslands in the Stockholm archipelago. The effect of isostatic land-uplift, different management and future sea level rise. Stockholm University, Master’s thesis, Physical Geography and Quaternary Geology, 45 Credits, Stockholm, pp. 1–33 (2017).Muller, S. Diversity of management practices required to ensure conservation of rare and locally threatened plant species in grasslands: A case study at a regional scale (Lorraine, France). Biodiv. Conserv. 11(7), 1173–1184. https://doi.org/10.1023/A:1016049605021 (2002).Article 

    Google Scholar 
    Rodwell, J. S. (ed.) British plant communities. Grasslands and montane communities. Vol. 3 (Cambridge University Press. 1992).Rodwell, J.S., Morgan, V., Jefferson, R.G. & Moss, D. The European context of British Lowland Grasslands. JNCC Report No. 394, JNCC, Peterborough, UK (2007).Carter, S. P., Proctor, J. & Slingsby, D. R. Soil and vegetation of the Keen of Hamar serpentine. Shetland. J. Ecol. 75(1), 21–42. https://doi.org/10.2307/2260534 (1987).CAS 
    Article 

    Google Scholar 
    de Vere, N. Biological flora of the British Isles: Cirsium dissectum (L.) Hill (Cirsium tuberosum (L.) All. subsp. anglicum (Lam.) Bonnier; Cnicus pratensis (Huds.) Willd., non Lam.; Cirsium anglicum (Lam.) DC.). J. Ecol. 95, 876–894. https://doi.org/10.1111/j.1365-2745.2007.01265.x (2007).Fernández-Pascual, E. Comparative seed germination traits in bog and fen mire wetlands. Aquat. Bot. 130, 21–26. https://doi.org/10.1016/j.aquabot.2016.01.001 (2016).Article 

    Google Scholar 
    Otsus, M., Kukk, D., Kattai, K. & Sammul, M. Clonal ability, height and growth form explain species’ response to habitat deterioration in Fennoscandian wooded meadows. Plant Ecol. 215(9), 953–962. https://doi.org/10.1007/s11258-014-0347-6 (2014).Article 

    Google Scholar 
    Meusel, H., Jäger, E. & Weinert, E. Comparative chorology of the Central European flora. VEB Gustav Fischer Verlag, Jena, Germany, (in German) (1965).Hill, M.O., Preston, C.D. & Roy, D.B. PLANTATT. Attributes of British and Irish Plants: Status, Size, Life History, Geography and Habits. Centre for Ecology and Hydrology, Huntingdon, UK (2004).Dahl, E. The phytogeography of Northern Europe (British Isles, Fennoscandia and adjacent areas). Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511565182 (1998).Bartoszek, W., Koczur, A., Mirek, Z. & Oklejewicz, K. Flea sedge Carex pulicaris L., in: Mirek, Z. & Piękoś-Mirkowa, H. (Eds.), Red data book of the Polish Carpathians. Vascular plants. Polish Academy of Sciences Institute of Botany W. Szafer, Cracow, pp. 523–525, (in Polish) (2008).Hereźniak, J. Carex pulicaris L. – flea sedge, in: Olaczek R. (Ed.), Red Book of Plants of the Lodzkie Voivodship. Botanical Garden in Łódź, University of Łódź, Łódź, pp. 50–51, (in Polish) (2012).Wołejko, L., Pawlaczyk, P. & Stańko, R. (Eds.). Alkaline fens in Poland—diversity, resources, conservation. Naturalists’ Club, Świebodzin, Poland (2019).Koopman, J., Timmerman, A., Hosper, U. & Więcław, H. Distribution, ecology and morphology of three Ceratocystis hybrids in the Province of Fryslân, the Netherlands (Carex, Cyperaceae). Gorteria 41(1), 14–20 (2019).
    Google Scholar 
    Laughlin, D. C. & Abella, S. R. Abiotic and biotic factors explain independent gradients of plant community composition in ponderosa pine forests. Ecol. Modell. 205(1–2), 231–240. https://doi.org/10.1016/j.ecolmodel.2007.02.018 (2007).Article 

    Google Scholar 
    Austrheim, G., Gunilla, E., Olsson, A. & Grøntvedt, E. Land-use impact on plant communities in semi-natural sub-alpine grasslands of Budalen, central Norway. Biol. Conserv. 87(3), 369–379. https://doi.org/10.1016/S0006-3207(98)00071-8 (1999).Article 

    Google Scholar 
    Gough, M. W. & Marrs, R. H. A comparison of soil fertility between semi-natural and agricultural plant communities: Implications for the creations of species-rich grassland on abandoned agricultural land. Biol. Conserv. 51(2), 83–96. https://doi.org/10.1016/0006-3207(90)90104-w (1990).Article 

    Google Scholar 
    Bobbink, R., Hornung, M. & Roelofs, J. G. M. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. J. Ecol. 86(5), 717–738 (1998).CAS 
    Article 

    Google Scholar 
    McCrea, A. R., Trueman, I. C., Fullen, M. A., Atkinson, M. D. & Besenyei, L. Relationships between soil characteristics and species richness in two botanically heterogeneous created meadows in the urban English West Midlands. Biol. Conserv. 97(2), 171–180 (2001).Article 

    Google Scholar 
    Wamelink, W., van Dobben, H.F., Goedhart, P.W. & Jones-Walters, L.M. The role of abiotic soil parameters as a factor in the success of invasive plant species. Emerg. Sci. J. 2(6), 308–365. https://doi.org/10.28991/esj-2018-01155 (2018).Janssens, F. et al. Relationship between soil chemical factors and grassland diversity. Plant Soil 202(1), 69–78. https://doi.org/10.1023/A:1004389614865 (1998).CAS 
    Article 

    Google Scholar 
    Tallowin, J. R. B. & Smith, R. E. N. Restoration of a Cirsio-Molinietum fen meadow on an agriculturally improved pasture. Restor. Ecol. 9(2), 167–178. https://doi.org/10.1046/j.1526-100x.2001.009002167.x (2001).Article 

    Google Scholar 
    Venterink, H. O., van der Vliet, R. E. & Wassen, M. J. Nutrient limitation along a productivity gradient in wet meadows. Plant Soil 234(2), 171–179. https://doi.org/10.1023/A:1017922715903 (2001).Article 

    Google Scholar 
    Linderoth, E. Management of nature reserves—with Valön nature reserve in focus. Bachelor of Science with specialization in Environmental Analysis 15 hp, VT18. Linnaeus University, Faculty of Health and Life Sciences, Department of Biology and Environmental Science, pp 1–26, (in Swedish) (2018).Jansen, A. M. & Roelofs, J. G. Restoration of Cirsio-Molinietum wet meadows by sod cutting. Ecol. Eng. 7(4), 279–298. https://doi.org/10.1016/S0925-8574(96)00022-5 (1996).Article 

    Google Scholar 
    Jurzyk, S. & Wrobel, M. Co-occurrence of two species Molinia caerulea L. and “red-list” species Carex pulicaris L. in western Pomerania (Poland). Pol. J. Ecol. 51 (3), 363–367 (2003).Boyer, M. L. H. & Wheeler, B. D. Vegetation patterns in spring-fed calcareous fens: Calcite precipitation and constraints on fertility. J. Ecol. 77(2), 597–609. https://doi.org/10.2307/2260772 (1989).CAS 
    Article 

    Google Scholar  More

  • in

    Host microbiome responses to the Snake Fungal Disease pathogen (Ophidiomyces ophidiicola) are driven by changes in microbial richness

    Daszak, P., Cunningham, A. A. & Hyatt, A. D. Emerging infectious diseases of wildlife: threats to biodiversity and human health. Science 287, 443–449 (2000).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Pedersen, A. B., Jones, K. E., Nunn, C. L. & Altizer, S. Infectious diseases and extinction risk in wild mammals. Conserv. Biol. 21, 1269–1279 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Smith, K. F., Sax, D. F. & Lafferty, K. D. Evidence for the role of infectious disease in species extinction and endangerment. Conserv. Biol. 20, 1349–1357 (2006).PubMed 

    Google Scholar 
    Fisher, M. C. et al. Emerging fungal threats to animal, plant and ecosystem health. Nature 484, 186–194 (2012).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Paré, J. A. & Sigler, L. An overview of reptile fungal pathogens in the genera Nannizziopsis, Paranannizziopsis, and Ophidiomyces. J. Herpetol. Med. Surg. 26, 46–53 (2016).
    Google Scholar 
    Warnecke, L. et al. Inoculation of bats with European Geomyces destructans supports the novel pathogen hypothesis for the origin of white-nose syndrome. Proc. Natl. Acad. Sci. 109, 6999–7003 (2012).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Skerratt, L. F. et al. Spread of chytridiomycosis has caused the rapid global decline and extinction of frogs. EcoHealth 4, 125 (2007).
    Google Scholar 
    Franklinos, L. H. V. et al. Emerging fungal pathogen Ophidiomyces ophiodiicola in wild European snakes. Sci. Rep. 7, 3844 (2017).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Lorch, J. M. et al. Snake fungal disease: an emerging threat to wild snakes. Philos. Trans. R. Soc. B Biol. Sci. 371, 20150457 (2016).
    Google Scholar 
    Bustos, M. L., Nicolás Sánchez, M., Peichoto, M. E. & Teibler, G. P. First report of fungal disease in a South American snake. Rev. Investig. Vet. Perú 29, 1036–1042 (2018).Sun, P.-L. et al. Infection with Nannizziopsis guarroi and Ophidiomyces ophiodiicola in reptiles in Taiwan. Transbound. Emerg. Dis. https://doi.org/10.1111/tbed.14049 (2021).Article 
    PubMed 

    Google Scholar 
    Haynes, E. et al. First report of ophidiomycosis in a free-ranging California kingsnake (Lampropeltis californiae) in California, USA. J. Wildl. Dis. 57, 246–249 (2021).CAS 
    PubMed 

    Google Scholar 
    Takami, Y. et al. First report of ophidiomycosis in Asia caused by Ophidiomyces ophiodiicola in captive snakes in Japan. J. Vet. Med. Sci. 83, 1234–1239 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lorch, J. M. et al. Experimental infection of snakes with Ophidiomyces ophiodiicola causes pathological changes that typify snake fungal disease. MBio 6, e01534 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koenig, J. E. et al. Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl. Acad. Sci. 108, 4578–4585 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Huttenhower, C. et al. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214 (2012).CAS 
    ADS 

    Google Scholar 
    Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gall, C. A. et al. The bacterial microbiome of Dermacentor andersoni ticks influences pathogen susceptibility. ISME J. 10, 1846–1855 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gould, A. L. et al. Microbiome interactions shape host fitness. Proc. Natl. Acad. Sci. 115, E11951–E11960 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hanning, I. & Diaz-Sanchez, S. The functionality of the gastrointestinal microbiome in non-human animals. Microbiome 3, 51 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Jani, A. J. & Briggs, C. J. The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc. Natl. Acad. Sci. 111, E5049–E5058 (2014).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Walker, D. M. et al. Variability in snake skin microbial assemblages across spatial scales and disease states. ISME J. 13, 2209–2222 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Allender, M. C., Baker, S., Britton, M. & Kent, A. D. Snake fungal disease alters skin bacterial and fungal diversity in an endangered rattlesnake. Sci. Rep. 8, 12147 (2018).PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Rykiel, E. J. Jr. Towards a definition of ecological disturbance. Aust. J. Ecol. 10, 361–365 (1985).
    Google Scholar 
    Kong, H. H. et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 22, 850–859 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ferrenberg, S. et al. Changes in assembly processes in soil bacterial communities following a wildfire disturbance. ISME J. 7, 1102–1111 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Mackey, R. L. & Currie, D. J. The diversity–disturbance relationship: is it generally strong and peaked?. Ecology 82, 3479–3492 (2001).
    Google Scholar 
    Connell, J. H. Diversity in tropical rain forests and coral reefs: high diversity of trees and corals is maintained only in a nonequilibrium state. Science 199, 1302–1310 (1978).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Guthrie, A. L., Knowles, S., Ballmann, A. E. & Lorch, J. M. Detection of snake fungal disease due to Ophidiomyces ophiodiicola in Virginia, USA. J. Wildl. Dis. 52, 143–149 (2016).PubMed 

    Google Scholar 
    Chandler, H. C. et al. Ophidiomycosis prevalence in Georgia’s eastern indigo snake (Drymarchon couperi) populations. PLoS ONE 14, e0218351 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tetzlaff, S. J. et al. Snake fungal disease affects behavior of free-ranging massasauga rattlesnakes (Sistrurus catenatus). Herpetol. Conserv. Biol. 12, 624–634 (2017).
    Google Scholar 
    Lind, C. M., McCoy, C. M. & Farrell, T. M. Tracking outcomes of snake fungal disease in free-ranging pygmy rattlesnakes (Sistrurus miliarius). J. Wildl. Dis. 54, 352–356 (2018).PubMed 

    Google Scholar 
    Lind, C. M., Lorch, J. M., Moore, I. T., Vernasco, B. J. & Farrell, T. M. Seasonal sex steroids indicate reproductive costs associated with snake fungal disease. J. Zool. 307, 104–110 (2019).
    Google Scholar 
    McKenzie, J. M. et al. Field diagnostics and seasonality of Ophidiomyces ophiodiicola in wild snake populations. EcoHealth 16, 141–150 (2019).PubMed 

    Google Scholar 
    McCoy, C. M., Lind, C. M. & Farrell, T. M. Environmental and physiological correlates of the severity of clinical signs of snake fungal disease in a population of pigmy rattlesnakes, Sistrurus miliarius. Conserv. Physiol. 5, cow077 (2017).Hill, A. J. et al. Common cutaneous bacteria isolated from snakes inhibit growth of Ophidiomyces ophiodiicola. EcoHealth 15, 109–120 (2018).PubMed 

    Google Scholar 
    Baker, S. et al. Case definition and diagnostic testing for Snake Fungal Disease. Herpetol. Rev. 50, 279–285 (2019).
    Google Scholar 
    Chase, J. M., Kraft, N. J. B., Smith, K. G., Vellend, M. & Inouye, B. D. Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2, art24 (2011).Agugliaro, J., Lind, C. M., Lorch, J. M. & Farrell, T. M. An emerging fungal pathogen is associated with increased resting metabolic rate and total evaporative water loss rate in a winter-active snake. Funct. Ecol. 34, 486–496 (2020).
    Google Scholar 
    Frick, W. F. et al. Pathogen dynamics during invasion and establishment of white-nose syndrome explain mechanisms of host persistence. Ecology 98, 624–631 (2017).PubMed 

    Google Scholar 
    Gervasi, S. S., Hunt, E. G., Lowry, M. & Blaustein, A. R. Temporal patterns in immunity, infection load and disease susceptibility: understanding the drivers of host responses in the amphibian-chytrid fungus system. Funct. Ecol. 28, 569–578 (2014).
    Google Scholar 
    Allender, M. C. et al. Development of snake fungal disease after experimental challenge with Ophidiomyces ophiodiicola in cottonmouths (Agkistrodon piscivorous). PLoS ONE 10, e0140193 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Briggs, C. J., Knapp, R. A. & Vredenburg, V. T. Enzootic and epizootic dynamics of the chytrid fungal pathogen of amphibians. Proc. Natl. Acad. Sci. 107, 9695–9700 (2010).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Neuman-Lee, L. A. et al. Assessing multiple endpoints of atrazine ingestion on gravid Northern Watersnakes (Nerodia sipedon) and their offspring. Environ. Toxicol. 29, 1072–1082 (2014).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Kueneman, J. G. et al. Community richness of amphibian skin bacteria correlates with bioclimate at the global scale. Nat. Ecol. Evol. 3, 381–389 (2019).PubMed 

    Google Scholar 
    Manichanh, C. et al. Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55, 205–211 (2006).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Murphy, G. E. P. & Romanuk, T. N. A meta-analysis of declines in local species richness from human disturbances. Ecol. Evol. 4, 91–103 (2014).PubMed 

    Google Scholar 
    Jani, A. J. et al. The amphibian microbiome exhibits poor resilience following pathogen-induced disturbance. ISME J. 15, 1628–1640 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zaneveld, J. R., McMinds, R. & Vega Thurber, R. Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat. Microbiol. 2, 1–8 (2017).
    Google Scholar 
    Anderson, M. J. et al. Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14, 19–28 (2011).PubMed 
    ADS 

    Google Scholar 
    Lankau, E. W., Hong, P.-Y. & Mackie, R. I. Ecological drift and local exposures drive enteric bacterial community differences within species of Galápagos iguanas. Mol. Ecol. 21, 1779–1788 (2012).PubMed 

    Google Scholar 
    Mebert, K. Good species despite massive hybridization: genetic research on the contact zone between the watersnakes Nerodia sipedon and N. fasciata in the Carolinas, USA. Mol. Ecol. 17, 1918–1929 (2008).CAS 
    PubMed 

    Google Scholar 
    Bohuski, E., Lorch, J. M., Griffin, K. M. & Blehert, D. S. TaqMan real-time polymerase chain reaction for detection of Ophidiomyces ophiodiicola, the fungus associated with snake fungal disease. BMC Vet. Res. 11, 95 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Wiens, J. A. Spatial scaling in ecology. Funct. Ecol. 3, 385–397 (1989).
    Google Scholar 
    Caporaso, J. G. et al. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108, 4516–4522 (2011).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Fadrosh, D. W. et al. An improved dual-indexing approach for multiplexed 16S rRNA gene sequencing on the Illumina MiSeq platform. Microbiome 2, 6 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Schloss, P. D. et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541 (2009).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Kozich, J. J., Westcott, S. L., Baxter, N. T., Highlander, S. K. & Schloss, P. D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the Miseq Illumina sequencing platform. Appl. Environ. Microbiol. 79, 5112–5120 (2013).CAS 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl. Acids Res. 41, D590–D596 (2013).CAS 
    PubMed 

    Google Scholar 
    Yilmaz, P. et al. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucl. Acids Res. 42, D643–D648 (2014).CAS 
    PubMed 

    Google Scholar 
    Weiss, S. et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5, 27 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    R Core Team. R: A language and environment for statistical computing. (R Foundation for Statistical Computing, 2021).Bozdogan, H. Model selection and akaike’s information criterion (AIC): the general theory and its analytical extensions. Psychometrika 52, 345–370 (1987).MathSciNet 
    MATH 

    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (SAGE Publications, Thousand Oaks, 2011).
    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).MATH 

    Google Scholar 
    Heip, C. A new index measuring evenness. J. Mar. Biol. Assoc. UK 54, 555–557 (1974).
    Google Scholar  More

  • in

    Multilateral benefit-sharing from digital sequence information will support both science and biodiversity conservation

    Leibniz Institute DSMZ German Collection of Microorganisms and Cell Cultures, Braunschweig, GermanyAmber Hartman Scholz, Rodrigo Sara, Scarlett Sett, Andrew Lee Hufton & Jörg OvermannLeibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, GermanyJens FreitagNatural History Museum, London, UKChristopher H. C. LyalOne Planet Solutions, Montpellier, FranceRodrigo SaraUniversidad de los Andes, Bogotá, ColombiaMartha Lucia CepedaPlentzia Marine Station (PiE-UPV/EHU), European Marine Biological Resource Centre – Spain (EMBRC-Spain), Plentzia, SpainIbon CancioEthiopian Biotechnology Institute, Addis Ababa, EthiopiaYemisrach Abebaw & Kassahun TesfayeNational Academy of Agricultural Science and Global Plant Council, New Delhi, IndiaKailash BansalNational Council of Scientific Research and Technologies (NCSRT), Algiers, AlgeriaHalima BenbouzaMinistry of Agriculture, Livestock, Fisheries and Cooperatives, Nairobi, KenyaHamadi Iddi BogaInstitut Pasteur, Paris, FranceSylvain Brisse, Anne-Caroline Deletoille & Raquel Hurtado-OrtizSchool of Biosciences, Cardiff University, Cardiff, UKMichael W. BrufordWellcome Sanger Institute, Hinxton, UKHayley Clissold & David NicholsonEuropean Molecular Biology Laboratory European Bioinformatics Institute (EMBL-EBI), Hinxton, UKGuy CochraneGlobal Genome Initiative, Smithsonian National Museum of Natural History, Washington, DC, USAJonathan A. CoddingtonAlexander von Humboldt Biological Resources Research Institute, Bogota, ColombiaFelipe García-CardonaSouth African National Biodiversity Institute, Cape Town, South AfricaMichelle Hamer, Jessica da Silva & Krystal A. TolleyUniversity of Nairobi, Nairobi, KenyaDouglas W. MianoInstituto Tecnologico Vale (ITV), Belem, BrazilGuilherme OliveiraMinistry of Environment and Sustainable Development, Bogota, ColombiaCarlos Ospina BravoUniversity of Lethbridge, Lethbridge, CanadaFabian RohdenNatural History Museum of Denmark, Copenhagen, DenmarkOle SebergUniversity of Freiburg, Freiburg, GermanyGernot SegelbacherNational Centre for Cell Science, Pune, IndiaYogesh ShoucheMariano Galvez University, Guatemala City, GuatemalaAlejandra Sierra National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USAIlene Karsch-MizrachiCentre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South AfricaJessica da Silva & Krystal A. TolleyUniversity of the Philippines Los Banos, Laguna, PhilippinesDesiree M. HauteaFundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, BrazilManuela da SilvaNational Institute of Genetics, Mishima, JapanMutsuaki SuzukiInstitute of Biotechnology, Addis Ababa University, Addis Ababa, EthiopiaKassahun TesfayeCentre for Tropical Livestock Genetics and Health (CTLGH) – International Livestock Research Institute (ILRI), Nairobi, KenyaChristian Keambou TiamboMurdoch University, Murdoch, AustraliaRajeev VarshneyCorporación CorpoGen, Bogotá, ColombiaMaría Mercedes ZambranoTechnical University of Braunschweig, Braunschweig, GermanyJörg OvermannConceptualization: A.H.S., J.F., C.H.C.L., R.S., M.L.C., I.C., S.S., Y.A., K.B., H.B., H.I.B., S.Y., M.W.B., H.C., G.C., J.A.C., A.D., F.G.C., M.H., R.H.O., D.W.M., G.O., C.O.B., F.B., O.S., G.S., Y.S., A.S., J.d.S., M.d.S., M.S., K.T., K.A.T., M.M.Z., and J.O. Visualization: J.O., I.C., S.S., R.S., C.H.C.L., G.C., and A.H.S. Funding acquisition: A.H.S., J.F., and J.O. Writing—original draft: A.H.S., R.S., M.L.C., C.H.C.L., I.C., and S.S. Writing—review & editing: A.H.S., J.F., C.H.C.L., R.S., M.L.C., I.B., S.S., A.L.H., D.N., M.d.S., S.B., M.M.Z., O.S., K.T., K.A.T., R.H.O., J.d.S., C.K.T., R.V., J.O., D.H., and I.K.M. More