Morpho-physiological adaptations of Leptocylindrus aporus and L. hargravesii to phosphate limitation in the northern Adriatic
Nanjappa, D., Kooistra, W. H. & Zingone, A. A reappraisal of the genus Leptocylindrus (B acillariophyta), with the addition of three species and the erection of Tenuicylindrus gen. nov. J. Phycol. 49, 917–936 (2013).Article
Google Scholar
Hasle, G. & Syvertsen, E. (Academic Press, 1997).Gómez, F., Simão, T. L., Utz, L. R. & Lopes, R. M. The nature of the diatom Leptocylindrus mediterraneus (Bacillariophyceae), host of the enigmatic symbiosis with the stramenopile Solenicola setigera. Phycologia 55, 265–273 (2016).Article
Google Scholar
Ivančić, I. et al. Survival mechanisms of phytoplankton in conditions of stratification-induced deprivation of orthophosphate: Northern Adriatic case study. Limnol. Oceanogr. https://doi.org/10.4319/lo.2012.57.6.0000 (2012).Article
Google Scholar
Ivančić, I. et al. Alkaline phosphatase activity related to phosphorus stress of microphytoplankton in different trophic conditions. Prog. Oceanogr. 146, 175–186. https://doi.org/10.1016/j.pocean.2016.07.003 (2016).ADS
Article
Google Scholar
Smodlaka, N. Primary production of the organic matter as an indicator of the eutrophication in the northern Adriatic sea. Sci. Total Environ. 56, 211–220. https://doi.org/10.1016/0048-9697(86)90325-6 (1986).ADS
CAS
Article
Google Scholar
Degobbis, D. & Gilmartin, M. Nitrogen, phosphorus, and biogenic silicon budgets for the northern Adriatic Sea. Oceanol. Acta 13, 31–45 (1990).CAS
Google Scholar
Zavatarelli, M., Raicich, F., Bregant, D., Russo, A. & Artegiani, A. Climatological biogeochemical characteristics of the Adriatic Sea. J. Mar. Syst. 18, 227–263 (1998).Article
Google Scholar
Socal, G. et al. Hydrological and biogeochemical features of the Northern Adriatic Sea in the period 2003–2006. Mar. Ecol. 29, 449–468. https://doi.org/10.1111/J.1439-0485.2008.00266.X (2008).ADS
CAS
Article
Google Scholar
Giani, M. et al. Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuar. Coast. Shelf Sci. 115, 1–13. https://doi.org/10.1016/j.ecss.2012.08.023 (2012).ADS
Article
Google Scholar
Marić, D. et al. Phytoplankton response to climatic and anthropogenic influences in the north-eastern Adriatic during the last four decades. Estuar. Coast. Shelf Sci. 115, 98–112. https://doi.org/10.1016/J.Ecss.2012.02.003 (2012).ADS
Article
Google Scholar
Smodlaka Tanković, M. et al. Insights into the life strategy of the common marine diatom Chaetoceros peruvianus Brightwell. PLoS ONE 13, e0203634 (2018).Article
Google Scholar
Marić Pfannkuchen, D. et al. The ecology of one cosmopolitan, one newly introduced and one occasionally advected species from the genus Skeletonema in a highly structured ecosystem, the northern Adriatic. Microb. Ecol. 75, 674–687 (2018).Article
Google Scholar
Benitez-Nelson, C. R. The biogeochemical cycling of phosphorus in marine systems. Earth Sci. Rev. 51, 109–135 (2000).ADS
CAS
Article
Google Scholar
Paytan, A. & McLaughlin, K. The oceanic phosphorus cycle. Chem. Rev. 107, 563–576 (2007).CAS
Article
Google Scholar
Price, N. M. & Morel, F. M. Role of extracellular enzymatic reactions in natural waters. (1990).Hoppe, H.-G. Phosphatase activity in the sea. Hydrobiologia 493, 187–200 (2003).CAS
Article
Google Scholar
Fields, M. W. et al. Sources and resources: Importance of nutrients, resource allocation, and ecology in microalgal cultivation for lipid accumulation. Appl. Microbiol. Biotechnol. 98, 4805–4816 (2014).CAS
Article
Google Scholar
Van Mooy, B. A. S. et al. Phytoplankton in the ocean use non-phosphorus lipids in response to phosphorus scarcity. Nature 458, 69–72 (2009).ADS
Article
Google Scholar
Gašparović, B. et al. Adaptation of marine plankton to environmental stress by glycolipid accumulation. Mar. Environ. Res. 92, 120–132. https://doi.org/10.1016/J.Marenvres.2013.09.009 (2013).Article
PubMed
Google Scholar
Gašparović, B. et al. Factors influencing particulate lipid production in the East Atlantic Ocean. Deep Sea Res. Part 1 Oceanogr. Res. Pap. 89, 56–67. https://doi.org/10.1016/j.dsr.2014.04.005 (2014).CAS
Article
Google Scholar
Finenko, Z. & Krupatkina-Akinina, D. Effect of inorganic phosphorus on the growth rate of diatoms. Mar. Biol. 26, 193–201 (1974).CAS
Article
Google Scholar
Lombardi, A. & Wangersky, P. Influence of phosphorus and silicon on lipid class production by the marine diatom Chaetoceros gracilis grown in turbidostat cage cultures. Mar. Ecol. Prog. Ser. Oldendorf 77, 39–47 (1991).ADS
CAS
Article
Google Scholar
Pan, Y., Subba Rao, D. V. & Mann, K. H. Changes in domoic acid production and cellular chemical composition of the toxigenic diatom Pseudo-nitzschia miltiseries under phosphate limitation. J. Phycol. 32, 371–381 (1996).CAS
Article
Google Scholar
Liu, S., Guo, Z., Li, T., Huang, H. & Lin, S. Photosynthetic efficiency, cell volume, and elemental stoichiometric ratios in Thalassirosira weissflogii under phosphorus limitation. Chin. J. Oceanol. Limnol. 29, 1048 (2011).CAS
Article
Google Scholar
Alipanah, L. et al. Molecular adaptations to phosphorus deprivation and comparison with nitrogen deprivation responses in the diatom Phaeodactylum tricornutum. PLoS ONE 13, e0193335 (2018).Article
Google Scholar
Guillard, R. R. L. in Culture of Marine Invertebrate Animals (eds W.L. Smith & M.H. Chanley) 29–60 (Plenum Press, New York, USA, 1975).Utermöhl, H. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen des Internationale Vereinigung für theoretische und angewandte Limnologie 9, 1–38 (1958).
Google Scholar
Keller, M. D., Bellows, W. K. & Guillard, R. R. L. Microwave treatment for sterilization of phytoplankton culture media. J. Exp. Mar. Biol. Ecol. 117, 279–283. https://doi.org/10.1016/0022-0981(88)90063-9 (1988).Article
Google Scholar
Gračan, R., Mladineo, I., Kučinić, M., Lazar, B. & Lacković, G. Gastrointestinal helminth community of loggerhead sea turtle Caretta caretta in the Adriatic Sea. Dis. Aquat. Org. 99, 227–236 (2012).Article
Google Scholar
Anonymous, X. Proposals for a standardization of diatom terminology and diagnoses. Nova Hedwig. Beih. 53, 323–354 (1975).
Google Scholar
Ross, R. et al. An amended terminology for the siliceous components of the diatom cell. (1979).Hillebrand, H., Dürselen, C. D., Kirschtel, D., Pollingher, U. & Zohary, T. Biovolume calculation for pelagic and benthic microalgae. J. Phycol. 35, 403–424 (1999).Article
Google Scholar
Alverson, A. J. Molecular systematics and the diatom species. Protist 159, 339 (2008).Article
Google Scholar
Macgillivary, M. & Kaczmarska, I. Survey of the Efficacy of a Short Fragment of the rbcL Gene as a Supplemental DNA Barcode for Diatoms. Vol. 58 (2011).Zimmermann, J., Jahn, R. & Gemeinholzer, B. Barcoding diatoms: Evaluation of the V4 subregion on the 18S rRNA gene, including new primers and protocols. Org. Divers. Evol. 11, 173–192 (2011).Article
Google Scholar
Kearse, M. et al. Geneious basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics (Oxford, England) 28, 1647–1649. https://doi.org/10.1093/bioinformatics/bts199 (2012).Article
Google Scholar
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).CAS
Article
Google Scholar
Clark, K., Karsch-Mizrachi, I., Lipman, D. J., Ostell, J. & Sayers, E. W. GenBank. Nucleic Acids Res. 44, D67–D72 (2016).CAS
Article
Google Scholar
Guindon, S. et al. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 59, 307–321 (2010).CAS
Article
Google Scholar
Ritz, C., Baty, F., Streibig, J. C. & Gerhard, D. Dose-response analysis using R. PLoS ONE 10, e0146021. https://doi.org/10.1371/journal.pone.0146021 (2016).CAS
Article
Google Scholar
Lomas, M. W., Swain, A., Shelton, R. & Ammerman, J. W. Taxonomic variability of phosphorus stress in Sargasso Sea phytoplankton. Limnol. Oceanogr. 49, 2303–2310 (2004).ADS
Article
Google Scholar
Yamaguchi, H., Yamaguchi, M. & Adachi, M. Specific-detection of alkaline phosphatase activity in individual species of marine phytoplankton. Plankon Benthos Res. 1, 2014–2217 (2006).Article
Google Scholar
Strickland, J. D. H. & Parsons, T. R. A Practical Handbook of Seawater Snalysis. (Fisheries Resrach Board of Canada, 1972).Bligh, E. G. & Dyer, W. J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Phys. 37, 911–917 (1959).CAS
Article
Google Scholar
Gašparović, B., Kazazić, S. P., Cvitešić, A., Penezić, A. & Frka, S. Improved separation and analysis of glycolipids by Iatroscan thin-layer chromatography–flame ionization detection. J. Chromatogr. A 1409, 259–267 (2015).Article
Google Scholar
Gašparović, B., Kazazić, S. P., Cvitešić, A., Penezić, A. & Frka, S. Corrigendum to “Improved separation and analysis of glycolipids by Iatroscan thin-layer chromatography–flame ionization detection”[J. Chromatogr. A 1409 (2015) 259–267]. (2017).Fonda Umani, S. et al. Inter-annual variations of planktonic food webs in the northern Adriatic Sea. Sci. Total Environ. 353, 218–231. https://doi.org/10.1016/j.scitotenv.2005.09.016 (2005).ADS
CAS
Article
PubMed
Google Scholar
R: A language and environment for statistical computing (R Foundation for Statistical Computing, 2015).Sprouffske, K. & Wagner, A. Growthcurver: An R package for obtaining interpretable metrics from microbial growth curves. BMC Bioinform. 17, 172. https://doi.org/10.1186/s12859-016-1016-7 (2016).Article
Google Scholar
Schlitzer, R. Ocean Data View. http://odv.awi.de (2018).Smodlaka Tanković, M. et al. Experimental evidence for shaping and bloom inducing effects of decapod larvae of Xantho poressa (Olivi, 1792) on marine phytoplankton. J. Mar. Biol. Assoc. United Kingdom 98, 1881–1887 (2018).Article
Google Scholar
Dyhrman, S. T. et al. The transcriptome and proteome of the diatom Thalassiosira pseudonana reveal a diverse phosphorus stress response. PLoS ONE 7, e33768 (2012).ADS
CAS
Article
Google Scholar
Novak, T. et al. Global warming and oligotrophication lead to increased lipid production in marine phytoplankton. Sci Total Environ 668, 171–183 (2019).ADS
CAS
Article
Google Scholar
Martin, P., Van Mooy, B. A., Heithoff, A. & Dyhrman, S. T. Phosphorus supply drives rapid turnover of membrane phospholipids in the diatom Thalassiosira pseudonana. ISME J. 5, 1057–1060 (2011).CAS
Article
Google Scholar
Abida, H. et al. Membrane glycerolipid remodeling triggered by nitrogen and phosphorus starvation in Phaeodactylum tricornutum. Plant Physiol. 167, 118–136 (2015).CAS
Article
Google Scholar
Ivančić, I. & Degobbis, D. Mechanisms of production and fate of organic phosphorus in the northern Adriatic Sea. Mar. Biol. 94, 117–125 (1987).
Article
Google Scholar
Hardin, G. The competitive exclusion principle. Science 131, 1292–1297 (1960).ADS
CAS
Article
Google Scholar
Hutchinson, G. E. The paradox of the plankton. Am Nat 95, 137–145 (1961).Article
Google Scholar More