More stories

  • in

    Investigating weighted fishing hooks for seabird bycatch mitigation

    Phillips, R. et al. The conservation status and priorities for albatrosses and large petrels. Biol. Conserv. 201, 169–183. https://doi.org/10.1016/j.biocon.2016.06.017 (2016).Article 

    Google Scholar 
    Dias, M. et al. Threats to seabirds: A global assessment. Biol. Conserv. 237, 525–537. https://doi.org/10.1016/j.biocon.2019.06.033 (2019).Article 

    Google Scholar 
    IUCN. The IUCN Red List of Threatened Species. Version 2021-1, www.iucnredlist.org, ISSN 2307-8235. (International Union for the Conservation of Nature, 2021).Brothers, N., Cooper, J. & Løkkeborg, S. The Incidental Catch of Seabirds by Longline Fisheries: Worldwide Review and Technical Guidelines for Mitigation. FAO Fisheries Circular No. 937. (Food and Agriculture Organization of the United Nations, 1999)Gilman, E., Brothers, N. & Kobayashi, D. Principles and approaches to abate seabird bycatch in longline fisheries. Fish Fish. 6, 35–49. https://doi.org/10.1111/j.1467-2679.2005.00175.x (2005).Article 

    Google Scholar 
    Løkkeborg, S. Best practices to mitigate seabird by—catch in longline, trawl and gillnet fisheries—efficiency and practical applicability. Mar. Ecol. Prog. Ser. 435, 285–303. https://doi.org/10.3354/meps09227 (2011).ADS 
    Article 

    Google Scholar 
    Gilman, E., Chaloupka, M., Peschon, J. & Ellgen, S. Risk factors for seabird bycatch in a pelagic longline tuna fishery. PLoS One 11, e0155477 (2016).Article 

    Google Scholar 
    Gilman, E., Kobayashi, D. & Chaloupka, M. Reducing seabird bycatch in the Hawaii longline tuna fishery. Endanger. Species Res. 5, 309–323. https://doi.org/10.3354/esr00133 (2008).Article 

    Google Scholar 
    WPRFMC. Annual Stock Assessment and Fishery Evaluation Report for U.S. Pacific Island Pelagic Fisheries Ecosystem Plan 2019. (Western Pacific Regional Fishery Management Council, Honolulu, 2020).Wren, J., Shaffer, S. & Polovina, J. Variations in black-footed albatross sightings in a North Pacific transition area due to changes in fleet dynamics and oceanography 2006–2017. Deep. Sea. Res. Part II Top. Stud. Oceanogr. 169–170, 104605. https://doi.org/10.1016/j.dsr2.2019.06.013 (2019).Article 

    Google Scholar 
    NMFS. Seabird Interactions and Mitigation Efforts in Hawaii Longline Fisheries. 2019 Annual Report. (Pacific Islands Regional Office, National Marine Fisheries Service, 2021).Hall, M., Gilman, E., Minami, H., Mituhasi, T. & Carruthers, E. Mitigating bycatch in tuna fisheries. Rev. Fish. Biol. Fisher. 27, 881–908. https://doi.org/10.1007/s11160-017-9478-x (2017).Article 

    Google Scholar 
    ACAP. ACAP Review and Best Practice Advice for Reducing the Impact of Pelagic Longline Fisheries on Seabirds. (Agreement on the Conservation of Albatrosses and Petrels, 2019).NMFS. Fisheries off west coast states and in the western Pacific; pelagic fisheries; additional measures to reduce the incidental catch of seabirds in the Hawaii pelagic longline fishery. US National Marine Fisheries Service. Fed. Regist. 70, 75075–77508 (2005).
    Google Scholar 
    Robertson, G., Candy, S. & Hall, S. New branch line weighting regimes to reduce the risk of seabird mortality in pelagic longline fisheries without affecting fish catch. Aquat. Conserv. 23, 885–900. https://doi.org/10.1002/aqc.2346 (2013).Article 

    Google Scholar 
    Melvin, E., Guy, T. & Read, L. Reducing seabird bycatch in the South African tuna fishery using bird-scaring lines, branch line weighting and nighttime setting of hooks. Fish. Res. 147, 72–82 (2013).Article 

    Google Scholar 
    Melvin, E., Guy, T. & Read, L. Best practice seabird bycatch mitigation for pelagic longline fisheries targeting tuna and related species. Fish. Res. 149, 5–18 (2014).Article 

    Google Scholar 
    Santos, R. et al. Improved line weighting reduces seabird bycatch without affecting fish catch in the Brazilian pelagic longline fishery. Aquat. Conserv. 29, 442–449. https://doi.org/10.1002/aqc.3002 (2019).Article 

    Google Scholar 
    Gilman, E., Chaloupka, M., Wiedoff, B. & Willson, J. Mitigating seabird bycatch during hauling by pelagic longline vessels. PLoS One 9, e84499. https://doi.org/10.1371/journal.pone.0084499 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brothers, N. Incidence of Live Bird Haul Capture in Pelagic Longline Fisheries. Examination and Comparison of Live Bird Haul Captures in Fisheries Other Than the Hawaii Shallow Set Fishery Agreement on the Conservation of Albatrosses and Petrels. SBWG7 Doc 18. (Agreement on the Conservation of Albatrosses and Petrels, 2016).Jiminez, S., Domingo, A., Forselledo, R., Sullivan, B. & Yates, O. Mitigating bycatch of threatened seabirds: The effectiveness of branch line weighting in pelagic longline fisheries. Anim. Conserv. 22, 376–385. https://doi.org/10.1111/acv.12472 (2019).Article 

    Google Scholar 
    Bentley, L., Kato, A., Ropert-Coudert, Y., Manica, A. & Phillips, R. Diving behaviour of albatrosses: Implications for foraging ecology and bycatch susceptibility. Mar. Biol. 168, 36. https://doi.org/10.1007/s00227-021-03841-y (2021).Article 

    Google Scholar 
    Prince, P., Huin, N. & Weimerskirch, H. Diving depths of albatrosses. Antarct. Sci. 6, 353–354. https://doi.org/10.1017/S0954102094000532 (1994).ADS 
    Article 

    Google Scholar 
    Kazama, K., Harada, T., Deguchi, T., Suzuki, H. & Watanuki, Y. Foraging behavior of black-footed albatross Phoebastria nigripes rearing chicks on the Ogasawara Islands. Ornithol. Sci. 18, 27–37 (2019).Article 

    Google Scholar 
    Jiminez, S., Domingo, A., Abreu, M. & Brazeiro, A. Bycatch susceptibility in pelagic longline fisheries: Are albatrosses affected by the diving behaviour of medium-sized petrels?. Aquat. Conserv. 22, 436–445. https://doi.org/10.1002/aqc.2242 (2012).Article 

    Google Scholar 
    Barrington, J., Robertson, G. & Candy, S. Categorising Branchline Weighting for Pelagic Longline Fishing According to Sink Rate. ACAP-SBWG7-Doc7. (Agreement on the Conservation of Albatrosses and Petrels, 2016).NOAA. Endangered and threatened wildlife and plants: Listing the oceanic whitetip shark as threatened under the Endangered Species Act. Fed. Regist. 83, 4153–4165 (2018).
    Google Scholar 
    WPRFMC. Council Adopts Oceanic Whitetip Shark Protections for Hawaii and American Samoa Longline Fisheries. (Western Pacific Regional Fishery Management Council, 2021).Pierre, J., Goad, D. & Abraham, E. Novel Approaches to Line-Weighting in New Zealand’s Inshore Surface-Longline Fishery. (Dragonfly Data Science, 2015).Rawlinson, N., et al. The Relative Safety of Weighted Branchlines During Simulated Fly-backs (Cut-offs and Tear-outs). (AMC Research, 2018).Gilman, E., Beverly, S., Musyl, M. & Chaloupka, M. Commercial viability of alternative designs placing pelagic longline branchline weights at the hook to reduce seabird bycatch. Endanger. Species Res. 43, 223–233 (2020).Article 

    Google Scholar 
    Fenaughty, J. & Smith, N. A Simple New Method for Monitoring Longline Sink Rate to Selected Depths. Document WG-FSA-01/46. (Commission for the Conservation of Antarctic Marine Living Resources, 2001).Wienecke, B. & Robertson, G. Validation of sink rates of longlines measured using two different methods. CCAMLR Sci. 11, 179–187 (2004).
    Google Scholar 
    Melvin, E. & Wainstein, M. Seabird Avoidance Measures for Small Alaskan Longline Vessels (University of Washington, 2006).
    Google Scholar 
    CCAMLR. Longline Weighting for Seabird Conservation. Conservation Measure 24-02. (Commission for the Conservation of Antarctic Marine Living Resources, 2014).Robertson, G., Candy, S., Wienecke, B. & Lawton, K. Experimental determinations of factors affecting the sink rates of baited hooks to minimize seabird mortality in pelagic longline fisheries. Aquat. Conserv. 20, 632–643. https://doi.org/10.1002/aqc.1140 (2010).Article 

    Google Scholar 
    Wondershare Technology. Wondershare Filmora X. Version 10.2.0.32. (Wondershare Technology Co., 2021).Gabry, J., Simpson, D., Vehtari, A., Betancourt, M. & Gelman, A. Visualization in Bayesian workflow. J. R. Stat. Soc. Ser. A 182, 1–14. https://doi.org/10.1111/rssa.12378 (2019).MathSciNet 
    Article 

    Google Scholar 
    Gelman, A., et al. Bayesian Workflow. arXiv:2011.01808v1 (2020).Gelman, A, & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models. (Cambridge University Press, 2007).Carpenter, B. et al. Stan: A probabilistic programming language. J. Stat. Softw. 76, 1–32. https://doi.org/10.18637/jss.v076.i01 (2017).Article 

    Google Scholar 
    Bürkner, P. brms: An R Package for Bayesian multilevel models using Stan. J. Stat. Softw. 81, 1–28. https://doi.org/10.18637/jss.v080.i01 (2017).Article 

    Google Scholar 
    Gilman, E., Chaloupka, M. & Musyl, M. Effects of pelagic longline hook size on species- and size-selectivity and survival. Rev. Fish. Biol. Fish. 28, 417–433. https://doi.org/10.1007/s11160-017-9509-7 (2018).Article 

    Google Scholar 
    Signorell, A., et al. DescTools: Tools for Descriptive Statistics. R package version 0.99.18. (R Core Team, 2016).Wackerly, D., Mendenhall, W. & Scheaffer, R. Mathematical Statistics with Applications. 3rd ed. (Duxbury Press, 1986).van Houwelingen, H., Arends, L. & Stijnen, T. Advanced methods in meta-analysis: Multivariate approach and meta-regression. Stat. Med. 21, 589–624. https://doi.org/10.1002/sim.1040 (2002).Article 
    PubMed 

    Google Scholar 
    Viechtbauer, W. Conducting meta-analyses in R with the metafor package. J. Stat. Softw. 36, 1–48. https://doi.org/10.18637/jss.v036.i03 (2010).Article 

    Google Scholar 
    Günhan, B., Röver, C. & Friede, T. Random-effects meta-analysis of few studies involving rare events. Res. Synth. Methods 11, 74–90. https://doi.org/10.1002/jrsm.1370 (2020).Article 
    PubMed 

    Google Scholar 
    Lemoine, N. Moving beyond noninformative priors: Why and how to choose weakly informative priors in Bayesian analyses. Oikos 128, 912–928. https://doi.org/10.1111/oik.05985 (2019).Article 

    Google Scholar 
    Schild, A. & Voracek, M. Finding your way out of the forest without a trail of bread crumbs: Development and evaluation of two novel displays of forest plots. Res. Synth. Methods 6, 74–86. https://doi.org/10.1002/jrsm.1125 (2015).Article 
    PubMed 

    Google Scholar 
    van der Bles, A. et al. Communicating uncertainty about facts, numbers and science. R. Soc. Open Sci. 6, 181870. https://doi.org/10.1098/rsos.181870 (2019).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wickham, H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed. (Springer, 2016).Zeileis, A. et al. colorspace: A toolbox for manipulating and assessing colors and palettes. J. Stat. Softw. 96, 1–4. https://doi.org/10.18637/jss.v096.i01 (2020).Article 

    Google Scholar 
    Vovk, V. & Wang, R. Combining p-values via averaging. Biometrika 107, 791–808. https://doi.org/10.1093/biomet/asaa027 (2020).MathSciNet 
    Article 
    MATH 

    Google Scholar 
    Gilman, E., Brothers, N. & Kobayashi, D. Comparison of the efficacy of three seabird bycatch avoidance methods in Hawaii pelagic longline fisheries. Fish. Sci. 73, 208–210 (2007).CAS 
    Article 

    Google Scholar 
    Star-Oddi. DST centi-TD Miniature Temperature and Depth Data Logger. (Star-Oddi, 2021).Frankish, C., Manica, A., Navarro, J. & Phillips, R. Movements and diving behaviour of white-chinned petrels: Diurnal variation and implications for bycatch mitigation. Aquat. Conserv. 31, 1715–1729. https://doi.org/10.1002/aqc.3573 (2021).Article 

    Google Scholar 
    Cooke, S. & Suski, C. Are circular hooks and effective tool for conserving marine and freshwater recreational catch-and-release fisheries?. Aquat. Conserv. 14, 299–326. https://doi.org/10.1002/aqc.614 (2004).Article 

    Google Scholar 
    Ward, P., Lawrence, E., Darbyshire, R. & Hindmarsh, S. Large-scale experiment shows that nylon leaders reduce shark bycatch and benefit pelagic longline fishers. Fish. Res. 90, 100–108. https://doi.org/10.1016/j.fishres.2007.09.034 (2008).Article 

    Google Scholar 
    McCormack, E. & Rawlinson, N. The Relative Safety of the Agreement on the Conservation of Albatrosses and Petrels (ACAP) Recommended Minimum Specifications for the Weighting of Branchlines during Simulated Fly-backs. ACAP-SBWG7-Doc8. (Agreement on the Conservation of Albatrosses and Petrels, 2016).Goad, D., Debski, I. & Potts, J. Hookpod-mini: A smaller potential solution to mitigate seabird bycatch in pelagic longline fisheries. Endanger. Species Res. 39, 1–8. https://doi.org/10.3354/esr00953 (2019).Article 

    Google Scholar 
    WHO. Global Health Risks: Mortality and Burden of Disease Attributable to Selected Major Risks. (World Health Organization, 2009).Grade, T. et al. Lead poisoning from ingestion of fishing gear: A review. Ambio 48, 1023–1038. https://doi.org/10.1007/s13280-019-01179-w (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gilman, E. et al. Highest risk abandoned, lost and discarded fishing gear. Sci. Rep. 11, 7195. https://doi.org/10.1038/s41598-021-86123-3 (2021).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brothers, N. In Pursuit of Procella—A Heavy Hook for Pelagic Longlines to Reduce Procellariiforme Bycatch. SBWG 10 Inf 09. (Agreement on the Conservation of Albatrosses and Petrels, 2021).Bluhm, R. From hierarchy to network: A richer view of evidence for evidence-based medicine. Perspect. Biol. Med. 48, 535–547. https://doi.org/10.1353/pbm.2005.0082 (2005).Article 
    PubMed 

    Google Scholar 
    Stegenga, J. Down with the hierarchies. Topoi 33, 313–322. https://doi.org/10.1007/s11245-013-9189-4 (2014).Article 

    Google Scholar 
    Marchionni, C. & Reijula, S. What is mechanistic evidence, and why do we need it for evidence-based policy?. Stud. Hist. Philos. Sci. A 73, 54–63. https://doi.org/10.1016/j.shpsa.2018.003 (2019).Article 

    Google Scholar 
    Beverly, S., Chapman, L. & Sokimi, W. Horizontal Longline Fishing Methods and Techniques. Manual for Fishermen. (Secretariat of the Pacific Community, 2003).Guilford, T., Padget, O., Maurice, L. & Catry, P. Unexpectedly deep diving in an albatross. Curr. Biol. 32, R26–R28. https://doi.org/10.1016/j.cub.2021.11.036 (2022).CAS 
    Article 
    PubMed 

    Google Scholar  More

  • in

    Probing the antioxidant activity of functional proteins and bioactive peptides in Hermetia illucens larvae fed with food wastes

    Ebner, J., Babbitt, C., Winer, M., Hilton, B. & Williamson, A. Life cycle greenhouse gas (GHG) impacts of a novel process for converting food waste to ethanol and co-products. Appl. Energy 130, 86–93 (2014).CAS 

    Google Scholar 
    Tonini, D., Albizzati, P. F. & Astrup, T. F. Environmental impacts of food waste: Learnings and challenges from a case study on UK. Waste Manag. 76, 744 (2018).PubMed 

    Google Scholar 
    Sze, E., Yau, Y. H. & Wu, K. C. Application of anaerobic bacterial ammonification pretreatment to microalgal food waste leachate cultivation and biofuel production. Mar. Pollut. Bull. 153, 111007 (2020).PubMed 

    Google Scholar 
    Winkel, T. D., Wahlen, S. & Jensen, T. in Nordic Conference on Consumer Research.Wang, P. et al. Effects of graphite, graphene, and graphene oxide on the anaerobic co-digestion of sewage sludge and food waste: attention to methane production and the fate of antibiotic resistance genes. Bioresour. Technol. 339, 125585 (2021).CAS 
    PubMed 

    Google Scholar 
    Gianico, A., Gallipoli, A., Pagliaccia, P. & Braguglia, C. M. Anaerobic bioconversion of food waste into energy: A critical review (2013).Smetana, S., Ites, S., Parniakov, O., Aganovic, K. & Heinz, V. in 71st Annual Meeting of the European Federation of Animal Science.Ojha, S., Buler, S. & Schlüter, O. Food waste valorisation and circular economy concepts in insect production and processing. Waste Manag. 118, 600–609 (2020).CAS 
    PubMed 

    Google Scholar 
    Scala, A. et al. Rearing substrate impacts growth and macronutrient composition of Hermetia illucens (L.) (Diptera: Stratiomyidae) larvae produced at an industrial scale. Sci. Rep. 10, 1–8 (2020).ADS 

    Google Scholar 
    McDonald, C., Campbell, K. A., Benson, C., Davis, M. J. & Frost, C. J. Workforce development and multiagency collaborations: a presentation of two case studies in child welfare. Sustainability 13, 10190 (2021).
    Google Scholar 
    Kim, C.-H. et al. Use of black soldier fly larvae for food waste treatment and energy production in asian countries: a review. Processes 9, 161 (2021).CAS 

    Google Scholar 
    Julita, U., Fitri, L., Putra, R. & Permana, A. Mating success and reproductive behavior of black soldier fly Hermetia illucens L. (diptera, stra-tiomyidae) in tropics. J. Ento-mol. 17, 117–127 (2020).CAS 

    Google Scholar 
    Rehman, K. U. et al. Conversion of mixtures of dairy manure and soybean curd residue by black soldier fly larvae (Hermetia illucens L.). J. Clean. Prod. 154, 366–373 (2017).CAS 

    Google Scholar 
    Li, Q., Zheng, L., Hao, C., Garza, E. & Zhou, S. From organic waste to biodiesel: Black soldier fly, Hermetia illucens, makes it feasible. Fuel 90, 1545–1548 (2011).CAS 

    Google Scholar 
    Köhler, R., Kariuki, L., Lambert, C. & Biesalski, H. K. Protein, amino acid and mineral composition of some edible insects from Thailand. J. Asia Pac. Entomol. 22, 372–378 (2019).
    Google Scholar 
    Belghit, I. et al. Black soldier fly larvae meal can replace fish meal in diets of sea-water phase Atlantic salmon (Salmo salar). Aquaculture (2018).Moretta, A. et al. Antimicrobial peptides: A new hope in biomedical and pharmaceutical fields. Front. Cell. Infect. Microbiol. 11, 453 (2021).
    Google Scholar 
    Manniello, M. et al. Insect antimicrobial peptides: potential weapons to counteract the antibiotic resistance. Cell. Mol. Life Sci. 89, 1–24 (2021).
    Google Scholar 
    Henriques, B. S., Garcia, E. S., Azambuja, P. & Genta, F. A. Determination of chitin content in insects: an alternate method based on calcofluor staining. Front. Physiol. 11, ARTN 11710.3389/fphys.2020.00117 (2020).Hbl, M., Mráz, P., Ipo, J., Hotiková, I. & Kopec, T. Polyphenols as food supplement improved food consumption and longevity of honey bees (Apis mellifera) intoxicated by pesticide thiacloprid. Insects 12 (2021).Li, H., Dai, C., Zhu, Y. & Hu, Y. Larvae crowding increases development rate, improves disease resistance, and induces expression of antioxidant enzymes and heat shock proteins in Mythimna separata (Lepidoptera: Noetuidae). J. Econ. Entomol. 4 (2021).Hao, et al. Effects of enzymatic hydrolysis assisted by high hydrostatic pressure processing on the hydrolysis and allergenicity of proteins from ginkgo seeds. Food Bioprocess Technol. 9, 839–848 (2016).
    Google Scholar 
    Nadeem, M., Mumtaz, M. W., Danish, M., Rashid, U. & Raza, S. A. Calotropis procera: UHPLC-QTOF-MS/MS based profiling of bioactives, antioxidant and anti-diabetic potential of leaf extracts and an insight into molecular docking. J. Food Meas. Charact. 13, 3206–3220 (2019).
    Google Scholar 
    Altomare, A. A., Baron, G., Aldini, G., Carini, M. & D’Amato, A. Silkworm pupae as source of high-value edible proteins and of bioactive peptides. Food Sci. Nutr. 8, 2652–2661 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zielińska, E., Baraniak, B. & Karaś, M. Identification of antioxidant and anti-inflammatory peptides obtained by simulated gastrointestinal digestion of three edible insects species (Gryllodes sigillatus, Tenebrio molitor, Schistocerca gragaria). Int. J. Food Sci. Technol. 53, 2542–2551 (2018).
    Google Scholar 
    Sousa, P., Borges, S. & Pintado, M. Enzymatic hydrolysis of insect Alphitobius diaperinus towards the development of bioactive peptide hydrolysates. Food Funct. 11, 3539–3548 (2020).CAS 
    PubMed 

    Google Scholar 
    Jakubczyk, A., Karaś, M., Rybczyńska-Tkaczyk, K., Zielińska, E. & Zieliński, D. Current trends of bioactive peptides—New sources and therapeutic effect. Foods 9, 846 (2020).CAS 
    PubMed Central 

    Google Scholar 
    Li, K., Li, X.-M., Ji, N.-Y. & Wang, B.-G. Natural bromophenols from the marine red alga Polysiphonia urceolata (Rhodomelaceae): structural elucidation and DPPH radical-scavenging activity. Bioorg. Med. Chem. 15, 6627–6631 (2007).CAS 
    PubMed 

    Google Scholar 
    He, R., Girgih, A. T., Malomo, S. A., Ju, X. R. & Aluko, R. E. Antioxidant activities of enzymatic rapeseed protein hydrolysates and the membrane ultrafiltration fractions. J. Funct. Foods 5, 219–227. https://doi.org/10.1016/j.jff.2012.10.008 (2013).CAS 
    Article 

    Google Scholar 
    Cui, Q., Sun, Y. X., Cheng, J. J. & Guo, M. R. Effect of two-step enzymatic hydrolysis on the antioxidant properties and proteomics of hydrolysates of milk protein concentrate. Food Chem. 366, 10. https://doi.org/10.1016/j.foodchem.2021.130711 (2022).CAS 
    Article 

    Google Scholar 
    Liu, Y., Wan, S., Liu, J., Zou, Y. & Liao, S. Antioxidant activity and stability study of peptides from enzymatically hydrolyzed male silkmoth. J. Food Process. Preserv. 41 (2017).Carrasco-Castilla, J. et al. Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Food Chem. 135, 1789–1795 (2012).CAS 
    PubMed 

    Google Scholar 
    Phongthai, S., D’Amico, S., Schoenlechner, R., Homthawornchoo, W. & Rawdkuen, S. Fractionation and antioxidant properties of rice bran protein hydrolysates stimulated by in vitro gastrointestinal digestion. Food Chem. 240, 156 (2018).CAS 
    PubMed 

    Google Scholar 
    Lee, S. J. et al. Antioxidant activity of a novel synthetic hexa-peptide derived from an enzymatic hydrolysate of duck skin by-products. Food Chem. Toxicol. 62, 276–280 (2013).CAS 
    PubMed 

    Google Scholar 
    Collin, F. Chemical basis of reactive oxygen species reactivity and involvement in neurodegenerative diseases. Int. J. Mol. Sci. 20, 2407 (2019).PubMed Central 

    Google Scholar 
    Xiang, Q., Yu, J. & Wong, P. K. Quantitative characterization of hydroxyl radicals produced by various photocatalysts. J. Colloid Interface Sci. 357, 163–167 (2011).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wang, Y. et al. Optimizing oxygen functional groups in graphene quantum dots for improved antioxidant mechanism. Phys. Chem. Chem. Phys. 21, 1336–1343 (2019).CAS 
    PubMed 

    Google Scholar 
    Arise, A. K. et al. Antioxidant activities of bambara groundnut (Vigna subterranea) protein hydrolysates and their membrane ultrafiltration fractions. Food Funct. 7, 2431–2437. https://doi.org/10.1039/c6fo00057f (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Ren, J. et al. Purification and identification of antioxidant peptides from grass carp muscle hydrolysates by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chem. 108, 727–736. https://doi.org/10.1016/j.foodchem.2007.11.010 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, C., Wei, X., Omenn, G. S. & Zhang, Y. Structure and protein interaction-based gene ontology annotations reveal likely functions of uncharacterized proteins on human chromosome 17. 17 (2018).Long, C. N. et al. High-level production of Monascus pigments in Monascus ruber CICC41233 through ATP-citrate lyase overexpression. Biochem. Eng. J. 146, 160–169. https://doi.org/10.1016/j.bej.2019.03.007 (2019).CAS 
    Article 

    Google Scholar 
    Brito Querido, J. et al. The cryo-EM structure of a novel 40S kinetoplastid-specific ribosomal protein. Structure 25, 1785–1794 e1783. https://doi.org/10.1016/j.str.2017.09.014 (2017).Hamey, J. J. & Wilkins, M. R. Methylation of elongation factor 1A: Where, who, and why?. Trends Biochem. Sci. 43, 211–223. https://doi.org/10.1016/j.tibs.2018.01.004 (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kuo, C. P. et al. Analysis of the immune response of human dendritic cells to Mycobacterium tuberculosis by quantitative proteomics. Proteome Sci. 14, 1–11 (2016).
    Google Scholar 
    Zhu, J. et al. Expression and RNA interference of ribosomal protein L5 gene in Nilaparvata lugens (Hemiptera: Delphacidae). J. Insect. Sci. 3 (2017).Teng, T., Mercer, C. A., Hexley, P., Thomas, G. & Fumagalli, S. Loss of tumor suppressor RPL5/RPL11 does not induce cell cycle arrest but impedes proliferation due to reduced ribosome content and translation capacity. Mol. Cell. Biol. 33, 4660–4671. https://doi.org/10.1128/mcb.01174-13 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rittschof, C. C. & Schirmeier, S. Insect models of central nervous system energy metabolism and its links to behavior. Glia (2017).Alar, A. F., Akr, B. & Gülseren, I. LC-Q-TOF/MS based identification and in silico verification of ACE-inhibitory peptides in Giresun (Turkey) hazelnut cakes. Eur. Food Res. Technol. (2021).Shang, W. H. et al. In silico assessment and structural characterization of antioxidant peptides from major yolk protein of sea urchin Strongylocentrotus nudus. Food Funct. 9, 6435–6443 (2018).CAS 
    PubMed 

    Google Scholar 
    Ajibola, C. F., Fashakin, J. B., Fagbemi, T. N. & Aluko, R. E. Effect of peptide size on antioxidant properties of African yam bean seed (Sphenostylis stenocarpa) protein hydrolysate fractions. Int. J. Mol. Sci. 12, 6685–6702 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu, H. et al. Enhancing the antioxidative effects of foods containing rutin and α-amino acids via the Maillard reaction: A model study focusing on rutin-lysine system. J. Food Biochem. 44, e13086 (2020).PubMed 

    Google Scholar 
    Tsopmo, A. et al. Tryptophan released from mother’s milk has antioxidant properties. Pediatr. Res. 66, 614–618 (2009).CAS 
    PubMed 

    Google Scholar 
    Yu, Z. et al. Identification and molecular docking study of fish roe-derived peptides as potent BACE 1, AChE, and BChE inhibitors. Food Funct. 11 (2020).Li, C. et al. Preliminary study on a potential antibacterial peptide derived from histone H2A in hemocytes of scallop Chlamys farreri. Fish Shellf. Immunol. 22, 663–672 (2007).
    Google Scholar 
    Arockiaraj, J. et al. An unconventional antimicrobial protein histone from freshwater prawn Macrobrachium rosenbergii: analysis of immune properties. Fish Shellfish Immunol. 35, 1511–1522 (2013).CAS 
    PubMed 

    Google Scholar 
    Ju, J. et al. Major components in Lilac and Litsea cubeba essential oils kill Penicillium roqueforti through mitochondrial apoptosis pathway. Ind. Crops Products 149, 112349 (2020).CAS 

    Google Scholar 
    Al-Dhafri, K., Chai, L. C. & Karsani, S. A. Purification and characterization of antimicrobial peptide fractions of Junipers seravschanica. Biocatal. Agric. Biotechnol. 28, 101554 (2020).
    Google Scholar 
    Ratnakomala, S., Ridwan, R., Lisdiyanti, P., Abinawanto, A. & Andi, U. Screening of actinomycetes producing an ATPase inhibitor of japanese encephalitis virus RNA helicase from soil and leaf litter samples. Microbiol. Indonesia 5, 15–20 (2011).
    Google Scholar 
    Zhao, X., Zhang, J. & Zhu, K. Y. Chito-protein matrices in arthropod exoskeletons and peritrophic matrices (2019).Pustylnikov, S., Sagar, D., Jain, P. & Khan, Z. K. Targeting the C-type lectins-mediated host-pathogen interactions with dextran. J. Pharm. Pharm. Sci. 17 (2014).Kiew, P. L. & Don, M. M. Jewel of the seabed: sea cucumbers as nutritional and drug candidates. Int. J. Food Sci. Nutr. 63, 616–636 (2012).CAS 
    PubMed 

    Google Scholar 
    Liu, Z., Su, Y. & Zeng, M. Amino acid composition and functional properties of giant red sea cucumber (Parastichopus californicus) collagen hydrolysates. J. Ocean Univ. China 10, 80–84 (2011).ADS 
    CAS 

    Google Scholar 
    Zaky, A. A., Liu, Y., Han, P., Chen, Z. & Jia, Y. Effect of pepsin–trypsin in vitro gastro-intestinal digestion on the antioxidant capacities of ultra-filtrated rice bran protein hydrolysates (molecular weight > 10 kDa; 3–10 kDa, and< 3 kDa). Int. J. Pept. Res. Ther. 1–7 (2019).Kim, S.-B., Yoon, N. Y., Shim, K.-B. & Lim, C.-W. Antioxidant and angiotensin I-converting enzyme inhibitory activities of northern shrimp (Pandalus borealis) by-products hydrolysate by enzymatic hydrolysis. Fish. Aquat. Sci. 19, 1–6 (2016). Google Scholar  Chung, Y. C., Chang, C. T., Chao, W. W., Lin, C. F. & Chou, S. T. Antioxidative activity and safety of the 50 ethanolic extract from red bean fermented by Bacillus subtilis IMR-NK1. J. Agric. Food Chem. 50, 2454–2458. https://doi.org/10.1021/jf011369q (2002).CAS  Article  PubMed  Google Scholar  Zielińska, E., BaRaniak, B. & Karaś, M. Antioxidant and anti-inflammatory activities of hydrolysates and peptide fractions obtained by enzymatic hydrolysis of selected heat-treated edible insects. Nutrients 9, 1–14 (2017). Google Scholar  Rahman, M. M., Byanju, B., Grewell, D. & Lamsal, B. P. High-power sonication of soy proteins: Hydroxyl radicals and their effects on protein structure. Ultrason. Sonochem. 64, 105019 (2020).CAS  PubMed  Google Scholar  More

  • in

    Soil fungal communities affect the chemical quality of flue-cured tobacco leaves in Bijie, Southwest China

    Wu, X. et al. Effects of bio-organic fertiliser fortified by Bacillus cereus QJ-1 on tobacco bacterial wilt control and soil quality improvement. Biocontrol Sci. Technol. 30, 351–369 (2020).
    Google Scholar 
    Hu, W. et al. Flue-cured tobacco (Nicotiana tabacum L.) leaf quality can be improved by grafting with potassium-efficient rootstock. Field Crop. Res. 274, 108305 (2021).
    Google Scholar 
    Wu, X. et al. Bioaugmentation of Bacillus amyloliquefaciens-Bacillus kochii co-cultivation to improve sensory quality of flue-cured tobacco. Arch. Microbiol. 203, 5723–5733 (2021).CAS 
    PubMed 

    Google Scholar 
    Jiang, C. et al. Optimal lime application rates for ameliorating acidic soils and improving the yield and quality of tobacco leaves. Appl. Ecol. Environ. Res. 18, 5411–5423 (2020).
    Google Scholar 
    Yin, Q. et al. Investigation of associations between rhizosphere microorganisms and the chemical composition of flue-cured tobacco leaves using canonical correlation analysis. Commun. Soil Sci. Plant 44, 1524–1539 (2013).CAS 

    Google Scholar 
    Shen, H. et al. Promotion of lateral root growth and leaf quality of flue-cured tobacco by the combined application of humic acids and npk chemical fertilizers. Exp. Agric. 53, 59–70 (2017).CAS 

    Google Scholar 
    Hu, W. Q. et al. Grafting alleviates potassium stress and improves growth in tobacco. BMC Plant Biol. 19, 130 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zhong, J. Study of K+ uptake kinetics of flue-cured tobacco in K+-enriched and conventional tobacco genotypes. J. Plant Nutr. 42(7), 1–7 (2019).
    Google Scholar 
    Tang, Z. et al. Climatic factors determine the yield and quality of Honghe flue-cured tobacco. Sci. Rep. 10, 19868 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yan, S. et al. Correlation between soil microbial communities and tobacco aroma in the presence of different fertilizers. Ind. Crop. Prod. 151, 112454 (2020).CAS 

    Google Scholar 
    Tabaxi, I. Effect of organic fertilization on quality and yield of oriental tobacco (Nicotiana tabacum L.) under Mediterranean conditions. Asian J. Agric. Biol. https://doi.org/10.35495/ajab.2020.05.274 (2021).Article 

    Google Scholar 
    Chen, Y. L. et al. Distinct microbial communities in the active and permafrost layers on the Tibetan Plateau. Mol. Ecol. 26, 6608–6620 (2017).CAS 
    PubMed 

    Google Scholar 
    Wagg, C. et al. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. U.S.A. 111, 5266–5270 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    French, E. et al. Emerging strategies for precision microbiome management in diverse agroecosystems. Nat. Plants 7, 256–267 (2021).PubMed 

    Google Scholar 
    Cui, Y. et al. Diversity patterns of the rhizosphere and bulk soil microbial communities along an altitudinal gradient in an alpine ecosystem of the eastern Tibetan Plateau. Geoderma 338, 118–127 (2019).ADS 
    CAS 

    Google Scholar 
    Zheng, J. et al. The effects of tetracycline residues on the microbial community structure of tobacco soil in pot experiment. Sci. Rep. 10, 8804 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. Effects of tobacco planting systems on rates of soil N transformation and soil microbial community. Int. J. Agric. Biol. 19, 992–998 (2017).CAS 

    Google Scholar 
    Yang, Y. et al. Metagenomic insights into effects of wheat straw compost fertiliser application on microbial community composition and function in tobacco rhizosphere soil. Sci. Rep. 9, 6168 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, S. et al. Response of soil fungal communities to continuous cropping of flue-cured tobacco. Sci. Rep. 10, 19911 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finlay, B. J. Global dispersal of free-living microbial eukaryote species. Science 296, 1061–1063 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ehrmann, J. & Ritz, K. Plant: soil interactions in temperate multi-cropping production systems. Plant Soil 376, 1–29 (2013).
    Google Scholar 
    Liu, H. et al. Response of soil fungal community structure to long-term continuous soybean cropping. Front. Microbiol. 9, 3316 (2018).PubMed 

    Google Scholar 
    Gao, Z. et al. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Front. Microbiol. 10, 2269 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Li, J. Analysis on the method selection of tobacco disease control. South China Agric. 15, 49–50 (2021).
    Google Scholar 
    Dai, C. et al. Comprehensive evaluation of soil fertility status of tobacco-planting district in Bijie area. Acta Agric. Jiangxi 23, 9–11 (2011).
    Google Scholar 
    Wang, Z. et al. Time-course relationship between environmental factors and microbial diversity in tobacco soil. Sci. Rep. 9, 19969 (2019).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, X. et al. Study on the primary chemical components, sensory quality of flue-cured tobacco and their correlativity in Bijie. J. Henan Agric. Sci. 41, 58–61 (2012).
    Google Scholar 
    Zhang, S. et al. Analysis of variation characteristics and coordination of conventional chemical components of flue-cured tobacco in Youyang County, Chongqing City. Acta Agric. Jiangxi 32, 75–86 (2020).
    Google Scholar 
    Lakatos, L. et al. The influence of meteorological variables on sour cherry quality parameters. In Vi International Cherry Symposium (Int Soc Horticultural Science, Leuven 1), Vol. 1020, 287–292 (2014).Zhao, Z. et al. Why does potassium concentration in flue-cured tobacco leaves decrease after apex excision? Field Crop. Res. 116, 86–91 (2010).
    Google Scholar 
    Travlos, I. S. et al. Green manure and pendimethalin impact on oriental sun-cured tobacco. Agron. J. 106, 1225–1230 (2014).
    Google Scholar 
    Bilalis, D. et al. Effect of organic fertilization on soil characteristics, yield and quality of Virginia Tobacco in Mediterranean area. Emir. J. Food Agric. https://doi.org/10.9755/ejfa.2020.v32.i8.2138 (2020).Article 

    Google Scholar 
    Henry, J. B., Vann, M. C. & Lewis, R. S. Agronomic practices affecting nicotine concentration in flue-cured tobacco: A review. Agron. J. 111, 3067–3075 (2019).CAS 

    Google Scholar 
    Lamarre, M. & Payette, S. Influence of nitrogen-fertilization on Quebec flue-cured tobacco production. Can. J. Plant Sci. 72, 411–419 (1992).CAS 

    Google Scholar 
    Zhang, L. et al. Dynamic changes of nutrients in tobacco-planting soils in Bijie City during 2014–2016. Guizhou Agric. Sci. 45, 51–55 (2017).CAS 

    Google Scholar 
    Lisuma, J. B., Mbega, E. R. & Ndakidemi, P. A. Dynamics of nicotine across the soil–tobacco plant interface is dependent on agro-ecology, nitrogen source, and rooting depth. Rhizosphere 12, 100175 (2019).
    Google Scholar 
    Cosme, M. & Wurst, S. Interactions between arbuscular mycorrhizal fungi, rhizobacteria, soil phosphorus and plant cytokinin deficiency change the root morphology, yield and quality of tobacco. Soil Biol. Biochem. 57, 436–443 (2013).CAS 

    Google Scholar 
    Chandanie, W. A., Kubota, M. & Hyakumachi, M. Interactions between the arbuscular mycorrhizal fungus Glomus mosseae and plant growth-promoting fungi and their significance for enhancing plant growth and suppressing damping-off of cucumber (Cucumis sativus L.). Appl. Soil Ecol. 41, 336–341 (2009).
    Google Scholar 
    Liu, D. et al. Geographic distance and soil microbial biomass carbon drive biogeographical distribution of fungal communities in Chinese Loess Plateau soils. Sci. Total Environ. 660, 1058–1069 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Li, S. & Wu, F. Diversity and co-occurrence patterns of soil bacterial and fungal communities in seven intercropping systems. Front. Microbiol. https://doi.org/10.3389/fmicb.2018.01521 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. Chaetosemins A-E, new chromones isolated from an Ascomycete Chaetomium seminudum and their biological activities. RSC Adv. 5, 29185–29192 (2015).ADS 
    CAS 

    Google Scholar 
    Gorte, O., Kugel, M. & Ochsenreither, K. Optimization of carbon source efficiency for lipid production with the oleaginous yeast Saitozyma podzolica DSM 27192 applying automated continuous feeding. Biotechnol. Biofuels 13, 181 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, J. et al. Biochar applied to consolidated land increased the quality of an acid surface soil and tobacco crop in Southern China. J. Soil. Sediment. 20, 3091–3102 (2019).
    Google Scholar 
    Zong, J. et al. Effect of two drying methods on chemical transformations in flue-cured tobacco. Dry Technol. https://doi.org/10.1080/07373937.2020.1779287 (2020).Article 

    Google Scholar 
    Ismail, E. et al. Evaluation of in vitro antifungal activity of potassium bicarbonate on Rhizoctonia solani AG 4 HG-I, Sclerotinia sclerotiorum and Trichoderma sp.. Afr. J. Biotechnol. 10, 8605–8612 (2011).
    Google Scholar 
    d’Aquino, L. et al. Effect of some rare earth elements on the growth and lanthanide accumulation in different Trichoderma strains. Soil Biol. Biochem. 41, 2406–2413 (2009).CAS 

    Google Scholar 
    Bijie Municipal Government. Statistical Yearbooks of Bijie City (2016)He, R., Liu, S. & Liu, Y. Application of SD model in analyzing the cultivated land carrying capacity: A case study in Bijie Prefecture, Guizhou Province, China. Procedia Environ. Sci. 10, 1985–1991 (2011).
    Google Scholar 
    Wang, M. et al. Spatial variation and fractionation of fluoride in tobacco-planted soils and leaf fluoride concentration in tobacco in Bijie City, Southwest China. Environ. Sci. Pollut. Res. 28, 26112–26123 (2021).CAS 

    Google Scholar 
    Wang, J. T. et al. Altitudinal distribution patterns of soil bacterial and archaeal communities along Mt. Shegyla on the Tibetan Plateau. Microb. Ecol. 69, 135–145 (2015).PubMed 

    Google Scholar 
    Zhang, Q. et al. Soil available phosphorus content drives the spatial distribution of archaeal communities along elevation in acidic terrace paddy soils. Sci. Total Environ. 658, 723–731 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Cui, Q. et al. Sulfur application improved leaf yield and quality of flue-cured tobacco by maintaining soil sulfur balance. Int. J. Agric. Biol. 23, 357–363 (2020).CAS 

    Google Scholar 
    Cao, X. et al. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties. Environ. Pollut. 252, 733–741 (2019).CAS 
    PubMed 

    Google Scholar 
    Wang, C. et al. Prevalence of antibiotic resistance genes and bacterial pathogens along the soil-mangrove root continuum. J. Hazard. Mater. 408, 124985 (2021).CAS 
    PubMed 

    Google Scholar 
    Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. et al. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59 (2013).CAS 
    PubMed 

    Google Scholar 
    Wang, Q. et al. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Koljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277 (2013).CAS 
    PubMed 

    Google Scholar 
    Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lindstrom, E. S. et al. Distribution of typical freshwater bacterial groups is associated with pH, temperature, and lake water retention time. Appl. Environ. Microbiol. 71, 8201–8206 (2005).ADS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Two new Russula species (fungi) from dry dipterocarp forest in Thailand suggest niche specialization to this habitat type

    Phylogenetic analysesA total of 21 sequences were newly generated and deposited in GenBank (Supplementary Table 1). The concatenated sequence alignment of the three loci comprised 100 sequences (38 for ITS, 30 for rpb2 and 32 for mtSSU) from 43 collections (Supplementary Table 1). The alignment was 2,004 characters long, including gaps. Multi-locus trees generated from ML and BI analyses showed similar topologies without any supported topological conflict. The multi-locus phylogeny (Fig. 1) confirmed placement of all Thai collections within the well-supported R. subsect. Amoeninae (ML = 99, BI = 1.0). Five collections from northeastern Thailand and two collections from northern Thailand form two strongly supported clades and are described below as the new species R. bellissima sp. nov. and R. luteonana sp. nov. The new species are not resolved as sister. The first species, R. bellissima, is strongly supported as sister to a clade of Australian sequestrate species that includes R. variispora T. Lebel and an undescribed Russula sp. labeled as Macowanites sp. The Indian species R. intervenosa S. Paloi, A.K. Dutta & K. Acharya is placed as sister to them with bootstrap support of 77. The second species, R. luteonana, is placed with moderate support as sister to the sequestrate European species R. andaluciana T.F. Elliott & Trappe.Figure 1ML phylogenetic tree inferred from the three-gene dataset (ITS, rpb2, mtSSU) of Russula subsection Amoeninae species, using ML and BI analyses. Three members of R. subg. Heterophyllidiae are used as outgroup. Species in boldface are new species in this study. Bootstrap support values (BS ≥ 50%) and posterior probabilities (PP ≥ 0.90) are shown at the supported branches.Full size imageThe ITS tree (Fig. 2) shows a similar topology and relationships for the studied specimens. In addition, R. intervenosa received good support (ML = 84, BI = 0.99) as sister to the clade of R. bellissima and R. variispora. Five additional ITS sequences that are grouped with strong support within R. bellissima species clade were recovered, three from Thailand, one from Laos, and one from Singapore. We did not recover any other Amoeninae ITS sequences from Thailand.Figure 2ML phylogenetic tree inferred from the ITS region of Russula subsection Amoeninae species and allied groups, using ML and BI methods. Samples in boldface are new species in this study. Bootstrap support values (BS ≥ 50%) and posterior probabilities (PP ≥ 0.90) are shown at the supported branches.Full size imageTaxonomy
    Russula bellissima Manz & F. Hampe sp. nov.
    Mycobank: MB 840549Holotype THAILAND, Theong district, Chiang Rai, 19°36′45”N 100°4′00”E, alt. 500 m, dry dipterocarpus forest in small groups on loamy soil, 12 July 2012, F. Hampe (Holotype: GENT FH 12-127; Isotype: MFLU12-0619).Etymology ’bellus’ = latin for beautiful, pretty, lovely; ’bellissima’ = the most beautiful. Resembling the species Russula bella which is also belonging to Russula subsection Amoeninae.Diagnosis Pileus small to medium-sized; cuticle dry, smooth, matt and pruinose, red; stipe white or with a red flush; spore ornamentation of moderately distant to dense amyloid spines or warts, frequently fused into short crests or even long wings; suprahilar spot inamyloid; hymenial cystidia and pileocystidia absent.Pileus (Fig. 3) small to medium sized, 10–50 mm diam., young hemispherical or convex, becoming plane and depressed at the centre; margin first even, when old distinctly tuberculate-striate up to 10 mm from the margin, often radially cracking; cuticle hardly peeling, radially disrupted into small patches, pruinose when young, later dry, smooth, matt and pruinose in the centre, colour near the margin when young varnish red (9C8), later red to coral red (9B6-7); near the centre deep red, blood red, dark red (10C7-8), raspberry red (10D7), strawberry red (10D8) or purple brown (10E-F8). Lamellae: 3–5 mm deep, thin, moderately dense, 6–8 at 1 cm near the pileus margin, adnexed, white, slightly anastomosing at the base; lamellulae absent, occasionally forked near the stipe; edges concolorous, entire but pruinose under lens. Stipe: 10–30 × 3–7 mm, usually narrowed towards the base, sometimes cylindrical, surface smooth, white and mainly with a distinct pastel red to red flush, occasionally completely white or sometimes also almost completely red, interior stuffed. Context: white, fragile, unchanging when damaged, reaction with guaiac after 5 s negative on both stipe and lamellae surfaces, reaction to FeSO4 and sulfovanillin negative; taste mild; odour inconspicuous. Spore print: not observed.Figure 3Basidiomata of Russula bellissima. (A) FH12-127 (Holotype). (B) FH12-158. Scale bar = 1 cm. Photos by Felix Hampe.Full size imageSpores (Figs. 4, 5) (6.9–)7.3–7.8–8.3(–8.9) × (6.1–)6.8–7.2–7.6(–8.4) µm, subglobose to broadly ellipsoid, Q = 1.01–1.1–1.2(–1.29); ornamentation of moderately distant [(4–)5–6(–7) in a 3 µm diam. circle] amyloid spines or warts, (1.1–)1.2–1.4–1.6(–1.7) µm high, fused or connected by fine line connections into often long crests or wings, [(0–)1–3(–4) fusions and the same number of line connections in a 3 µm diam. circle], crests and wings frequently branched and occasionally form closed loops, isolated elements dispersed, edge of crests and wings irregularly wavy; suprahilar spot moderately large, inamyloid. Basidia: (30.5–)34.5–44.1–53.5(–65.0) × (10.5–)11.5–12.6–14.0(–16.0) µm, broadly clavate or obpyriform, 4-spored; basidiola cylindrical, ellipsoid or broadly clavate, ca. 5–10 µm wide. Hymenial cystidia on lamellae sides: absent. Lamellae edges: covered by densely arranged or fasciculate marginal cells. Marginal cells: (27.0–)38.5–46.4–54.5(–61.0) × (5.0–)5.5–6.7–7.5(–9.0) µm; subulate or narrowly lageniform, apically attenuated and constricted to ca. 1–2 µm, sometimes slightly moniliform or flexuous. Pileipellis: (Fig. 6) orthochromatic in Cresyl Blue, gradually passing to the underlying context, 200–300 µm deep; suprapellis 60–130 µm deep, composed of erect or ascending hyphal terminations forming a dry trichoderm, well delimited from 140 to 210 µm deep subpellis composed of horizontally oriented, strongly gelatinized narrow hyphae. Subpellis not well delimited from the underlying context, elongate hyphae gradually changing to sphaerocytes. Acid- resistant incrustations: absent. Hyphal terminations near the pileus margin: composed of long apically attenuated terminal cell and a chain of 1–4 ovoid to barrel shaped, short unbranched cells with one distinctly longer apical cell; constricted on septa, usually not flexuous, oriented towards the pileus surface, usually thin-walled, sometimes slightly thick-walled (up to 1 µm thick); terminal cells mainly subulate or lageniform, apically attenuated and acute, measuring (19–)27.5–38.3–49.0(–66.5) × (3.3–)4.5–5.8–7.0(–9.0) µm, rarely with a forked apex, mixed with dispersed, cylindrical or ellipsoid, distinctly shorter, obtuse terminal cells measuring (7.5–)11.5–17.8–29.5(–42.5) × (3.0–)4.0–4.5–5.0 µm; subterminal cells measuring (4.5–)5.5–8.3–11.5(–16.0) × 4.5–5.3–6.0(–7.0) µm. Hyphal terminations near the pileus centre: similar in shape and also with a mixture of long acute and short obtuse terminal cells, acute ones measuring (12.0–)22.0–35.2–48.5(–79.0) × (2.5–)3.5–4.9–6.5(–8.0) µm, obtuse ones more frequent, measuring (6.5–)8.5–12.0–15.5(–22.0) × (3.5–)4.0–4.9–6.0(–7.5) µm. Primordial hyphae or pileocystidia: absent. Cystidioid hyphae and oleipherous hyphae not observed.Figure 4Hymenial elements of Russula bellissima (holotype, FH 12-127). (A) Basidia and basidiolae. (B) Marginal cells. (C) Spores as seen in Melzer’s reagent. Scale bar = 10 µm, but only 5 µm for spores.Full size imageFigure 5Scanning electron microscope photo of spore ornamentation. Russula bellissima (holotype, FH 12-127). Scale bar = 2 μm.Full size imageFigure 6Elements of the pileipellis of Russula bellissima (holotype, FH 12-127). (A) Hyphal terminations near the pileus margin. (B) Hyphal terminations near the pileus centre. Scale bar = 10 μm.Full size imageAdditional material studied THAILAND, Chiang Mai Province, Mae On District, about 3 km from Tharnthong lodges, 18° 51′ 55″ N 99° 17′ 23″ E, alt. 725 m, Dipterocarpaceae dominated forest with the presence of some Castanopsis trees, in small groups on loamy soil, 17 July 2012, F. Hampe (GENT FH 12-158, duplicate: MFLU12-0648).Note Russula bellissima is a small species with a bright red pileus and pink colour on the stipe. This colour is distinctive and resembles North American R. mariae, Indian R. intervenosa and Asian R. bella. It is very unlikely that the distribution of any European or North American species is overlapping with the Thai species. However, little is known about the distributional ranges and the ecological niches of other Asian Russula species. Therefore discussing the morphological distinguishing characters between Asian species and R. bellissima is more relevant. Russula bellissima is not closely related to R. bella and it differs from this species by larger spores with a more prominent spore ornamentation, absence of hymenial cystidia on lamellae sides, and subterminally short, ellipsoid cells in the suprapellis arranged in unbranched chains of up to four7. The Thai species resembles and is closely related to the Indian R. intervenosa, but it has a more prominent spore ornamentation, hymenial cystidia (on lamellae sides) are absent, and hyphal terminations in the pileipellis are wider22.
    Russula luteonana M. Pobkwamsuk & K. Wisitrassameewong sp. nov.
    Mycobank: MB 840550Holotype: THAILAND, Amnat Charoen province, Hua Taphan district, Junction near Watbochaneng , dry dipterocarp forest, alt. 145 m, 15° 41′ 28″ N 104° 31′ 41″ E, 13 July 2016, Thitiya Boonpratuang, Rattaket Choeyklin, Prapapan Sawhasan, Maneerat Pobkwamsuk, Pattrachai Juthamas, Nattawut Wiriyathanawudhiwong, Patcharee Patangwesa (BBH41120).Etymology ‘Luteolus’ = yellow colour, ‘Nanus’ = small. Refer to pileus color and size of the species.Diagnosis Pileus medium-sized, dry, usually yellow, spores with subreticulate amyloid ornamentation and inamyloid suprahilar spot, hymenial cystidia on lamellae sides large, lamellae edges with combination of subulate, clavate and pyriform marginal cells.Pileus (Fig. 7) medium-sized, 28‒53 mm diam., plano-convex with depressed centre, infundibuliform when mature; margin striated and radially cracking in dry condition; cuticle dry, peeling to almost ½ of radius, smooth to minutely wrinkled, dull in dry condition, color very variable, some collections pale cream and with darker pale brownish-yellow centre, other yellow brownish and with darker orange-brown centre, sometimes also bright red-brown and with discolored centre, always with rusty-brown spots especially when near the centre. Lamellae: 3‒5 mm deep, moderately distant, intervenose, forking near the stipe, white to cream, edges even, concolorous. Stipe: 26‒40 × 6‒9 mm, cylindrical or narrowed at the base, surface dry, longitudinally wrinkled, white, turning brown when bruised. Context: 2‒4 mm in at the half pileus radius, soft, solid, becoming partially hollow when mature, white, unchanging when cut. Taste mild; odour rather strong, fishy. Spore print: not observed.Figure 7Basidiomata of Russula luteonana. (A) BBH41120 (Holotype). (B) BBH41121. (C) BBH41122. (D) BBH42510. Scale bar = 1 cm. Photos by Thitiya Boonpratuang.Full size imageSpores (Figs. 8, 9) (7.4‒)8.1‒8.6‒9(‒10.1) × (6.1‒)7.4‒7.5‒7.9(‒9.1) μm, subglobose to broadly ellipsoid, Q = (1.03‒)1.09‒1.15‒1.20(‒1.30), ornamentation of moderately distant, obtuse, (0.7‒)1.1‒1.3‒1.5(‒1.9) μm high spines, connected by abundant line connections [(0‒)3‒6(‒8) in in a 3 µm diam. circle], branched, forming an incomplete reticulum, crest irregularly wavy and occasionally fused [(0‒)1‒2(‒5) fusions in the circle], isolated elements rare; suprahilar spot inamyloid. Basidia: (29‒)34.5‒39.1‒44(‒51.5) × (10‒)12‒13.2‒14.5(‒16.5) μm, clavate, 4-spored, rarely 2-spored, basidiola subcylindrical to subclavate, (25.5‒)30‒35.4‒41(‒47) × (9‒)11‒12.2‒14 (‒16) μm. Hymenial cystidia on lamellae sides: usually protruding over other elements of hymenium, widely dispersed ( More

  • in

    Long horns protect Hestina japonica butterfly larvae from their natural enemies

    Lincoln, G. A. Teeth, horns and antlers: the weapons of sex. In The Differences between the Sexes (eds R. V. Short & E. Balaban) 131–158 (Cambridge Univ. Press, 1994).Lundrigan, B. Morphology of horns and fighting behavior in the family bovidae. J. Mammal. 77, 462–475 (1996).Article 

    Google Scholar 
    Bro-Jorgensen, J. The intensity of sexual selection predicts weapon size in male bovids. Evolution 61, 1316–1326 (2007).Article 

    Google Scholar 
    Plard, F., Bonenfant, C. & Gaillard, J. M. Revisiting the allometry of antlers among deer species: male-male sexual competition as a driver. Oikos 120, 601–606 (2011).Article 

    Google Scholar 
    Okada, K. & Miyatake, T. Sexual dimorphism in mandibles and male aggressive behavior in the presence and absence of females in the beetle Librodor japonicus (Coleoptera: Nitidulidae). Ann. Entomol. Soc. Am. 97, 1342–1346 (2004).Article 

    Google Scholar 
    Emlen, D. J., Marangelo, J., Ball, B. & Cunningham, C. W. Diversity in the weapons of sexual selection: Horn evolution in the beetle genus Onthophagus (Coleoptera: Scarabaeidae). Evolution 59, 1060–1084 (2005).CAS 
    Article 

    Google Scholar 
    Pomfret, J. C. & Knell, R. J. Sexual selection and horn allometry in the dung beetle Euoniticellus intermedius. Anim. Behav. 71, 567–576 (2006).Article 

    Google Scholar 
    McCullough, E. L., Weingarden, P. R. & Emlen, D. J. Costs of elaborate weapons in a rhinoceros beetle: how difficult is it to fly with a big horn?. Behav. Ecol. 23, 1042–1048 (2012).Article 

    Google Scholar 
    David, P., Bjorksten, T., Fowler, K. & Pomiankowski, A. Condition-dependent signalling of genetic variation in stalk-eyes flies. Nature 406, 186–188 (2000).ADS 
    CAS 
    Article 

    Google Scholar 
    Baker, R. H. & Wilkinson, G. S. Phylogenetic analysis of sexual dimorphism and eye-span allometry in stalk-eyed flies (Diopsidae). Evolution 55, 1373–1385 (2001).CAS 
    Article 

    Google Scholar 
    Stankowich, T. Armed and dangerous: predicting the presence and function of defensive weaponry in mammals. Adapt. Behav. 20, 32–43 (2012).Article 

    Google Scholar 
    Hashimoto, K. & Hayashi, F. Structure and function of the large pronotal horn of the sand-living anthicid beetle Mecynotarsus tenuipes. Entomol. Sci. 15, 274–279 (2012).Article 

    Google Scholar 
    Hayashi, M. & Ohba, S. Y. Mouth morphology of the diving beetle Hyphydrus japonicus (Dytiscidae: Hydroporinae) is specialized for predation on seed shrimps. Biol. J. Linn. Soc. 125, 315–320 (2018).Article 

    Google Scholar 
    Stocker, R. F. The organization of the chemosensory system in Drosophila melanogaster: a review. Cell Tissue Res. 275, 3–26 (1994).CAS 
    Article 

    Google Scholar 
    Dweck, H. K. M. Antennal sensory receptors of Pteromalus puparum female (Hymenoptera: Pteromalidae), a gregarious pupal endoparasitoid of Pieris rapae. Micron 40, 769–774 (2009).Article 

    Google Scholar 
    Crespo, J. G. A review of chemosensation and related behavior in aquatic insects. J. Insect Sci. 11, 1–39 (2011).Article 

    Google Scholar 
    Stoffolano, J. G. Jr., Rice, M. & Murphy, W. L. The importance of antennal mechanosensilla of Sepedon fuscipennis (Diptera: Sciomyzidae). Can. Entomol. 145, 265–272 (2013).Article 

    Google Scholar 
    Gabel, B. et al. Floral volatiles of Tanacetum vulgare L. attractive to Lobesia botrana Den. et Schiff. females. J. Chem. Ecol. 18, 693–701 (1992).CAS 
    Article 

    Google Scholar 
    Fox, H. Barbels and barbel-like tentacular structures in sub-mammalian vertebrates: a review. Hydrobiologia 403, 153–193 (1999).Article 

    Google Scholar 
    Plepys, D., Ibarra, F., Francke, W. & Lofstedt, C. Odour-mediated nectar foraging in the silver Y moth, Autographa gamma (Lepidoptera: Noctuidae): behavioural and electrophysiological responses to floral volatiles. Oikos 99, 75–82 (2002).CAS 
    Article 

    Google Scholar 
    Stankowich, T. & Caro, T. Evolution of weaponry in female bovids. Proc. R. Soc. Lond. Ser. B Biol. Sci. 276, 4329–4334 (2009).Bergmann, P. J. & Berk, C. P. The Evolution of Positive Allometry of Weaponry in Horned Lizards (Phrynosoma). Evol. Biol. 39, 311–323 (2012).Article 

    Google Scholar 
    Damman, H. The osmaterial glands of the swallowtail butterfly Eurytide marcellus as a defense against natural enemies. Ecol. Entomol. 11, 261–265 (1986).Article 

    Google Scholar 
    Berenbaum, M. R., Moreno, B. & Green, E. Soldier bug predation on swallowtail caterpillars (Lepidoptera, Papilionidae): circumvention of defensive chemistry. J. Insect Behav. 5, 547–553 (1992).Article 

    Google Scholar 
    Juma, G. et al. Distribution of chemo- and mechanoreceptors on the antennae and maxillae of Busseola fusca larvae. Entomol. Exp. Appl. 128, 93–98 (2008).Article 

    Google Scholar 
    Liu, Z., Hua, B.-Z. & Liu, L. Ultrastructure of the sensilla on larval antennae and mouthparts in the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae). Micron 42, 478–483 (2011).Article 

    Google Scholar 
    Kandori, I., Tsuchihara, K., Suzuki, T. A., Yokoi, T. & Papaj, D. R. Long frontal projections help Battus philenor (Lepidoptera: Papilionidae) larvae find host plants. PLoS ONE 10, e0131596 (2015).Article 

    Google Scholar 
    Greeney, H. F., Dyer, L. A. & Smilanich, A. M. Feeding by lepidopteran larvae is dangerous: A review of caterpillars’ chemical, physiological, morphological, and behavioral defenses against natural enemies. ISJ Invert. Surviv. J. 9, 7–34 (2012).
    Google Scholar 
    Sugiura, S. Predators as drivers of insect defenses. Entomol. Sci. 23, 316–337 (2020).Article 

    Google Scholar 
    Martin, W. R. & Nordlund, D. A. Ovipositional behavior of the parasitoid Palexorista laxa (Diptera, Tachinidae) on Heliothis zea (Lepidoptera, Noctuidae) larvae. J. Entomol. Sci. 24, 460–464 (1989).Article 

    Google Scholar 
    Constantino, L. M. Notes on Haetera from Colombia, with description of the immature stages of Haetera piera (Lepidoptera:Nymphalidae: Satyrinae). Trop. Lepid. 4(1), 13–15 (1993).
    Google Scholar 
    Devries, P. J., Kitching, I. J. & Vanewright, R. I. The systematic position of Antirrhea and Caerois, with comments on the classification of the Nymphalidae (Lepidoptera). Syst. Entomol. 10, 11–32. https://doi.org/10.1111/j.1365-3113.1985.tb00561.x (1985).Article 

    Google Scholar 
    Dias, F. M. S., Casagrande, M. M. & Mielke, O. H. H. Biology and external morphology of immature stages of Memphis appias (Hubner) (Lepidoptera: Nymphalidae: Charaxinae). Zootaxa, 21–32 (2010).Dias, F. M. S., Casagrande, M. M. & Mielke, O. H. H. Biology and external morphology of the immature stages of the butterfly Callicore pygas eucale, with comments on the taxonomy of the genus Callicore (Nymphalidae: Biblidinae). J. Insect Sci. 14, doi:https://doi.org/10.1093/jis/14.1.91 (2014).Dias, F. M. S., Casagrande, M. M. & Mielke, O. H. H. Immature stages of the turquoise-banded shoemaker Archaeoprepona amphimachus pseudomeander (Fruhstorfer, 1906) and a comparative review of the Preponini (Lepidoptera: Nymphalidae). Aust. Entomol. 58, 451–462. https://doi.org/10.1111/aen.12339 (2019).Article 

    Google Scholar 
    Dias, F. M. S., de Oliveira-Neto, J. F., Casagrande, M. M. & Mielke, O. H. H. External morphology of immature stages of Zaretis strigosus (Gmelin) and Siderone galanthis catarina Dottax and Pierre comb. nov., with taxonomic notes on Siderone (Lepidoptera: Nymphalidae: Charaxinae). Rev. Bras. Entomol. 59, 307–319, doi:https://doi.org/10.1016/j.rbe.2015.07.007 (2015).Dias, F. M. S. et al. An integrative approach elucidates the systematics of Sea Hayward and Cybdelis Boisduval (Lepidoptera: Nymphalidae: Biblidinae). Syst. Entomol. 44, 226–250. https://doi.org/10.1111/syen.12327 (2019).Article 

    Google Scholar 
    Freitas, A. V. L., Barbosa, E. P. & Marin, M. A. Immature Stages and Natural History of the Neotropical Satyrine Pareuptychia ocirrhoe Interjecta (Nymphalidae: Euptychiina). J. Lepid. Soc. 70, 271–276. https://doi.org/10.18473/lepi.70i4.a4 (2016).Article 

    Google Scholar 
    Freitas, A. V. L., Kaminski, L. A., Mielke, O. H. H., Barbosa, E. P. & Silva-Brandao, K. L. A new species of Yphthimoides (Lepidoptera: Nymphalidae: Satyrinae) from the southern Atlantic forest region. Zootaxa, 31–44 (2012).Furtado, E. & Campos-Neto, F. C. Caligopsis seleucida (Hewitson) and its immature stages (Lepidoptera, Nymphalidae, Brassolinae). Rev. Bras. Zool. 21(3), 593–597 (2004).Article 

    Google Scholar 
    Greeney, H. F. et al. The early stages and natural history of Antirrhea adoptiva porphyrosticta (Watkins, 1928) in eastern Ecuador (Lepidoptera: Nymphalidae: Morphinae). J. Insect Sci. 9 (2009).Greeney, H. F. et al. Early stages and natural history of Perisama oppelii (Nymphalidae, Lepidoptera) in eastern Ecuador. Kempffiana 6(1), 16–30 (2010).
    Google Scholar 
    Greeney, H. F., Dyer, L. A. & Pyrcz, T. W. First description of the early stage biology of the genus Mygona: The natural history of the satyrine butterfly, Mygona irmina in eastern Ecuador. J. Insect Sci. 11, doi:https://doi.org/10.1673/031.011.0105 (2011).Greeney, H. F., Pyrcz, T. W., DeVries, P. J. & Dyer, L. A. The early stages of Pedaliodes poesia (Hewitson, 1862) in eastern Ecuador (Lepidoptera: Satyrinae: Pronophilina). J. Insect Sci. 9 (2009).Greeney, H. F., Whitfield, J. B., Stireman, J. O., Penz, C. M. & Dyer, L. A. Natural history of Eryphanis greeneyi (Lepidoptera: Nymphalidae) and its enemies, with a description of a new species of Braconid parasitoid and notes on its Tachinid parasitoid. Ann. Entomol. Soc. Am. 104, 1078–1090. https://doi.org/10.1603/an10064 (2011).Article 

    Google Scholar 
    Kaminski, L. A. & Freitas, A. V. L. Immature stages of the butterfly Magneuptychia libye (L.) (Lepidoptera : Nymphalidae, Satyrinae). Neotrop. Entomol. 37, 169–172, doi:https://doi.org/10.1590/s1519-566×2008000200010 (2008).Lambkin, T. & Kendall, R. The status of Yoma algina (boisduval, 1832) & Y. sabina (cramer, 1780) (Lepidoptera: Nymphalidae: Nymphalinae) in Australia. Aust. Entomol. 43 (4), 211–234 (2016).Leite, L. A. R., Casagrande, M. M., Mielke, O. H. H. & Freitas, A. V. L. Immature stages of the Neotropical butterfly, Dynamine agacles agacles. J. Insect Sci. 12 (2012).Leite, L. A. R., Dias, F. M. S., Carneiro, E., Casagrande, M. M. & Mielke, O. H. H. Immature stages of the Neotropical cracker butterfly, Hamadryas epinome. J. Insect Sci. 12 (2012).Murillo, L. R. & Nishida, K. Life history of Manataria maculata (Lepidoptera : Satyrinae) from Costa Rica. Rev. Biol. Trop. 51, 463–469 (2003).PubMed 

    Google Scholar 
    Nakahara, S., Janzen, D. H., Hallwachs, W. & Espeland, M. Description of a new genus for Euptychia hilara (C. Felder & R. Felder, 1867) (Lepidoptera: Nymphalidae: Satyrinae). Zootaxa 4012, 525-541, doi:https://doi.org/10.11646/zootaxa.4012.3.7 (2015).Penz, C. M., Freitas, A. V. L., Kaminski, L. A., Casagrande, M. M. & Devries, P. J. Adult and early-stage characters of Brassolini contain conflicting phylogenetic signal (Lepidoptera, Nymphalidae). Syst. Entomol. 38, 316–333. https://doi.org/10.1111/syen.12000 (2013).Article 

    Google Scholar 
    Pyrcz, T. W. et al. Uncovered diversity of a predominantly Andean butterfly clade in the Brazilian Atlantic forest: a revision of the genus Praepedaliodes Forster (Lepidoptera: Nymphalidae, Satyrinae, Satyrini). Neotrop. Entomol. 47, 211–255. https://doi.org/10.1007/s13744-017-0543-x (2018).CAS 
    Article 
    PubMed 

    Google Scholar 
    Shirai, L. T. et al. Natural history of Selenophanes cassiope guarany (Lepidoptera: Nymphalidae: Brassolini): an integrative approach, from molecules to ecology. Ann. Entomol. Soc. Am. 110, 145–159. https://doi.org/10.1093/aesa/saw068 (2017).Article 

    Google Scholar 
    Silva, P. L. et al. Immature Stages of the Brazilian Crescent Butterfly Ortilia liriope (Cramer) (Lepidoptera: Nymphalidae). Neotrop. Entomol. 40, 322–327. https://doi.org/10.1590/s1519-566×2011000300006 (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Song-yun, L. Immature stages of Faunis aerope (Leech, 1890) (Lepidoptera, Nymphalidae). Atalanta 42, 221–222 (2011).
    Google Scholar 
    Steiner, H. Life history of Melanocyma faunula in Malaysia (Lepidoptera: Nymphalidae: Morphinae). Trop. Lepid. Res. 16, 23–26 (2005).
    Google Scholar 
    Velez, P. D., Montoya, H. H. V. & Wolff, M. Immature stages and natural history of the Andean butterfly Altinote ozomene (Nymphalidae: Heliconiinae: Acraeini). Zoologia 28, 593–602. https://doi.org/10.1590/s1984-46702011000500007 (2011).Article 

    Google Scholar 
    Wahlberg, N. et al. Nymphalid butterflies diversify following near demise at the Cretaceous/Tertiary boundary. Proc. R. Soc. Lond. Ser. B Biol. Sci. 276, 4295–4302, doi:https://doi.org/10.1098/rspb.2009.1303 (2009).Willmott, K. R., Elias, M. & Sourakov, A. Two possible caterpillar mimicry complexes in neotropical Danaine butterflies (Lepidoptera: Nymphalidae). Ann. Entomol. Soc. Am. 104, 1108–1118. https://doi.org/10.1603/an10086 (2011).Article 

    Google Scholar 
    Willmott, K. R. & Freitas, A. V. L. Higher-level phylogeny of the Ithomiinae (Lepidoptera : Nymphalidae): classification, patterns of larval hostplant colonization and diversification. Cladistics 22, 297–368. https://doi.org/10.1111/j.1096-0031.2006.00108.x (2006).Article 
    PubMed 

    Google Scholar 
    Zacca, T. et al. Revision of Godartiana Forster (Lepidoptera: Nymphalidae), with the description of a new species from northeastern Brazil. Aust. Entomol. 56, 169–190. https://doi.org/10.1111/aen.12223 (2017).Article 

    Google Scholar 
    Bossart, J.L., Fetzner Jr., J.F. & Rawlins, J.E. Ghana Butterfly Biodiversity Project website. https://www.invertebratezoology.org/GhanaBfly/default.asp (2007).Butterflies and Moths of North America project. Butterflies and Moths of North America website. https://www.butterfliesandmoths.org/ (2021).Dauphin, D. & Dauphin, J. The Rio Grande Valley’s Nature Site website. http://www.thedauphins.net (2021).Eeles, P. UK Butterflies website. https://www.ukbutterflies.co.uk/index.php. (2021).Florida Museum of Natural History. Florida Museum website. https://www.floridamuseum.ufl.edu/ (2021).Khew, S. K. et al. Butterflies of Singapore website. https://butterflycircle.blogspot.com/ (2021).Kunte, K., Sondhi, S. & Roy, P. Butterflies of India, v. 3.24. Indian Foundation for Butterflies website. https://www.ifoundbutterflies.org (2021).Miller, S. & Morrison, C. Parasitoid-Caterpillar-Plant Interactions in the Americas website. https://caterpillars.myspecies.info/ (2021).National Biodiversity Network Trust. iNaturalistUK website. https://uk.inaturalist.org/ (2021).Nature Picture Library Limited. Nature Picture Library website. https://www.naturepl.com/blog/ (2021).Project Noah Team. Project Noah website. https://www.projectnoah.org/ (2021).Shiraiwa, K. Pteron World. The encyclopedia website of the butterflies. https://www.pteron-world.com/index.html (2021).Wagner, W. Lepidoptera and Their Ecology website. http://www.pyrgus.de/ (2021).Wahlberg, N. & Peña, C. Nymphalidae.net. website. http://www.nymphalidae.net/ (2021).Wikimedia Foundation, Inc. Wikimedia Commons website. https://commons.wikimedia.org/ (2021).Matsuura, M. Social Wasps of Japan in Color. (in Japanese) (Hokkaido university press 2015).IBM SPSS. SPSS Base 25.0 User’s Guide. (SPSS Inc., 2017). More

  • in

    Thermophiles and carbohydrate-active enzymes (CAZymes) in biofilm microbial consortia that decompose lignocellulosic plant litters at high temperatures

    Phyla Bdellovibrionota, Fusobacteriota, and Myxococcota were present in the green microbial mat but in negligible quantities in the brown mat. The unique phyla detected in the brown mat, but not in the green microbial mat, included Caldatribacteriota, Thermodesulfobacteriota, Dictyoglomota, Elusimicrobiota, Thermotogota, Candidatus Calescamantes, Fervidibacteria, Hydrothermae, GAL15 and TA06. The Candidatus Caldatribacterium (phyla Caldatribacteriota), earlier named OP9 was also detected in this work. Using single-cell and metagenome sequencing, data elucidated that Ca. Caldatribacterium conducts anaerobic sugar fermentation and exhibited diverse glycosyl hydrolases, including endoglucanase37.Cyanobacteria and Chloroflexota were the main identified phyla in the green microbial mat. Because the hot spring is almost stagnant, undisturbed, and the water surface temperature ( More

  • in

    Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation

    Jaiswal, S. K., Msimbira, L. A. & Dakora, F. D. Phylogenetically diverse group of native bacterial symbionts isolated from root nodules of groundnut (Arachis hypogaea L.) in South Africa. Syst. Appl. Microbiol. 40, 215–226. https://doi.org/10.1016/j.syapm.2017.02.002 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tahir, M., Lv, Y., Gao, L., Hallett, P. D. & Peng, X. Soil water dynamics and availability for citrus and peanut along a hillslope at the Sunjia Red Soil Critical Zone Observatory (CZO). Soil Tillage Res. 163, 110–118. https://doi.org/10.1016/j.still.2016.05.017 (2016).Article 

    Google Scholar 
    Xiaogang, L. The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. Int. J. Biol. Sci. https://doi.org/10.7150/ijbs.5579 (2013).Article 

    Google Scholar 
    Chen, M. et al. Dynamic succession of soil bacterial community during continuous cropping of peanut (Arachis hypogaea L.). PLoS ONE https://doi.org/10.1371/journal.pone.0101355 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, W. et al. Effects of continuous sugar beet cropping on rhizospheric microbial communities. Genes https://doi.org/10.3390/genes11010013 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Y. et al. Effect of continuous cropping on the rhizosphere soil and growth of common buckwheat. Plant. Prod. Sci. 23, 81–90. https://doi.org/10.1080/1343943X.2019.1685895 (2020).CAS 
    Article 

    Google Scholar 
    Meng, L. B. et al. Changes in soil microbial diversity and control of Fusarium oxysporum in continuous cropping cucumber greenhouses following biofumigation. Emir. J. Food Agric. 30, 644–653. https://doi.org/10.9755/ejfa.2018.v30.i8.1752 (2018).Article 

    Google Scholar 
    Li, X., Ding, C., Zhang, T. & Wang, X. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biol. Biochem. 72, 11–18. https://doi.org/10.1016/j.soilbio.2014.01.019 (2014).CAS 
    Article 

    Google Scholar 
    Wang, H. W. et al. Fungal endophyte Phomopsis liquidambari biodegrades soil resveratrol: A potential allelochemical in peanut monocropping systems. J. Sci. Food Agric. 99, 5899–5909. https://doi.org/10.1002/jsfa.9865 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Huang, L. et al. Plant-soil feedbacks and soil sickness: From mechanisms to application in agriculture. J. Chem. Ecol. 39, 232–242. https://doi.org/10.1007/s10886-013-0244-9 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Deng, J. J. et al. Autotoxicity of phthalate esters in tobacco root exudates: Effects on seed germination and seedling growth. Pedosphere 27, 1073–1082. https://doi.org/10.1016/s1002-0160(17)60374-6 (2017).CAS 
    Article 

    Google Scholar 
    Chen, S. L., Zhou, B. L., Lin, S. S., Li, X. & Ye, X. L. Accumulation of cinnamic acid and vanillin in eggplant root exudates and the relationship with continuous cropping obstacle. Afr. J. Biotechnol. 10, 2659–2665. https://doi.org/10.5897/AJB10.1338 (2011).CAS 
    Article 

    Google Scholar 
    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486. https://doi.org/10.1016/j.tplants.2012.04.001 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wu, L. K. et al. Comparative metagenomic analysis of rhizosphere microbial community composition and functional potentials under Rehmannia glutinosa consecutive monoculture. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19082394 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Galazka, A., Gawryjolek, K., Perzynski, A., Galazka, R. & Ksiezak, J. Changes in enzymatic activities and microbial communities in soil under long-term maize monoculture and crop rotation. Pol. J. Environ. Stud. 26, 39–46. https://doi.org/10.15244/pjoes/64745 (2017).CAS 
    Article 

    Google Scholar 
    Wu, L. K. et al. Modification of rhizosphere bacterial community structure and functional potentials to control Pseudostellaria heterophylla replant disease. Plant Dis. 104, 25–34. https://doi.org/10.1094/pdis-04-19-0833-re (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Becker, J., Rodibaugh, K., Hahn, D. & Nowlin, W. Bacterial community composition and carbon metabolism in a subtropical riverscape. Hydrobiologia 792, 209–226. https://doi.org/10.1007/s10750-016-3058-2 (2017).CAS 
    Article 

    Google Scholar 
    Zheng, Q. et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biol. Biochem. 136, 107521. https://doi.org/10.1016/j.soilbio.2019.107521 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berg, G. & Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yang, D., Liu, Y., Wang, Y., Gao, F. & Li, X. Effects of soil tillage, management practices, and mulching film application on soil health and peanut yield in a continuous cropping system. Front. Microbiol. 11, 570924. https://doi.org/10.3389/fmicb.2020.570924 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, J. et al. Variations of rhizospheric soil microbial communities in response to continuous Andrographis paniculata cropping practices. Bot. Stud. https://doi.org/10.1186/s40529-020-00295-1 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiong, W. et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biol. Biochem. 107, 198–207. https://doi.org/10.1016/j.soilbio.2017.01.010 (2017).CAS 
    Article 

    Google Scholar 
    Wu, L. et al. Barcoded pyrosequencing reveals a shift in the bacterial community in the rhizosphere and rhizoplane of Rehmannia glutinosa under consecutive monoculture. Int. J. Mol. Sci. 19, 850. https://doi.org/10.3390/ijms19030850 (2018).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Zhao, Q. et al. Long-term coffee monoculture alters soil chemical properties and microbial communities. Sci. Rep. https://doi.org/10.1038/s41598-018-24537-2 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dong, L. et al. High-throughput sequencing technology reveals that continuous cropping of American ginseng results in changes in the microbial community in arable soil. Chin. Med. https://doi.org/10.1186/s13020-017-0139-8 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dong, L., Xu, J., Feng, G., Li, X. & Chen, S. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci. Rep. https://doi.org/10.1038/srep31802 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Z. et al. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02269 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, L. et al. Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing. Sci. Rep. 6, 26601. https://doi.org/10.1038/srep26601 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yao, Q. et al. Dynamics of soil properties and fungal community structure in continuous-cropped alfalfa fields in Northeast China. PeerJ 7, 7125. https://doi.org/10.7717/peerj.7127 (2019).Article 

    Google Scholar 
    Zhu, B., Wu, J., Ji, Q., Wu, W. & Qin, L. Diversity of rhizosphere and endophytic fungi in Atractylodes macrocephala during continuous cropping. PeerJ 8, e8905. https://doi.org/10.7717/peerj.8905 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microb. 72, 1719–1728 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-sppressive bacteria. Science https://doi.org/10.1126/science.1203980 (2011).Article 
    PubMed 

    Google Scholar 
    Zhou, H. et al. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Sci. Total Environ. 651, 2281–2291. https://doi.org/10.1016/j.scitotenv.2018.09.336 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen, J., Gong, J. L. & Xu, M. G. Implications of continuous and rotational cropping practices on soil bacterial communities in pineapple cultivation. Eur. J. Soil Biol. 97, 103172. https://doi.org/10.1016/j.ejsobi.2020.103172 (2020).CAS 
    Article 

    Google Scholar 
    Li, W., Liu, Q. & Chen, P. Effect of long-term continuous cropping of strawberry on soil bacterial community structure and diversity. J. Integr. Agr. 17, 206–218. https://doi.org/10.1016/S2095-3119(18)61944-6 (2018).Article 

    Google Scholar 
    Liu, X. et al. Microbial community diversities and taxa abundances in soils along a seven-year gradient of potato monoculture using high throughput pyrosequencing approach. PLoS ONE 9, e86610–e86610. https://doi.org/10.1371/journal.pone.0086610 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiong, W. et al. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing. PLoS ONE 10, e0136946. https://doi.org/10.1371/journal.pone.0136946 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tan, Y. et al. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices. J. Basic Microb. 57, 337. https://doi.org/10.1002/jobm.201600464 (2017).CAS 
    Article 

    Google Scholar 
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364. https://doi.org/10.1890/05-1839 (2007).Article 
    PubMed 

    Google Scholar 
    Yang, Y. et al. Effects of microbiological fertilizer on rhizosphere soil fungus communities under long-term continuous cropping of protected Hami melon. Chin. J. App. Environ. Biol. https://doi.org/10.19675/j.cnki.1006-687x.2017.03014 (2018).Article 

    Google Scholar 
    Schoch, C. L. et al. The Ascomycota tree of life: A phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst. Biol. 58, 224–239. https://doi.org/10.1093/sysbio/syp020 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hayat, R., Ali, S., Amara, U., Khalid, R. & Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 60, 579–598. https://doi.org/10.1007/s13213-010-0117-1 (2010).Article 

    Google Scholar 
    Jann Lasse, G., Hurek, T., Wiebke, B. & Reinhold-Hurek, B. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis. Int. J. Syst. Evol. Microbiol. 66, 62. https://doi.org/10.1099/ijsem.0.000674 (2015).CAS 
    Article 

    Google Scholar 
    Ormeo-Orrillo, E. & Esperanza, M.-R. A genomotaxonomy view of the bradyrhizobium genus. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01334 (2019).Article 

    Google Scholar 
    Palaniappan, P., Chauhan, P. S., Saravanan, V. S., Anandham, R. & Sa, T. Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol. Fertil. Soils 46, 807–816. https://doi.org/10.1007/s00374-010-0485-5 (2010).Article 

    Google Scholar 
    Wang, H. et al. Impact of soybean nodulation phenotypes and nitrogen fertilizer levels on the rhizosphere bacterial community. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00750 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, M. X. et al. Streptomyces lydicusM01 regulates soil microbial community and alleviates foliar disease caused by Alternaria alternataon cucumbers. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00942 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. S. et al. Biological fertilizer containing Bacillus subtilis BY-2 for control of Sclerotinia sclerotiorum on oilseed rape. Crop Prot. https://doi.org/10.1016/j.cropro.2020.105340 (2020).Article 

    Google Scholar 
    Kim, M. J. et al. Enhancement of seed dehiscence by seed treatment with talaromyces flavus GG01 and GG04 in ginseng (Panax ginseng). Plant Pathol. J. 33, 1–8. https://doi.org/10.5423/ppj.Oa.06.2016.0146 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, W. et al. Occurrence and characterization of fungi and mycotoxins in contaminated medicinal herbs. Toxins 12, 30. https://doi.org/10.3390/toxins12010030 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Naeem, M. et al. Characterization and pathogenicity of fusarium species associated with soybean pods in maize/soybean strip intercropping. Pathogens 8, 117. https://doi.org/10.3390/pathogens8040245 (2019).CAS 
    Article 

    Google Scholar 
    Desjardins, A. Gibberella from A (Venaceae) to Z (eae). Ann. Rev. Phytopathol. 41, 177–198. https://doi.org/10.1146/annurev.phyto.41.011703.115501 (2003).CAS 
    Article 

    Google Scholar 
    Mingna, C. et al. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut: Pathogenic and beneficial fungi were selected. PLoS ONE 7, e40659. https://doi.org/10.1371/journal.pone.0040659 (2012).CAS 
    Article 

    Google Scholar 
    Arafat, Y. et al. Long-term monoculture negatively regulates fungal community composition and abundance of tea orchards. Agronomy https://doi.org/10.3390/agronomy9080466 (2019).Article 

    Google Scholar 
    Zhou, X. G. & Wu, F. Z. Changes in soil chemical characters and enzyme activities during continuous monocropping of cucumber (Cucumis sativus). Pak. J. Bot. 47, 691–697 (2015).CAS 

    Google Scholar 
    Shao, S., Chen, M., Liu, W., Hu, X. & Li, Y. Long-term monoculture reduces the symbiotic rhizobial biodiversity of peanut. Syst. Appl. Microbiol. 43, 126101. https://doi.org/10.1016/j.syapm.2020.126101 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Y., Zheng, Y. J., Xia, P. G., Xun, L. L. & Liang, Z. S. Impact of continuous Panax notoginseng plantation on soil microbial and biochemical properties. Sci. Rep. https://doi.org/10.1038/s41598-019-49625-9 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, L. C. et al. Comparison of soil enzyme activity and microbial community structure between rapeseed-rice and rice-rice plantings. Int. J. Agric. Biol. 20, 1801–1808. https://doi.org/10.17957/ijab/15.0692 (2018).CAS 
    Article 

    Google Scholar 
    Hansen, J. C., Schillinger, W. F., Sullivan, T. S. & Paulitz, T. C. Soil microbial biomass and fungi reduced with canola introduced into long-term monoculture wheat rotations. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01488 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guo, Z. B. et al. Fertilization regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystem. Appl. Soil. Ecol. https://doi.org/10.1016/j.apsoil.2020.103510 (2020).Article 

    Google Scholar 
    Zhao, H. L. et al. Effect of different straw return modes on soil bacterial community, enzyme activities and organic carbon fractions. Soil Sci. Soc. Am. J. 83, 638–648. https://doi.org/10.2136/sssaj2018.03.0101 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Agomoh, I. V., Drury, C. F., Phillips, L. A., Reynolds, W. D. & Yang, X. Increasing crop diversity in wheat rotations increases yields but decreases soil health. Soil Sci. Soc. Am. J. https://doi.org/10.1002/saj2.20000 (2020).Article 

    Google Scholar 
    Liu, Z. X. et al. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition. Soil Tillage Res. https://doi.org/10.1016/j.still.2019.104503 (2020).Article 

    Google Scholar 
    Powlson, D. S., Prookes, P. C. & Christensen, B. T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 19, 159–164. https://doi.org/10.1016/0038-0717(87)90076-9 (1987).CAS 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. https://doi.org/10.1093/bioinformatics/btr507 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. https://doi.org/10.1038/nmeth.2604 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277. https://doi.org/10.1111/mec.12481 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bao, S. Soil and Agricultural Chemistry Analysis (Agriculture Press Publisher, 2013).
    Google Scholar 
    Guan, S. Y., Zhang, D. & Zhang, Z. Soil Enzyme and its Research Methods (Springer, 1986).
    Google Scholar 
    Sinha, A. K. Colorimetric assay of catalase. Anal. Biochem. 47, 389–394. https://doi.org/10.1016/0003-2697(72)90132-7 (1972).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schinner, F. & Mersi, W. V. Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biol. Biochem. 22, 511–515. https://doi.org/10.1016/0038-0717(90)90187-5 (1990).CAS 
    Article 

    Google Scholar 
    Tabatabai, M. A. & Bremner, J. M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1, 301–307. https://doi.org/10.1016/0038-0717(69)90012-1 (1969).CAS 
    Article 

    Google Scholar  More

  • in

    Eucalyptus obliqua tall forest in cool, temperate Tasmania becomes a carbon source during a protracted warm spell in November 2017

    Site descriptionWarra Supersite, (Lat: 43° 5′ 42ʺ S; Long: 146° 39′ 16ʺ E) is located on a floodplain of the Huon River within the Warra Long Term Ecological Research site (https://warra.com/) 60 km southwest of Hobart, Tasmania. The forest at the Supersite is a Eucalyptus obliqua tall forest with a canopy height of 50–55 m, overtopping a 15–40 m tall secondary layer of rainforest and wet sclerophyll tree species. Ferns dominate the ground layer. The forest is very productive with an aboveground biomass of 790 tonnes/ha16 and a leaf area index of 5.7 m2/m247.The Supersite is within the Tasmanian Wilderness World Heritage Area (TWWHA). That part of the TWWHA experiences infrequent, but sometimes intense, wildfire. Except for a small proportion of mature ( > 250 years-old) E. obliqua trees, the current forest resulted from seedling regeneration following the last major wildfire in that part of the landscape in 1898. No timber harvesting has ever been done in the forest at the Supersite.The climate at Warra is classified as temperate, with no dry season and a mild summer48. Mean annual rainfall measured at the nearby Warra Climate Station (Bureau of Meteorology Station 097024) is 1736 mm and the mean daily temperature is 14 °C and 5.6 °C in January and July, respectively. The soil at the site is a Kurosolic Redoxic Hydrosol16.Analysis of historical heatwaves in southern TasmaniaDaily maximum temperature records from the Bureau of Meteorology station at Cape Bruny Lighthouse (station number 94010) were extracted from the Bureau of Meteorology’s online climate data portal (http://www.bom.gov.au/climate/data). Cape Bruny Lighthouse is one of the 112 stations in the ACORN-SAT network of Australia’s reference sites for monitoring climate change49. The station provides a record of daily maximum temperature measurements commencing in 1923 and spanning almost a century. It is the southern-most station in the ACORN-SAT network; is 59 km south-east of the Warra Flux Site; and bounds the south-eastern extent of E. obliqua tall forest in Tasmania.Missing temperature measurements represented less than 0.6% of the 35,795 records collected at Cape Bruny Lighthouse between January 1st 1923 and December 31st 2020. The missing measurements were gap-filled using predicted values calculated from linear regression models constructed from measurements made at nearby Bureau of Meteorology stations (listed in order of proximity to Cape Bruny Lighthouse and priority for gap-filling)—Cape Bruny Automatic Weather Station (1997-present), Hastings Chalet (1947–1987) and Hobart-Ellerslie Road (1892-present).Average, standard deviation and 90th percentiles of daily maximum temperature were calculated for each calendar day of the year. Further analysis of heatwaves was restricted to the period between the beginning of August and the end of February. This period bounds the growing season of the forest at the Warra Supersite when there is normally a net carbon gain by the forest (Wardlaw unpublished data). Heatwaves were identified as three or more consecutive days with maximum temperatures that met or exceeded the 90th percentile value sensu Perkins and Alexander9. For each heatwave event that was identified, the following three statistics were calculated: (1) average daily maximum temperature during the heatwave; (2) summed departures (as standard deviations) from average daily maximum temperature during the heatwave; (3) summed departures (as standard deviations) from average daily maximum temperature of the 21 day period centred on the middle day of the heatwave. The November 2017 heatwave, as described by these three statistics, was ranked against all the other heatwave events identified between 1923 and 2020 at Cape Bruny Lighthouse. In addition, the z-score was calculated to measure the magnitude of the departure of the average daily maximum temperatures during the November 2017 heatwave from the long-term average of this 21-day period. Those statistics were also calculated for the same period in 2016.Weather conditions at Warra Supersite during the 2017 warm spellFour attributes of weather were used to describe the November 2017 warm spell—air temperature, vapor pressure deficit (calculated from temperature and relative humidity), incoming shortwave radiation and soil moisture. Air temperature and relative humidity were measured using an HMP155A probe (Vaisala, Finland) and incoming shortwave radiation was measured using a CNR4 radiometer (Kipp and Zonen, The Netherlands). Both instruments were mounted 80-m above ground level at the top of the Warra Flux tower. Data was processed to 30-min averages and logged onto a CR3000 datalogger (Campbell Scientific, Logan, USA).Soil moisture was measured by time-domain reflectometry using two CS616 soil moisture probes (Campbell Scientific, Logan, USA) each installed at a depth of 20 cm. These probes were installed in two pits approximately 40 m west of the tower. Soil moisture data were processed to 30-min averages and logged onto a CR1000 datalogger (Campbell Scientific, Logan USA).Turbulent fluxes at Warra Supersite during the November 2017 warm spellMeasurement of turbulent fluxes (carbon, water and energy) were done by eddy covariance (EC) using a closed-path infra-red gas analyser (Model EC155, Campbell Scientific Inc., Logan, USA) to measure CO2 and H2O concentrations and a 3-D sonic anemometer (Model CSAT3A, Campbell Scientific Inc, Logan, USA) to measure turbulent wind vectors and virtual air temperature. The sonic anemometer and infra-red gas analyser were mounted at 80-m above the ground at the top of the Warra Flux tower. Storage of CO2 and H2O beneath the forest canopy was measured by a profile system (Model AP200, Campbell Scientific Inc, Logan, USA ), with sampling heights of 2, 4, 8, 16, 30, 42, 54, 70 m. Temperature sensors in aspirated shields (Model 110-ST, Apogee Instruments, Logan, USA) were co-located with the CO2/H2O sample inlets of the profile system. High frequency (10 Hz) measurements of turbulent fluxes were processed to 30-min averages in a datalogger (Model CR3000, Campbell Scientific, Logan USA). High frequency (2 Hz) of CO2 and water concentration measurements were processed to 15-s averages sequentially for each profile sample height in a datalogger (Model CR1000, Campbell Scientific, Logan, USA). Thus, each inlet was sampled for a 15 s interval every 2 min. The rate at which sub-canopy storage of CO2 changed was calculated from changes in the quasi-instantaneous (2-min) vertical profile concentrations beneath the tower at the beginning and end of each 30-min flux averaging period using the method of McHugh50.Soil heat flux (SHF) was measured to enable calculation of energy balance that was needed to partition energy fluxes into latent and sensible heat. SHF was measured using five SHF plates (Model HFP01SC, Hukseflux, Delft, The Netherlands) inserted in the soil at depth 8 cm adjacent to the two pits in which the soil moisture probes were installed. Each of the five SHF plates were allocated to one of the two soil pits in a 2–3 split. Changes in soil temperature was measured by an averaging thermocouple (Model TCAV, Campbell Scientific Inc, Logan, USA) inserted into the soil above each SHF plate at depths of 2 and 6 cm. Soil moisture measurements at 20 cm depth were as described previously. Heat flux, soil temperature and soil moisture data were processed to 30-min averages on a datalogger (Model CR1000, Campbell Scientific Inc, Logan, USA).Raw 30-min flux, CO2 storage and climate data were processed by the standard OzFlux QA/QC processing stream51 using PyFluxPro Version 1.0.2 software. Fluxes (carbon and energy) adjusted for storage were computed at the mid-stage (level 3). At the final stage of data processing (level 6), gap-filled net ecosystem exchange (NEE) data were partitioned into gross primary productivity (GPP) and ecosystem respiration (ER) using the u*-filtered night-time CO2 flux records to calculate ER with the SOLO artificial neural network algorithm as described in51. The standard conventions of the global flux network were adopted in partitioning NEE as described in52.The full period between 10 and 30th November 2017 was defined as the November 2017 warm spell. The climate and fluxes measured during this period were compared with measurements of those made during the same calendar days of the preceding year, 2016. The carbon fluxes measured in the 10 weeks before (1 September–9 November) and the month after (1–31 December) the 2017 warm spell period were also compared with the same periods in 2016. This was done to ascertain whether changes in carbon fluxes during the 2017 warm spell we not due to differences in antecedent weather conditions and, whether or not differences in carbon fluxes arising from the warm spell persisted after the warm spell.Data analysisFor each day of the 10–30 November period, daily sums were calculated for measurements of carbon fluxes and incoming shortwave radiation (Fsd), while daily averages were calculated for air temperature, VPD and soil moisture. Quantile plots, done for Ta and VPD, used 30-min data during daytime hours (when Fsd  > 0). The significance of differences in measurements during the 10–30 November period among the two years of each variable were tested by analysis of variance. Tests were first done to confirm the data for each variable were normally distributed and between-group variances were homoscedastic. Log-transformation was used to correct skewness in the VPD data. Soil moisture data were strongly skewed, and transformation was unable to correct. For this variable, the Kruskal–Wallis method was used to test the significance of differences in medians among the two years. These analyses were repeated for the 10 weeks (1st September–9th November) leading up to the warm spell and the 4 weeks (1st–31st December) following the warm spell to examine antecedent conditions and subsequent recovery from the warm spell, respectively.The energy fluxes were examined for evidence of coupling between GPP, transpiration and canopy conductance. Closure of the energy balance was first determined for the two periods to ensure comparability of the energy fluxes for the 2017 warm spell period and the corresponding period in 2016. This was done by firstly resampling the 30-min data and calculating 2-hourly averages of latent heat flux (Fe), sensible heat flux (Fh), net radiation (Fn) and ground heat flux (Fg), then fitting linear regressions of Fe + Fh against Fn–Fg for dates encompassing the warm spell in each of two years. Peak energy storage of the biomass, Fb, in the forest at Warra was estimated as 40 W m−2 using the method described in17. That estimate used the value of LAI of 5.72 based on the average of periodic measurements of LAI at Warra reported in47 and the value of 22.0 for the quadratic mean radius at breast height (1.3 m) calculated from tree measurements in a 1-ha plot adjacent to the Warra Flux tower (detailed in47). The ratio of energy storage in the biomass and ground heat flux at their respective daily maxima was calculated, assuming their respective diurnal peaks coincided. This ratio was then applied to each 2-h average of ground heat flux measured in the warm spell period in 2017 and the corresponding period in 2016. Available energy was recalculated using the formula Fn–(Fg + Fb). Analysis of variance was used to test the significance of differences between the 2017 warm spell and the corresponding period in 2016 of each component energy fluxes (Fn, Fe, Fh and Fg) for each of the twelve, 2-h periods, in the day. Kruskal–Wallis rank test was used if a variable had a non-normal distribution or exhibited heteroscedasticity. The Bowen ratio, which is the ratio between Fh and Fe, was calculated for each 2-h period during daytime hours. The 2-h average data were non-normal and heteroscedastic so testing the significance of differences in daytime Bowen ratio between the warm spell and comparison period was done using 2-sample t-test with unequal variance.Latent heat flux was converted to evapotranspiration by dividing the measured latent heat flux by the latent heat of vaporisation of water. Evapotranspiration was used as a proxy of transpiration on the assumption that evaporation was a minor component of evapotranspiration in the tall E. obliqua forest at Warra based on measurements of soil and litter evaporation in similar forests by23. An estimate of total canopy conductance of sunlit leaves, Gt, was calculated from transpiration (E) and vapor pressure deficit, VPD, using the Skelton et al.53 adaptation of the method developed by Hogg and Hurdle54, whereby:$${text{G}}_{{text{t}}} = (upalpha /1000){text{E}}/{text{VPD}}$$The atmospheric pressure of water vapor, α, is equivalent to ρwGvTk, where ρw is the density of water (c 1000 kg m−3), Gv is the universal gas constant for water vapor (0.462 m3 kPa kg−1 K−1) and Tk is air temperature (in K = Ta + 273.15). Gt (in mmol m−2 s−1) was calculated for each 2-h period during the 2017 warm spell and the same calendar days in 2016 using each period’s corresponding values of E, VPD and Ta. Records were excluded if rain fell during the 2-h period. The significance of differences in daytime canopy conductance between the 2017 warm spell and the 2016 comparison period was tested using a two-sample t-test as the data were strongly skewed.The diurnal patterns of GPP, ER and canopy conductance were compared with incoming shortwave radiation, air temperature and vapour pressure deficit. Each 30-min record of the six variables was recoded to its corresponding 2-h time interval. Analysis of variance was used to test for significance of differences between the warm spell and comparison period for each of the twelve 2-h diurnal periods of the six variables. Kruskal–Wallis rank test was used in the data were non-normal or heteroscedastic. Time series plots of diurnal 2-hourly averages for each of the six variables were plotted and visually compared. More