More stories

  • in

    Effect of contrasting phosphorus levels on nitrous oxide and carbon dioxide emissions from temperate grassland soils

    Site descriptionThis experiment was conducted in two long-term P-trial grassland sites (Site A and Site B) situated in proximity (~ 350 m) to each other in the dairy farm at Johnstown Castle, Wexford, Co. Wexford, Ireland (6°49′ W, 52°29′ N). The sites were grazed permanent grasslands before establishment. When the experiment was established in 1995, 16 (10 m × 2 m) plots were formed in each site in a fully randomised block design with four replicates. The two sites established were selected to represent different soil types and drainage classes. Site A is a moderately drained brown earth and site B is an imperfectly drained gley soil31. Each year in February, each plot received one of the four phosphorous (P) fertilization rates (16% P superphosphate): 0 (P0), 15 (P15), 30 (P30), and 45 (P45) kg P ha−1 year−1. All plots were initially sown with Lolium perenne and reseeded in 2016 with the same species. However, plant species such as Poa trivialis, Agropyron repens, Trifolium repens were present to a lesser extent. Above-ground biomass is harvested each month between February and August followed by 40 kg N ha−1 fertilizer applications. In the year (2019) of this experiment and the years before, SulCAN as a solid was applied at the first or second week of each month during February-August and potassium (K) as muriate of potash (KCl) was applied in February at a rate of 125 kg K ha−1. SulCAN contains 26.7% N in the form of nitric and ammoniacal nitrogen and 5% water soluble Sulphur. For this study plots receiving P0, P15 and P45 at the two field sites were set up to carry out this experiment. The two sites were selected as they had slightly different soil properties and thus there was an opportunity to consider a soil × treatment effect in the experiment.Experimental designFertilizer N and substrate C were applied on 8 May and 12 June in the experiment undertaken between May and July 2019, which represents the main growing season in Ireland. Within each plot, an area of 1 m × 1 m was selected. Following N fertilizer application (40 kg N ha−1) to all plots, carbon substrate [mixture of glucose (40%), sodium acetate (30%) and methanol (30%)] was applied once within the selected area using a sprayer watering can. Labile C available in animal excreta usually contains carbohydrates, volatile fatty acids, and alcohols32; as such different carbon substrates were applied to mimic this. Our review of the literature also indicated that C source types could differentially affect denitrifying communities and consequently denitrification rate. Thus, a mixture of three C sources was used to decrease bias of one microbial group over another as a result of single substrate use. Carbon was supplied to alleviate C-limitations of denitrification and nitrification processes as observed by O’Neill et al.29 in soils from this trial and to ensure equal substrate availability across all soil P levels. Equivalent C input rate of 0.63 g C m−2 day−1 was added to represent a daily rate of plant carbon input from Lolium perenne dominated ecosystem33. Soil samples were collected on eight occasions throughout the experimental period. Soil was sampled from across each selected area to a depth of 10 cm, sieved through 4 mm sieve and analysed for soil mineral N and microbial biomass.Soil properties, plant biomass and climate parametersPhysico-chemical soil properties were characterized by taking samples from 10 cm depth from each plot in the two sites before the commencement of the experiment. Soil pH was measured in water (2:1, water volume:soil mass) using Sally pH Auto analyser Dilution System (Gilson 215, Gilson, Dunstable, England). Soil organic matter (SOM) content was determined from mass loss on ignition at 550 °C for 7 h. Total C and total N concentrations were measured using a TrueSpec C/N analyser (TruSpec, LECO Corporation, Michigan, USA). Plant available P, potassium (K), and magnesium (Mg) were estimated using Morgan’s extraction34 and analysed using a Lachat QuickChem 8500 Series 2 Flow injection Analyzer (Lachat, QuickChem, 5600 Loveland, Colorado, USA). Particle size analysis was performed using the Pipette method35, where 2 mm sieved dry soil (20 g) was pre-treated with 6% H2O2, 3% NH4OH, and 5% sodium hexametaphosphate before separating soil aliquots into particle sizes. Water Holding Capacity (WHC) was determined from the mass difference between water-saturated and then overnight dried (105 °C) soil. Bulk density was determined by dividing weight of oven-dried soil by the total soil volume.To determine the mineral N concentrations, ten gram fresh soil was extracted with 50 mL 2 M KCl (5:1 solution to soil ratio). The supernatant was filtered through Whatman No. 1 filter paper and filtrates were stored in a cold room at 4 °C for about a week until analysis. Ammonium (NH4+) and nitrate (NO3−) concentrations in the extracts were analysed by the Aquakem 600 discrete analyser.Above-ground plant biomass from each plot of both sites was harvested twice during the experiment period (June 10 and July 11, 2019) to a height of ~ 5 cm using a Haldrup plot harvester. The total harvested biomass weight from each plot was recorded and a 100 g sub-sample was taken for dry matter (DM) analysis. Each fresh herbage sub-sample was weighed and placed in an oven at 70 °C for 3 days, and dry weight of the biomass was determined after re-weighing.Rainfall records for the experiment period were obtained from a Met Éireann weather observing station located in Teagasc dairy farm in Johnstown Castle, Co. Wexford., situated within a 100 m distance from the experimental sites. Volumetric soil moisture content and temperature was measured to 5 cm depth on individual plots on each gas sampling occasion using a handheld theta probe (WET-2 WET Sensor, Delta-T Devices, Cambridge, England). Water-filled pore space (WFPS) were calculated from the soil moisture values, bulk density of the soils, and soil particle density (2.65 g cm−3).Microbial biomass, glomalin-related soil protein and potential denitrification activitySoils were analysed for microbial biomass nitrogen (MBN), phosphorus (MBP) and carbon (MBC) using the fumigation extraction method as described respectively in (Brooks et al.36,37, and Vance et al.38). Five gram fumigated (24 h) and non-fumigated soil samples were extracted with 100 mL 0.5 M NaHCO3 and analysed for P colorimetrically using an Aquakem 600 discrete analyser (Thermo Electron OY, Vantaa, Finland). In order to avoid the spike readings by the instrument due to the effervescent nature of NaHCO3, one millilitre of 10% HCl was added to 10 mL extracts and diluted to 50 mL using distilled water. Microbial P was calculated by subtracting the P concentration of non-fumigated samples from fumigated samples, and dividing the result by an extraction factor of 0.437.Microbial biomass C and N were determined similarly using chloroform fumigation method with extraction period of 48 h with 0.5 M K2SO438. The extracts of the fumigated and non-fumigated samples were analysed for total C and N using a TOC-L CPH/CPN analyser (Shimadzu, Tokyo, Japan), and the differences, divided by correction factors of 0.45 and 0.54, were used to estimate the microbial biomass C and N, respectively.Glomalin is a glycoprotein produced by AMF and can be used as an indicator of mycorrhizal colonization in the plant root-soil interface39. Total glomalin-related soil protein (GRPS) was extracted by 90 min of autoclaving (121 °C) of 1 g air-dried soil in 8 mL of 50 mM sodium citrate adjusted to pH 8.0 with HCl40. Three additional sequential extractions were performed with the sodium citrate solution by autoclaving for 60 min until no red-brown color was visible in the last supernatant. After autoclaving, the samples were centrifuged at 10,000 revolutions per minute (rpm) for 5 min. The amounts of glomalin in the extracts were quantified using the Bradford dye-binding assay with bovine serum albumin (BSA) as the standard (2 mg mL−1). In a 96-well plate, replicated 200 µL of standard or extracts and 50 µL of dye reagent were added in each well and mixed using a microplate mixer. The Bradford-reactive substance was determined by measuring absorbance at 600 nm using Microplate Reader (Modulus Microplate Multimode Reader, Turner BioSystems, Sunnyvale, California, USA). Sample concentrations were determined using the standard curve. Potential denitrification activity (PDA) was determined using the acetylene inhibition method, modified from Pell et al.41. Briefly, replicated 20 g fresh soils were added into two identical flasks from a sample of soil. The flasks were then sealed with a rubber stopper and flushed and filled with helium after evacuating the headspace air. In one of the replicas, 10% of the headspaces were removed and replaced by acetylene. All flasks were incubated at 15 °C on an orbital shaker at 175 rpm for 30 min followed by the addition of a nutrient solution containing 75 mmol L−1 KNO3, 37.5 mmol L−1 Na-succinate, 25 mmol L−1 glucose, and 75 mM Na-acetate. Gas samples were taken from the headspace every 1 h for 5 h. N2O concentrations were determined using a gas chromatograph (Bruker, Scion 456-GC, Livingston, Scotland), and PDA was calculated from the rate of change of N2O concentrations over time from acetylene amended flasks.N2O and CO2 flux measurementsGas samples (N2O and CO2 fluxes) were measured before and after the application of N fertilizer and C substrates, with a daily sampling for 10 days directly after C + N additions and 3–4 times a week in the third and fourth week and 2–3 times a week in the subsequent weeks. A rectangular (40 × 40 cm) static collar, made of stainless steel (opaque), was anchored 5 cm deep into the soil within the marked area of 1 m × 1 m in each of the selected plots. During gas sampling, a 10 cm tall chamber lid fitted with two septa on top was placed on the collar lined with neoprene rubber band. To ensure hermetic sealing of the headspace during sampling, the ring area of the collar was half-filled with water, and a 10 kg weight was placed on the top of the lid to compress the seal. Gas samples were collected between 09:30 and 11:30 local time using a 10 mL Luer lock syringe fitted with a hypodermic needle via one of the septa at 0, 20, and 40 min after chamber closure. Prior to transferring the final sample into a pre-evacuated 7 mL glass vial, air in the chamber headspace was mixed by flushing the syringe three times. Gas samples were analysed using a gas chromatograph (Bruker, Scion 456-GC, Livingston, Scotland) fitted with an electron capture detector to analyse for N2O concentrations and a thermal conductivity detector to analyse for CO2 concentrations. Daily Fluxes (F) were calculated for each plot using the following equation:$$ F = left( {frac{Delta C}{{Delta t}}} right) times left( {frac{M times P}{{T times R}}} right) times left( frac{V}{A} right) $$where ∆C is the change in gas concentration in the chamber headspace during chamber enclosure period in ppbv, ∆t is chamber closing period in minutes, so ∆C/∆t is the slope of the gas concentration with time. M is the molar mass of N2O-N (28 g mol−1) and CO2-C (12 g mol−1), P and T are the atmospheric pressure (Pa) and temperature (K). Atmospheric pressure values were obtained from the nearby weather station whereas for T, wet sensor values were used. V is the headspace volume of the closed chamber (m3) and A is surface are of the chamber (m3). R is the ideal gas constant (8.314 J K−1 mol−1). Daily flux for each treatment is reported as the average of the replicates.Cumulative N2O and CO2 emissions were calculated over each application period by multiplying the daily N2O and CO2 fluxes by the number of days between two consecutive measurements. A summation of the cumulative flux of each application period is reported as the total cumulative flux.Statistical analysisANOVAs with repeated measures were used to test for the C + N addition effect on N2O and CO2 emissions, MBC, MBN, MBP, NO3−, and NH4+ with P treatment, site, and day of measurement as fixed effects, and individual plots as a random effect. Two-way ANOVA was applied to test for main and interaction effects of P treatment and site on cumulative N2O and CO2 emissions, soil property parameters (Table 1), plant biomass, and GRSP. Prior to analysis, response variables were checked for normality (sphericity for repeated ANOVA) and homogeneity of variance, and log transformed when required. Tukey’s HSD post-hoc tests were conducted to identify pair-wise comparisons of significant effects at P  More

  • in

    The Black Death devastated parts of Europe — but spared others

    .readcube-buybox { display: none !important;}

    The fourteenth-century pandemic known as the Black Death might not have been as devastating as was previously thought, an analysis of ancient pollen suggests1.

    Access options

    Access through your institution

    Change institution

    Buy or subscribe

    /* style specs start */
    style{display:none!important}.LiveAreaSection-193358632 *{align-content:stretch;align-items:stretch;align-self:auto;animation-delay:0s;animation-direction:normal;animation-duration:0s;animation-fill-mode:none;animation-iteration-count:1;animation-name:none;animation-play-state:running;animation-timing-function:ease;azimuth:center;backface-visibility:visible;background-attachment:scroll;background-blend-mode:normal;background-clip:borderBox;background-color:transparent;background-image:none;background-origin:paddingBox;background-position:0 0;background-repeat:repeat;background-size:auto auto;block-size:auto;border-block-end-color:currentcolor;border-block-end-style:none;border-block-end-width:medium;border-block-start-color:currentcolor;border-block-start-style:none;border-block-start-width:medium;border-bottom-color:currentcolor;border-bottom-left-radius:0;border-bottom-right-radius:0;border-bottom-style:none;border-bottom-width:medium;border-collapse:separate;border-image-outset:0s;border-image-repeat:stretch;border-image-slice:100%;border-image-source:none;border-image-width:1;border-inline-end-color:currentcolor;border-inline-end-style:none;border-inline-end-width:medium;border-inline-start-color:currentcolor;border-inline-start-style:none;border-inline-start-width:medium;border-left-color:currentcolor;border-left-style:none;border-left-width:medium;border-right-color:currentcolor;border-right-style:none;border-right-width:medium;border-spacing:0;border-top-color:currentcolor;border-top-left-radius:0;border-top-right-radius:0;border-top-style:none;border-top-width:medium;bottom:auto;box-decoration-break:slice;box-shadow:none;box-sizing:border-box;break-after:auto;break-before:auto;break-inside:auto;caption-side:top;caret-color:auto;clear:none;clip:auto;clip-path:none;color:initial;column-count:auto;column-fill:balance;column-gap:normal;column-rule-color:currentcolor;column-rule-style:none;column-rule-width:medium;column-span:none;column-width:auto;content:normal;counter-increment:none;counter-reset:none;cursor:auto;display:inline;empty-cells:show;filter:none;flex-basis:auto;flex-direction:row;flex-grow:0;flex-shrink:1;flex-wrap:nowrap;float:none;font-family:initial;font-feature-settings:normal;font-kerning:auto;font-language-override:normal;font-size:medium;font-size-adjust:none;font-stretch:normal;font-style:normal;font-synthesis:weight style;font-variant:normal;font-variant-alternates:normal;font-variant-caps:normal;font-variant-east-asian:normal;font-variant-ligatures:normal;font-variant-numeric:normal;font-variant-position:normal;font-weight:400;grid-auto-columns:auto;grid-auto-flow:row;grid-auto-rows:auto;grid-column-end:auto;grid-column-gap:0;grid-column-start:auto;grid-row-end:auto;grid-row-gap:0;grid-row-start:auto;grid-template-areas:none;grid-template-columns:none;grid-template-rows:none;height:auto;hyphens:manual;image-orientation:0deg;image-rendering:auto;image-resolution:1dppx;ime-mode:auto;inline-size:auto;isolation:auto;justify-content:flexStart;left:auto;letter-spacing:normal;line-break:auto;line-height:normal;list-style-image:none;list-style-position:outside;list-style-type:disc;margin-block-end:0;margin-block-start:0;margin-bottom:0;margin-inline-end:0;margin-inline-start:0;margin-left:0;margin-right:0;margin-top:0;mask-clip:borderBox;mask-composite:add;mask-image:none;mask-mode:matchSource;mask-origin:borderBox;mask-position:0% 0%;mask-repeat:repeat;mask-size:auto;mask-type:luminance;max-height:none;max-width:none;min-block-size:0;min-height:0;min-inline-size:0;min-width:0;mix-blend-mode:normal;object-fit:fill;object-position:50% 50%;offset-block-end:auto;offset-block-start:auto;offset-inline-end:auto;offset-inline-start:auto;opacity:1;order:0;orphans:2;outline-color:initial;outline-offset:0;outline-style:none;outline-width:medium;overflow:visible;overflow-wrap:normal;overflow-x:visible;overflow-y:visible;padding-block-end:0;padding-block-start:0;padding-bottom:0;padding-inline-end:0;padding-inline-start:0;padding-left:0;padding-right:0;padding-top:0;page-break-after:auto;page-break-before:auto;page-break-inside:auto;perspective:none;perspective-origin:50% 50%;pointer-events:auto;position:static;quotes:initial;resize:none;right:auto;ruby-align:spaceAround;ruby-merge:separate;ruby-position:over;scroll-behavior:auto;scroll-snap-coordinate:none;scroll-snap-destination:0 0;scroll-snap-points-x:none;scroll-snap-points-y:none;scroll-snap-type:none;shape-image-threshold:0;shape-margin:0;shape-outside:none;tab-size:8;table-layout:auto;text-align:initial;text-align-last:auto;text-combine-upright:none;text-decoration-color:currentcolor;text-decoration-line:none;text-decoration-style:solid;text-emphasis-color:currentcolor;text-emphasis-position:over right;text-emphasis-style:none;text-indent:0;text-justify:auto;text-orientation:mixed;text-overflow:clip;text-rendering:auto;text-shadow:none;text-transform:none;text-underline-position:auto;top:auto;touch-action:auto;transform:none;transform-box:borderBox;transform-origin:50% 50% 0;transform-style:flat;transition-delay:0s;transition-duration:0s;transition-property:all;transition-timing-function:ease;vertical-align:baseline;visibility:visible;white-space:normal;widows:2;width:auto;will-change:auto;word-break:normal;word-spacing:normal;word-wrap:normal;writing-mode:horizontalTb;z-index:auto;-webkit-appearance:none;-moz-appearance:none;-ms-appearance:none;appearance:none;margin:0}.LiveAreaSection-193358632{width:100%}.LiveAreaSection-193358632 .login-option-buybox{display:block;width:100%;font-size:17px;line-height:30px;color:#222;padding-top:30px;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-access-options{display:block;font-weight:700;font-size:17px;line-height:30px;color:#222;font-family:Harding,Palatino,serif}.LiveAreaSection-193358632 .additional-login >li:not(:first-child)::before{transform:translateY(-50%);content:”;height:1rem;position:absolute;top:50%;left:0;border-left:2px solid #999}.LiveAreaSection-193358632 .additional-login >li:not(:first-child){padding-left:10px}.LiveAreaSection-193358632 .additional-login >li{display:inline-block;position:relative;vertical-align:middle;padding-right:10px}.BuyBoxSection-683559780{display:flex;flex-wrap:wrap;flex:1;flex-direction:row-reverse;margin:-30px -15px 0}.BuyBoxSection-683559780 .box-inner{width:100%;height:100%}.BuyBoxSection-683559780 .readcube-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:1;flex-basis:255px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:300px;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .subscribe-buybox-nature-plus{background-color:#f3f3f3;flex-shrink:1;flex-grow:4;flex-basis:100%;background-clip:content-box;padding:0 15px;margin-top:30px}.BuyBoxSection-683559780 .title-readcube{display:block;margin:0;margin-right:20%;margin-left:20%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-buybox{display:block;margin:0;margin-right:29%;margin-left:29%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .title-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:24px;line-height:32px;color:#222;padding-top:30px;text-align:center;font-family:Harding,Palatino,serif}.BuyBoxSection-683559780 .asia-link{color:#069;cursor:pointer;text-decoration:none;font-size:1.05em;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:1.05em6}.BuyBoxSection-683559780 .access-readcube{display:block;margin:0;margin-right:10%;margin-left:10%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-asia-buybox{display:block;margin:0;margin-right:5%;margin-left:5%;font-size:14px;color:#222;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .access-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;padding-top:10px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .usps-buybox{display:block;margin:0;margin-right:30%;margin-left:30%;font-size:14px;color:#222;opacity:.8px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .price-buybox{display:block;font-size:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;padding-top:30px;text-align:center}.BuyBoxSection-683559780 .price-from{font-size:14px;padding-right:10px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:20px}.BuyBoxSection-683559780 .issue-buybox{display:block;font-size:13px;text-align:center;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:19px}.BuyBoxSection-683559780 .no-price-buybox{display:block;font-size:13px;line-height:18px;text-align:center;padding-right:10%;padding-left:10%;padding-bottom:20px;padding-top:30px;color:#222;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif}.BuyBoxSection-683559780 .vat-buybox{display:block;margin-top:5px;margin-right:20%;margin-left:20%;font-size:11px;color:#222;padding-top:10px;padding-bottom:15px;text-align:center;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;line-height:17px}.BuyBoxSection-683559780 .button-container{display:flex;padding-right:20px;padding-left:20px;justify-content:center}.BuyBoxSection-683559780 .button-container >*{flex:1px}.BuyBoxSection-683559780 .button-container >a:hover,.Button-505204839:hover,.Button-1078489254:hover,.Button-2808614501:hover{text-decoration:none}.BuyBoxSection-683559780 .readcube-button{background:#fff;margin-top:30px}.BuyBoxSection-683559780 .button-asia{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;margin-top:75px}.BuyBoxSection-683559780 .button-label-asia,.ButtonLabel-3869432492,.ButtonLabel-3296148077,.ButtonLabel-1566022830{display:block;color:#fff;font-size:17px;line-height:20px;font-family:-apple-system,BlinkMacSystemFont,”Segoe UI”,Roboto,Oxygen-Sans,Ubuntu,Cantarell,”Helvetica Neue”,sans-serif;text-align:center;text-decoration:none;cursor:pointer}.Button-505204839,.Button-1078489254,.Button-2808614501{background:#069;border:1px solid #069;border-radius:0;cursor:pointer;display:block;padding:9px;outline:0;text-align:center;text-decoration:none;min-width:80px;max-width:320px;margin-top:10px}.Button-505204839 .readcube-label,.Button-1078489254 .readcube-label,.Button-2808614501 .readcube-label{color:#069}
    /* style specs end */Subscribe to nature+Get immediate online access to the entire Nature family of 50+ journals$29.99monthlySubscribeSubscribe to JournalGet full journal access for 1 year$199.00only $3.90 per issueSubscribeAll prices are NET prices. VAT will be added later in the checkout.Tax calculation will be finalised during checkout.Buy articleGet time limited or full article access on ReadCube.$32.00BuyAll prices are NET prices.

    Additional access options:

    Log in

    Learn about institutional subscriptions

    doi: https://doi.org/10.1038/d41586-022-00435-6

    ReferencesIzdebski, A. et al. Nature Ecol. Evol. https://doi.org/10.1038/s41559-021-01652-4 (2022).
    Google Scholar 
    Download references

    Subjects

    Ecology

    Latest on:

    Ecology

    Brazil opens highly protected caves to mining, risking fauna
    Correspondence 15 FEB 22

    Richard Leakey (1944–2022)
    Obituary 28 JAN 22

    Emphasizing declining populations in the Living Planet Report
    Matters Arising 26 JAN 22

    Jobs

    Director of Microscopy Operations

    St. Jude Children’s Research Hospital (St. Jude)
    Memphis, TN, United States

    POSTDOCTORAL POSITIONS IN NATURAL LANGUAGE PROCESSING

    KU Leuven
    Leuven, Belgium

    MRC Postdoctoral Research Scientist

    Medical Research Council
    London, United Kingdom

    Postdoctoral fellow in X-ray multibeam ptychographic imaging at PETRA III/MAX IV

    German Electron Synchrotron (DESY)
    Hamburg, Germany More

  • in

    Sympatric cleptobiotic stingless bees have species-specific cuticular profiles that resemble their hosts

    Breed, M.D., Cook, C. & Krasnec, M.O. Cleptobiosis in social insects. Psyche 484765 (2012).Sakagami, S., Roubik, D. & Zucchi, R. Ethology of the robber stingless bee, Lestrimelitta limao (Hymenoptera: Apidae). Sociobiology 21, 237–277 (1993).
    Google Scholar 
    Rasmussen, C. & Cameron, S. A. Global stingless bee phylogeny supports ancient divergence, vicariance, and long distance dispersal. Biol. J. Lin. Soc. 99, 206–232 (2010).
    Google Scholar 
    Roubik, D. W. Ecology and Natural History of Tropical Bees (Cambridge University Press, 1989).
    Google Scholar 
    Camargo, J. M. F. & Pedro, S. R. M. Meliponini Lepeletier, 1836. in Catalogue of the Bees (Hymenoptera, Apoidea) in the Neotropical Region (ed Moure, J. S.). 272–578. (Sociedade Brasileira de Entomologia, 2007).Nogueira-Neto. P. Behavior problems related to the pillages made by some parasitic stingless bees (Meliponinae, Apidae). in Development and Evolution of Behavior: Essays in Memory of T.C. Schneirla (ed. Aronson, L.R.). 416–434. (W. H. Freeman, 1970).Quezada-Euán, J. J. G. & González-Acereto, J. Notes on the nest habits and host range of cleptobiotic Lestrimelitta niitkib (Ayala 1999) (Hymenoptera: Meliponini) from the Yucatan Peninsula, Mexico. Acta Zool. Mexicana 86, 245–249 (2002).
    Google Scholar 
    Rech, A. R., Schwade, M. A. & Schwade, M. R. M. Abelhas-sem-ferrão amazônicas defendem meliponarios contra saques de outras abelhas. Acta Amazon. 43, 389–394 (2013).
    Google Scholar 
    Grüter, C., von Zuben, L. G., Segers, F. H. I. D. & Cunningham, J. P. Warfare in stingless bees. Insect. Soc. 63, 223–236 (2016).
    Google Scholar 
    Cini, A., Bruschini, C., Poggi, L. & Cervo, R. Fight or fool? Physical strength, instead of sensory deception, matters in host nest invasion by a wasp social parasite. Anim. Behav. 81, 1139–1145 (2011).
    Google Scholar 
    Quezada-Euán, J. J. G. et al. Does sensory deception matter in eusocial obligate food robber systems? A study of Lestrimelitta and stingless bee hosts. Anim. Behav. 85, 817–823 (2013).
    Google Scholar 
    van Zweden, J. S. & D’Ettorre, P. Nestmate recognition in social insects and the role of hydrocarbons. In Insect hydrocarbons: biology, biochemistry, and chemical ecology (eds Blomquist, G. J. & Bagnères, A. G.) 222–243 (Cambridge University Press, 2010).
    Google Scholar 
    Blomquist, G. J. & Bagnères, A. G. Insect Hydrocarbons: Biology, Biochemistry and Chemical Ecology (Cambridge University Press, 2010).
    Google Scholar 
    Nash, D. R. & Boomsma, J. J. Communication between hosts and social parasites. In Sociobiology of Communication: An Interdisciplinary Perspective (eds d’Etorre, P. & Hughes, D. P.) 55–79 (Oxford University Press, 2008).
    Google Scholar 
    Martin, S. J., Shemilt, S., da S Lima, C. B. & de Carvalho, C. A. L. Are isomeric alkenes used in species recognition among neo-tropical stingless bees (Melipona spp). J. Chem. Ecol. 43, 1066–1072 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chung, H. & Carroll, S. B. Wax, sex and the origin of species: Dual roles of insect cuticular hydrocarbons in adaptation and mating. BioEssays 37, 822–830 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Finck, J., Berdan, E. L., Mayer, F., Ronacher, B. & Geiselhardt, S. Divergence of cuticular hydrocarbons in two sympatric grasshopper species and the evolution of fatty acid synthases and elongases across insects. Nat. Sci. Rep. 6, 33695 (2016).ADS 
    CAS 

    Google Scholar 
    Buellesback, J., Vetter, S. G. & Schmitt, T. Differences in the reliance on cuticular hydrocarbons as sexual signaling and species discrimination cues in parasitoid wasps. Front. Zool. 15, 22 (2018).
    Google Scholar 
    Medina-Medina, L.A. & Gonzalez-Acereto, J.A. La respuesta defensiva de Scaptotrigona pectoralis como un contundente escudo de protección contra las incursiones de Lestrimelitta niitkib dirigidas a otras especies de abejas sin aguijón. in VI Congreso Iberoamericano de Apicultura. 171–173. (1998).National Institute of Standards and Technology. Mass Spectral Library. (NIST/EPA/NIH, 2011).Tabachnick, B. G. & Fidell, L. S. Using Multivariate Statistics (Harper Collins College, 1996).
    Google Scholar 
    SAS Institute. SAS/STAT 9.2 User’s Guide. (SAS Institute Cary, 2008).Rasband, W.S. ImageJ. (U.S. National Institutes of Health, 1997–2012).Quezada-Euán, J.J.G., Paxton, R.J., Palmer, K.A., May-Itzá, W.D.J., Tay, W.T. & Oldroyd, B.P. Morphological and molecular characters reveal differentiation in a Neotropical social bee, Melipona beecheii (Apidae: Meliponini). Apidologie 38, 247–258 (2007).Rohlf, F. J. TPSDIG: Version 2.12. (New York State University, 2008).Klingenberg, C. P. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357 (2011).PubMed 

    Google Scholar 
    Francoy, T.M., Grassi, M.L., Imperatriz-Fonseca, V.L., May-Itzá, W.D.J. & Quezada-Euán, J.J.G. Geometric morphometrics of the wing as a tool for assigning genetic lineages and geographic origin to Melipona beecheii (Hymenoptera: Meliponini). Apidologie 42, 499–507 (2011).Ratnasingham, S. & Hebert, P. D. N. A DNA-based registry for all animal species: the Barcode Index Number (BIN) system. PLoS ONE 8, e66213 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hurtado-Burillo, M., Ruiz, C., May-Itzá, W.D.J., Quezada-Eúan, J.J.G., & De la Rúa, P. Barcoding stingless bees: Genetic diversity of the economically important genus Scaptotrigona in Mesoamerica. Apidologie 44, 1–10 (2013).Folmer, O., Black, M., Hoeh, W., Lutz, R. & Vrigenhoek, R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol. Mar. Biol. Biotech. 3, 294–299 (1994).CAS 

    Google Scholar 
    Packer, L., Sheffield, C.S., Gibbs, J., de Silva, N., Best, L.R. et al. The campaign to barcode the bees of the world: progress, problems and prognosis. in Memorias VI Congreso Mesoamericano Sobre Abejas Nativas, Guatemala. 178–180. (2009).Tamura, K., Stecher, G., & Kumar, S. MEGA11: Molecular evolutionary genetics analysis version 11. Mol. Biol. Evolut. https://doi.org/10.1093/molbev/msab120. (2021)Oliveira, F.F.d. & Marchi, P. Três espécies novas de Lestrimelitta Friese (Hymenoptera, Apidae) da Costa Rica, Panamá e Guiana Francesa. Rev. Bras. Entomol. 49, 1–6 (2005).González, V. H. & Griswold, T. L. New species and previously unknown males of neotropical cleptobiotic stingless bees (Hymenoptera, Apidae, Lestrimelitta). Caldasia 34, 227–245 (2012).
    Google Scholar 
    Marchi, P. & Melo, G.A.R. Revisão taxonômica das espêcies brasileiras do gênero Lestrimelitta Friese (Hymenoptera, Apidae, Meliponina). Rev. Bras. Entomol. 50, 6–30 (2006).Gonzalez, V., Rasmussen, C. & Velasquez, A. Una especie nueva de Lestrimelitta y un cambio de nombre en Lasioglossum (Hymenoptera: Apidae, Halictidae). Rev. Colomb. Entomol. 36, 319–324 (2010).
    Google Scholar 
    Ratnasingham, S. & Hebert, P. D. N. BOLD: The barcode of life data system (https://www.barcodinglife.org). Mol. Ecol. Notes 7, 355–364 (2007).Ayala, R. Revisión de las abejas sin aguijón de México (Hymenoptera: Apidae: Meliponini). Folia Entomol. Mexicana 106, 1–123 (1999).
    Google Scholar 
    Ruano, F. & Tinaut, A. The assault process of the slave-making ant Rossomyrmex minuchae (Hymenoptera: Formicidae). Sociobiology 43, 201–209 (2004).
    Google Scholar 
    Errard, C. et al. Coevolution-driven cuticular hydrocarbon variation between the slave-making ant Rossomyrmex minuchae and its host Proformica longiseta (Hymenoptera: Formicidae). Chemoecology 16, 235–240 (2006).CAS 

    Google Scholar 
    Dettner, K. & Liepert, C. Chemical mimicry and camouflage. Annu. Rev. Entomol. 39, 129–154 (1994).CAS 

    Google Scholar 
    Lenoir, A., d’Ettorre, P. & Errard, C. Chemical ecology and social parasitism in ants. Annu. Rev. Entomol. 46, 573–599 (2001).CAS 
    PubMed 

    Google Scholar 
    Von Beeren, C., Pohl, S. & Witte, V. On the use of adaptive resemblance terms in chemical ecology. Psyche 2012, 635761 (2012).Lambardi, D., Dani, F. R., Turillazzi, S. & Boomsma, J. J. Chemical mimicry in an incipient leaf-cutting ant social parasite. Behav. Ecol. Sociobiol. 61, 843–851 (2007).
    Google Scholar 
    Uboni, A., Bagnères, A. G., Christidès, J. P. & Lorenzi, M. C. Cleptoparasites, social parasites and a common host: Chemical insignificance for visiting host nests, chemical mimicry for living in. J. Insect Physiol. 58, 1259–1264 (2012).CAS 
    PubMed 

    Google Scholar 
    Quezada-Euán, J. J. G. et al. Body size differs in workers produced across time and is associated with variation in the quantity and composition of larval food in Nannotrigona perilampoides (Hymenoptera, Meliponini). Insect. Soc. 58, 31–38 (2011).
    Google Scholar 
    Nunes, T. M., Mateus, S., Turatti, I. C., Morgan, E. & Zucchi, R. Nestmate recognition in the stingless bee Frieseomelitta varia (Hymenoptera, Apidae, Meliponini): Sources of chemical signals. Anim. Behav. 81, 463–467 (2011).
    Google Scholar 
    Gutiérrez, E., Ruiz, D., Solís, T., May-Itzá, W.d.J., Moo-Valle, H. & Quezada-Euán, J.J.G. Does larval food affect cuticular profiles and recognition in eusocial bees? A test on Scaptotrigona gynes (Hymenoptera: Meliponini). Behav. Ecol. Sociobiol. 70, 871–879 (2016).Jones, S. M. et al. The role of wax and resin in the nestmate recognition system of a stingless bee, Tetragonisca angustula. Behav. Ecol. Sociobiol. 66, 1–12 (2012).
    Google Scholar 
    Leonhardt, S.D. Chemical ecology of stingless bees. J. Chem. Ecol. 43, 385–402 (2021).Akino, T. Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda, and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecol. News 11, 173–181 (2008).
    Google Scholar 
    Lenoir, A., Hefetz, A., Simon, T. & Soroker, V. Comparative dynamics of gestalt odour formation in two ant species Camponotus fellah and Aphaenogaster senilis (Hymenoptera: Formicidae). Physiol. Entomol. 26, 275–283 (2001).
    Google Scholar 
    Von Beeren, C. et al. Chemical and behavioral integration of army ant-associated rove beetles—A comparison between specialists and generalists. Front. Zool. 15, 8 (2018).
    Google Scholar 
    Kather, R. & Martin, S. J. Cuticular hydrocarbon profiles as a taxonomic tool: Advantages, limitations and technical aspects. Physiol. Entomol. 37, 25–32 (2012).CAS 

    Google Scholar 
    Menzel, F., Blaimer, B. B. & Schmitt, T. How do cuticular hydrocarbons evolve? Physiological constraints and climatic and biotic selection pressures act on a complex functional trait. Proc. R. Soc. B-Biol. Sci. 284, 20161727 (2017).
    Google Scholar 
    Savolainen, R. & Vepsäläinen, K. Sympatric speciation through intraspecific social parasitism. Proc. Nat. Acad. Sci. 100, 7169–7174 (2003).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hartke, J., Sprenger, P.P., Sahm, J, Winterberg, H., Orivel, J. et al. Cuticular hydrocarbons as potential mediators of cryptic species divergence in a mutualistic ant association. Ecol. Evolut. 9, 9160–9176 (2019).Doebeli, M. & Dieckmann, U. Evolutionary branching and sympatric speciation caused by different types of ecological interactions. Am. Nat. 156, S77–S101 (2000).PubMed 

    Google Scholar 
    Thibert-Plante, X. & Gavrilets, S. Evolution of mate choice and the so-called magic traits in ecological speciation. Ecol. Lett. 16, 1004–1013 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Cabej, N. R. Epigenetic Principles of Evolution (Elsevier, 2012).
    Google Scholar 
    Quezada-Euán, J. J. G. Stingless Bees of Mexico: The Biology, Management and Conservation of an Ancient Heritage (Springer, 2018).
    Google Scholar 
    Von Zuben, L. G. et al. Interspecific chemical communication in raids of the robber bee Lestrimelitta limao. Insect. Soc. 63, 339–347 (2016).
    Google Scholar  More

  • in

    Glucocorticoids coordinate changes in gut microbiome composition in wild North American red squirrels

    Ley, R. E. et al. Evolution of mammals and their gut microbes. Science 320, 1647–1651 (2008).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thaiss, C. A., Zmora, N., Levy, M. & Elinav, E. The microbiome and innate immunity. Nature 535, 65–74 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Ezenwa, V. O., Gerardo, N. M., Inouye, D. W., Medina, M. & Xavier, J. B. Microbiology. Animal behavior and the microbiome. Science 338, 198–199 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sampson, T. R. & Mazmanian, S. K. Control of brain development, function, and behavior by the microbiome. Cell Host Microbe. 17, 565–576 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Voigt, R. M., Forsyth, C. B., Green, S. J., Engen, P. A. & Keshavarzian, A. Circadian rhythm and the gut microbiome. Int. Rev. Neurobiol. 131, 193–205 (2016).CAS 
    PubMed 

    Google Scholar 
    Backhed, F. Programming of host metabolism by the gut microbiota. Endocr. Abstr. https://doi.org/10.1530/endoabs.32.s20.2 (2013).Article 

    Google Scholar 
    Mallott, E. K., Borries, C., Koenig, A., Amato, K. R. & Lu, A. Reproductive hormones mediate changes in the gut microbiome during pregnancy and lactation in Phayre’s leaf monkeys. Sci. Rep. 10, 9961 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Miller, E. A., Livermore, J. A., Alberts, S. C., Tung, J. & Archie, E. A. Ovarian cycling and reproductive state shape the vaginal microbiota in wild baboons. Microbiome. 5, 8 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Gomez-Arango, L. F. et al. Connections between the gut microbiome and metabolic hormones in early pregnancy in overweight and obese women. Diabetes 65, 2214–2223 (2016).CAS 
    PubMed 

    Google Scholar 
    Shin, J.-H. et al. Serum level of sex steroid hormone is associated with diversity and profiles of human gut microbiome. Res. Microbiol. 170, 192–201 (2019).CAS 
    PubMed 

    Google Scholar 
    Burokas, A., Moloney, R. D., Dinan, T. G. & Cryan, J. F. Microbiota regulation of the mammalian gut–brain axis. Adv. Appl. Microbiol. 91, 1–62. (2015).Sudo, N. The hypothalamic–pituitary–adrenal axis and gut microbiota. Gut–Brain Axis. https://doi.org/10.1016/b978-0-12-802304-4.00013-x (2016).Article 

    Google Scholar 
    Sapolsky, R. M., Romero, L. M. & Munck, A. U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 21, 55–89 (2000).CAS 
    PubMed 

    Google Scholar 
    Hau, M., Casagrande, S., Ouyang, J. Q. & Baugh, A. T. Glucocorticoid-mediated phenotypes in vertebrates: Multilevel variation and evolution. Adv. Stud. Behav. 48, 41–115 (2016).
    Google Scholar 
    Sprague, R. S. & Breuner, C. W. Timing of fledging is influenced by glucocorticoid physiology in Laysan Albatross chicks. Horm. Behav. 58, 297–305 (2010).CAS 
    PubMed 

    Google Scholar 
    Fletcher, Q. E., Dantzer, B. & Boonstra, R. The impact of reproduction on the stress axis of free-living male northern red backed voles (Myodes rutilus). Gen. Comp. Endocrinol. 224, 136–147 (2015).CAS 
    PubMed 

    Google Scholar 
    Romero, L. M. & Wikelski, M. Corticosterone levels predict survival probabilities of Galapagos marine iguanas during El Nino events. Proc. Natl. Acad. Sci. USA. 98, 7366–7370 (2001).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chevalier, C. et al. Gut microbiota orchestrates energy homeostasis during cold. Cell 163, 1360–1374 (2015).CAS 
    PubMed 

    Google Scholar 
    Amato, K. R. et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 7, 1344–1353 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Baniel, A. et al. Seasonal shifts in the gut microbiome indicate plastic responses to diet in wild geladas. Microbiome. 9, 26 (2021).PubMed 
    PubMed Central 

    Google Scholar 
    Kohl, K. D., Amaya, J., Passement, C. A., Dearing, M. D. & McCue, M. D. Unique and shared responses of the gut microbiota to prolonged fasting: A comparative study across five classes of vertebrate hosts. FEMS Microbiol. Ecol. 90, 883–894 (2014).CAS 
    PubMed 

    Google Scholar 
    Stecher, B. et al. Like will to like: Abundances of closely related species can predict susceptibility to intestinal colonization by pathogenic and commensal bacteria. PLoS Pathog. https://doi.org/10.1371/journal.ppat.1000711 (2010).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Das, B. & Nair, G. B. Homeostasis and dysbiosis of the gut microbiome in health and disease. J. Biosci. 44(5), 1–8 (2019). https://www.ncbi.nlm.nih.gov/pubmed/31719226.CAS 

    Google Scholar 
    Noguera, J. C., Aira, M., Pérez-Losada, M., Domínguez, J. & Velando, A. Glucocorticoids modulate gastrointestinal microbiome in a wild bird. R. Soc. Open Sci. https://doi.org/10.1098/rsos.171743 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    UrenWebster, T. M., Rodriguez-Barreto, D., Consuegra, S. & GarciadeLeaniz, C. Cortisol-related signatures of stress in the fish microbiome. Front. Microbiol. 11, 1621 (2020).
    Google Scholar 
    Stothart, M. R., Palme, R. & Newman, A. E. M. It’s what’s on the inside that counts: stress physiology and the bacterial microbiome of a wild urban mammal. Proc. Biol. Sci. 286, 20192111 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Vlčková, K. et al. Impact of stress on the gut microbiome of free-ranging western lowland gorillas. Microbiology 164, 40–44 (2018).PubMed 

    Google Scholar 
    Dantzer, B. et al. Density triggers maternal hormones that increase adaptive offspring growth in a wild mammal. Science 340, 1215–1217 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Sarkar, A. et al. Microbial transmission in animal social networks and the social microbiome. Nat. Ecol. Evol. 4, 1020–1035 (2020).PubMed 

    Google Scholar 
    Kruuk, L. E. B., Merilä, J. & Sheldon, B. C. When environmental variation short-circuits natural selection. Trends Ecol. Evol. 18, 207–209 (2003).
    Google Scholar 
    Stinchcombe, J. R. et al. Testing for environmentally induced bias in phenotypic estimates of natural selection: Theory and practice. Am. Nat. 160, 511–523 (2002).PubMed 

    Google Scholar 
    Rausher, M. D. The measurement of selection on quantitative traits: Biases due to environmental covariances between traits and fitness. Evolution 46, 616–626 (1992).PubMed 

    Google Scholar 
    Lamontagne, J. M. & Boutin, S. Local-scale synchrony and variability in mast seed production patterns of Picea glauca. J. Ecol. https://doi.org/10.1111/j.1365-2745.2007.01266.x (2007).Article 

    Google Scholar 
    Fletcher, Q. E. et al. Reproductive timing and reliance on hoarded capital resources by lactating red squirrels. Oecologia https://doi.org/10.1007/s00442-013-2699-3 (2013).Article 
    PubMed 

    Google Scholar 
    Fletcher, Q. E. et al. The functional response of a hoarding seed predator to mast seeding. Ecology 91, 2673–2683 (2010).PubMed 

    Google Scholar 
    Boutin, S. et al. Anticipatory reproduction and population growth in seed predators. Science 314, 1928–1930 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Haines, J. A. et al. Sexually selected infanticide by male red squirrels in advance of a mast year. Ecology 99, 1242–1244 (2018).PubMed 

    Google Scholar 
    Dantzer, B., McAdam, A. G., Humphries, M. M., Lane, J. E. & Boutin, S. Decoupling the effects of food and density on life-history plasticity of wild animals using field experiments: Insights from the steward who sits in the shadow of its tail, the North American red squirrel. J. Anim. Ecol. 89, 2397–2414 (2020).PubMed 

    Google Scholar 
    Hestbeck, J. B. A Mathematical Model of Population Regulation in Cyclic Mammals. Population Biology 290–297 (Springer, 1983).
    Google Scholar 
    Dantzer, B., Boutin, S., Humphries, M. M. & McAdam, A. G. Behavioral responses of territorial red squirrels to natural and experimental variation in population density. Behav. Ecol. Sociobiol. 66, 865–878 (2012).
    Google Scholar 
    Siracusa, E. et al. Familiarity with neighbours affects intrusion risk in territorial red squirrels. Anim. Behav. 133, 11–20 (2017).
    Google Scholar 
    Guindre-Parker, S. et al. Individual variation in phenotypic plasticity of the stress axis. Biol. Lett. 15, 20190260 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Laughlin, D. & Grace, J. Discoveries and novel insights in ecology using structural equation modeling. Ideas Ecol. Evol. https://doi.org/10.24908/iee.2019.12.5.c (2019).Article 

    Google Scholar 
    Pugesek, B. H., Tomer, A. & von Eye, A. Structural Equation Modeling: Applications in Ecological and Evolutionary Biology (Cambridge University Press, 2003).MATH 

    Google Scholar 
    Pearl, J. The causal foundations of structural equation modeling. (2012). https://doi.org/10.21236/ada557445Leftwich, P. T., Clarke, N. V. E., Hutchings, M. I. & Chapman, T. Gut microbiomes and reproductive isolation in Drosophila. Proc. Natl. Acad. Sci. USA. 114, 12767–12772 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Markle, J. G. M. et al. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity. Science 339, 1084–1088 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reveles, K. R., Patel, S., Forney, L. & Ross, C. N. Age-related changes in the marmoset gut microbiome. Am. J. Primatol. https://doi.org/10.1002/ajp.22960 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dantzer, B. et al. Fecal cortisol metabolite levels in free-ranging North American red squirrels: Assay validation and the effects of reproductive condition. Gen. Comp. Endocrinol. 167, 279–286 (2010).CAS 
    PubMed 

    Google Scholar 
    Fletcher, Q. E. et al. Seasonal stage differences overwhelm environmental and individual factors as determinants of energy expenditure in free-ranging red squirrels. Funct. Ecol. https://doi.org/10.1111/j.1365-2435.2012.01975.x (2012).Article 

    Google Scholar 
    Lane, J. E., Boutin, S., Gunn, M. R., Slate, J. & Coltman, D. W. Female multiple mating and paternity in free-ranging North American red squirrels. Anim. Behav. 75, 1927–1937 (2008).
    Google Scholar 
    Ren, T. et al. Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels. Microbiome. 5, 163 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Backhans, A., Fellström, C. & Lambertz, S. T. Occurrence of pathogenic Yersinia enterocolitica and Yersinia pseudotuberculosis in small wild rodents. Epidemiol. Infect. 139, 1230–1238 (2011).CAS 
    PubMed 

    Google Scholar 
    Bižanov, G. & Dobrokhotova, N. D. Experimental infection of ground squirrels (Citellus pygmaeus Pallas) with Yersinia pestis during hibernation. J. Infect. 54, 198–203 (2007).PubMed 

    Google Scholar 
    Stothart, M. R. et al. Stress and the microbiome: Linking glucocorticoids to bacterial community dynamics in wild red squirrels. Biol. Lett. 12, 20150875 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Costello, E. K., Stagaman, K., Dethlefsen, L., Bohannan, B. J. M. & Relman, D. A. The application of ecological theory toward an understanding of the human microbiome. Science 336, 1255–1262 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rocca, J. D., Simonin, M., Bernhardt, E. S., Washburne, A. D. & Wright, J. P. Rare microbial taxa emerge when communities collide: Freshwater and marine microbiome responses to experimental mixing. Ecology https://doi.org/10.1002/ecy.2956 (2020).Article 
    PubMed 

    Google Scholar 
    Shade, A. et al. Conditionally rare taxa disproportionately contribute to temporal changes in microbial diversity. MBio https://doi.org/10.1128/mbio.01371-14 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dinan, T. G. & Cryan, J. F. The microbiome–gut–brain axis in health and disease. Gastroenterol. Clin. N. Am. 46, 77–89 (2017).
    Google Scholar 
    Claus, S. P. et al. Colonization-induced host–gut microbial metabolic interaction. MBio 2, e00271-e310 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Bangsgaard Bendtsen, K. M. et al. Gut microbiota composition is correlated to grid floor induced stress and behavior in the BALB/c mouse. PLoS ONE 7, e46231 (2012).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Amato, K. R. et al. The gut microbiota appears to compensate for seasonal diet variation in the wild black howler monkey (Alouatta pigra). Microb. Ecol. 69, 434–443 (2015).CAS 
    PubMed 

    Google Scholar 
    McLaren, M. R. & Callahan, B. J. Pathogen resistance may be the principal evolutionary advantage provided by the microbiome. Philos. Trans. R Soc. Lond. B Biol. Sci. 375, 20190592 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Donohoe, D. R. et al. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab. 13, 517–526 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rivera-Chávez, F. et al. Depletion of butyrate-producing clostridia from the gut microbiota drives an aerobic luminal expansion of salmonella. Cell Host Microbe. 19, 443–454 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Meerburg, B. G. & Kijlstra, A. Role of rodents in transmission of Salmonella and Campylobacter. J. Sci. Food Agric. https://doi.org/10.1002/jsfa.3004 (2007).Article 

    Google Scholar 
    Jalal, M. S. et al. Antibiotic resistant zoonotic bacteria in Irrawaddy squirrel (Callosciurus pygerythrus). Vet. Med. Sci. 5, 260–268 (2019).CAS 
    PubMed 

    Google Scholar 
    Petrosus, E., Silva, E. B., Lay, D. Jr. & Eicher, S. D. Effects of orally administered cortisol and norepinephrine on weanling piglet gut microbial populations and Salmonella passage. J. Anim. Sci. 96, 4543–4551 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Lefcheck, J. S. piecewiseSEM: Piecewise structural equation modelling in r for ecology, evolution, and systematics. Methods Ecol. Evol. https://doi.org/10.1111/2041-210X.12512 (2016).Article 

    Google Scholar 
    Raulo, A. et al. Social networks strongly predict the gut microbiota of wild mice. ISME J. https://doi.org/10.1038/s41396-021-00949-3 (2021).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Phillips, C. D. et al. Microbiome structural and functional interactions across host dietary niche space. Integr. Comp. Biol. 57, 743–755 (2017).CAS 
    PubMed 

    Google Scholar 
    Galley, J. D. et al. Exposure to a social stressor disrupts the community structure of the colonic mucosa-associated microbiota. BMC Microbiol. 14, 189 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Wu, C.-S. et al. Age-dependent remodeling of gut microbiome and host serum metabolome in mice. Aging 13, 6330–6345 (2021).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Altmann, J., Gesquiere, L., Galbany, J., Onyango, P. O. & Alberts, S. C. Life history context of reproductive aging in a wild primate model. Ann. NY Acad. Sci. https://doi.org/10.1111/j.1749-6632.2010.05531.x (2010).Article 
    PubMed 

    Google Scholar 
    Sylvia, K. E., Jewell, C. P., Rendon, N. M., St John, E. A. & Demas, G. E. Sex-specific modulation of the gut microbiome and behavior in Siberian hamsters. Brain Behav. Immun. 60, 51–62 (2017).PubMed 

    Google Scholar 
    Grieneisen, L. E., Livermore, J., Alberts, S., Tung, J. & Archie, E. A. Group living and male dispersal predict the core gut microbiome in wild baboons. Integr. Comp. Biol. 57, 770–785 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Peckett, A. J., Wright, D. C. & Riddell, M. C. The effects of glucocorticoids on adipose tissue lipid metabolism. Metabolism 60, 1500–1510 (2011).CAS 
    PubMed 

    Google Scholar 
    Wu, T. et al. Chronic glucocorticoid treatment induced circadian clock disorder leads to lipid metabolism and gut microbiota alterations in rats. Life Sci. 192, 173–182 (2018).CAS 
    PubMed 

    Google Scholar 
    Deaver, J. A., Eum, S. Y. & Toborek, M. Circadian disruption changes gut microbiome taxa and functional gene composition. Front. Microbiol. 9, 737 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Schroeder, B. O. Fight them or feed them: How the intestinal mucus layer manages the gut microbiota. Gastroenterol. Rep. 7, 3–12 (2019).
    Google Scholar 
    Huang, E. Y. et al. Using corticosteroids to reshape the gut microbiome: Implications for inflammatory bowel diseases. Inflamm. Bowel Dis. 21, 963–972 (2015).PubMed 

    Google Scholar 
    Carabotti, M., Scirocco, A., Maselli, M. A. & Severi, C. The gut–brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. Hepatol. 28, 203–209 (2015).
    Google Scholar 
    de Weerth, C. Do bacteria shape our development? Crosstalk between intestinal microbiota and HPA axis. Neurosci. Biobehav. Rev. 83, 458–471 (2017).PubMed 

    Google Scholar 
    Luo, Y. et al. Gut microbiota regulates mouse behaviors through glucocorticoid receptor pathway genes in the hippocampus. Transl. Psychiatry. 8, 187 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Cryan, J. F. et al. The microbiota–gut–brain axis. Physiol. Rev. 99, 1877–2013 (2019).CAS 
    PubMed 

    Google Scholar 
    McAdam, A. G., Boutin, S., Sykes, A. K. & Humphries, M. M. Life histories of female red squirrels and their contributions to population growth and lifetime fitness. Ecoscience 14, 362–369 (2007).
    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7, 335–336 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).CAS 

    Google Scholar 
    Sheriff, M. J., Dantzer, B., Delehanty, B., Palme, R. & Boonstra, R. Measuring stress in wildlife: Techniques for quantifying glucocorticoids. Oecologia 166, 869–887 (2011).ADS 
    PubMed 

    Google Scholar 
    Touma, C., Sachser, N., Möstl, E. & Palme, R. Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. Gen. Comp. Endocrinol. 130, 267–278 (2003).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Van Kesteren, F. et al. Experimental increases in glucocorticoids alter function of the HPA axis in wild red squirrels without negatively impacting survival and reproduction. Physiol. Biochem. Zool. 92, 445–458 (2019).PubMed 

    Google Scholar 
    Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    McMurdie, P. J. & Holmes, S. Package, “phyloseq”. Gan. 2, 7 (2013).
    Google Scholar 
    Kembel, S. W. et al. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463–1464 (2010).CAS 

    Google Scholar 
    Zhang, X. & Yi, N. NBZIMM: Negative binomial and zero-inflated mixed models, with application to microbiome/metagenomics data analysis. BMC Bioinform. 21, 488 (2020).CAS 

    Google Scholar 
    Jones, S. E. & Lennon, J. T. Dormancy contributes to the maintenance of microbial diversity. Proc. Natl. Acad. Sci. USA. 107, 5881–5886 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Genome-resolved metagenomics identifies the particular genetic traits of phosphate-solubilizing bacteria in agricultural soil

    Mogollón JM, Bouwman AF, Beusen AH, Lassaletta L, van Grinsven HJ, Westhoek H. More efficient phosphorus use can avoid cropland expansion. Nat Food. 2021;2:509–18.Article 

    Google Scholar 
    Goldhammer T, Brüchert V, Ferdelman TG, Zabel M. Microbial sequestration of phosphorus in anoxic upwelling sediments. Nat Geosci. 2010;3:557–61.CAS 
    Article 

    Google Scholar 
    Oliverio AM, Bissett A, McGuire K, Saltonstall K, Turner BL, Fierer N. The role of phosphorus limitation in shaping soil bacterial communities and their metabolic capabilities. mBio. 2020;11:e01718–20.CAS 
    Article 

    Google Scholar 
    Wu X, Rensing C, Han D, Xiao KQ, Dai Y, Tang Z, et al. Genome-resolved metagenomics reveals distinct phosphorus acquisition strategies between soil microbiomes. mSystems. 2022;7:e01107–21.PubMed Central 

    Google Scholar 
    Long XE, Yao H, Huang Y, Wei W, Zhu YG. Phosphate levels influence the utilisation of rice rhizodeposition carbon and the phosphate-solubilizing microbial community in a paddy soil. Soil Bio Biochem. 2018;118:103–14.CAS 
    Article 

    Google Scholar 
    Dai Z, Liu G, Chen H, Chen C, Wang J, Ai S, et al. Long-term nutrient inputs shift soil microbial functional profiles of phosphorus cycling in diverse agroecosystems. ISME J. 2020;14:757–70.CAS 
    Article 

    Google Scholar 
    Liang J, Liu J, Jia P, Yang T, Zeng Q, Zhang S, et al. Novel phosphate-solubilizing bacteria enhance soil phosphorus cycling following ecological restoration of land degraded by mining. ISME J. 2020;14:1600–13.CAS 
    Article 

    Google Scholar 
    Willsky GR, Bennett RL, Malamy MH. Inorganic phosphate transport in Escherichia coli: involvement of two genes which play a role in alkaline phosphatase regulation. J Bacteriol. 1973;113:529–39.CAS 
    Article 

    Google Scholar 
    Wanner BL. Gene regulation by phosphate in enteric bacteria. J Cell Biochem. 1993;51:47–54.CAS 
    Article 

    Google Scholar 
    Li J, Lu J, Wang H, Fang Z, Wang X, Feng S, et al. A comprehensive synthesis unveils the mysteries of phosphate‐solubilizing microbes. Biol Rev. 2021;96:2771–93.Article 

    Google Scholar 
    Hessen DO, Jeyasingh PD, Neiman M, Weider LJ. Genome streamlining and the elemental costs of growth. Trends Ecol Evol. 2010;25:75–80.Article 

    Google Scholar 
    Li J, Mau RL, Dijkstra P, Koch BJ, Schwartz E, Liu XA, et al. Predictive genomic traits for bacterial growth in culture versus actual growth in soil. ISME J. 2019;13:2162–72.Article 

    Google Scholar 
    Giovannoni SJ, Cameron Thrash J, Temperton B. Implications of streamlining theory for microbial ecology. ISME J. 2014;8:1553–65.Article 

    Google Scholar 
    Ye L, Mei R, Liu WT, Ren H, Zhang XX. Machine learning-aided analyses of thousands of draft genomes reveal specific features of activated sludge processes. Microbiome. 2020;8:1–13.Article 

    Google Scholar 
    Farhat MB, Boukhris I, Chouayekh H. Mineral phosphate solubilization by Streptomyces sp. CTM396 involves the excretion of gluconic acid and is stimulated by humic acids. FEMS Microbiol Lett. 2015;362:1–8.Article 

    Google Scholar 
    Bücking H, Shachar-Hill Y. Phosphate uptake, transport and transfer by the arbuscular mycorrhizal fungus Glomus intraradices is stimulated by increased carbohydrate availability. New Phytol. 2005;165:899–912.Article 

    Google Scholar 
    Zhang L, Xu M, Liu Y, Zhang F, Hodge A, Feng G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate‐solubilizing bacterium. New Phytol. 2016;210:1022–32.CAS 
    Article 

    Google Scholar 
    Spohn M, Kuzyakov Y. Phosphorus mineralization can be driven by microbial need for carbon. Soil Biol Biochem. 2013;61:69–75.CAS 
    Article 

    Google Scholar 
    Huang Y, Dai Z, Lin J, Li D, Ye H, Dahlgren RA, et al. Labile carbon facilitated phosphorus solubilization as regulated by bacterial and fungal communities in Zea mays. Soil Biol Biochem. 2021;163:108465.CAS 
    Article 

    Google Scholar 
    Yao Q, Li Z, Song Y, Wright SJ, Guo X, Tringe SG, et al. Community proteogenomics reveals the systemic impact of phosphorus availability on microbial functions in tropical soil. Nat Ecol Evol. 2018;2:499–509.Article 

    Google Scholar  More

  • in

    A database of common vampire bat reports

    Geoffrey, E. Sur les Phyllostomes et les Megadermes, deux Genres de la famille des Chauve-souris. in Annales du Museum d’histoire (ed. Dufour, G.) vol. 15, 181 (d’Ocagne, 1810).Wilson, D. E. & Mittermeier, R. A. Bats. in Handbook of the Mammals of the World. Vol. 9. (eds. Wilson, D. E. & Mittermeier, R. A.) 1008 (Springer International Publishing, 2019).Hilaire, É. G. S., Pupuya, I. D. E., Del, R. & Higgins, L. B. O. Ampliación del rango de distribución sur de Desmodus rotundus. Boletín del Mus. Nac. Hist. Nat. 68, 5–12 (2019).
    Google Scholar 
    Kwon, M. & Gardner, A. L. Subfamily Desmodontinae. in Mammals of South America, Volume 1: Marsupials, Xenarthrans, Shrews and Bats (ed. Gardner, A. L.) 218–223 (The University of Chicago Press, 2008).Arellano-Sota, C. Vampire bat-transmitted rabies in cattle. Rev. Infect. Dis. 10, 707–709 (1988).
    Google Scholar 
    Fernandes, M. E. B., Da Costa, L. J. C., De Andrade, F. A. G. & Silva, L. P. Rabies in humans and non-human in the state of Pará, Brazilian Amazon. Brazilian J. Infect. Dis. 17, 251–253 (2013).
    Google Scholar 
    Andrade, F. A. G., Franca, E. S., Souza, V. P., Barreto, M. S. O. D. & Fernandes, M. E. B. Spatial and temporal analysis of attacks by common vampire bats (Desmodus rotundus) on humans in the rural Brazilian Amazon basin. Acta Chiropterologica 17, 393–400 (2015).
    Google Scholar 
    Greenhall, A. M., Joermann, G. & Schmidt, U. Desmodus rotundus. Mamm. Species 202, 1–6 (1983).
    Google Scholar 
    Herrera, L. G., Fleming, T. H. & Sternberg, L. S. Trophic relationships in a neotropical bat community: A preliminary study using carbon and nitrogen isotopic signatures. Trop. Ecol. 39, 23–29 (1998).
    Google Scholar 
    Dantas Torres, F., Valença, C. & De Andrade Filho, G. V. First record of Desmodus rotundus in urban area from the city of Olinda, Pernambuco, Northeastern Brazil: A case report. Rev. Inst. Med. Trop. Sao Paulo 47, 107–108 (2005).PubMed 

    Google Scholar 
    Flores-Crespo, R. & Arellano-Sota, C. Biology and control of the vampire bat. in The natural history of rabies (ed. Baer, G. M.) 461–476 (CRC Press Inc, 1991).Flores-Crespo, R. & Arellano-Sota, C. Biology and control of the vampire bat. Nat. Hist. Rabies, 2nd Ed. 10, 461–476 (2017).
    Google Scholar 
    Bolívar-Cimé, B., Flores-Peredo, R., García-Ortíz, S. A., Murrieta-Galindo, R. & Laborde, J. Influence of landscape structure on the abundance of Desmodus rotundus (Geoffroy 1810) in Northeastern Yucatan, Mexico. Ecosistemas y Recur. Agropecu. 6, 263 (2019).
    Google Scholar 
    Koopman, K. F. Systematics and distribution. in Natural History of Vampire Bats (eds. Greenhall, A. M. & Schmidt, U.) 4–28 (CRC Press, 1988).Dalquest, W. W. Natural history of the vampire bats of Eastern Mexico. Am. Midl. Nat. 53, 79–87 (1955).
    Google Scholar 
    Kalko, E. K. V. & Handley, C. O. Neotropical bats in the canopy: Diversity, community structure, and implications for conservation. Plant Ecol. 153, 319–333 (2001).
    Google Scholar 
    García-Morales, R., Badano, E. I. & Moreno, C. E. Response of neotropical bat assemblages to human land use. Conserv. Biol. 27, 1096–1106 (2013).PubMed 

    Google Scholar 
    Barquez, R.M., Perez, S., Miller, B. & Diaz, M. M. Desmodus rotundus. The IUCN Red List of Threatened Species 2015 e.T6510A21979045, https://doi.org/10.2305/IUCN.UK.2015-4.RLTS.T6510A21979045.en (2015).Becker, D. J. et al. Genetic diversity, infection prevalence, and possible transmission routes of Bartonella spp. in vampire bats. PLoS Negl. Trop. Dis. 12, e0006786 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Brandão, P. E. et al. A coronavirus detected in the vampire bat Desmodus rotundus. Brazilian J. Infect. Dis. 12, 466–468 (2008).
    Google Scholar 
    Alves, R. S. et al. Detection of coronavirus in vampire bats (Desmodus rotundus) in southern Brazil. Transbound. Emerg. Dis. 00, 1–6 (2021).
    Google Scholar 
    Rocha, F. & Dias, R. A. The common vampire bat Desmodus rotundus (Chiroptera: Phyllostomidae) and the transmission of the rabies virus to livestock: A contact network approach and recommendations for surveillance and control. Prev. Vet. Med. 174, e104809 (2020).
    Google Scholar 
    Raoult, D. et al. Diagnosis of 22 new cases of Bartonella endocarditis. Ann. Intern. Med. 125, 646–652 (1996).CAS 
    PubMed 

    Google Scholar 
    Raoult, D. et al. Outcome and treatment of Bartonella endocarditis. Arch. Int. Med. 163, 226–230 (2003).
    Google Scholar 
    Neely, B. A. et al. Surveying the vampire bat (Desmodus rotundus) serum proteome: A resource for identifying immunological proteins and detecting pathogens. J. Proteome Res. 20, 2547–2559 (2021).CAS 
    PubMed 

    Google Scholar 
    Rupprecht, C. E., Hanlon, C. A. & Hemachudha, T. Rabies re-examined. Lancet Infect. Dis. 2, 327–343 (2002).PubMed 

    Google Scholar 
    World Health Organization. Rabies. WHO https://www.who.int/news-room/fact-sheets/detail/rabies (2020).Lee, D. N., Papeş, M. & Van Den Bussche, R. A. Present and potential future distribution of common vampire bats in the Americas and the associated risk to cattle. PLoS One 7, e42466 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Acha, P. N. & Malaga-Alba, A. Economic losses due to Desmodus rotundus. in Natural History of Vampire Bats (eds. Greenhall, A. M. & Schmidt, U.) 207–214 (CRC Press, 1968).Kotait, I. & Gonçalves, C. Manual Técnico MAPA – Controle da raiva dos herbívoros in Manual técnico dos herbívoros (Ministério da Agricultura, Pecuária e Abastecimento, 2009).Johnson, N., Aréchiga-Ceballos, N. & Aguilar-Setien, A. Vampire bat rabies: Ecology, epidemiology and control. Viruses 6, 1911–1928 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Blackwood, J. C., Streicker, D. G., Altizer, S. & Rohani, P. Resolving the roles of immunity, pathogenesis, and immigration for rabies persistence in vampire bats. Proc. Natl. Acad. Sci. 110, 20837–20842 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Streicker, D. G. et al. Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proc. Natl. Acad. Sci. USA 113, 10926–10931 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zarza, H., Martínez-Meyer, E., Suzán, G. & Ceballos, G. Geographic distribution of Desmodus rotundus in Mexico under current and future climate change scenarios: Implications for bovine paralytic rabies infection. Vet. Mex. 4, 3–16 (2017).
    Google Scholar 
    Hayes, M. A. & Piaggio, A. J. Assessing the potential impacts of a changing climate on the distribution of a rabies virus vector. PLoS One 13, e0192887 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Nunez, G. B., Becker, D. J., Lawrence, R. L. & Plowright, R. K. Synergistic effects of grassland fragmentation and temperature on bovine rabies emergence. EcoHealth 17, 203–216 (2020).PubMed Central 

    Google Scholar 
    da Rosa, E. S. T. et al. Bat-transmitted human rabies outbreaks, Brazilian Amazon. Emerg. Infect. Dis. 12, 1197–1202 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Rocha, S. M., de Oliveira, S. V., Heinemann, M. B. & Gonçalves, V. S. P. Epidemiological profile of wild rabies in Brazil (2002–2012). Transbound. Emerg. Dis. 64, 624–633 (2017).CAS 
    PubMed 

    Google Scholar 
    Schneider, M. C. et al. Rabies transmitted by vampire bats to humans: An emerging zoonotic disease in Latin America? Pan Am. J. Public Health. 25, 260–269 (2009).
    Google Scholar 
    VERA. Vigilancia epidemiológica de la rabia en las Américas. Organ. Panam. la Salud. 34, 14–42 (2020).
    Google Scholar 
    World Health Organization. WHO expert consultation on rabies, second report. WHO Tech. Rep. Ser. 982, 1–139 (2013).
    Google Scholar 
    Gilbert, A. T. et al. Evidence of rabies virus exposure among humans in the Peruvian Amazon. Am. J. Trop. Med. Hyg. 87, 206–215 (2012).
    Google Scholar 
    Fahl, W. O. et al. Desmodus rotundus and Artibeus spp. bats might present distinct rabies virus lineages. Brazilian J. Infect. Dis. 16, 545–551 (2012).
    Google Scholar 
    Berger, F. et al. Rabies risk: Difficulties encountered during management of grouped cases of bat bites in 2 isolated villages in French Guiana. PLoS Negl. Trop. Dis. 7, e2258 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Linhart, S. B., Flores Crespo, R. & Mitchell, G. C. Control de murciélagos vampiros por medio de un anticoagulante. Bull Pan Am Health Organ. 73, 100–109 (1972).CAS 

    Google Scholar 
    Streicker, D. G. et al. Ecological and anthropogenic drivers of rabies exposure in vampire bats: Implications for transmission and control. Proc. R. Soc. B Biol. Sci. 279, 3384–3392 (2012).
    Google Scholar 
    Henry, M., Cosson, J. F. & Pons, J. M. Modelling multi-scale spatial variation in species richness from abundance data in a complex neotropical bat assemblage. Ecol. Modell. 221, 2018–2027 (2010).
    Google Scholar 
    Bárcenas-Reyes, I. et al. Comportamiento epidemiológico de la rabia paralítica bovina en la región central de México, 2001-2013. Pan Am. J. Public Health. 38, 396–402 (2015).
    Google Scholar 
    Benavides, J. A., Valderrama, W. & Streicker, D. G. Spatial expansions and travelling waves of rabies in vampire bats. Proc. R. Soc. B 283, e20160328 (2016).
    Google Scholar 
    Van de Vuurst, P. et al. Desmodus rotundus Occurrence Record Database. figshare https://doi.org/10.6084/m9.figshare.15025296.v6 (2021).Wieczorek, J. et al. Darwin core: An evolving community-developed biodiversity data standard. PLoS One 7, e29715 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Robertson, T. et al. The GBIF integrated publishing toolkit: Facilitating the efficient publishing of biodiversity data on the internet. PLoS One 9, e102623 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Marcial, L. H. & Hemminger, B. M. Scientific data repositories on the web: An initial survey. J. Am. Soc. Inf. Sci. Technol. 61, 2029–2048 (2010).
    Google Scholar 
    GBIF.org. GBIF Occurrence Download. Global Biodiversity Information Facility. GBIF https://doi.org/10.15468/dl.my64ap (2020).Grattarola, F. et al. Biodiversidata: An open-access biodiversity database for Uruguay. Biodivers. Data J. 7, e36226 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    CRIA. speciesLink Data Download. Centro de Referência em Informação Ambiental. https://specieslink.net/search/download/20210909104533-0016416 (2021).Cambon, J. Package ‘ tidygeocoder’. CRAN 2–13 (2021).Wickham, H., Francois, R., Henry, L. & Muller, K. Package ‘ dplyr’: A grammar of data manipulation. CRAN 3–88 (2020).R Core Team. R: A language and environment for statisitical computing. https://www.R-project.org/ (2019).Zizka, A. et al. Package ‘ CoordinateCleaner’. CRAN 13-152 (2019).Wickham, H. ggplot2: Elegant graphics for data analysis. (Springer-Verlag, 2016).ESRI Inc. ArcGIS Desktop Pro, version 2.4.3. https://www.esri.com/en-us/arcgis/products/arcgis-pro/overview (2019). More

  • in

    Adult mosquito predation and potential impact on the sterile insect technique

    World Health Organization. World malaria report 2020: 20 years of global progress and challenges. 299 https://www.who.int/teams/global-malaria-programme/reports/world-malaria-report-2020 (2020).Bhanot, K., Schroeder, D., Llewellyn, I., Luczak, N. & Munasinghe, T. Dengue spread information system (DSIS). In Proceedings of the 4th International Conference on Medical and Health Informatics 150–159 (Association for Computing Machinery, 2020). https://doi.org/10.1145/3418094.3418133.Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 14, e0007831 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Carrasco, D. et al. Behavioural adaptations of mosquito vectors to insecticide control. Curr. Opin. Insect Sci. 34, 48–54 (2019).PubMed 

    Google Scholar 
    Sokhna, C., Ndiath, M. O. & Rogier, C. The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria. Clin. Microbiol. Infect. 19, 902–907 (2013).CAS 
    PubMed 

    Google Scholar 
    Flint, M. L. & Dreistadt, S. H. Natural Enemies Handbook: The Illustrated Guide to Biological Pest Control Vol. 3386 (Univ of California Press, 1998).
    Google Scholar 
    Chandra, G., Bhattacharjee, I., Chatterjee, S. N. & Ghosh, A. Mosquito control by larvivorous fish. Indian J. Med. Res. 127, 13–27 (2008).CAS 
    PubMed 

    Google Scholar 
    Dambach, P. The use of aquatic predators for larval control of mosquito disease vectors: Opportunities and limitations. Biol. Control 150, 104357 (2020).CAS 

    Google Scholar 
    Sebastian, A., Sein, M. M., Thu, M. M. & Corbet, P. S. Suppression of Aedes aegypti (Diptera: Culicidae) using augmentative release of dragonfly larvae (Odonata: Libellulidae) with community participation in Yangon, Myanmar1. Bull. Entomol. Res. 80, 223–232 (1990).
    Google Scholar 
    Harrington, R. W. & Harrington, E. S. Effects on fishes and their forage organisms of impounding a Florida salt marsh to prevent breeding by salt marsh mosquitoes. Bull. Mar. Sci. 32, 523–531 (1982).
    Google Scholar 
    Mk, D. & Rn, P. Evaluation of mosquito fish Gambusia affinis in the control of mosquito breeding in rice fields. Indian J. Malariol. 28, 171–177 (1991).
    Google Scholar 
    Rk, S., Rc, D. & Sp, S. Laboratory studies on the predatory potential of dragon-fly nymphs on mosquito larvae. J. Commun. Dis. 35, 96–101 (2003).
    Google Scholar 
    Focks, D. A., Sackett, S. R., Dame, D. A. & Bailey, D. L. Effect of weekly releases of Toxorhynchites amboinensis (Doleschall) on Aedes aegypti (L.) (Diptera: Culicidae) in New Orleans, Louisiana. J. Econ. Entomol. 78, 622–626 (1985).CAS 
    PubMed 

    Google Scholar 
    Brodman, R. & Dorton, R. The effectiveness of pond-breeding salamanders as agents of larval mosquito control. J. Freshw. Ecol. 21, 467–474 (2006).
    Google Scholar 
    Vu, S. N., Nguyen, T. Y., Kay, B. H., Marten, G. G. & Reid, J. W. Eradication of Aedes aegypti from a village in Vietnam, using copepods and community participation. Am. J. Trop. Med. Hyg. 59, 657–660 (1998).CAS 
    PubMed 

    Google Scholar 
    Canyon, D. V. & Hii, J. L. K. The gecko: An environmentally friendly biological agent for mosquito control. Med. Vet. Entomol. 11, 319–323 (1997).CAS 
    PubMed 

    Google Scholar 
    Strickman, D., Sithiprasasna, R. & Southard, D. Bionomics of the spider, Crossopriza lyoni (Araneae, Pholcidae), a predator of dengue vectors in Thailand. J. Arachnol. 25, 194–201 (1997).
    Google Scholar 
    Tkaczenko, G., Fischer, A. & Weterings, R. Prey preference of the common house geckos Hemidactylus frenatus and Hemidactylus platyurus. Herpetol. Notes 7, 482–488 (2014).
    Google Scholar 
    Weterings, R., Umponstira, C. & Buckley, H. L. Landscape variation influences trophic cascades in dengue vector food webs. Sci. Adv. 4, eaap9534 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Weterings, R., Umponstira, C. & Buckley, H. L. Predation on mosquitoes by common Southeast Asian house-dwelling jumping spiders (Salticidae). Argy 16, 122–127 (2014).
    Google Scholar 
    Puig-Montserrat, X. et al. Bats actively prey on mosquitoes and other deleterious insects in rice paddies: Potential impact on human health and agriculture. Pest Manag. Sci. 76, 3759–3769 (2020).CAS 
    PubMed 

    Google Scholar 
    May, M. L. Odonata: Who they are and what they have done for us lately: Classification and ecosystem services of dragonflies. Insects 10, 62 (2019).PubMed Central 

    Google Scholar 
    Raghavendra, K., Sharma, P. & Dash, A. P. Biological control of mosquito populations through frogs: Opportunities & constrains. Indian J. Med. Res. 128, 22–25 (2008).CAS 
    PubMed 

    Google Scholar 
    Poulin, B., Lefebvre, G. & Paz, L. Red flag for green spray: adverse trophic effects of Bti on breeding birds. Journal
    of Applied Ecology 47, 884–889 (2010).
    Google Scholar 
    Korichi, R. et al. Ecological impact of trophic diet of mantids in Ghardaïa (Algerian Sahara). Ponte Int. Sci. Res. J. 72, 94–106 (2016).
    Google Scholar 
    Prete, F. R. The Praying Mantids (Johns Hopkins University Press, 1999).
    Google Scholar 
    Dyck, V. A., Hendrichs, J. & Robinson, A. S. Sterile Insect Technique: Principles And Practice In Area-Wide Integrated Pest Management (CRC Press, 2021).
    Google Scholar 
    Bouyer, J. & Vreysen, M. J. B. Yes, irradiated sterile male mosquitoes can be sexually competitive!. Trends Parasitol. 36, 877–880 (2020).CAS 
    PubMed 

    Google Scholar 
    Parker, A., Vreysen, M., Bouyer, J. & Calkins, C. Sterile insect quality control/assurance. In Sterile Insect Technique: Principles And Practice In Area-Wide Integrated Pest Management 399–440 (2021).Lees, R., Carvalho, D. O. & Bouyer, J. Potential impact of integrating the sterile insect technique into the fight against disease-transmitting mosquitoes. In Sterile Insect Technique. Principles and Practice in Area-Wide Integrated Pest Management 2nd edn (eds Dyck, A. V. et al.) 1082–1118 (CRC Press, 2021).
    Google Scholar 
    Bimbilé Somda, N. S. et al. Cost-effective larval diet mixtures for mass rearing of Anopheles arabiensis Patton (Diptera: Culicidae). Parasit. Vectors 10, 619 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Bimbilé Somda, N. S. B. et al. Insects to feed insects-feeding Aedes mosquitoes with flies for laboratory rearing. Sci. Rep. 9, 1–13 (2019).
    Google Scholar 
    Maïga, H. et al. Assessment of a novel adult mass-rearing cage for Aedes albopictus (Skuse) and Anopheles arabiensis (Patton). Insects 11, 801 (2020).PubMed Central 

    Google Scholar 
    Maïga, H. et al. Reducing the cost and assessing the performance of a novel adult mass-rearing cage for the dengue, chikungunya, yellow fever and Zika vector, Aedes aegypti (Linnaeus). PLOS Negl. Trop. Dis. 13, e0007775 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mamai, W. et al. Black soldier fly (Hermetia illucens) larvae powder as a larval diet ingredient for mass-rearing Aedes mosquitoes. Parasite 26, 57 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Mamai, W. et al. Optimization of mass-rearing methods for Anopheles arabiensis larval stages: Effects of rearing water temperature and larval density on mosquito life-history traits. J. Econ. Entomol. 111, 2383–2390 (2018).PubMed 

    Google Scholar 
    Bellini, R., Puggioli, A., Balestrino, F., Carrieri, M. & Urbanelli, S. Exploring protandry and pupal size selection for Aedes albopictus sex separation. Parasites Vectors 11, 650 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Yamada, H. et al. Genetic sex separation of the malaria vector, Anopheles arabiensis, by exposing eggs to dieldrin. Malar J. 11, 208 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Yamana, T. K. & Eltahir, E. A. B. Projected impacts of climate change on environmental suitability for malaria transmission in West Africa. Environ. Health Perspect. 121, 1179–1186 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Zacarés, M. et al. Exploring the potential of computer vision analysis of pupae size dimorphism for adaptive sex sorting systems of various vector mosquito species. Parasites Vectors 11, 656 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Culbert, N. J., Gilles, J. R. L. & Bouyer, J. Investigating the impact of chilling temperature on male Aedes aegypti and Aedes albopictus survival. PLoS ONE 14, e0221822 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Helinski, M. E., Parker, A. G. & Knols, B. G. Radiation-induced sterility for pupal and adult stages of the malaria mosquito Anopheles arabiensis. Malar J. 5, 41 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Yamada, H. et al. Identification of critical factors that significantly affect the dose-response in mosquitoes irradiated as pupae. Parasit. Vectors 12, 1–13 (2019).CAS 

    Google Scholar 
    Culbert, N. J. et al. A rapid quality control test to foster the development of the sterile insect technique against Anopheles arabiensis. Malar. J. 19, 1–10 (2020).
    Google Scholar 
    Culbert, N. J. et al. A rapid quality control test to foster the development of genetic control in mosquitoes. Sci. Rep. 8, 1–9 (2018).CAS 

    Google Scholar 
    Bouyer, J. et al. Field performance of sterile male mosquitoes released from an uncrewed aerial vehicle. Sci. Robot. 5, eaba6251 (2020).PubMed 

    Google Scholar 
    Somda, N. S. B. et al. Ecology of reproduction of Anopheles arabiensis in an urban area of Bobo-Dioulasso, Burkina Faso (West Africa): Monthly swarming and mating frequency and their relation to environmental factors. PLoS ONE 13, e0205966 (2018).PubMed 
    PubMed Central 

    Google Scholar 
    Bellini, R., Medici, A., Puggioli, A., Balestrino, F. & Carrieri, M. Pilot field trials with Aedes albopictus irradiated sterile males in Italian urban areas. J. Med. Entomol. 50, 317–325 (2013).CAS 
    PubMed 

    Google Scholar 
    Vavassori, L., Saddler, A. & Müller, P. Active dispersal of Aedes albopictus: A mark-release-recapture study using self-marking units. Parasites Vectors 12, 583 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Zheng, X. et al. Incompatible and sterile insect techniques combined eliminate mosquitoes. Nature 572, 56–61 (2019).CAS 
    PubMed 

    Google Scholar 
    Dor, A. & Liedo, P. Survival ability of Mexican fruit fly males from different strains in presence of the predatory orb-weaving spider Argiope argentata (Araneae: Araneidae). Bull. Entomol. Res. 109, 279–286 (2019).CAS 
    PubMed 

    Google Scholar 
    Rathnayake, D. N., Lowe, E. C., Rempoulakis, P. & Herberstein, M. E. Effect of natural predators on Queensland fruit fly, Bactrocera tryoni (Froggatt) (Diptera: Tephritidae) control by sterile insect technique (SIT). Pest Manag. Sci. 75, 3356–3362 (2019).CAS 
    PubMed 

    Google Scholar 
    Kral, K. The functional significance of mantis peering behaviour. Eur. J. Entomol. 109, 295–301 (2012).
    Google Scholar 
    Bond, J. G. et al. Optimization of irradiation dose to Aedes aegypti and Ae. albopictus in a sterile insect technique program. PLoS ONE 14, e0212520 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Helinski, M. E., Parker, A. G. & Knols, B. G. Radiation biology of mosquitoes. Malar. J. 8, S6 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    Hurd, L. E. et al. Cannibalism reverses male-biased sex ratio in adult mantids: Female strategy against food limitation?. Oikos 69, 193–198 (1994).
    Google Scholar 
    Lawrence, S. E. Sexual cannibalism in the praying mantid, Mantis religiosa: A field study. Anim. Behav. 43, 569–583 (1992).
    Google Scholar 
    Trujillo-Jiménez, P., Castro-Franco, R., Zagal, M. & Corona, Y. The Asian house gecko Hemidactylus frenatus. (2018).Tyler, M. J. On the diet and feeding habits of Hemidactylus frenatus (Dumeril and Bibron) (Reptilia:Gekkonidae) at Rangoon, Burma. Trans. R. Soc. S. Aust. 84, 45–49 (1961).
    Google Scholar 
    Dor, A., Valle-Mora, J., Rodríguez-Rodríguez, S. E. & Liedo, P. Predation of Anastrepha ludens (Diptera: Tephritidae) by Norops serranoi (Reptilia: Polychrotidae): Functional response and evasion ability. Environ. Entomol. 43, 706–715 (2014).PubMed 

    Google Scholar 
    Schmidt, J. M., Sebastian, P., Wilder, S. M. & Rypstra, A. L. The nutritional content of prey affects the foraging of a generalist arthropod predator. PLoS ONE 7, e49223 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Turesson, H., Persson, A. & Brönmark, C. Prey size selection in piscivorous pikeperch (Stizostedion lucioperca) includes active prey choice. Ecol. Freshw. Fish 11, 223–233 (2002).
    Google Scholar 
    Collins, C. M., Bonds, J. A. S., Quinlan, M. M. & Mumford, J. D. Effects of the removal or reduction in density of the malaria mosquito, Anopheles gambiae s.l., on interacting predators and competitors in local ecosystems. Med. Vet. Entomol. 33, 1 (2019).CAS 
    PubMed 

    Google Scholar 
    FAO/IAEA. Guidelines for mark-release-recapture procedures of Aedes mosquitoes. Version 1.0. In (eds Bouyer, J. et al.) 22 (Food and Agriculture Organization of the United Nations International Atomic Energy Agency, 2020). More

  • in

    Social behavior mediates the use of social and personal information in wild jays

    Gil, M. A., Hein, A. M., Spiegel, O., Baskett, M. L. & Sih, A. Social information links individual behavior to population and community dynamics. Trends Ecol. Evol. 33, 535–548 (2018).PubMed 

    Google Scholar 
    Shettleworth, S. J. Cognition, Evolution, and Behavior (Oxford University Press, 2010).
    Google Scholar 
    Papini, M. Pattern and process in the evolution of learning. Psychol. Rev. 109, 186–201 (2002).PubMed 

    Google Scholar 
    Wagner, R. H. & Danchin, E. A taxonomy of biological information. Oikos 119, 203–209 (2010).
    Google Scholar 
    Heyes, C. Social learning in animals: Categories and mechanisms. Biol. Rev. Camb. Philos. Soc. 69, 207–231 (1994).CAS 
    PubMed 

    Google Scholar 
    Ladds, Z., Hoppitt, W. & Boogert, N. J. Social learning in otters. R. Soc. Open Sci. 4, 170489 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morand-Ferron, J., Cole, E. F., Rawles, J. E. C. & Quinn, J. L. Who are the innovators? A field experiment with 2 passerine species. Behav. Ecol. 22, 1241–1248 (2011).
    Google Scholar 
    Coussi-Korbel, S. & Fragaszy, D. M. On the relation between social dynamics and social learning. Anim. Behav. 50, 1441–1453 (1995).
    Google Scholar 
    Giraldeau, L.-A. & Lefebvre, L. Is social learning an adaptive specialization? In Social Learning in Animals: The Roots of Culture (eds Heyes, C. M. & Galef, B. G.) 107–128 (Academic Press, inc., 1996).
    Google Scholar 
    Giraldeau, L.-A., Valone, T. J. & Templeton, J. J. Potential disadvantages of using socially acquired information. Philos. Trans. R. Soc. B Biol. Sci. 357, 1559–1566 (2002).
    Google Scholar 
    Reader, S. M. & Biro, D. Experimental identification of social learning in wild animals. Learn. Behav. 38, 265–283 (2010).PubMed 

    Google Scholar 
    Laland, K. N. COMMENTARIES is social learning always locally adaptive? Anim. Behav. 52, 637–640 (1996).
    Google Scholar 
    Whitehead, H. Conserving and managing animals that learn socially and share cultures. Learn. Behav. 38, 329–336 (2010).PubMed 

    Google Scholar 
    Kenward, B., Rutz, C., Weir, A. A. S. & Kacelnik, A. Development of tool use in New Caledonian crows: Inherited action patterns and social influences. Anim. Behav. 72, 1329–1343 (2006).
    Google Scholar 
    Mann, J., Stanton, M. A., Patterson, E. M., Bienenstock, E. J. & Singh, L. O. Social networks reveal cultural behaviour in tool-using dolphins. Nat. Commun. 3, 980 (2012).ADS 
    PubMed 

    Google Scholar 
    Musgrave, S., Morgan, D., Lonsdorf, E., Mundry, R. & Sanz, C. Tool transfers are a form of teaching among chimpanzees. Sci. Rep. 6, 34783 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Thornton, A. & McAuliffe, K. Teaching in wild meerkats. Science 313, 227–229 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Faegre, S., Nietmann, L., Hannon, P., Ha, J. C. & Ha, R. R. Age-related differences in diet and foraging behavior of the critically endangered Mariana Crow (Corvus kubaryi), with notes on the predation of Coenobita hermit crabs. J. Ornithol. 161, 149–158 (2019).
    Google Scholar 
    Laland, K. N. Social learning strategies. Learn. Behav. 32, 4–14 (2004).PubMed 

    Google Scholar 
    Byrne, R. W. Machiavellian intelligence. Evol. Anthropol. 5, 172–180 (1997).
    Google Scholar 
    Heyes, C. What’s social about social learning? J. Comp. Psychol. 126, 193–202 (2012).PubMed 

    Google Scholar 
    Dawson, E. H., Avarguès-Weber, A., Chittka, L. & Leadbeater, E. Learning by observation emerges from simple associations in an insect model. Curr. Biol. 23, 727–730 (2013).CAS 
    PubMed 

    Google Scholar 
    Coolen, I., Giraldeau, L.-A. & Lavoie, M. Head position as an indicator of producer and scrounger tactics in a ground-feeding bird. Anim. Behav. 61, 895–903 (2001).
    Google Scholar 
    Scheid, C., Range, F. & Bugnyar, T. When, what, and whom to watch? Quantifying attention in ravens (Corvus corax) and jackdaws (Corvus monedula). J. Comp. Psychol. 121, 380–386 (2007).PubMed 

    Google Scholar 
    Hoppitt, W. & Laland, K. N. Social Learning: An Introduction to Mechanisms, Methods, and Models (Princeton University Press, 2013).
    Google Scholar 
    Whiten, A. The burgeoning reach of animal culture. Science 372 (2021).Penn, D. C. & Povinelli, D. J. On the lack of evidence that non-human animals possess anything remotely resembling a ‘theory of mind’. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 731–744 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Whiten, A. Humans are not alone in computing how others see the world. Anim. Behav. 86, 213–221 (2013).
    Google Scholar 
    Zentall, T. R. Social learning mechanisms: Implications for a cognitive theory of imitation. Interact. Stud. 12, 233–261 (2011).
    Google Scholar 
    Akins, C. K. & Zentall, T. R. Imitative learning in male Japanese quail (Coturnix japonica) using the two-action method. J. Comp. Psychol. 110, 316–320 (1996).CAS 
    PubMed 

    Google Scholar 
    Heyes, C. & Saggerson, A. Testing for imitative and nonimitative social learning in the budgerigar using a two-object/two-action test. Anim. Behav. 64, 851–859 (2002).
    Google Scholar 
    McGrew, W. C. Social and cognitive capabilities of nonhuman primates: Lessons from the wild to captivity. Int. J. Study Anim. Probl. 2, 138–149 (1981).
    Google Scholar 
    Chapman, B. B., Ward, A. J. W. & Krause, J. Schooling and learning: Early social environment predicts social learning ability in the guppy, Poecilia reticulata. Anim. Behav. 76, 923–929 (2008).
    Google Scholar 
    Arnold, C. & Taborsky, B. Social experience in early ontogeny has lasting effects on social skills in cooperatively breeding cichlids. Anim. Behav. 79, 621–630 (2010).
    Google Scholar 
    McCune, K. B., Jablonski, P. G., Lee, S. & Ha, R. R. Captive jays exhibit reduced problem-solving performance compared to wild conspecifics. R. Soc. Open Sci. 6, 181311 (2019).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilkinson, A., Kuenstner, K., Mueller, J. & Huber, L. Social learning in a non-social reptile (Geochelone carbonaria). Biol. Lett. 6, 614–616 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Leadbeater, E. What evolves in the evolution of social learning? J. Zool. 295, 4–11 (2015).
    Google Scholar 
    Doody, J. S. et al. Aggregated drinking behavior of radiated tortoises (Astrochelys radiata) in arid southwestern Madagascar. Chelonian Conserv. Biol. 10, 145–146 (2011).
    Google Scholar 
    Wendland, L. D. et al. Social behavior drives the dynamics of respiratory disease in threatened tortoises. Ecology 91, 1257–1262 (2010).PubMed 

    Google Scholar 
    Whiten, A. & Mesoudi, A. Establishing an experimental science of culture: Animal social diffusion experiments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 3477–3488 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Slagsvold, T. & Wiebe, K. L. Social learning in birds and its role in shaping a foraging niche. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 969–977 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Galef, B. G. & Whiten, A. The comparative psychology of social learning. In APA Handbook of Comparative Psychology: Vol. 2. Evolution, Development, and Neural Substrate (ed. Call, J.) 411–439 (American Psychological Association, 2017). https://doi.org/10.1037/0000012-019.Chapter 

    Google Scholar 
    Prum, R. O., Robinson, S. K. & Gill, F. B. Ornithology (Macmillan Learning, 2019).
    Google Scholar 
    Curry, R. L., Townsend Peterson, A. & Langen, T. A. California scrub-jay (Aphelocoma californica). In Birds of North America (eds Poole, A. & Gill, F.) (The Birds of North America, Inc, 2017).
    Google Scholar 
    Brown, J. L. Mexican jay (Aphelocoma ultramarina). In The Birds of North America (eds Poole, A. & Gill, F.) (The Birds of North America, Inc, 1994).
    Google Scholar 
    Rice, N. H., Martínez-Meyer, E. & Peterson, A. T. Ecological niche differentiation in the Aphelocoma jays: A phylogenetic perspective. Biol. J. Linn. Soc. 80, 369–383 (2003).
    Google Scholar 
    de Kort, S. R. & Clayton, N. S. An evolutionary perspective on caching by corvids. Proc. R. Soc. B Biol. Sci. 273, 417–423 (2006).
    Google Scholar 
    Pesendorfer, M. B. & Koenig, W. D. Competing for seed dispersal: Evidence for the role of avian seed hoarders in mediating apparent predation among oaks. Funct. Ecol. 31, 622–631 (2017).
    Google Scholar 
    Zentall, T. R. Perspectives on observational learning in animals. J. Comp. Psychol. 126, 114–128 (2012).PubMed 

    Google Scholar 
    Aplin, L. M. et al. Experimentally induced innovations lead to persistent culture via conformity in wild birds. Nature 518, 538–541 (2015).ADS 
    CAS 
    PubMed 

    Google Scholar 
    McCormack, J. E., Jablonski, P. G. & Brown, J. L. Producer-scrounger roles and joining based on dominance in a free-living group of Mexican jays (Aphelocoma ultramarina). Behaviour 144, 967–982 (2007).
    Google Scholar 
    Logan, C. J., Breen, A. J., Taylor, A. H., Gray, R. D. & Hoppitt, W. How New Caledonian crows solve novel foraging problems and what it means for cumulative culture. Learn. Behav. 44, 18–28 (2016).PubMed 

    Google Scholar 
    Ashton, B. J., Thornton, A. & Ridley, A. R. Larger group sizes facilitate the emergence and spread of innovations in a group-living bird. Anim. Behav. 158, 1–7 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Griffin, A. S. & Diquelou, M. C. Innovative problem solving in birds: A cross-species comparison of two highly successful passerines. Anim. Behav. 100, 84–94 (2015).
    Google Scholar 
    Therneau, T. M., Crowson, C. & Atkinson, E. Using time dependent covariates and time dependent coefficents in the Cox model. Survival Vignettes, 2, 3 (2017).
    Google Scholar 
    Barrett, B. J., McElreath, R. L. & Perry, S. E. Pay-off-biased social learning underlies the diffusion of novel extractive foraging traditions in a wild primate. Proc. R. Soc. B Biol. Sci. 284, 20170358 (2017).
    Google Scholar 
    Therneau, T. M. Coxme: Mixed Effects Cox Models (R Package, 2018).
    Google Scholar 
    Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 19, 716–723 (1974).ADS 
    MathSciNet 
    MATH 

    Google Scholar 
    Burnham, K. P. & Anderson, D. R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach (Springer, 2002). https://doi.org/10.1016/j.ecolmodel.2003.11.004.Book 
    MATH 

    Google Scholar 
    Clayton, N. S., Dally, J. M. & Emery, N. J. Social cognition by food-caching corvids. The western scrub-jay as a natural psychologist. Philos. Trans. R. Soc. B Biol. Sci. 362, 507–522 (2007).
    Google Scholar 
    Hare, B., Call, J., Agnetta, B. & Tomasello, M. Chimpanzees know what conspecifics do and do not see. Anim. Behav. 59, 771–785 (2000).CAS 
    PubMed 

    Google Scholar 
    Emery, N. J., Seed, A. M., von Bayern, A. M. P. & Clayton, N. S. Cognitive adaptations of social bonding in birds. Philos. Trans. R. Soc. Lond. B Biol. Sci. 362, 489–505 (2007).PubMed 
    PubMed Central 

    Google Scholar 
    Westcott, P. W. Relationships among three species of jays wintering in southeastern Arizona. Condor 71, 353–359 (1969).
    Google Scholar 
    Kulahci, I. G. et al. Social networks predict selective observation and information spread in ravens. R. Soc. Open Sci. 3, 160256 (2016).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Boucherie, P. H., Loretto, M. C., Massen, J. J. M. & Bugnyar, T. What constitutes “social complexity” and “social intelligence” in birds? Lessons from ravens. Behav. Ecol. Sociobiol. 73, 12 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Emery, N. J. Cognitive ornithology: The evolution of avian intelligence. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361, 23–43 (2006).PubMed 

    Google Scholar 
    Maclean, E. L. et al. How does cognition evolve? Phylogenetic comparative psychology. Anim. Cogn. 15, 223–238 (2012).PubMed 

    Google Scholar 
    Edwards, S. V. & Naeem, S. The phylogenetic component of cooperative breeding in perching birds. Am. Nat. 141, 754–789 (1993).CAS 
    PubMed 

    Google Scholar 
    Berg, E. C., Aldredge, R. A., Peterson, A. T. & McCormack, J. E. New phylogenetic information suggests both an increase and at least one loss of cooperative breeding during the evolutionary history of Aphelocoma jays. Evol. Ecol. 26, 43–54 (2012).
    Google Scholar 
    Ekman, J. & Ericson, P. G. P. Out of Gondwanaland; the evolutionary history of cooperative breeding and social behaviour among crows, magpies, jays and allies. Proc. R. Soc. B Biol. Sci. 273, 1117–1125 (2006).
    Google Scholar 
    Midford, P., Hailman, J. & Woolfenden, G. E. Social learning of a novel foraging patch in families of free-living Florida scrub-jays. Anim. Behav. 59, 1199–1207 (2000).CAS 
    PubMed 

    Google Scholar 
    Alcock, J. Animal Behavior (Sinauer Associates, Inc, 2009).
    Google Scholar 
    Burkart, J. M., Kupferberg, A., Glasauer, S. & van Schaik, C. P. Even simple forms of social learning rely on intention attribution in marmoset monkeys (Callithrix jacchus). J. Comp. Psychol. 126, 129–138 (2012).PubMed 

    Google Scholar 
    Burkart, J. M. & van Schaik, C. P. Cognitive consequences of cooperative breeding in primates? Anim. Cogn. 13, 1–19 (2010).PubMed 

    Google Scholar 
    Danchin, E., Giraldeau, L.-A., Valone, T. J. & Wagner, R. H. Public information: From nosy neighbors to cultural evolution. Science 305, 487–491 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gil, M. A., Emberts, Z., Jones, H. & St. Mary, C. M. Social information on fear and food drives animal grouping and fitness. Am. Nat. 189, 227–241 (2017).PubMed 

    Google Scholar 
    Call, J. & Tomasello, M. Does the chimpanzee have a theory of mind? 30 years later. Trends Cogn. Sci. 12, 187–192 (2008).PubMed 

    Google Scholar 
    Seyfarth, R. M. & Cheney, D. L. Social cognition. Anim. Behav. 103, 191–202 (2015).
    Google Scholar 
    Huber, L., Rechberger, S. & Taborsky, M. Social learning affects object exploration and manipulation in keas, Nestor notabilis. Anim. Behav. 62, 945–954 (2001).
    Google Scholar 
    Gajdon, G. K., Fijn, N. & Huber, L. Testing social learning in a wild mountain parrot, the kea (Nestor notabilis). Learn. Behav. 32, 62–71 (2004).PubMed 

    Google Scholar 
    McCowan, B., Anderson, K., Heagarty, A. & Cameron, A. Utility of social network analysis for primate behavioral management and well-being. Appl. Anim. Behav. Sci. 109, 396–405 (2008).
    Google Scholar 
    Williams, E., Bremner-Harrison, S. & Ward, S. Can we meet the needs of social species in zoos? An overview of the impact of group housing on welfare in socially housed zoo mammals. In Zoo Animals: Husbandry, Welfare and Public Interactions (eds. Berger, M. & Corbett, S.) (Nova Science Publishers, 2018).
    Google Scholar 
    Hoppitt, W., Samson, J., Laland, K. N. & Thornton, A. Identification of learning mechanisms in a wild Meerkat population. PLoS ONE 7, 1–11 (2012).
    Google Scholar 
    Kendal, R. L., Galef, B. G. & van Schaik, C. P. Social learning research outside the laboratory: How and why? Learn. Behav. 38, 187–194 (2010).PubMed 

    Google Scholar 
    Thornton, A. & Lukas, D. Individual variation in cognitive performance: Developmental and evolutionary perspectives. Philos. Trans. R. Soc. B Biol. Sci. 367, 2773–2783 (2012).
    Google Scholar 
    Herrmann, E., Call, J., Hernandez-Lloreda, M. V., Hare, B. & Tomasello, M. Humans have evolved specialized skills of social cognition: The cultural intelligence hypothesis. Science 317, 1360–1366 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Balda, R. P. & Kamil, A. C. Spatial and social cognition in corvids: An evolutionary approach. In The Cognitive Animal: Empirical and Theoretical Perspectives on Animal Cognition (eds. Bekoff, M., Burghardt, G. & Allen, C.) (Bradford Book, 2002).
    Google Scholar 
    Greggor, A. L., Thornton, A. & Clayton, N. S. Harnessing learning biases is essential for applying social learning in conservation. Behav. Ecol. Sociobiol. 71, 1–12 (2017).
    Google Scholar 
    Brakes, P. et al. A deepening understanding of animal culture suggests lessons for conservation. Proc. R. Soc. B Biol. Sci. 288, 20202718 (2021).
    Google Scholar 
    Brakes, P. et al. Animal cultures matter for conservation. Science 363, 1032–1034 (2019).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Barrett, B. J., Zepeda, E., Pollack, L., Munson, A. & Sih, A. Counter-culture: Does social learning help or hinder adaptive response to human-induced rapid environmental change? Front. Ecol. Evol. 7, 1–18 (2019).
    Google Scholar 
    Rushworth, M. F. S., Mars, R. B. & Sallet, J. Are there specialized circuits for social cognition and are they unique to humans? Curr. Opin. Neurobiol. 23, 436–442 (2013).CAS 
    PubMed 

    Google Scholar 
    van Schaik, C. P. & Burkart, J. M. Social learning and evolution: The cultural intelligence hypothesis. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366, 1008–1016 (2011).PubMed 
    PubMed Central 

    Google Scholar  More