More stories

  • in

    Understanding calcium functionality by examining growth characteristics and structural aspects in calcium-deficient grapevine

    de Bang, T. C., Husted, S., Laursen, K. H., Persson, D. P. & Schjoerring, J. K. The molecular-physiological functions of mineral macronutrients and their consequences for deficiency symptoms in plants. New Phytol. 229, 2446–2469 (2021).PubMed 

    Google Scholar 
    White, P. J. & Brown, P. H. Plant nutrition for sustainable development and global health. Ann. Bot. 105, 1073–1080 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hirschi, K. D. The calcium conundrum. Both versatile nutrient and specific signal. Plant Physiol. 136, 2438–2444 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hepler, P. K. Calcium: A central regulator of plant growth and development. Plant Cell 17, 2142–2155 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marschner, H. Mineral Nutrition of Higher Plants (Academic Press, 2011).
    Google Scholar 
    Jones, R. J. W. & Lunt, O. R. The function of calcium in plants. Bot. Rev. 33, 407–426 (1967).CAS 

    Google Scholar 
    White, P. J. & Broadley, M. R. Calcium in plants. Ann. Bot. 92, 487–511 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spehar, C. R. & Galwey, N. W. Screening soya beans [Glycine max (L.) Merill] for calcium efficiency by root growth in low-Ca nutrient solution. Euphytica 94, 113–117 (1997).
    Google Scholar 
    Schulte-Baukloh, C. & Fromm, J. The effect of calcium starvation on assimilate partitioning and mineral distribution of the phloem. J. Exp. Bot. 44, 1703–1707 (1993).CAS 

    Google Scholar 
    Duan, S. et al. Differential regulation of enzyme activities and physio-anatomical aspects of calcium nutrition in grapevine. Sci. Hortic. 272, 109423 (2020).CAS 

    Google Scholar 
    Bondada, B. & Syvertsen, J. P. Leaf chlorophyll, net gas exchange, and chloroplast ultrastructure in citrus leaves of different nitrogen status. Tree Physiol. 23, 553–559 (2003).CAS 
    PubMed 

    Google Scholar 
    Wind, C., Arend, M. & Fromm, J. Potassium-dependent cambial growth in poplar. Plant Biol. 6, 30–37 (2004).CAS 
    PubMed 

    Google Scholar 
    Kirkby, E. A. & Pilbeam, D. J. Calcium as a plant nutrient. Plant Cell Environ. 7, 397–405 (1984).CAS 

    Google Scholar 
    Song, W.-P., Chen, W., Yi, J.-W., Wang, H.-C. & Huang, X.-M. Ca distribution pattern in Litchi fruit and pedicel and impact of Ca channel inhibitor, La3+. Front. Plant Sci. 8, 2228. https://doi.org/10.3389/fpls.2017.02228 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Conn, S. & Gilliham, M. Comparative physiology of elemental distributions in plants. Ann. Bot. 105, 1081–1102 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Broadley, M. R. et al. Variation in the shoot calcium content of angiosperms. J. Exp. Bot. 54, 1431–1446 (2003).CAS 
    PubMed 

    Google Scholar 
    Shikanai, Y. et al. Arabidopsis thaliana PRL1 is involved in low-calcium tolerance. Soil Sci. Plant Nutr. 61, 951–956 (2015).CAS 

    Google Scholar 
    Burstrom, H. G. Calcium and plant growth. Biol. Rev. 43, 287–316 (1968).CAS 

    Google Scholar 
    Hecht-Buchholz, Ch. Calcium deficiency and plant ultrastructure. Commun. Soil Sci. Plant Anal. 10, 67–81 (1979).CAS 

    Google Scholar 
    Fink, S. D. The micromorphological distribution of bound calcium in needles of Norway spruce [Picea abies (L.) Karst.]. New Phytol. 119, 33–40 (1991).CAS 
    PubMed 

    Google Scholar 
    Skok, J. Effect of the form of the available nitrogen on the calcium deficiency symptoms in the bean plant. Plant Physiol. 16, 145–157 (1941).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    de Aguiar Santiago, F. L., Santiago, F. E. M., Filho, J. F. L. & Ratke, R. F. Plant growth and symptomatology of macronutrient deficiencies in cowpea plants. Comun. Sci. 9, 503–508 (2018).
    Google Scholar 
    Gao, H., Wu, X., Zorrilla, C., Vega, S. E. & Palta, J. P. Fractionating of calcium in tuber and leaf tissues explains the calcium deficiency symptoms in potato plant overexpressing CAX1. Front. Plant Sci. 10, 1793. https://doi.org/10.3389/fpls.2019.01793 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chapman, H. D. Calcium. In Diagnostic Criteria for Plants and Soil (ed. Chapman, H. D.) 65–93 (University of California Press, 1966).
    Google Scholar 
    Bondada, B., Harbertson, E., Shrestha, P. M. & Keller, M. Temporal extension of ripening beyond its physiological limits imposes physical and osmotic challenges perturbing metabolism in grape (Vitis vinifera L.) berries. Sci. Hortic. 219, 135–143 (2017).CAS 

    Google Scholar 
    Robertson, D. Modulating plant calcium for better nutrition and stress tolerance. ISRN Bot. 2013, 952043 (2013).
    Google Scholar 
    Martins, T. V., Evans, M. J., Woolfenden, H. C. & Morris, R. J. Towards the physics of calcium signaling in plants. Plants 2, 541–588 (2013).CAS 
    PubMed 

    Google Scholar 
    Gupta, B. L. & Hall, T. A. Electron probe X-ray analysis of calcium. Ann. N.Y. Acad. Sci. 307, 28–51 (1978).CAS 
    ADS 

    Google Scholar 
    Ramalho, J. C., Rebelo, M. C., Santos, M. E., Antunes, M. L. & Nunes, M. A. Effects of calcium deficiency on Coffea arabica. Nutrient changes and correlation of calcium levels with some photosynthetic parameters. Plant Soil 172, 87–96 (1995).
    Google Scholar 
    Liu, Y., Riaz, M., Yan, L., Zeng, Y. & Cuncang, J. Boron and calcium deficiency disturbing the growth of trifoliate rootstock seedlings (Poncirus trifoliate L.) by changing root architecture and cell wall. Plant Physiol. Biochem. 144, 345–354 (2019).CAS 
    PubMed 

    Google Scholar 
    Bondada, B., Oosterhuis, D. M., Wullschleger, S. D., Kim, K. S. & Harris, W. H. Anatomical considerations related to photosynthesis in cotton (Gossypium hirsutum L.) leaves, bracts, and the capsule wall. J. Exp. Bot. 270, 111–118 (1994).
    Google Scholar 
    Bondada, B. & Syvertsen, J. P. Concurrent changes in net CO2 assimilation and chloroplast ultrastructure in nitrogen deficient citrus leaves. Environ. Exp. Bot. 54, 41–48 (2005).CAS 

    Google Scholar 
    Atkinson, C. J., Mansfield, T. A., Kean, A. M. & Davies, W. J. Control of stomatal aperture by calcium in isolated epidermal tissue and whole leaves of Commelina communis L. New Phytol. 111, 9–17 (1989).CAS 

    Google Scholar 
    Martinez, H. E. P. et al. Leaf and stem anatomy of cherry tomato under calcium and magnesium deficiencies. Braz. Arch. Biol. Technol. 63, e20180670 (2020).CAS 

    Google Scholar 
    Bondada, B. Anomalies in structure, growth characteristics, and nutritional composition as induced by 2, 4-D drift phytotoxicity in grapevine (Vitis vinifera L.) leaves and clusters. J. Am. Soc. Hortic. Sci. 136, 165–176 (2011).CAS 

    Google Scholar 
    Bondada, B. Micromorpho-anatomical examination of 2, 4-D phytotoxicity in grapevine (Vitis vinifera L.) leaves. J. Plant Growth Regul. 30, 185–198 (2011).CAS 

    Google Scholar 
    Finger, A. T., de Bastos, A. A., Ferrarese-Filho, O. & Lucio, F. M. L. Role of calcium on phenolic compounds and enzymes related to lignification in soybean (Glycine max L.) root growth. Plant Growth Regul. 49, 69–76 (2006).
    Google Scholar 
    Davis, D. E. Some effects of calcium deficiency on the anatomy of Pinus taeda. Am. J. Bot. 36, 276–282 (1949).CAS 

    Google Scholar 
    Nightingale, G. T., Addoms, R. M., Robbins, W. R. & Schemerhorn, L. G. Effect of calcium deficiency on nitrate absorption and on metabolism in tomato. Plant Physiol. 6, 605–630 (1931).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Day, D. Some chemical aspects of calcium deficiency effects on Pisum sativum. Plant Physiol. 10, 811–816 (1935).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lautner, S. & Fromm, J. Calcium-dependent physiological processes in trees. Plant Biol. 12, 268–274 (2010).CAS 
    PubMed 

    Google Scholar 
    Fromm, J. Wood formation in trees in relation to calcium and potassium nutrition. Tree Physiol. 30, 1140–1147 (2010).CAS 
    PubMed 

    Google Scholar 
    Bondada, B. Technical Advance: Novel, simple, fast, and safe approaches to visualizing fine cellular structures in free-hand sections of stem, leaf, and fruit using optical microscopy. Curr. Bot. 3, 11–22 (2012).
    Google Scholar 
    Venning, F. D. The influence of major mineral nutrient deficiencies on growth and tissue differentiation in the hypocotyl of marglobe tomato. Phytomorphology 3, 315–326 (1953).CAS 

    Google Scholar 
    Garrison, R. The growth and development of internodes in Helianthus. Bot. Gaz. 134, 246–255 (1973).
    Google Scholar 
    Sai, J. & Johnson, C. H. Dark-stimulated calcium ion fluxes in the chloroplast stroma and cytosol. Plant Cell 14, 1279–1291 (2002).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Dingenen, J., Blomme, J., Gonzalez, N. & Inzé, D. Plants grow with a little help from their organelle friends. J. Exp. Bot. 67, 6267–6281 (2016).PubMed 

    Google Scholar 
    Bondada, B. & Oosterhuis, D. M. Morphometric analysis of chloroplasts of cotton leaf and fruiting organs. Biol. Plant. 47, 281–284 (2003).
    Google Scholar 
    Hall, J. D., Barr, R., Al-Abbas, A. H. & Crane, F. L. The Ultrastructure of chloroplasts in mineral-deficient maize leaves. Plant Physiol. 50, 404–409 (1972).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Larcher, W., Lütz, C., Nagele, M. & Bodner, M. Photosynthetic functioning and ultrastructure of chloroplasts in stem tissue of Fagus sylvatica. J. Plant Physiol. 132, 731–737 (1988).CAS 

    Google Scholar 
    Pfanz, H., Aschan, G., Langenfeld-Heyser, R., Wittmann, C. & Loose, M. Ecology and ecophysiology of tree stems: Corticular and wood photosynthesis. Naturwissenschaften 89, 147–162 (2002).CAS 
    PubMed 
    ADS 

    Google Scholar 
    Day, D. Some effects of calcium deficiency on Pisum sativum. Plant Physiol. 4, 493–506 (1929).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rangnekar, P. Effect of calcium deficiency in the carbon metabolisms in photosynthesis and respiration in tomato leaf. Plant Soil 42, 565–583 (1975).CAS 

    Google Scholar 
    Rorison, I. H. & Robinson, D. Calcium as an environmental variable. Plant Cell Environ. 7, 381–390 (1984).CAS 

    Google Scholar 
    Epstein, E. Mineral Nutrition of Plants. Principles and Perspectives (Wiley, 1972).
    Google Scholar 
    Adhikari, T., Sarkar, D., Mashayekhi, H. & Xing, B. Growth and enzymatic activity of maize (Zea mays L.) plant: Solution culture test for copper dioxide nano particles. J. Plant Nutr. 39, 99–115 (2016).CAS 

    Google Scholar 
    Wu, X. et al. Boron deficiency in trifoliate orange induces changes in pectin composition and architecture of components in root cell walls. Front. Plant Sci. 8, 1882. https://doi.org/10.3389/fpls.2017.01882 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lloret, P. G. & Casero, P. J. Lateral root initiation. In Plant Roots: The Hidden Half (eds Waisel, Y. et al.) 198–241 (Marcel Dekker Inc, 2002).
    Google Scholar 
    Lynch, J. P. & Brown, K. M. Topsoil foraging: An architectural adaptation of plants to low phosphorus availability. Plant Soil 237, 225–237 (2001).CAS 

    Google Scholar 
    Mazen, A. M. A., Zhang, D. & Franceschi, V. R. Calcium oxalate formation in Lemna minor L.: Physiological and ultrastructural aspects of high capacity calcium sequestration. New Phytol. 161, 435–448 (2003).
    Google Scholar 
    Xie, Z. S., Forney, C. F., Xu, W. P. & Wang, S. P. Effects of root restriction on ultrastructural variation of phloem and phloem parenchyma cells in grape berry. Hortic. Sci. 44, 1334–1339 (2009).
    Google Scholar 
    Franceschi, V. R. Calcium oxalate formation is a rapid and reversible process in Lemna minor L. Protoplasma 148, 130–139 (1989).
    Google Scholar 
    Volk, G. M., Lynch-Holm, V. J., Kostman, T. A., Goss, L. J. & Francesch, V. R. The Role of druse and raphide calcium oxalate crystals in tissue calcium regulation in Pistia stratiotes leaves. Plant Biol. 4, 34–45 (2002).CAS 

    Google Scholar 
    Cherel, I., Lefoulon, C., Boeglin, M. & Sentenac, H. Molecular mechanisms involved in plant adaptation to low K(+) availability. J. Exp. Bot. 65, 833–848 (2014).CAS 
    PubMed 

    Google Scholar 
    Poni, S. & Intrieri, C. Grapevine photosynthesis: effects linked to light radiation and leaf age. Adv. Hortic. Sci. 15, 5–15 (2001).
    Google Scholar 
    Zhu, L., Wang, S., Yang, T., Zhang, C. & Xu, W. Vine growth and nitrogen metabolism of ‘Fujiminori’ grapevines in response to root restriction. Sci. Hortic. 107, 143–149 (2006).
    Google Scholar 
    Schichnes, D., Nemson, J., Sohlberg, L. & Ruzin, S. E. Microwave protocols for paraffin microtechnique and in situ localization in plants. Microsc. Microanal. 4, 491–496 (1998).CAS 
    PubMed 
    ADS 

    Google Scholar  More

  • in

    Bifidobacterium castoris strains isolated from wild mice show evidence of frequent host switching and diverse carbohydrate metabolism potential

    Turroni F, van Sinderen D, Ventura M. Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol. 2011;149:37–44.CAS 
    PubMed 

    Google Scholar 
    O’Callaghan A, van Sinderen D. Bifidobacteria and their role as members of the human gut microbiota. Front Microbiol. 2016;7:925.PubMed 
    PubMed Central 

    Google Scholar 
    Ferrario C, Milani C, Mancabelli L, Lugli GA, Duranti S, Mangifesta M, et al. Modulation of the eps-ome transcription of bifidobacteria through simulation of human intestinal environment. FEMS Microbiol Ecol. 2016;92:fiw056.PubMed 

    Google Scholar 
    Sayers EW, Beck J, Brister JR, Bolton EE, Canese K, Comeau DC, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2020;48:D9–D16.CAS 
    PubMed 

    Google Scholar 
    Bottacini F, Medini D, Pavesi A, Turroni F, Foroni E, Riley D, et al. Comparative genomics of the genus Bifidobacterium. Microbiology. 2010;156:3243–54.CAS 
    PubMed 

    Google Scholar 
    Turroni F, Duranti S, Bottacini F, Guglielmetti S, Van Sinderen D, Ventura M. Bifidobacterium bifidum as an example of a specialized human gut commensal. Front Microbiol. 2014;5:437.PubMed 
    PubMed Central 

    Google Scholar 
    Bottacini F, Motherway MO, Kuczynski J, O’Connell KJ, Serafini F, Duranti S, et al. Comparative genomics of the Bifidobacterium breve taxon. BMC Genomics. 2014;15:170.PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Lugli GA, Duranti S, Turroni F, Bottacini F, Mangifesta M, et al. Genomic encyclopedia of type strains of the genus Bifidobacterium. Appl Environ Microbiol. 2014;80:6290–302.PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Lugli GA, Duranti S, Turroni F, Mancabelli L, Ferrario C, et al. Bifidobacteria exhibit social behavior through carbohydrate resource sharing in the gut. Sci Rep. 2015;5:15782.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L, Ferrario C, et al. Genomics of the genus Bifidobacterium reveals species-specific adaptation to the glycan-rich gut environment. Appl Environ Microbiol. 2016;82:980–91.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Moeller AH, Caro-Quintero A, Mjungu D, Georgiev AV, Lonsdorf EV, Muller MN, et al. Cospeciation of gut microbiota with hominids. Science. 2016;353:380–2.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Groussin M, Mazel F, Sanders JG, Smillie CS, Lavergne S, Thuiller W, et al. Unraveling the processes shaping mammalian gut microbiomes over evolutionary time. Nat Commun. 2017;8:14319.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gaulke CA, Arnold HK, Humphreys IR, Kembel SW, O’Dwyer JP, Sharpton TJ. Ecophylogenetics clarifies the evolutionary association between mammals and their gut microbiota. mBio. 2018;9:e01348–18.PubMed 
    PubMed Central 

    Google Scholar 
    Youngblut ND, Reischer GH, Walters W, Schuster N, Walzer C, Stalder G, et al. Host diet and evolutionary history explain different aspects of gut microbiome diversity among vertebrate clades. Nat Commun. 2019;10:2200.PubMed 
    PubMed Central 

    Google Scholar 
    Lozupone CA, Hamady M, Cantarel BL, Coutinho PM, Henrissat B, Gordon JI, et al. The convergence of carbohydrate active gene repertoires in human gut microbes. Proc Natl Acad Sci USA. 2008;105:15076–81.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, et al. Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA. 2006;103:15611–6.PubMed 
    PubMed Central 

    Google Scholar 
    Moeller AH, Suzuki TA, Phifer-Rixey M, Nachman MW. Transmission modes of the mammalian gut microbiota. Science. 2018;362:453–7.CAS 
    PubMed 

    Google Scholar 
    Browne HP, Almeida A, Kumar N, Vervier K, Adoum AT, Viciani E, et al. Host adaptation in gut Firmicutes is associated with sporulation loss and altered colonisation patterns. 2020. https://www.biorxiv.org/content/10.1101/2020.09.09.289504v1.Muegge BD, Kuczynski J, Knights D, Clemente JC, Gonzalez A, Fontana L, et al. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332:970–4.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Suzuki TA. Links between natural variation in the microbiome and host fitness in wild mammals. Integr Comp Biol. 2017;57:756–69.CAS 
    PubMed 

    Google Scholar 
    McFall-Ngai M, Hadfield MG, Bosch TC, Carey HV, Domazet-Loso T, Douglas AE, et al. Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci USA. 2013;110:3229–36.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lugli GA, Alessandri G, Milani C, Mancabelli L, Ruiz L, Fontana F, et al. Evolutionary development and co-phylogeny of primate-associated bifidobacteria. Environ Microbiol. 2020;22:3375–93.PubMed 

    Google Scholar 
    Lugli GA, Mancino W, Milani C, Duranti S, Mancabelli L, Napoli S, et al. Dissecting the evolutionary development of the species Bifidobacterium animalis through comparative genomics analyses. Appl Environ Microbiol. 2019;85:e02806–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lugli GA, Duranti S, Albert K, Mancabelli L, Napoli S, Viappiani A, et al. Unveiling genomic diversity among members of the species Bifidobacterium pseudolongum, a widely distributed gut commensal of the animal kingdom. Appl Environ Microbiol. 2019;85:e03065–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Milani C, Mangifesta M, Mancabelli L, Lugli GA, James K, Duranti S, et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME J. 2017;11:2834–47.PubMed 
    PubMed Central 

    Google Scholar 
    Foster KR, Schluter J, Coyte KZ, Rakoff-Nahoum S. The evolution of the host microbiome as an ecosystem on a leash. Nature. 2017;548:43–51.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    van Vliet S, Doebeli M. The role of multilevel selection in host microbiome evolution. Proc Natl Acad Sci USA. 2019;116:20591–7.PubMed 
    PubMed Central 

    Google Scholar 
    Groussin M, Mazel F, Alm EJ. Co-evolution and co-speciation of host-gut bacteria systems. Cell Host Microbe. 2020;28:12–22.CAS 
    PubMed 

    Google Scholar 
    Olm MR, Brown CT, Brooks B, Firek B, Baker R, Burstein D, et al. Identical bacterial populations colonize premature infant gut, skin, and oral microbiomes and exhibit different in situ growth rates. Genome Res. 2017;27:601–12.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duranti S, Lugli GA, Napoli S, Anzalone R, Milani C, Mancabelli L, et al. Characterization of the phylogenetic diversity of five novel species belonging to the genus Bifidobacterium: Bifidobacterium castoris sp. nov., Bifidobacterium callimiconis sp. nov., Bifidobacterium goeldii sp. nov., Bifidobacterium samirii sp. nov. and Bifidobacterium dolichotidis sp. nov. Int J Syst Evol Microbiol. 2019;69:1288–98.CAS 
    PubMed 

    Google Scholar 
    Lugli GA, Milani C, Duranti S, Mancabelli L, Mangifesta M, Turroni F, et al. Tracking the taxonomy of the genus Bifidobacterium based on a phylogenomic approach. Appl Environ Microbiol. 2017;84:e02249–17.
    Google Scholar 
    Snel B, Bork P, Huynen MA. Genome phylogeny based on gene content. Nat Genet. 1999;21:108–10.CAS 
    PubMed 

    Google Scholar 
    Dutilh BE, Huynen MA, Bruno WJ, Snel B. The consistent phylogenetic signal in genome trees revealed by reducing the impact of noise. J Mol Evol. 2004;58:527–39.CAS 
    PubMed 

    Google Scholar 
    Legendre P, Desdevises Y, Bazin E. A statistical test for host-parasite coevolution. Syst Biol. 2002;51:217–34.PubMed 

    Google Scholar 
    Michaux JR, Chevret P, Filippucci MG, Macholan M. Phylogeny of the genus Apodemus with a special emphasis on the subgenus Sylvaemus using the nuclear IRBP gene and two mitochondrial markers: cytochrome b and 12S rRNA. Mol Phylogenet Evol. 2002;23:123–36.CAS 
    PubMed 

    Google Scholar 
    Lawson MAE, O’Neill IJ, Kujawska M, Gowrinadh Javvadi S, Wijeyesekera A, Flegg Z, et al. Breast milk-derived human milk oligosaccharides promote Bifidobacterium interactions within a single ecosystem. ISME J. 2020;14:635–48.CAS 
    PubMed 

    Google Scholar 
    Van Den Broek LAM, Voragen AGJ. Bifidobacterium glycoside hydrolases and (potential) prebiotics. Innov Food Sci Emerg Technol 2008;9:401–7.
    Google Scholar 
    Pokusaeva K, Fitzgerald GF, van Sinderen D. Carbohydrate metabolism in Bifidobacteria. Genes Nutr. 2011;6:285–306.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodriguez CI, Martiny JBH. Evolutionary relationships among bifidobacteria and their hosts and environments. BMC Genomics. 2020;21:26.PubMed 
    PubMed Central 

    Google Scholar 
    Henrissat B, Davies GJ. Glycoside hydrolases and glycosyltransferases. Families, modules, and implications for genomics. Plant Physiol. 2000;124:1515–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stam MR, Danchin EG, Rancurel C, Coutinho PM, Henrissat B. Dividing the large glycoside hydrolase family 13 into subfamilies: towards improved functional annotations of alpha-amylase-related proteins. Protein Eng Des Sel. 2006;19:555–62.CAS 
    PubMed 

    Google Scholar 
    Miyazaki T, Ishizaki Y, Ichikawa M, Nishikawa A, Tonozuka T. Structural and biochemical characterization of novel bacterial alpha-galactosidases belonging to glycoside hydrolase family 31. Biochem J. 2015;469:145–58.CAS 
    PubMed 

    Google Scholar 
    Hachem MA, Fredslund F, Andersen JM, Jonsgaard Larsen R, Majumder A, Ejby M, et al. Raffinose family oligosaccharide utilisation by probiotic bacteria: insight into substrate recognition, molecular architecture and diversity of GH36 α-galactosidases. Biocatal Biotransform. 2012;30:316–25.CAS 

    Google Scholar 
    Kujawska M, La Rosa SL, Roger LC, Pope PB, Hoyles L, McCartney AL, et al. Succession of Bifidobacterium longum strains in response to a changing early life nutritional environment reveals dietary substrate adaptations. iScience. 2020;23:101368.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Liu H, Ren W, Ly M, Li H, Wang S. Characterization of an alkaline GH49 dextranase from marine bacterium Arthrobacter oxydans KQ11 and its application in the preparation of isomalto-oligosaccharide. Mar Drugs. 2019;17:479.CAS 
    PubMed Central 

    Google Scholar 
    Michlmayr H, Hell J, Lorenz C, Bohmdorfer S, Rosenau T, Kneifel W. Arabinoxylan oligosaccharide hydrolysis by family 43 and 51 glycosidases from Lactobacillus brevis DSM 20054. Appl Environ Microbiol. 2013;79:6747–54.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fujita K, Takashi Y, Obuchi E, Kitahara K, Suganuma T. Characterization of a novel beta-l-arabinofuranosidase in Bifidobacterium longum: functional elucidation of a DUF1680 protein family member. J Biol Chem. 2014;289:5240–9.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Viens P, Lacombe-Harvey ME, Brzezinski R. Chitosanases from Family 46 of glycoside hydrolases: from proteins to phenotypes. Mar Drugs. 2015;13:6566–87.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sela DA, Garrido D, Lerno L, Wu S, Tan K, Eom HJ, et al. Bifidobacterium longum subsp. infantis ATCC 15697 alpha-fucosidases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol. 2012;78:795–803.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Garrido D, Ruiz-Moyano S, Kirmiz N, Davis JC, Totten SM, Lemay DG, et al. A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp longum SC596. Sci Rep-Uk. 2016;6:35045.CAS 

    Google Scholar 
    Kitaoka M. Bifidobacterial enzymes involved in the metabolism of human milk oligosaccharides. Adv Nutr. 2012;3:422S–9S.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kiyohara M, Tanigawa K, Chaiwangsri T, Katayama T, Ashida H, Yamamoto K. An exo-alpha-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates. Glycobiology. 2011;21:437–47.CAS 
    PubMed 

    Google Scholar 
    Breton C, Snajdrova L, Jeanneau C, Koca J, Imberty A. Structures and mechanisms of glycosyltransferases. Glycobiology. 2006;16:29R–37R.CAS 
    PubMed 

    Google Scholar 
    Hidalgo-Cantabrana C, Sanchez B, Milani C, Ventura M, Margolles A, Ruas-Madiedo P. Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Appl Environ Microbiol. 2014;80:9–18.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B. The carbohydrate-active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res. 2009;37:D233–8.CAS 
    PubMed 

    Google Scholar 
    Lavrinienko A, Tukalenko E, Mousseau TA, Thompson LR, Knight R, Mappes T, et al. Two hundred and fifty-four metagenome-assembled bacterial genomes from the bank vole gut microbiota. Sci Data. 2020;7:312.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baumler A, Fang FC. Host specificity of bacterial pathogens. Cold Spring Harb Perspect Med. 2013;3:a010041.PubMed 
    PubMed Central 

    Google Scholar 
    Glazko GV, Nei M. Estimation of divergence times for major lineages of primate species. Mol Biol Evol. 2003;20:424–34.CAS 
    PubMed 

    Google Scholar 
    Milton K. The critical role played by animal source foods in human (Homo) evolution. J Nutr. 2003;133:3886S–92S.CAS 
    PubMed 

    Google Scholar 
    Renaud S, Michaux J, Schmidt DN, Aguilar JP, Mein P, Auffray JC. Morphological evolution, ecological diversification and climate change in rodents. Proc Biol Sci. 2005;272:609–17.PubMed 
    PubMed Central 

    Google Scholar 
    Michaux JR, Libois R, Filipucci M-G. So close and so different: comparative phylogeography of two small mammal species, the Yellow-necked fieldmouse (Apodemus flavicollis) and the Woodmouse (Apodemus sylvaticus) in the Western Palearctic region. Heredity. 2005;94:52–63.CAS 
    PubMed 

    Google Scholar 
    Ge D, Feijó A, Cheng J, Lu L, Liu R, Abramov AV, et al. Evolutionary history of field mice (Murinae: Apodemus), with emphasis on morphological variation among species in China and description of a new species. Zool J Linn Soc. 2019;187:5188–534.
    Google Scholar 
    Moeller AH, Peeters M, Ndjango JB, Li Y, Hahn BH, Ochman H. Sympatric chimpanzees and gorillas harbor convergent gut microbial communities. Genome Res. 2013;23:1715–20.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knowles SCL, Eccles RM, Baltrunaite L. Species identity dominates over environment in shaping the microbiota of small mammals. Ecol Lett. 2019;22:826–37.CAS 
    PubMed 

    Google Scholar 
    Watts CHS. The foods eaten by wood mice (Apodemus sylvaticus) and bank voles (Clethrionomys glareolus) in Wytham Woods, Berkshire. J Anim Ecol. 1968;37:25–41.
    Google Scholar 
    Abt KF, Bock WF. Seasonal variations of diet composition in farmland field mice Apodemus spp. and bank voles Clethrionomys glareolus. Acta Theriol. 1998;43:379–89.
    Google Scholar 
    Rogers LM, Gorman ML. The diet of the wood mouse Apodemus sylvaticus on set‐aside land. J Zool. 1995;235:77–83.
    Google Scholar 
    Van Laere KM, Beldman G, Voragen AG. A new arabinofuranohydrolase from Bifidobacterium adolescentis able to remove arabinosyl residues from double-substituted xylose units in arabinoxylan. Appl Microbiol Biotechnol. 1997;47:231–5.PubMed 

    Google Scholar 
    Margolles A, de los Reyes-Gavilan CG. Purification and functional characterization of a novel alpha-L-arabinofuranosidase from Bifidobacterium longum B667. Appl Environ Microbiol. 2003;69:5096–103.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lagaert S, Pollet A, Delcour JA, Lavigne R, Courtin CM, Volckaert G. Substrate specificity of three recombinant alpha-L-arabinofuranosidases from Bifidobacterium adolescentis and their divergent action on arabinoxylan and arabinoxylan oligosaccharides. Biochem Biophys Res Commun. 2010;402:644–50.CAS 
    PubMed 

    Google Scholar 
    Ito T, Saikawa K, Kim S, Fujita K, Ishiwata A, Kaeothip S, et al. Crystal structure of glycoside hydrolase family 127 beta-l-arabinofuranosidase from Bifidobacterium longum. Biochem Biophys Res Commun. 2014;447:32–7.CAS 
    PubMed 

    Google Scholar 
    Kataržytė M, Kutorga E. Small mammal mycophagy in hemiboreal forest communities of Lithuania. Central Eur J Biol. 2011;6:446–56.
    Google Scholar 
    Lee HW, Park YS, Jung JS, Shin WS. Chitosan oligosaccharides, dp 2-8, have prebiotic effect on the Bifidobacterium bifidium and Lactobacillus sp. Anaerobe. 2002;8:319–24.PubMed 

    Google Scholar 
    Vernazza CL, Gibson GR, Rastall RA. In vitro fermentation of chitosan derivatives by mixed cultures of human faecal bacteria. Carbohyd Polym. 2005;60:539–45.CAS 

    Google Scholar 
    Yang CM, Ferket PR, Hong QH, Zhou J, Cao GT, Zhou L, et al. Effect of chito-oligosaccharide on growth performance, intestinal barrier function, intestinal morphology and cecal microflora in weaned pigs. J Anim Sci. 2012;90:2671–6.CAS 
    PubMed 

    Google Scholar 
    Zhang C, Jiao S, Wang ZA, Du Y. Exploring effects of chitosan oligosaccharides on mice gut microbiota in in vitro fermentation and animal model. Front Microbiol. 2018;9:2388.PubMed 
    PubMed Central 

    Google Scholar 
    Wu J, Zhang L. Dissolution behavior and conformation change of chitosan in concentrated chitosan hydrochloric acid solution and comparison with dilute and semidilute solutions. Int J Biol Macromol. 2019;121:1101–8.CAS 
    PubMed 

    Google Scholar 
    Costa CN, Teixeira VG, Delpech MC, Souza JV, Costa MA. Viscometric study of chitosan solutions in acetic acid/sodium acetate and acetic acid/sodium chloride. Carbohydr Polym. 2015;133:245–50.CAS 
    PubMed 

    Google Scholar 
    Kiu R, Treveil A, Harnisch LC, Caim S, Leclaire C, van Sinderen D, et al. Bifidobacterium breve UCC2003 induces a distinct global transcriptomic program in neonatal murine intestinal epithelial cells. iScience. 2020;23:101336.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hughes KR, Harnisch LC, Alcon-Giner C, Mitra S, Wright CJ, Ketskemety J, et al. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner. Open Biol. 2017;7:160155.Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, et al. Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci USA. 2012;109:2108–13.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roca C, Alves VD, Freitas F, Reis MA. Exopolysaccharides enriched in rare sugars: bacterial sources, production, and applications. Front Microbiol. 2015;6:288.PubMed 
    PubMed Central 

    Google Scholar 
    Balzaretti S, Taverniti V, Guglielmetti S, Fiore W, Minuzzo M, Ngo HN, et al. A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells. Appl Environ Microbiol. 2017;83:e02702–16.PubMed 
    PubMed Central 

    Google Scholar 
    Stradiotto A, Cagnacci F, Delahay R, Tioli S, Nieder L, Rizzoli A. Spatial organization of the yellow-necked mouse: effects of density and resource availability. J Mammal. 2009;90:704–14.
    Google Scholar 
    Wood DE, Salzberg SL. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol. 2014;15:R46.PubMed 
    PubMed Central 

    Google Scholar 
    Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i90.PubMed 
    PubMed Central 

    Google Scholar 
    Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30:2068–9.CAS 
    PubMed 

    Google Scholar 
    Eren AM, Esen OC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi’o: an advanced analysis and visualization platform for ‘omics data. PeerJ. 2015;3:e1319.PubMed 
    PubMed Central 

    Google Scholar 
    Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–3.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol. 2015;32:268–74.CAS 

    Google Scholar 
    Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001;18:691–9.CAS 
    PubMed 

    Google Scholar 
    Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–8.CAS 
    PubMed 

    Google Scholar 
    Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in diagnostics for food security: soft-rotting enterobacterial plant pathogens. Anal Methods. 2016;8:12–24.
    Google Scholar 
    Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, da Costa MS, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.CAS 
    PubMed 

    Google Scholar 
    Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol Biol Evol. 2017;34:2115–22.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang H, Yohe T, Huang L, Entwistle S, Wu P, Yang Z, et al. dbCAN2: a meta server for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 2018;46:W95–W101.CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGillin D, et al. vegan: community ecology package. R package version 25-6. 2019. https://CRAN.R-project.org/package=vegan.De Caceres M, Legendre P, Moretti M. Improving indicator species analysis by combining groups of sites. Oikos. 2010;119:1674–84.Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421.PubMed 
    PubMed Central 

    Google Scholar 
    Waack S, Keller O, Asper R, Brodag T, Damm C, Fricke WF, et al. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics. 2006;7:142.PubMed 
    PubMed Central 

    Google Scholar 
    Bertelli C, Laird MR, Williams KP, Lau BY, Hoad G, Winsor GL, et al. IslandViewer 4: expanded prediction of genomic islands for larger-scale datasets. Nucleic Acids Res. 2017;45:W30–W5.CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Winter wheat yield prediction using convolutional neural networks from environmental and phenological data

    Konduri, V. S., Vandal, T. J., Ganguly, S. & Ganguly, A. R. Data science for weather impacts on crop yield. Front. Sustain. Food Syst. 4, 52. https://doi.org/10.3389/fsufs.2020.00052 (2020).Article 

    Google Scholar 
    Xu, X., Gao, P., Zhu, X., Guo, W., Ding, J., Li, C., … & Wu, X. Design of an integrated climatic assessment indicator (ICAI) for wheat production: A case study in Jiangsu Province, China. Eco. Ind., 101, 943953. https://doi.org/10.1016/J.ECOLIND.2019.01.059 (2019).Moeinizade, S., Hu, G., Wang, L. & Schnable, P. S. Optimizing selection and mating in genomic selection with a look-ahead approach: An operations research framework. G3: Genes Genomes Genet. 9, 2123–2133. https://doi.org/10.1534/g3.118.200842 (2019).Article 

    Google Scholar 
    Basso, B. & Liu, L. Chapter four: Seasonal crop yield forecast: Methods, applications, and accuracies. In Advances in Agronomy Vol. 154 (ed. Sparks, D. L.) 201–255. https://doi.org/10.1016/bs.agron.2018.11.002 (2019)Zarindast, A., & Wood, J. A Data-Driven Personalized Lighting Recommender System. Front. in Big Data, 4. (2021).Shahhosseini, M., Hu, G., Khaki, S., & Archontoulis, S. V. Corn yield prediction with ensemble CNN-DNN. Front. Plant Sci., 12. (2021).Haghighat, A. K., Ravichandra-Mouli, V., Chakraborty, P., Esfandiari, Y., Arabi, S., & Sharma, A. Applications of deep learning in intelligent transportation systems. J. Big Data Anal. Transp. 2, 115–145. https://doi.org/10.1007/s42421-020-00020-1 (2020).Zarindast, A., Sharma, A., & Wood, J. Application of text mining in smart lighting literature-an analysis of existing literature and a research agenda. Int. J. Info. Mgmt. Data Insights, 1(2), 100032. (2021).Chlingaryan, A., Sukkarieh, S. & Whelan, B. Machine learning approaches for crop yield prediction and nitrogen status estimation in precision agriculture: A review. Comput. Electron. Agric. 151, 61–69. https://doi.org/10.1016/j.compag.2018.05.012 (2018).Article 

    Google Scholar 
    Zarindast, A., Poddar, S., & Sharma, A. A Data-Driven Method for Congestion Identification and Classification. J. Trans. Eng., Part A: Sys., 148(4), 04022012. (2022)Shahhosseini, M., Martinez-Feria, R. A., Hu, G. & Archontoulis, S. V. Maize yield and nitrate loss prediction with machine learning algorithms. Environ. Res. Lett. 14, 124026. https://doi.org/10.1088/1748-9326/ab5268 (2019).Article 
    ADS 

    Google Scholar 
    Khaki, S. & Wang, L. Crop yield prediction using deep neural networks. Front. Plant Sci.https://doi.org/10.3389/fpls.2019.00621 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Feng, P., Wang, B., Li Liu, D., Waters, C., Xiao, D., Shi, L., & Yu, Q. Dynamic wheat yield forecasts are improved by a hybrid approach using a biophysical model and machine learning technique. Agric. For. Meteorol. 285–286, 107922. https://doi.org/10.1016/j.agrformet.2020.107922 (2020).Article 
    ADS 

    Google Scholar 
    Kang, Y., Ozdogan, M., Zhu, X., Ye, Z., Hain, C., & Anderson, M. Comparative assessment of environmental variables and machine learning algorithms for maize yield prediction in the US Midwest. Environ. Res. Lett. 15, 064005. https://doi.org/10.1088/1748-9326/ab7df9 (2020).Article 
    ADS 

    Google Scholar 
    Van Klompenburg, T., Kassahun, A. & Catal, C. Crop yield prediction using machine learning: A systematic literature review. Comput. Electron. Agric. 177, 105709. https://doi.org/10.1016/j.compag.2020.105709 (2020).Article 

    Google Scholar 
    Khaki, S., Safaei, N., Pham, H. & Wang, L. WheatNet: A Lightweight Convolutional Neural Network for High-throughput Image-based Wheat Head Detection and Counting. arXiv:2103.09408 (2021).Hassan, M. A., Khalil, A., Kaseb, S. & Kassem, M. A. Exploring the potential of tree-based ensemble methods in solar radiation modeling. Appl. Energy 203, 897–916. https://doi.org/10.1016/j.apenergy.2017.06.104 (2017).Article 

    Google Scholar 
    Mishra, S. & Santra, D. M. A. G. H. Applications of machine learning techniques in agricultural crop production: A review paper. Indian J. Sci. Technol. 9, 1–14. https://doi.org/10.17485/ijst/2016/v9i38/95032 (2016).Article 

    Google Scholar 
    Kamilaris, A. & Prenafeta-Boldú, F. Deep learning in agriculture: A survey. Comput. Electron. Agric.https://doi.org/10.1016/j.compag.2018.02.016 (2018).Article 

    Google Scholar 
    Liakos, K. G., Busato, P., Moshou, D., Pearson, S. & Bochtis, D. Machine learning in agriculture: A review. Sensors 18, 2674. https://doi.org/10.3390/s18082674 (2018).Article 
    PubMed Central 
    ADS 

    Google Scholar 
    Wang, Y., Zhang, Z., Feng, L., Du, Q. & Runge, T. Combining multi-source data and machine learning approaches to predict winter wheat yield in the conterminous United States. Remote Sens. 12, 1232. https://doi.org/10.3390/rs12081232 (2020).Article 
    ADS 

    Google Scholar 
    Cao, J., Zhang, Z., Luo, Y., Zhang, L., Zhang, J., Li, Z., & Tao, F. Wheat yield predictions at a county and field scale with deep learning, machine learning, and google earth engine. Eur. J. Agron. 123, 126204. https://doi.org/10.1016/j.eja.2020.126204 (2021).Article 

    Google Scholar 
    FAO. FAOSTAT (2021).Zhao, G., Webber, H., Hoffmann, H., Wolf, J., Siebert, S., & Ewert, F. The implication of irrigation in climate change impact assessment: a European‐wide study. Glob. Chang. Biol. 21, 4031–4048. https://doi.org/10.1111/gcb.13008 (2015).Article 
    PubMed 
    ADS 

    Google Scholar 
    EUROSTAT. Glossary: Nomenclature of territorial units for statistics (NUTS) (2019).COPERNICUS. CORINE Land Cover (2006).Webber, H., Lischeid, G., Sommer, M., Finger, R., Nendel, C., Gaiser, T., & Ewert, F. No perfect storm for crop yield failure in Germany. Environ. Res. Lett. 15, 104012 (2020).Article 
    ADS 

    Google Scholar 
    EUROSTAT. NUTS – Nomenclature of territorial units for statistics – Eurostat (2019).Ämter, S. Regionaldatenbank Deutschland (2020).DWD. Wetter und Klima – Deutscher Wetterdienst (2020).Shook, J., Gangopadhyay, T., Wu, L., Ganapathysubramanian, B., Sarkar, S., & Singh, A. K. Crop yield prediction integrating genotype and weather variables using deep learning. PLOS ONE 16, e0252402. https://doi.org/10.1371/journal.pone.0252402 (2021).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nevavuori, P., Narra, N., Linna, P. & Lipping, T. Crop yield prediction using multitemporal UAV data and spatio-temporal deep learning models. Remote Sens. 12, 4000. https://doi.org/10.3390/rs12234000 (2020).Article 
    ADS 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32. https://doi.org/10.1023/A:1010933404324 (2001).Article 
    MATH 

    Google Scholar 
    Cover, T. & Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 13, 21–27. https://doi.org/10.1109/TIT.1967.1053964 (1967).Article 
    MATH 

    Google Scholar 
    Hu, L.-Y., Huang, M.-W., Ke, S.-W. & Tsai, C.-F. The distance function effect on k-nearest neighbor classification for medical datasets. SpringerPlus 5, 1304. https://doi.org/10.1186/s40064-016-2941-7 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    James, G., Witten, D., Hastie, T. & Tibshirani, R. An Introduction to Statistical Learning: With Applications in R (Springer, 2013).Book 

    Google Scholar 
    Hoerl, A. E. & Kennard, R. W. Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55–67. https://doi.org/10.1080/00401706.1970.10488634 (1970).Article 
    MATH 

    Google Scholar 
    Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. Classification and Regression Trees 1st edn. (Chapman and Hall/CRC Press, 1984).MATH 

    Google Scholar 
    Cortes, C. & Vapnik, V. Support-vector networks. Mach. Learn. 20, 273–297. https://doi.org/10.1007/BF00994018 (1995).Article 
    MATH 

    Google Scholar 
    Chen, T., & Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining (pp. 785–794) (2016).Zhang, L., Zhang, Z., Luo, Y., Cao, J. & Tao, F. Combining optical, fluorescence, thermal satellite, and environmental data to predict county-level maize yield in China using machine learning approaches. Remote Sens. 12, 21. https://doi.org/10.3390/rs12010021 (2020).Article 
    ADS 

    Google Scholar 
    Nigam, A., Garg, S., Agrawal, A. & Agrawal, P. Crop Yield Prediction Using Machine Learning Algorithms. 2019 Fifth International Conference on Image Information Processing (ICIIP) https://doi.org/10.1109/ICIIP47207.2019.8985951 (2019).LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444. https://doi.org/10.1038/nature14539 (2015).CAS 
    Article 
    ADS 

    Google Scholar 
    Khaki, S., Wang, L. & Archontoulis, S. V. A CNN-RNN framework for crop yield prediction. Front. Plant Sci. https://doi.org/10.3389/fpls.2019.01750 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Khaki, S., Pham, H., & Wang, L. Simultaneous corn and soybean yield prediction from remote sensing data using deep transfer learning. Sci. Rep. 11(1), 1–14. (2021).Article 

    Google Scholar 
    Khaki, S., Khalilzadeh, Z. & Wang, L. Predicting yield performance of parents in plant breeding: A neural collaborative filtering approach. PLoS ONE 15, e0233382. https://doi.org/10.1371/journal.pone.0233382 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lamorski, K., Pachepsky, Y., Sławiński, C. & Walczak, R. T. Using support vector machines to develop pedotransfer functions for water retention of soils in Poland. Soil Sci. Soc. Am. J. 72, 1243–1247. https://doi.org/10.2136/sssaj2007.0280N (2008).CAS 
    Article 
    ADS 

    Google Scholar 
    Merdun, H., Çınar, C., Meral, R. & Apan, M. Comparison of artificial neural network and regression pedotransfer functions for prediction of soil water retention and saturated hydraulic conductivity. Soil Tillage Res. 1–2, 108–116. https://doi.org/10.1016/j.still.2005.08.011 (2006).Article 

    Google Scholar 
    Landeras, G., Ortiz-Barredo, A. & López, J. J. Comparison of artificial neural network models and empirical and semi-empirical equations for daily reference evapotranspiration estimation in the Basque Country (Northern Spain). Agric. Water Manag. 95, 553–565. https://doi.org/10.1016/j.agwat.2007.12.011 (2008).Article 

    Google Scholar 
    Yamaç, S. S. & Todorovic, M. Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agric. Water Manag. 228, 105875. https://doi.org/10.1016/j.agwat.2019.105875 (2020).Article 

    Google Scholar 
    Obsie, E. Y., Qu, H. & Drummond, F. Wild blueberry yield prediction using a combination of computer simulation and machine learning algorithms. Comput. Electron. Agric. 178, 105778. https://doi.org/10.1016/j.compag.2020.105778 (2020).Article 

    Google Scholar 
    Shapley, L. S. A Value for n-Person Games (Princeton University Press, 1953).MATH 

    Google Scholar 
    Vogel, E., Donat, M. G., Alexander, L. V., Meinshausen, M., Ray, D. K., Karoly, D., … & Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 14, 054010. https://doi.org/10.1088/1748-9326/ab154b (2019).Article 
    ADS 

    Google Scholar 
    Stokes, V. J., Morecroft, M. D. & Morison, J. I. L. Boundary layer conductance for contrasting leaf shapes in a deciduous broadleaved forest canopy. Agric. For. Meteorol. 139, 40–54. https://doi.org/10.1016/j.agrformet.2006.05.011 (2006).Article 
    ADS 

    Google Scholar 
    Chen, X. & Chen, S. China feels the heat: Negative impacts of high temperatures on China’s rice sector. Aust. J. Agric. Resour. Econ. 62, 576–588. https://doi.org/10.1111/1467-8489.12267 (2018).Article 

    Google Scholar 
    Tao, F., Xiao, D., Zhang, S., Zhang, Z. & Rötter, R. P. Wheat yield benefited from increases in minimum temperature in the Huang–Huai–Hai Plain of China in the past three decades. Agric. For. Meteorol. 239, 1–14. https://doi.org/10.1016/j.agrformet.2017.02.033 (2017).Article 
    ADS 

    Google Scholar 
    Zheng, C., Zhang, J., Chen, J., Chen, C., Tian, Y., Deng, A., … & Zhang, W. Nighttime warming increases winter-sown wheat yield across major Chinese cropping regions. Field Crops Res. 214, 202–210. https://doi.org/10.1016/j.fcr.2017.09.014 (2017).Article 
    ADS 

    Google Scholar 
    Gibson, L. R. & Paulsen, G. M. Yield components of wheat grown under high temperature stress during reproductive growth. Crop Sci. 39, 1841–1846. https://doi.org/10.2135/cropsci1999.3961841x (1999).Article 

    Google Scholar 
    Lobell, D. B., Sibley, A. & Ivan Ortiz-Monasterio, J. Extreme heat effects on wheat senescence in India. Nat. Clim. Chang. 2, 186–189. https://doi.org/10.1038/nclimate1356 (2012).Article 
    ADS 

    Google Scholar 
    Tashiro, T. & Wardlaw, I. A comparison of the effect of high temperature on grain development in wheat and rice. Ann. Bot. 64, 59–65. https://doi.org/10.1093/oxfordjournals.aob.a087808 (1989).Article 

    Google Scholar 
    Wollenweber, B., Porter, J. R. & Schellberg, J. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. J. Agron. Crop Sci. 189, 142–150. https://doi.org/10.1046/j.1439-037X.2003.00025.x (2003).Article 

    Google Scholar 
    Mäkinen, H., Kaseva, J., Trnka, M., Balek, J., Kersebaum, K. C., Nendel, C., … & Kahiluoto, H. Sensitivity of European wheat to extreme weather. Field Crops Res., 222, 209–217. https://doi.org/10.1016/j.fcr.2017.11.008 (2018).Article 

    Google Scholar 
    Farooq, M., Bramley, H., Palta, J. A. & Siddique, K. H. Heat stress in wheat during reproductive and grain-filling phases. Crit. Rev. Plant Sci. 30, 491–507. https://doi.org/10.1080/07352689.2011.615687 (2011).Article 

    Google Scholar 
    Peichl, M., Thober, S., Meyer, V. & Samaniego, L. The effect of soil moisture anomalies on maize yield in Germany. Nat. Hazards Earth Syst. Sci. 18, 889–906. https://doi.org/10.5194/nhess-18-889-2018 (2018).Article 
    ADS 

    Google Scholar 
    Rezaei, E. E. et al. Quantifying the response of wheat yields to heat stress: The role of the experimental setup. Field Crops Res., 217, 93–103. https://doi.org/10.1016/j.fcr.2017.12.015 (2018).Article 

    Google Scholar 
    Cannell, R. Q., Belford, R. K., Gales, K., Dennis, C. W. & Prew, R. D. Effects of waterlogging at different stages of development on the growth and yield of winter wheat. J. Sci. Food Agric. 31, 117–132. https://doi.org/10.1002/jsfa.2740310203 (1980).Article 

    Google Scholar 
    Gömann, H. Wetterextreme: mögliche Folgen für die Landwirtschaft in Deutschland (2018).Kumar, I. E., Venkatasubramanian, S., Scheidegger, C., & Friedler, S. Problems with Shapley-value-based explanations as feature importance measures. In International Conference on Machine Learning (pp. 5491–5500). PMLR. (2020).Rudin, C. Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nature Machine Intelligence, 1(5), 206–215. (2019). More

  • in

    Morphological characteristics of pollen from triploid watermelon and its fate on stigmas in a hybrid crop production system

    Tay, D. Vegetable hybrid seed production. in Seeds: Trade, Production and Technology. 18–139. (2002).Piquerez, S. J., Harvey, S. E., Beynon, J. L. & Ntoukakis, V. Improving crop disease resistance: Lessons from research on Arabidopsis and tomato. Front. Plant Sci. 5, 671. https://doi.org/10.3389/fpls.2014.00671 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mason, A. S. & Batley, J. Creating new interspecific hybrid and polyploid crops. Trends Biotechnol. 33, 436–441. https://doi.org/10.1016/j.tibtech.2015.06.004 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Broussard, M. A., Mas, F., Howlett, B., Pattemore, D. & Tylianakis, J. M. Possible mechanisms of pollination failure in hybrid carrot seed and implications for industry in a changing climate. PLoS ONE 12, 180215.  https://doi.org/10.1371/journal.pone.0180215 (2017).CAS 
    Article 

    Google Scholar 
    Wilcock, C. & Neiland, R. Pollination failure in plants: why it happens and when it matters. Trends Plant Sci. 7, 270–277. https://doi.org/10.1016/S1360-1385(02)02258-6 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Fijen, T. P., Scheper, J. A., Vogel, C., van Ruijven, J. & Kleijn, D. Insect pollination is the weakest link in the production of a hybrid seed crop. Agric. Ecosyst. Environ. 290, 106743. https://doi.org/10.1016/j.agee.2019.106743 (2020).CAS 
    Article 

    Google Scholar 
    Batra, S. W. Male-fertile potato flowers are selectively buzz-pollinated only by Bombus terricola Kirby in upstate New York. J. Kans. Entomol. Soc. 1, 252–254 (1993).
    Google Scholar 
    Evans, L., Goodwin, R., Walker, M. & Howlett, B. Honey bee (Apis mellifera) distribution and behaviour on hybrid radish (Raphanus sativus L.) crops. N.Z. Plant Prot. 64, 32–36. https://doi.org/10.30843/nzpp.2011.64.5952 (2011).Article 

    Google Scholar 
    Estravis Barcala, M. C., Palottini, F. & Farina, W. M. Honey bee and native solitary bee foraging behavior in a crop with dimorphic parental lines. PLoS ONE 14, e0223865. https://doi.org/10.1371/journal.pone.0223865 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nye, W. P., Shasha’a, N., Campbell, W. & Hamson, A. Insect pollination and seed set of onions (Allium cepa L.). Utah State Univ. Agric. Exp. Station Res. Rep. 6, 1 (1973).
    Google Scholar 
    Zulkarnain, Z., Eliyanti, E. & Swari, E. I. Pollen viability and stigma receptivity in Swainsona formosa (G. Don) J. Thompson (Fabaceae), an ornamental legume native to Australia. Ornam. Hortic. 25, 158–167. https://doi.org/10.14295/oh.v25i2.2011 (2019).Article 

    Google Scholar 
    Ne’eman, G., Jürgens, A., Newstrom-Lloyd, L., Potts, S. G. & Dafni, A. A framework for comparing pollinator performance: Effectiveness and efficiency. Biol. Rev. 85, 435–451. https://doi.org/10.1111/j.1469-185X.2009.00108.x (2010).Article 
    PubMed 

    Google Scholar 
    Bione, N. C. P., Pagliarini, M. S. & Toledo, J. F. F. D. Meiotic behavior of several Brazilian soybean varieties. Genet. Mol. 23, 623–631. https://doi.org/10.1590/S1415-47572000000300022 (2000).Article 

    Google Scholar 
    Levin, D. A. The exploitation of pollinators by species and hybrids of Phlox. Evolution 1, 367–377 (1970).Article 

    Google Scholar 
    Smith-Huerta, N. L. & Vasek, F. C. Pollen longevity and stigma pre-emption in Clarkia. Am. J. Bot. 71, 1183–1191 (1984).Article 

    Google Scholar 
    Ashman, T. L. & Arceo-Gómez, G. Toward a predictive understanding of the fitness costs of heterospecific pollen receipt and its importance in co-flowering communities. Am. J. Bot. 100, 1061–1070. https://doi.org/10.3732/ajb.1200496 (2013).Article 
    PubMed 

    Google Scholar 
    Stanghellini, M., Schultheis, J. & Ambrose, J. Pollen mobilization in selected Cucurbitaceae and the putative effects of pollinator abundance on pollen depletion rates. J. Am. Soc. Hortic. Sci. 127, 729–736. https://doi.org/10.21273/Jashs.127.5.729 (2002).Article 

    Google Scholar 
    Jahed, K. R. & Hirst, P. M. Pollen tube growth and fruit set in apple. HortScience 52, 1054–1059. https://doi.org/10.21273/Hortsci11511-16 (2017).Article 

    Google Scholar 
    Erdtman, G. Pollen Morphology and Plant Taxonomy: Angiosperms. Vol. 1. (Brill Archive, 1986).Weber, R. W. Pollen identification. Ann. Allergy Asthma Immunol. 80, 141–148. https://doi.org/10.1016/S1081-1206(10)62947-X (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Castro López, A. J. et al. Seedless watermelons: From the microscope to the table through the greenhouse. High Sch. Students Agric. Scii. Res.. 3. 27–32 (2013).
    Google Scholar 
    Laws, H. M. Pollen-grain morphology of polyploid Oenotheras. J. Hered. 56, 18–21 (1965).Article 

    Google Scholar 
    Shoemaker, J. S. Pollen development in the apple, with special reference to chromosome behavior. Bot. Gaz. 81, 148–172 (1926).Article 

    Google Scholar 
    Hao, L., Ma, H., da Silva, J. A. T. & Yu, X. Pollen morphology of herbaceous peonies with different ploidy levels. J. Am. Soc. Hortic. Sci. 141, 275–284. https://doi.org/10.21273/Jashs.141.3.275 (2016).CAS 
    Article 

    Google Scholar 
    Jacob, Y. & Pierret, V. Pollen size and ploidy level in the genus Rosa. XIX International Symposium on Improvement of Ornamental Plants, Vol. 508. 289–292. (1998).Karlsdóttir, L., Hallsdóttir, M., Thórsson, A. T. & Anamthawat-Jónsson, K. Characteristics of pollen from natural triploid Betula hybrids. Grana 47, 52–59. https://doi.org/10.1080/00173130801927498 (2008).Article 

    Google Scholar 
    Wrońska-Pilarek, D., Danielewicz, W., Bocianowski, J., Maliński, T. & Janyszek, M. Comparative pollen morphological analysis and its systematic implications on three European Oak (Quercus L., Fagaceae) species and their spontaneous hybrids. PLoS ONE 11, e0161762. https://doi.org/10.1371/journal.pone.0161762 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Martin, C., Viruel, M., Lora, J. & Hormaza, J. I. Polyploidy in fruit tree crops of the genus Annona (Annonaceae). Front. Plant Sci. 10, 99. https://doi.org/10.3389/fpls.2019.00099 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sedgley, M. & Scholefield, P. B. Stigma secretion in the watermelon before and after pollination. Bot. Gaz. 141, 428–434 (1980).Article 

    Google Scholar 
    Sedgley, M. Anatomy of the unpollinated and pollinated watermelon stigma. J. Cell Sci. 54, 341–355.  https://doi.org/10.1242/jcs.54.1.341 (1982).Article 

    Google Scholar 
    Sedgley, M. & Blesing, M. A. Foreign pollination of the stigma of watermelon (Citrullus lanatus [Thunb.] Matsum and Nakai). Bot. Gaz. 143, 210–215 (1982).Article 

    Google Scholar 
    Hiscock, S. J. & Allen, A. M. Diverse cell signalling pathways regulate pollen-stigma interactions: The search for consensus. New Phytol. 179, 286–317. https://doi.org/10.1111/j.1469-8137.2008.02457.x (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Swanson, R., Edlund, A. F. & Preuss, D. Species specificity in pollen-pistil interactions. Annu. Rev. Genet. 38, 793–818. https://doi.org/10.1146/annurev.genet.38.072902.092356 (2004).CAS 
    Article 
    PubMed 

    Google Scholar 
    Edlund, A. F., Swanson, R. & Preuss, D. Pollen and stigma structure and function: the role of diversity in pollination. Plant Cell 16, S84–S97. https://doi.org/10.1105/tpc.015800 (2004).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wehner, T. Cucurbit Breeding. https://cucurbitbreeding.wordpress.ncsu.edu/watermelon-breeding/seedless-watermelon-breeding/ (2011).Maynard, D. N. & Elmstrom, G.W. Triploid watermelon production practices and varieties. Acta Hort. 318, 169–173 (1992).Article 

    Google Scholar 
    Tupý, J. Callose formation in pollen tubes and incompatibility. Biol. Plant. 1, 192–198. https://doi.org/10.1007/BF02928684 (1959).Article 

    Google Scholar 
    Distefano, G. et al. Pollen tube behavior in different mandarin hybrids. J. Am. Soc. Hortic. Sci. 134, 583–588. https://doi.org/10.21273/Jashs.134.6.583 (2009).Article 

    Google Scholar 
    Glišić, I. et al. Examination of self-compatibility in promising plum (Prunus domestica L.) genotypes developed at the Fruit Research Institute. Čačak. Sci. Hortic. 224, 156–162. https://doi.org/10.1016/j.scienta.2017.06.006 (2017).Article 

    Google Scholar 
    Arndt, G. C., Rueda, J., Kidane-Mariam, H. & Peloquin, S. Pollen fertility in relation to open pollinated true seed production in potatoes. Am. Potato. J 67, 499–505. https://doi.org/10.1007/Bf03045112 (1990).Article 

    Google Scholar 
    Jing, S., Kryger, P., Markussen, B. & Boelt, B. Pollination and plant reproductive success of two ploidy levels in red clover (Trifolium pratense L.). Front. Plant Sci. 1, 1580.  https://doi.org/10.3389/fpls.2021.720069 (2021).Article 

    Google Scholar 
    Suárez-Mariño, A., Arceo-Gómez, G., Sosenski, P. & Parra-Tabla, V. Patterns and effects of heterospecific pollen transfer between an invasive and two native plant species: The importance of pollen arrival time to the stigma. Am. J. Bot. 106, 1308–1315. https://doi.org/10.1002/ajb2.1361 (2019).Article 
    PubMed 

    Google Scholar 
    FAO. FAOSTAT. Food and Agriculture Organization of the United Nations, Rome, Italy. http://www.fao.org/faostat/en/#data (2017).Stanghellini, M., Ambrose, J. & Schultheis, J. Seed production in watermelon: A comparison between two commercially available pollinators. HortScience 33, 28–30.  https://doi.org/10.21273/Hortsci.33.1.28 (1998).Article 

    Google Scholar 
    Delaplane, K. S. A. M. D.F. Crop Pollination by Bees. (CABI Publishing, 2005).Wijesinghe, S., Evans, L., Kirkland, L. & Rader, R. A global review of watermelon pollination biology and ecology: The increasing importance of seedless cultivars. Sci. Hortic. 271, 109493. https://doi.org/10.1016/j.scienta.2020.109493 (2020).CAS 
    Article 

    Google Scholar 
    AgMRC. Watermelon. https://www.agmrc.org/commodities-products/vegetables/watermelon (2018).Bomfim, I. G. A., Bezerra, A. D. D. M., Nunes, A. C., Freitas, B. M. & Aragão, F. A. S. D. Pollination requirements of seeded and seedless mini watermelon varieties cultivated under protected environment. Pesqui. Agropecu. Bras. 50, 44–53. https://doi.org/10.1590/s0100-204×2015000100005 (2015).Article 

    Google Scholar 
    Maynard, D. N. & Elmstrom, G. W. Triploid watermelon production practices and varieties. II International Symposium on Specialty and Exotic Vegetable Crops, Vol. 318. 169–178.Jones, G. D. Pollen analyses for pollination research, acetolysis. J. Pollinat. Ecol. 13, 203–217. https://doi.org/10.26786/1920-7603(2014)19 (2014).Article 

    Google Scholar 
    Kurtz, E. B. Jr. Pollen morphology of the Cactaceae. Grana 4, 367–372.  https://doi.org/10.1080/00173136309429110 (1963).Article 

    Google Scholar 
    Halbritter, H. et al. Illustrated Pollen Terminology. 97–127. (Springer, 2018).Punt, W., Hoen, P., Blackmore, S., Nilsson, S. & Le Thomas, A. Glossary of pollen and spore terminology. Rev. Palaeobot. Palynol. 143, 1–81.  https://doi.org/10.1016/j.revpalbo.2006.06.008 (2007).Article 

    Google Scholar 
    Kaya, Y., Mesut Pınar, S., Emre Erez, M., Fidan, M. & Riding, J. B. Identification of Onopordum pollen using the extreme learning machine, a type of artificial neural network. Palynology 38, 129–137. https://doi.org/10.1080/09500340.2013.868173 (2014).Article 

    Google Scholar 
    Pruesapan, K. & Van Der Ham, R. Pollen morphology of Trichosanthes (Cucurbitaceae). Grana 44, 75–90. https://doi.org/10.1080/00173130510010512 (2005).Article 

    Google Scholar 
    Sedgley, M. & Buttrose, M. Some effects of light intensity, daylength and temperature on flowering and pollen tube growth in the watermelon (Citrullus lanatus). Ann. Bot. 42, 609–616. https://doi.org/10.1093/oxfordjournals.aob.a085495 (1978).Article 

    Google Scholar 
    Martin, F. W. Staining and observing pollen tubes in the style by means of fluorescence. Stain Technol. 34, 125–128. https://doi.org/10.3109/10520295909114663 (1959).CAS 
    Article 
    PubMed 

    Google Scholar 
    Godini, A. Counting pollen grains of some almond cultivars by means of an haemocytometer. Riv. Studi Ital. 1, 173–178 (1981).
    Google Scholar 
    Howlett, B., Evans, L., Pattemore, D. & Nelson, W. Stigmatic pollen delivery by flies and bees: Methods comparing multiple species within a pollinator community. Basic Appl. Ecol. 19, 19–25. https://doi.org/10.1016/j.baae.2016.12.002 (2017).Article 

    Google Scholar 
    Winfree, R., Williams, N. M., Dushoff, J. & Kremen, C. Native bees provide insurance against ongoing honey bee losses. Ecol. Lett. 10, 1105–1113. https://doi.org/10.1111/j.1461-0248.2007.01110.x (2007).Article 
    PubMed 

    Google Scholar 
    Abdelgadir, H., Johnson, S. & Van Staden, J. Pollen viability, pollen germination and pollen tube growth in the biofuel seed crop Jatropha curcas (Euphorbiaceae). S. Afr. J. Bot. 79, 132–139. https://doi.org/10.1016/j.sajb.2011.10.005 (2012).Article 

    Google Scholar 
    R Core Team. R: A Language and Environment for Statistical Computing. https://www.R-project.org/ (R Foundation for Statistical Computing, 2020).Pinheiro, J., Bates, D., Deb Roy, S. & Sarkar; D. R Core Team. nlme: Linear and nonlinear mixed effects models. R package version 3.1-117. http://CRAN.R-project.org/package=nlme (2014).Lenth, R., Singmann, H., Love, J., Buerkner, P. & Herve, M. emmeans: Estimated marginal means, aka least-squares means. R package. https://CRAN.R-project.org/package=emmeans (2018).Bolker, B. M. et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol 24, 127–135. https://doi.org/10.1016/j.tree.2008.10.008 (2009).Article 
    PubMed 

    Google Scholar 
    Hartig, F. DHARMa: Residual diagnostics for hierarchical (multi-level/mixed) regression models. R package v. 0.2. 0. (Regensburg: University of Regensburg, 2018). More

  • in

    Aquatic macroinvertebrate assemblages in rivers influenced by mining activities

    Marqués, M. J., Martínez-Conde, E., Rovira, J. V. & Ordóñez, S. Heavy metals pollution of aquatic ecosystems in the vicinity of a recently closed underground lead-zinc mine (Basque Country, Spain). Environ. Geol. 40, 1125–1137 (2001).
    Google Scholar 
    Bud, I., Duma, S., Denuţ, I. & Taşcu, I. Water pollution due to mining activity. Causes and consequences Wasserverunreinigung aufgrund von Bergbauaktivitäten. Ursachen und Konsequenzen. BHM Berg- Hüttenmännische Monatsh. 152, 326–328 (2007).CAS 

    Google Scholar 
    Ugya, Y. Assessment of ambient air quality resulting from anthropogenic emissions. Am. J. Prev. Med. Public Health https://doi.org/10.5455/ajpmph.20171030080402 (2017).Article 

    Google Scholar 
    Dore, E. Environment and society: Long-term trends in Latin American mining. Environ. Hist. Camb. 6, 1–29 (2000).
    Google Scholar 
    Zhou, Q. et al. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv. 22, 925 (2020).
    Google Scholar 
    Graesser, J., Aide, T. M., Grau, H. R. & Ramankutty, N. Cropland/pastureland dynamics and the slowdown of deforestation in Latin America. Environ. Res. Lett. 10, 034017 (2015).ADS 

    Google Scholar 
    Ramírez, A., Pringle, C. M. & Wantzen, K. M. Tropical stream conservation. Trop. Stream Ecol. https://doi.org/10.1016/B978-012088449-0.50012-1 (2008).Article 

    Google Scholar 
    Uriarte, M., Yackulic, C. B., Lim, Y. & Arce-Nazario, J. A. Influence of land use on water quality in a tropical landscape: A multi-scale analysis. Landsc. Ecol. 26, 1151–1164 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    White, M. & Barquera, S. Mexico adopts food warning labels, why now?. Health Syst. Reform 6, e1752063 (2020).PubMed 

    Google Scholar 
    Koleff, P. et al. Biodiversity in Mexico: State of knowledge. in Global Biodiversity. 285–337. https://doi.org/10.1201/9780429433634-8. (Apple Academic Press, 2018).Armendáriz-Villegas, E. J. et al. Metal mining and natural protected areas in Mexico: Geographic overlaps and environmental implications. Environ. Sci. Policy 48, 9–19 (2015).
    Google Scholar 
    Montoya-Lopera, P. et al. New geological, geochronological and geochemical characterization of the San Dimas mineral system: Evidence for a telescoped Eocene-Oligocene Ag/Au deposit in the Sierra Madre Occidental, Mexico. Ore Geol. Rev. 118, 103195 (2020).
    Google Scholar 
    LeuraVicencio, A. K., CarrizalesYañez, L. & RazoSoto, I. Mercury pollution assessment of mining wastes and soils from former silver amalgamation area in North-Central Mexico. Rev. Int. Contam. Ambient. 33, 655–669 (2017).
    Google Scholar 
    Veiga, M. M. Introducing New Technologies for Abatement of Global Mercury Pollution in Latin America. United Nations Industrial Development Organization (UNIDO), University of British Columbia (UBC), Center of Mineral Technology (CETEM) (UNIDO, UBC, CETEM, 1997).Camacho, A. et al. Mercury mining in Mexico: I. Community engagement to improve health outcomes from artisanal mining. Ann. Glob. Health 82, 149 (2016).PubMed 

    Google Scholar 
    IUCN. Benefits Beyond Boundaries: Proceedings of the Vth IUCN World Parks Congress : Durban, South Africa. 8–17 September 2003. (Iucn, 2005).González, S. O., Almeida, C. A., Calderón, M., Mallea, M. A. & González, P. Assessment of the water self-purification capacity on a river affected by organic pollution: Application of chemometrics in spatial and temporal variations. Environ. Sci. Pollut. Res. 21, 10583–10593 (2014).
    Google Scholar 
    Rico-Sánchez, A. E. et al. Biological diversity in protected areas: Not yet known but already threatened. Glob. Ecol. Conserv. 22, e01006 (2020).
    Google Scholar 
    Harvey, C. A. et al. Integrating agricultural landscapes with biodiversity conservation in the Mesoamerican hotspot. Conserv. Biol. 22, 8–15 (2008).PubMed 

    Google Scholar 
    Messerli, B., Grosjean, M. & Vuille, M. Water availability, protected areas, and natural resources in the Andean desert altiplano. Mt. Res. Dev. 17, 229–238 (1997).
    Google Scholar 
    Servicio Geológico Mexicano. Conoce GeoInfoMex en 3D. https://www.gob.mx/sgm/articulos/conoce-el-sistema-de-consulta-de-informacion-geocientifica-geoinfomex?idiom=es. Accessed 18 Feb 2021. (2019).Resh, V. H. Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environ. Monit. Assess. 138, 131–138 (2008).PubMed 

    Google Scholar 
    Ruiz-Picos, R. A., Sedeño-Díaz, J. E. & López-López, E. Calibrating and validating the biomonitoring working party (BMWP) index for the bioassessment of water quality in neotropical streams. in Water Quality (InTech, 2017).Oertel, N. & Salánki, J. Biomonitoring and bioindicators in aquatic ecosystems. in Modern Trends in Applied Aquatic Ecology. 219–246. https://doi.org/10.1007/978-1-4615-0221-0_10. (Springer, 2011).Goodyear, K. L. & McNeill, S. Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: A review. Sci. Total Environ. 229, 1–19 (1999).ADS 
    CAS 

    Google Scholar 
    Clements, W. H. Small-scale experiments support causal relationships between metal contamination and macroinvertebrate community responses. Ecol. Appl. 14, 954–967 (2004).
    Google Scholar 
    Michailova, P., Warchałowska-Śliwa, E., Szarek-Gwiazda, E. & Kownacki, A. Does biodiversity of macroinvertebrates and genome response of Chironomidae larvae (Diptera) reflect heavy metal pollution in a small pond?. Environ. Monit. Assess. 184, 1–14 (2012).CAS 
    PubMed 

    Google Scholar 
    Wright, I. A. & Ryan, M. M. Impact of mining and industrial pollution on stream macroinvertebrates: Importance of taxonomic resolution, water geochemistry and EPT indices for impact detection. Hydrobiologia 772, 103–115 (2016).CAS 

    Google Scholar 
    Wright, I. A. & Burgin, S. Comparison of sewage and coal-mine wastes on stream macroinvertebrates within an otherwise clean upland catchment, Southeastern Australia. Water Air Soil Pollut. 204, 227–241 (2009).ADS 
    CAS 

    Google Scholar 
    Batty, L. C. The potential importance of mine sites for biodiversity. Mine Water Environ. 24, 101–103 (2005).
    Google Scholar 
    Dolédec, S. & Chessel, D. Co-inertia analysis: An alternative method for studying species–environment relationships. Freshw. Biol. 31, 277–294 (1994).
    Google Scholar 
    Thioulouse, J. et al. Multivariate Analysis of Ecological Data with ade4. Multivariate Analysis of Ecological Data with ade4. https://doi.org/10.1007/978-1-4939-8850-1. (Springer, 2018).Dodds, W. K., Clements, W. H., Gido, K., Hilderbrand, R. H. & King, R. S. Thresholds, breakpoints, and nonlinearity in freshwaters as related to management. J. N. Am. Benthol. Soc. 29, 988–997 (2010).
    Google Scholar 
    Sundermann, A., Gerhardt, M., Kappes, H. & Haase, P. Stressor prioritisation in riverine ecosystems: Which environmental factors shape benthic invertebrate assemblage metrics?. Ecol. Indic. 27, 83–96 (2013).
    Google Scholar 
    Gutiérrez-Yurrita, P. J., García-Serrano, L. A. & Plata, M. R. Is ecotourism a viable option to generate wealth in brittle environments? A reflection on the case of the Sierra Gorda Biosphere Reserve, México. WIT Trans. Ecol. Environ. 161, 141–151 (2012).
    Google Scholar 
    Vinson, M. R. Long-term dynamics of an invertebrate assemblage downstream from a large dam. Ecol. Appl. 11, 711–730 (2001).
    Google Scholar 
    Torres-Olvera, M. J., Durán-Rodríguez, O. Y., Torres-García, U., Pineda-López, R. & Ramírez-Herrejón, J. P. Validation of an index of biological integrity based on aquatic macroinvertebrates assemblages in two subtropical basins of central Mexico. Lat. Am. J. Aquat. Res. 46, 945–960 (2018).
    Google Scholar 
    Carabias Lillo, J., Provencio, E., de la Maza Elvira, J. & Ruiz Corzo, M. Programa de Manejo Reserva de la Biosfera Sierra Gorda. (México, Instituto Nacional de Ecologıa, SEMARNAT, 1999).Macedo, D. R. et al. The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams. Landsc. Ecol. 29, 1001–1016 (2014).
    Google Scholar 
    Dutra, S. L. & Callisto, M. Macroinvertebrates as tadpole food: Importance and body size relationships. Rev. Bras. Zool. 22, 923–927 (2005).
    Google Scholar 
    Wang, Z. et al. River-groundwater interaction affected species composition and diversity perpendicular to a regulated river in an arid riparian zone. Glob. Ecol. Conserv. 27, e01595 (2021).
    Google Scholar 
    López-López, E., Sedeño-Díaz, J. E., Mendoza-Martínez, E., Gómez-Ruiz, A. & Ramírez, E. M. Water quality and macroinvertebrate community in dryland streams: The case of the Tehuacán-Cuicatlán Biosphere Reserve (México) facing climate change. Water (Switzerland) 11, 1376 (2019).
    Google Scholar 
    O’Connor, N. A. The effects of habitat complexity on the macroinvertebrates colonising wood substrates in a lowland stream. Oecologia 85, 504–512 (1991).ADS 
    PubMed 

    Google Scholar 
    Milner, A. M. & Gloyne-Phillips, I. T. The role of riparian vegetation and woody debris in the development of macroinvertebrate assemblages in streams. River Res. Appl. 21, 403–420 (2005).
    Google Scholar 
    Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E. The river continuum concept. Can. J. Fish. Aquat. Sci. 37, 130–137 (1980).
    Google Scholar 
    Malmqvist, B. & Hoffsten, P.-O. Influence of drainage from old mine deposits on benthic macroinvertebrate communities in central Swedish streams. Water Res. 33, 2415–2423 (1999).CAS 

    Google Scholar 
    Jost, L. Independence of alpha and beta diversities. Ecology 91, 1969–1974 (2010).PubMed 

    Google Scholar 
    Cottenie, K. Integrating environmental and spatial processes in ecological community dynamics. Ecol. Lett. 8, 1175–1182 (2005).PubMed 

    Google Scholar 
    Jerves-Cobo, R. et al. Biological impact assessment of sewage outfalls in the urbanized area of the Cuenca River basin (Ecuador) in two different seasons. Limnologica 71, 8–28 (2018).CAS 

    Google Scholar 
    US Environmental Protection Agency. National Recommended Water Quality Criteria-Aquatic Life Criteria Table. Arsenic. (US Environmental Protection Agency, 1995).DeNicola, D. M. & Lellock, A. J. Nutrient limitation of algal periphyton in streams along an acid mine drainage gradient. J. Phycol. 51, 739–749 (2015).CAS 
    PubMed 

    Google Scholar 
    Younos, T. & Schreiber, M. The Handbook of Environmental Chemistry 68. Tamim Younos, Madeline Schreiber, Katarina Kosič Ficco-Karst Water Environment-Springer International Publishing (2019).pdf. (Springer, 2019).Robles, I. et al. Characterization and remediation of soils and sediments polluted with Mercury: Occurrence, transformations, environmental considerations and San Joaquin’s Sierra Gorda case. in Environmental Risk Assessment of Soil Contamination. https://doi.org/10.5772/57284. (InTech, 2014).Hernández-Silva, G. et al. Presencia Del Hg total En Una Relación Suelo-Planta-Atmósfera Al Sur De La Sierra Gorda De Querétaro, México. TIP Rev. Espec. Ciencias Químico-Biol. 15, 5–15 (2012).
    Google Scholar 
    Campos, E. M. P. & Muñoz, A. J. H. Minas y mineros: Presencia de metales en sedimentos y restos humanos al sur de la sierra gorda de Querétaro en México. Chungara 45, 161–176 (2013).
    Google Scholar 
    Carrillo-Martínez, M. & Suter-Cargneluti, M. Tectónica de los alrededores de Zimapán, Hidalgo y Querétaro, Libro Guía de la excursión geológica a la región de Zimapán y áreas circundantes, estados de Hidalgo y Querétaro, Hidalgo, México. in VI Convención Geológica Nacional México, DF, Society Geológica Mexico. 1–20. (1982).Allan, J. D. Stream ecology: Structure and function of running waters. Stream Ecol. Struct. Funct. Run. Waters https://doi.org/10.2307/2261644 (2007).Article 

    Google Scholar 
    Trang, N. T. T., Shrestha, S., Shrestha, M., Datta, A. & Kawasaki, A. Evaluating the impacts of climate and land-use change on the hydrology and nutrient yield in a transboundary river basin: A case study in the 3S River Basin (Sekong, Sesan, and Srepok). Sci. Total Environ. 576, 586–598 (2017).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Khatri, N. & Tyagi, S. Influences of natural and anthropogenic factors on surface and groundwater quality in rural and urban areas. Front. Life Sci. 8, 23–39 (2015).CAS 

    Google Scholar 
    Simões, N. R. et al. Impact of reservoirs on zooplankton diversity and implications for the conservation of natural aquatic environments. Hydrobiologia 758, 3–17 (2015).
    Google Scholar 
    Dallas, H. F. & Rivers-Moore, N. A. Critical thermal maxima of aquatic macroinvertebrates: Towards identifying bioindicators of thermal alteration. Hydrobiologia 679, 61–76 (2012).
    Google Scholar 
    Struijs, J., De Zwart, D., Posthuma, L., Leuven, R. S. & Huijbregts, M. A. Field sensitivity distribution of macroinvertebrates for phosphorus in inland waters. Integr. Environ. Assess. Manag. 7, 280–286 (2011).CAS 
    PubMed 

    Google Scholar 
    Molina, C. I. et al. Transfer of mercury and methylmercury along macroinvertebrate food chains in a floodplain lake of the Beni River, Bolivian Amazonia. Sci. Total Environ. 408, 3382–3391 (2010).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Corkum, L. D. Patterns of benthic invertebrate assemblages in rivers of northwestern North America. Freshw. Biol. 21, 191–205 (1989).
    Google Scholar 
    Dalu, T. et al. Assessing drivers of benthic macroinvertebrate community structure in African highland streams: An exploration using multivariate analysis. Sci. Total Environ. 601–602, 1340–1348 (2017).ADS 
    PubMed 

    Google Scholar 
    Eriksen, T. E. et al. A global perspective on the application of riverine macroinvertebrates as biological indicators in Africa, South-Central America, Mexico and Southern Asia. Ecol. Indic. 126, 107609 (2021).
    Google Scholar 
    Mercado-Garcia, D. et al. Assessing the freshwater quality of a large-scale mining watershed: The need for integrated approaches. Water 11, 1797 (2019).CAS 

    Google Scholar 
    Gerhardt, A., Janssens De Bisthoven, L. & Soares, A. M. V. M. Effects of acid mine drainage and acidity on the activity of Choroterpes picteti (Ephemeroptera: Leptophlebiidae). Arch. Environ. Contam. Toxicol. 48, 450–458 (2005).CAS 
    PubMed 

    Google Scholar 
    Qu, X., Wu, N., Tang, T., Cai, Q. & Park, Y.-S. Effects of heavy metals on benthic macroinvertebrate communities in high mountain streams. Ann. Limnol. Int. J. Limnol. 46, 291–302 (2010).
    Google Scholar 
    Soucek, D. J., Denson, B. C., Schmidt, T. S., Cherry, D. S. & Zipper, C. E. Impaired Acroneuria sp. (Plecoptera, Perlidae) populations associated with aluminum contamination in neutral pH surface waters. Arch. Environ. Contam. Toxicol. 42, 416–422 (2002).CAS 
    PubMed 

    Google Scholar 
    Ankley, G. T. Evaluation of metal/acid-volatile sulfide relationships in the prediction of metal bioaccumulation by benthic macroinvertebrates. Environ. Toxicol. Chem. 15, 2138–2146 (1996).CAS 

    Google Scholar 
    Croteau, M. N., Luoma, S. N. & Stewart, A. R. Trophic transfer of metals along freshwater food webs: Evidence of cadmium biomagnification in nature. Limnol. Oceanogr. 50, 1511–1519 (2005).ADS 
    CAS 

    Google Scholar 
    Specht, W. L., Cherry, D. S., Lechleitner, R. A. & Cairns, J. Structural, functional, and recovery responses of stream invertebrates to fly ash effluent. Can. J. Fish. Aquat. Sci. 41, 884–896 (1984).CAS 

    Google Scholar 
    Corbi, J. J., Froehlich, C. G., Strixino, S. T. & Dos Santos, A. Bioaccumulation of metals in aquatic insects of streams located in areas with sugar cane cultivation. Quim. Nova 33, 644–648 (2010).CAS 

    Google Scholar 
    Poff, N. L., Bledsoe, B. P. & Cuhaciyan, C. O. Hydrologic variation with land use across the contiguous United States: Geomorphic and ecological consequences for stream ecosystems. Geomorphology 79, 264–285 (2006).ADS 

    Google Scholar 
    Chang, F. H., Lawrence, J. E., Rios-Touma, B. & Resh, V. H. Tolerance values of benthic macroinvertebrates for stream biomonitoring: Assessment of assumptions underlying scoring systems worldwide. Environ. Monit. Assess. 186, 2135–2149 (2014).CAS 
    PubMed 

    Google Scholar 
    Brittain, J. E. Life History Strategies in Ephemeroptera and Plecoptera. in Mayflies and Stoneflies: Life Histories and Biology. 1–12. https://doi.org/10.1007/978-94-009-2397-3_1 (Springer Netherlands, 1990).Bispo, P. C., Oliveira, L. G., Bini, L. M. & Sousa, K. G. Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of central Brazil: Environmental factors influencing the distribution and abundance of immatures. Braz. J. Biol. 66, 611–622 (2006).CAS 
    PubMed 

    Google Scholar 
    Jacobsen, D. Tropical high-altitude streams. in Tropical Stream Ecology. 219–256. https://doi.org/10.1016/B978-012088449-0.50010-8 (Elsevier, 2008).Jacobsen, D., Rostgaard, S. & Vasconez, J. J. Are macroinvertebrates in high altitude streams affected by oxygen deficiency?. Freshw. Biol. 48, 2025–2032 (2003).
    Google Scholar 
    Courtney, L. A. & Clements, W. H. Assessing the influence of water and substratum quality on benthic macroinvertebrate communities in a metal-polluted stream: An experimental approach. Freshw. Biol. 47, 1766–1778 (2002).CAS 

    Google Scholar 
    Buss, D. F. & Salles, F. F. Using Baetidae species as biological indicators of environmental degradation in a Brazilian river basin. Environ. Monit. Assess. 130, 365–372 (2007).CAS 
    PubMed 

    Google Scholar 
    Ristau, K., Faupel, M. & Traunspurger, W. The effects of nutrient enrichment on a freshwater meiofaunal assemblage. Freshw. Biol. 57, 824–834 (2012).CAS 

    Google Scholar 
    Cornelis, R. & Nordberg, M. General chemistry, sampling, analytical methods, and speciation. in Handbook on the Toxicology of Metals. 11–38. https://doi.org/10.1016/B978-012369413-3/50057-4 (Elsevier, 2007).Santore, R. C., Di Toro, D. M., Paquin, P. R., Allen, H. E. & Meyer, J. S. Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ. Toxicol. Chem. 20, 2397–2402 (2001).CAS 
    PubMed 

    Google Scholar 
    Kozlova, T., Wood, C. M. & McGeer, J. C. The effect of water chemistry on the acute toxicity of nickel to the cladoceran Daphnia pulex and the development of a biotic ligand model. Aquat. Toxicol. 91, 221–228 (2009).CAS 
    PubMed 

    Google Scholar 
    Valdez, R., Guzmán-Aranda, J. C., Abarca, F. J., Tarango-Arámbula, L. A. & Sánchez, F. C. Wildlife conservation and management in Mexico. Wildl. Soc. Bull. 34, 270–282 (2006).
    Google Scholar 
    INEGI. Por Actividad Económica. https://www.inegi.org.mx/temas/pib/. Accessed 6 Jan 2021. (2020).García, E. Modificaciones Al Sistema de Classificación Climática de Koppen. (Institute of Geography, UNAM, 1988).HACH. User Manual—HACH DR 3900. in 1–148 (2013).APHA. Standard Methods for the Examination of Water and Wastewater. (Association, American Public Health, 2005).NMX-AA-051-SCFI-2001. Análisis de agua—Determinación de metales por absorción atómica en aguas naturales, potables, residuales y residuales tratadas. Norma Mex. 1–47 (2001).Helsel, D. R. Less than obvious: Statistical treatment of data below the detection limit. Environ. Sci. Technol. 24, 1766–1774 (1990).ADS 
    CAS 

    Google Scholar 
    Barbour, M. T., Stribling, J. B. & Verdonschot, P. F. M. The multihabitat approach of USEPA’s rapid bioassessment protocols: benthic macroinvertebrates. Limnetica 25, 839–850 (2006).
    Google Scholar 
    USEPA. National Rivers and Streams Assessment 2018/19: Field Operations Manual—Wadeable. Vol. EPA-841-B-. 169. (2017).Michaud, J. P. & Wierenga, M. Estimating Discharge and Stream Flows (Ecology Publication, 2005).
    Google Scholar 
    Hering, D., Moog, O., Sandin, L. & Verdonschot, P. F. M. Overview and application of the AQEM assessment system. Hydrobiologia 516, 1–20 (2004).
    Google Scholar 
    Merrit, R. & Cummins, K. W. An Introduction to the Aquatic Insects of North America 3rd edn. (Kendall Hunt, 1996).
    Google Scholar 
    Thorp, J. H. & Covich, A. P. Ecology and Classification of North American Freshwater Invertebrates (Academic Press, 2009).
    Google Scholar 
    Bueno-Soria, J. Guía de Identificación Ilustrada de Losgéneros de Larvas de Insectos del Orden Trichoptera de México (Universidad Nacional Autónoma de México, 2010).
    Google Scholar 
    Springer, M., Ramírez, A. & Hanson, P. Macroinvertebrados de agua dulce I. Rev. Biol. Trop. 58, 198 (2010).
    Google Scholar 
    Hamada, N., Thorp, J. H. & Rogers, D. C. Thorp and Covich’s Freshwater Invertebrates (Elsevier, 2018).
    Google Scholar 
    Jost, L. et al. Partitioning diversity for conservation analyses. Divers. Distrib. 16, 65–76 (2010).
    Google Scholar 
    Lavit, C., Escoufier, Y. & Sabatier, R. The ACT (STATIS method) J q G G Fl { q K q *. Comput. Stat. Data Anal. 18, 97–119 (1994).MATH 

    Google Scholar  More

  • in

    Functionally distinct T-helper cell phenotypes predict resistance to different types of parasites in a wild mammal

    Abolins, S. et al. The comparative immunology of wild and laboratory mice, Mus musculus domesticus. Nat. Commun. 8, 14811. https://doi.org/10.1038/ncomms14811 (2017).ADS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cox, F. E. G. Concomitant infections, parasites and immune responses. Parasitology 122, S23–S38. https://doi.org/10.1017/S003118200001698X (2001).Article 
    PubMed 

    Google Scholar 
    Seder, R. A., Darrah, P. A. & Roederer, M. T-cell quality in memory and protection: Implications for vaccine design. Nat. Rev. Immunol. 8, 247–258. https://doi.org/10.1038/nri2274 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Demas, G. E., Zysling, D. A., Beechler, B. R., Muehlenbein, M. P. & French, S. S. Beyond phytohaemagglutinin: Assessing vertebrate immune function across ecological contexts. J. Anim. Ecol. 80, 710–730. https://doi.org/10.1111/j.1365-2656.2011.01813.x (2011).Article 
    PubMed 

    Google Scholar 
    Pedersen, A. B. & Babayan, S. A. Wild immunology. Mol. Ecol. 20, 872–880. https://doi.org/10.1111/j.1365-294X.2010.04938.x (2011).CAS 
    Article 
    PubMed 

    Google Scholar 
    Abolins, S. et al. The ecology of immune state in a wild mammal, Mus musculus domesticus. PLoS Biol. 16, e2003538. https://doi.org/10.1371/journal.pbio.2003538 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezenwa, V. O. Helminth–microparasite co-infection in wildlife: Lessons from ruminants, rodents and rabbits. Parasite Immunol. 38, 527–534. https://doi.org/10.1111/pim.12348 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Craig, B. H., Tempest, L. J., Pilkington, J. G. & Pemberton, J. M. Metazoan-protozoan parasite co-infections and host body weight in St Kilda Soay sheep. Parasitology 135, 433–441. https://doi.org/10.1017/S0031182008004137 (2008).CAS 
    Article 
    PubMed 

    Google Scholar 
    Graham, A. L. et al. Exposure to viral and bacterial pathogens among Soay sheep (Ovis aries) of the St Kilda archipelago. Epidemiol. Infect. 144, 1879–1888. https://doi.org/10.1017/S0950268816000017 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Murphy, K., Travers, P., Walport, M. & Janeway, C. Janeway’s Immunobiology (Garland Science, 2012).
    Google Scholar 
    Parkin, J. & Cohen, B. An overview of the immune system. Lancet 357, 1777–1789. https://doi.org/10.1016/S0140-6736(00)04904-7 (2001).CAS 
    Article 
    PubMed 

    Google Scholar 
    Mosmann, T. R. & Coffman, R. L. TH1 and TH2 cells: Different patterns of lymphokine secretion lead to different functional properties. Annu. Rev. Immunol. 7, 145–173. https://doi.org/10.1146/annurev.iy.07.040189.001045 (1989).CAS 
    Article 
    PubMed 

    Google Scholar 
    Nakayamada, S., Takahashi, H., Kanno, Y. & O’Shea, J. J. Helper T cell diversity and plasticity. Curr. Opin. Immunol. 24, 297–302. https://doi.org/10.1016/j.coi.2012.01.014 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gerbe, F. et al. Intestinal epithelial tuft cells initiate type 2 mucosal immunity to helminth parasites. Nature 529, 226–230. https://doi.org/10.1038/nature16527 (2016).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Jain, A. & Pasare, C. Innate control of adaptive immunity: Beyond the three-signal paradigm. J. Immunol. (Baltimore, Md.: 1950) 198, 3791–3800. https://doi.org/10.4049/jimmunol.1602000 (2017).CAS 
    Article 

    Google Scholar 
    Schmitt, N. & Ueno, H. Regulation of human helper T cell subset differentiation by cytokines. Curr. Opin. Immunol. 34, 130–136. https://doi.org/10.1016/j.coi.2015.03.007 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Abbas, A. K., Murphy, K. M. & Sher, A. Functional diversity of helper T lymphocytes. Nature 383, 787–793. https://doi.org/10.1038/383787a0 (1996).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Seder, R. A. & Paul, W. E. Acquisition of lymphokine-producing phenotype by CD4+ T cells. Annu. Rev. Immunol. 12, 635–673. https://doi.org/10.1146/annurev.iy.12.040194.003223 (1994).CAS 
    Article 
    PubMed 

    Google Scholar 
    Grencis, R. K. Immunity to helminths: Resistance, regulation, and susceptibility to gastrointestinal nematodes. Annu. Rev. Immunol. 33, 201–225. https://doi.org/10.1146/annurev-immunol-032713-120218 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    O’Garra, A. & Robinson, D. In Advances in Immunology vol. 83 133–162 (Academic Press, 2004).Pereira, L. M. S., Gomes, S. T. M., Ishak, R. & Vallinoto, A. C. R. Regulatory T cell and forkhead box protein 3 as modulators of immune homeostasis. Front. Immunol. https://doi.org/10.3389/fimmu.2017.00605 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Romagnani, S. T-cell subsets (Th1 versus Th2). Ann. Allergy Asthma Immunol. 85, 9–21. https://doi.org/10.1016/S1081-1206(10)62426-X (2000).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sandquist, I. & Kolls, J. Update on regulation and effector functions of Th17 cells. F1000Res 7, 205–205. https://doi.org/10.12688/f1000research.13020.1 (2018).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Stockinger, B. & Omenetti, S. The dichotomous nature of T helper 17 cells. Nat. Rev. Immunol. 17, 535–544. https://doi.org/10.1038/nri.2017.50 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wilson, K., Fenton, A. & Tompkins, D. Wildlife Disease Ecology: Linking Theory to Data and Application (Cambridge University Press, 2019).Book 

    Google Scholar 
    Graham, A. L. Ecological rules governing helminth–microparasite coinfection. PNAS 105, 566–570. https://doi.org/10.1073/pnas.0707221105 (2008).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ezenwa, V. O., Etienne, R. S., Luikart, G., Beja-Pereira, A. & Jolles, A. E. Hidden consequences of living in a wormy world: Nematode-induced immune suppression facilitates tuberculosis invasion in African Buffalo. Am. Nat. 176, 613–624. https://doi.org/10.1086/656496 (2010).Article 
    PubMed 

    Google Scholar 
    Ezenwa, V. O. & Jolles, A. E. Opposite effects of anthelmintic treatment on microbial infection at individual versus population scales. Science 347, 175–177. https://doi.org/10.1126/science.1261714%JScience (2015).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Arriero, E. et al. From the animal house to the field: Are there consistent individual differences in immunological profile in wild populations of field voles (Microtus agrestis)?. PLoS One 12, e0183450. https://doi.org/10.1371/journal.pone.0183450 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, J. A. et al. An immunological marker of tolerance to infection in wild rodents. PLoS Biol. 12, e1001901. https://doi.org/10.1371/journal.pbio.1001901 (2014).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Beirne, C., Delahay, R. & Young, A. Sex differences in senescence: The role of intra-sexual competition in early adulthood. Proc. R. Soc. B. 282, 20151086. https://doi.org/10.1098/rspb.2015.1086 (2015).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Young, S. et al. Relationships between immune gene expression and circulating cytokine levels in wild house mice. Ecol. Evol. 10, 13860–13871. https://doi.org/10.1002/ece3.6976 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turner, J. D. et al. Th2 cytokines are associated with reduced worm burdens in a human intestinal helminth infection. J. Infect. Dis. 188, 1768–1775. https://doi.org/10.1086/379370 (2003).CAS 
    Article 
    PubMed 

    Google Scholar 
    Craig, B. H., Pilkington, J. G., Kruuk, L. E. B. & Pemberton, J. M. Epidemiology of parasitic protozoan infections in Soay sheep (Ovis aries L.) on St Kilda. Parasitology 134, 9–21. https://doi.org/10.1017/S0031182006001144 (2006).Article 
    PubMed 

    Google Scholar 
    Maizels, R. M., Hewitson, J. P. & Smith, K. A. Susceptibility and immunity to helminth parasites. Curr. Opin. Immunol. 24, 459–466. https://doi.org/10.1016/j.coi.2012.06.003 (2012).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Ozmen, O., Adanir, R. & Haligur, M. Immunohistochemical detection of the cytokine and chemokine expression in the gut of lambs and kids with coccidiosis. Small Rumin. Res. 105, 345–350. https://doi.org/10.1016/j.smallrumres.2011.11.010 (2012).Article 

    Google Scholar 
    Woolhouse, M. E. J. Patterns in parasite epidemiology: The peak shift. Parasitol. Today 14, 428–434. https://doi.org/10.1016/S0169-4758(98)01318-0 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gibson, T. E. & Parfitt, J. W. The effect of age on the development by sheep of resistance to Trichostrongylus colubriformis. Res. Vet. Sci. 13, 529–535 (1972).CAS 
    Article 

    Google Scholar 
    Smith, W. D., Jackson, F., Jackson, E. & Williams, J. Age immunity to Ostertagia circumcincta: Comparison of the local immune responses of 4 1/2- and 10-month-old lambs. J. Comp. Pathol. 95, 235–245. https://doi.org/10.1016/0021-9975(85)90010-6 (1985).CAS 
    Article 
    PubMed 

    Google Scholar 
    Peters, A., Delhey, K., Nakagawa, S., Aulsebrook, A. & Verhulst, S. Immunosenescence in wild animals: Meta-analysis and outlook. Ecol. Lett. 22, 1709–1722. https://doi.org/10.1111/ele.13343 (2019).Article 
    PubMed 

    Google Scholar 
    Sparks, A. M. et al. Natural selection on antihelminth antibodies in a wild mammal population. Am. Nat. 192, 745–760. https://doi.org/10.1086/700115 (2018).Article 
    PubMed 

    Google Scholar 
    Froy, H. et al. Senescence in immunity against helminth parasites predicts adult mortality in a wild mammal. Science 365, 1296–1298. https://doi.org/10.1126/science.aaw5822%JScience (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Nussey, D. H., Watt, K., Pilkington, J. G., Zamoyska, R. & McNeilly, T. N. Age-related variation in immunity in a wild mammal population. Aging Cell 11, 178–180. https://doi.org/10.1111/j.1474-9726.2011.00771.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Watson, R. L. et al. Cellular and humoral immunity in a wild mammal: Variation with age & sex and association with overwinter survival. Ecol. Evol. 6, 8695–8705. https://doi.org/10.1002/ece3.2584 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pennock, N. D. et al. T cell responses: Naive to memory and everything in between. Adv. Physiol. Educ. 37, 273–283. https://doi.org/10.1152/advan.00066.2013 (2013).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chipeta, J. et al. CD4+and CD8+Cell cytokine profiles in neonates, older children, and adults: Increasing T helper type 1 and T cytotoxic type 1 cell populations with age. Cell. Immunol. 183, 149–156. https://doi.org/10.1006/cimm.1998.1244 (1998).CAS 
    Article 
    PubMed 

    Google Scholar 
    Sakata-Kaneko, S., Wakatsuki, Y., Matsunaga, Y., Usui, T. & Kita, T. Altered Th1/Th2 commitment in human CD4+ T cells with ageing. Clin. Exp. Immunol. 120, 267–273. https://doi.org/10.1046/j.1365-2249.2000.01224.x (2000).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duddy, M. E., Alter, A. & Bar-Or, A. Distinct profiles of human B cell effector cytokines: A role in immune regulation?. J. Immunol. (Baltimore, Md.: 1950) 172, 3422–3427. https://doi.org/10.4049/jimmunol.172.6.3422 (2004).CAS 
    Article 

    Google Scholar 
    Varma, T. K., Lin, C. Y., Toliver-Kinsky, T. E. & Sherwood, E. R. Endotoxin-induced gamma interferon production: Contributing cell types and key regulatory factors. Clin. Diagn. Lab. Immunol. 9, 530–543. https://doi.org/10.1128/CDLI.9.3.530-543.2002 (2002).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    McNeilly, T. N. et al. Suppression of ovine lymphocyte activation by Teladorsagia circumcincta larval excretory-secretory products. Vet. Res. 44, 70. https://doi.org/10.1186/1297-9716-44-70 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Restif, O. & Amos, W. The evolution of sex-specific immune defences. Proc. R. Soc. B Biol. Sci. 277, 2247–2255. https://doi.org/10.1098/rspb.2010.0188 (2010).Article 

    Google Scholar 
    Hayward, A. D. et al. Heritable, heterogeneous, and costly resistance of sheep against nematodes and potential feedbacks to epidemiological dynamics. Am. Nat. 184, S58–S76. https://doi.org/10.1086/676929 (2014).Article 
    PubMed 

    Google Scholar 
    Sparks, A. M. et al. The genetic architecture of helminth-specific immune responses in a wild population of Soay sheep (Ovis aries). PLoS Genet. 15, e1008461. https://doi.org/10.1371/journal.pgen.1008461 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hayward, A. D., Wilson, A. J., Pilkington, J. G., Pemberton, J. M. & Kruuk, L. E. B. Ageing in a variable habitat: Environmental stress affects senescence in parasite resistance in St Kilda Soay sheep. Proc. R. Soc. B. 276, 3477–3485. https://doi.org/10.1098/rspb.2009.0906 (2009).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Mosmann, T. R. & Sad, S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol. Today 17, 138–146. https://doi.org/10.1016/0167-5699(96)80606-2 (1996).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hassan, M., Hanrahan, J. P., Good, B., Mulcahy, G. & Sweeney, T. A differential interplay between the expression of Th1/Th2/Treg related cytokine genes in Teladorsagia circumcincta infected DRB1*1101 carrier lambs. Vet. Res. 42, 45. https://doi.org/10.1186/1297-9716-42-45 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Noordwijk, A. J. V. & Jong, G. D. Acquisition and allocation of resources: Their influence on variation in life history tactics. Am. Nat. 128, 137–142. https://doi.org/10.1086/284547 (1986).Article 

    Google Scholar 
    Grainger, J. R. et al. Helminth secretions induce de novo T cell Foxp3 expression and regulatory function through the TGF-β pathway. J. Exp. Med. 207, 2331–2341. https://doi.org/10.1084/jem.20101074 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Smith, K. A. et al. Low-level regulatory T-cell activity is essential for functional type-2 effector immunity to expel gastrointestinal helminths. Mucosal Immunol. 9, 428–443. https://doi.org/10.1038/mi.2015.73 (2016).CAS 
    Article 
    PubMed 

    Google Scholar 
    Beirne, C., Waring, L., McDonald, R. A., Delahay, R. & Young, A. Age-related declines in immune response in a wild mammal are unrelated to immune cell telomere length. Proc. R. Soc. B. 283, 20152949. https://doi.org/10.1098/rspb.2015.2949 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zaros, L. G. et al. Response of resistant and susceptible Brazilian Somalis crossbreed sheep naturally infected by Haemonchus contortus. Parasitol. Res. 113, 1155–1161. https://doi.org/10.1007/s00436-014-3753-8 (2014).CAS 
    Article 
    PubMed 

    Google Scholar 
    Gossner, A., Wilkie, H., Joshi, A. & Hopkins, J. Exploring the abomasal lymph node transcriptome for genes associated with resistance to the sheep nematode Teladorsagia circumcincta. Vet. Res. 44, 68. https://doi.org/10.1186/1297-9716-44-68 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilkie, H., Gossner, A., Bishop, S. & Hopkins, J. Variations in T cell transcription factor sequence and expression associated with resistance to the sheep nematode Teladorsagia circumcincta. PLoS One 11, e0149644. https://doi.org/10.1371/journal.pone.0149644 (2016).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Nussey, D. H., Coulson, T., Festa-Bianchet, M. & Gaillard, J.-M. Measuring senescence in wild animal populations: Towards a longitudinal approach. Funct. Ecol. 22, 393–406. https://doi.org/10.1111/j.1365-2435.2008.01408.x (2008).Article 

    Google Scholar 
    Seguel, M. et al. Immune stability predicts tuberculosis infection risk in a wild mammal. Proc. Biol. Sci. 286, 20191401. https://doi.org/10.1098/rspb.2019.1401 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Pemberton, J. M. & Clutton-Brock, T. H. Soay Sheep: Dynamics and Selection in an Island Population (Cambridge University Press, 2004).
    Google Scholar 
    Corripio-Miyar, Y. et al. Phenotypic and functional analysis of monocyte populations in cattle peripheral blood identifies a subset with high endocytic and allogeneic T-cell stimulatory capacity. Vet. Res. 46, 112. https://doi.org/10.1186/s13567-015-0246-4 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kwong, L. S. et al. Development of an ELISA for bovine IL-10. Vet. Immunol. Immunopathol. 85, 213–223. https://doi.org/10.1016/S0165-2427(02)00007-7 (2002).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wattegedera, S. R. et al. Enhancing the toolbox to study IL-17A in cattle and sheep. Vet. Res. 48, 20–20. https://doi.org/10.1186/s13567-017-0426-5 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jackson, F. New technique for obtaining nematode ova from sheep faeces. Lab. Pract. 23, 65–66 (1974).ADS 
    CAS 
    PubMed 

    Google Scholar 
    R Development Core Team. R: A language and environment for statistical computing. Accessed Feb 2020. https://www.R-project.org/ (2019).
    Venables, W. N. & Ripley, B. D. Random and Mixed Effects. In Modern Applied Statistics with S. Statistics and Computing. (2002).Package “corrplot”: visualization of a correlation matrix v. (Version 0.84) (2017).Jari Oksanen, F. et al. vegan: Community Ecology Package. R package version 2.5-6. Accessed Feb 2020. https://CRAN.R-project.org/package=vegan (2019). More

  • in

    Mycorrhizal fungi arbuscular in forage grasses cultivated in Cerrado soil

    Hunke, P., Mueller, E. N., Schröder, B. & Zeilhofer, P. The Brazilian Cerrado: Assessment of water and soil degradation in catchments under intensive agricultural use. Ecohydrology 8, 1154–1180 (2015).Article 

    Google Scholar 
    Klink, C. a. & Machado, R. B. A conservação do Cerrado brasileiro. Megadiversidade 1, 147–155 (2005).Dutra e Silva, S. Challenging the Environmental History of the Cerrado: Science, Biodiversity and Politics on the Brazilian Agricultural Frontier. LAHAC 1, (2020).Nehring, R. Yield of dreams: Marching west and the politics of scientific knowledge in the Brazilian Agricultural Research Corporation (Embrapa). Geoforum 77, 206–217 (2016).Article 

    Google Scholar 
    Taber, A., Navarro, G. & Arribas, M. A. A new park in the Bolivian Gran Chaco—an advance in tropical dry forest conservation and community-based management. Oryx 31, 189 (1997).Article 

    Google Scholar 
    Moura, de, J. B. & Cabral, J. S. R. Mycorrhiza in Central Savannahs: Cerrado and Caatinga. In Mycorrhizal Fungi in South America. vol. 1 (Springer International Publishing, 2019).de Brito Neves, B. B. & Cordani, U. G. Tectonic evolution of South America during the Late Proterozoic. Precambrian Res. 53, 23–40 (1991).ADS 
    Article 

    Google Scholar 
    Laux, J. H., Pimentel, M. M., Dantas, E. L., Armstrong, R. & Junges, S. L. Two neoproterozoic crustal accretion events in the Brasília belt, central Brazil. J. S. Am. Earth Sci. 18, 183–198 (2005).Article 

    Google Scholar 
    Simon, M. F. et al. Recent assembly of the Cerrado, a neotropical plant diversity hotspot, by in situ evolution of adaptations to fire. PNAS 106, 20359–20364 (2009).ADS 
    CAS 
    Article 

    Google Scholar 
    Guimarães Andrade, R. et al. Indicativo de pastagens plantadas em processo de degradação no bioma Cerrado. In XVII Simpósio Brasileiro de Sensoriamento Remot 1585–1592 (INPE, 2015).Arruda, A. B. et al. Resistance of soil to penetration as a parameter indicator of subsolation in crop areas of sugar cane. Sci. Rep. 11, 11780 (2021).ADS 
    CAS 
    Article 

    Google Scholar 
    Bongiorno, G. et al. Sensitivity of labile carbon fractions to tillage and organic matter management and their potential as comprehensive soil quality indicators across pedoclimatic conditions in Europe. Ecol. Ind. 99, 38–50 (2019).CAS 
    Article 

    Google Scholar 
    Dias-Filho, M. B. Desafios da produção animal em pastagens na fronteira agrícola brasileira. Embrapa Amazônia Oriental-Documentos (INFOTECA-E) (2012).Andrade Júnior, J. A. D., Ribeiro De Souza, B., Souza, R. F. & de Moura, J. B. Fixação de carbono em sistemas agroecológicos na região do vale do são patrício, goiás carbon sequestration in agroecological systems in the region of the são patrício valley, goiás. Científic@ Multidiscip. J. ISSN 5, 85–98 (2018).Andrade de Souza Moraes, J. M. et al. Arbuscular mycorrhizal fungi in integrated crop livestock systems with intercropping in the pasture phase in the Cerrado. Rhizosphere 11 (2019).Ofstehage, A. & Nehring, R. No-till agriculture and the deception of sustainability in Brazil. Int. J. Agric. Sustain. 19, 335–348 (2021).Article 

    Google Scholar 
    Thomazini, L. I. Mycorrhiza in plants of the ‘Cerrado’. Plant Soil 41, 707–711 (1974).Article 

    Google Scholar 
    Porcel, R. & Ruiz-Lozano, J. M. Arbuscular mycorrhizal influence on leaf water potential, solute accumulation, and oxidative stress in soybean plants subjected to drought stress. J. Exp. Bot. 55, 1743–1750 (2004).CAS 
    Article 

    Google Scholar 
    Moura, de, J. B., Valentim, N. M., Ventura, M. V. A. & Junior, W. G. V. Taxa de colonização micorrízica sob diferentes sistemas de cultivo no cerrado em cana-de-açúcar. 2, 60–66 (2017).Pirozynski, K. A. Interactions between fungi and plants through the ages. Can. J. Bot. 59, 1824–1827 (1981).Article 

    Google Scholar 
    Muthukumar, T., Udaiyan, K. & Shanmughavel, P. Mycorrhiza in sedges—an overview. Mycorrhiza 14, 65–77 (2004).CAS 
    Article 

    Google Scholar 
    Aliasgharzadeh, N., Rastin, S. N., Towfighi, H. & Alizadeh, A. Occurrence of arbuscular mycorrhizal fungi in saline soils of the Tabriz Plain of Iran in relation to some physical and chemical properties of soil. Mycorrhiza 11, 119–122 (2001).CAS 
    Article 

    Google Scholar 
    Gehring, C. A. & Connell, J. H. Arbuscular mycorrhizal fungi in the tree seedlings of two Australian rain forests: Occurrence, colonization, and relationships with plant performance. Mycorrhiza 16, 89–98 (2006).Article 

    Google Scholar 
    Vestberg, M. Occurrence of some Glomales in Finland. Mycorrhiza 5, 329–336 (1995).Article 

    Google Scholar 
    Khan, A. G. Occurrence and importance of mycorrhizae in aquatic trees of New South Wales, Australia. Mycorrhiza 3, 31–38 (1993).Article 

    Google Scholar 
    Braz, S. P., Urquiaga, S., Alves, B. J. R. & Boddey, R. M. Degradação de Pastagens, Matéria Orgânica do Solo e a Recuperação do Potencial Produtivo em Sistemas de Baixo “Input” Tecnológico na Região dos Cerrados (2004).
    Vieira Jr, W. G. et al. Seasonal variation in mycorrhizal community of different cerrado phytophysiomies. Front. Microbiol. 11 (2020).
    Gerdemann, J. W. & Nicolson, T. H. Spores of mycorrhizal endogone species extracted from soil by wet sieving and decanting. Trans. Br. Mycol. Soc. 46, 235–244 (1963).Article 

    Google Scholar 
    INVAM. International Culture Collection of (Vesicular) Arbuscular Mycorrhizal Fungi | West Virginia University. (2018).SILVA, F. de A. ASSISTAT: Versão 7.7 beta. (DEAG-CTRN-Universidade Federal de Campina Grande, 2008).Hammer, Ø. Past 3.x—the Past of the Future. (Natural History Museum, University of Oslo, 2018).Cavalcanti, A. C. R., Cavallini, M. C. & Lima, N. R. C. de B. Estresse por Déficit Hídrico em Plantas Forrageiras. 50 https://www.infoteca.cnptia.embrapa.br/bitstream/doc/748148/1/doc89.pdf (2009).Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes, J. L. G. & Sparovek, G. Köppen’s climate classification map for Brazil. Metereol Z 22(6), 711–728 (2014).Article 

    Google Scholar 
    Nicolson, T. H. Vesicular-arbuscular mycorrhiza in the Gramineae. Nature 181, 718–719 (1958).ADS 
    Article 

    Google Scholar 
    Soreng, R. J. et al. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. J. Syst. Evol. 55, 259–290 (2017).Article 

    Google Scholar 
    Teutscherova, N. et al. Differences in arbuscular mycorrhizal colonization and P acquisition between genotypes of the tropical Brachiaria grasses: Is there a relation with BNI activity?. Biol. Fertil. Soils 55, 325–337 (2019).CAS 
    Article 

    Google Scholar 
    de Miranda, J. C. C. Cerrado: Micorriza Arbuscular, Ocorrência e Manejo. (Embrapa, 2008).Souza, B. R., Moura, J. B., Oliveira, T. C., Ramos, M. L. G. & Lopes Filho, L. C. Arbuscular Mycorrhizal fungi as indicative of soil quality in conservation systems in the region of vale do São Patrício, Goiás. Int. J. Curr. Res. 8, 43307–43311 (2016).
    Google Scholar 
    de Oliveira, T. C. et al. Produtividade da soja em associação ao fungo micorrízico arbuscular Rhizophagus clarus cultivada em condições de campo. Rev. Ciênc. Agrovet. 18, 530–535 (2019).Article 

    Google Scholar 
    Moura, J. B. et al. Arbuscular mycorrhizal fungi associated with bamboo under Cerrado Brazilian vegetation. J. Soil Sci. Plant. Nutr https://doi.org/10.1007/s42729-019-00093-0 (2019).Article 

    Google Scholar 
    Phillips, J. M. & Hayman, D. S. Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans. Br. Mycol. Soc. 55, 158–161 (1970).Article 

    Google Scholar 
    Giovannetti, M. & Mosse, B. An evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84, 489–500 (1980).Article 

    Google Scholar 
    Promita, D. & Mohan, K. Arbuscular mycorrhizal fungal diversity in sugarcane rhizosphere in relation with soil properties. Notulae Scientia Biologicae 4(1), 66–74 (2012).Aquino, S. D. S. et al. Mycorrhizal colonization and diversity and corn genotype yield in soils of the Cerrado region, Brazil. Semin. Cienc. Agrar. 36, 4107–4117 (2015).Article 

    Google Scholar  More

  • in

    Unpacking the complexity of longitudinal movement and recruitment patterns of facultative amphidromous fish

    Beger, M. et al. Conservation planning for connectivity across marine, freshwater, and terrestrial realms. Biol. Cons. 143, 565–575 (2010).Article 

    Google Scholar 
    Roberts, J. H., Angermeier, P. L. & Hallerman, E. M. Distance, dams and drift: What structures populations of an endangered, benthic stream fish?. Freshw. Biol. 58, 2050–2064. https://doi.org/10.1111/fwb.12190 (2013).Article 

    Google Scholar 
    Berejikian, B. A., Campbell, L. A., Moore, M. E. & Grant, J. Large-scale freshwater habitat features influence the degree of anadromy in eight Hood Canal Oncorhynchus mykiss populations. Can. J. Fish. Aquat. Sci. 70, 756–765. https://doi.org/10.1139/cjfas-2012-0491 (2013).Article 

    Google Scholar 
    Falke, J. A. & Fausch, K. D. in American Fisheries Society Symposium. 207–233.Hanski, I. & Simberloff, D. in Metapopulation Biology (eds Ilkka Hanski & Michael E. Gilpin) 5–26 (Academic Press, 1997).Cadrin, S. X., Friedland, K. D. & Waldman, J. R. in Stock Identification Methods (eds Cadrin, S. X., Friedland, K. D. & Waldman, J. R.) 3–6 (Academic Press, 2005).Hughes, J. M., Schmidt, D. J. & Finn, D. S. Genes in streams: Using DNA to understand the movement of freshwater fauna and their riverine habitat. Bioscience 59, 573–583 (2009).Article 

    Google Scholar 
    Gross, M. R., Coleman, R. M. & McDowall, R. M. Aquatic productivity and the evolution of diadromous fish migration. Science 239, 1291–1293 (1988).ADS 
    CAS 
    Article 

    Google Scholar 
    McDowall, R. M. The evolution of diadromy in fishes (revisited) and its place in phylogenetic analysis. Rev. Fish Biol. Fish. 7, 443–462. https://doi.org/10.1023/A:1018404331601 (1997).Article 

    Google Scholar 
    Myers, G. S. Usage of anadromous, catadromous and allied terms for migratory fishes. Copeia 89–97, 1949. https://doi.org/10.2307/1438482 (1949).Article 

    Google Scholar 
    Augspurger, J. M., Warburton, M. & Closs, G. P. Life-history plasticity in amphidromous and catadromous fishes: A continuum of strategies. Rev. Fish Biol. Fish. 27, 177–192. https://doi.org/10.1007/s11160-016-9463-9 (2017).Article 

    Google Scholar 
    McDowall, R. On amphidromy, a distinct form of diadromy in aquatic organisms. Fish Fish. 8, 1–13 (2007).Article 

    Google Scholar 
    David, B. O. et al. To sea or not to sea? Multiple lines of evidence reveal the contribution of non-diadromous recruitment for supporting endemic fish populations within New Zealand’s longest river. Aquat. Conserv. Mar. Freshw. Ecosyst. 29, 1409–1423. https://doi.org/10.1002/aqc.3022 (2019).Article 

    Google Scholar 
    Delgado, L. et al. Genomic basis of the loss of diadromy in Galaxias maculatus: Insights from reciprocal transplant experiments. Mol. Ecol. 29, 4857–4870. https://doi.org/10.1111/mec.15686 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Closs, G. P., Hicks, A. S. & Jellyman, P. G. Life histories of closely related amphidromous and non-migratory fish species: A trade-off between egg size and fecundity. Freshw. Biol. 58, 1162–1177. https://doi.org/10.1111/fwb.12116 (2013).Article 

    Google Scholar 
    Górski, K., Habit, E. M., Pingram, M. A. & Manosalva, A. J. Variation of the use of marine resources by Galaxias maculatus in large Chilean rivers. Hydrobiologia 814, 61–73. https://doi.org/10.1007/s10750-015-2542-4 (2018).Article 

    Google Scholar 
    Vega Aguayo, R. et al. Bases biológicas para el cultivo del puye Galaxias maculatus (Jenyns, 1842): Una revisión (2014).Cussac, V. E. et al. New insights into the distribution, physiology and life histories of South American galaxiid fishes, and potential threats to this unique fauna. Diversity https://doi.org/10.3390/d12050178 (2020).Article 

    Google Scholar 
    Hicks, A. S. et al. Lake and species specific patterns of non-diadromous recruitment in amphidromous fish: The importance of local recruitment and habitat requirements. Mar. Freshw. Res. https://doi.org/10.1071/mf16387 (2017).Article 

    Google Scholar 
    Manosalva, A. J. et al. Variation of stomach content and isotopic niche of puye Galaxias maculatus (Jenyns, 1842) in large river systems of southern Chile. Freshw. Biol. 66, 1110–1122. https://doi.org/10.1111/fwb.13703 (2021).CAS 
    Article 

    Google Scholar 
    Milano, D., Aigo, J. C. & Macchi, P. J. Diel patterns in space use, food and metabolic activity of Galaxias maculatus (Pisces: Galaxiidae) in the littoral zone of a shallow Patagonian lake. Aquat. Ecol. 47, 277–290. https://doi.org/10.1007/s10452-013-9443-2 (2013).Article 

    Google Scholar 
    Chapman, A., Morgan, D. L., Beatty, S. J. & Gill, H. S. Variation in life history of land-locked lacustrine and riverine populations of Galaxias maculatus (Jenyns 1842) in Western Australia. Environ. Biol. Fishes 77, 21–37 (2006).Article 

    Google Scholar 
    Barriga, J. P. et al. Intraspecific variation in diet, growth, and morphology of landlocked Galaxias maculatus during its larval period: The role of food availability and predation risk. Hydrobiologia 679, 27–41 (2012).Article 

    Google Scholar 
    Campos, H. Population studies of Galaxias maculatus (Jenyns) (Osteichthys: Galaxiidae) in Chile with reference to the number of vertebrae. Stud. Neotrop. Fauna 9, 55–76. https://doi.org/10.1080/01650527409360470 (1974).Article 

    Google Scholar 
    Rojo, J. H., Fernandez, D. A., Figueroa, D. E. & Boy, C. C. Phenotypic and genetic differentiation between diadromous and landlocked puyen Galaxias maculatus. J. Fish Biol. 96, 956–967. https://doi.org/10.1111/jfb.14285 (2020).Article 
    PubMed 

    Google Scholar 
    Zemlak, T. S., Habit, E. M., Walde, S. J., Carrea, C. & Ruzzante, D. E. Surviving historical Patagonian landscapes and climate: Molecular insights from Galaxias maculatus. BMC Evol. Biol. 10, 1–18 (2010).Article 

    Google Scholar 
    Delgado, M. L., Gorski, K., Habit, E. & Ruzzante, D. E. The effects of diadromy and its loss on genomic divergence: The case of amphidromous Galaxias maculatus populations. Mol. Ecol. 28, 5217–5231. https://doi.org/10.1111/mec.15290 (2019).Article 
    PubMed 

    Google Scholar 
    Delgado, M. L. et al. Genomic basis of the loss of diadromy in Galaxias maculatus: Insights from reciprocal transplant experiments. Mol. Ecol. 29, 4857–4870. https://doi.org/10.1111/mec.15686 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Alo, D., Correa, C., Samaniego, H., Krabbenhoft, C. A. & Turner, T. F. Otolith microchemistry and diadromy in Patagonian river fishes. PeerJ 7, e6149. https://doi.org/10.7717/peerj.6149 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Campana, S. E. Chemistry and composition of fish otoliths: Pathways, mechanisms and applications. Mar. Ecol. Prog. Ser. 188, 263–297 (1999).ADS 
    CAS 
    Article 

    Google Scholar 
    Schulz-Mirbach, T., Ladich, F., Plath, M. & Heß, M. Enigmatic ear stones: What we know about the functional role and evolution of fish otoliths. Biol. Rev. 94, 457–482 (2019).Article 

    Google Scholar 
    Campana, S. E. Otolith science entering the 21st century. Mar. Freshw. Res. 56, 485–495 (2005).Article 

    Google Scholar 
    Ahn, H. et al. Effect of water temperature on embryonic development and hatching time of the Japanese eel Anguilla japonica. Aquaculture 330, 100–105 (2012).Article 

    Google Scholar 
    Avigliano, E., Velasco, G. & Volpedo, A. V. Use of lapillus otolith microchemistry as an indicator of the habitat of Genidens barbus from different estuarine environments in the southwestern Atlantic Ocean. Environ. Biol. Fishes 98, 1623–1632. https://doi.org/10.1007/s10641-015-0387-3 (2015).Article 

    Google Scholar 
    Whitledge, G. W. Otolith microchemistry and isotopic composition as potential indicators of fish movement between the Illinois River drainage and Lake Michigan. J. Great Lakes Res. 35, 101–106. https://doi.org/10.1016/j.jglr.2008.10.003 (2009).CAS 
    Article 

    Google Scholar 
    Kraus, R. T. & Secor, D. H. Incorporation of strontium into otoliths of an estuarine fish. J. Exp. Mar. Biol. Ecol. 302, 85–106. https://doi.org/10.1016/j.jembe.2003.10.004 (2004).CAS 
    Article 

    Google Scholar 
    Volk, E. C., Blakley, A., Schroder, S. L. & Kuehner, S. M. Otolith chemistry reflects migratory characteristics of Pacific salmonids: Using otolith core chemistry to distinguish maternal associations with sea and freshwaters. Fish. Res. 46, 251–266 (2000).Article 

    Google Scholar 
    Vignon, M. Extracting environmental histories from sclerochronological structures—Recursive partitioning as a mean to explore multi-elemental composition of fish otolith. Ecol. Inform. 30, 159–169. https://doi.org/10.1016/j.ecoinf.2015.10.002 (2015).Article 

    Google Scholar 
    Teichert, N. et al. Site fidelity and movements of an amphidromous goby revealed by otolith multi-elemental signatures along a tropical watershed. Ecol. Freshw. Fish 27, 834–846. https://doi.org/10.1111/eff.12396 (2018).Article 

    Google Scholar 
    Elsdon, T. S. & Gillanders, B. M. Fish otolith chemistry influenced by exposure to multiple environmental variables. J. Exp. Mar. Biol. Ecol. 313, 269–284. https://doi.org/10.1016/j.jembe.2004.08.010 (2004).CAS 
    Article 

    Google Scholar 
    Vivancos, A. et al. Hydrological connectivity drives longitudinal movement of endangered endemic Chilean darter Percilia irwini (Eigenmann, 1927). J Fish Biol 98, 33–43. https://doi.org/10.1111/jfb.14554 (2021).Article 
    PubMed 

    Google Scholar 
    Percie du Sert, N. et al. Reporting animal research: Explanation and elaboration for the ARRIVE guidelines 2.0. PLOS Biology 18, e3000411. https://doi.org/10.1371/journal.pbio.3000411 (2020).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Warburton, M. L., Reid, M. R., Stirling, C. H. & Closs, G. Validation of depth-profiling LA-ICP-MS in otolith applications. Can. J. Fish. Aquat. Sci. 74, 572–581 (2017).CAS 
    Article 

    Google Scholar 
    Paton, C., Hellstrom, J., Paul, B., Woodhead, J. & Hergt, J. Iolite: Freeware for the visualisation and processing of mass spectrometric data. J. Anal. At. Spectrom. 26, 2508–2518. https://doi.org/10.1039/C1JA10172B (2011).CAS 
    Article 

    Google Scholar 
    Woodhead, J. et al. A guide to depth profiling and imaging applications of LA-ICP-MS. Laser Ablation ICP-MS Earth Sci. Curr. Pract. Outst. Issues 40, 135–145 (2008).CAS 

    Google Scholar 
    Veinott, G., Westley, P. A. H., Purchase, C. F., Warner, L. & Gillanders, B. Experimental evidence simultaneously confirms and contests assumptions implicit to otolith microchemistry research. Can. J. Fish. Aquat. Sci. 71, 356–365. https://doi.org/10.1139/cjfas-2013-0224 (2014).Article 

    Google Scholar 
    Brophy, D., Jeffries, T. E. & Danilowicz, B. S. Elevated manganese concentrations at the cores of clupeid otoliths: Possible environmental, physiological, or structural origins. Mar. Biol. 144, 779–786. https://doi.org/10.1007/s00227-003-1240-3 (2004).CAS 
    Article 

    Google Scholar 
    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).MATH 

    Google Scholar 
    Anderson, M. J. A new method for non-parametric multivariate analysis of variance. Austral Ecol. 26, 32–46. https://doi.org/10.1111/j.1442-9993.2001.01070.pp.x (2001).Article 

    Google Scholar 
    McArdle, B. H. & Anderson, M. J. Fitting multivariate models to community data: A comment on distance-based redundancy analysis. Ecology 82, 290–297. https://doi.org/10.1890/0012-9658(2001)082[0290:FMMTCD]2.0.CO;2 (2001).Article 

    Google Scholar 
    Brown, R. J., Campana, S. & Severin, K. P. Otolith chemistry analyses indicate that water Sr: Ca is the primary factor influencing otolith Sr: Ca for freshwater and diadromous fish but not for marine fish. Can. J. Fish. Aquat. Sci. 66, 1790–1808. https://doi.org/10.1139/f09-112 (2009).CAS 
    Article 

    Google Scholar 
    Humston, R. et al. Isotope geochemistry reveals ontogeny of dispersal and exchange between main-river and tributary habitats in smallmouth bass Micropterus dolomieu. J. Fish Biol. 90, 528–548. https://doi.org/10.1111/jfb.13073 (2017).CAS 
    Article 
    PubMed 

    Google Scholar 
    Dingle, H. & Drake, V. A. What is migration?. Bioscience 57, 113–121 (2007).Article 

    Google Scholar 
    Hogan, J. D., Blum, M. J., Gilliam, J. F., Bickford, N. & McIntyre, P. B. Consequences of alternative dispersal strategies in a putatively amphidromous fish. Ecology 95, 2397–2408 (2014).Article 

    Google Scholar 
    Kelley, J. L., Grierson, P. F., Collin, S. P. & Davies, P. M. Habitat disruption and the identification and management of functional trait changes. Fish Fish. 19, 716–728. https://doi.org/10.1111/faf.12284 (2018).Article 

    Google Scholar 
    Vivancos, A. et al. Hydrological connectivity drives longitudinal movement of endangered endemic Chilean darter Percilia irwini (Eigenmann, 1927). J. Fish Biol. 98, 33–43 (2020).Article 

    Google Scholar 
    Hicks, A. S., Closs, G. P. & Swearer, S. E. Otolith microchemistry of two amphidromous galaxiids across an experimental salinity gradient: A multi-element approach for tracking diadromous migrations. J. Exp. Mar. Biol. Ecol. 394, 86–97 (2010).Article 

    Google Scholar 
    Miller, J. A. Effects of water temperature and barium concentration on otolith composition along a salinity gradient: Implications for migratory reconstructions. J. Exp. Mar. Biol. Ecol. 405, 42–52. https://doi.org/10.1016/j.jembe.2011.05.017 (2011).CAS 
    Article 

    Google Scholar 
    Walsh, C. T. & Gillanders, B. M. Extrinsic factors affecting otolith chemistry—Implications for interpreting migration patterns in a diadromous fish. Environ. Biol. Fishes 101, 905–916. https://doi.org/10.1007/s10641-018-0746-y (2018).Article 

    Google Scholar 
    Walther, B. D. & Limburg, K. E. The use of otolith chemistry to characterize diadromous migrations. J. Fish Biol. 81, 796–825. https://doi.org/10.1111/j.1095-8649.2012.03371.x (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hicks, A. S. et al. Lake and species specific patterns of non-diadromous recruitment in amphidromous fish: The importance of local recruitment and habitat requirements. Mar. Freshw. Res. 68, 2315–2323 (2017).Article 

    Google Scholar 
    Hickford, M. J. & Schiel, D. R. Population sinks resulting from degraded habitats of an obligate life-history pathway. Oecologia 166, 131–140 (2011).ADS 
    Article 

    Google Scholar 
    Barriga, J., Battini, M. & Cussac, V. Annual dynamics variation of a landlocked Galaxias maculatus (Jenyns 1842) population in a Northern Patagonian river: Occurrence of juvenile upstream migration. J. Appl. Ichthyol. 23, 128–135 (2007).Article 

    Google Scholar 
    Huey, J. A. et al. Is variable connectivity among populations of a continental gobiid fish driven by local adaptation or passive dispersal?. Freshw. Biol. 59, 1672–1686 (2014).CAS 
    Article 

    Google Scholar 
    Catlin, A. K., Collier, K. J. & Duggan, I. C. Zooplankton generation following inundation of floodplain soils: Effects of vegetation type and riverine connectivity. Mar. Freshw. Res. https://doi.org/10.1071/mf15273 (2017).Article 

    Google Scholar 
    Górski, K., Collier, K. J., Duggan, I. C., Taylor, C. M. & Hamilton, D. P. Connectivity and complexity of floodplain habitats govern zooplankton dynamics in a large temperate river system. Freshw. Biol. 58, 1458–1470. https://doi.org/10.1111/fwb.12144 (2013).Article 

    Google Scholar 
    Sturrock, A. M. et al. Quantifying physiological influences on otolith microchemistry. Methods Ecol. Evol. 6, 806–816. https://doi.org/10.1111/2041-210x.12381 (2015).Article 

    Google Scholar 
    Doubleday, Z. A., Izzo, C., Woodcock, S. H. & Gillanders, B. M. Relative contribution of water and diet to otolith chemistry in freshwater fish. Aquat. Biol. 18, 271–280. https://doi.org/10.3354/ab00511 (2013).Article 

    Google Scholar 
    Elsdon, T. S. et al. Oceanography and Marine Biology 303–336 (CRC Press, 2008).
    Google Scholar 
    Izzo, C., Doubleday, Z. A., Schultz, A. G., Woodcock, S. H. & Gillanders, B. M. Contribution of water chemistry and fish condition to otolith chemistry: Comparisons across salinity environments. J Fish Biol 86, 1680–1698. https://doi.org/10.1111/jfb.12672 (2015).CAS 
    Article 
    PubMed 

    Google Scholar 
    Walther, B. D. The art of otolith chemistry: interpreting patterns by integrating perspectives. Mar. Freshw. Res. 70, 1643–1658 (2019).CAS 
    Article 

    Google Scholar 
    Hüssy, K. et al. Trace element patterns in otoliths: The role of biomineralization. Rev. Fish. Sci. Aquacult. 29, 1–33 (2020).
    Google Scholar 
    Nazir, A. & Khan, M. A. Spatial and temporal variation in otolith chemistry and its relationship with water chemistry: Stock discrimination of Sperata aor. Ecol. Freshw. Fish 28, 499–511. https://doi.org/10.1111/eff.12471 (2019).Article 

    Google Scholar 
    Vera-Escalona, I., Habit, E. & Ruzzante, D. E. Invasive species and postglacial colonization: Their effects on the genetic diversity of a Patagonian fish. Proc. Biol. Sci. 286, 20182567. https://doi.org/10.1098/rspb.2018.2567 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar  More