More stories

  • in

    The role of forest structure and composition in driving the distribution of bats in Mediterranean regions

    Barnagaud, J. Y., Barbaro, L., Hampe, A., Jiguet, F. & Archaux, F. Species’ thermal preferences affect forest bird communities along landscape and local scale habitat gradients. Ecography (Cop.) 36, 1218–1226 (2013).
    Google Scholar 
    LeRoy, P. N. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. J. North Am. Benthol. Soc. 391–409 (1997).Keddy, P. A. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 3, 157–164 (1992).
    Google Scholar 
    Whittaker, R. J., Willis, K. J. & Field, R. Scale and species richness: Towards a general, hierarchical theory of species diversity. J. Biogeogr. 28, 453–470 (2001).
    Google Scholar 
    Willis, K. J. & Whittaker, R. J. Species diversity – scale matters. Science (80-. ). 295, 1245–1247 (2002).Brockerhoff, E. G. et al. Forest biodiversity, ecosystem functioning. Biodivers. Conserv. 26, 3005–3035 (2017).
    Google Scholar 
    Dolek, M. et al. Ants on oaks: effects of forest structure on species composition. J. Insect Conserv. 13, 367–375 (2009).
    Google Scholar 
    Díaz, I. A., Armesto, J. J., Reid, S., Sieving, K. E. & Willson, M. F. Linking forest structure and composition: Avian diversity in successional forests of Chiloé Island Chile. Biol. Conserv. 123, 91–101 (2005).
    Google Scholar 
    Fady-Welterlen, B. Is there really more biodiversity in Mediterranean forest ecosystems?. Taxon 54, 905–910 (2005).
    Google Scholar 
    Peñuelas, J. et al. Impacts of global change on Mediterranean forests and their services. Forests 8, 1–37 (2017).
    Google Scholar 
    Resco De Dios, V., Fischer, C. & Colinas, C. Climate change effects on mediterranean forests and preventive measures. New For. 33, 29–40 (2007).Lindner, M. et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For. Ecol. Manage. 259, 698–709 (2010).
    Google Scholar 
    Cadieux, P. et al. Projected effects of climate change on boreal bird community accentuated by anthropogenic disturbances in western boreal forest Canada. Divers. Distrib. 26, 668–682 (2020).
    Google Scholar 
    Simmons, N. B. & Cirranello, A. L. Bat Species of the World: A taxonomic and geographic database. https://batnames.org/home.html (2020).Peixoto, F. P., Braga, P. H. P. & Mendes, P. A synthesis of ecological and evolutionary determinants of bat diversity across spatial scales. BMC Ecol. 18, 1–14 (2018).
    Google Scholar 
    Bats in forests: conservation and management. (The Johns Hopkins University Press, 2007).Barclay, R. M. R. & Kurta, A. Ecology and behavioyr of bats roosting in tree cavities and under bark. in Bats in forests: Conservation and management (eds. Lacki, M. J., Hayes, J. P. & Kurta, A.) (The Johns Hopkins University Press, 2007).Lacki, M. J., Amelon, S. K. & Baker, M. D. Foraging Ecology of Bats in Forests. in Bats in forests: Conservation and management (eds. Lacki, M. J., Hayes, J. P. & Kurta, A.) 329 (The Johns Hopkins University Press, 2007).Silvis, A., Ford, W. M. & Britzke, E. R. Day-roost tree selection by northern long-eared bats—What do non-roost tree comparisons and one year of data really tell us?. Glob. Ecol. Conserv. 3, 756–763 (2015).
    Google Scholar 
    Manual de conservación y seguimiento de los quirópteros forestales. in (eds. Guixe, D. & Camprodon, J.) 274 (Ministerio de Agricultura, Pesca y Alimentación y Ministerio para la Transición Ecológica., 2018).Patriquin, K. J. & Barclay, R. M. R. Foraging by bats in cleared, thinned and unharvested boreal forest. J. Appl. Ecol. 40, 646–657 (2003).
    Google Scholar 
    Carr, A., Weatherall, A. & Jones, G. The effects of thinning management on bats and their insect prey in temperate broadleaved woodland. For. Ecol. Manage. 457, 117682 (2020).Norberg, U. M. & Rayner, J. M. V. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philos. Trans. R. Soc. London. B, Biol. Sci. 316, 335–427 (1987).Aldridge, H. D. J. N. & Rautenbach, I. L. Morphology, echolocation and resource partitioning in insectivorous bats. J. Anim. Ecol. 56, 763 (1987).
    Google Scholar 
    Dodd, L. E. et al. Forest structure affects trophic linkages: How silvicultural disturbance impacts bats and their insect prey. For. Ecol. Manage. 267, 262–270 (2012).
    Google Scholar 
    Lumsden, L. F. & Bennett, A. F. Scattered trees in rural landscapes: Foraging habitat for insectivorous bats in south-eastern Australia. Biol. Conserv. 122, 205–222 (2005).
    Google Scholar 
    Fahr, J. & Kalko, E. K. V. Biome transitions as centres of diversity: Habitat heterogeneity and diversity patterns of West African bat assemblages across spatial scales. Ecography (Cop.) 34, 177–195 (2011).
    Google Scholar 
    Ferreira, D. F. et al. Season-modulated responses of Neotropical bats to forest fragmentation. Ecol. Evol. 7, 4059–4071 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Fuentes-Montemayor, E., Goulson, D., Cavin, L., Wallace, J. M. & Park, K. J. Fragmented woodlands in agricultural landscapes: The influence of woodland character and landscape context on bats and their insect prey. Agric. Ecosyst. Environ. 172, 6–15 (2013).
    Google Scholar 
    Wood, H., Lindborg, R. & Jakobsson, S. European Union tree density limits do not reflect bat diversity in wood-pastures. Biol. Conserv. 210, 60–71 (2017).
    Google Scholar 
    Sagot, M. & Chaverri, G. Effects of roost specialization on extinction risk in bats. Conserv. Biol. 29, 1666–1673 (2015).PubMed 

    Google Scholar 
    Russo, D., Cistrone, L. & Jones, G. Spatial and temporal patterns of roost use by tree-dwelling barbastelle bats Barbastella barbastellus. Ecography (Cop.) 28, 769–776 (2005).
    Google Scholar 
    Popa-Lisseanu, A. G., Bontadina, F., Mora, O. & Ibáñez, C. Highly structured fission–fusion societies in an aerial-hawking, carnivorous bat. Anim. Behav. 75, 471–482 (2008).
    Google Scholar 
    Zambrana Pineda, J. F. & Ríos Jiménez, S. El sector primario andaluz en el siglo XX. Instituto de Estadística de Andalucía (2006).Nogueras, J., Garrido-García, J. A. & Fijo-León, A. Patrones de distribución del complejo “Myotis mystacinus” en la península Ibérica”. Barbastella 6, 24–30 (2013).
    Google Scholar 
    Boye, P. & Dietz, M. Development of good practice guidelines for woodland management for bats. English Nature Research Reports (2005) ISSN 0967-876X.Dietz, C. & Kiefer, A. Bats of Britain and Europe. (Bloomsbury Publishing, 2016).Estók, P., Gombkötő, P. & Cserkész, T. Roosting behaviour of the greater noctule Nyctalus lasiopterus Schreber, 1780 (Chiroptera, Vespertilionidae) in Hungary as revealed by radio-tracking. Mammalia 71, 1 (2007).
    Google Scholar 
    Walters, C. L. et al. A continental-scale tool for acoustic identification of European bats. J. Appl. Ecol. 49, 1064–1074 (2012).
    Google Scholar 
    Smeraldo, S. et al. Ignoring seasonal changes in the ecological niche of non-migratory species may lead to biases in potential distribution models: Lessons from bats. Biodivers. Conserv. 27, 2425–2441 (2018).
    Google Scholar 
    Crome, F. H. J. & Richards, G. C. Bats and gaps : Microchiropteran community structure in a queensland rain forest. Ecology 69, 1960–1969 (1988).
    Google Scholar 
    R core team. R: A language and environment for statistical computing. (2021).Dormann, C. F. et al. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop.) 36, 27–46 (2013).
    Google Scholar 
    Franklin, J. F. & Pelt, R. Van. Spatial spects of structural complexity in old-growth forests. J. For. 22–28 (2004).Ishii, H. T., Tanabe, S. & Hiura, T. Canopy structure, stand productivity, and biodiversity of temperate forest ecosystems. For. Sci. 50, (2004).Pebesma, E. & Bivand, R. sp: Classes and methods for spatial data. (2021).Bivand, R., Keitt, T. & Rowlingson, B. rgdal: Bindings for the Geospatial Data Abstraction Library. (2021).Hijmans, R. J. raster: Geographic Data Analysis and Modeling. (2020).Phillips, S. J., Anderson, R. P. & Schapire, R. E. Maximum entropy modeling of species geographic distributions. Ecol. Modell. 6, 231–252 (2006).
    Google Scholar 
    Hijmans, R. J., Phillips, S., Leathwick, J. & Elith, J. dismo: Species Distribution Modeling. (2017).Muscarella, R. et al. ENMeval: Automated runs and evaluations of ecological niche models. (2018).Raes, N. & Ter Steege, H. A null-model for significance testing of presence-only species distribution models. Ecography (Cop.) 30, 727–736 (2007).
    Google Scholar 
    Wittmann, M. E., Barnes, M. A., Jerde, C. L., Jones, L. A. & Lodge, D. M. Confronting species distribution model predictions with species functional traits. Ecol. Evol. 6, 873–879 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Hanspach, J., Kühn, I., Pompe, S. & Klotz, S. Predictive performance of plant species distribution models depends on species traits. Perspect. Plant Ecol. Evol. Syst. 12, 219–225 (2010).
    Google Scholar 
    Pöyry, J., Luoto, M., Heikkinen, R. K. & Saarinen, K. Species traits are associated with the quality of bioclimatic models. Glob. Ecol. Biogeogr. 17, 403–414 (2008).
    Google Scholar 
    van Proosdij, A. S. J., Sosef, M. S. M., Wieringa, J. J. & Raes, N. Minimum required number of specimen records to develop accurate species distribution models. Ecography (Cop.) 39, 542–552 (2016).
    Google Scholar 
    Froidevaux, J. S. P., Zellweger, F., Bollmann, K., Jones, G. & Obrist, M. K. From field surveys to LiDAR: Shining a light on how bats respond to forest structure. Remote Sens. Environ. 175, 242–250 (2016).ADS 

    Google Scholar 
    Edenius, L. & Elmberg, J. Landscape level effects of modern forestry on bird communities in North Swedish boreal forests. Landsc. Ecol. 11, 325–338 (1996).
    Google Scholar 
    Drapeau, P. et al. Landscape-scale disturbances and changes in bird communities of boreal mixed-wood forests. Ecol. Monogr. 70, 423–444 (2000).
    Google Scholar 
    McGarigal, K. & McComb, W. C. Relationships between landscape structure and breeding birds in the Oregon coast range. Ecol. Monogr. 65, 235–260 (1995).
    Google Scholar 
    Gil-Tena, A., Brotons, L. & Saura, S. Effects of forest landscape change and management on the range expansion of forest bird species in the Mediterranean region. For. Ecol. Manage. 259, 1338–1346 (2010).
    Google Scholar 
    Gil-tena, A., Brotons, L. & Saura, S. Mediterranean forest dynamics and forest bird distribution changes in the late 20th century. Glob. Chang. Biol. 15, 474–485 (2009).ADS 

    Google Scholar 
    Goiti, U., Garin, I., Almenar, D., Salsamendi, E. & Aihartza, J. Foraging by mediterranean horshoe bats (Rhinolophus euryale) in relation to prey distribution and edge habitat. J. Mammal. 89, 493–502 (2008).
    Google Scholar 
    Motte, G. & Libois, R. Conservation of the lesser horseshoe bat (Rhinolophus hipposideros Bechstein, 1800) (Mammalia: Chiroptera) in Belgium. A case study of feeding habitat requirements. Belgian J. Zool. 132, 49–54 (2002).Castro, E. B. Los bosques ibéricos: una interpretación geobotánica. (GeoPlaneta, Editorial, SA, 1997).Ozanne, C. M. P. A comparison of the canopy arthropod communities of coniferous and broad-leaved trees in the United Kingdom. Selbyana 20, 290–298 (1999).Vehviläinen, H., Koricheva, J. & Ruohomäki, K. Effects of stand tree species composition and diversity on abundance of predatory arthropods. Oikos 117, 935–943 (2008).
    Google Scholar 
    Elith, J. & Leathwick, J. R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 40, 677–697 (2009).
    Google Scholar 
    Lisón, F. & Sánchez-Fernández, D. Low effectiveness of the Natura 2000 network in preventing land-use change in bat hotspots. Biodivers. Conserv. 26, 1989–2006 (2017).
    Google Scholar 
    Gillespie, T. W. & Walter, H. Distribution of bird species richness at a regional scale in tropical dry forest of central America. J. Biogeogr. 28, 651–662 (2001).
    Google Scholar 
    O’Brien, M. J. et al. Tree diversity drives diversity of arthropod herbivores, but successional stage mediates detritivores. Ecol. Evol. 7, 8753–8760 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. et al. Tree diversity promotes generalist herbivore community patterns in a young subtropical forest experiment. Oecologia 183, 455–467 (2017).ADS 
    PubMed 

    Google Scholar 
    Naďo, L. et al. Highly selective roosting of the giant noctule bat and its astonishing foraging activity by GPS tracking in a mountain environment. Mammal Res. 64, 587–594 (2019).
    Google Scholar 
    Begehold, H., Rzanny, M. & Flade, M. Forest development phases as an integrating tool to describe habitat preferences of breeding birds in lowland beech forests. J. Ornithol. 156, 19–29 (2015).
    Google Scholar 
    Hayes, J. P. Presence, relative abundance, and resource selection of bats in managed forest landscapes in western Oregon. vol. 53 (Oregon State University, 2007).Mortimer, G. Foraging, roosting and survival of natterer’s bats, Myotis nattereri, in a commercial coniferous plantation. (University of St Andrews, 2006).Kirkpatrick, L. et al. Bat use of commercial coniferous plantations at multiple spatial scales: Management and conservation implications. Biol. Conserv. 206, 1–10 (2017).
    Google Scholar 
    Napal, M. & Ibanez, C. Murcielagos y Bosques. in Manual de conservación y seguimiento de los quirópteros forestales (eds. Guixé, D. & Camprodon, J.) (Organismo Autónomo Parques Nacionales. Ministerio para la Transición Ecológica, 2018).Sleep, D. J. H. & Brigham, R. M. An experimental test of clutter tolerance in bats. J. Mammal. 84, 216–224 (2003).
    Google Scholar 
    Fukui, D., Murakami, M., Nakano, S. & Aoi, T. Effect of emergent aquatic insects on bat foraging in a riparian forest. J. Anim. Ecol. 75, 1252–1258 (2006).PubMed 

    Google Scholar 
    Allen, C. D. et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684 (2010).
    Google Scholar 
    Carnicer, J. et al. Widespread crown condition decline, food web disruption, and amplified tree mortality with increased climate change-type drought. Proc. Natl. Acad. Sci. 108, 1474–1478 (2011).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rebelo, H., Tarroso, P. & Jones, G. Predicted impact of climate change on european bats in relation to their biogeographic patterns. Glob. Chang. Biol. 16, 561–576 (2010).ADS 

    Google Scholar 
    Amorim, F., Carvalho, S. B., Honrado, J. & Rebelo, H. Designing optimized multi-species monitoring networks to detect range shifts driven by climate change: A case study with bats in the North of Portugal. PLoS ONE 9, 1 (2014).
    Google Scholar 
    Mantyka-Pringle, C. S. et al. Climate change modifies risk of global biodiversity loss due to land-cover change. Biol. Conserv. 187, 103–111 (2015).
    Google Scholar 
    Jandl, R., Spathelf, P., Bolte, A. & Prescott, C. E. Forest adaptation to climate change—is non-management an option?. Ann. For. Sci. 76, 1–13 (2019).
    Google Scholar 
    Morán-Ordóñez, A. et al. Future trade-offs and synergies among ecosystem services in Mediterranean forests under global change scenarios. Ecosyst. Serv. 45, 1 (2020).
    Google Scholar 
    Wickham, H. et al. ggplot2: Create elegant data visualisations using the grammar of graphics. (2020). More

  • in

    Global predictions of coral reef dissolution in the Anthropocene

    Albright, R. et al. Reversal of ocean acidification enhances net coral reef calcification. Nature 531, 362–365 (2016).CAS 
    Article 

    Google Scholar 
    Pandolfi, J. M., Connolly, S. R., Marshall, D. J. & Cohen, A. L. Projecting coral reef futures under global warming and ocean acidification. Science 333, 418–422 (2011).CAS 
    Article 

    Google Scholar 
    Davis, K. L., Colefax, A. P., Tucker, J. P., Kelaher, B. P. & Santos, I. R. Global coral reef ecosystems exhibit declining calcification and increasing primary productivity. Commun. Earth Environ. 2, 1–10 (2021).Article 

    Google Scholar 
    Silverman, J., Lazar, B., Cao, L., Caldeira, K. & Erez, J. Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys. Res. Lett. 36, L05606 (2009).Anthony, K. R. N., Kleypas, J. A. & Gattuso, J. P. Coral reefs modify their seawater carbon chemistry – implications for impacts of ocean acidification. Global Change Biol. 17, 3655–3666 (2011).Article 

    Google Scholar 
    Eyre, B. D. et al. Coral reefs will transition to net dissolving before end of century. Science 359, 908–911 (2018).CAS 
    Article 

    Google Scholar 
    Cantin, N. E., Cohen, A. L., Karnauskas, K. B., Tarrant, A. M. & McCorkle, D. C. Ocean warming slows coral growth in the central Red Sea. Science 329, 322–325 (2010).CAS 
    Article 

    Google Scholar 
    Ries, J. B., Ghazaleh, M. N., Connolly, B., Westfield, I. & Castillo, K. D. Impacts of seawater saturation state (ΩA=0.4-4.6) and temperature (10, 25˚C) on the dissolution kinetics of whole-shell biogenic carbonates. Geochim. Cosmochim. Ac 192, 318–337 (2016).CAS 
    Article 

    Google Scholar 
    Kornder, N. A., Riegl, B. M. & Figueiredo, J. Thresholds and drivers of coral calcification responses to climate change. Global Change Biol. 24, 5084–5095 (2018).Article 

    Google Scholar 
    Cyronak, T., Schulz, K. G. & Jokiel, P. L. The Omega myth: what really drives lower calcification rates in an acidifying ocean. Ices J Mar Sci 73, 558–562 (2016).Article 

    Google Scholar 
    Davis, K. L., McMahon, A., Kelaher, B., Shaw, E. & Santos, I. R. Fifty years of sporadic coral reef calcification estimates at One Tree Island, Great Barrier Reef: is it enough to imply long term trends? Front Marine Sci 6, 00282 (2019).Cyronak, T. et al. Taking the metabolic pulse of the world’s coral reefs. PLoS One 13, e0190872 (2018).Article 

    Google Scholar 
    Kinsey, D. W. Carbon turnover and accumulation by coral reefs, (University of Hawaii, 1979).Barnes, D. J. Profiling coral reef productivity and calcification using pH and oxygen electrodes. J. Exp. Mar. Biol. Ecol. 66, 149–161 (1983).CAS 
    Article 

    Google Scholar 
    Albright, R., Langdon, C. & Anthony, K. R. N. Dynamics of seawater carbonate chemistry, production, and calcification of a coral reef flat, central Great Barrier Reef. Biogeosciences 10, 6747–6758 (2013).CAS 
    Article 

    Google Scholar 
    Silverman, J. et al. Community calcification in Lizard Island, Great Barrier Reef: A 33 year perspective. Geochim. Cosmochim. Ac 144, 72–81 (2014).CAS 
    Article 

    Google Scholar 
    Pichon, M. & Morrissey, J. Benthic zonation and community structure of South Island Reef, Lizard Island (Great Barrier Reef). B. Mar. Sci. 31, 581–593 (1981).
    Google Scholar 
    SCU. Declining growth rates of global coral reef ecosystems, Southern Cross University, June 2021. https://www.scu.edu.au/engage/news/latest-news/2021/declining-growth-rates-of-global-coral-reef-ecosystems.php (2021).Andersson, A. J., Yeakel, K. L., Bates, N. R. & de Putron, S. J. Partial offsets in ocean acidification from changing coral reef biogeochemistry. Nat. Clim. Change 4, 56–61 (2014).CAS 
    Article 

    Google Scholar 
    Kapsenberg, L. & Cyronak, T. Ocean acidification refugia in variable environments. Global Change Biol. 25, 3201–3214 (2019).Article 

    Google Scholar 
    Cvitanovic, C. & Hobday, A. J. Building optimism at the environmental science-policy-practice interface through the study of bright spots. Nat. Commun. 9, 1–5 (2018).CAS 
    Article 

    Google Scholar  More

  • in

    Understanding calcium functionality by examining growth characteristics and structural aspects in calcium-deficient grapevine

    de Bang, T. C., Husted, S., Laursen, K. H., Persson, D. P. & Schjoerring, J. K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 229, 2446–2469 (2021).PubMed 

    Google Scholar 
    White, P. J. & Brown, P. H. Plant nutrition for sustainable development and global health. Ann. Bot. 105, 1073–1080 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hirschi, K. D. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol. 136, 2438–2444 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hepler, P. K. Calcium: A central regulator of plant growth and development. Plant Cell 17, 2142–2155 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marschner, H. Mineral Nutrition of Higher Plants (Academic Press, 2011).
    Google Scholar 
    Jones, R. J. W. & Lunt, O. R. The function of calcium in plants. Bot. Rev. 33, 407–426 (1967).CAS 

    Google Scholar 
    White, P. J. & Broadley, M. R. Calcium in plants. Ann. Bot. 92, 487–511 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spehar, C. R. & Galwey, N. W. Screening soya beans [Glycine max (L.) Merill] for calcium efficiency by root growth in low-Ca nutrient solution. Euphytica 94, 113–117 (1997).
    Google Scholar 
    Schulte-Baukloh, C. & Fromm, J. The effect of calcium starvation on assimilate partitioning and mineral distribution of the phloem. J. Exp. Bot. 44, 1703–1707 (1993).CAS 

    Google Scholar 
    Duan, S. et al. Differential regulation of enzyme activities and physio-anatomical aspects of calcium nutrition in grapevine. Sci. Hortic. 272, 109423 (2020).CAS 

    Google Scholar 
    Bondada, B. & Syvertsen, J. P. Leaf chlorophyll, net gas exchange, and chloroplast ultrastructure in citrus leaves of different nitrogen status. Tree Physiol. 23, 553–559 (2003).CAS 
    PubMed 

    Google Scholar 
    Wind, C., Arend, M. & Fromm, J. Potassium-dependent cambial growth in poplar. Plant Biol. 6, 30–37 (2004).CAS 
    PubMed 

    Google Scholar 
    Kirkby, E. A. & Pilbeam, D. J. Calcium as a plant nutrient. Plant Cell Environ. 7, 397–405 (1984).CAS 

    Google Scholar 
    Song, W.-P., Chen, W., Yi, J.-W., Wang, H.-C. & Huang, X.-M. Ca distribution pattern in Litchi fruit and pedicel and impact of Ca channel inhibitor, La3+. Front. Plant Sci. 8, 2228. https://doi.org/10.3389/fpls.2017.02228 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Conn, S. & Gilliham, M. Comparative physiology of elemental distributions in plants. Ann. Bot. 105, 1081–1102 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Broadley, M. R. et al. Variation in the shoot calcium content of angiosperms. J. Exp. Bot. 54, 1431–1446 (2003).CAS 
    PubMed 

    Google Scholar 
    Shikanai, Y. et al. Arabidopsis thaliana PRL1 is involved in low-calcium tolerance. Soil Sci. Plant Nutr. 61, 951–956 (2015).CAS 

    Google Scholar 
    Burstrom, H. G. Calcium and plant growth. Biol. Rev. 43, 287–316 (1968).CAS 

    Google Scholar 
    Hecht-Buchholz, Ch. Calcium deficiency and plant ultrastructure. Commun. Soil Sci. Plant Anal. 10, 67–81 (1979).CAS 

    Google Scholar 
    Fink, S. D. The micromorphological distribution of bound calcium in needles of Norway spruce [Picea abies (L.) Karst.]. New Phytol. 119, 33–40 (1991).CAS 
    PubMed 

    Google Scholar 
    Skok, J. Effect of the form of the available nitrogen on the calcium deficiency symptoms in the bean plant. Plant Physiol. 16, 145–157 (1941).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Aguiar Santiago, F. L., Santiago, F. E. M., Filho, J. F. L. & Ratke, R. F. Plant growth and symptomatology of macronutrient deficiencies in cowpea plants. Comun. Sci. 9, 503–508 (2018).
    Google Scholar 
    Gao, H., Wu, X., Zorrilla, C., Vega, S. E. & Palta, J. P. Fractionating of calcium in tuber and leaf tissues explains the calcium deficiency symptoms in potato plant overexpressing CAX1. Front. Plant Sci. 10, 1793. https://doi.org/10.3389/fpls.2019.01793 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chapman, H. D. Calcium. In Diagnostic Criteria for Plants and Soil (ed. Chapman, H. D.) 65–93 (University of California Press, 1966).
    Google Scholar 
    Bondada, B., Harbertson, E., Shrestha, P. M. & Keller, M. Temporal extension of ripening beyond its physiological limits imposes physical and osmotic challenges perturbing metabolism in grape (Vitis vinifera L.) berries. Sci. Hortic. 219, 135–143 (2017).CAS 

    Google Scholar 
    Robertson, D. Modulating plant calcium for better nutrition and stress tolerance. ISRN Bot. 2013, 952043 (2013).
    Google Scholar 
    Martins, T. V., Evans, M. J., Woolfenden, H. C. & Morris, R. J. Towards the physics of calcium signaling in plants. Plants 2, 541–588 (2013).CAS 
    PubMed 

    Google Scholar 
    Gupta, B. L. & Hall, T. A. Electron probe X-ray analysis of calcium. Ann. N.Y. Acad. Sci. 307, 28–51 (1978).CAS 
    ADS 

    Google Scholar 
    Ramalho, J. C., Rebelo, M. C., Santos, M. E., Antunes, M. L. & Nunes, M. A. Effects of calcium deficiency on Coffea arabica. Nutrient changes and correlation of calcium levels with some photosynthetic parameters. Plant Soil 172, 87–96 (1995).
    Google Scholar 
    Liu, Y., Riaz, M., Yan, L., Zeng, Y. & Cuncang, J. Boron and calcium deficiency disturbing the growth of trifoliate rootstock seedlings (Poncirus trifoliate L.) by changing root architecture and cell wall. Plant Physiol. Biochem. 144, 345–354 (2019).CAS 
    PubMed 

    Google Scholar 
    Bondada, B., Oosterhuis, D. M., Wullschleger, S. D., Kim, K. S. & Harris, W. H. Anatomical considerations related to photosynthesis in cotton (Gossypium hirsutum L.) leaves, bracts, and the capsule wall. J. Exp. Bot. 270, 111–118 (1994).
    Google Scholar 
    Bondada, B. & Syvertsen, J. P. Concurrent changes in net CO2 assimilation and chloroplast ultrastructure in nitrogen deficient citrus leaves. Environ. Exp. Bot. 54, 41–48 (2005).CAS 

    Google Scholar 
    Atkinson, C. J., Mansfield, T. A., Kean, A. M. & Davies, W. J. Control of stomatal aperture by calcium in isolated epidermal tissue and whole leaves of Commelina communis L. New Phytol. 111, 9–17 (1989).CAS 

    Google Scholar 
    Martinez, H. E. P. et al. Leaf and stem anatomy of cherry tomato under calcium and magnesium deficiencies. Braz. Arch. Biol. Technol. 63, e20180670 (2020).CAS 

    Google Scholar 
    Bondada, B. Anomalies in structure, growth characteristics, and nutritional composition as induced by 2, 4-D drift phytotoxicity in grapevine (Vitis vinifera L.) leaves and clusters. J. Am. Soc. Hortic. Sci. 136, 165–176 (2011).CAS 

    Google Scholar 
    Bondada, B. Micromorpho-anatomical examination of 2, 4-D phytotoxicity in grapevine (Vitis vinifera L.) leaves. J. Plant Growth Regul. 30, 185–198 (2011).CAS 

    Google Scholar 
    Finger, A. T., de Bastos, A. A., Ferrarese-Filho, O. & Lucio, F. M. L. Role of calcium on phenolic compounds and enzymes related to lignification in soybean (Glycine max L.) root growth. Plant Growth Regul. 49, 69–76 (2006).
    Google Scholar 
    Davis, D. E. Some effects of calcium deficiency on the anatomy of Pinus taeda. Am. J. Bot. 36, 276–282 (1949).CAS 

    Google Scholar 
    Nightingale, G. T., Addoms, R. M., Robbins, W. R. & Schemerhorn, L. G. Effect of calcium deficiency on nitrate absorption and on metabolism in tomato. Plant Physiol. 6, 605–630 (1931).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Day, D. Some chemical aspects of calcium deficiency effects on Pisum sativum. Plant Physiol. 10, 811–816 (1935).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lautner, S. & Fromm, J. Calcium-dependent physiological processes in trees. Plant Biol. 12, 268–274 (2010).CAS 
    PubMed 

    Google Scholar 
    Fromm, J. Wood formation in trees in relation to calcium and potassium nutrition. Tree Physiol. 30, 1140–1147 (2010).CAS 
    PubMed 

    Google Scholar 
    Bondada, B. Technical Advance: Novel, simple, fast, and safe approaches to visualizing fine cellular structures in free-hand sections of stem, leaf, and fruit using optical microscopy. Curr. Bot. 3, 11–22 (2012).
    Google Scholar 
    Venning, F. D. The influence of major mineral nutrient deficiencies on growth and tissue differentiation in the hypocotyl of marglobe tomato. Phytomorphology 3, 315–326 (1953).CAS 

    Google Scholar 
    Garrison, R. The growth and development of internodes in Helianthus. Bot. Gaz. 134, 246–255 (1973).
    Google Scholar 
    Sai, J. & Johnson, C. H. Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. Plant Cell 14, 1279–1291 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Dingenen, J., Blomme, J., Gonzalez, N. & Inzé, D. Plants grow with a little help from their organelle friends. J. Exp. Bot. 67, 6267–6281 (2016).PubMed 

    Google Scholar 
    Bondada, B. & Oosterhuis, D. M. Morphometric analysis of chloroplasts of cotton leaf and fruiting organs. Biol. Plant. 47, 281–284 (2003).
    Google Scholar 
    Hall, J. D., Barr, R., Al-Abbas, A. H. & Crane, F. L. The Ultrastructure of chloroplasts in mineral-deficient maize leaves. Plant Physiol. 50, 404–409 (1972).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Larcher, W., Lütz, C., Nagele, M. & Bodner, M. Photosynthetic functioning and ultrastructure of chloroplasts in stem tissue of Fagus sylvatica. J. Plant Physiol. 132, 731–737 (1988).CAS 

    Google Scholar 
    Pfanz, H., Aschan, G., Langenfeld-Heyser, R., Wittmann, C. & Loose, M. Ecology and ecophysiology of tree stems: Corticular and wood photosynthesis. Naturwissenschaften 89, 147–162 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Day, D. Some effects of calcium deficiency on Pisum sativum. Plant Physiol. 4, 493–506 (1929).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rangnekar, P. Effect of calcium deficiency in the carbon metabolisms in photosynthesis and respiration in tomato leaf. Plant Soil 42, 565–583 (1975).CAS 

    Google Scholar 
    Rorison, I. H. & Robinson, D. Calcium as an environmental variable. Plant Cell Environ. 7, 381–390 (1984).CAS 

    Google Scholar 
    Epstein, E. Mineral Nutrition of Plants. Principles and Perspectives (Wiley, 1972).
    Google Scholar 
    Adhikari, T., Sarkar, D., Mashayekhi, H. & Xing, B. Growth and enzymatic activity of maize (Zea mays L.) plant: Solution culture test for copper dioxide nano particles. J. Plant Nutr. 39, 99–115 (2016).CAS 

    Google Scholar 
    Wu, X. et al. Boron deficiency in trifoliate orange induces changes in pectin composition and architecture of components in root cell walls. Front. Plant Sci. 8, 1882. https://doi.org/10.3389/fpls.2017.01882 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lloret, P. G. & Casero, P. J. Lateral root initiation. In Plant Roots: The Hidden Half (eds Waisel, Y. et al.) 198–241 (Marcel Dekker Inc, 2002).
    Google Scholar 
    Lynch, J. P. & Brown, K. M. Topsoil foraging: An architectural adaptation of plants to low phosphorus availability. Plant Soil 237, 225–237 (2001).CAS 

    Google Scholar 
    Mazen, A. M. A., Zhang, D. & Franceschi, V. R. Calcium oxalate formation in Lemna minor L.: Physiological and ultrastructural aspects of high capacity calcium sequestration. New Phytol. 161, 435–448 (2003).
    Google Scholar 
    Xie, Z. S., Forney, C. F., Xu, W. P. & Wang, S. P. Effects of root restriction on ultrastructural variation of phloem and phloem parenchyma cells in grape berry. Hortic. Sci. 44, 1334–1339 (2009).
    Google Scholar 
    Franceschi, V. R. Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 148, 130–139 (1989).
    Google Scholar 
    Volk, G. M., Lynch-Holm, V. J., Kostman, T. A., Goss, L. J. & Francesch, V. R. The Role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol. 4, 34–45 (2002).CAS 

    Google Scholar 
    Cherel, I., Lefoulon, C., Boeglin, M. & Sentenac, H. Molecular mechanisms involved in plant adaptation to low K(+) availability. J. Exp. Bot. 65, 833–848 (2014).CAS 
    PubMed 

    Google Scholar 
    Poni, S. & Intrieri, C. Grapevine photosynthesis: effects linked to light radiation and leaf age. Adv. Hortic. Sci. 15, 5–15 (2001).
    Google Scholar 
    Zhu, L., Wang, S., Yang, T., Zhang, C. & Xu, W. Vine growth and nitrogen metabolism of ‘Fujiminori’ grapevines in response to root restriction. Sci. Hortic. 107, 143–149 (2006).
    Google Scholar 
    Schichnes, D., Nemson, J., Sohlberg, L. & Ruzin, S. E. Microwave protocols for paraffin microtechnique and in situ localization in plants. Microsc. Microanal. 4, 491–496 (1998).CAS 
    PubMed 
    ADS 

    Google Scholar  More

  • in

    Bifidobacterium castoris strains isolated from wild mice show evidence of frequent host switching and diverse carbohydrate metabolism potential

    Turroni F, van Sinderen D, Ventura M. Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol. 2011;149:37–44.CAS 
    PubMed 

    Google Scholar 
    O’Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol. 2016;7:925.PubMed 
    PubMed Central 

    Google Scholar 
    Ferrario C, Milani C, Mancabelli L, Lugli GA, Duranti S, Mangifesta M, et al. Modulation of the eps-ome transcription of bifidobacteria through simulation of human intestinal environment. FEMS Microbiol Ecol. 2016;92:fiw056.PubMed 

    Google Scholar 
    Sayers EW, Beck J, Brister JR, Bolton EE, Canese K, Comeau DC, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2020;48:D9–D16.CAS 
    PubMed 

    Google Scholar 
    Bottacini F, Medini D, Pavesi A, Turroni F, Foroni E, Riley D, et al. Comparative genomics of the genus Bifidobacterium. Microbiology. 2010;156:3243–54.CAS 
    PubMed 

    Google Scholar 
    Turroni F, Duranti S, Bottacini F, Guglielmetti S, Van Sinderen D, Ventura M. Bifidobacterium bifidum as an example of a specialized human gut commensal. Front Microbiol. 2014;5:437.PubMed 
    PubMed Central 

    Google Scholar 
    Bottacini F, Motherway MO, Kuczynski J, O’Connell KJ, Serafini F, Duranti S, et al. Comparative genomics of the Bifidobacterium breve taxon. BMC Genomics. 2014;15:170.PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F, Mangifesta M, et al. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol. 2014;80:6290–302.PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L, Ferrario C, et al. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep. 2015;5:15782.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L, Ferrario C, et al. Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol. 2016;82:980–91.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. Cospeciation of gut microbiota with hominids. Science. 2016;353:380–2.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun. 2017;8:14319.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaulke CA, Arnold HK, Humphreys IR, Kembel SW, O’Dwyer JP, Sharpton TJ. Ecophylogenetics clarifies the evolutionary association between mammals and their gut microbiota. mBio. 2018;9:e01348–18.PubMed 
    PubMed Central 

    Google Scholar 
    Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. 2019;10:2200.PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone CA, Hamady M, Cantarel BL, Coutinho PM, Henrissat B, Gordon JI, et al. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc Natl Acad Sci USA. 2008;105:15076–81.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA. 2006;103:15611–6.PubMed 
    PubMed Central 

    Google Scholar 
    Moeller AH, Suzuki TA, Phifer-Rixey M, Nachman MW. Transmission modes of the mammalian gut microbiota. Science. 2018;362:453–7.CAS 
    PubMed 

    Google Scholar 
    Browne HP, Almeida A, Kumar N, Vervier K, Adoum AT, Viciani E, et al. Host adaptation in gut Firmicutes is associated with sporulation loss and altered colonisation patterns. 2020. https://www.biorxiv.org/content/10.1101/2020.09.09.289504v1.Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suzuki TA. Links between natural variation in the microbiome and host fitness in wild mammals. Integr Comp Biol. 2017;57:756–69.CAS 
    PubMed 

    Google Scholar 
    McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lugli GA, Alessandri G, Milani C, Mancabelli L, Ruiz L, Fontana F, et al. Evolutionary development and co-phylogeny of primate-associated bifidobacteria. Environ Microbiol. 2020;22:3375–93.PubMed 

    Google Scholar 
    Lugli GA, Mancino W, Milani C, Duranti S, Mancabelli L, Napoli S, et al. Dissecting the evolutionary development of the species Bifidobacterium animalis through comparative genomics analyses. Appl Environ Microbiol. 2019;85:e02806–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lugli GA, Duranti S, Albert K, Mancabelli L, Napoli S, Viappiani A, et al. Unveiling genomic diversity among members of the species Bifidobacterium pseudolongum, a widely distributed gut commensal of the animal kingdom. Appl Environ Microbiol. 2019;85:e03065–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Mangifesta M, Mancabelli L, Lugli GA, James K, Duranti S, et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME J. 2017;11:2834–47.PubMed 
    PubMed Central 

    Google Scholar 
    Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. 2017;548:43–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Vliet S, Doebeli M. The role of multilevel selection in host microbiome evolution. Proc Natl Acad Sci USA. 2019;116:20591–7.PubMed 
    PubMed Central 

    Google Scholar 
    Groussin M, Mazel F, Alm EJ. Co-evolution and co-speciation of host-gut bacteria systems. Cell Host Microbe. 2020;28:12–22.CAS 
    PubMed 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Firek B, Baker R, Burstein D, et al. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates. Genome Res. 2017;27:601–12.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duranti S, Lugli GA, Napoli S, Anzalone R, Milani C, Mancabelli L, et al. Characterization of the phylogenetic diversity of five novel species belonging to the genus Bifidobacterium: Bifidobacterium castoris sp. nov., Bifidobacterium callimiconis sp. nov., Bifidobacterium goeldii sp. nov., Bifidobacterium samirii sp. nov. and Bifidobacterium dolichotidis sp. nov. Int J Syst Evol Microbiol. 2019;69:1288–98.CAS 
    PubMed 

    Google Scholar 
    Lugli GA, Milani C, Duranti S, Mancabelli L, Mangifesta M, Turroni F, et al. Tracking the taxonomy of the genus Bifidobacterium based on a phylogenomic approach. Appl Environ Microbiol. 2017;84:e02249–17.
    Google Scholar 
    Snel B, Bork P, Huynen MA. Genome phylogeny based on gene content. Nat Genet. 1999;21:108–10.CAS 
    PubMed 

    Google Scholar 
    Dutilh BE, Huynen MA, Bruno WJ, Snel B. The consistent phylogenetic signal in genome trees revealed by reducing the impact of noise. J Mol Evol. 2004;58:527–39.CAS 
    PubMed 

    Google Scholar 
    Legendre P, Desdevises Y, Bazin E. A statistical test for host-parasite coevolution. Syst Biol. 2002;51:217–34.PubMed 

    Google Scholar 
    Michaux JR, Chevret P, Filippucci MG, Macholan M. Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rRNA. Mol Phylogenet Evol. 2002;23:123–36.CAS 
    PubMed 

    Google Scholar 
    Lawson MAE, O’Neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekera A, Flegg Z, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020;14:635–48.CAS 
    PubMed 

    Google Scholar 
    Van Den Broek LAM, Voragen AGJ. Bifidobacterium glycoside hydrolases and (potential) prebiotics. Innov Food Sci Emerg Technol 2008;9:401–7.
    Google Scholar 
    Pokusaeva K, Fitzgerald GF, van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 2011;6:285–306.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodriguez CI, Martiny JBH. Evolutionary relationships among bifidobacteria and their hosts and environments. BMC Genomics. 2020;21:26.PubMed 
    PubMed Central 

    Google Scholar 
    Henrissat B, Davies GJ. Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol. 2000;124:1515–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel. 2006;19:555–62.CAS 
    PubMed 

    Google Scholar 
    Miyazaki T, Ishizaki Y, Ichikawa M, Nishikawa A, Tonozuka T. Structural and biochemical characterization of novel bacterial alpha-galactosidases belonging to glycoside hydrolase family 31. Biochem J. 2015;469:145–58.CAS 
    PubMed 

    Google Scholar 
    Hachem MA, Fredslund F, Andersen JM, Jonsgaard Larsen R, Majumder A, Ejby M, et al. Raffinose family oligosaccharide utilisation by probiotic bacteria: insight into substrate recognition, molecular architecture and diversity of GH36 α-galactosidases. Biocatal Biotransform. 2012;30:316–25.CAS 

    Google Scholar 
    Kujawska M, La Rosa SL, Roger LC, Pope PB, Hoyles L, McCartney AL, et al. Succession of Bifidobacterium longum strains in response to a changing early life nutritional environment reveals dietary substrate adaptations. iScience. 2020;23:101368.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu H, Ren W, Ly M, Li H, Wang S. Characterization of an alkaline GH49 dextranase from marine bacterium Arthrobacter oxydans KQ11 and its application in the preparation of isomalto-oligosaccharide. Mar Drugs. 2019;17:479.CAS 
    PubMed Central 

    Google Scholar 
    Michlmayr H, Hell J, Lorenz C, Bohmdorfer S, Rosenau T, Kneifel W. Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054. Appl Environ Microbiol. 2013;79:6747–54.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fujita K, Takashi Y, Obuchi E, Kitahara K, Suganuma T. Characterization of a novel beta-l-arabinofuranosidase in Bifidobacterium longum: functional elucidation of a DUF1680 protein family member. J Biol Chem. 2014;289:5240–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viens P, Lacombe-Harvey ME, Brzezinski R. Chitosanases from Family 46 of glycoside hydrolases: from proteins to phenotypes. Mar Drugs. 2015;13:6566–87.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sela DA, Garrido D, Lerno L, Wu S, Tan K, Eom HJ, et al. Bifidobacterium longum subsp. infantis ATCC 15697 alpha-fucosidases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol. 2012;78:795–803.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garrido D, Ruiz-Moyano S, Kirmiz N, Davis JC, Totten SM, Lemay DG, et al. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp longum SC596. Sci Rep-Uk. 2016;6:35045.CAS 

    Google Scholar 
    Kitaoka M. Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides. Adv Nutr. 2012;3:422S–9S.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiyohara M, Tanigawa K, Chaiwangsri T, Katayama T, Ashida H, Yamamoto K. An exo-alpha-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates. Glycobiology. 2011;21:437–47.CAS 
    PubMed 

    Google Scholar 
    Breton C, Snajdrova L, Jeanneau C, Koca J, Imberty A. Structures and mechanisms of glycosyltransferases. Glycobiology. 2006;16:29R–37R.CAS 
    PubMed 

    Google Scholar 
    Hidalgo-Cantabrana C, Sanchez B, Milani C, Ventura M, Margolles A, Ruas-Madiedo P. Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Appl Environ Microbiol. 2014;80:9–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The carbohydrate-active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233–8.CAS 
    PubMed 

    Google Scholar 
    Lavrinienko A, Tukalenko E, Mousseau TA, Thompson LR, Knight R, Mappes T, et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. Sci Data. 2020;7:312.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baumler A, Fang FC. Host specificity of bacterial pathogens. Cold Spring Harb Perspect Med. 2013;3:a010041.PubMed 
    PubMed Central 

    Google Scholar 
    Glazko GV, Nei M. Estimation of divergence times for major lineages of primate species. Mol Biol Evol. 2003;20:424–34.CAS 
    PubMed 

    Google Scholar 
    Milton K. The critical role played by animal source foods in human (Homo) evolution. J Nutr. 2003;133:3886S–92S.CAS 
    PubMed 

    Google Scholar 
    Renaud S, Michaux J, Schmidt DN, Aguilar JP, Mein P, Auffray JC. Morphological evolution, ecological diversification and climate change in rodents. Proc Biol Sci. 2005;272:609–17.PubMed 
    PubMed Central 

    Google Scholar 
    Michaux JR, Libois R, Filipucci M-G. So close and so different: comparative phylogeography of two small mammal species, the Yellow-necked fieldmouse (Apodemus flavicollis) and the Woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Heredity. 2005;94:52–63.CAS 
    PubMed 

    Google Scholar 
    Ge D, Feijó A, Cheng J, Lu L, Liu R, Abramov AV, et al. Evolutionary history of field mice (Murinae: Apodemus), with emphasis on morphological variation among species in China and description of a new species. Zool J Linn Soc. 2019;187:5188–534.
    Google Scholar 
    Moeller AH, Peeters M, Ndjango JB, Li Y, Hahn BH, Ochman H. Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Res. 2013;23:1715–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knowles SCL, Eccles RM, Baltrunaite L. Species identity dominates over environment in shaping the microbiota of small mammals. Ecol Lett. 2019;22:826–37.CAS 
    PubMed 

    Google Scholar 
    Watts CHS. The foods eaten by wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) in Wytham Woods, Berkshire. J Anim Ecol. 1968;37:25–41.
    Google Scholar 
    Abt KF, Bock WF. Seasonal variations of diet composition in farmland field mice Apodemus spp. and bank voles Clethrionomys glareolus. Acta Theriol. 1998;43:379–89.
    Google Scholar 
    Rogers LM, Gorman ML. The diet of the wood mouse Apodemus sylvaticus on set‐aside land. J Zool. 1995;235:77–83.
    Google Scholar 
    Van Laere KM, Beldman G, Voragen AG. A new arabinofuranohydrolase from Bifidobacterium adolescentis able to remove arabinosyl residues from double-substituted xylose units in arabinoxylan. Appl Microbiol Biotechnol. 1997;47:231–5.PubMed 

    Google Scholar 
    Margolles A, de los Reyes-Gavilan CG. Purification and functional characterization of a novel alpha-L-arabinofuranosidase from Bifidobacterium longum B667. Appl Environ Microbiol. 2003;69:5096–103.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G. Substrate specificity of three recombinant alpha-L-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochem Biophys Res Commun. 2010;402:644–50.CAS 
    PubMed 

    Google Scholar 
    Ito T, Saikawa K, Kim S, Fujita K, Ishiwata A, Kaeothip S, et al. Crystal structure of glycoside hydrolase family 127 beta-l-arabinofuranosidase from Bifidobacterium longum. Biochem Biophys Res Commun. 2014;447:32–7.CAS 
    PubMed 

    Google Scholar 
    Kataržytė M, Kutorga E. Small mammal mycophagy in hemiboreal forest communities of Lithuania. Central Eur J Biol. 2011;6:446–56.
    Google Scholar 
    Lee HW, Park YS, Jung JS, Shin WS. Chitosan oligosaccharides, dp 2-8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe. 2002;8:319–24.PubMed 

    Google Scholar 
    Vernazza CL, Gibson GR, Rastall RA. In vitro fermentation of chitosan derivatives by mixed cultures of human faecal bacteria. Carbohyd Polym. 2005;60:539–45.CAS 

    Google Scholar 
    Yang CM, Ferket PR, Hong QH, Zhou J, Cao GT, Zhou L, et al. Effect of chito-oligosaccharide on growth performance, intestinal barrier function, intestinal morphology and cecal microflora in weaned pigs. J Anim Sci. 2012;90:2671–6.CAS 
    PubMed 

    Google Scholar 
    Zhang C, Jiao S, Wang ZA, Du Y. Exploring effects of chitosan oligosaccharides on mice gut microbiota in in vitro fermentation and animal model. Front Microbiol. 2018;9:2388.PubMed 
    PubMed Central 

    Google Scholar 
    Wu J, Zhang L. Dissolution behavior and conformation change of chitosan in concentrated chitosan hydrochloric acid solution and comparison with dilute and semidilute solutions. Int J Biol Macromol. 2019;121:1101–8.CAS 
    PubMed 

    Google Scholar 
    Costa CN, Teixeira VG, Delpech MC, Souza JV, Costa MA. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride. Carbohydr Polym. 2015;133:245–50.CAS 
    PubMed 

    Google Scholar 
    Kiu R, Treveil A, Harnisch LC, Caim S, Leclaire C, van Sinderen D, et al. Bifidobacterium breve UCC2003 induces a distinct global transcriptomic program in neonatal murine intestinal epithelial cells. iScience. 2020;23:101336.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes KR, Harnisch LC, Alcon-Giner C, Mitra S, Wright CJ, Ketskemety J, et al. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner. Open Biol. 2017;7:160155.Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci USA. 2012;109:2108–13.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roca C, Alves VD, Freitas F, Reis MA. Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Front Microbiol. 2015;6:288.PubMed 
    PubMed Central 

    Google Scholar 
    Balzaretti S, Taverniti V, Guglielmetti S, Fiore W, Minuzzo M, Ngo HN, et al. A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells. Appl Environ Microbiol. 2017;83:e02702–16.PubMed 
    PubMed Central 

    Google Scholar 
    Stradiotto A, Cagnacci F, Delahay R, Tioli S, Nieder L, Rizzoli A. Spatial organization of the yellow-necked mouse: effects of density and resource availability. J Mammal. 2009;90:704–14.
    Google Scholar 
    Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46.PubMed 
    PubMed Central 

    Google Scholar 
    Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i90.PubMed 
    PubMed Central 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 

    Google Scholar 
    Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 

    Google Scholar 
    Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001;18:691–9.CAS 
    PubMed 

    Google Scholar 
    Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.CAS 
    PubMed 

    Google Scholar 
    Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8:12–24.
    Google Scholar 
    Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.CAS 
    PubMed 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGillin D, et al. vegan: community ecology package. R package version 25-6. 2019. https://CRAN.R-project.org/package=vegan.De Caceres M, Legendre P, Moretti M. Improving indicator species analysis by combining groups of sites. Oikos. 2010;119:1674–84.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.PubMed 
    PubMed Central 

    Google Scholar 
    Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, et al. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics. 2006;7:142.PubMed 
    PubMed Central 

    Google Scholar 
    Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G, Winsor GL, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–W5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Getting serious about aquaculture risk

    Chemical and pathogenic hazards in aquaculture supply chains threaten the provision of safe aquatic food. The Seafood Risk Tool is an integrated, semi-quantitative system that develops bespoke supply chain and risk management strategies.Although wild fish catches have plateaued globally, the aquaculture sector continues to expand in response to increasing demand for fish and other aquatic foods. Economic progress and the growing consumer awareness of aquatic foods in sustainable, healthy and nutritious diets are contributing to sector expansion1. However, rapid expansion must be achieved in a socially responsible and environmentally sustainable manner. Aquaculture produces over 400 different species across marine and freshwater fish, crustaceans, molluscs, plants and algae2 — all presenting complex and unique risk profiles to the environment, the industry, investors and consumers. Measures to mitigate these risks, including aquaculture certification and legislation, are inconsistent across nations and regions, and cohesive risk management has been difficult to manage and implement. More

  • in

    Commensal Pseudomonas strains facilitate protective response against pathogens in the host plant

    Barcoding of Pseudomonas isolates and experimental designTo test possible host–commensal–pathogen dynamics in a local population, we spray inoculated six A. thaliana accessions with synthetic bacterial communities composed of pathogenic and commensal Pseudomonas candidates. Because we wanted to study interactions that are likely to occur in nature, we used A. thaliana genotypes that originated from the same plant populations near Tübingen, Germany28, from which the Pseudomonas strains had been isolated (Fig. 1a). Classification of Pseudomonas lineages as pathogenic or commensal was based on observed effects in axenic infections11. Only one lineage, previously named OTU5, which dominated local plant populations, was associated with pathogenicity, both based on negative impact on rosette weight and visible disease symptoms11. We henceforth call this lineage ATUE5 (isolates sampled from ‘Around TUEbingen, group 5’) and all other Pseudomonas lineages from the Karasov collection non-ATUE5. We interchangeably use the terms ‘pathogens’ or ‘ATUE5’, and ‘commensals’ or ‘non-ATUE5’.Fig. 1: Study system.a, Location of original a. thaliana and Pseudomonas sampling sites around Tübingen. b, Taxonomic representation of the 14 Pseudomonas isolates used and the prevalence of closely related strains (divergence 0.99 and P value |± 0.2| shown. Node colours indicate the bacterial isolate classification, ATUE5 or non-ATUE5. e, In planta abundance change of the seven ATUE5 isolates in non-ATUE5 inclusive treatments in comparison with PathoCom. Abundance mean difference was estimated with the model [log10(isolate load) ~ treatment × experiment + treatment + experiment + error] for each individual strain. Thus, the treatment coefficient was estimated per isolate. Dots indicate the median estimates, and vertical lines represent 95% Bayesian credible intervals of the fitted parameter. ‘Combi’ indicates combination of the isolates C3,C4,C5 and C7, and n = 23.Full size imageEach of the 14 isolates was examined for growth inhibition against all other isolates, covering all possible combinations of binary interactions. In total, three strains out of the 14 had inhibitory activity; all were non-ATUE5 (Fig. 4c). Specifically, C4 and C5 showed the same pattern: both inhibited all pathogenic isolates but P1, and both inhibited the same two commensals, C6 and weakly C3. C3 inhibited three ATUE5 isolates: P5, P6 and P7. In summary, the in vitro assay provides evidence that among the tested Pseudomonas isolates, direct inhibition was a trait unique to commensals, and susceptible bacteria were primarily pathogens. This supports the notion that ATUE5 and non-ATUE5 isolates employ divergent competition strategies, or that if they use the same mechanism, they differ in the effectiveness of such a mechanism.The in vitro results recapitulated the general trend of pathogen inhibition found among treatments in planta. Nevertheless, we observed major discrepancies between the two assays. First, P1 was not inhibited by any isolate in the host-free assay (Fig. 4c), though it was the most inhibited member in planta among the communities (Fig. 4b). Second, no commensal isolate was inhibited in planta among communities (Fig. 4b), while two commensals, C3 and C6, were inhibited in vitro (Fig. 4c). Both observations are compatible with an effect of the host on microbe–microbe interactions. To explore such effects, we analysed all pairwise microbe–microbe abundance correlations within MixedCom-infected hosts. When we used absolute abundances, all pairwise correlations were positive, also in CommenCom and PathoCom (Extended Data Fig. 8a), consistent with there being a positive correlation between absolute abundance of individual isolates and total abundance of the entire community (Supplementary Fig. 7), that is, no isolate was less abundant in highly colonized plants than in sparsely colonized plants. This indicates that there does not seem to be active killing of competitors in planta in the CommenCom, which is probably not surprising. With relative abundances, however, a clear pattern emerged with a cluster of commensals that were positively correlated, possibly reflecting mutual growth promotion, and several commensal strains being negatively correlated with both P6 and C7, possibly reflecting unidirectional growth inhibition (Fig. 4d). We did not observe the same correlations within CommenCom among commensals and within PathoCom among pathogens as we did for either subgroup in MixedCom, reflecting higher-order interactions. Thus, interactions among pathogens were constrained by the presence of commensals and vice versa (Extended Data Fig. 8b).The in planta patterns measured in complex communities did not fully recapitulate what we had observed in vitro with pairwise interactions. We therefore investigated individual commensal isolates for their ability to suppress pathogens in planta and also tested the entourage effect. We focused on the three commensals C3, C4 and C5, which had directly inhibited pathogens in vitro, and as a control C7, which had not shown any inhibition activity in vitro. We infected plants with mixtures of PathoCom and each of the four individual commensals and also with PathoCom mixed with all four commensals. Because pathogen inhibition seemed to be independent of the host genotype, we arbitrarily chose HE-1. Regardless of the commensal isolate, only P1 was suppressed with high probability in all commensal-including treatments (Fig. 4e), with P2, P3 and P4 being substantially inhibited only by the mixture of all four commensals. Together with the lack of meaningful differences between individual commensals, this indicates that pathogen inhibition is either a function of commensal dose or a result of interaction among commensals.An important finding was that four commensal strains had much more similar inhibitory activity in planta than in vitro and that the combined action was greater than the individual effects. Together, this suggested that the host contributes to the observed interactions between commensal and pathogenic Pseudomonas isolates. To begin to investigate this possibility, we next studied potential host immune responses with RNA sequencing.Defensive response elicited by non-ATUE5For the RNA-sequencing experiment, we treated plants of the genotype Lu3-30 with the three synthetic communities and also used a bacteria-free control treatment. We sampled the treated plants 3 DPI and 4 DPI, thus increasing the ability to pinpoint differentially expressed genes (DEGs) between treatments that are not highly time specific. Exploratory analysis indicated that the two time points behaved similarly, and they were combined for further in-depth analysis.We first looked at DEGs in a comparison between infected plants and control (Supplementary Table 5); with PathoCom, there were only 14 DEGs; with CommenCom, there were 1,112 DEGs; and with MixedCom, there were 1,949 DEGs, suggesting that the CommenCom isolates, which are also present in the MixedCom, elicited a stronger host response than the PathoCom members. Furthermore, the high number of DEGs in MixedCom, higher than both PathoCom and CommenCom together, suggested a synergistic response derived from inclusion of both PathoCom and CommenCom members. Alternatively, this could also be a consequence of the higher initial inoculum in the 14-member MixedCom than either the 7-member PathoCom or 7-member CommenCom, or a combination of the two effects (Fig. 5a,b and Extended Data Fig. 9). The genes induced by the MixedCom fell into two classes: Group 5 (Fig. 5a,b) was also induced, albeit more weakly, by the CommenCom but not by the PathoCom. This group was overrepresented for non-redundant gene ontology (GO) categories linked to defence (Fig. 5c) and most likely explains the protective effects of commensals in the MixedCom. Specifically, among the top ten enriched GO categories in the shared MixedCom and CommenCom set, eight relate to immune response or response to another organism (‘defence response’, ‘multi-organism process’, ‘immune response’, ‘response to stimulus’, ‘response to biotic stimulus’, ‘response to other organism’, ‘immune system process’, ‘response to stress’; Fig. 5c).Fig. 5: Only commensal members elicit a strong host-defensive response.a, Relative expression (RE) pattern of 2,727 DEGs found in at least one of the comparisons of CommenCom, PathoCom and MixedCom with Control. DEGs were hierarchically clustered. b, Euler diagram of DEGs in PathoCom-, CommenCom- and MixedCom-treated plants compared with Control (log2[fold change]  >|± 1|; false discovery rate (FDR) 0.05); n = 4.Full size imageGroup 4 was only induced in MixedCom, either indicating synergism between commensals and pathogens or reflecting a consequence of the higher initial inoculum. This group included a small number of redundant GO categories indicative of defence, such as ‘salicylic acid mediated signalling pathway’, ‘multi-organism process’, ‘response to other organism’ and ‘response to biotic stimulus’ (Supplementary Table 6). Moreover, the MixedCom response cannot simply be explained by synergistic effects or commensals suppressing pathogen effects because there was a prominent class, Group 2, which included genes that were induced in the CommenCom but to a much lesser extent in the PathoCom or MixedCom. From their annotation, it was unclear how they can be linked to infection (Fig. 5c). About 500 genes (Group 1) that were downregulated by all bacterial communities are unlikely to contain candidates for commensal protection (Fig. 5a).Cumulatively, these results imply that the CommenCom members elicited a defensive response in the host regardless of PathoCom members, while the mixture of both led to additional responses. To better understand if selective suppression of ATUE5 in MixedCom infections may have resulted from the recognition of both non-ATUE5 and ATUE5 (reflected by a unique MixedCom set of DEGs) or solely non-ATUE5 (a set of DEGs shared by MixedCom and CommenCom), we examined the expression of key genes related to the salicylic acid pathway and downstream immune responses. Activation of the salicylic acid pathway was previously related to increased fitness of A. thaliana in the presence of wild bacterial pathogens, a phenomenon which was attributed to an increased systemic acquired resistance32.We observed a general trend of higher expression in MixedCom- and CommenCom-infected hosts for several such genes (Fig. 5d). Examples are PR1 and PR5, marker genes for systemic acquired resistance and resistance execution. Therefore, according to the marker genes we tested, non-ATUE5 elicited a defensive response in the host, regardless of ATUE5 presence.We conclude that the expression profiles of non-ATUE5-infected Lu3-30 plants point to an increased defensive status, supporting our hypothesis regarding host-mediated ATUE5 suppression. We note that ATUE5 suppression was not associated with full plant protection and thus control-like weight levels in all plant genotypes. One accession, Ey15-2, was only partially protected in the MixedCom (Fig. 2), despite levels of pathogen inhibition being not very different from other host genotypes (Extended Data Fig. 7).Lack of protection explained by a single pathogenic isolateThe fact that Ey15-2 was only partially protected by MixedCom (Fig. 2) underlines the importance of the host genotype in plant–microbe–microbe interactions, apparently reflecting the dynamics between microbes and plants in wild populations. We therefore wanted to reveal the cause for this differential interaction.Our first aim was to rank compositional variables in MixedCom according to their impact on plant weight, regardless of host genotype. Next, we asked whether any of the top-ranked variables could explain the lack of protection in Ey15-2. With Random Forest analysis, we estimated the weight-predictive power of all individual isolates in MixedCom and three cumulative variables: total bacterial abundance, total ATUE5 abundance and total non-ATUE5 abundance. We found that the best weight-predictive variable was the abundance of pathogenic isolate P6, followed by total bacterial load and total ATUE5 load, which were probably confounded by the abundance of P6 (Fig. 6a). In agreement, P6 was the dominant ATUE5 in MixedCom (Fig. 6b and Extended Data Fig. 10a). We thus hypothesized that the residual pathogenicity in MixedCom-infected Ey15-2 was caused by P6. Although P6 grew best in Ey15-2, the difference to most other genotypes was unlikely to be important (Extended Data Fig. 10b). However, P6 was particularly dominant in Ey15-2 (Fig. 6b).Fig. 6: The effect of isolate P6 on weight in MixedCom-infected hosts and particularly on accession Ey15-2.a, Relative importance (mean decrease accuracy; ‘MSE’) of 20 examined variables in weight prediction of MixedCom-infected hosts as determined by Random Forest analysis. The best predictor was the abundance of isolate P6. ‘Total bacterial’, ‘Total ATUE5’ and ‘Total non-ATUE5’ indicate the cumulative abundances of the 14 isolates, seven ATUE5 isolates and seven non-ATUE5 isolates, respectively. b, Abundance of P6 compared with the other 13 barcoded isolates in MixedCom-infected hosts across the six A. thaliana genotypes used in this study. Dots indicate the median estimates, and vertical lines represent 95% Bayesian credible intervals of the fitted parameter, following the model [log10(isolate load) ~ isolate × experiment + isolate + experiment + error]. Each genotype was analysed individually, thus the model was utilized for each genotype separately. The shaded area denotes the 95% Bayesian credible intervals for the isolate P6. c, Fresh rosette weight of Ey15-2 plants treated with Control, MixedCom and MixedCom without P6 (MixedCom ΔP6). Fresh rosette weight was measured 12 DPI. The top panel presents the raw data, with the breaks in the vertical black lines denoting the mean value of each group, and the vertical lines indicating standard deviation. The lower panel presents the mean difference to control, plotted as bootstrap sampling55,56, indicating the distribution of effect size that is compatible with the data. The 95% confidence intervals are indicated by the black vertical bars, and n = 19.Full size imageGiven that pathogen load in Ey15-2 was driven to a substantial extent by P6, we assumed that this isolate had a stronger impact on the weight of Ey15-2 than on other accessions. We experimentally validated that removal of P6 restored protection when Ey15-2 was infected with the MixedCom (Fig. 6c). To confirm that restored protection was due to the interaction of commensals with the five other pathogenic isolates (P1–P5), rather than simply removal of P6, we also treated Ey15-2 with PathoCom only, but not P6. The removal of P6 did not diminish the negative weight impact of PathoCom (P1–P5, Supplementary Fig. 8), implying that it was indeed the interaction between commensals with five out of six pathogenic isolates that mitigated the harmful effect of pathogens in Ey15-2 plants. More

  • in

    Functionally distinct T-helper cell phenotypes predict resistance to different types of parasites in a wild mammal

    Abolins, S. et al. The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nat. Commun. 8, 14811. https://doi.org/10.1038/ncomms14811 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cox, F. E. G. Concomitant infections, parasites and immune responses. Parasitology 122, S23–S38. https://doi.org/10.1017/S003118200001698X (2001).Article 
    PubMed 

    Google Scholar 
    Seder, R. A., Darrah, P. A. & Roederer, M. T-cell quality in memory and protection: Implications for vaccine design. Nat. Rev. Immunol. 8, 247–258. https://doi.org/10.1038/nri2274 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Demas, G. E., Zysling, D. A., Beechler, B. R., Muehlenbein, M. P. & French, S. S. Beyond phytohaemagglutinin: Assessing vertebrate immune function across ecological contexts. J. Anim. Ecol. 80, 710–730. https://doi.org/10.1111/j.1365-2656.2011.01813.x (2011).Article 
    PubMed 

    Google Scholar 
    Pedersen, A. B. & Babayan, S. A. Wild immunology. Mol. Ecol. 20, 872–880. https://doi.org/10.1111/j.1365-294X.2010.04938.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abolins, S. et al. The ecology of immune state in a wild mammal, Mus musculus domesticus. PLoS Biol. 16, e2003538. https://doi.org/10.1371/journal.pbio.2003538 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezenwa, V. O. Helminth–microparasite co-infection in wildlife: Lessons from ruminants, rodents and rabbits. Parasite Immunol. 38, 527–534. https://doi.org/10.1111/pim.12348 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Craig, B. H., Tempest, L. J., Pilkington, J. G. & Pemberton, J. M. Metazoan-protozoan parasite co-infections and host body weight in St Kilda Soay sheep. Parasitology 135, 433–441. https://doi.org/10.1017/S0031182008004137 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Graham, A. L. et al. Exposure to viral and bacterial pathogens among Soay sheep (Ovis aries) of the St Kilda archipelago. Epidemiol. Infect. 144, 1879–1888. https://doi.org/10.1017/S0950268816000017 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Murphy, K., Travers, P., Walport, M. & Janeway, C. Janeway’s Immunobiology (Garland Science, 2012).
    Google Scholar 
    Parkin, J. & Cohen, B. An overview of the immune system. Lancet 357, 1777–1789. https://doi.org/10.1016/S0140-6736(00)04904-7 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173. https://doi.org/10.1146/annurev.iy.07.040189.001045 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nakayamada, S., Takahashi, H., Kanno, Y. & O’Shea, J. J. Helper T cell diversity and plasticity. Curr. Opin. Immunol. 24, 297–302. https://doi.org/10.1016/j.coi.2012.01.014 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gerbe, F. et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230. https://doi.org/10.1038/nature16527 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jain, A. & Pasare, C. Innate control of adaptive immunity: Beyond the three-signal paradigm. J. Immunol. (Baltimore, Md.: 1950) 198, 3791–3800. https://doi.org/10.4049/jimmunol.1602000 (2017).CAS 
    Article 

    Google Scholar 
    Schmitt, N. & Ueno, H. Regulation of human helper T cell subset differentiation by cytokines. Curr. Opin. Immunol. 34, 130–136. https://doi.org/10.1016/j.coi.2015.03.007 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793. https://doi.org/10.1038/383787a0 (1996).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Seder, R. A. & Paul, W. E. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu. Rev. Immunol. 12, 635–673. https://doi.org/10.1146/annurev.iy.12.040194.003223 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    Grencis, R. K. Immunity to helminths: Resistance, regulation, and susceptibility to gastrointestinal nematodes. Annu. Rev. Immunol. 33, 201–225. https://doi.org/10.1146/annurev-immunol-032713-120218 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    O’Garra, A. & Robinson, D. In Advances in Immunology vol. 83 133–162 (Academic Press, 2004).Pereira, L. M. S., Gomes, S. T. M., Ishak, R. & Vallinoto, A. C. R. Regulatory T cell and forkhead box protein 3 as modulators of immune homeostasis. Front. Immunol. https://doi.org/10.3389/fimmu.2017.00605 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Romagnani, S. T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol. 85, 9–21. https://doi.org/10.1016/S1081-1206(10)62426-X (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sandquist, I. & Kolls, J. Update on regulation and effector functions of Th17 cells. F1000Res 7, 205–205. https://doi.org/10.12688/f1000research.13020.1 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stockinger, B. & Omenetti, S. The dichotomous nature of T helper 17 cells. Nat. Rev. Immunol. 17, 535–544. https://doi.org/10.1038/nri.2017.50 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilson, K., Fenton, A. & Tompkins, D. Wildlife Disease Ecology: Linking Theory to Data and Application (Cambridge University Press, 2019).Book 

    Google Scholar 
    Graham, A. L. Ecological rules governing helminth–microparasite coinfection. PNAS 105, 566–570. https://doi.org/10.1073/pnas.0707221105 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezenwa, V. O., Etienne, R. S., Luikart, G., Beja-Pereira, A. & Jolles, A. E. Hidden consequences of living in a wormy world: Nematode-induced immune suppression facilitates tuberculosis invasion in African Buffalo. Am. Nat. 176, 613–624. https://doi.org/10.1086/656496 (2010).Article 
    PubMed 

    Google Scholar 
    Ezenwa, V. O. & Jolles, A. E. Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales. Science 347, 175–177. https://doi.org/10.1126/science.1261714%JScience (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Arriero, E. et al. From the animal house to the field: Are there consistent individual differences in immunological profile in wild populations of field voles (Microtus agrestis)?. PLoS One 12, e0183450. https://doi.org/10.1371/journal.pone.0183450 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, J. A. et al. An immunological marker of tolerance to infection in wild rodents. PLoS Biol. 12, e1001901. https://doi.org/10.1371/journal.pbio.1001901 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beirne, C., Delahay, R. & Young, A. Sex differences in senescence: The role of intra-sexual competition in early adulthood. Proc. R. Soc. B. 282, 20151086. https://doi.org/10.1098/rspb.2015.1086 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Young, S. et al. Relationships between immune gene expression and circulating cytokine levels in wild house mice. Ecol. Evol. 10, 13860–13871. https://doi.org/10.1002/ece3.6976 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turner, J. D. et al. Th2 cytokines are associated with reduced worm burdens in a human intestinal helminth infection. J. Infect. Dis. 188, 1768–1775. https://doi.org/10.1086/379370 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Craig, B. H., Pilkington, J. G., Kruuk, L. E. B. & Pemberton, J. M. Epidemiology of parasitic protozoan infections in Soay sheep (Ovis aries L.) on St Kilda. Parasitology 134, 9–21. https://doi.org/10.1017/S0031182006001144 (2006).Article 
    PubMed 

    Google Scholar 
    Maizels, R. M., Hewitson, J. P. & Smith, K. A. Susceptibility and immunity to helminth parasites. Curr. Opin. Immunol. 24, 459–466. https://doi.org/10.1016/j.coi.2012.06.003 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ozmen, O., Adanir, R. & Haligur, M. Immunohistochemical detection of the cytokine and chemokine expression in the gut of lambs and kids with coccidiosis. Small Rumin. Res. 105, 345–350. https://doi.org/10.1016/j.smallrumres.2011.11.010 (2012).Article 

    Google Scholar 
    Woolhouse, M. E. J. Patterns in parasite epidemiology: The peak shift. Parasitol. Today 14, 428–434. https://doi.org/10.1016/S0169-4758(98)01318-0 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gibson, T. E. & Parfitt, J. W. The effect of age on the development by sheep of resistance to Trichostrongylus colubriformis. Res. Vet. Sci. 13, 529–535 (1972).CAS 
    Article 

    Google Scholar 
    Smith, W. D., Jackson, F., Jackson, E. & Williams, J. Age immunity to Ostertagia circumcincta: Comparison of the local immune responses of 4 1/2- and 10-month-old lambs. J. Comp. Pathol. 95, 235–245. https://doi.org/10.1016/0021-9975(85)90010-6 (1985).CAS 
    Article 
    PubMed 

    Google Scholar 
    Peters, A., Delhey, K., Nakagawa, S., Aulsebrook, A. & Verhulst, S. Immunosenescence in wild animals: Meta-analysis and outlook. Ecol. Lett. 22, 1709–1722. https://doi.org/10.1111/ele.13343 (2019).Article 
    PubMed 

    Google Scholar 
    Sparks, A. M. et al. Natural selection on antihelminth antibodies in a wild mammal population. Am. Nat. 192, 745–760. https://doi.org/10.1086/700115 (2018).Article 
    PubMed 

    Google Scholar 
    Froy, H. et al. Senescence in immunity against helminth parasites predicts adult mortality in a wild mammal. Science 365, 1296–1298. https://doi.org/10.1126/science.aaw5822%JScience (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Nussey, D. H., Watt, K., Pilkington, J. G., Zamoyska, R. & McNeilly, T. N. Age-related variation in immunity in a wild mammal population. Aging Cell 11, 178–180. https://doi.org/10.1111/j.1474-9726.2011.00771.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Watson, R. L. et al. Cellular and humoral immunity in a wild mammal: Variation with age & sex and association with overwinter survival. Ecol. Evol. 6, 8695–8705. https://doi.org/10.1002/ece3.2584 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pennock, N. D. et al. T cell responses: Naive to memory and everything in between. Adv. Physiol. Educ. 37, 273–283. https://doi.org/10.1152/advan.00066.2013 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chipeta, J. et al. CD4+and CD8+Cell cytokine profiles in neonates, older children, and adults: Increasing T helper type 1 and T cytotoxic type 1 cell populations with age. Cell. Immunol. 183, 149–156. https://doi.org/10.1006/cimm.1998.1244 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sakata-Kaneko, S., Wakatsuki, Y., Matsunaga, Y., Usui, T. & Kita, T. Altered Th1/Th2 commitment in human CD4+ T cells with ageing. Clin. Exp. Immunol. 120, 267–273. https://doi.org/10.1046/j.1365-2249.2000.01224.x (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duddy, M. E., Alter, A. & Bar-Or, A. Distinct profiles of human B cell effector cytokines: A role in immune regulation?. J. Immunol. (Baltimore, Md.: 1950) 172, 3422–3427. https://doi.org/10.4049/jimmunol.172.6.3422 (2004).CAS 
    Article 

    Google Scholar 
    Varma, T. K., Lin, C. Y., Toliver-Kinsky, T. E. & Sherwood, E. R. Endotoxin-induced gamma interferon production: Contributing cell types and key regulatory factors. Clin. Diagn. Lab. Immunol. 9, 530–543. https://doi.org/10.1128/CDLI.9.3.530-543.2002 (2002).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McNeilly, T. N. et al. Suppression of ovine lymphocyte activation by Teladorsagia circumcincta larval excretory-secretory products. Vet. Res. 44, 70. https://doi.org/10.1186/1297-9716-44-70 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Restif, O. & Amos, W. The evolution of sex-specific immune defences. Proc. R. Soc. B Biol. Sci. 277, 2247–2255. https://doi.org/10.1098/rspb.2010.0188 (2010).Article 

    Google Scholar 
    Hayward, A. D. et al. Heritable, heterogeneous, and costly resistance of sheep against nematodes and potential feedbacks to epidemiological dynamics. Am. Nat. 184, S58–S76. https://doi.org/10.1086/676929 (2014).Article 
    PubMed 

    Google Scholar 
    Sparks, A. M. et al. The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries). PLoS Genet. 15, e1008461. https://doi.org/10.1371/journal.pgen.1008461 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hayward, A. D., Wilson, A. J., Pilkington, J. G., Pemberton, J. M. & Kruuk, L. E. B. Ageing in a variable habitat: Environmental stress affects senescence in parasite resistance in St Kilda Soay sheep. Proc. R. Soc. B. 276, 3477–3485. https://doi.org/10.1098/rspb.2009.0906 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mosmann, T. R. & Sad, S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17, 138–146. https://doi.org/10.1016/0167-5699(96)80606-2 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hassan, M., Hanrahan, J. P., Good, B., Mulcahy, G. & Sweeney, T. A differential interplay between the expression of Th1/Th2/Treg related cytokine genes in Teladorsagia circumcincta infected DRB1*1101 carrier lambs. Vet. Res. 42, 45. https://doi.org/10.1186/1297-9716-42-45 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noordwijk, A. J. V. & Jong, G. D. Acquisition and allocation of resources: Their influence on variation in life history tactics. Am. Nat. 128, 137–142. https://doi.org/10.1086/284547 (1986).Article 

    Google Scholar 
    Grainger, J. R. et al. Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. J. Exp. Med. 207, 2331–2341. https://doi.org/10.1084/jem.20101074 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, K. A. et al. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol. 9, 428–443. https://doi.org/10.1038/mi.2015.73 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Beirne, C., Waring, L., McDonald, R. A., Delahay, R. & Young, A. Age-related declines in immune response in a wild mammal are unrelated to immune cell telomere length. Proc. R. Soc. B. 283, 20152949. https://doi.org/10.1098/rspb.2015.2949 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zaros, L. G. et al. Response of resistant and susceptible Brazilian Somalis crossbreed sheep naturally infected by Haemonchus contortus. Parasitol. Res. 113, 1155–1161. https://doi.org/10.1007/s00436-014-3753-8 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gossner, A., Wilkie, H., Joshi, A. & Hopkins, J. Exploring the abomasal lymph node transcriptome for genes associated with resistance to the sheep nematode Teladorsagia circumcincta. Vet. Res. 44, 68. https://doi.org/10.1186/1297-9716-44-68 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilkie, H., Gossner, A., Bishop, S. & Hopkins, J. Variations in T cell transcription factor sequence and expression associated with resistance to the sheep nematode Teladorsagia circumcincta. PLoS One 11, e0149644. https://doi.org/10.1371/journal.pone.0149644 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nussey, D. H., Coulson, T., Festa-Bianchet, M. & Gaillard, J.-M. Measuring senescence in wild animal populations: Towards a longitudinal approach. Funct. Ecol. 22, 393–406. https://doi.org/10.1111/j.1365-2435.2008.01408.x (2008).Article 

    Google Scholar 
    Seguel, M. et al. Immune stability predicts tuberculosis infection risk in a wild mammal. Proc. Biol. Sci. 286, 20191401. https://doi.org/10.1098/rspb.2019.1401 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pemberton, J. M. & Clutton-Brock, T. H. Soay Sheep: Dynamics and Selection in an Island Population (Cambridge University Press, 2004).
    Google Scholar 
    Corripio-Miyar, Y. et al. Phenotypic and functional analysis of monocyte populations in cattle peripheral blood identifies a subset with high endocytic and allogeneic T-cell stimulatory capacity. Vet. Res. 46, 112. https://doi.org/10.1186/s13567-015-0246-4 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwong, L. S. et al. Development of an ELISA for bovine IL-10. Vet. Immunol. Immunopathol. 85, 213–223. https://doi.org/10.1016/S0165-2427(02)00007-7 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wattegedera, S. R. et al. Enhancing the toolbox to study IL-17A in cattle and sheep. Vet. Res. 48, 20–20. https://doi.org/10.1186/s13567-017-0426-5 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, F. New technique for obtaining nematode ova from sheep faeces. Lab. Pract. 23, 65–66 (1974).ADS 
    CAS 
    PubMed 

    Google Scholar 
    R Development Core Team. R: A language and environment for statistical computing. Accessed Feb 2020. https://www.R-project.org/ (2019).
    Venables, W. N. & Ripley, B. D. Random and Mixed Effects. In Modern Applied Statistics with S. Statistics and Computing. (2002).Package “corrplot”: visualization of a correlation matrix v. (Version 0.84) (2017).Jari Oksanen, F. et al. vegan: Community Ecology Package. R package version 2.5-6. Accessed Feb 2020. https://CRAN.R-project.org/package=vegan (2019). More

  • in

    Mycorrhizal fungi arbuscular in forage grasses cultivated in Cerrado soil

    Hunke, P., Mueller, E. N., Schröder, B. & Zeilhofer, P. The Brazilian Cerrado: Assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8, 1154–1180 (2015).Article 

    Google Scholar 
    Klink, C. a. & Machado, R. B. A conservação do Cerrado brasileiro. Megadiversidade 1, 147–155 (2005).Dutra e Silva, S. Challenging the Environmental History of the Cerrado: Science, Biodiversity and Politics on the Brazilian Agricultural Frontier. LAHAC 1, (2020).Nehring, R. Yield of dreams: Marching west and the politics of scientific knowledge in the Brazilian Agricultural Research Corporation (Embrapa). Geoforum 77, 206–217 (2016).Article 

    Google Scholar 
    Taber, A., Navarro, G. & Arribas, M. A. A new park in the Bolivian Gran Chaco—an advance in tropical dry forest conservation and community-based management. Oryx 31, 189 (1997).Article 

    Google Scholar 
    Moura, de, J. B. & Cabral, J. S. R. Mycorrhiza in Central Savannahs: Cerrado and Caatinga. In Mycorrhizal Fungi in South America. vol. 1 (Springer International Publishing, 2019).de Brito Neves, B. B. & Cordani, U. G. Tectonic evolution of South America during the Late Proterozoic. Precambrian Res. 53, 23–40 (1991).ADS 
    Article 

    Google Scholar 
    Laux, J. H., Pimentel, M. M., Dantas, E. L., Armstrong, R. & Junges, S. L. Two neoproterozoic crustal accretion events in the Brasília belt, central Brazil. J. S. Am. Earth Sci. 18, 183–198 (2005).Article 

    Google Scholar 
    Simon, M. F. et al. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. PNAS 106, 20359–20364 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Guimarães Andrade, R. et al. Indicativo de pastagens plantadas em processo de degradação no bioma Cerrado. In XVII Simpósio Brasileiro de Sensoriamento Remot 1585–1592 (INPE, 2015).Arruda, A. B. et al. Resistance of soil to penetration as a parameter indicator of subsolation in crop areas of sugar cane. Sci. Rep. 11, 11780 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Bongiorno, G. et al. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecol. Ind. 99, 38–50 (2019).CAS 
    Article 

    Google Scholar 
    Dias-Filho, M. B. Desafios da produção animal em pastagens na fronteira agrícola brasileira. Embrapa Amazônia Oriental-Documentos (INFOTECA-E) (2012).Andrade Júnior, J. A. D., Ribeiro De Souza, B., Souza, R. F. & de Moura, J. B. Fixação de carbono em sistemas agroecológicos na região do vale do são patrício, goiás carbon sequestration in agroecological systems in the region of the são patrício valley, goiás. Científic@ Multidiscip. J. ISSN 5, 85–98 (2018).Andrade de Souza Moraes, J. M. et al. Arbuscular mycorrhizal fungi in integrated crop livestock systems with intercropping in the pasture phase in the Cerrado. Rhizosphere 11 (2019).Ofstehage, A. & Nehring, R. No-till agriculture and the deception of sustainability in Brazil. Int. J. Agric. Sustain. 19, 335–348 (2021).Article 

    Google Scholar 
    Thomazini, L. I. Mycorrhiza in plants of the ‘Cerrado’. Plant Soil 41, 707–711 (1974).Article 

    Google Scholar 
    Porcel, R. & Ruiz-Lozano, J. M. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot. 55, 1743–1750 (2004).CAS 
    Article 

    Google Scholar 
    Moura, de, J. B., Valentim, N. M., Ventura, M. V. A. & Junior, W. G. V. Taxa de colonização micorrízica sob diferentes sistemas de cultivo no cerrado em cana-de-açúcar. 2, 60–66 (2017).Pirozynski, K. A. Interactions between fungi and plants through the ages. Can. J. Bot. 59, 1824–1827 (1981).Article 

    Google Scholar 
    Muthukumar, T., Udaiyan, K. & Shanmughavel, P. Mycorrhiza in sedges—an overview. Mycorrhiza 14, 65–77 (2004).CAS 
    Article 

    Google Scholar 
    Aliasgharzadeh, N., Rastin, S. N., Towfighi, H. & Alizadeh, A. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11, 119–122 (2001).CAS 
    Article 

    Google Scholar 
    Gehring, C. A. & Connell, J. H. Arbuscular mycorrhizal fungi in the tree seedlings of two Australian rain forests: Occurrence, colonization, and relationships with plant performance. Mycorrhiza 16, 89–98 (2006).Article 

    Google Scholar 
    Vestberg, M. Occurrence of some Glomales in Finland. Mycorrhiza 5, 329–336 (1995).Article 

    Google Scholar 
    Khan, A. G. Occurrence and importance of mycorrhizae in aquatic trees of New South Wales, Australia. Mycorrhiza 3, 31–38 (1993).Article 

    Google Scholar 
    Braz, S. P., Urquiaga, S., Alves, B. J. R. & Boddey, R. M. Degradação de Pastagens, Matéria Orgânica do Solo e a Recuperação do Potencial Produtivo em Sistemas de Baixo “Input” Tecnológico na Região dos Cerrados (2004).
    Vieira Jr, W. G. et al. Seasonal variation in mycorrhizal community of different cerrado phytophysiomies. Front. Microbiol. 11 (2020).
    Gerdemann, J. W. & Nicolson, T. H. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 46, 235–244 (1963).Article 

    Google Scholar 
    INVAM. International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi | West Virginia University. (2018).SILVA, F. de A. ASSISTAT: Versão 7.7 beta. (DEAG-CTRN-Universidade Federal de Campina Grande, 2008).Hammer, Ø. Past 3.x—the Past of the Future. (Natural History Museum, University of Oslo, 2018).Cavalcanti, A. C. R., Cavallini, M. C. & Lima, N. R. C. de B. Estresse por Déficit Hídrico em Plantas Forrageiras. 50 https://www.infoteca.cnptia.embrapa.br/bitstream/doc/748148/1/doc89.pdf (2009).Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes, J. L. G. & Sparovek, G. Köppen’s climate classification map for Brazil. Metereol Z 22(6), 711–728 (2014).Article 

    Google Scholar 
    Nicolson, T. H. Vesicular-arbuscular mycorrhiza in the Gramineae. Nature 181, 718–719 (1958).ADS 
    Article 

    Google Scholar 
    Soreng, R. J. et al. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. J. Syst. Evol. 55, 259–290 (2017).Article 

    Google Scholar 
    Teutscherova, N. et al. Differences in arbuscular mycorrhizal colonization and P acquisition between genotypes of the tropical Brachiaria grasses: Is there a relation with BNI activity?. Biol. Fertil. Soils 55, 325–337 (2019).CAS 
    Article 

    Google Scholar 
    de Miranda, J. C. C. Cerrado: Micorriza Arbuscular, Ocorrência e Manejo. (Embrapa, 2008).Souza, B. R., Moura, J. B., Oliveira, T. C., Ramos, M. L. G. & Lopes Filho, L. C. Arbuscular Mycorrhizal fungi as indicative of soil quality in conservation systems in the region of vale do São Patrício, Goiás. Int. J. Curr. Res. 8, 43307–43311 (2016).
    Google Scholar 
    de Oliveira, T. C. et al. Produtividade da soja em associação ao fungo micorrízico arbuscular Rhizophagus clarus cultivada em condições de campo. Rev. Ciênc. Agrovet. 18, 530–535 (2019).Article 

    Google Scholar 
    Moura, J. B. et al. Arbuscular mycorrhizal fungi associated with bamboo under Cerrado Brazilian vegetation. J. Soil Sci. Plant. Nutr https://doi.org/10.1007/s42729-019-00093-0 (2019).Article 

    Google Scholar 
    Phillips, J. M. & Hayman, D. S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158–161 (1970).Article 

    Google Scholar 
    Giovannetti, M. & Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84, 489–500 (1980).Article 

    Google Scholar 
    Promita, D. & Mohan, K. Arbuscular mycorrhizal fungal diversity in sugarcane rhizosphere in relation with soil properties. Notulae Scientia Biologicae 4(1), 66–74 (2012).Aquino, S. D. S. et al. Mycorrhizal colonization and diversity and corn genotype yield in soils of the Cerrado region, Brazil. Semin. Cienc. Agrar. 36, 4107–4117 (2015).Article 

    Google Scholar  More