More stories

  • in

    Thermal imaging reveals audience-dependent effects during cooperation and competition in wild chimpanzees

    Byrne, R. W. & Bates, L. A. Sociality, evolution and cognition. Curr. Biol. 17, R714–R723 (2007).CAS 
    PubMed 

    Google Scholar 
    Wittig, R. M. & Boesch, C. Food competition and linear dominance hierarchy among female chimpanzees of the Tai National Park. Int. J. Primatol. 24, 847–867 (2003).
    Google Scholar 
    Mitani, J. C. Male chimpanzees form enduring and equitable social bonds. Anim. Behav. 77, 633–640 (2009).
    Google Scholar 
    Van Hooff, J. A. & Van Schaik, C. P. Male bonds: Afilliative relationships among nonhuman primate males. Behaviour 130, 309–337 (1994).
    Google Scholar 
    Herbinger, I., Papworth, S., Boesch, C. & Zuberbühler, K. Vocal, gestural and locomotor responses of wild chimpanzees to familiar and unfamiliar intruders: A playback study. Anim. Behav. 78, 1389–1396 (2009).
    Google Scholar 
    Watts, D. P., Muller, M., Amsler, S. J., Mbabazi, G. & Mitani, J. C. Lethal intergroup aggression by chimpanzees in Kibale National Park, Uganda. Am. J. Primatol. Off. J. Am. Soc. Primatol. 68, 161–180 (2006).
    Google Scholar 
    Watts, D. & Mitani, J. Boundary patrols and intergroup encounters in wild chimpanzees. Behaviour 138, 299–327 (2001).
    Google Scholar 
    Silk, J. B. et al. Strong and consistent social bonds enhance the longevity of female baboons. Curr. Biol. 20, 1359–1361 (2010).CAS 
    PubMed 

    Google Scholar 
    Schülke, O., Bhagavatula, J., Vigilant, L. & Ostner, J. Social bonds enhance reproductive success in male macaques. Curr. Biol. 20, 2207–2210 (2010).PubMed 

    Google Scholar 
    Surbeck, M. et al. Males with a mother living in their group have higher paternity success in bonobos but not chimpanzees. Curr. Biol. 29, R354–R355 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aureli, F. & Schaffner, C. Relationship assessment through emotional mediation. Behaviour 139, 393–420 (2002).
    Google Scholar 
    Aureli, F. et al. Fission-fusion dynamics: New research frameworks. Curr. Anthropol. 49, 627–654 (2008).
    Google Scholar 
    Zuberbühler, K. Audience effects. Curr. Biol. 18, R189–R190 (2008).PubMed 

    Google Scholar 
    Wittig, R. M., Crockford, C., Langergraber, K. E. & Zuberbühler, K. Triadic social interactions operate across time: A field experiment with wild chimpanzees. Proc. R. Soc. B Biol. Sci. 281, 20133155 (2014).
    Google Scholar 
    Slocombe, K. E. & Zuberbühler, K. Chimpanzees modify recruitment screams as a function of audience composition. Proc. Natl. Acad. Sci. 104, 17228–17233 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Crockford, C., Wittig, R. M., Mundry, R. & Zuberbühler, K. Wild chimpanzees inform ignorant group members of danger. Curr. Biol. 22, 142–146 (2012).CAS 
    PubMed 

    Google Scholar 
    Townsend, S. W. & Zuberbuhler, K. Audience effects in chimpanzee copulation calls. Commun. Integr. Biol. 2, 282–284 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Laporte, M. N. & Zuberbühler, K. Vocal greeting behaviour in wild chimpanzee females. Anim. Behav. 80, 467–473 (2010).
    Google Scholar 
    Kreibig, S. D. Autonomic nervous system activity in emotion: A review. Biol. Psychol. 84, 394–421 (2010).PubMed 

    Google Scholar 
    Crockford, C. et al. Urinary oxytocin and social bonding in related and unrelated wild chimpanzees. Proc. R. Soc. B Biol. Sci. 280, 20122765 (2013).CAS 

    Google Scholar 
    Samuni, L. et al. Oxytocin reactivity during intergroup conflict in wild chimpanzees. Proc. Natl. Acad. Sci. 114, 268–273 (2017).CAS 
    PubMed 

    Google Scholar 
    Crockford, C., Deschner, T., Ziegler, T. E. & Wittig, R. M. Endogenous peripheral oxytocin measures can give insight into the dynamics of social relationships: A review. Front. Behav. Neurosci. 8, 68 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Harrap, M. J., Hempel de Ibarra, N., Whitney, H. M. & Rands, S. A. Reporting of thermography parameters in biology: A systematic review of thermal imaging literature. R. Soc. Open Sci. 5, 181281 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ioannou, S., Gallese, V. & Merla, A. Thermal infrared imaging in psychophysiology: Potentialities and limits. Psychophysiology 51, 951–963 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Vianna, D. M. & Carrive, P. Changes in cutaneous and body temperature during and after conditioned fear to context in the rat. Eur. J. Neurosci. 21, 2505–2512 (2005).PubMed 

    Google Scholar 
    Dezecache, G., Zuberbühler, K., Davila-Ross, M. & Dahl, C. D. Skin temperature changes in wild chimpanzees upon hearing vocalizations of conspecifics. R. Soc. Open Sci. 4, 160816 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dezecache, G., Wilke, C., Richi, N., Neumann, C. & Zuberbühler, K. Skin temperature and reproductive condition in wild female chimpanzees. PeerJ 5, e4116 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Dunbar, R. I. Functional significance of social grooming in primates. Folia Primatol. (Basel) 57, 121–131 (1991).
    Google Scholar 
    Bekoff, M. & Allen, C. The evolution of social play: Interdisciplinary analyses of cognitive processes. In The cognitive animal: empirical and theoretical perspectives on animal cognition (eds Bekoff, M. et al.) 429–435 (The MIT Press, 2002).
    Google Scholar 
    Muller, M. N. & Mitani, J. C. Conflict and cooperation in wild chimpanzees. Adv. Study Behav. 35, 275–331 (2005).
    Google Scholar 
    Slocombe, K. E. & Zuberbühler, K. Agonistic screams in wild chimpanzees (Pan troglodytes schweinfurthii) vary as a function of social role. J. Comp. Psychol. 119, 67 (2005).PubMed 

    Google Scholar 
    Hosaka, K. Intimidation display. In Mahale Chimpanzees: 50 Years of Research (eds Hosaka, K. et al.) 435–447 (Cambridge University Press, 2015).
    Google Scholar 
    Muller, M. N. & Wrangham, R. W. Dominance, aggression and testosterone in wild chimpanzees: A test of the ‘challenge hypothesis’. Anim. Behav. 67, 113–123 (2004).
    Google Scholar 
    Wrangham, R. W. The cost of sexual attraction in female Pan. In Behavioural Diversity in Chimpanzees and Bonobos (eds Boesch, C. et al.) 204-215 (Cambridge University Press, 2002).
    Google Scholar 
    Townsend, S. W., Slocombe, K. E., Thompson, M. E. & Zuberbühler, K. Female-led infanticide in wild chimpanzees. Curr. Biol. 17, R355–R356 (2007).CAS 
    PubMed 

    Google Scholar 
    Herborn, K. A. et al. Skin temperature reveals the intensity of acute stress. Physiol. Behav. 152, 225–230 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kuraoka, K. & Nakamura, K. The use of nasal skin temperature measurements in studying emotion in macaque monkeys. Physiol. Behav. 102, 347–355 (2011).CAS 
    PubMed 

    Google Scholar 
    Ermatinger, F. A., Brügger, R. K. & Burkart, J. M. The use of infrared thermography to investigate emotions in common marmosets. Physiol. Behav. 211, 112672 (2019).CAS 
    PubMed 

    Google Scholar 
    Manson, J. H. et al. Intergroup aggression in chimpanzees and humans [and comments and replies]. Curr. Anthropol. 32, 369–390 (1991).
    Google Scholar 
    Tamioso, P. R., Rucinque, D. S., Taconeli, C. A., da Silva, G. P. & Molento, C. F. M. Behavior and body surface temperature as welfare indicators in selected sheep regularly brushed by a familiar observer. J. Vet. Behav. 19, 27–34 (2017).
    Google Scholar 
    Grandi, L. C. & Heinzl, E. Data on thermal infrared imaging in laboratory non-human primates: Pleasant touch determines an increase in nasal skin temperature without affecting that of the eye lachrymal sites. Data Brief 9, 536–539 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Brügger, R. K., Willems, E. P. & Burkart, J. M. Do marmosets understand others’ conversations? A thermography approach. Sci. Adv. 7, e8790 (2021).ADS 

    Google Scholar 
    Salazar-López, E. et al. The mental and subjective skin: Emotion, empathy, feelings and thermography. Conscious. Cogn. 34, 149–162 (2015).PubMed 

    Google Scholar 
    Muller, M. N., Thompson, M. E. & Wrangham, R. W. Male chimpanzees prefer mating with old females. Curr. Biol. 16, 2234–2238 (2006).CAS 
    PubMed 

    Google Scholar 
    Watts, D. P. Coalitionary mate guarding by male chimpanzees at Ngogo, Kibale National Park, Uganda. Behav. Ecol. Sociobiol. 44, 43–55 (1998).
    Google Scholar 
    Heinrichs, M. & Domes, G. Neuropeptides and social behaviour: Effects of oxytocin and vasopressin in humans. Prog. Brain Res. 170, 337–350 (2008).CAS 
    PubMed 

    Google Scholar 
    Surbeck, M., Mundry, R. & Hohmann, G. Mothers matter! Maternal support, dominance status and mating success in male bonobos (Pan paniscus). Proc. R. Soc. B Biol. Sci. 278, 590–598 (2011).
    Google Scholar 
    Reddy, R. B. & Sandel, A. A. Social relationships between chimpanzee sons and mothers endure but change during adolescence and adulthood. Behav. Ecol. Sociobiol. 74, 1–14 (2020).
    Google Scholar 
    Kosonogov, V. et al. Facial thermal variations: A new marker of emotional arousal. PLoS One 12, e0183592 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Stanley, R. O. & Burrows, G. D. Varieties and functions of human emotion. Emot. Work Theory Res. Appl. Manag. 3–19 (2001).Fredrickson, B. L. The role of positive emotions in positive psychology: The broaden-and-build theory of positive emotions. Am. Psychol. 56, 218 (2001).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Or, C. K. & Duffy, V. G. Development of a facial skin temperature-based methodology for non-intrusive mental workload measurement. Occup. Ergon. 7, 83–94 (2007).
    Google Scholar 
    Reynolds, V. The Chimpanzees of the Budongo Forest: Ecology, Behaviour and Conservation (OUP, 2005).
    Google Scholar 
    Steketee, J. Spectral emissivity of skin and pericardium. Phys. Med. Biol. 18, 686 (1973).CAS 
    PubMed 

    Google Scholar 
    Chotard, H., Ioannou, S. & Davila-Ross, M. Infrared thermal imaging: Positive and negative emotions modify the skin temperatures of monkey and ape faces. Am. J. Primatol. 80, e22863 (2018).PubMed 

    Google Scholar 
    Newton-Fisher, N. Association by male chimpanzees: A social tactic?. Behaviour 136, 705–730 (1999).
    Google Scholar 
    Kano, F., Hirata, S., Deschner, T., Behringer, V. & Call, J. Nasal temperature drop in response to a playback of conspecific fights in chimpanzees: A thermo-imaging study. Physiol. Behav. 155, 83–94 (2016).CAS 
    PubMed 

    Google Scholar 
    Hobaiter, C. & Byrne, R. W. The gestural repertoire of the wild chimpanzee. Anim. Cogn. 14, 745–767 (2011).PubMed 

    Google Scholar 
    Nishida, T., Kano, T., Goodall, J., McGrew, W. C. & Nakamura, M. Ethogram and ethnography of Mahale chimpanzees. Anthropol. Sci. 107, 141–188 (1999).
    Google Scholar 
    Muller, M.N. Agonistic relations among Kanyawara chimpanzees. In Behavioural Diversity in Chimpanzees and Bonobos (eds Boesch, C. et al.) 212–220 (Cambridge University Press, 2002).
    Google Scholar 
    Goodall, J. The Chimpanzees of Gombe: Patterns of Behavior (Harvard University Press, 1986).
    Google Scholar 
    Wallis, J. Chimpanzee genital swelling and its role in the pattern of sociosexual behavior. Am. J. Primatol. 28, 101–113 (1992).PubMed 

    Google Scholar 
    Davila-Ross, M., Allcock, B., Thomas, C. & Bard, K. A. Aping expressions? Chimpanzees produce distinct laugh types when responding to laughter of others. Emotion 11, 1013 (2011).PubMed 

    Google Scholar 
    Schel, A. M., Townsend, S. W., Machanda, Z., Zuberbühler, K. & Slocombe, K. E. Chimpanzee alarm call production meets key criteria for intentionality. PLoS One 8, e76674 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vardasca, R. The influence of angles and distance on assessing inner-canthi of the eye skin temperature. Thermol. Int. 27, 130–135 (2017).
    Google Scholar 
    Josse, J. & Husson, F. missMDA: A package for handling missing values in multivariate data analysis. J. Stat. Softw. 70, 1–31 (2016).
    Google Scholar 
    Neumann, C. et al. Assessing dominance hierarchies: Validation and advantages of progressive evaluation with Elo-rating. Anim. Behav. 82, 911–921 (2011).
    Google Scholar 
    Noë, R., de Waal, F. B. & van Hooff, J. A. Types of dominance in a chimpanzee colony. Folia Primatol. (Basel) 34, 90–110 (1980).
    Google Scholar 
    Maechler, M., Rousseeuw, P., Struyf, A., Hubert, M., Hornik, K. (2019). cluster: Cluster Analysis Basics and Extensions. R package version 2.1.0.Barton, K. MuMIn: Multi-model inference, R package version 0.12. 0. Httpr-Forge R-Proj. Orgprojectsmumin (2020).Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 2, 7–10 (2002).
    Google Scholar 
    Lüdecke, D., Ben-Shachar, M. S., Patil, I., Waggoner, P. & Makowski, D. Performance: An R package for assessment, comparison and testing of statistical models. J. Open Source Softw. 6, 3139 (2021).ADS 

    Google Scholar 
    Bolker, B. M. et al. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135 (2009).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Fox, J. & Weisberg, S. An R Companion to Applied Regression (Sage, 2019).
    Google Scholar 
    Lenth, R. emmeans: Estimated Marginal Means, aka Least-Squares Means. R package version 1.5.4. (2021).R Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. https://www.R-project.org/ (2017). More

  • in

    Apply Singapore Index on Cities’ Biodiversity at scale

    CORRESPONDENCE
    22 February 2022

    Apply Singapore Index on Cities’ Biodiversity at scale

    Lena Chan

     ORCID: http://orcid.org/0000-0001-7930-7678

    0
    ,

    Kenneth Er

     ORCID: http://orcid.org/0000-0003-4485-7260

    1
    &

    Elizabeth Maruma Mrema

    2

    Lena Chan

    National Parks Board, Singapore Botanic Gardens, Singapore.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Kenneth Er

    National Parks Board, Singapore Botanic Gardens, Singapore.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Elizabeth Maruma Mrema

    Secretariat of the Convention on Biological Diversity, Montreal, Canada.

    View author publications

    You can also search for this author in PubMed
     Google Scholar

    Twitter

    Facebook

    Email

    In the run-up to the 15th meeting of the Conference of the Parties to the Convention on Biological Diversity, the Singapore Index on Cities’ Biodiversity has been updated to align with the post-2020 global biodiversity framework to halt biodiversity loss (see Nature 601, 298; 2022) and for application at scale (see go.nature.com/3cqrknw).

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to Nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    Nature 602, 578 (2022)
    doi: https://doi.org/10.1038/d41586-022-00476-x

    Competing Interests
    The authors declare no competing interests.

    Related Articles

    See more letters to the editor

    Subjects

    Biodiversity

    Conferences and meetings

    Latest on:

    Biodiversity

    Do not downplay biodiversity loss
    Matters Arising 26 JAN 22

    Shifting baselines and biodiversity success stories
    Matters Arising 26 JAN 22

    The Living Planet Index does not measure abundance
    Matters Arising 26 JAN 22

    Conferences and meetings

    Global Disability Summit demands health equity
    Correspondence 17 FEB 22

    Collect feedback to improve your event experience
    Career Guide 20 DEC 21

    Reconsidering the role of alcohol in the scientific workplace
    Career Guide 20 DEC 21

    Jobs

    Research Fellow

    Dana-Farber Cancer Institute (DFCI)
    Boston, MA, United States

    Post Doctoral Associate

    University of Massachusetts Medical School (UMass Medical School)
    Worcester, MA, United States

    Senior Research Scientist – Artificial Molecular Machinery Lab

    Francis Crick Institute
    London, United Kingdom

    Call for Applications: Clinical and Public Health Fellowships

    Wellcome Trust/DBT India Alliance
    India, India More

  • in

    Degradation of 2,6-dicholorophenol by Trichoderma longibraciatum Isolated from an industrial Soil Sample in Dammam, Saudi Arabia

    Arora, P. K. & Bae, H. Bacterial degradation of chlorophenols and their derivatives. Microb. Cell Fact. 13, 31–36 (2014).Article 

    Google Scholar 
    Solyanikova, I. P. & Golovleva, L. A. Bacterial degradation of chlorophenols: Pathways, biochemica, and genetic aspects. J. Environ. Sci. Health B 39, 333–351 (2004).Article 

    Google Scholar 
    Olaniran, A. O. & Igbinosa, E. O. Chlorophenols and other related derivatives of environmental concern: Properties, distribution and microbial degradation processes. Chemosphere 83, 1297–1306 (2011).ADS 
    CAS 
    Article 

    Google Scholar 
    Kusmierek, K. The removal of chlorophenols from aqueous solutions using activated carbon adsorption integrated with H2O2 oxidation. Reac. Kinet. Mech. Cat. 119, 19–34 (2016).CAS 
    Article 

    Google Scholar 
    Igbinosa, E., Odjadjare, E., Vicent, N. & Ideemndia, O. Toxicological profile of chlorophenols and their derivatives in the environment: The public health perspective. Sci. World J. 2013, 11 (2013).
    Google Scholar 
    Hossain, G. & McLaughlan, R. Kinetic investigations of oxidation of chlorophenols by permanganate. J. Environ. Chem. Ecotoxicol 5, 81–89 (2013).
    Google Scholar 
    Ryan, D., Leukes, W. & Burton, S. Improving the bioremediation of phenolic wastewaters by Trametes versicolor. Bioresour. Technol 98, 579–587 (2016).Article 

    Google Scholar 
    Zhao, L., Wu, Q. & Ma, A. Biodegradation of phenolic contaminants: Current status and perspectives. In International Conference on Advanced Environmental Engineering IOP Publishing. Series: Earth and Environmental Science. Vol 111, 012024 (2018).Walter, M., Boul, L., Chong, R. & Ford, C. Growth substrate selection and biodegradation of PCP by New Zealand white-rot fungi. J. Environ. Qual. 24(36), 1749–1759 (2004).
    Google Scholar 
    Cameron, M. D., Timofeevski, S. & Aust, S. D. Enzymology of Phanerochaete chrysosporium with respect to the degradation of recalcitrant compounds and xenobiotics. Appl. Microbiol. Biotechnol. 54, 751–758 (2000).CAS 
    Article 

    Google Scholar 
    Tuomela, M., Lyytikainen, M., Oivanena, P. & Hatakka, A. Mineralization and conversion of pentachlorophenol (PCP) in soil inoculated with the white-rot fungus Trametes versicolor. Soil Biol. Biochem. 31, 65–74 (1999).CAS 
    Article 

    Google Scholar 
    Field, J. & Sierra-Alvarez, R. Microbial degradation of chlorinated phenols. Rev. Environ. Sci. Biotechnol 7, 211–241 (2008).CAS 
    Article 

    Google Scholar 
    Bosso, L. & Cristinzio, G. A. A comprehensive overview of bacteria and fungi used for pentachlorophenol biodegradation. Rev. Environ. Sci. Biotechnol 13, 387–427 (2014).CAS 
    Article 

    Google Scholar 
    Field, J. A. & Sierra-Alvarez, R. Microbial transformation and degradation of polychlorinated biphenyls. Environ. Pollut 155, 1–12 (2008).CAS 
    Article 

    Google Scholar 
    Nikolaivits, E. et al. Degradation mechanism of 2,4-dichlorophenol by fungi isolated from marine invertebrates. Int. J. Mol. Sci 21, 3317. https://doi.org/10.3390/ijms21093317 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Cser-jesi, A. J. & Johnson, E. Methylation of entachlorophenol by Trichoderma virgatum. Can. J. Microbiol. 18, 45–49 (1972).CAS 
    Article 

    Google Scholar 
    van Leeuwen, J., Nicholson, B., Hayes, K. & Mulcahy, D. Degradation of chlorophenolic compounds by Trichoderma harzianum isolated from Lake Bonney, South-Eastern South Australia. Environ Toxicol. Water Qual. 12, 335–342 (1997).ADS 
    Article 

    Google Scholar 
    Carvalho, M. B. et al. Screening pentachlorophenol degradation ability by environmental fungal strains belonging to the phyla Ascomycota and Zygomycota. J. Ind. Microbiol. Biotechnol. 36, 1249–1256 (2009).CAS 
    Article 

    Google Scholar 
    Chakroun, H., Mechichi, T., Martinez, M. J., Dhouib, A. & Sayadi, S. Purification and characterization of a novel laccase from the ascomycete Trichoderma atroviride: Application on bioremediation of phenolic compounds ‬. Process Biochem. 45, 507–513 (2010).CAS 
    Article 

    Google Scholar 
    Abdel-Fatah, O. M. et al. Physiological studies on carboxymethyl cellulase formation by Aspergillus terreus DSM 826. Braz. J. Microbiol. 43(1), 01–11 (2012).CAS 
    Article 

    Google Scholar 
    Sonika, P. et al. Trichoderma species cellulases produced by solid state fermentation. J. Data Min. Genom. Proteom. 6, 2 (2015).
    Google Scholar 
    Al-Hawash, B. A. et al. Isolation and characterization of two crude oil-degrading fungi strains from Rumaila oil field. Iraq. Biotechnol. Rep 17, 104–109. https://doi.org/10.1016/j.btre.2017.12.006 (2018).Article 

    Google Scholar 
    Zafra, G., Absalón, A. E. & Cortes-Espinosa, D. V. Morphological changes and growth of filamentous fungi in the presence of high concentrations of PAHs. Braz. J. Microbiol 46, 937–941. https://doi.org/10.1590/S1517-838246320140575 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smit, E., Leeflang, P., Glandorf, B., van Elsas, J. D. & Wernars, K. Analysis of fungal diversity in the wheat rhizosphere by sequencing of cloned PCR-amplified genes encoding 18S rRNA and temperature gradient gel electrophoresis. Appl. Environ. Microbiol. 65(6), 2614–2621 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    White, T. J. Analysis of phylogenetic relationships by amplification and direct sequencing of ribosomal genes. In PCR Protocols: A Guide to Methods and Applications 315–22 (1990).Ryu, W. R. et al. Biodegradation of white rot fungi under ligninolytic and nonligninolytic conditions. Biotechnol Bioproc. E 5, 211–214 (2000).CAS 
    Article 

    Google Scholar 
    Dubois, K., Gilles, J., Hamilton, P., Rebers, A. & Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28, 350–356 (1956).CAS 
    Article 

    Google Scholar 
    Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: An online tool for phylogenetic tree display and annotation. Nucleic Acids Res. 49(W1), W293–W296. https://doi.org/10.1093/nar/gkab301 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kumar, S., Stecher, G. & Tamura, K. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33(7), 1870–1874 (2016).CAS 
    Article 

    Google Scholar 
    Statistical Packages for Software Sciences. Version 21.0 Armonk (New York: IBM Corporation, 2013).Lin, S.-H. & Juang, R.-S. Adsorption of phenol and its derivatives from water using synthetic resins and low-cost natural adsorbents: A review. J. Environ. Manage 90, 1336–1349. https://doi.org/10.1016/j.jenvman.2008.09.003 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kumar, S. N., Subbaiah, V. M., Reddy, S. A. & Krishnaiah, A. Biosorption of phenolic compounds from aqueous solutions onto chitosan-abrus precatorius blended beads. J. Chem. Technol. Biotechnol 84, 972–981. https://doi.org/10.1002/jctb.2120 (2009).CAS 
    Article 

    Google Scholar 
    Wang, C. C., Lee, C. M., Lu, C. J., Chuang, M. S. & Huang, C. Z. Biodegradation of 2,4,6-trichlorophenol in the presence of primary substrate by immobilized pure culture bacteria. Chemosphere 41, 1873–1879. https://doi.org/10.1016/S00456535(00)00090-4 (2000).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Kavamura, V. N. & Esposito, E. Biotechnological strategies applied to the decontamination of soils polluted with heavy metals. Biotechnol. Adv 28, 61–69 (2010).CAS 
    Article 

    Google Scholar 
    Mohsenzade, F., Chehregani, A. & Akbari, M. Evaluation of oil removal efficiency and enzymatic activity in some fungal strains for bioremediation of petroleum-polluted soils. Iran J. Environ. Health. Eng 9, 26–34 (2012).Article 

    Google Scholar 
    Nikolaivits, E. et al. Unraveling the detoxification mechanism of 2,4-dichlorophenol by marine-derived mesophotic symbiotic fungi isolated from marine invertebrates. Mar. Drugs. 17, 564. https://doi.org/10.3390/md17100564 (2019).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Scientific opinion on risk assessment for a selected group of pesticides from the triazole group to test possible methodologies to assess cumulative effects from exposure through food from these pesticides on human health. EFSA J. 7, 1167. https://www.efsa.europa.eu/en/efsajournal/pub/1167 (2009).Brotman, Y., Kapuganti, J. G. & Viterbo, A. Trichoderma. Curr. Biol. 20, R390–R439 (2010).CAS 
    Article 

    Google Scholar 
    Boroujeni, N. A., Hassanshahian, M., Mohammad, S. & Khoshrou, R. Isolation and characterization of phenol degrading bacteria from Persian Gulf. IJABBR 2, 408–416 (2014).CAS 

    Google Scholar 
    Roostaei, N. & Tezel, F. H. Removal of phenol from aqueous solutions by adsorption. J. Environ. Manage 70, 157–164. https://doi.org/10.1016/j.jenvman.2003.11.004 (2004).Article 
    PubMed 

    Google Scholar 
    Demnerova, K. et al. Two approaches to biological decontamination of groundwater and soil polluted by aromatics-characterization of microbial populations. Int. Microbiol 8, 205–211 (2005).CAS 
    PubMed 

    Google Scholar 
    Reddy, G. V. B. & Gold, M. H. Degradation of pentachlorophenol by Phanerochaete chrysosporium: Intermediates and reactions involved. Microbiology 146, 405–413 (2000).CAS 
    Article 

    Google Scholar 
    Cortés, D. V., Bernal, R. & Tomasini, A. Efecto de las condiciones de cultivo sumergido en la degradación de pentaclorofenol. Información Tecnológica 12, 75–80 (2001).
    Google Scholar 
    Crawford, R. L., Jung, C. M. & Strap, J. L. The recent evolution of pentachlorophenol (PCP)-4-monooxygenase (PcpB) and associated pathways for bacterial degradation of PCP. Biodegradation 18, 525–539 (2007).CAS 
    Article 

    Google Scholar 
    Bergauer, P., Fonteyne, P. A., Nolard, N., Schinner, F. & Margesin, R. Biodegradation of phenol and phenol-related compounds by psychrophilic and cold-tolerant alpine yeasts. Hemosphere 59, 909–918 (2005).ADS 
    CAS 
    Article 

    Google Scholar 
    Bovio, E. et al. The culturable mycobiota of a Mediterranean marine site after an oil spill: Isolation, identification and potential application in bioremediation. Sci. Total Environ. 576, 310–318 (2017).ADS 
    CAS 
    Article 

    Google Scholar  More

  • in

    Aversive view memories and risk perception in navigating ants

    Wehner, R., Michel, B. & Antonsen, P. Visual navigation in insects: Coupling of egocentric and geocentric information. J. Exp. Biol. 199(1), 129–140 (1996).CAS 
    PubMed 

    Google Scholar 
    Collett, M., Chittka, L. & Collett, T. S. Spatial memory in insect navigation. Curr. Biol. 23(17), R789–R800 (2013).CAS 
    PubMed 

    Google Scholar 
    Cheng, K., Schultheiss, P., Schwarz, S., Wystrach, A. & Wehner, R. Beginnings of a synthetic approach to desert ant navigation. Behav. Proc. 102, 51–61 (2014).
    Google Scholar 
    Freas, C. A. & Schultheiss, P. How to navigate in different environments and situations: Lessons from ants. Front. Psych. 9, 841 (2018).
    Google Scholar 
    Wehner, R. Desert ant navigation: how miniature brains solve complex tasks. J. Comp. Physiol. A 189(8), 579–588 (2003).ADS 
    CAS 

    Google Scholar 
    Wehner, R. The desert ant’s navigational toolkit: Procedural rather than positional knowledge. Navigation 55(2), 101–114 (2008).
    Google Scholar 
    Wehner, R. Desert Navigator (The Belknap Press of Harvard University Press, 2020).
    Google Scholar 
    Kohler, M. & Wehner, R. Idiosyncratic route-based memories in desert ants, Melophorus bagoti: How do they interact with path-integration vectors?. Neurobiol. Learn. Mem. 83(1), 1–12 (2005).PubMed 

    Google Scholar 
    Müller, M. & Wehner, R. Path integration provides a scaffold for landmark learning in desert ants. Curr. Biol. 20(15), 1368–1371 (2010).PubMed 

    Google Scholar 
    Mangan, M. & Webb, B. Spontaneous formation of multiple routes in individual desert ants (Cataglyphis velox). Behav. Ecol. 23(5), 944–954 (2012).
    Google Scholar 
    Schwarz, S., Wystrach, A. & Cheng, K. Ants’ navigation in an unfamiliar environment is influenced by their experience of a familiar route. Sci. Rep. 7(1), 1–10 (2017).
    Google Scholar 
    Graham, P. & Cheng, K. Ants use the panoramic skyline as a visual cue during navigation. Curr. Biol. 19, R935–R937 (2009).CAS 
    PubMed 

    Google Scholar 
    Wystrach, A., Beugnon, G. & Cheng, K. Landmarks or panoramas: What do navigating ants attend to for guidance?. Front. Zool. 8(1), 21 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Wehner, R., Meier, C. & Zollikofer, C. The ontogeny of foraging behaviour in desertants, Cataglyphis bicolor. Ecol. Entom. 29, 240–250 (2004).
    Google Scholar 
    Zeil, J. & Fleischmann, P. N. The learning walks of ants (Hymenoptera: Formicidae). Myrmecol. News. 29, 93–110 (2019).
    Google Scholar 
    Schultheiss, P. et al. Crucial role of ultraviolet light for desert ants in determining direction from the terrestrial panorama. Anim. Behav. 115, 19–28 (2016).
    Google Scholar 
    Freas, C. A., Wystrach, A., Narendra, A. & Cheng, K. The view from the trees: Nocturnal bull ants, Myrmecia midas, use the surrounding panorama while descending from trees. Front. Psych. 9, 1–10 (2018).
    Google Scholar 
    Freas, C. A. & Cheng, K. Landmark learning, cue conflict, and outbound view sequence in navigating desert ants. J. Exp. Psych. Anim. Learn. Cogn. 44(4), 409–421 (2018).
    Google Scholar 
    Freas, C. A. & Spetch, M. L. Terrestrial cue learning and retention during the outbound and inbound foraging trip in the desert ant, Cataglyphis bicolor. J. Comp. Physiol. A. 205(2), 177–189 (2019).
    Google Scholar 
    Narendra, A., Si, A., Sulikowski, D. & Cheng, K. Learning, retention and coding of nest-associated visual cues by the Australian desert ant, Myrmecia midas. Behav. Ecol. Sociobiol. 61(10), 1543–1553 (2007).
    Google Scholar 
    Zeil, J. Visual homing: an insect perspective. Curr. Opin. Neurobiol. 22(2), 285–293 (2012).CAS 
    PubMed 

    Google Scholar 
    Zeil, J., Hofmann, M. I. & Chahl, J. S. Catchment areas of panoramic snapshots in outdoor scenes. J. Optic. Soc. Am. A. 20(3), 450 (2003).ADS 

    Google Scholar 
    Wystrach, A., Cheng, K., Sosa, S. & Beugnon, G. Geometry, features, and panoramic views: Ants in rectangular arenas. J. Exp. Psychol. 37(4), 420–435 (2011).
    Google Scholar 
    Baddeley, B., Graham, P., Husbands, P. & Philippides, A. A model of ant route navigation driven by scene familiarity. PLoS Comp. Biol. 8(1), e1002336 (2012).ADS 
    CAS 

    Google Scholar 
    Kodzhabashev, A. & Mangan, M. Route Following Without Scanning In Biomimetic and Biohybrid Systems 199–210 (Springer, 2015).
    Google Scholar 
    Möller, R. A model of ant navigation based on visual prediction. J. Theo. Biol. 305, 118–130 (2012).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Le Möel, F. & Wystrach, A. Opponent processes in visual memories: A model of attraction and repulsion in navigating insects’ mushroom bodies. PLoS Comp. Biol. 16, e1007631 (2020).
    Google Scholar 
    Murray, T. et al. The role of attractive and repellent scene memories in ant homing (Myrmecia croslandi). J. Exp. Biol. 223, 21002 (2020).
    Google Scholar 
    Jayatilaka, P., Murray, T., Narendra, A. & Zeil, J. The choreography of learning walks in the Australian jack jumper ant Myrmecia croslandi. J. Exp. Biol. 221(20), 185306 (2018).
    Google Scholar 
    Schwarz, S., Mangan, M., Webb, B. & Wystrach, A. Route-following ants respond to alterations of the view sequence. J. Exp. Biol. 223, 218701 (2020).
    Google Scholar 
    Wystrach, A., Buehlmann, C., Schwarz, S., Cheng, K. & Graham, P. Rapid aversive and memory trace learning during route navigation in desert ants. Curr. Biol. 30(100), 1927–1933 (2020).CAS 
    PubMed 

    Google Scholar 
    Wystrach, A., Philippides, A., Aurejac, A., Cheng, K. & Graham, P. Visual scanning behaviours and their role in the navigation of the Australian desert ant Melophorus bagoti. J. Comp. Physiol. A 200(7), 615–626 (2014).
    Google Scholar 
    Wystrach, A., Schwarz, S., Graham, P. & Cheng, K. Running paths to nowhere: Repetition of routes shows how navigating ants modulate online the weights accorded to cues. Anim. Cogn. 2, 213–222 (2019).
    Google Scholar 
    MacArthur, R. H. & Pianka, E. R. On optimal use of a patchy environment. Am. Nat. 100(916), 603–609 (1966).
    Google Scholar 
    Krebs, J. R. Foraging Theory (Princeton University Press, 1986).
    Google Scholar 
    Kacelnik, A. & Bateson, M. Risky theories: The effects of variance on foraging decisions. Am. Zool. 36(4), 402–434 (1996).
    Google Scholar 
    Kacelnik, A. & Abreu, F. B. Risky choice and Weber’s law. J. Theor. Biol. 194(2), 289–298 (1998).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Fechner, G. T. Elemente der Psychophysik Vol. 2 (Breitkopf u Härtel, 1860).
    Google Scholar 
    Bruce, A. C. & Johnson, J. E. V. Decision-making under risk: Effect of complexity on performance. Psychol. Rep. 79(1), 67–76 (1996).
    Google Scholar 
    Stevens, S. S. & Marks, L. E. Psychophysics: Introduction to its Perceptual, Neural, and Social Prospects (Routledge, 2017).
    Google Scholar 
    Kacelnik, A. & El Mouden, C. Triumphs and trials of the risk paradigm. Anim. Behav. 86(6), 1117–1129 (2013).
    Google Scholar 
    Hübner, C. & Czaczkes, T. J. Risk preference during collective decision making: Ant colonies make risk-indifferent collective choices. Anim. Behav. 132, 21–28 (2017).
    Google Scholar 
    De Agrò, M., Grimwade, D., Bach, R. & Czaczkes, T. J. Irrational risk aversion in an ant. Anim. Cogn. 1, 1–9 (2021).
    Google Scholar 
    Waddington, K. D., Allen, T. & Heinrich, B. Floral preferences of bumblebees (Bombus edwardsii) in relation to intermittent versus continuous rewards. Anim. Behav. 29(3), 779–784 (1981).
    Google Scholar 
    Cartar, R. V. A test of risk-sensitive foraging in wild bumble bees. Ecology 72(3), 888–895 (1991).
    Google Scholar 
    Perez, S. M. & Waddington, K. D. Carpenter bee (Xylocopa micans) risk indifference and a review of nectarivore risk-sensitivity studies. Am. Zool. 36(4), 435–446 (1996).
    Google Scholar 
    Fülöp, A. & Menzel, R. Risk-indifferent foraging behaviour in honeybees. Anim. Behav. 60(5), 657–666 (2000).PubMed 

    Google Scholar 
    Burns, D. D., Sendova-Franks, A. B. & Franks, N. R. The effect of social information on the collective choices of ant colonies. Behav. Ecol. 27(4), 1033–1040 (2016).
    Google Scholar 
    Sasaki, T., Pratt, S. C. & Kacelnik, A. Parallel vs. comparative evaluation of alternative options by colonies and individuals of the ant Temnothorax rugatulus. Sci. Rep. 8(1), 1–8 (2018).
    Google Scholar 
    Sasaki, T., Stott, B. & Pratt, S. C. Rational time investment during collective decision making in Temnothorax ants. Biol. Lett. 15(10), 20190542 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Freas, C. A., Fleischmann, P. N. & Cheng, K. Experimental ethology of learning in desert ants: Becoming expert navigators. Behav. Proc. 158, 181–191 (2019).
    Google Scholar 
    Le Moël, F. & Wystrach, A. Towards a multi-level understanding in insect navigation. Curr. Opin. Inst. Sci. 42, 110–117 (2020).
    Google Scholar 
    Heinze, S. Visual navigation: Ants lose track without mushroom bodies. Curr. Biol. 30(17), R984–R986 (2020).CAS 
    PubMed 

    Google Scholar 
    Ardin, P., Peng, F., Mangan, M., Lagogiannis, K. & Webb, B. Using an insect mushroom body circuit to encode route memory in complex natural environments. PLOS Comp. Biol. 12(2), e1004683 (2016).ADS 

    Google Scholar 
    Buehlmann, C. et al. Mushroom bodies are required for learned visual navigation, but not for innate visual behavior, in ants. Curr. Biol. 30(17), 3438–3443 (2020).CAS 
    PubMed 

    Google Scholar 
    Kamhi, J. F., Barron, A. B. & Narendra, A. Vertical lobes of the mushroom bodies are essential for view-based navigation in Australian Myrmecia ants. Curr. Biol. 30(17), 3432–3437 (2020).CAS 
    PubMed 

    Google Scholar 
    Heisenberg, M. Mushroom body memoir: From maps to models. Nat. Rev. Neurosci. 4(4), 266–275 (2003).CAS 
    PubMed 

    Google Scholar 
    Webb, B. & Wystrach, A. Neural mechanisms of insect navigation. Curr. Opin. Inst. Sci. 15, 27–39 (2016).
    Google Scholar 
    Habenstein, J., Amini, E., Grübel, K., El Jundi, B. & Rössler, W. The brain of Cataglyphis ants: Neuronal organization and visual projections. J. Comp. Neurol. 528(18), 3479–3506 (2020).PubMed 

    Google Scholar 
    Cohn, R., Morantte, I. & Ruta, V. Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell 163(7), 1742–1755 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Aso, Y. & Rubin, G. M. Dopaminergic neurons write and update memories with cell-type-specific rules. Elife 5, e16135 (2015).
    Google Scholar 
    Beck, C. D. O., Schroeder, B. & Davis, R. L. Learning performance of normal and mutant Drosophila after repeated conditioning trials with discrete stimuli. J. Neurosci. 20(8), 2944–2953 (2000).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boto, T. & Ramaswami, M. Learning and memory: Clashing engrams in the fly brain. Curr. Biol. 31(16), R1009–R1011 (2021).CAS 
    PubMed 

    Google Scholar 
    Bennett, J. E. M., Philippides, A. & Nowotny, T. Learning with reinforcement prediction errors in a model of the Drosophila mushroom body. Nat. Commun. 12, 22595 (2021).
    Google Scholar 
    Rescorla, R. A. & Wagner, A. R. A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In Classical Conditioning Ii: Current Theory and Research (eds Black, A. & Prokasy, W.) (Appleton-Century-Crofts, 1972).
    Google Scholar  More

  • in

    Drivers of migrant passerine composition at stopover islands in the western Mediterranean

    Study islands and bird dataSystematic ringing in spring on Mediterranean islands has been promoted by the Piccole Isole project since 198826. Standard methods of the project involve ringing between 16th April and 15th May attempting to include the peak of the spring passage of long-distance migrants. Ringing is performed from dawn to nightfall using a constant number of nets within ringing stations placed at stable sites located at representative habitats in each island (Supplementary Table S1). The use of tape-lures is not allowed. We have compiled ringing data for all the Spanish Mediterranean islands that have been applying this methodology, with the exception of Mallorca and Menorca where the ringing stations were located in wetlands and captured a large percentage of local birds (Fig. 2, Table 1). The nine study islands are spread along a south-west to north-east gradient and, with the exception of Columbrets, they are distributed in pairs of similar longitude but different latitudes (Fig. 2). Ringing stations have been operating over a variable number of years (5–27 years), with the maximum number of ringing stations operating at the same time occurring between 2003 and 2010. To include between-year variation on islands that started ringing campaigns more recently we used data from the years 2003–2018.Figure 2Image source: Google Earth. Data SIO, NOAA, US Navy, NGA, GEBCO. Image Landsat/Copernicus.Geographical location of studied islands in the western Mediterranean.Full size imageTable 1 Period of activity of the ringing stations located on each island between the years 1992 and 2018.Full size tableThe ringing period within each spring also varied in most islands, owing to funding or logistic limitations; thus, to reduce the possible effects on migrant composition we only used data from the standard period of the Piccole Isole project and from years that included at least one week of ringing in the fortnight of each month within this interval. This procedure excluded the use of some years for several islands, and the final number of data years for islands ranged between 5 and 16 (Table 1).We used only data for trans-Saharan nocturnal migrant passerines, which form the bulk of species ringed on Mediterranean islands during the standard period. The standard ringing period only covers the tail end of the short-distance migrants’ passage; thus, these species were excluded as their contribution to composition of migrants could vary mainly due to between-year variation in migration phenology. Diurnal migrants, like hirundinids and fringillids, also represent a small fraction of birds ringed and may use different cues to select stopover islands. In addition, some of these species nest in some of the islands studied and birds ringed could include breeding birds. To avoid the distorting effect of species that are captured accidentally in very small numbers, we considered only the species that were ringed in at least five separate years, or on five different islands, which limited the species considered to 35 (Supplementary Table S2). This led to the exclusion of just two species (Ficedula semitorquata with three individuals ringed in two islands and Locustella luscinioides with one individual ringed in Aire island). In addition, we only considered the number of ringed birds, since the proportion of recaptures varies among islands, likely reflecting variation in the duration of stopovers21, which could bias the comparison of the patterns of migrant species composition.Island descriptorsWe obtained two groups of variables describing the characteristics of the study islands (Tables 2, 3): (1) Variables related to geographical location: latitude, longitude, straight distance and minimum distance to the North African coast, minimum distance to the closest large body of land (continent or large island) in any direction and to the closest large body of land situated in a southerly angle between SW and SE. (2) Variables related to the habitat characteristics of the islands: area, maximum altitude and Normalized Difference Vegetation Index (NDVI). We estimated NDVI from Landsat 8 Images taken during the standard ringing period in the years 2015 and 2016. Pixels containing shoreline were excluded and the average NDVI was calculated for the rest of the pixels.Table 2 Variables describing the characteristics of the islands that included the ringing stations studied.Full size tableTable 3 Values of the island descriptors (see Table 2) and two measures of temporal variability of migrant composition in each island: average local contribution of each island to beta diversity (LCBD) and beta diversity for each island (BDTi).Full size tableContinental abundance dataAbundance estimates for western Europe were obtained from the European Red List of Birds27. We used the mean of the minimum and maximum number of pairs estimated for the 27 EU Member States as a measure of continental abundance (Supplementary Table S2).Data analysisAll analyses were done using R 3.6.128. We built a matrix of island-year x species containing the number of individuals of each selected species ringed in the study period in each island and year. Average number of individuals of each species ringed at each island was calculated and was used (log-transformed) as a dependent variable in a linear model with continental abundance (log-transformed), island and their interaction as predictors. This model was simplified using AICc as criteria to identify the best model.To analyze variation of species composition, the matrix of island-year x species was transformed using the chord transformation29 with the function decostand in the vegan package30.Using the function beta.div of the adespatial package31 we calculated beta diversity, including temporal and between-island variability (BDI,T), as the total variance of the aforementioned transformed matrix (BDTotal in29), which varies between 0 and 1 when chord distance is used. Considering that yijk is the chord transformed abundance of the species j in the island i and year k and (overline{{y }_{j}}) is the mean for species j in all islands and years altogether, then:$${SS}_{Total}=sum_{i=1}^{n}sum_{j=1}^{p}{sum_{k=1}^{q}{({y}_{ijk}-{overline{y} }_{j})}^{2}}$$$$BD_{I,T} = , SS_{Total} /left( {N – 1} right)$$where N is the total number of samples. The function beta.div also provides an estimation of contribution of localities (LCBD) and species (SCBD) to beta diversity (Table 3). Yearly LCBD (log transformed because of skewed distribution) of each island were averaged and compared between islands using ANOVA and a post-hoc Tukey test.We partitioned the above sum of squares in several ways. First, we calculated a beta diversity that considered only between-island variability, excluding temporal variability (BDI), by averaging the chord transformed abundances of each species j in each island along study years (({overline{y} }_{ij})) and applying the same procedure, but using the number of studied islands (n):$${SS}_{I}=sum_{i=1}^{n}sum_{j=1}^{p}{{({overline{y} }_{ij}-{overline{y} }_{j})}^{2}}$$$$BD_{I} = SS_{I} /left( {n – 1} right)$$Second, we calculated a beta diversity due to inter-annual variation of migrant composition within islands (BDT) as:$${SS}_{Temp}=sum_{i=1}^{n}sum_{j=1}^{p}{sum_{k=1}^{q}{({y}_{ijk}-{overline{y} }_{ij})}^{2}}$$$$BD_{T} = SS_{Temp} /left( {Y – n} right)$$where Y is the total number of study years and n is the number of studied islands (9). We also calculated a temporal beta diversity for each island i (BDTi) as the sum of squares due to variation within the island divided by the number of the island study years (Yi) minus 1:$${SS}_{Temp,i}=sum_{j=1}^{p}sum_{k=1}^{q}{({y}_{ijk}-{overline{y} }_{ij})}^{2}$$$$BD_{Ti} = SS_{Temp,i} /left( {Y_{i} – 1} right)$$Differences in temporal variability between islands could be due to different predominance of species that are more or less variable between years. To check this, we calculated Spearman’s rank correlation between the percentage of captures of each species in the total ringed on each island and BDTi and LCDB indices, for species present on all islands.We tested for the existence of differences between islands in migrant species composition using Permutational Multivariate Analysis of Variance (PERMANOVA) using the function adonis2 in the vegan package. We performed a multivariate test of homogeneity of variances using the betadisper function (vegan package) with the adjustment for small sample bias, to test if temporal variability in species composition differed between islands. We made post-hoc comparisons between islands with False Discovery Rate (FDR) correction using the function pairwise.perm.manova of the package RVAideMemoire32.To identify gradients in migrant species composition and the island characteristics that were associated with them, we employed Redundancy Analysis using the rda function (vegan package). We used the chord transformed matrix of species x island-year as a response matrix. We used two explanatory matrices, one including variables of geographical location and the other the variables related to habitat characteristics of the islands. We evaluated the relative importance of each group of variables to explain migrant species composition by performing a variation partitioning analysis, using the varpart function (vegan package). For that analysis, we followed the steps and R scripts recommended in33.Variables describing island characteristics were transformed using natural logarithms and collinearity within each group was evaluated with variance inflation factor (VIF)34. All the habitat variables presented VIF  More

  • in

    Atmospheric dryness reduces photosynthesis along a large range of soil water deficits

    Eddy-covariance observationsWe used half-hourly or hourly GPP, air temperature, VPD, SWC and incoming shortwave radiation from the recently released ICOS (Integrated Carbon Observation System)44 and the FLUXNET2015 dataset of energy, water, and carbon fluxes and meteorological data, both of which have undergone a standardized set of quality control and gap filling19. Data were already processed following a consistent and uniform processing pipeline19. This data processing pipeline mainly included: (1) thorough data quality control checks; (2) calculation of a range of friction velocity thresholds; (3) gap-filling of meteorological and flux measurements; (4) partitioning of CO2 fluxes into respiration and photosynthesis components; and (5) calculation of a correction factor for energy fluxes19. All the corrections listed were already applied to the available product19. We used incoming shortwave radiation, temperature, VPD, and SWC that were gap-filled using the marginal distribution method21. The GPP estimates from the night-time partitioning method were used for the analysis (GPP_NT_VUT_REF). SWC was measured as volumetric SWC (percentage) at different depths, varying across sites. We mainly used the surface SWC observations but deeper SWC measurements were also used when available. Data were quality controlled so that only measured and good-quality gap filled data (QC = 0 or 1) were used.Analysis of the extreme summer drought in 2018 in Europe to prove nonlinearityTo analyze the effect of summer drought in 2018 on GPP in Europe, we selected 15 sites with measurements during 2014–2018 from the ICOS dataset, representing the major ecosystems across Europe (Supplementary Table 1). Croplands were excluded due to the effect of management on the seasonal timing of ecosystem fluxes, both from crop rotation that change from year to year and from the variable timing of planting and harvesting. In croplands, the changes of GPP anomalies across different growing season could be mainly depend on crop varieties and management activities. Information of crop varieties, growing times yearly and other management data for each cropland site should be collected in future in order to fully consider and disentangle the impacts of SWC and VPD on its photosynthesis. Wetland sites were also removed because they are influenced by upstream organic matter and nutrient input, as well as fluctuating water tables. Daytime half-hourly data (7 am to 19 pm) were aggregated to daily values. At each site, the relative changes ((triangle {{{{{rm{X}}}}}})) of summer (June–July–August) GPP, SWC and VPD during 2014–2018 refer to the summer average of 2014–2018 were calculated for each year. For example, the calculation of the relative change in 2018 is shown in Eq. (1):$$triangle {{{{{rm{X}}}}}}=frac{{X}_{2018}-,{X}_{{average};{of};2014-2018}}{{X}_{{average};{of};2014-2018}}times 100 %$$
    (1)
    where X2018 is the mean of the daily values of (X) (GPP, SWC, or VPD) during the summer of 2018, and Xaverage of 2014–2018 is the mean of the daily values of (X) over all the summers of the 2014–2018 period. The average (triangle {{{{{rm{X}}}}}}) across a certain number of sites at each bin were used for the results in Fig. 1a.Daily time series of GPP, SWC and VPD during summer for each site were normalized (z-scores) to derive the standardized sensitivity of GPP to SWC and VPD. For each variable, the mean value across the summer of 2014–2018 was subtracted for each day at each site and then normalized by its standard deviation. At each site, we used a multiple linear regression (Eq. 2) to estimate daily GPP anomalies sensitivities to SWC and VPD anomalies across 2014–2018 and 2014–2017, respectively:$${GPP}={beta }_{1},{SWC}+{beta }_{2},{VPD}+{beta }_{3},{SWC},times {VPD}+{beta }_{4},{T}_{a}+{beta }_{5}{RAD}+b+varepsilon$$
    (2)
    where ({beta }_{i}) is the standardized sensitivity of GPP to each variable; ({T}_{a}) represents the air temperature; ({RAD}) represents the incoming shortwave radiation;(,b) represents the intercept; and (varepsilon) is the random error term. We compared estimated sensitivities with and without 2018 data to quantify the impacts of extreme drought in 2018 on GPP sensitivity to SWC (Fig. 1d) and VPD (Fig. 1e). The slope was calculated at each site and then the distribution of slopes across sites were plotted in Fig. 1d, e.Global analysis of the sensitivities of GPP to SWC and VPDFor the global analysis, instead of summer, we focused on the growing season and days when the SWC and VPD effects were most likely to control ecosystem fluxes and screen out days when other meteorological drivers were likely to have a larger influence on fluxes. Following previous studies5,8,45, for each site, we restrict our analyses to the days in which: (i) the daily average temperature >15 °C; (ii) sufficient evaporative demand existed to drive water fluxes, constrained as daily average VPD  > 0.5 kPa; (iii) high solar radiation, constrained as daily average incoming shortwave radiation >250 Wm−2.By combining ICOS and FLUXNET2015 data, at the global scale, we evaluated 67 sites with at least 300 days observations over the growing seasons for the years available (Supplementary Table 2). We excluded cropland and wetland sites for the above-mentioned reasons. These 67 sites were used to calculate the relative effects of low SWC and high VPD on GPP following the approach of ref. 5 (see below sections). For 8 sites, the ANN results failed performance criteria (the correlation between predicted GPP and observed GPP is {{VPD}}_{0}\ {beta }_{0},,{VPD}le {{VPD}}_{0}end{array}right.$$
    (7)
    where β0 and k are fitted parameters and VPD0 is 1 kPa48. Following Luo and Keenan48, we applied this method to a short time window (2–14 days) of Fc depending on the availability of flux measurements and assumed that every day in the same time window has the same daily Amax. We retrieved the daily Amax by implementing Eqs. (6) and (7) using the REddyProc R package (https://github.com/bgctw/REddyProc)20.Vcmax represents the activity of the primary carboxylating enzyme ribulose 1,5-bisphosphate carboxylase–oxygenase (Rubisco) as measured under light-saturated conditions. To evaluate the responses of Vcmax to SWC and VPD, we first calculated the daily internal leaf CO2 partial pressure (ci) in the middle of the day (11:00–14:00) via Fick’s Law (Eq. 8), excluding periods with low incoming shortwave radiation (0.7 at most sites. During the training process, weight and bias values were optimized using the Levenberg–Marquardt optimization58,59. The maximum number of epochs to train is 1000. An example to demonstrate the ANN training at one site was shown in Supplementary Fig. 3.At each site, ANN was run and sensitivities were calculated for all data within each SWC and VPD bin and the median value was used. For each of the five trained ANNs, one of the predictor variables was perturbed by one standard deviation (a value of 1 due to the initial input data normalization), and GPP was predicted again using the existing ANN with the predictors including the perturbed variable; this process was repeated for each predictor variable. The predicted values of GPP obtained with and without perturbation were then compared to determine the sensitivity values. The sample equation showing the calculation of the GPP sensitivity to VPD is shown in Eq. (10).$${{{{{{rm{Sensitivity}}}}}}}_{{VPD}}={median}left(,frac{{{GPP}}_{left({ANN};{VPD}+{stdev}left({VPD}right)right)}-{{GPP}}_{left({ANN};{all};{VAR}right)}}{{stdev}left({VPD}right)}right)$$
    (10)
    We repeated the ANN and sensitivity analyses five times and the median of these were used at each site. Across all sites, significances of the sensitivities for each bin were tested using t-tests (p  More

  • in

    Belowground mechanism reveals climate change impacts on invasive clonal plant establishment

    Mack, R. N. et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 10, 689–710. https://doi.org/10.1890/1051-0761 (2000).Article 

    Google Scholar 
    Dukes, J. S. & Mooney, H. A. Disruption of ecosystem processes in western North America by invasive species. Rev. Chil. Hist. Nat. 77, 411–437 (2004).Article 

    Google Scholar 
    Vitousek, P. M. Biological invasions and ecosystem processes: towards an integration of population biology and ecosystem studies. Oikos 57, 7–13. https://doi.org/10.2307/3565731 (1990).Article 

    Google Scholar 
    Richardson, D. M. et al. Naturalization and invasion of alien plants: concepts and definitions. Diver. Distrib. 6, 93–107 (2000).Article 

    Google Scholar 
    Theoharides, K. A. & Dukes, J. S. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol. 176, 256–273 (2007).Article 

    Google Scholar 
    Pyšek, P. et al. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96, 762–774. https://doi.org/10.1890/14-1005.1 (2015).Article 
    PubMed 

    Google Scholar 
    Estrada, J. A., Wilson, C. H. & Flory, S. L. Clonal integration enhances performance of an invasive grass. Oikos https://doi.org/10.1111/oik.07016 (2020).Article 

    Google Scholar 
    Otfinowski, R. & Kenkel, N. C. Clonal integration facilitates the proliferation of smooth brome clones invading northern fescue prairies. Plant Ecol. 199, 235–242. https://doi.org/10.1007/s11258-008-9428-8 (2008).Article 

    Google Scholar 
    Pyšek, P. & Richardson, D. M. in Biological Invasions (ed N. Nentwig) pp. 97–125 (Springer, New York, 2007).Klimešová, J. & Klimeš, L. Clonal growth diversity and bud banks of plants in the Czech flora: an evaluation using the CLO-PLA3 database. Preslia 80, 255–275 (2008).
    Google Scholar 
    Klimešová, J. et al. Handbook of standardized protocols for collecting plant modularity traits. Persp. Plant Ecol. https://doi.org/10.1016/j.ppees.2019.125485 (2019).Article 

    Google Scholar 
    Wang, Y. J. et al. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. New Phytol. 216, 1072–1078 (2017).Article 

    Google Scholar 
    Klimešová, J. in Encyclopedia of Invasive Introduced Species (eds D. Simberloff & M. Reimanek) pp. 678–679 (University of California Press, California, 2011).Ott, J. P., Klimešová, J. & Hartnett, D. C. The ecology and significance of below-ground bud banks in plants. Ann. Bot. Lond. 123, 1099–1118. https://doi.org/10.1093/aob/mcz051 (2019).Article 

    Google Scholar 
    Sanchez, J. M., Sanchez, C. & Navarro, L. Can asexual reproduction by plant fragments help to understand the invasion of the NW Iberian coast by Spartina patens? Flora 257, 151410. https://doi.org/10.1016/j.flora.2019.05.009 (2019).Speek, T. A. A. et al. Factors relating to regional and local success of exotic plant species in their new range. Diver. Distrib. 17, 542–551 (2011).Article 

    Google Scholar 
    Wang, J. Y. et al. A meta-analysis of effects of physiological integration in clonal plants under homogeneous vs heterogeneous environments. Funct. Ecol. https://doi.org/10.1111/1365-2435.13732 (2020).Article 

    Google Scholar 
    Maurer, D. A. & Zedler, J. B. Differential invasion of a wetland grass explained by tests of nutrients and light availability on establishment and clonal growth. Oecologia 131, 279–288. https://doi.org/10.1007/s00442-002-0886-8 (2002).ADS 
    Article 
    PubMed 

    Google Scholar 
    Mueller, I. M. & Weaver, J. E. Relative drought resistance of seedlings of dominant prairie grasses. Ecology 23, 387–398 (1942).Article 

    Google Scholar 
    Vetter, V. M. S. et al. Invasion windows for a global legume invader are revealed after joint examination of abiotic and biotic filters. Plant Biol. 21, 832–843. https://doi.org/10.1111/plb.12987 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ibanez, I. et al. Integrated assessment of biological invasions. Ecol. Appl. 24, 25–37. https://doi.org/10.1890/13-0776.1 (2014).Article 
    PubMed 

    Google Scholar 
    Diez, J. M. et al. Will extreme climatic events facilitate biological invasions?. Front. Ecol. Environ. 10, 249–257. https://doi.org/10.1890/110137 (2012).Article 

    Google Scholar 
    Davis, M. A., Grime, J. P. & Thompson, K. Fluctuating resources in plant communities: a general theory of invasibility. J. Ecol. 88, 528–534. https://doi.org/10.1046/j.1365-2745.2000.00473.x (2000).Article 

    Google Scholar 
    Li, W. & Stevens, M. H. H. Fluctuating resource availability increases invasibility in microbial microcosms. Oikos 121, 435–441. https://doi.org/10.1111/j.1600-0706.2011.19762.x (2012).Article 

    Google Scholar 
    Koerner, S. E. et al. Invasibility of a mesic grassland depends on the time-scale of fluctuating resources. J. Ecol. 103, 1538–1546. https://doi.org/10.1111/1365-2745.12479 (2015).Article 

    Google Scholar 
    Hendrickson, J. R. & Lund, C. Plant community and target species affect responses to restoration strategies. Rangel. Ecol. Manag. 63, 435–442 (2010).Article 

    Google Scholar 
    Bennett, J., Smart, A. & Perkins, L. Using phenological niche separation to improve management in a Northern Glaciated Plains grassland. Restor. Ecol. 27, 745–749. https://doi.org/10.1111/rec.12932 (2019).Article 

    Google Scholar 
    Jordan, N. R., Larson, D. L. & Huerd, S. C. Soil modification by invasive plants: effects on native and invasive species of mixed-grass prairies. Biol. Invas. 10, 177–190. https://doi.org/10.1007/s10530-007-9121-1 (2008).Article 

    Google Scholar 
    Piper, C. L., Lamb, E. G. & Siciliano, S. D. Smooth brome changes gross soil nitrogen cycling processes during invasion of a rough fescue grassland. Plant Ecol. 216, 235–246. https://doi.org/10.1007/s11258-014-0431-y (2015).Article 

    Google Scholar 
    Stotz, G. C., Gianoli, E. & Cahill, J. F. Biotic homogenization within and across eight widely distributed grasslands following invasion by Bromus inermis. Ecology https://doi.org/10.1002/ecy.2717 (2019).Article 
    PubMed 

    Google Scholar 
    Dillemuth, F. P., Rietschier, E. A. & Cronin, J. T. Patch dynamics of a native grass in relation to the spread of invasive smooth brome (Bromus inermis). Biol. Invas. 11, 1381–1391. https://doi.org/10.1007/s10530-008-9346-7 (2009).Article 

    Google Scholar 
    Trammell, M. A. & Butler, J. L. Effects of exotic plants on native ungulate use of habitat. J. Wildlife Manag. 59, 808–816. https://doi.org/10.2307/3801961 (1995).Article 

    Google Scholar 
    Gibson, D. J. Grasses and Grassland Ecology (Oxford Univ. Press, 2009).
    Google Scholar 
    Knapp, A. K. & Smith, M. D. Variation among biomes in temporal dynamics of aboveground primary production. Science 291, 481–484. https://doi.org/10.1126/science.291.5503.481 (2001).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Easterling, D. R. et al. Precipitation change in the United States. pp. 207–230 (Washington, D.C. USA, 2017).Gutschick, V. P. & BassiriRad, H. Extreme events as shaping physiology, ecology, and evolution of plants: toward a unified definition and evaluation of their consequences. New Phytol. 160, 21–42. https://doi.org/10.1046/j.1469-8137.2003.00866.x (2003).Article 
    PubMed 

    Google Scholar 
    Briske, D. D. in Grazing management: An ecological perspective (eds R.K. Heitschmidt & J.W. Stuth) pp. 85–108 (Timber Press, Inc., 1991).Liu, F., Liu, J. & Dong, M. Ecological consequences of clonal integration in plants. Front. Plant Sci. 217, 277–287 (2016).
    Google Scholar 
    Hoover, D. L., Knapp, A. K. & Smith, M. D. Resistance and resilience of a grassland ecosystem to climate extremes. Ecology 95, 2646–2656. https://doi.org/10.1890/13-2186.1 (2014).Article 

    Google Scholar 
    VanderWeide, B. L., Hartnett, D. C. & Carter, D. L. Belowground bud banks of tallgrass prairie are insensitive to multi-year, growing-season drought. Ecosphere. https://doi.org/10.1890/Es14-00058.1 (2014).Article 

    Google Scholar 
    VanderWeide, B. L. & Hartnett, D. C. Belowground bud bank response to grazing under severe, short-term drought. Oecologia 178, 795–806. https://doi.org/10.1007/s00442-015-3249-y (2015).ADS 
    Article 
    PubMed 

    Google Scholar 
    Ott, J. P., Butler, J. L., Rong, Y. P. & Xu, L. Greater bud outgrowth of Bromus inermis than Pascopyrum smithii under multiple environmental conditions. J. Plant Ecol. 10, 518–527. https://doi.org/10.1093/jpe/rtw045 (2017).Article 

    Google Scholar 
    Oesterheld, M., Loreti, J., Semmartin, M. & Sala, O. E. Inter-annual variation in primary production of a semi-arid grassland related to previous-year production. J. Veg. Sci. 12, 137–142. https://doi.org/10.1111/j.1654-1103.2001.tb02624.x (2001).Article 

    Google Scholar 
    Ott, J. P. & Hartnett, D. C. Bud bank dynamics and clonal growth strategy in the rhizomatous grass, Pascopyrum smithii. Plant Ecol. 216, 395–405. https://doi.org/10.1007/s11258-014-0444-6 (2015).Article 

    Google Scholar 
    Carlsson, B. A. & Callaghan, T. V. Programmed tiller differentiation, intraclonal density regulation and nutrient dynamics in Carex bigelowii. Oikos 58, 219–230. https://doi.org/10.2307/3545429 (1990).Article 

    Google Scholar 
    Ye, X. H., Yu, F. H. & Dong, M. A trade-off between guerrilla and phalanx growth forms in Leymus secalinus under different nutrient supplies. Ann. Bot. Lond. 98, 187–191. https://doi.org/10.1093/aob/mcl086 (2006).Article 

    Google Scholar 
    Dibbern, J. C. Vegetative responses of Bromus inermis to certain variations in environment. Bot. Gazette 109, 44–58 (1947).Article 

    Google Scholar 
    Dong, X., Patton, J., Wang, G., Nyren, P. & Peterson, P. Effect of drought on biomass allocation in two invasive and two native grass species dominating the mixed-grass prairie. Grass Forage Sci. 69, 160–166. https://doi.org/10.1111/gfs.12020 (2014).Article 

    Google Scholar 
    Saeidnia, F., Majidi, M. M., Mirlohi, A. & Soltan, S. Physiological and tolerance indices useful for drought tolerance selection in smooth bromegrass. Crop Sci. 57, 282–289. https://doi.org/10.2135/cropsci2016.07.0636 (2017).CAS 
    Article 

    Google Scholar 
    Vinton, M. A. & Hartnett, D. C. Effects of bison grazing on Andropogon gerardii and Panicum virgatum in burned and unbruned tallgrass prairie. Oecologia 90, 374–382. https://doi.org/10.1007/bf00317694 (1992).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Eneboe, E. J., Sowell, B. F., Heitschmidt, R. K., Karl, M. G. & Haferkamp, M. R. Drought and grazing: IV. Blue grama and western wheatgrass. J. Range Manag. 55, 197–203. https://doi.org/10.2307/4003357 (2002).Article 

    Google Scholar 
    Broadbent, T. S., Bork, E. W. & Willms, W. D. Divergent effects of defoliation intensity and frequency on tiller growth and production dynamics of Pascopyrum smithii and Hesperostipa comata. Grass Forage Sci. 73, 532–543. https://doi.org/10.1111/gfs.12318 (2018).Article 

    Google Scholar 
    Donkor, N. T., Bork, E. W. & Hudson, R. J. Bromus-Poa response to defoliation intensity and frequency under three soil moisture levels. Can. J. Plant Sci. 82, 365–370. https://doi.org/10.4141/p01-040 (2002).Article 

    Google Scholar 
    Reynolds, J. H. & Smith, D. Trend of carbohydrate reserves in alfalfa, smooth bromegrass, and timothy grown under various cutting schedules. Crop Sci. 2, 333–336 (1962).CAS 
    Article 

    Google Scholar 
    Lamp, H. F. Reproductive activity in Bromus inermis in relation to phases of tiller development. Bot. Gazette 113, 413–438 (1952).Article 

    Google Scholar 
    Paulsen, G. M. & Smith, D. Organic reserves, axillary bud activity, and herbage yields of smooth bromegrass as influenced by time of cutting, nitrogen fertilization, and shading. Crop Sci. 9, 529–534 (1969).Article 

    Google Scholar 
    Ott, J. P. & Hartnett, D. C. Contrasting bud bank dynamics of two co-occurring grasses in tallgrass prairie: implications for grassland dynamics. Plant Ecol. 213, 1437–1448. https://doi.org/10.1007/s11258-012-0102-9 (2012).Article 

    Google Scholar 
    Busso, C. A., Mueller, R. J. & Richards, J. H. Effects of drought and defoliation on bud viability in 2 caespitose grasses. Ann. Bot. Lond. 63, 477–485. https://doi.org/10.1093/oxfordjournals.aob.a087768 (1989).Article 

    Google Scholar 
    Tuomi, J., Nilsson, P. & Astrom, M. Plant compensatory responses-bud dormancy as an adaptation to herbivory. Ecology 75, 1429–1436. https://doi.org/10.2307/1937466 (1994).Article 

    Google Scholar 
    US Department of Agriculture. The PLANTS Database, (2006).Gong, K. et al. Analysis on the distribution, breeding and utilization of Bromus inermis germplasm resource in China. Heilongjiang Anim. Sci. Vet. Med. 21, 33–36 (2019).
    Google Scholar 
    Coupland, R. T. & Johnson, R. E. Rooting characteristics of native grassland species in Saskatchewan. J. Ecol. 53, 475–507 (1965).Article 

    Google Scholar 
    Gist, G. R. & Smith, R. M. Root development of several common forage grasses to a depth of eighteen inches. Agron. J. 1036–1042 (1948).Okamoto, H., Ishii, K. & An, P. Effects of soil moisture deficit and subsequent watering on the growth of four temperate grasses. Grassl. Sci. 57, 192–197. https://doi.org/10.1111/j.1744-697X.2011.00232.x (2011).Article 

    Google Scholar 
    Morrow, L. A. & Power, J. F. Effect of soil temperature on development of perennial forage grasses. Agron. J. 71, 7–10 (1979).Article 

    Google Scholar 
    Duell, E. B., Wilson, G. W. T. & Hickman, K. R. Above- and below-ground responses of native and invasive prairie grasses to future climate scenarios. Botany 94, 471–479. https://doi.org/10.1139/cjb-2015-0238 (2016).Article 

    Google Scholar 
    Duell, E. B., Londe, D. W., Hickman, K. R., Greer, M. J. & Wilson, G. W. T. Superior performance of invasive grasses over native counterparts will remain problematic under warmer and drier conditions. Plant Ecol. 222, 993–1006 (2021).Article 

    Google Scholar 
    Cully, A. C., Cully, J. F. & Hiebert, R. D. Invasion of exotic plant species in tallgrass prairie fragments. Conser. Biol. 17, 990–998. https://doi.org/10.1046/j.1523-1739.2003.02107.x (2003).Article 

    Google Scholar 
    DeKeyser, E. S., Meehan, M., Clambey, G. & Krabbenhoft, K. Cool season invasive grasses in northern great plains natural areas. Nat. Areas J. 33, 81–90. https://doi.org/10.3375/043.033.0110 (2013).Article 

    Google Scholar 
    Grant, T. A., Shaffer, T. L. & Flanders, B. Resiliency of native prairies to invasion by kentucky bluegrass, smooth brome, and woody vegetation. Rangeland Ecol. Manag. 73, 321–328. https://doi.org/10.1016/j.rama.2019.10.013 (2020).Article 

    Google Scholar 
    Otfinowski, R., Kenkel, N. C. & Catling, P. M. The biology of Canadian weeds. 134. Bromus inermis Leyss. Can. J. Plant Sci. 87, 183–198. https://doi.org/10.4141/p06-071 (2007).Article 

    Google Scholar 
    Moore, K. J. et al. Describing and quantifying growth stages of perennial forage grasses. Agron. J. 83, 1073–1077 (1991).Article 

    Google Scholar 
    SAS Institute. SAS 9.4. (SAS Institute Inc, 2017). More

  • in

    Severe conservation risks of roads on apex predators

    Laurance, W. F. et al. A global strategy for road building. Nature 513, 229–232 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Weng, L. et al. Mineral industries, growth corridors and agricultural development in Africa. Glob. Food Sec. 2, 195–202 (2013).
    Google Scholar 
    Laurance, W. F., Goosem, M. & Laurance, S. G. W. Impacts of roads and linear clearings on tropical forests. Trends Ecol. Evol. 24, 659–669 (2009).PubMed 

    Google Scholar 
    Trombulak, S. C. & Frissell, C. A. Review of ecological effects of roads on terrestrial and aquatic communities. Conserv. Biol. 14, 18–30 (2000).
    Google Scholar 
    van der Ree, R., Smith, D. J. & Grilo, C. The ecological effects of linear infrastructure and traffic. in Handbook of road ecology 1–9 (John Wiley and Sons, Ltd., 2015). https://doi.org/10.1002/9781118568170.ch1.Grilo, C., Smith, D. J. & Klar, N. Carnivores: Struggling for survival in roaded landscapes. in Handbook of road ecology 300–312 (John Wiley and Sons, Ltd., 2015). doi:https://doi.org/10.1002/9781118568170.ch35.Wallach, A. D., Izhaki, I., Toms, J. D., Ripple, W. J. & Shanas, U. What is an apex predator?. Oikos 124, 1453–1461 (2015).
    Google Scholar 
    Ripple, W. J. et al. Status and ecological effects of the world’s largest carnivores. Science 343, (2014).Estes, J. A. et al. Trophic downgrading of planet earth. Science 333, 301–306 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Stolton, S. & Dudley, N. The New Lion Economy. Unlocking the value of lions and their landscapes. http://lionrecoveryfund.org/newlioneconomy (2019).Meijer, J. R., Huijbregts, M. A. J., Schotten, K. C. G. J. & Schipper, A. M. Global patterns of current and future road infrastructure. Environ. Res. Lett. 13, 064006 (2018). Data is available at http://www.globio.infoAscensão, F. et al. Environmental challenges for the belt and road initiative. Nat. Sustain. 1, 206–209 (2018).
    Google Scholar 
    Dulac, J. Global land transport infrastructure requirements – Estimating road and railway infrastructure capacity and costs to 2050. (International Energy Agency, 2013).Laurance, W. F. et al. Reducing the global environmental impacts of rapid infrastructure expansion. Curr. Biol. 25, R259–R262 (2015).CAS 
    PubMed 

    Google Scholar 
    Vilela, T. et al. A better Amazon road network for people and the environment. Proc. Natl. Acad. Sci. 117, 7095–7102 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laurance, W. F., Sloan, S., Weng, L. & Sayer, J. A. Estimating the environmental costs of Africa’s massive “development corridors”. Curr. Biol. 25, 3202–3208 (2015).CAS 
    PubMed 

    Google Scholar 
    Sharma, R., Rimal, B., Stork, N., Baral, H. & Dhakal, M. Spatial assessment of the potential impact of infrastructure development on biodiversity conservation in lowland Nepal. ISPRS Int. J. Geo Inf. 7, 365 (2018).
    Google Scholar 
    IUCN. The IUCN red list of threatened species. Version 2018-1. http://www.iucnredlist.org (2018).Garrote, G. et al. Prediction of Iberian lynx road-mortality in southern Spain: A new approach using the MaxEnt algorithm. Anim. Biodivers. Conserv. 41, 217–225 (2018).
    Google Scholar 
    Parchizadeh, J. et al. Roads threaten Asiatic cheetahs in Iran. Curr. Biol. 28, R1141–R1142 (2018).CAS 
    PubMed 

    Google Scholar 
    Crooks, K. R., Burdett, C. L., Theobald, D. M., Rondinini, C. & Boitani, L. Global patterns of fragmentation and connectivity of mammalian carnivore habitat. Philos. Trans. R. Soc. B Biol. Sci. 366, 2642–2651 (2011).
    Google Scholar 
    Kattan, G. et al. Range fragmentation in the spectacled bear Tremarctos ornatus in the northern Andes. Oryx 38, 155–163 (2004).
    Google Scholar 
    Valeix, M., Loveridge, A. J. & Macdonald, D. W. Influence of prey dispersion on territory and group size of African lions: A test of the resource dispersion hypothesis. Ecology 93, 2490–2496 (2012).PubMed 

    Google Scholar 
    Holderegger, R. & Giulio, M. D. The genetic effects of roads: a review of empirical evidence. Basic Appl. Ecol. 11, 522–531 (2010).
    Google Scholar 
    Riley, S. P. D. et al. A southern California freeway is a physical and social barrier to gene flow in carnivores. Mol. Ecol. 15, 1733–1741 (2006).CAS 
    PubMed 

    Google Scholar 
    Proctor, M. F., McLellan, B. N., Strobeck, C. & Barclay, R. M. R. Genetic analysis reveals demographic fragmentation of grizzly bears yielding vulnerably small populations. Proc. R. Soc. B Biol. Sci. 272, 2409–2416 (2005).
    Google Scholar 
    Riley, S. P. D. et al. Individual behaviors dominate the dynamics of an urban mountain lion population isolated by roads. Curr. Biol. 24, 1989–1994 (2014).CAS 
    PubMed 

    Google Scholar 
    Janečka, J. E. et al. Reduced genetic diversity and isolation of remnant ocelot populations occupying a severely fragmented landscape in southern Texas. Anim. Conserv. 14, 608–619 (2011).
    Google Scholar 
    Thatte, P., Joshi, A., Vaidyanathan, S., Landguth, E. & Ramakrishnan, U. Maintaining tiger connectivity and minimizing extinction into the next century: Insights from landscape genetics and spatially-explicit simulations. Biol. Cons. 218, 181–191 (2018).
    Google Scholar 
    Vaeokhaw, S. et al. Effects of a highway on the genetic diversity of Asiatic black bears. Ursus 2020, 1–15 (2020).
    Google Scholar 
    Benı́tez-López, A. et al. The impact of hunting on tropical mammal and bird populations. Science 356, 180–183 (2017).ADS 
    PubMed 

    Google Scholar 
    Clements, G. R. et al. Where and how are roads endangering mammals in Southeast Asia’s forests?. PLoS ONE 9, e115376 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sharma, K., Wright, B., Joseph, T. & Desai, N. Tiger poaching and trafficking in India: Estimating rates of occurrence and detection over four decades. Biol. Cons. 179, 33–39 (2014).
    Google Scholar 
    Espinosa, S., Branch, L. C. & Cueva, R. Road development and the geography of hunting by an Amazonian indigenous group: Consequences for wildlife conservation. PLoS ONE 9, e114916 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wato, Y. A., Wahungu, G. M. & Okello, M. M. Correlates of wildlife snaring patterns in Tsavo west national park Kenya. Biol. Conserv. 132, 500–509 (2006).
    Google Scholar 
    Watson, F., Becker, M. S., McRobb, R. & Kanyembo, B. Spatial patterns of wire-snare poaching: Implications for community conservation in buffer zones around national parks. Biol. Cons. 168, 1–9 (2013).
    Google Scholar 
    Henschel, P., Hunter, L. T. B., Coad, L., Abernethy, K. A. & Mühlenberg, M. Leopard prey choice in the Congo Basin rainforest suggests exploitative competition with human bushmeat hunters. J. Zool. 285, 11–20 (2011).
    Google Scholar 
    Espinosa, S., Celis, G. & Branch, L. C. When roads appear jaguars decline: Increased access to an Amazonian wilderness area reduces potential for jaguar conservation. PLoS ONE 13, e0189740 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Parsons, M. A., Newsome, T. M. & Young, J. K. The consequences of predators without prey. Front. Ecol. Environ. https://doi.org/10.1002/fee.2419 (2021).Article 

    Google Scholar 
    Caro, T., Dobson, A., Marshall, A. J. & Peres, C. A. Compromise solutions between conservation and road building in the tropics. Curr. Biol. 24, R722–R725 (2014).CAS 
    PubMed 

    Google Scholar 
    Grilo, C. et al. Conservation threats from roadkill in the global road network. Glob. Ecol. Biogeogr. 30, 2200–2210 (2021).
    Google Scholar 
    Carter, N., Killion, A., Easter, T., Brandt, J. & Ford, A. Road development in Asia: assessing the range-wide risks to tigers. Sci. Adv. 6(18), eaaz9619 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ceia-Hasse, A., Borda-de-Água, L., Grilo, C. & Pereira, H. M. Global exposure of carnivores to roads. Glob. Ecol. Biogeogr. 26, 592–600 (2017).
    Google Scholar 
    Gaveau, D. L. A. et al. Four decades of forest persistence, clearance and logging on Borneo. PLoS ONE 9, e101654 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gerber, B. D., Karpanty, S. M. & Randrianantenaina, J. The impact of forest logging and fragmentation on carnivore species composition, density and occupancy in Madagascar’s rainforests. Oryx 46, 414–422 (2012).
    Google Scholar 
    Cullen, L. et al. Implications of fine-grained habitat fragmentation and road mortality for jaguar conservation in the Atlantic forest, Brazil. PLoS ONE 11, e0167372 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Kirby, K. R. et al. The future of deforestation in the Brazilian Amazon. Futures 38, 432–453 (2006).
    Google Scholar 
    UNEP-WCMC & IUCN. Protected planet: The world database on protected areas. http://www.protectedplanet.net (2019).de la Torre, J. A., Gonzalez-Maya, J. F., Zarza, H., Ceballos, G. & Medellin, R. A. The jaguars spots are darker than they appear: assessing the global conservation status of the jaguar Panthera onca. Oryx 52, 300–315 (2017).
    Google Scholar 
    Coelho, L., Romero, D., Queirolo, D. & Guerrero, J. C. Understanding factors affecting the distribution of the maned wolf (Chrysocyon brachyurus) in South America: spatial dynamics and environmental drivers. Mamm. Biol. 92, 54–61 (2018).
    Google Scholar 
    Fearnside, P. M. Brazil’s Cuiabá- Santarém (BR-163) highway: The environmental cost of paving a soybean corridor through the Amazon. Environ. Manage. 39, 601–614 (2007).ADS 
    PubMed 

    Google Scholar 
    Vetter, D., Hansbauer, M. M., Végvári, Z. & Storch, I. Predictors of forest fragmentation sensitivity in neotropical vertebrates: A quantitative review. Ecography 34, 1–8 (2011).
    Google Scholar 
    Morcatty, T. Q. et al. Illegal trade in wild cats and its link to Chinese-led development in central and South America. Conserv. Biol. 34, 1525–1535 (2020).PubMed 

    Google Scholar 
    Ramsar. Ngiri-Tumba-Maindombe. Ramsar Sites Information Service https://rsis.ramsar.org/ris/1784 (2017).Dobson, A. P. et al. Road will ruin Serengeti. Nature 467, 272–273 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Riggio, J. et al. The size of savannah Africa: A lion’s (Panthera leo) view. Biodivers. Conserv. 22, 17–35 (2012).
    Google Scholar 
    Government of Nepal. Economic survey 2019/20. (Ministry of Finance, 2020).Jnawali, S. R. et al. The status of Nepal mammals: The national red list series. (Department of National Parks and Wildlife Conservation, 2011).Joshi, A. R. Nepal court blocks road construction in rhino stronghold of Chitwan Park. https://news.mongabay.com/2019/02/nepal-court-blocks-road-construction-in-rhino-stronghold-of-chitwan-park/ (2019).Government of Nepal. Conservation Landscapes of Nepal. (Ministry of Forest and Soil Conservation, 2016).Poudel, A. et al. Biological and socio-economic study in corridors of Terai Arc Landscape, Nepal. (Center for Policy Analysis; Development, 2013).Arlidge, W. N. S. et al. A Global Mitigation Hierarchy for Nature Conservation. Bioscience 68, 336–347 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Ekstrom, J., Bennun, L. & Mitchell, R. A Cross-Sector Guide for Implementing the Mitigation Hierarchy. (The Biodiversity Consultancy, 2015).Malo, J. E., Suárez, F. & Díez, A. Can we mitigate animal-vehicle accidents using predictive models?. J. Appl. Ecol. 41, 701–710 (2004).
    Google Scholar 
    R Core Team. R: A language and environment for statistical computing (Version 4.0.3). https://www.R-project.org/ (R Foundation for Statistical Computing, 2020).Tucker, M. A., Ord, T. J. & Rogers, T. L. Evolutionary predictors of mammalian home range size: body mass, diet and the environment. Glob. Ecol. Biogeogr. 23, 1105–1114 (2014).
    Google Scholar 
    Santini, L., Boitani, L., Maiorano, L. & Rondinini, C. Effectiveness of protected areas in conserving large carnivores in Europe. in Protected areas 122–133 (John Wiley and Sons, Ltd., 2016). https://doi.org/10.1002/9781118338117.ch7.Rodrigues, A. S. L., Pilgrim, J. D., Hoffmann, M. & Lamoreux, J. F. The value of the IUCN red list for conservation. Trends Ecol. Evol. 21, 71–76 (2006).PubMed 

    Google Scholar 
    Government of Brazil. Mapas multimodais. Ministério da Infraestrutura http://www.infraestrutura.gov.br/ (2018).Assis, L. F. F. G. et al. TerraBrasilis: A spatial data analytics infrastructure for large-scale thematic mapping. ISPRS Int. J. Geo Inf. 8, 513 (2019).
    Google Scholar  More