Teale, S. A. & Castello, J. D. The past as key to the future: a new perspective on forest health. In Forest Health: An Integrated Perspective (eds Castello, J. D. & Teale, S. A.) 3–16 (Cambridge University Press, 2011). https://doi.org/10.1017/CBO9780511974977.002.Chapter
Google Scholar
Jactel, H., Koricheva, J. & Castagneyrol, B. Responses of forest insect pests to climate change: Not so simple. Curr. Opin. Insect Sci. 35, 103–108 (2019).Article
PubMed
Google Scholar
Trumbore, S., Brando, P. & Hartmann, H. Forest health and global change. Science 349, 814–818 (2015).Article
ADS
CAS
PubMed
Google Scholar
North, M. P. et al. Operational resilience in western US frequent-fire forests. For. Ecol. Manag. 507, 120004 (2022).Article
Google Scholar
Raffa, K. F. et al. A literal use of “forest health” safeguards against misuse and misapplication. J. For. 107, 276–277 (2009).
Google Scholar
Kolb, T. E., Wagner, M. R. & Covington, W. W. Concepts of forest health: Utilitarian and ecosystem perspectives. J. For. 92, 10–15 (1994).
Google Scholar
Cale, J. A. et al. A quantitative index of forest structural sustainability. Forests 5, 1618–1634 (2014).Article
Google Scholar
Lintz, H. E. et al. Quantifying density-independent mortality of temperate tree species. Ecol. Indic. 66, 1–9 (2016).Article
Google Scholar
Stanke, H., Finley, A. O., Domke, G. M., Weed, A. S. & MacFarlane, D. W. Over half of western United States’ most abundant tree species in decline. Nat. Commun. 12, 451 (2021).Article
ADS
CAS
PubMed
PubMed Central
Google Scholar
Bettinger, P., Boston, K., Siry, J. P. & Grebner, D. L. Chapter 2—Valuing and Characterizing Forest Conditions. In Forest Management and Planning (eds Bettinger, P. et al.) 21–63 (Academic Press, 2017). https://doi.org/10.1016/B978-0-12-809476-1.00002-3.Chapter
Google Scholar
Crowther, T. W. et al. Mapping tree density at a global scale. Nature 525, 201–205 (2015).Article
ADS
CAS
PubMed
Google Scholar
Fettig, C. J. et al. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. For. Ecol. Manag. 238, 24–53 (2007).Article
Google Scholar
Morin, R. S. & Liebhold, A. M. Invasions by two non-native insects alter regional forest species composition and successional trajectories. For. Ecol. Manag. 341, 67–74 (2015).Article
Google Scholar
Nowak, J. T., Meeker, J. R., Coyle, D. R., Steiner, C. A. & Brownie, C. Southern pine beetle infestations in relation to forest stand conditions, previous thinning, and prescribed burning: Evaluation of the southern pine beetle prevention program. J. For. 113, 454–462 (2015).
Google Scholar
Asaro, C. & Chamberlin, L. A. Outbreak history (1953–2014) of spring defoliators impacting oak-dominated forests in Virginia, with emphasis on gypsy moth (Lymantria dispar L.) and fall cankerworm (Alsophila pometaria Harris). Am. Entomol. 61, 174–185 (2015).Article
Google Scholar
Negrón, J. F. Probability of infestation and extent of mortality associated with the Douglas-fir beetle in the Colorado Front Range. For. Ecol. Manag. 107, 71–85 (1998).Article
Google Scholar
Negrón, J. F. & Popp, J. B. Probability of ponderosa pine infestation by mountain pine beetle in the Colorado Front Range. For. Ecol. Manag. 191, 17–27 (2004).Article
Google Scholar
Schmid, J. M. & Frye, R. H. Spruce Beetle in the Rockies. Gen. Tech. Rep. RM-49 (US Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station, 1977).
Google Scholar
Krivak-Tetley, F. E. et al. Aggressive tree killer or natural thinning agent? Assessing the impacts of a globally important forest insect. For. Ecol. Manag. 483, 118728 (2021).Article
Google Scholar
Bradford, J. B. et al. Tree mortality response to drought-density interactions suggests opportunities to enhance drought resistance. J. Appl. Ecol. 59, 549–559 (2022).Article
Google Scholar
Young, D. J. N. et al. Long-term climate and competition explain forest mortality patterns under extreme drought. Ecol. Lett. 20, 78–86 (2017).Article
PubMed
Google Scholar
Furniss, T. J., Das, A. J., van Mantgem, P. J., Stephenson, N. L. & Lutz, J. A. Crowding, climate, and the case for social distancing among trees. Ecol. Appl. 32, e2507 (2022).Article
PubMed
Google Scholar
Woodall, C. W. & Weiskittel, A. R. Relative density of United States forests has shifted to higher levels over last two decades with important implications for future dynamics. Sci. Rep. 11, 1–12 (2021).Article
Google Scholar
Gandhi, K. J. K., Campbell, F. & Abrams, J. Current status of forest health policy in the United States. Insects 10, 1–14 (2019).Article
Google Scholar
Ciesla, W. M. The role of human activities on forest insect outbreaks worldwide. Int. For. Rev. 17, 269–281 (2015).
Google Scholar
Jactel, H. & Brockerhoff, E. G. Tree diversity reduces herbivory by forest insects. Ecol. Lett. 10, 835–848 (2007).Article
PubMed
Google Scholar
Marini, L., Ayres, M. P. & Jactel, H. Impact of stand and landscape management on forest pest damage. Annu. Rev. Entomol. 67, 181–199 (2022).Article
PubMed
Google Scholar
Guyot, V., Castagneyrol, B., Vialatte, A., Deconchat, M. & Jactel, H. Tree diversity reduces pest damage in mature forests across Europe. Biol. Lett. 12, 20151037 (2016).Article
PubMed
PubMed Central
Google Scholar
Kneeshaw, D. D. et al. The vision of managing for pest-resistant landscapes: Realistic or utopic? Curr. For. Rep. 7, 97–113 (2021).PubMed
PubMed Central
Google Scholar
Chisholm, P. J., Stevens-Rumann, C. S. & Davis, T. S. Interactions between climate and stand conditions predict pine mortality during a bark beetle outbreak. Forests 12, 360 (2021).Article
Google Scholar
Ferrell, G. T., Otrosina, W. J. & Demars, C. J. Predicting susceptibility of white fir during a drought-associated outbreak of the fir engraver, Scolytus ventralis in California. Can. J. For. Res. 24, 302–305 (1994).Article
Google Scholar
Asaro, C., Nowak, J. T. & Elledge, A. Why have southern pine beetle outbreaks declined in the southeastern U.S. with the expansion of intensive pine silviculture? A brief review of hypotheses. For. Ecol. Manag. 391, 338–348 (2017).Article
Google Scholar
Nowak, J. T., Klepzig, K. D., Coyle, D. R., Carothers, W. A. & Gandhi, K. J. K. Southern pine beetles in central hardwood forests: Frequency, spatial extent, and changes to forest structure. In Managing Forest Ecosystems Volume 32: Natural Disturbances and Historic Range of Variation (eds Greenberg, C. H. & Collins, B. S.) 73–88 (Springer International Publishing, 2016). https://doi.org/10.1007/978-3-319-21527-3_4.Chapter
Google Scholar
Crocker, S. J., Liknes, G. C., McKee, F. R., Albers, J. S. & Aukema, B. H. Stand-level factors associated with resurging mortality from eastern larch beetle (Dendroctonus simplex LeConte). For. Ecol. Manag. 375, 27–34 (2016).Article
Google Scholar
Mattson, W. J. & Addy, N. D. Phytophagous insects as regulators of forest primary production. Science 190, 515–522 (1975).Article
ADS
Google Scholar
Thom, D. & Seidl, R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 91, 760–781 (2016).Article
PubMed
Google Scholar
Grégoire, J. C., Raffa, K. F. & Lindgren, B. S. Economics and politics of bark beetles. In Bark Beetles: Biology and Ecology of Native and Invasive Species (eds Vega, F. E. & Hofstetter, R. W.) 585–613 (Academic Press, 2015). https://doi.org/10.1016/B978-0-12-417156-5.00015-0.Chapter
Google Scholar
Kolb, T. E. et al. Observed and anticipated impacts of drought on forest insects and diseases in the United States. For. Ecol. Manag. 380, 321–334 (2016).Article
Google Scholar
Fettig, C. J. et al. Changing climates, changing forests: A western North American perspective. J. For. 111, 214–228 (2013).
Google Scholar
Liebhold, A. M. et al. A highly aggregated geographical distribution of forest pest invasions in the USA. Divers. Distrib. 19, 1208–1216 (2013).Article
Google Scholar
Siegert, N. W., Mccullough, D. G., Liebhold, A. M. & Telewski, F. W. Dendrochronological reconstruction of the epicentre and early spread of emerald ash borer in North America. Divers. Distrib. 20, 847–858 (2014).Article
Google Scholar
Smith, A., Herms, D. A., Long, R. P. & Gandhi, K. J. K. Community composition and structure had no effect on forest susceptibility to invasion by the emerald ash borer (Coleoptera: Buprestidae). Can. Entomol. 147, 318–328 (2015).Article
Google Scholar
Aukema, J. E. et al. Historical accumulation of nonindigenous forest pests in the continental United States. Bioscience 60, 886–897 (2010).Article
Google Scholar
Hicke, J. A. et al. Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Glob. Chang. Biol. 18, 7–34 (2012).Article
ADS
Google Scholar
Feeny, P. Seasonal changes in oak leaf tannins and nutrients as a cause of spring feeding by winter moth caterpillars. Ecology 51, 565–581 (1970).Article
Google Scholar
Schowalter, T. D., Hargrove, W. W. & Crossley, D. A. Herbivory in forested ecosystems. Annu. Rev. Entomol. 31, 177–196 (1986).Article
Google Scholar
Seidl, R. et al. Forest disturbances under climate change. Nat. Clim. Chang. 7, 395–402 (2017).Article
ADS
PubMed
PubMed Central
Google Scholar
Colautti, R. I., Ricciardi, A., Grigorovich, I. A. & MacIsaac, H. J. Is invasion success explained by the enemy release hypothesis? Ecol. Lett. 7, 721–733 (2004).Article
Google Scholar
Catford, J. A., Jansson, R. & Nilsson, C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 15, 22–40 (2009).Article
Google Scholar
Guyot, V. et al. Tree diversity limits the impact of an invasive forest pest. PLoS One 10, 1–16 (2015).Article
Google Scholar
Root, R. B. Organization of a plant-arthropod association in simple and diverse habitats: The fauna of collards (Brassica oleracea). Ecol. Monogr. 43, 95–124 (1973).Article
Google Scholar
Acker, S. A., Boetsch, J. R., Fallon, B. & Denn, M. Stable background tree mortality in mature and old-growth forests in western Washington (NW USA). For. Ecol. Manag. 532, 120817 (2023).Article
Google Scholar
Shive, K. L. et al. Ancient trees and modern wildfires: Declining resilience to wildfire in the highly fire-adapted giant sequoia. For. Ecol. Manag. 511, 120110 (2022).Article
Google Scholar
Searle, E. B., Chen, H. Y. H. & Paquette, A. Higher tree diversity is linked to higher tree mortality. Proc. Natl. Acad. Sci. U.S.A. 119, 1–7 (2022).Article
Google Scholar
Hart, S. J., Veblen, T. T., Eisenhart, K. S., Jarvis, D. & Kulakowski, D. Drought induces spruce beetle (Dendroctonus rufipennis) outbreaks across northwestern Colorado. Ecology 95, 930–939 (2014).Article
PubMed
Google Scholar
Hart, S. J., Veblen, T. T. & Kulakowski, D. Do tree and stand-level attributes determine susceptibility of spruce-fir forests to spruce beetle outbreaks in the early 21st century? For. Ecol. Manag. 318, 44–53 (2014).Article
Google Scholar
Temperli, C. et al. Are density reduction treatments effective at managing for resistance or resilience to spruce beetle disturbance in the southern Rocky Mountains? For. Ecol. Manag. 334, 53–63 (2014).Article
Google Scholar
Six, D. L., Biber, E. & Long, E. Management for mountain pine beetle outbreak suppression: Does relevant science support current policy? Forests 5, 103–133 (2014).Article
Google Scholar
Black, S. H., Kulakowski, D., Noon, B. R. & Dellasala, D. A. Do bark beetle outbreaks increase wildfire risks in the central U.S. rocky mountains? Implications from recent research. Nat. Areas J. 33, 59–65 (2013).Article
Google Scholar
Oswalt, S. N., Smith, W. B., Miles, P. D. & Pugh, S. A. Forest Resources of the United States, 2017: A Technical Document Supporting the Forest Service 2020 RPA Assessment. Gen. Tech. Rep. WO-97 (US Department of Agriculture, Forest Service, 2019). https://doi.org/10.2737/WO-GTR-97.Book
Google Scholar
Cleland, D. et al. Terrestrial condition assessment for national forests of the USDA Forest Service in the continental US. Sustainability 9, 1–19 (2017).Article
Google Scholar
USDA Forest Service Forest Health Protection. Insect and Disease Detection Survey (IDS) data downloads. https://www.fs.usda.gov/foresthealth/applied-sciences/mapping-reporting/detection-surveys.shtml (2021). Accessed on 9 October 2021.Spruce, J. P. et al. Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks. Remote Sens. Environ. 115, 427–437 (2011).Article
ADS
Google Scholar
Gomez, D. F., Ritger, H. M. W., Pearce, C., Eickwort, J. & Hulcr, J. Ability of remote sensing systems to detect bark beetle spots in the southeastern US. Forests 11, 1–10 (2020).Article
Google Scholar
Hanavan, R. P. et al. Supplementing the forest health national aerial survey program with remote sensing during the COVID-19 pandemic: Lessons learned from a collaborative approach. J. For. 120, 125–132 (2021).
Google Scholar
Johnson, E. W. & Wittwer, D. Aerial detection surveys in the United States. Aust. For. 71, 212–215 (2008).Article
Google Scholar
Bright, B. C. et al. Using satellite imagery to evaluate bark beetle-caused tree mortality reported in aerial surveys in a mixed conifer forest in Northern Idaho, USA. Forests 11, 1–19 (2020).Article
Google Scholar
Coleman, T. W. et al. Accuracy of aerial detection surveys for mapping insect and disease disturbances in the United States. For. Ecol. Manag. 430, 321–336 (2018).Article
Google Scholar
Hicke, J. A., Xu, B., Meddens, A. J. H. & Egan, J. M. Characterizing recent bark beetle-caused tree mortality in the western United States from aerial surveys. For. Ecol. Manag. 475, 118402 (2020).Article
Google Scholar
Kosiba, A. M. et al. Spatiotemporal patterns of forest damage and disturbance in the northeastern United States: 2000–2016. For. Ecol. Manag. 430, 94–104 (2018).Article
Google Scholar
Meigs, G. W., Kennedy, R. E., Gray, A. N. & Gregory, M. J. Spatiotemporal dynamics of recent mountain pine beetle and western spruce budworm outbreaks across the Pacific Northwest Region USA. For. Ecol. Manag. 339, 71–86 (2015).Article
Google Scholar
Bechtold, W. A. & Patterson, P. L. The Enhanced Forest Inventory and Analysis Program—National Sampling Design and Estimation Procedures. Gen. Tech. Rep. SRS-80 (US Department of Agriculture, Forest Service, Southern Research Station, 2005). https://doi.org/10.2737/SRS-GTR-80.Book
Google Scholar
Randolph, K. D. C. et al. Past and present individual-tree damage assessments of the US national forest inventory. Environ. Monit. Assess. 193, 116 (2021).Article
PubMed
Google Scholar
Kromroy, K. W., Juzwik, J., Castillo, P. & Hansen, M. H. Using forest service forest inventory and analysis data to estimate regional oak decline and oak mortality. North. J. Appl. For. 25, 17–24 (2008).Article
Google Scholar
Coulston, J. W., Edgar, C. B., Westfall, J. A. & Taylor, M. E. Estimation of forest disturbance from retrospective observations in a broad-scale inventory. Forests 11, 1298 (2020).Article
Google Scholar
Wilson, B. T., Lister, A. J. & Riemann, R. I. A nearest-neighbor imputation approach to mapping tree species over large areas using forest inventory plots and moderate resolution raster data. For. Ecol. Manag. 271, 182–198 (2012).Article
Google Scholar
Blackard, J. A. et al. Mapping U.S. forest biomass using nationwide forest inventory data and moderate resolution information. Remote Sens. Environ. 112, 1658–1677 (2008).Article
ADS
Google Scholar
Brosofske, K. D., Froese, R. E., Falkowski, M. J. & Banskota, A. A review of methods for mapping and prediction of inventory attributes for operational forest management. For. Sci. 60, 733–756 (2014).Article
Google Scholar
Lister, A. J. et al. Use of remote sensing data to improve the efficiency of national forest inventories: A case study from the United States national forest inventory. Forests 11, 1–41 (2020).Article
Google Scholar
USDA Forest Service Forest Health Protection. Individual Tree Species Parameter (ITSP) maps – GIS data downloads. https://www.fs.usda.gov/foresthealth/applied-sciences/mapping-reporting/indiv-tree-parameter-maps.shtml (2021). Accessed on 9 October 2021.Ellenwood, J. R., Krist, F. J. & Romero, S. A. National Individual Tree Species Atlas. FHTET-15-01 (US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, 2015).
Google Scholar
Krist, F. J. et al. National Insect and Disease Forest Risk Assessment. FHTET-14-01 (US Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team, 2014).
Google Scholar
Rulequest Inc. Cubist, release 2.07. https://www.rulequest.com/cubist-info.html (2011). Accessed on 15 July 2022.R Core Team. R: A language and environment for statistical computing. https://www.r-project.org (2021). Accessed on 4 March 2022.Esri Inc. ArcGIS Pro 2.8.0. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (2021). Accessed on 4 March 2022. More