More stories

  • in

    Standardised bioassays reveal that mosquitoes learn to avoid compounds used in chemical vector control after a single sub-lethal exposure

    Webb, B. Cognition in insects. Philos. Trans. R. Soc B 367, 2715–2722 (2012).
    Google Scholar 
    Lorenz, K. The Foundations of Ethology 347–352 (Springer, 1981).
    Google Scholar 
    Davis, R. L. Olfactory memory formation in Drosophila: From molecular to systems neuroscience. Annu. Rev. Neurosci. 28, 275–302 (2005).CAS 
    PubMed 

    Google Scholar 
    Prokopy, R. J., Averill, A. L., Cooley, S. S. & Roitberg, C. A. Associative learning in egglaying site selection by apple maggot flies. Science 218, 76–77 (1982).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Tempel, B. L., Bonini, N., Dawson, D. R. & Quinn, W. G. Reward learning in normal and mutant Drosophila. Proc. Natl Acad. Sci. 80, 1482–1486 (1983).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cook, D. F. Influence of previous mating experience on future mating success in maleLucilia cuprina (Diptera: Calliphoridae). J. Insect Behav. 8, 207–217 (1994).
    Google Scholar 
    Raubenheimer, D. & Tucker, D. Associative learning by locusts: Pairing of visual cues with consumption of protein and carbohydrate. Anim. Behav. 54, 1449–1459 (1997).CAS 
    PubMed 

    Google Scholar 
    Harari, A. R. & Landolt, P. J. Feeding experience enhances attraction of female Diaprepes abbreviatus (L.) (Coleoptera: Curculionidae) to food plant odors. 8. J. Insect Behav. 12, 415–422 (1999).
    Google Scholar 
    Menzel, R. Memory dynamics in the honeybee. J. Comp. Physiol. A 185, 323–340 (1999).ADS 

    Google Scholar 
    McCall, P. J. & Kelly, D. W. Learning and memory in disease vectors. Trends Parasitol. 18, 429–433 (2002).CAS 
    PubMed 

    Google Scholar 
    Alonso, W. J. & Schuck-Paim, C. The ‘ghosts’ that pester studies on learning in mosquitoes: Guidelines to chase them off. Med. Vet. Entomol. 20, 157–165 (2006).CAS 
    PubMed 

    Google Scholar 
    WHO. Global Vector Control Response 20217–22030 (World Health Organization, 2017).
    Google Scholar 
    Rocklöv, J. & Dubrow, R. Climate change: An enduring challenge for vector-borne disease prevention and control. Nat. Immunol. 21, 479–483 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Bhatt, S. et al. The effect of malaria control on Plasmodium falciparum in Africa between 2000 and 2015. Nature 526, 207–211 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hemingway, J. et al. Averting a malaria disaster: Will insecticide resistance derail malaria control?. The Lancet 387, 1785–1788 (2016).
    Google Scholar 
    Martinez-Torres, D. et al. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae ss. Insect Mol. Biol. 7, 179–184 (1998).CAS 
    PubMed 

    Google Scholar 
    Chandre, F. et al. Current distribution of a pyrethroid resistance gene (kdr) in Anopheles gambiae complex from West Africa and further evidence for reproductive isolation of the Mopti form. Parassitologia 41, 319–322 (1999).CAS 
    PubMed 

    Google Scholar 
    Weill, M. et al. The unique mutation in ace-1 giving high insecticide resistance is easily detectable in mosquito vectors. Insect Mol. Biol. 13, 1–7 (2004).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Du, W. et al. Independent mutations in the Rdl locus confer dieldrin resistance to Anopheles gambiae and An. arabiensis. Insect Mol. Biol. 14, 179–183 (2005).CAS 
    PubMed 

    Google Scholar 
    Hemingway, J. & Ranson, H. Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45, 371–391 (2000).CAS 
    PubMed 

    Google Scholar 
    Ranson, H. et al. Pyrethroid resistance in African anopheline mosquitoes: What are the implications for malaria control?. Trends Parasitol. 27, 91–98 (2011).CAS 
    PubMed 

    Google Scholar 
    Liu, N. Insecticide resistance in mosquitoes: Impact, mechanisms, and research directions. Annu. Rev. Entomol. 60, 537–559 (2015).CAS 
    PubMed 

    Google Scholar 
    Wood, O., Hanrahan, S., Coetzee, M., Koekemoer, L. & Brooke, B. Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasit Vectors 3, 67 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Balabanidou, V. et al. Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. PNAS 113, 9268–9273 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Balabanidou, V. et al. Mosquitoes cloak their legs to resist insecticides. Proc Biol. Sci. 286, 20191091 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Muirhead-Thomson, R. C. The significance of irritability, behaviouristic avoidance and allied phenomena in malaria eradication. Bull. World Health Organ. 22, 721–734 (1960).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Georghiou, G. P. The evolution of resistance to pesticides. Annu. Rev. Ecol. Syst. 3, 133–168 (1972).CAS 

    Google Scholar 
    Grieco, J. P. et al. A new classification system for the actions of IRS chemicals traditionally used for malaria control. PLoS ONE 2, e716 (2007).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chareonviriyaphap, T. et al. Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit Vectors 6, 280 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Chilaka, N., Perkins, E. & Tripet, F. Visual and olfactory associative learning in the malaria vector Anopheles gambiae sensu stricto. Malar. J. 11, 27 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Vinauger, C., Lahondère, C., Cohuet, A., Lazzari, C. R. & Riffell, J. A. Learning and memory in disease vector insects. Trends Parasitol. 32, 761–771 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Carrasco, D. et al. Behavioural adaptations of mosquito vectors to insecticide control. Curr. Opin. Insect Sci. 34, 48–54 (2019).PubMed 

    Google Scholar 
    Tomberlin, J. K., Rains, G. C., Allan, S. A., Sanford, M. R. & Lewis, W. J. Associative learning of odor with food- or blood-meal by Culex quinquefasciatus Say (Diptera: Culicidae). Naturwissenschaften 93, 551–556 (2006).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Menda, G. et al. Associative learning in the dengue vector mosquito, Aedes aegypti: Avoidance of a previously attractive odor or surface color that is paired with an aversive stimulus. J. Exp. Biol. 216, 218–223 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Vinauger, C., Lutz, E. K. & Riffell, J. A. Olfactory learning and memory in the disease vector mosquito Aedes aegypti. J. Exp. Biol. 217, 2321–2330 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    WHO. Guidelines for laboratory and field-testing of long-lasting insecticidal nets (World Health Organization, 2013).
    Google Scholar 
    WHO. Test procedures for insecticide resistance monitoring in malaria vector mosquitoes 2nd edn. (World Health Organization, 2016).
    Google Scholar 
    Rivero, A., Vézilier, J., Weill, M., Read, A. F. & Gandon, S. Insecticide control of vector-borne diseases: When is insecticide resistance a problem?. PLoS Pathog. 6, e1001000 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Maciel-de-Freitas, R. et al. Undesirable consequences of insecticide resistance following Aedes aegypti control activities due to a dengue outbreak. PLoS ONE 9, e92424 (2014).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sherrard-Smith, E. et al. Systematic review of indoor residual spray efficacy and effectiveness against Plasmodium falciparum in Africa. Nat. Commun. 9, 4982 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dusfour, I. et al. Management of insecticide resistance in the major Aedes vectors of arboviruses: Advances and challenges. PLoS Negl. Trop. Dis. 13, e0007615 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Perrin, A. et al. Variation in the susceptibility of urban Aedes mosquitoes infected with a densovirus. Sci. Rep. 10, 18654 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wilson, A. L. et al. The importance of vector control for the control and elimination of vector-borne diseases. PLoS Negl. Trop. Dis. 14, e0007831 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wills, A. B. et al. Physical durability of PermaNet 2.0 long-lasting insecticidal nets over three to 32 months of use in Ethiopia. Malar. J. 12, 242 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Gnanguenon, V., Azondekon, R., Oke-Agbo, F., Beach, R. & Akogbeto, M. Durability assessment results suggest a serviceable life of two, rather than three, years for the current long-lasting insecticidal (mosquito) net (LLIN) intervention in Benin. BMC Infect. Dis. 14, 69 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Boussougou-Sambe, S. T. et al. Physical integrity and residual bio-efficacy of used LLINs in three cities of the South-West region of Cameroon 4 years after the first national mass-distribution campaign. Malar. J. 16, 31 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Janko, M. M., Churcher, T. S., Emch, M. E. & Meshnick, S. R. Strengthening long-lasting insecticidal nets effectiveness monitoring using retrospective analysis of cross-sectional, population-based surveys across sub-Saharan Africa. Sci. Rep. 8, 17110 (2018).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Djènontin, A. et al. The residual life of bendiocarb on different substrates under laboratory and field conditions in Benin, Western Africa. BMC Res Notes 6, 458 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Mugenyi, L. et al. Estimating the optimal interval between rounds of indoor residual spraying of insecticide using malaria incidence data from cohort studies. PLoS ONE 15, e0241033 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Kreppel, K. S. et al. Emergence of behavioural avoidance strategies of malaria vectors in areas of high LLIN coverage in Tanzania. Sci. Rep. 10, 14527 (2020).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Parker, J. E. A. et al. Infrared video tracking of Anopheles gambiae at insecticide-treated bed nets reveals rapid decisive impact after brief localised net contact. Sci. Rep. 5, 13392 (2015).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Spitzen, J., Koelewijn, T., Mukabana, W. R. & Takken, W. Visualization of house-entry behaviour of malaria mosquitoes. Malar. J. 15, 233 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Spitzen, J. & Takken, W. Keeping track of mosquitoes: A review of tools to track, record and analyse mosquito flight. Parasit. Vectors https://doi.org/10.1186/s13071-018-2735-6 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Jones, J., Murray, G. & McCall, P. J. A minimal 3D model of mosquito flight behavior around the human baited bed net. Malar. J. 20, (2021)Sougoufara, S., Ottih, E. C. & Tripet, F. The need for new vector control approaches targeting outdoor biting anopheline malaria vector communities. Parasit. Vectors 13, 295 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Okumu, F. O. & Moore, S. J. Combining indoor residual spraying and insecticide-treated nets for malaria control in Africa: A review of possible outcomes and an outline of suggestions for the future. Malar. J. 10, 208 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Deletre, E. et al. Repellent, irritant and toxic effects of 20 plant extracts on adults of the malaria vector Anopheles gambiae Mosquito. PLoS One 8, e82103 (2013).ADS 
    PubMed 
    PubMed Central 

    Google Scholar  More

  • in

    Impacts of continuous and rotational cropping practices on soil chemical properties and microbial communities during peanut cultivation

    Jaiswal, S. K., Msimbira, L. A. & Dakora, F. D. Phylogenetically diverse group of native bacterial symbionts isolated from root nodules of groundnut (Arachis hypogaea L.) in South Africa. Syst. Appl. Microbiol. 40, 215–226. https://doi.org/10.1016/j.syapm.2017.02.002 (2017).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tahir, M., Lv, Y., Gao, L., Hallett, P. D. & Peng, X. Soil water dynamics and availability for citrus and peanut along a hillslope at the Sunjia Red Soil Critical Zone Observatory (CZO). Soil Tillage Res. 163, 110–118. https://doi.org/10.1016/j.still.2016.05.017 (2016).Article 

    Google Scholar 
    Xiaogang, L. The composition of root exudates from two different resistant peanut cultivars and their effects on the growth of soil-borne pathogen. Int. J. Biol. Sci. https://doi.org/10.7150/ijbs.5579 (2013).Article 

    Google Scholar 
    Chen, M. et al. Dynamic succession of soil bacterial community during continuous cropping of peanut (Arachis hypogaea L.). PLoS ONE https://doi.org/10.1371/journal.pone.0101355 (2014).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huang, W. et al. Effects of continuous sugar beet cropping on rhizospheric microbial communities. Genes https://doi.org/10.3390/genes11010013 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Y. et al. Effect of continuous cropping on the rhizosphere soil and growth of common buckwheat. Plant. Prod. Sci. 23, 81–90. https://doi.org/10.1080/1343943X.2019.1685895 (2020).CAS 
    Article 

    Google Scholar 
    Meng, L. B. et al. Changes in soil microbial diversity and control of Fusarium oxysporum in continuous cropping cucumber greenhouses following biofumigation. Emir. J. Food Agric. 30, 644–653. https://doi.org/10.9755/ejfa.2018.v30.i8.1752 (2018).Article 

    Google Scholar 
    Li, X., Ding, C., Zhang, T. & Wang, X. Fungal pathogen accumulation at the expense of plant-beneficial fungi as a consequence of consecutive peanut monoculturing. Soil Biol. Biochem. 72, 11–18. https://doi.org/10.1016/j.soilbio.2014.01.019 (2014).CAS 
    Article 

    Google Scholar 
    Wang, H. W. et al. Fungal endophyte Phomopsis liquidambari biodegrades soil resveratrol: A potential allelochemical in peanut monocropping systems. J. Sci. Food Agric. 99, 5899–5909. https://doi.org/10.1002/jsfa.9865 (2019).CAS 
    Article 
    PubMed 

    Google Scholar 
    Huang, L. et al. Plant-soil feedbacks and soil sickness: From mechanisms to application in agriculture. J. Chem. Ecol. 39, 232–242. https://doi.org/10.1007/s10886-013-0244-9 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Deng, J. J. et al. Autotoxicity of phthalate esters in tobacco root exudates: Effects on seed germination and seedling growth. Pedosphere 27, 1073–1082. https://doi.org/10.1016/s1002-0160(17)60374-6 (2017).CAS 
    Article 

    Google Scholar 
    Chen, S. L., Zhou, B. L., Lin, S. S., Li, X. & Ye, X. L. Accumulation of cinnamic acid and vanillin in eggplant root exudates and the relationship with continuous cropping obstacle. Afr. J. Biotechnol. 10, 2659–2665. https://doi.org/10.5897/AJB10.1338 (2011).CAS 
    Article 

    Google Scholar 
    Berendsen, R. L., Pieterse, C. M. J. & Bakker, P. A. H. M. The rhizosphere microbiome and plant health. Trends Plant Sci. 17, 478–486. https://doi.org/10.1016/j.tplants.2012.04.001 (2012).CAS 
    Article 
    PubMed 

    Google Scholar 
    Wu, L. K. et al. Comparative metagenomic analysis of rhizosphere microbial community composition and functional potentials under Rehmannia glutinosa consecutive monoculture. Int. J. Mol. Sci. https://doi.org/10.3390/ijms19082394 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Galazka, A., Gawryjolek, K., Perzynski, A., Galazka, R. & Ksiezak, J. Changes in enzymatic activities and microbial communities in soil under long-term maize monoculture and crop rotation. Pol. J. Environ. Stud. 26, 39–46. https://doi.org/10.15244/pjoes/64745 (2017).CAS 
    Article 

    Google Scholar 
    Wu, L. K. et al. Modification of rhizosphere bacterial community structure and functional potentials to control Pseudostellaria heterophylla replant disease. Plant Dis. 104, 25–34. https://doi.org/10.1094/pdis-04-19-0833-re (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Becker, J., Rodibaugh, K., Hahn, D. & Nowlin, W. Bacterial community composition and carbon metabolism in a subtropical riverscape. Hydrobiologia 792, 209–226. https://doi.org/10.1007/s10750-016-3058-2 (2017).CAS 
    Article 

    Google Scholar 
    Zheng, Q. et al. Soil multifunctionality is affected by the soil environment and by microbial community composition and diversity. Soil Biol. Biochem. 136, 107521. https://doi.org/10.1016/j.soilbio.2019.107521 (2019).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Berg, G. & Smalla, K. Plant species and soil type cooperatively shape the structure and function of microbial communities in the rhizosphere. FEMS Microbiol. Ecol. 68, 1–13. https://doi.org/10.1111/j.1574-6941.2009.00654.x (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Yang, D., Liu, Y., Wang, Y., Gao, F. & Li, X. Effects of soil tillage, management practices, and mulching film application on soil health and peanut yield in a continuous cropping system. Front. Microbiol. 11, 570924. https://doi.org/10.3389/fmicb.2020.570924 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, J. et al. Variations of rhizospheric soil microbial communities in response to continuous Andrographis paniculata cropping practices. Bot. Stud. https://doi.org/10.1186/s40529-020-00295-1 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiong, W. et al. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease. Soil Biol. Biochem. 107, 198–207. https://doi.org/10.1016/j.soilbio.2017.01.010 (2017).CAS 
    Article 

    Google Scholar 
    Wu, L. et al. Barcoded pyrosequencing reveals a shift in the bacterial community in the rhizosphere and rhizoplane of Rehmannia glutinosa under consecutive monoculture. Int. J. Mol. Sci. 19, 850. https://doi.org/10.3390/ijms19030850 (2018).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Zhao, Q. et al. Long-term coffee monoculture alters soil chemical properties and microbial communities. Sci. Rep. https://doi.org/10.1038/s41598-018-24537-2 (2018).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dong, L. et al. High-throughput sequencing technology reveals that continuous cropping of American ginseng results in changes in the microbial community in arable soil. Chin. Med. https://doi.org/10.1186/s13020-017-0139-8 (2017).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Dong, L., Xu, J., Feng, G., Li, X. & Chen, S. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci. Rep. https://doi.org/10.1038/srep31802 (2016).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Gao, Z. et al. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.02269 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, L. et al. Effects of consecutive monoculture of Pseudostellaria heterophylla on soil fungal community as determined by pyrosequencing. Sci. Rep. 6, 26601. https://doi.org/10.1038/srep26601 (2016).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Yao, Q. et al. Dynamics of soil properties and fungal community structure in continuous-cropped alfalfa fields in Northeast China. PeerJ 7, 7125. https://doi.org/10.7717/peerj.7127 (2019).Article 

    Google Scholar 
    Zhu, B., Wu, J., Ji, Q., Wu, W. & Qin, L. Diversity of rhizosphere and endophytic fungi in Atractylodes macrocephala during continuous cropping. PeerJ 8, e8905. https://doi.org/10.7717/peerj.8905 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Janssen, P. H. Identifying the dominant soil bacterial taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microb. 72, 1719–1728 (2006).ADS 
    CAS 
    Article 

    Google Scholar 
    Mendes, R. et al. Deciphering the rhizosphere microbiome for disease-sppressive bacteria. Science https://doi.org/10.1126/science.1203980 (2011).Article 
    PubMed 

    Google Scholar 
    Zhou, H. et al. Changes in the soil microbial communities of alpine steppe at Qinghai-Tibetan Plateau under different degradation levels. Sci. Total Environ. 651, 2281–2291. https://doi.org/10.1016/j.scitotenv.2018.09.336 (2019).ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 
    Chen, J., Gong, J. L. & Xu, M. G. Implications of continuous and rotational cropping practices on soil bacterial communities in pineapple cultivation. Eur. J. Soil Biol. 97, 103172. https://doi.org/10.1016/j.ejsobi.2020.103172 (2020).CAS 
    Article 

    Google Scholar 
    Li, W., Liu, Q. & Chen, P. Effect of long-term continuous cropping of strawberry on soil bacterial community structure and diversity. J. Integr. Agr. 17, 206–218. https://doi.org/10.1016/S2095-3119(18)61944-6 (2018).Article 

    Google Scholar 
    Liu, X. et al. Microbial community diversities and taxa abundances in soils along a seven-year gradient of potato monoculture using high throughput pyrosequencing approach. PLoS ONE 9, e86610–e86610. https://doi.org/10.1371/journal.pone.0086610 (2014).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Xiong, W. et al. The effect of long-term continuous cropping of black pepper on soil bacterial communities as determined by 454 pyrosequencing. PLoS ONE 10, e0136946. https://doi.org/10.1371/journal.pone.0136946 (2015).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tan, Y. et al. Diversity and composition of rhizospheric soil and root endogenous bacteria in Panax notoginseng during continuous cropping practices. J. Basic Microb. 57, 337. https://doi.org/10.1002/jobm.201600464 (2017).CAS 
    Article 

    Google Scholar 
    Fierer, N., Bradford, M. A. & Jackson, R. B. Toward an ecological classification of soil bacteria. Ecology 88, 1354–1364. https://doi.org/10.1890/05-1839 (2007).Article 
    PubMed 

    Google Scholar 
    Yang, Y. et al. Effects of microbiological fertilizer on rhizosphere soil fungus communities under long-term continuous cropping of protected Hami melon. Chin. J. App. Environ. Biol. https://doi.org/10.19675/j.cnki.1006-687x.2017.03014 (2018).Article 

    Google Scholar 
    Schoch, C. L. et al. The Ascomycota tree of life: A phylum-wide phylogeny clarifies the origin and evolution of fundamental reproductive and ecological traits. Syst. Biol. 58, 224–239. https://doi.org/10.1093/sysbio/syp020 (2009).CAS 
    Article 
    PubMed 

    Google Scholar 
    Hayat, R., Ali, S., Amara, U., Khalid, R. & Ahmed, I. Soil beneficial bacteria and their role in plant growth promotion: A review. Ann. Microbiol. 60, 579–598. https://doi.org/10.1007/s13213-010-0117-1 (2010).Article 

    Google Scholar 
    Jann Lasse, G., Hurek, T., Wiebke, B. & Reinhold-Hurek, B. Bradyrhizobium vignae sp. nov., a nitrogen-fixing symbiont isolated from effective nodules of Vigna and Arachis. Int. J. Syst. Evol. Microbiol. 66, 62. https://doi.org/10.1099/ijsem.0.000674 (2015).CAS 
    Article 

    Google Scholar 
    Ormeo-Orrillo, E. & Esperanza, M.-R. A genomotaxonomy view of the bradyrhizobium genus. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01334 (2019).Article 

    Google Scholar 
    Palaniappan, P., Chauhan, P. S., Saravanan, V. S., Anandham, R. & Sa, T. Isolation and characterization of plant growth promoting endophytic bacterial isolates from root nodule of Lespedeza sp. Biol. Fertil. Soils 46, 807–816. https://doi.org/10.1007/s00374-010-0485-5 (2010).Article 

    Google Scholar 
    Wang, H. et al. Impact of soybean nodulation phenotypes and nitrogen fertilizer levels on the rhizosphere bacterial community. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00750 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, M. X. et al. Streptomyces lydicusM01 regulates soil microbial community and alleviates foliar disease caused by Alternaria alternataon cucumbers. Front. Microbiol. https://doi.org/10.3389/fmicb.2020.00942 (2020).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, Y. S. et al. Biological fertilizer containing Bacillus subtilis BY-2 for control of Sclerotinia sclerotiorum on oilseed rape. Crop Prot. https://doi.org/10.1016/j.cropro.2020.105340 (2020).Article 

    Google Scholar 
    Kim, M. J. et al. Enhancement of seed dehiscence by seed treatment with talaromyces flavus GG01 and GG04 in ginseng (Panax ginseng). Plant Pathol. J. 33, 1–8. https://doi.org/10.5423/ppj.Oa.06.2016.0146 (2017).ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, W. et al. Occurrence and characterization of fungi and mycotoxins in contaminated medicinal herbs. Toxins 12, 30. https://doi.org/10.3390/toxins12010030 (2020).CAS 
    Article 
    PubMed Central 

    Google Scholar 
    Naeem, M. et al. Characterization and pathogenicity of fusarium species associated with soybean pods in maize/soybean strip intercropping. Pathogens 8, 117. https://doi.org/10.3390/pathogens8040245 (2019).CAS 
    Article 

    Google Scholar 
    Desjardins, A. Gibberella from A (Venaceae) to Z (eae). Ann. Rev. Phytopathol. 41, 177–198. https://doi.org/10.1146/annurev.phyto.41.011703.115501 (2003).CAS 
    Article 

    Google Scholar 
    Mingna, C. et al. Soil eukaryotic microorganism succession as affected by continuous cropping of peanut: Pathogenic and beneficial fungi were selected. PLoS ONE 7, e40659. https://doi.org/10.1371/journal.pone.0040659 (2012).CAS 
    Article 

    Google Scholar 
    Arafat, Y. et al. Long-term monoculture negatively regulates fungal community composition and abundance of tea orchards. Agronomy https://doi.org/10.3390/agronomy9080466 (2019).Article 

    Google Scholar 
    Zhou, X. G. & Wu, F. Z. Changes in soil chemical characters and enzyme activities during continuous monocropping of cucumber (Cucumis sativus). Pak. J. Bot. 47, 691–697 (2015).CAS 

    Google Scholar 
    Shao, S., Chen, M., Liu, W., Hu, X. & Li, Y. Long-term monoculture reduces the symbiotic rhizobial biodiversity of peanut. Syst. Appl. Microbiol. 43, 126101. https://doi.org/10.1016/j.syapm.2020.126101 (2020).CAS 
    Article 
    PubMed 

    Google Scholar 
    Zhang, Y., Zheng, Y. J., Xia, P. G., Xun, L. L. & Liang, Z. S. Impact of continuous Panax notoginseng plantation on soil microbial and biochemical properties. Sci. Rep. https://doi.org/10.1038/s41598-019-49625-9 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Zhang, L. C. et al. Comparison of soil enzyme activity and microbial community structure between rapeseed-rice and rice-rice plantings. Int. J. Agric. Biol. 20, 1801–1808. https://doi.org/10.17957/ijab/15.0692 (2018).CAS 
    Article 

    Google Scholar 
    Hansen, J. C., Schillinger, W. F., Sullivan, T. S. & Paulitz, T. C. Soil microbial biomass and fungi reduced with canola introduced into long-term monoculture wheat rotations. Front. Microbiol. https://doi.org/10.3389/fmicb.2019.01488 (2019).Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Guo, Z. B. et al. Fertilization regime has a greater effect on soil microbial community structure than crop rotation and growth stage in an agroecosystem. Appl. Soil. Ecol. https://doi.org/10.1016/j.apsoil.2020.103510 (2020).Article 

    Google Scholar 
    Zhao, H. L. et al. Effect of different straw return modes on soil bacterial community, enzyme activities and organic carbon fractions. Soil Sci. Soc. Am. J. 83, 638–648. https://doi.org/10.2136/sssaj2018.03.0101 (2019).ADS 
    CAS 
    Article 

    Google Scholar 
    Agomoh, I. V., Drury, C. F., Phillips, L. A., Reynolds, W. D. & Yang, X. Increasing crop diversity in wheat rotations increases yields but decreases soil health. Soil Sci. Soc. Am. J. https://doi.org/10.1002/saj2.20000 (2020).Article 

    Google Scholar 
    Liu, Z. X. et al. Long-term continuous cropping of soybean is comparable to crop rotation in mediating microbial abundance, diversity and community composition. Soil Tillage Res. https://doi.org/10.1016/j.still.2019.104503 (2020).Article 

    Google Scholar 
    Powlson, D. S., Prookes, P. C. & Christensen, B. T. Measurement of soil microbial biomass provides an early indication of changes in total soil organic matter due to straw incorporation. Soil Biol. Biochem. 19, 159–164. https://doi.org/10.1016/0038-0717(87)90076-9 (1987).CAS 
    Article 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336. https://doi.org/10.1038/nmeth.f.303 (2010).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Magoc, T. & Salzberg, S. L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963. https://doi.org/10.1093/bioinformatics/btr507 (2011).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998. https://doi.org/10.1038/nmeth.2604 (2013).CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 
    Quast, C. et al. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596. https://doi.org/10.1093/nar/gks1219 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Kõljalg, U. et al. Towards a unified paradigm for sequence-based identification of fungi. Mol. Ecol. 22, 5271–5277. https://doi.org/10.1111/mec.12481 (2013).CAS 
    Article 
    PubMed 

    Google Scholar 
    Bao, S. Soil and Agricultural Chemistry Analysis (Agriculture Press Publisher, 2013).
    Google Scholar 
    Guan, S. Y., Zhang, D. & Zhang, Z. Soil Enzyme and its Research Methods (Springer, 1986).
    Google Scholar 
    Sinha, A. K. Colorimetric assay of catalase. Anal. Biochem. 47, 389–394. https://doi.org/10.1016/0003-2697(72)90132-7 (1972).CAS 
    Article 
    PubMed 

    Google Scholar 
    Schinner, F. & Mersi, W. V. Xylanase-, CM-cellulase- and invertase activity in soil: An improved method. Soil Biol. Biochem. 22, 511–515. https://doi.org/10.1016/0038-0717(90)90187-5 (1990).CAS 
    Article 

    Google Scholar 
    Tabatabai, M. A. & Bremner, J. M. Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol. Biochem. 1, 301–307. https://doi.org/10.1016/0038-0717(69)90012-1 (1969).CAS 
    Article 

    Google Scholar  More

  • in

    Eucalyptus obliqua tall forest in cool, temperate Tasmania becomes a carbon source during a protracted warm spell in November 2017

    Site descriptionWarra Supersite, (Lat: 43° 5′ 42ʺ S; Long: 146° 39′ 16ʺ E) is located on a floodplain of the Huon River within the Warra Long Term Ecological Research site (https://warra.com/) 60 km southwest of Hobart, Tasmania. The forest at the Supersite is a Eucalyptus obliqua tall forest with a canopy height of 50–55 m, overtopping a 15–40 m tall secondary layer of rainforest and wet sclerophyll tree species. Ferns dominate the ground layer. The forest is very productive with an aboveground biomass of 790 tonnes/ha16 and a leaf area index of 5.7 m2/m247.The Supersite is within the Tasmanian Wilderness World Heritage Area (TWWHA). That part of the TWWHA experiences infrequent, but sometimes intense, wildfire. Except for a small proportion of mature ( > 250 years-old) E. obliqua trees, the current forest resulted from seedling regeneration following the last major wildfire in that part of the landscape in 1898. No timber harvesting has ever been done in the forest at the Supersite.The climate at Warra is classified as temperate, with no dry season and a mild summer48. Mean annual rainfall measured at the nearby Warra Climate Station (Bureau of Meteorology Station 097024) is 1736 mm and the mean daily temperature is 14 °C and 5.6 °C in January and July, respectively. The soil at the site is a Kurosolic Redoxic Hydrosol16.Analysis of historical heatwaves in southern TasmaniaDaily maximum temperature records from the Bureau of Meteorology station at Cape Bruny Lighthouse (station number 94010) were extracted from the Bureau of Meteorology’s online climate data portal (http://www.bom.gov.au/climate/data). Cape Bruny Lighthouse is one of the 112 stations in the ACORN-SAT network of Australia’s reference sites for monitoring climate change49. The station provides a record of daily maximum temperature measurements commencing in 1923 and spanning almost a century. It is the southern-most station in the ACORN-SAT network; is 59 km south-east of the Warra Flux Site; and bounds the south-eastern extent of E. obliqua tall forest in Tasmania.Missing temperature measurements represented less than 0.6% of the 35,795 records collected at Cape Bruny Lighthouse between January 1st 1923 and December 31st 2020. The missing measurements were gap-filled using predicted values calculated from linear regression models constructed from measurements made at nearby Bureau of Meteorology stations (listed in order of proximity to Cape Bruny Lighthouse and priority for gap-filling)—Cape Bruny Automatic Weather Station (1997-present), Hastings Chalet (1947–1987) and Hobart-Ellerslie Road (1892-present).Average, standard deviation and 90th percentiles of daily maximum temperature were calculated for each calendar day of the year. Further analysis of heatwaves was restricted to the period between the beginning of August and the end of February. This period bounds the growing season of the forest at the Warra Supersite when there is normally a net carbon gain by the forest (Wardlaw unpublished data). Heatwaves were identified as three or more consecutive days with maximum temperatures that met or exceeded the 90th percentile value sensu Perkins and Alexander9. For each heatwave event that was identified, the following three statistics were calculated: (1) average daily maximum temperature during the heatwave; (2) summed departures (as standard deviations) from average daily maximum temperature during the heatwave; (3) summed departures (as standard deviations) from average daily maximum temperature of the 21 day period centred on the middle day of the heatwave. The November 2017 heatwave, as described by these three statistics, was ranked against all the other heatwave events identified between 1923 and 2020 at Cape Bruny Lighthouse. In addition, the z-score was calculated to measure the magnitude of the departure of the average daily maximum temperatures during the November 2017 heatwave from the long-term average of this 21-day period. Those statistics were also calculated for the same period in 2016.Weather conditions at Warra Supersite during the 2017 warm spellFour attributes of weather were used to describe the November 2017 warm spell—air temperature, vapor pressure deficit (calculated from temperature and relative humidity), incoming shortwave radiation and soil moisture. Air temperature and relative humidity were measured using an HMP155A probe (Vaisala, Finland) and incoming shortwave radiation was measured using a CNR4 radiometer (Kipp and Zonen, The Netherlands). Both instruments were mounted 80-m above ground level at the top of the Warra Flux tower. Data was processed to 30-min averages and logged onto a CR3000 datalogger (Campbell Scientific, Logan, USA).Soil moisture was measured by time-domain reflectometry using two CS616 soil moisture probes (Campbell Scientific, Logan, USA) each installed at a depth of 20 cm. These probes were installed in two pits approximately 40 m west of the tower. Soil moisture data were processed to 30-min averages and logged onto a CR1000 datalogger (Campbell Scientific, Logan USA).Turbulent fluxes at Warra Supersite during the November 2017 warm spellMeasurement of turbulent fluxes (carbon, water and energy) were done by eddy covariance (EC) using a closed-path infra-red gas analyser (Model EC155, Campbell Scientific Inc., Logan, USA) to measure CO2 and H2O concentrations and a 3-D sonic anemometer (Model CSAT3A, Campbell Scientific Inc, Logan, USA) to measure turbulent wind vectors and virtual air temperature. The sonic anemometer and infra-red gas analyser were mounted at 80-m above the ground at the top of the Warra Flux tower. Storage of CO2 and H2O beneath the forest canopy was measured by a profile system (Model AP200, Campbell Scientific Inc, Logan, USA ), with sampling heights of 2, 4, 8, 16, 30, 42, 54, 70 m. Temperature sensors in aspirated shields (Model 110-ST, Apogee Instruments, Logan, USA) were co-located with the CO2/H2O sample inlets of the profile system. High frequency (10 Hz) measurements of turbulent fluxes were processed to 30-min averages in a datalogger (Model CR3000, Campbell Scientific, Logan USA). High frequency (2 Hz) of CO2 and water concentration measurements were processed to 15-s averages sequentially for each profile sample height in a datalogger (Model CR1000, Campbell Scientific, Logan, USA). Thus, each inlet was sampled for a 15 s interval every 2 min. The rate at which sub-canopy storage of CO2 changed was calculated from changes in the quasi-instantaneous (2-min) vertical profile concentrations beneath the tower at the beginning and end of each 30-min flux averaging period using the method of McHugh50.Soil heat flux (SHF) was measured to enable calculation of energy balance that was needed to partition energy fluxes into latent and sensible heat. SHF was measured using five SHF plates (Model HFP01SC, Hukseflux, Delft, The Netherlands) inserted in the soil at depth 8 cm adjacent to the two pits in which the soil moisture probes were installed. Each of the five SHF plates were allocated to one of the two soil pits in a 2–3 split. Changes in soil temperature was measured by an averaging thermocouple (Model TCAV, Campbell Scientific Inc, Logan, USA) inserted into the soil above each SHF plate at depths of 2 and 6 cm. Soil moisture measurements at 20 cm depth were as described previously. Heat flux, soil temperature and soil moisture data were processed to 30-min averages on a datalogger (Model CR1000, Campbell Scientific Inc, Logan, USA).Raw 30-min flux, CO2 storage and climate data were processed by the standard OzFlux QA/QC processing stream51 using PyFluxPro Version 1.0.2 software. Fluxes (carbon and energy) adjusted for storage were computed at the mid-stage (level 3). At the final stage of data processing (level 6), gap-filled net ecosystem exchange (NEE) data were partitioned into gross primary productivity (GPP) and ecosystem respiration (ER) using the u*-filtered night-time CO2 flux records to calculate ER with the SOLO artificial neural network algorithm as described in51. The standard conventions of the global flux network were adopted in partitioning NEE as described in52.The full period between 10 and 30th November 2017 was defined as the November 2017 warm spell. The climate and fluxes measured during this period were compared with measurements of those made during the same calendar days of the preceding year, 2016. The carbon fluxes measured in the 10 weeks before (1 September–9 November) and the month after (1–31 December) the 2017 warm spell period were also compared with the same periods in 2016. This was done to ascertain whether changes in carbon fluxes during the 2017 warm spell we not due to differences in antecedent weather conditions and, whether or not differences in carbon fluxes arising from the warm spell persisted after the warm spell.Data analysisFor each day of the 10–30 November period, daily sums were calculated for measurements of carbon fluxes and incoming shortwave radiation (Fsd), while daily averages were calculated for air temperature, VPD and soil moisture. Quantile plots, done for Ta and VPD, used 30-min data during daytime hours (when Fsd  > 0). The significance of differences in measurements during the 10–30 November period among the two years of each variable were tested by analysis of variance. Tests were first done to confirm the data for each variable were normally distributed and between-group variances were homoscedastic. Log-transformation was used to correct skewness in the VPD data. Soil moisture data were strongly skewed, and transformation was unable to correct. For this variable, the Kruskal–Wallis method was used to test the significance of differences in medians among the two years. These analyses were repeated for the 10 weeks (1st September–9th November) leading up to the warm spell and the 4 weeks (1st–31st December) following the warm spell to examine antecedent conditions and subsequent recovery from the warm spell, respectively.The energy fluxes were examined for evidence of coupling between GPP, transpiration and canopy conductance. Closure of the energy balance was first determined for the two periods to ensure comparability of the energy fluxes for the 2017 warm spell period and the corresponding period in 2016. This was done by firstly resampling the 30-min data and calculating 2-hourly averages of latent heat flux (Fe), sensible heat flux (Fh), net radiation (Fn) and ground heat flux (Fg), then fitting linear regressions of Fe + Fh against Fn–Fg for dates encompassing the warm spell in each of two years. Peak energy storage of the biomass, Fb, in the forest at Warra was estimated as 40 W m−2 using the method described in17. That estimate used the value of LAI of 5.72 based on the average of periodic measurements of LAI at Warra reported in47 and the value of 22.0 for the quadratic mean radius at breast height (1.3 m) calculated from tree measurements in a 1-ha plot adjacent to the Warra Flux tower (detailed in47). The ratio of energy storage in the biomass and ground heat flux at their respective daily maxima was calculated, assuming their respective diurnal peaks coincided. This ratio was then applied to each 2-h average of ground heat flux measured in the warm spell period in 2017 and the corresponding period in 2016. Available energy was recalculated using the formula Fn–(Fg + Fb). Analysis of variance was used to test the significance of differences between the 2017 warm spell and the corresponding period in 2016 of each component energy fluxes (Fn, Fe, Fh and Fg) for each of the twelve, 2-h periods, in the day. Kruskal–Wallis rank test was used if a variable had a non-normal distribution or exhibited heteroscedasticity. The Bowen ratio, which is the ratio between Fh and Fe, was calculated for each 2-h period during daytime hours. The 2-h average data were non-normal and heteroscedastic so testing the significance of differences in daytime Bowen ratio between the warm spell and comparison period was done using 2-sample t-test with unequal variance.Latent heat flux was converted to evapotranspiration by dividing the measured latent heat flux by the latent heat of vaporisation of water. Evapotranspiration was used as a proxy of transpiration on the assumption that evaporation was a minor component of evapotranspiration in the tall E. obliqua forest at Warra based on measurements of soil and litter evaporation in similar forests by23. An estimate of total canopy conductance of sunlit leaves, Gt, was calculated from transpiration (E) and vapor pressure deficit, VPD, using the Skelton et al.53 adaptation of the method developed by Hogg and Hurdle54, whereby:$${text{G}}_{{text{t}}} = (upalpha /1000){text{E}}/{text{VPD}}$$The atmospheric pressure of water vapor, α, is equivalent to ρwGvTk, where ρw is the density of water (c 1000 kg m−3), Gv is the universal gas constant for water vapor (0.462 m3 kPa kg−1 K−1) and Tk is air temperature (in K = Ta + 273.15). Gt (in mmol m−2 s−1) was calculated for each 2-h period during the 2017 warm spell and the same calendar days in 2016 using each period’s corresponding values of E, VPD and Ta. Records were excluded if rain fell during the 2-h period. The significance of differences in daytime canopy conductance between the 2017 warm spell and the 2016 comparison period was tested using a two-sample t-test as the data were strongly skewed.The diurnal patterns of GPP, ER and canopy conductance were compared with incoming shortwave radiation, air temperature and vapour pressure deficit. Each 30-min record of the six variables was recoded to its corresponding 2-h time interval. Analysis of variance was used to test for significance of differences between the warm spell and comparison period for each of the twelve 2-h diurnal periods of the six variables. Kruskal–Wallis rank test was used in the data were non-normal or heteroscedastic. Time series plots of diurnal 2-hourly averages for each of the six variables were plotted and visually compared. More

  • in

    Isolation of rhizosheath and analysis of microbial community structure around roots of Stipa grandis

    George, T. S. et al. Understanding the genetic control and physiological traits associated with rhizosheath production in barley (Hordeum vulgare). New Phytol. 203, 195–205 (2014).CAS 
    PubMed 

    Google Scholar 
    Delhaize, E., Rathjen, T. M. & Cavanagh, C. R. The genetics of rhizosheath size in a multiparent mapping population of wheat. J. Exp. Bot. 66, 4527–4536 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duell, R. W. & Peacock, G. R. Rhizosheaths on mesophytic grasses. Crop Sci. 25, 880–883 (1985).
    Google Scholar 
    Shane, M. W. et al. Summer dormancy and winter growth: Root survival strategy in a perennial monocotyledon. New Phytol. 183, 1085–1096 (2009).CAS 
    PubMed 

    Google Scholar 
    Shane, M. W., McCully, M. E., Canny, M. J. & Pate, J. S. Development and persistence of sandsheaths of Lyginia barbata (Restionaceae): Relation to root structural development and longevity. Ann. Bot. 108, 1307–1322 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Sprent, J. I. Adherence of sand particles to soybean roots under water stress. New Phytol. 74, 461–463 (1975).
    Google Scholar 
    Unno, Y., Okubo, K., Wasaki, J., Shinano, T. & Osaki, M. Plant growth promotion abilities and microscale bacterial dynamics in the rhizosphere of Lupin analysed by phytate utilization ability. Environ. Microbiol. 7, 396–404 (2005).PubMed 

    Google Scholar 
    McCully, M. E. Roots in soil: unearthing the complexities of roots and their rhizospheres. Annu Rev. Plant. Phys. 50, 695–718 (2003).
    Google Scholar 
    Volkens, G. Die Flora der ægyptisch-arabischen Wuste auf Grundlage anatomisch-physiologischer Forschungen 156 (Gerbruger Borntraeger, 1887).
    Google Scholar 
    Bailey, C. & Scholes, M. Rhizosheath occurrence in South African grasses. S Afr J Bot 63, 484–490 (1997).
    Google Scholar 
    Price, S. R. The roots of some north African desert-grasses. New Phytol. 10, 328–340 (1911).
    Google Scholar 
    Young, I. M. Variation in moisture contents between bulk soil and the rhizosheath of wheat (Triticum aestivum L. cv. Wembly). New Phytol. 130, 125–39 (1995).
    Google Scholar 
    Pate, J.S., & Dixon, K.W. Convergence and Divergence in the Southwestern Australian Flora in Adaptations of Roots to Limited Availability of Water and Nutrients, Fire and Heat Stress, New South Wales, 1966;249–58.Shane, M. W. et al. Seasonal water relations of Lyginia barbata (southern rush) in relation to root xylem development and summer dormancy of root apices. New Phytol. 185, 1025–37 (2010).PubMed 

    Google Scholar 
    Benard, P., Kroener, E., Vontobel, P., Kaestner, A. & Carminati, A. Water percolation through the root-soil interface. Adv. Water Res. 95, 190–198 (2016).
    Google Scholar 
    Lynch, J. P. Roots of the second green revolution. Aust. J. Bot. 55, 493–512 (2007).
    Google Scholar 
    Brown, L. K., George, T. S., Neugebauer, K. & White, P. J. The rhizosheath—A potential trait for future agricultural sustainability occurs in orders throughout the angiosperms. Plant. Soil 418(1–2), 115–128 (2017).CAS 

    Google Scholar 
    Zhang, R., Vivanco, J. M. & Shen, Q. The unseen rhizosphere root–soil–microbe interactions for crop production. Curr. Opin. Microbiol. 37, 8 (2017).PubMed 

    Google Scholar 
    Spaepen, S., Bossuyt, S., Vanderleyden, J., Engelen, K. & Marchal, K. Phenotypical and molecular responses of Arabidopsis thaliana roots as a result of inoculation with the auxin-producing bacterium Azospirillum brasilense. New Phytol. 201, 66 (2014).
    Google Scholar 
    Vries, F. T. D., Griffiths, R. I., Knight, C. G., Nicolitch, O. & Williams, A. Harnessing rhizosphere microbiomes for drought-resilient crop production. Science 368, 66 (2020).
    Google Scholar 
    York, L. M., Carminati, A., Mooney, S. J., Ritz, K. & Bennett, M. J. The holistic rhizosphere: Integrating zones, processes, and semantics in the soil influenced by roots. J. Exp. Bot. 67(12), 3629–3643 (2016).CAS 
    PubMed 

    Google Scholar 
    Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–5 (2012).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Lundberg, D. S. et al. Defining the core Arabidopsis thaliana root microbiome. Nature 488, 86–90 (2012).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Schneijderberg, M. et al. Quantitative comparison between the rhizosphere effect of Arabidopsis thaliana and co-occurring plant species with a longer life history. ISME J. 14(10), 2433–2448 (2020).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Magoč, T. & Salzberg, S. L. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21), 2957–2963 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Bokulich, N. A. et al. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10(1), 57–59 (2013).CAS 
    PubMed 

    Google Scholar 
    Caporaso, J. G. et al. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7(5), 335–336 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27(16), 2194–2100 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Haas, B. J. et al. Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res. 21(3), 494–504 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wang, Q. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 66, 5261–67 (2007).ADS 

    Google Scholar 
    Edgar, R. C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10(10), 996–998 (2013).CAS 
    PubMed 

    Google Scholar 
    Quast, C., Pruesse, E., Yilmaz, P., Gerken, J. & Glöckner, F. O. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucl Acids Res. 41(D1), 66 (2012).
    Google Scholar 
    Clark, F. E. Soil microorganisms and plant roots. Adv. Agron. 1, 241–288 (1949).CAS 

    Google Scholar 
    Cook, F. D. & Lochhead, A. G. Growth factor relationships of soil microorganisms as affected by proxmity to the plant root. Can. J. Microbiol. 5, 323–334 (1959).CAS 
    PubMed 

    Google Scholar 
    Bulgarelli, D., Schlaeppi, K., Spaepen, S., Van Themaat, E. V. L. & Schulze-Lefert, P. Structure and functions of the bacterial microbiota of plants. Annu. Rev. Plant. Biol. 64(1), 807–838 (2012).
    Google Scholar 
    Edwards, J. et al. Structure, variation, and assembly of the root-associated microbiomes of rice. Proc. Natl. Acad. Sci. USA 112(8), 911–920 (2015).ADS 

    Google Scholar 
    Zhang, J. Y. et al. NRT1.1B is associated with root microbiota composition and nitrogen use in field-grown rice. Nat. Biotechnol. Sci. Bus. Biotechnol. 37(6), 1–13 (2019).
    Google Scholar 
    Fu, Z. Q. et al. Mechanism of controlling cotton Verticillium wilt with endophytic bacterium 73a. Jiangsu J Agric. Sci. 15(4), 211–15 (1999).
    Google Scholar 
    Van Loon, L. C., Bakker, P. A. H. M. & Pieterse, C. M. J. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36, 453–83 (1998).CAS 
    PubMed 

    Google Scholar 
    Wees, S. C. M. V., Pieteerse, C. M. J., Trijssenaar, A. V., Westende, Y. A. V. & Loon, L. C. V. Differental induction of systemic resistance in Arabidopsis by biocontrol bacterial. Mol. Plant-Microbe Interact. 10, 716–24 (1997).PubMed 

    Google Scholar 
    Compant, S., Clément, C. & Sessitsch, A. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: Their role, colonization, mechanisms involved and prospects for utilization. Soil Biol. Biochem. 42, 669–678 (2010).CAS 

    Google Scholar 
    Philippot, L., Raaijmakers, J. M., Lemanceau, P. & Vander, P. W. H. Going back to the roots: The microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11(11), 789–799 (2013).CAS 
    PubMed 

    Google Scholar 
    Berendsen, R. L., Pieterse, C. M. & Bakker, P. A. The rhizosphere microbiome and plant health. Trends Plant. Sci. 17, 478–486 (2012).CAS 
    PubMed 

    Google Scholar 
    Tkacz, A., Cheema, J., Chandra, G., Grant, A. & Poole, P. S. Stability and succession of the rhizosphere microbiota depends upon plant type and soil composition. ISME J. 9, 2349–2359 (2015).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Shi, S., Nuccio, E. E., Shi, Z. J., He, Z. & Firestone, M. K. The interconnected rhizosphere: High network complexity dominates rhizosphere assemblages. Ecol. Lett. 19, 926–936 (2016).
    PubMed 

    Google Scholar 
    Lambers, H., Mougel, C., Jaillard, B. & Hinsinger, P. Plant–microbe–soil interactions in the rhizosphere: An evolutionary perspective. Plant. Soil 321, 83–115 (2009).CAS 

    Google Scholar 
    Zhang, Y., Ruyter-Spira, C. & Bouwmeester, H. J. Engineering the plant rhizosphere. Curr. Opin. Biotechnol. 32, 136–142 (2015).CAS 
    PubMed 

    Google Scholar 
    Dessaux, Y., Grandclement, C. & Faure, D. Engineering the rhizosphere. Trends Plant. Sci. 21, 266–278 (2016).CAS 
    PubMed 

    Google Scholar 
    Bergmann, D., Zehfus, M., Zierer, L., Smith, B. & Gabel, M. Grass Rhizosheaths: Associated bacterial communities and potential for nitrogen fixation. Western N. Am. Nat. 69(1), 105–114 (2009).
    Google Scholar 
    Wullstein, L. H. Nitrogen fixation (acetylene reduction) associated with rhizosheaths of Indian rice–grass used in stabilization of the Slick Rock, Colorado tailings pile. J. Range Manag. 33, 204–206 (1980).
    Google Scholar 
    Wullstein, L. H., Bruening, M. L. & Bollen, W. B. Fixation associated with sand grain root sheaths (rhizosheaths) of certain Xeric grasses. Physiol. Plant. 46, 1–4 (1979).CAS 

    Google Scholar 
    Buckley, R. Sand rhizosheath of an arid zone grass. Plant. Soil 66, 417–421 (1982).
    Google Scholar  More

  • in

    Population genomic signatures of the oriental fruit moth related to the Pleistocene climates

    Hewitt, G. M. Genetic consequences of climatic oscillations in the Quaternary. Philos. Trans. R. Soc. Lond. Ser. B, Biol. Sci. 359, 183–195 (2004).CAS 

    Google Scholar 
    Hewitt, G. The genetic legacy of the Quaternary ice ages. Nature 405, 907–913 (2000).CAS 
    PubMed 

    Google Scholar 
    Abellán, P., Benetti, C. J., Angus, R. B. & Ribera, I. A review of Quaternary range shifts in European aquatic Coleoptera. Glob. Ecol. Biogeogr. 20, 87–100 (2011).
    Google Scholar 
    Geber, M. A. Ecological and evolutionary limits to species geographic ranges. Am. Naturalist 178, S1–S5 (2011).
    Google Scholar 
    Miller, T. E. X. et al. Eco-evolutionary dynamics of range expansion. Ecology 101, e03139 (2020).PubMed 

    Google Scholar 
    Clark, P. U. et al. The last glacial maximum. Science 325, 710 (2009).CAS 
    PubMed 

    Google Scholar 
    Bidegaray-Batista, L. et al. Imprints of multiple glacial refugia in the Pyrenees revealed by phylogeography and palaeodistribution modelling of an endemic spider. Mol. Ecol. 25, 2046–2064 (2016).CAS 
    PubMed 

    Google Scholar 
    Stone, G. N. et al. Tournament ABC analysis of the western Palaearctic population history of an oak gall wasp, Synergus umbraculus. Mol. Ecol. 26, 6685–6703 (2017).PubMed 

    Google Scholar 
    Walton, W., Stone, G. N. & Lohse, K. Discordant Pleistocene population size histories in a guild of hymenopteran parasitoids. Mol. Ecol. https://doi.org/10.1111/mec.16074 (2021).Grant, K. M. et al. Sea-level variability over five glacial cycles. Nat. Commun. 5, 5076 (2014).CAS 
    PubMed 

    Google Scholar 
    Ye, Z., Zhu, G., Chen, P., Zhang, D. & Bu, W. Molecular data and ecological niche modelling reveal the Pleistocene history of a semi-aquatic bug (Microvelia douglasi douglasi) in East Asia. Mol. Ecol. 23, 3080–3096 (2014).CAS 
    PubMed 

    Google Scholar 
    Wei, S. J. et al. Population genetic structure and approximate Bayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth Grapholita molesta (Lepidoptera: Tortricidae) in its native range. Mol. Ecol. 24, 4094–4111 (2015).PubMed 

    Google Scholar 
    Petit, R. et al. Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300, 1563–1565 (2003).CAS 
    PubMed 

    Google Scholar 
    Hoffmann, A. A. & Sgro, C. M. Climate change and evolutionary adaptation. Nature 470, 479–485 (2011).CAS 
    PubMed 

    Google Scholar 
    Hewitt, G. M. Speciation, hybrid zones and phylogeography—or seeing genes in space and time. Mol. Ecol. 10, 537–549 (2001).CAS 
    PubMed 

    Google Scholar 
    Bradburd, G. S. & Ralph, P. L. Spatial population genetics: it’s about time. Annu. Rev. Ecol., Evol. Syst. 50, 427–449 (2019).
    Google Scholar 
    de Lafontaine, G., Ducousso, A., Lefevre, S., Magnanou, E. & Petit, R. J. Stronger spatial genetic structure in recolonized areas than in refugia in the European beech. Mol. Ecol. 22, 4397–4412 (2013).PubMed 

    Google Scholar 
    Hoban, S., Dawson, A., Robinson, J. D., Smith, A. B. & Strand, A. E. Inference of biogeographic history by formally integrating distinct lines of evidence: genetic, environmental niche and fossil. Ecography 42, 1991–2011 (2019).
    Google Scholar 
    Stone, G. N. et al. The phylogeographical clade trade: tracing the impact of human‐mediated dispersal on the colonization of northern Europe by the oak gallwasp Andricus kollari. Mol. Ecol. 16, 2768–2781 (2007).PubMed 

    Google Scholar 
    McGaughran, A., Laver, R. & Fraser, C. Evolutionary responses to warming. Trends Ecol. Evol. 36, 591–600 (2021).PubMed 

    Google Scholar 
    van Boheemen, L. A. & Hodgins, K. A. Rapid repeatable phenotypic and genomic adaptation following multiple introductions. Mol. Ecol. 29, 4102–4117 (2020).PubMed 

    Google Scholar 
    Ruegg, K. et al. Ecological genomics predicts climate vulnerability in an endangered southwestern songbird. Ecol. Lett. 21, 1085–1096 (2018).PubMed 

    Google Scholar 
    Fitzpatrick, M. C. & Keller, S. R. Ecological genomics meets community-level modelling of biodiversity: mapping the genomic landscape of current and future environmental adaptation. Ecol. Lett. 18, 1–16 (2015).PubMed 

    Google Scholar 
    Sun, Y., Bossdorf, O., Grados, R. D., Liao, Z. & Müller-Schärer, H. Rapid genomic and phenotypic change in response to climate warming in a widespread plant invader. Glob. Change Biol. 26, 6511–6522 (2020).
    Google Scholar 
    Høye, T. T. Arthropods and climate change-arctic challenges and opportunities. Curr. Opin. Insect Sci. 41, 40–45 (2020).PubMed 

    Google Scholar 
    Maino, J. L., Kong, J. D., Hoffmann, A. A., Barton, M. G. & Kearney, M. R. Mechanistic models for predicting insect responses to climate change. Curr. Opin. Insect Sci. 17, 81–86 (2016).PubMed 

    Google Scholar 
    Hoffmann, A. A., Weeks, A. R. & Sgrò, C. M. Opportunities and challenges in assessing climate change vulnerability through genomics. Cell 184, 1420–1425 (2021).CAS 
    PubMed 

    Google Scholar 
    van der Geest, L. P. S. & Evenhuis, H. H. World Crop Pests 5: Tortricid Pests Their Biology, Natural Enemies and Control. Vol. 5 (Elsevier, 1991).Wan, F. H. et al. A chromosome-level genome assembly of Cydia pomonella provides insights into chemical ecology and insecticide resistance. Nat. Commun. 10, https://doi.org/10.1038/s41467-41019-12175-41469 (2019).Kirk, H., Dorn, S. & Mazzi, D. Worldwide population genetic structure of the oriental fruit moth (Grapholita molesta), a globally invasive pest. BMC Ecol. 13, 12 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Torriani, M. V., Mazzi, D., Hein, S. & Dorn, S. Structured populations of the oriental fruit moth in an agricultural ecosystem. Mol. Ecol. 19, 2651–2660 (2010).CAS 
    PubMed 

    Google Scholar 
    Song, W. et al. Multiple refugia from penultimate glaciations in East Asia demonstrated by phylogeography and ecological modelling of an insect pest. BMC Evolut. Biol. 18, 152 (2018).
    Google Scholar 
    SuomMainen, E. in Chromosome Today Vol. 2 (eds. Darlington, C. D. & Lewis, K. R.) 122–138 (Plenum Press, 1969).Nguyen, P. et al. Neo-sex chromosomes and adaptive potential in tortricid pests. Proc. Natl Acad. Sci. USA 110, 6931–6936 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Fuková, I., Nguyen, P. & Marec, F. E. Codling moth cytogenetics: karyotype, chromosomal location of rDNA, and molecular differentiation of sex chromosomes. Genome 48, 1083–1092 (2005).PubMed 

    Google Scholar 
    Cao, L. J. et al. Local climate adaptation and gene flow in the native range of two co-occurring fruit moths with contrasting invasiveness. Mol. Ecol. 30, 4204–4219 (2021).CAS 
    PubMed 

    Google Scholar 
    Caprioli, M. et al. Clock gene variation is associated with breeding phenology and maybe under directional selection in the migratory barn swallow. PLoS ONE 7, 7 (2012).
    Google Scholar 
    Krabbenhoft, T. J. & Turner, T. F. clock gene evolution: seasonal timing, phylogenetic signal, or functional constraint? J. Heredity 105, 407–415 (2014).
    Google Scholar 
    Zhang, J. et al. Comparative transcriptomes analysis of the wing disc between two silkworm strains with different size of wings. PLoS ONE 12, e0179560 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Zhu, Q. S., Arakane, Y., Beeman, R. W., Kramer, K. J. & Muthukrishnan, S. Functional specialization among insect chitinase family genes revealed by RNA interference. Proc. Natl Acad. Sci. USA 105, 6650–6655 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chen, C., Yang, H., Tang, B., Yang, W.-J. & Jin, D.-C. Identification and functional analysis of chitinase 7 gene in white-backed planthopper, Sogatella furcifera. Comp. Biochem. Physiol. B-Biochem. Mol. Biol. 208, 19–28 (2017).PubMed 

    Google Scholar 
    Yang, X. et al. Characterization and functional analysis of chitinase family genes involved in nymph-adult transition of Sogatella furcifera. Insect Sci. 28, 901–916 (2021).CAS 
    PubMed 

    Google Scholar 
    Pesch, Y. Y., Riedel, D., Patil, K. R., Loch, G. & Behr, M. Chitinases and Imaginal disc growth factors organize the extracellular matrix formation at barrier tissues in insects. Sci. Rep. 6, 18340 (2016).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Charron, Y. et al. The serpin Spn5 is essential for wing expansion in Drosophila melanogaster. Int. J. Dev. Biol. 52, 933–942 (2008).CAS 
    PubMed 

    Google Scholar 
    Charlesworth, B., Campos, J. L. & Jackson, B. C. Faster-X evolution: theory and evidence from Drosophila. Mol. Ecol. 27, 3753–3771 (2018).CAS 
    PubMed 

    Google Scholar 
    Meisel, R. P. & Connallon, T. The faster-X effect: integrating theory and data. Trends Genet. 29, 537–544 (2013).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Sayres, M. A. W. Genetic diversity on the sex chromosomes. Genome Biol. Evol. 10, 1064–1078 (2018).
    Google Scholar 
    Ellegren, H. The different levels of genetic diversity in sex chromosomes and autosomes. Trends Genet. 25, 278–284 (2009).CAS 
    PubMed 

    Google Scholar 
    Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet. 17, 422–433 (2016).CAS 
    PubMed 

    Google Scholar 
    Pool, J. E. et al. Population genomics of sub-saharan Drosophila melanogaster: African diversity and non-african admixture. PLoS Genet. 8, e1003080–e1003080 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Sackton, T. B. et al. Positive selection drives faster-Z evolution in silkmoths. Evolution 68, 2331–2342 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Fraisse, C., Picard, M. A. L. & Vicoso, B. The deep conservation of the Lepidoptera Z chromosome suggests a non-canonical origin of the W. Nat. Commun. 8, https://doi.org/10.1038/s41467-017-01663-5 (2017).Sahara, K., Yoshido, A. & Traut, W. Sex chromosome evolution in moths and butterflies. Chromosome Res. 20, 83–94 (2012).CAS 
    PubMed 

    Google Scholar 
    Ma, C. et al. Mitochondrial genomes reveal the global phylogeography and dispersal routes of the migratory locust. Mol. Ecol. 21, 4344–4358 (2012).PubMed 

    Google Scholar 
    Zhang, B., Edwards, O., Kang, L. & Fuller, S. Russian wheat aphids (Diuraphis noxia) in China: native range expansion or recent introduction? Mol. Ecol. 21, 2130–2144 (2012).CAS 
    PubMed 

    Google Scholar 
    Provan, J. & Bennett, K. Phylogeographic insights into cryptic glacial refugia. Trends Ecol. Evol. 23, 564–571 (2008).PubMed 

    Google Scholar 
    Saino, N. et al. Polymorphism at the Clock gene predicts phenology of long-distance migration in birds. Mol. Ecol. 24, 1758–1773 (2015).CAS 
    PubMed 

    Google Scholar 
    Zhang, S. P., Xu, X. L., Wang, W. W., Yang, W. Y. & Liang, W. Clock gene is associated with individual variation in the activation of reproductive endocrine and behavior of Asian short toed lark. Sci. Rep. 7, 8 (2017).CAS 

    Google Scholar 
    Liedvogel, M., Szulkin, M., Knowles, S. C. L., Wood, M. J. & Sheldon, B. C. Phenotypic correlates of Clock gene variation in a wild blue tit population: evidence for a role in seasonal timing of reproduction. Mol. Ecol. 18, 2444–2456 (2009).PubMed 

    Google Scholar 
    Saino, N. et al. Migration phenology and breeding success are predicted by methylation of a photoperiodic gene in the barn swallow. Sci. Rep. 7, 10 (2017).
    Google Scholar 
    e Silva, O. A. B. N., Bernardi, D., Botton, M. & Garcia, M. S. Biological characteristics of Grapholita molesta (Lepidoptera: Tortricidae) induced to diapause in laboratory. J. Insect Sci. 14, 217 (2014).
    Google Scholar 
    Renfree, M. B. & Shaw, G. Diapause. Annu. Rev. Physiol. 62, 353–375 (2000).CAS 
    PubMed 

    Google Scholar 
    Ochocki, B. M. & Miller, T. E. X. Rapid evolution of dispersal ability makes biological invasions faster and more variable. Nat. Commun. 8, 8 (2017).
    Google Scholar 
    Ochocki, B. M., Saltz, J. B. & Miller, T. E. X. Demography-dispersal trait correlations modify the eco-evolutionary dynamics of range expansion. Am. Naturalist 195, 231–246 (2020).
    Google Scholar 
    Travis, J. M. J. & Dytham, C. Dispersal evolution during invasions. Evolut. Ecol. Res. 4, 1119–1129 (2002).
    Google Scholar 
    Phillips, B. L., Brown, G. P. & Shine, R. Life-history evolution in range-shifting populations. Ecology 91, 1617–1627 (2010).PubMed 

    Google Scholar 
    Shine, R., Brown, G. P. & Phillips, B. L. An evolutionary process that assembles phenotypes through space rather than through time. Proc. Natl Acad. Sci. USA 108, 5708–5711 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Perkins, T. A., Phillips, B. L., Baskett, M. L. & Hastings, A. Evolution of dispersal and life history interact to drive accelerating spread of an invasive species. Ecol. Lett. 16, 1079–1087 (2013).PubMed 

    Google Scholar 
    Phillips, B. L. & Perkins, T. A. Spatial sorting as the spatial analogue of natural selection. Theor. Ecol. 12, 155–163 (2019).
    Google Scholar 
    Angert, A. L., Bontrager, M. G. & Ågren, J. What do we really know about adaptation at range edges? Annu. Rev. Ecol., Evol. Syst. 51, 341–361 (2020).
    Google Scholar 
    Hoffmann, A. A. & Rieseberg, L. H. Revisiting the impact of inversions in evolution: From population genetic markers to drivers of adaptive shifts and speciation? Annu. Rev. Ecol. Evol. Syst. 39, 21–42 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Wellenreuther, M. & Bernatchez, L. Eco-evolutionary genomics of chromosomal inversions. Trends Ecol. Evol. 33, 427–440 (2018).PubMed 

    Google Scholar 
    Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vurture, G. W. et al. GenomeScope: Fast reference-free genome profiling from short reads. Bioinformatics (Oxford, England) 33, https://doi.org/10.1093/bioinformatics/btx153 (2017).Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptivek-mer weighting and repeat separation. Genome Res. 27, 722–736 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Walker, B. J. et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE 9, e112963 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Roach, M. J., Schmidt, S. A. & Borneman, A. R. Purge Haplotigs: allelic contig reassignment for third-gen diploid genome assemblies. BMC Bioinforma. 19, 460 (2018).CAS 

    Google Scholar 
    Neva, C. et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 3, 95–98 (2016).
    Google Scholar 
    Dudchenko et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science 356, 92–95 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Simao, F. A., Waterhouse, R. M., Ioannidis, P., Kriventseva, E. V. & Zdobnov, E. M. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31, 3210–3212 (2015).CAS 
    PubMed 

    Google Scholar 
    Cheng, T. et al. Genomic adaptation to polyphagy and insecticides in a major East Asian noctuid pest. Nat. Ecol. Evol. 1, 1747–1756 (2017).PubMed 

    Google Scholar 
    Wang, Y. et al. MCScanX: a toolkit for detection and evolutionary analysis of gene synteny and collinearity. Nucleic Acids Res. 40, e49 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Tarailo-Graovac, M. & Chen, N. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinforma. 25, unit 4.10 (2009).
    Google Scholar 
    Lowe, T. M. & Eddy, S. R. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 25, 955–964 (1997).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Lagesen, K. et al. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res. 35, 3100–3108 (2007).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cantarel, B. L. et al. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18, 188–196 (2008).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Korf, I. Gene finding in novel genomes. BMC Bioinforma. 5, 59 (2004).
    Google Scholar 
    Stanke, M. & Waack, S. Gene prediction with a hidden Markov model and a new intron submodel. Bioinformatics 19, ii215–ii225 (2003).PubMed 

    Google Scholar 
    Brian, J. H. et al. Improving the Arabidopsis genome annotation using maximal transcript alignment assemblies. Nucleic Acids Res. 31, 5654–5666 (2003).
    Google Scholar 
    Kim, D. et al. TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol. 14, R36 (2013).PubMed 
    PubMed Central 

    Google Scholar 
    Huerta-Cepas, J. et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol. Biol. Evol. 34, 2115–2122 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Huerta-Cepas, J. et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses. Nucleic Acids Res. 47, D309–D314 (2019).CAS 
    PubMed 

    Google Scholar 
    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).PubMed 
    PubMed Central 

    Google Scholar 
    McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Knaus, B. J. & Grünwald, N. J. vcfr: a package to manipulate and visualize variant call format data in R. Mol. Ecol. Resour. 17, 44–53 (2017).CAS 
    PubMed 

    Google Scholar 
    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. (Austin) 6, 80–92 (2012).CAS 

    Google Scholar 
    Zhang, C., Dong, S. S., Xu, J. Y., He, W. M. & Yang, T. L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786–1788 (2019).CAS 
    PubMed 

    Google Scholar 
    Gautier, M. & Vitalis, R. Inferring Population Histories Using Genome-Wide Allele Frequency Data. Mol. Biol. Evol. 30, 654–668 (2013).CAS 
    PubMed 

    Google Scholar 
    Terhorst, J., Kamm, J. A. & Song, Y. S. Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat. Genet. 49, 303–309 (2017).CAS 
    PubMed 

    Google Scholar 
    Keightley, P. D. et al. Estimation of the spontaneous mutation rate in Heliconius melpomene. Mol. Biol. Evol. 32, 239–243 (2015).CAS 
    PubMed 

    Google Scholar 
    Ahn, J. J., Yang, C. Y. & Jung, C. Model of Grapholita molesta spring emergence in pear orchards based on statistical information criteria. J. Asia-Pac. Entomol. 15, 589–593 (2012).
    Google Scholar 
    Amat, C., Bosch-Serra, D., Avilla, J. & Escudero Colomar, L. A. Different Population Phenologies of Grapholita molesta (Busck) in Two Hosts and Two Nearby Regions in the NE of Spain. Insects 12, https://doi.org/10.3390/insects12070612 (2021).Li, H. & Ralph, P. Local PCA shows how the effect of population structure differs along the genome. Genetics 211, 289–304 (2019).CAS 
    PubMed 

    Google Scholar 
    Todesco, M. et al. Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 584, 602–607 (2020).CAS 
    PubMed 

    Google Scholar 
    Yu, G., Wang, L.-G., Han, Y. & He, Q.-Y. clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16, 284–287 (2012).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wei, S. J. et al. Population genomic signatures of the oriental fruit moth related to the Pleistocene climates. Dryad Digital Repository. https://doi.org/10.5061/dryad.6wwpzgmzm (2021). More

  • in

    Settling moths are the vital component of pollination in Himalayan ecosystem of North-East India, pollen transfer network approach revealed

    Potts, S. G. et al. Global pollinator declines: Trends, impacts and drivers. Trends Ecol. Evol. 25, 345–353 (2010).PubMed 

    Google Scholar 
    Kearns, C. A., Inouye, D. W. & Waser, N. M. ENDANGERED MUTUALISMS: The conservation of plant-pollinator interactions. Annu. Rev. Ecol. Syst. 29, 83–112 (1998).
    Google Scholar 
    Ollerton, J., Winfree, R. & Tarrant, S. How many flowering plants are pollinated by animals?. Oikos 120, 321–326 (2011).
    Google Scholar 
    Labandeira, C. C. A paleobiologic perspective on plant–insect interactions. Curr. Opin. Plant Biol. 16, 414–421 (2013).PubMed 

    Google Scholar 
    Faegri, K. & Van Der Pijl, L. Principles of Pollination Ecology. (Elsevier Science, 2014).Bhutia, J. & Sharma, B. Diversity of Pollinators/ Visitors in Namchi, South Sikkim, India. 487–498 (2020).Torres-Vanegas, F. et al. Tropical deforestation reduces plant mating quality by shifting the functional composition of pollinator communities. J. Ecol. 109, 1730–1746 (2021).
    Google Scholar 
    Macgregor, C. J., Pocock, M. J. O., Fox, R. & Evans, D. M. Pollination by nocturnal Lepidoptera, and the effects of light pollution: A review. Ecol. Entomol. 40, 187–198 (2015).PubMed 

    Google Scholar 
    Macgregor, C. J., Williams, J. H., Bell, J. R. & Thomas, C. D. Moth biomass increases and decreases over 50 years in Britain. Nat. Ecol. Evol. 3, 1645–1649 (2019).PubMed 

    Google Scholar 
    Chamorro, S., Heleno, R., Olesen, J. M., McMullen, C. K. & Traveset, A. Pollination patterns and plant breeding systems in the Galápagos: A review. Ann. Bot. 110, 1489–1501 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Ramirez, N. Pollination specialization and time of pollination on a tropical Venezuelan plain: Variations in time and space. Bot. J. Linn. Soc. 145, 1–16 (2004).
    Google Scholar 
    Walton, R. E., Sayer, C. D., Bennion, H. & Axmacher, J. C. Nocturnal pollinators strongly contribute to pollen transport of wild flowers in an agricultural landscape. Biol. Lett. 16, 20190877 (2020).PubMed 
    PubMed Central 

    Google Scholar 
    Young, H. J. Diurnal and nocturnal pollination of Silene alba (Caryophyllaceae). Am. J. Bot. 89, 433–440 (2002).PubMed 

    Google Scholar 
    Maeda, M., Maguchi, S., Nakamaru, Y., Takagi, D. & Fukuda, S. Prospective study of pollen dispersal prediction and identifying the usefulness of different parameters. Nihon Jibiinkoka Gakkai Kaiho 109, 455–460 (2006).PubMed 

    Google Scholar 
    Bertin, R. I. & Willson, M. F. Effectiveness of diurnal and nocturnal pollination of two milkweeds. Can. J. Bot. 58, 1744–1746 (1980).
    Google Scholar 
    Morse, D. H. & Fritz, R. S. Contributions of diurnal and nocturnal insects to the pollination of common milkweed (Asclepias syriaca L.) in a pollen-limited system. Oecologia 60, 190–197 (1983).Jennersten, O. & Morse, D. H. The quality of pollination by diurnal and nocturnal insects visiting common milkweed Asclepias syriaca. Am. Midl. Nat. 125, 18 (1991).
    Google Scholar 
    Miyake, T. & Yahara, T. Why does the flower of Lonicera japonica open at dusk?. Can. J. Bot. 76, 1806–1811 (1998).
    Google Scholar 
    Atwater, M. M. Diversity and nectar hosts of flower-settling moths within a Florida sandhill ecosystem. J. Nat. Hist. 47, 2719–2734 (2013).
    Google Scholar 
    Grant, V. & Grant, K. A. Hawkmoth pollination of Mirabilis longiflora (Nyctaginaceae). Proc. Natl. Acad. Sci. 80, 1298–1299 (1983).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Willmott, A. P. & Burquez, A. The pollination of Merremia palmeri (Convolvulaceae): Can Hawk moths be trusted?. Am. J. Bot. 83, 1050 (1996).
    Google Scholar 
    Wasserthal, L. T. The Pollinators of the Malagasy Star Orchids Angraecum sesquipedale, A. sororium and A. compactum and the Evolution of Extremely Long Spurs by Pollinator Shift. Bot. Acta 110, 343–359 (1997).Miyake, T., Yamaoka, R. & Yahara, T. Floral scents of hawkmoth-pollinated flowers in Japan. J. Plant Res. 111, 199–205 (1998).CAS 

    Google Scholar 
    Luyt, R. & Johnson, S. D. Hawkmoth pollination of the African epiphytic orchid Mystacidium venosum, with special reference to flower and pollen longevity. Plant Syst. Evol. 228, 49–62 (2001).
    Google Scholar 
    Rust, R. W., Vaissire, B. E. & Westrich, P. Pollinator biodiversity and floral resource use in Ecballium elaterium (Cucurbitaceae), a Mediterranean endemic. Apidologie 34, 29–42 (2003).
    Google Scholar 
    Jürgens, A., Witt, T. & Gottsberger, G. Flower scent composition in Dianthus and Saponaria species (Caryophyllaceae) and its relevance for pollination biology and taxonomy. Biochem. Syst. Ecol. 31, 345–357 (2003).
    Google Scholar 
    Oliveira, P. E., Gibbs, P. E. & Barbosa, A. A. Moth pollination of woody species in the Cerrados of Central Brazil: A case of so much owed to so few?. Plant Syst. Evol. 245, 41–54 (2004).
    Google Scholar 
    Morimoto, Y., Gikungu, M. & Maundu, P. Pollinators of the bottle gourd (Lagenaria siceraria) observed in Kenya. Int. J. Trop. Insect Sci. 24, (2004).Willmer, P. Pollination and floral ecology. (Princeton University Press, 2011). https://doi.org/10.1515/9781400838943.Mitchell, T. C., Dötterl, S. & Schaefer, H. Hawk-moth pollination and elaborate petals in Cucurbitaceae: The case of the Caribbean endemic Linnaeosicyos amara. Flora Morphol. Distrib. Funct. Ecol. Plants 216, 50–56 (2015).Chakraborty, P., Smith, B. & Basu, P. Pollen transport in the dark: Hawkmoths prefer non crop plants to crop plants in an agricultural landscape. Proc. Zool. Soc. 71, 299–303 (2018).
    Google Scholar 
    Proctor, M., Yeo, P. & Lack, A. The natural history of pollination. (Timber Press, 1996).Funamoto, D. & Sugiura, S. Settling moths as potential pollinators of Uncaria rhynchophylla (Rubiaceae). Eur. J. Entomol. 113, 497–501 (2016).
    Google Scholar 
    Funamoto, D. & Sugiura, S. Relative importance of diurnal and nocturnal pollinators for reproduction in the early spring flowering shrub Stachyurus praecox (Stachyuraceae). Plant Species Biol. 36, 94–101 (2021).
    Google Scholar 
    Buxton, M. N., Anderson, B. J. & Lord, J. M. The secret service—analysis of the available knowledge on moths as pollinators in New Zealand / Te pepe huna—he tātarihaka o te mātauraka rakahau ki kā pepe hai whakaaiai ki Aotearoa me Te Waipounamu. N. Z. J. Ecol. 42, 1–9 (2018).
    Google Scholar 
    Hahn, M. & Brühl, C. A. The secret pollinators: An overview of moth pollination with a focus on Europe and North America. Arthropod-Plant Interact. 10, 21–28 (2016).
    Google Scholar 
    Makholela, T. & Manning, J. C. First report of moth pollination in Struthiola ciliata (Thymelaeaceae) in southern Africa. South Afr. J. Bot. 72, 597–603 (2006).CAS 

    Google Scholar 
    Okamoto, T., Kawakita, A. & Kato, M. Floral adaptations to nocturnal moth pollination in Diplomorpha (Thymelaeaceae). Plant Species Biol. 23, 192–201 (2008).
    Google Scholar 
    Paul, M. Impact of urbanization on moth (Insecta: Lepidoptera: Heterocera) diversity across different urban landscapes of Delhi India. Acta Ecol. Sin. 41, 204–209 (2021).
    Google Scholar 
    Subhakar, G. & Sreedevi, K. Nocturnal insect pollinator diversity in bottle gourd and ridge gourd in southern Andhra Pradesh. Curr. Biot. 9, 137–144 (2015).
    Google Scholar 
    Chakraborty, P., Chatterjee, S., Smith, B. M. & Basu, P. Seasonal dynamics of plant pollinator networks in agricultural landscapes: How important is connector species identity in the network?. Oecologia 196, 825–837 (2021).ADS 
    PubMed 

    Google Scholar 
    Chakraborty, P., Mukherjee, P. A., Laha, S. & Gupta, S. K. The influence of floral traits on insect foraging behaviour on medicinal plants in an urban garden of eastern India. J. Trop. Ecol. 37, 200–207 (2021).CAS 

    Google Scholar 
    King, C., Ballantyne, G. & Willmer, P. G. Why flower visitation is a poor proxy for pollination: Measuring single-visit pollen deposition, with implications for pollination networks and conservation. Methods Ecol. Evol. 4, 811–818 (2013).
    Google Scholar 
    Devoto, M., Bailey, S., Craze, P. & Memmott, J. Understanding and planning ecological restoration of plant–pollinator networks. Ecol. Lett. 15, 319–328 (2012).PubMed 

    Google Scholar 
    Saunders, M. E. Insect pollinators collect pollen from wind-pollinated plants: Implications for pollination ecology and sustainable agriculture. Insect Conserv. Divers. 11, 13–31 (2018).
    Google Scholar 
    Ssymank, A., Kearns, C. A., Pape, T. & Thompson, F. C. Pollinating Flies (Diptera): A major contribution to plant diversity and agricultural production. Biodiversity 9, 86–89 (2008).
    Google Scholar 
    Rader, R. et al. Non-bee insects are important contributors to global crop pollination. Proc. Natl. Acad. Sci. 113, 146–151 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Garibaldi, L. A. et al. Wild pollinators enhance fruit set of crops regardless of honey bee abundance. Science 339, 1608–1611 (2013).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Gong, Y.-B. et al. Wind or insect pollination? Ambophily in a subtropical gymnosperm Gnetum parvifolium (Gnetales): Ambophily in Gnetum. Plant Species Biol. 31, 272–279 (2016).
    Google Scholar 
    Niklas, K. J. A Biophysical Perspective on the Pollination Biology of Ephedra nevadensis and E. trifurca. Bot. Rev. 81, 28–41 (2015).Kato, M., Inoue, T. & Nagamitsu, T. Pollination biology of Gnetum (Gnetaceae) in a LOWLAND MIXED DIPTEROCARP forest in Sarawak. Am. J. Bot. 82, 862–868 (1995).
    Google Scholar 
    Celedón-Neghme, C., Santamaría, L. & González-Teuber, M. The role of pollination drops in animal pollination in the Mediterranean gymnosperm Ephedra fragilis (Gnetales). Plant Ecol. 217, 1545–1552 (2016).
    Google Scholar 
    Costa, A. C. G. & Machado, I. C. Flowering dynamics and pollination system of the sedge Rhynchospora ciliata (Vahl) Kükenth (Cyperaceae): does ambophily enhance its reproductive success?: Ambophily in Rhynchospora ciliata. Plant Biol. 14, 881–887 (2012).CAS 
    PubMed 

    Google Scholar 
    Huang, L. et al. Beta diversity partitioning and drivers of variations in fish assemblages in a headwater stream: Lijiang River China. Water 11, 680 (2019).CAS 

    Google Scholar 
    Schneider, D., Wink, M., Sporer, F. & Lounibos, P. Cycads: their evolution, toxins, herbivores and insect pollinators. Naturwissenschaften 89, 281–294 (2002).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wilson, G. W. Insect Pollination in the Cycad Genus Bowenia Hook, ex Hook. f. (Stangeriaceae)1. Biotropica 34, 438–441 (2002).Terry, L. I. et al. Pollination of Australian Macrozamia cycads (Zamiaceae): effectiveness and behavior of specialist vectors in a dependent mutualism. Am. J. Bot. 92, 931–940 (2005).PubMed 

    Google Scholar 
    Intachat, J., Holloway, J. D. & Staines, H. Effects of weather and phenology on the abundance and diversity of geometroid moths in a natural Malaysian tropical rain forest. J. Trop. Ecol. 17, 411–429 (2001).
    Google Scholar 
    Shaheen, H., Ullah, Z., Khan, S. M. & Harper, D. M. Species composition and community structure of western Himalayan moist temperate forests in Kashmir. For. Ecol. Manag. 278, 138–145 (2012).
    Google Scholar 
    Shaheen, H., Mallik, N. M. & Dar, M. E. U. I. Species composition and community structure of subtropical forest stands in western himalayan foothills of kashmir. Pak. J. Bot. 47, 2151–2160 (2015).CAS 

    Google Scholar 
    Bhutia, Y., Gudasalamani, R., Ganesan, R. & Saha, S. Assessing forest structure and composition along the altitudinal gradient in the State of Sikkim, Eastern Himalayas India. Forests 10, 633 (2019).
    Google Scholar 
    Dar, J. A. & Sundarapandian, S. Variation of biomass and carbon pools with forest type in temperate forests of Kashmir Himalaya India. Environ. Monit. Assess. 187, 55 (2015).PubMed 

    Google Scholar 
    Kandel, P. et al. Plant diversity of the Kangchenjunga Landscape, Eastern Himalayas. Plant Divers. 41, 153–165 (2019).PubMed 
    PubMed Central 

    Google Scholar 
    Leonhardt, S. D. & Blüthgen, N. A sticky affair: Resin collection by bornean stingless bees: resin collection by stingless bees. Biotropica 41, 730–736 (2009).
    Google Scholar 
    Nyeko, P., Edwards-Jones, G. & Day, R. K. Honeybee, Apis mellifera (Hymenoptera: Apidae), leaf damage on Alnus species in Uganda: A blessing or curse in agroforestry?. Bull. Entomol. Res. 92, 405–412 (2002).CAS 
    PubMed 

    Google Scholar 
    Koch, H., Corcoran, C. & Jonker, M. Honeydew collecting in malagasy stingless bees (Hymenoptera: Apidae: Meliponini) and observations on competition with invasive ants. Afr. Entomol. 19, 36–41 (2011).
    Google Scholar 
    Santas, L. A. Insects producing honeydew exploited by bees in Greece. Apidologie 14, 93–103 (1983).
    Google Scholar 
    Banza, P., Belo, A. D. F. & Evans, D. M. The structure and robustness of nocturnal Lepidopteran pollen-transfer networks in a Biodiversity Hotspot. Insect Conserv. Divers. 8, 538–546 (2015).
    Google Scholar 
    Walton, R. E., Sayer, C. D., Bennion, H. & Axmacher, J. C. Improving the pollinator pantry: Restoration and management of open farmland ponds enhances the complexity of plant-pollinator networks. Agric. Ecosyst. Environ. 320, 107611 (2021).Dormann, C. F. et al. bipartite: Visualising Bipartite Networks and Calculating Some (Ecological) Indices. (2021).Karmawati, E. & Tobing, S. L. Laboratory biology of Achaea janata L. castor large semi-loopers. Ind. Crops Res. J. 1, 37–42 (1988).
    Google Scholar 
    Labouche, A. & Bernasconi, G. Cost limitation through constrained oviposition site in a plant-pollinator/seed predator mutualism. Funct. Ecol. 27, 509–521 (2013).
    Google Scholar 
    Ramakrishna & Alfred, J. R. B. Faunal resources of India. (Zoological Survey of India, 2007).Lees, D. C. & Zilli, A. Moths: Their Biology, Diversity and Evolution | NHBS Field Guides & Natural History. (London Natural History Museum, 2020).Holloway, J. D. Moths of Borneo. (Malayan Nature Journal, 2001).Plant diversity in the Himalaya hotspot region: a volume to celebrate the completion of university service of Dr. Abhaya Prasad Das. (Bishen Singh Mahendra Pal Singh, 2018).Hampson, G. F. The Fauna of British India, including Ceylon and Burma. vol. 1 1–560 (Taylor and Francis, 1892).Hampson, G. F. The Fauna of British India, including Ceylon and Burma. vol. 2 1–640 (Taylor and Francis, 1894).Hampson, G. F. The Fauna of British India, including Ceylon and Burma. vol. 3 1–582 (Taylor and Francis, 1895).Hampson, G. F. The Fauna of British India, including Ceylon and Burma. vol. 4 1–632 (Taylor and Francis, 1896).Kirti, J. S. & Singh, N. Arctiid moths of India. (Nature Books India, 2015).Kirti, J. S. & Singh, N. Arctiid moths of India. vol. 2 (Nature Books India, 2016).Moths of India. https://www.mothsofindia.org/.iNaturalist. iNaturalist. iNaturalist https://www.inaturalist.org/users/sign_in.Nieukerken, E. J. V. et al. Order Lepidoptera Linnaeus, 1758. In : Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148, 212–221 (2011).PalDat. https://www.paldat.org/.Global Pollen Project. Global Pollen Project. https://globalpollenproject.org/.Agashe, S. N. & Caulton, E. Pollen and spores: applications with special emphasis on aerobiology and allergy. (Science Publishers, 2009).Bhattacharya, K. et al. A textbook of palynology. (2014).Stephen, A. Pollen—A microscopic wonder of plant kingdom. Int. J. Adv. Res. Biol. Sci. 1, 45–62 (2014).
    Google Scholar 
    Halbritter, H. et al. Illustrated Pollen Terminology. (Springer International Publishing, 2018). doi:https://doi.org/10.1007/978-3-319-71365-6.Dunne, J. A., Williams, R. J. & Martinez, N. D. Food-web structure and network theory: The role of connectance and size. Proc. Natl. Acad. Sci. 99, 12917–12922 (2002).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Rodriguez-Girones, M. A. & Santamaria, L. A new algorithm to calculate the nestedness temperature of presence-absence matrices. J. Biogeogr. 33, 924–935 (2006).
    Google Scholar 
    Blüthgen, N., Menzel, F. & Blüthgen, N. Measuring specialization in species interaction networks. BMC Ecol. 6, 9 (2006).PubMed 
    PubMed Central 

    Google Scholar 
    Tylianakis, J. M., Tscharntke, T. & Lewis, O. T. Habitat modification alters the structure of tropical host–parasitoid food webs. Nature 445, 202–205 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Blüthgen, N., Menzel, F., Hovestadt, T., Fiala, B. & Blüthgen, N. Specialization, constraints, and conflicting interests in mutualistic networks. Curr. Biol. 17, 341–346 (2007).PubMed 

    Google Scholar 
    Bersier, L.-F., Banašek-Richter, C. & Cattin, M.-F. Quantitative descriptors of food-web matrices. Ecology 83, 2394–2407 (2002).MATH 

    Google Scholar 
    Poisot, T., Lepennetier, G., Martinez, E., Ramsayer, J. & Hochberg, M. E. Resource availability affects the structure of a natural bacteria–bacteriophage community. Biol. Lett. 7, 201–204 (2011).PubMed 

    Google Scholar  More

  • in

    Local adaptation to climate anomalies relates to species phylogeny

    Verdura, J. et al. Biodiversity loss in a Mediterranean ecosystem due to an extreme warming event unveils the role of an engineering gorgonian species. Sci. Rep. 9, 1–11 (2019).CAS 

    Google Scholar 
    Pandori, L. L. M. & Sorte, C. J. B. The weakest link: sensitivity to climate extremes across life stages of marine invertebrates. Oikos 128, 621–629 (2019).
    Google Scholar 
    Palmer, G. et al. Climate change, climatic variation and extreme biological responses. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160144 (2017).Altwegg, R., Visser, V., Bailey, L. D. & Erni, B. Learning from single extreme events. Philos. Trans. R. Soc. B Biol. Sci. 372, 20160141 (2017).
    Google Scholar 
    McDermott Long, O. et al. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk? J. Anim. Ecol. 86, 108–116 (2017).PubMed 

    Google Scholar 
    Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate‐change experiments: events, not trends. Front. Ecol. Environ. 5, 365–374 (2007).
    Google Scholar 
    Suggitt, A. J. et al. Habitat associations of species show consistent but weak responses to climate. Biol. Lett. 8, 590–593 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Trisos, C. H., Merow, C. & Pigot, A. L. The projected timing of abrupt ecological disruption from climate change. Nature 580, 496–501 (2020).CAS 
    PubMed 

    Google Scholar 
    Valladares, F. et al. The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17, 1351–1364 (2014).PubMed 

    Google Scholar 
    Bush, A. et al. Incorporating evolutionary adaptation in species distribution modelling reduces projected vulnerability to climate change. Ecol. Lett. 19, 1468–1478 (2016).PubMed 

    Google Scholar 
    Stephens, P. A. et al. Consistent response of bird populations to climate change on two continents. Science 352, 84–87 (2016).CAS 
    PubMed 

    Google Scholar 
    Kerr, J. T. et al. Climate change impacts on bumblebees converge across continents. Science 349, 177–180 (2015).CAS 
    PubMed 

    Google Scholar 
    Roy, D. B. et al. Similarities in butterfly emergence dates among populations suggest local adaptation to climate. Glob. Chang. Biol. 21, 3313–3322 (2015).PubMed 
    PubMed Central 

    Google Scholar 
    Titeux, N. et al. The need for large-scale distribution data to estimate regional changes in species richness under future climate change. Divers. Distrib. 23, 1393–1407 (2017).
    Google Scholar 
    Haeler, E., Fiedler, K. & Grill, A. What prolongs a butterfly’s life?: trade-offs between dormancy, fecundity and body size. PLoS One 9, e111955 (2014).PubMed 
    PubMed Central 

    Google Scholar 
    Gonzalez-Suarez, M., Gomez, A. & Revilla, E. Which intrinsic traits predict vulnerability to extinction depends on the actual threatening processes. Ecosphere 4, 1–16 (2013).
    Google Scholar 
    Pacifici, M. et al. Species’ traits influenced their response to recent climate change. Nat. Clim. Chang. 7, 205–208 (2017).
    Google Scholar 
    Kingsolver, J. G. & Watt, W. B. Thermoregulatory strategies in Colias butterflies: thermal stress and the limits to adaptation in temporally varying environments (Colorado). Am. Nat. 121, 32–55 (1983).
    Google Scholar 
    MacLean, H. J., Higgins, J. K., Buckley, L. B. & Kingsolver, J. G. Morphological and physiological determinants of local adaptation to climate in Rocky Mountain butterflies. Conserv. Physiol. 4, 1 (2016).Kingsolver, J. G. & Wiernasz, D. C. Seasonal polyphenism in wing-melanin pattern and thermoregulatory adaptation in Pieris butterflies. Am. Nat. 137, 816–830 (1991).
    Google Scholar 
    Herrando, S. et al. Contrasting impacts of precipitation on Mediterranean birds and butterflies. Sci. Rep. 9, 1–7 (2019).CAS 

    Google Scholar 
    Thomas, J. A. Monitoring change in the abundance and distribution of insects using butterflies and other indicator groups. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 360, 339–357 (2005).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Roy, D. B., Rothery, P., Moss, D., Pollard, E. & Thomas, J. A. Butterfly numbers and weather: predicting historical trends in abundance and the future effects of climate change. J. Anim. Ecol. 70, 201–217 (2008).
    Google Scholar 
    Pöyry, J., Luoto, M., Heikkinen, R. K., Kuussaari, M. & Saarinen, K. Species traits explain recent range shifts of Finnish butterflies. Glob. Chang. Biol. 15, 732–743 (2009).
    Google Scholar 
    Devictor, V. et al. Differences in the climatic debts of birds and butterflies at a continental scale. Nat. Clim. Chang. 2, 121–124 (2012).
    Google Scholar 
    Krauss, J. et al. Habitat fragmentation causes immediate and time-delayed biodiversity loss at different trophic levels. Ecol. Lett. 13, 597–605 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Eskildsen, A. et al. Ecological specialization matters: long-term trends in butterfly species richness and assemblage composition depend on multiple functional traits. Divers. Distrib. 21, 792–802 (2015).
    Google Scholar 
    Pollard, E. A method for assessing changes in the abundance of butterflies. Biol. Conserv. 12, 115–134 (1977).
    Google Scholar 
    Schmucki, R. et al. A regionally informed abundance index for supporting integrative analyses across butterfly monitoring schemes. J. Appl. Ecol. 53, 501–510 (2016).
    Google Scholar 
    Pollard, E., Lakhani, K. H. & Rothery, P. The detection of density-dependence from a series of annual censuses. Ecology 68, 2046–2055 (1987).CAS 
    PubMed 

    Google Scholar 
    Dooley, C. A., Bonsall, M. B., Brereton, T. & Oliver, T. Spatial variation in the magnitude and functional form of density-dependent processes on the large skipper butterfly Ochlodes sylvanus. Ecol. Entomol. 38, 608–616 (2013).
    Google Scholar 
    Rothery, P., Newton, I., Dale, L. & Wesolowski, T. Testing for density dependence allowing for weather effects. Oecologia 112, 518–523 (1997).PubMed 

    Google Scholar 
    Oliver, T. H. et al. Interacting effects of climate change and habitat fragmentation on drought-sensitive butterflies. Nat. Clim. Chang. 5, 941–946 (2015).
    Google Scholar 
    Stefanescu, C., Carnicer, J. & Peñuelas, J. Determinants of species richness in generalist and specialist Mediterranean butterflies: the negative synergistic forces of climate and habitat change. Ecography 34, 353–363 (2011).
    Google Scholar 
    Essens, T., van Langevelde, F., Vos, R. A., Van Swaay, C. A. M. & WallisDeVries, M. F. Ecological determinants of butterfly vulnerability across the European continent. J. Insect Conserv. 21, 439–450 (2017).
    Google Scholar 
    Tolman, T. & Lewington, R. Butterflies of Europe (Harper Collins, 2008).Dapporto, L. et al. Integrating three comprehensive data sets shows that mitochondrial DNA variation is linked to species traits and paleogeographic events in European butterflies. Mol. Ecol. Resour. 19, 1623–1636 (2019).CAS 
    PubMed 

    Google Scholar 
    Hewitt, G. M. Post-glacial re-colonization of European biota. Biol. J. Linn. Soc. Lond. 68, 87–112 (2008).
    Google Scholar 
    Dincă, V. et al. High resolution DNA barcode library for European butterflies reveals continental patterns of mitochondrial genetic diversity. Commun. Biol. 4, 1–11 (2021).
    Google Scholar 
    Fei, S. et al. Divergence of species responses to climate change. Sci. Adv. 3, e1603055 (2017).PubMed 
    PubMed Central 

    Google Scholar 
    Macgregor, C. J. et al. Climate-induced phenology shifts linked to range expansions in species with multiple reproductive cycles per year. Nat. Commun. 10, 1–10 (2019).CAS 

    Google Scholar 
    Dapporto, L. & Dennis, R. L. H. The generalist–specialist continuum: testing predictions for distribution and trends in British butterflies. Biol. Conserv. 157, 229–236 (2013).
    Google Scholar 
    MacLean, S. A. & Beissinger, S. R. Species’ traits as predictors of range shifts under contemporary climate change: a review and meta-analysis. Glob. Chang. Biol. 23, 4094–4105 (2017).PubMed 

    Google Scholar 
    Morlon, H. et al. Spatial patterns of phylogenetic diversity. Ecol. Lett. 14, 141–149 (2011).PubMed 
    PubMed Central 

    Google Scholar 
    Kraft, N. J. B. et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 29, 592–599 (2015).
    Google Scholar 
    Razgour, O. et al. Considering adaptive genetic variation in climate change vulnerability assessment reduces species range loss projections. Proc. Natl Acad. Sci. USA 116, 10418–10423 (2019).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vanden Broeck, A. et al. Gene flow and effective population sizes of the butterfly Maculinea alcon in a highly fragmented, anthropogenic landscape. Biol. Conserv. 209, 89–97 (2017).
    Google Scholar 
    Haldane, J. B. S. Theoretical genetics of autopolyploids. J. Genet. 22, 359–372 (1930).
    Google Scholar 
    Tigano, A. & Friesen, V. L. Genomics of local adaptation with gene flow. Mol. Ecol. 25, 2144–2164 (2016).PubMed 

    Google Scholar 
    Pfeifer, S. P. et al. The evolutionary history of Nebraska deer mice: local adaptation in the face of strong gene flow. Mol. Biol. Evol. 35, 792–806 (2018).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Reusch, T. B. H. & Wood, T. E. Molecular ecology of global change. Mol. Ecol. 16, 3973–3992 (2007).CAS 
    PubMed 

    Google Scholar 
    DeLong, J. P. & Gibert, J. P. Gillespie eco-evolutionary models (GEMs) reveal the role of heritable trait variation in eco-evolutionary dynamics. Ecol. Evol. 6, 935–945 (2016).PubMed 
    PubMed Central 

    Google Scholar 
    Atkins, K. E. & Travis, J. M. J. Local adaptation and the evolution of species’ ranges under climate change. J. Theor. Biol. 266, 449–457 (2010).CAS 
    PubMed 

    Google Scholar 
    Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: the rear edge matters. Ecol. Lett. 8, 461–467 (2005).PubMed 

    Google Scholar 
    Mills, S. C. et al. European butterfly populations vary in sensitivity to weather across their geographical ranges. Glob. Ecol. Biogeogr. 26, 1374–1385 (2017).
    Google Scholar 
    Van Dyck, H., Bonte, D., Puls, R., Gotthard, K. & Maes, D. The lost generation hypothesis: could climate change drive ectotherms into a developmental trap? Oikos 124, 54–61 (2015).
    Google Scholar 
    Hu, G. et al. Environmental drivers of annual population fluctuations in a trans-Saharan insect migrant. Proc. Natl Acad. Sci. USA 118, 2102762118 (2021).
    Google Scholar 
    Merlin, C. & Liedvogel, M. The genetics and epigenetics of animal migration and orientation: birds, butterflies and beyond. J. Exp. Biol. 222, jeb191890 (2019).Wiemers, M. et al. An updated checklist of the European butterflies (Lepidoptera, Papilionoideae). Zookeys 2018, 9–45 (2018).
    Google Scholar 
    Dennis, E. B., Freeman, S. N., Brereton, T. & Roy, D. B. Indexing butterfly abundance whilst accounting for missing counts and variability in seasonal pattern. Methods Ecol. Evol. 4, 637–645 (2013).
    Google Scholar 
    Radchuk, V., Turlure, C. & Schtickzelle, N. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies. J. Anim. Ecol. 82, 275–285 (2013).PubMed 

    Google Scholar 
    Metzger, M. J. et al. A high-resolution bioclimate map of the world: a unifying framework for global biodiversity research and monitoring. Glob. Ecol. Biogeogr. 22, 630–638 (2013).
    Google Scholar 
    Carnicer, J. et al. A unified framework for diversity gradients: the adaptive trait continuum. Glob. Ecol. Biogeogr. 22, 6–18 (2013).
    Google Scholar 
    Klok, E. J. & Klein Tank, A. M. G. Updated and extended European dataset of daily climate observations. Int. J. Climatol. 29, 1182–1191 (2009).
    Google Scholar 
    Haylock, M. R. et al. A European daily high-resolution gridded data set of surface temperature and precipitation for 1950-2006. J. Geophys. Res. Atmos. 113, D20119 (2008).
    Google Scholar 
    Marsh, T. J. The UK drought of 2003: a hydrological review. Weather 59, 224–230 (2004).
    Google Scholar 
    Voyer, A. G. & Garamszegi, L. Z. An introduction to phylogenetic path analysis. in Modern Phylogenetic Comparative Methods and their Application in Evolutionary Biology (eds Garamszegi, L. Z. & Mundry, R.) 201–229 (Springer Berlin Heidelberg, 2014).Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).CAS 
    PubMed 

    Google Scholar 
    Pöyry, J. et al. The effects of soil eutrophication propagate to higher trophic levels. Glob. Ecol. Biogeogr. 26, 18–30 (2017).
    Google Scholar 
    Münkemüller, T. et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 3, 743–756 (2012).
    Google Scholar 
    Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Softw. 67, 1–48 (2015).
    Google Scholar 
    Bartoń, K. MuMIn: Multi-model inference. R package version 1.10.5. (2014).Revell, L. J. phytools: An R package for phylogenetic comparative biology (and other things). MEE. 3, 217–223 (2012).
    Google Scholar 
    Briere, J. F., Pracros, P., Le Roux, A. Y. & Pierre, J. S. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28, 22–29 (1999).
    Google Scholar 
    Shi, P. & Ge, F. A comparison of different thermal performance functions describing temperature-dependent development rates. J. Therm. Biol. 35, 225–231 (2010).
    Google Scholar 
    Angilletta, M. J., Wilson, R. S., Navas, C. A. & James, R. S. Tradeoffs and the evolution of thermal reaction norms. Trends Ecol. Evol. 18, 234–240 (2003).
    Google Scholar 
    Zeuss, D., Brandl, R., Brändle, M., Rahbek, C. & Brunzel, S. Global warming favours light-coloured insects in Europe. Nat. Commun. 5, 1–9 (2014).
    Google Scholar  More

  • in

    Forest fragmentation impacts the seasonality of Amazonian evergreen canopies

    Peñuelas, J., Rutishauser, T. & Filella, I. Ecology. Phenology feedbacks on climate change. Science 324, 887–888 (2009).PubMed 

    Google Scholar 
    Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Richardson, A. D. et al. Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agric. Meteorol. 169, 156–173 (2013).
    Google Scholar 
    Wu, J. et al. Leaf development and demography explain photosynthetic seasonality in Amazon evergreen forests. Science 351, 972–976 (2016).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wright, J. S. et al. Rainforest-initiated wet season onset over the southern Amazon. Proc. Natl. Acad. Sci. USA 114, 8481–8486 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl. Acad. Sci. USA 111, 16041–16046 (2014).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Girardin, C. A. J. et al. Seasonal trends of Amazonian rainforest phenology, net primary productivity, and carbon allocation. Glob. Biogeochem. Cycles 30, 700–715 (2016).ADS 
    CAS 

    Google Scholar 
    Maeda, E. E. et al. Consistency of vegetation index seasonality across the Amazon rainforest. Int. J. Appl. Earth Obs. Geoinf. 52, 42–53 (2016).ADS 

    Google Scholar 
    Saleska, S. R. et al. Dry-season greening of Amazon forests. Nature 531, E4–E5 (2016). vol.CAS 
    PubMed 

    Google Scholar 
    Chen, X. et al. Vapor pressure deficit and sunlight explain seasonality of leaf phenology and photosynthesis across amazonian evergreen broadleaved forest. Global Biogeochem. Cycles https://doi.org/10.13140/2.1.5019.5520 (2021).Hashimoto, H. et al. New generation geostationary satellite observations support seasonality in greenness of the Amazon evergreen forests. Nat. Commun. 12, 684 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Brando, P. M. et al. Seasonal and interannual variability of climate and vegetation indices across the Amazon. Proc. Natl. Acad. Sci. USA 107, 14685–14690 (2010).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, J. et al. Seasonality of Central Amazon forest leaf flush using tower-mounted RGB camera. In AGU Fall Meeting https://doi.org/10.13140/2.1.5019.5520 (2014).Huete, A. R. et al. Amazon rainforests green-up with sunlight in dry season. Geophys. Res. Lett. https://doi.org/10.1029/2005GL025583 (2006).Restrepo-Coupe, N. et al. What drives the seasonality of photosynthesis across the Amazon basin? A cross-site analysis of eddy flux tower measurements from the Brasil flux network. Agric. Meteorol. 182-183, 128–144 (2013).
    Google Scholar 
    Manoli, G., Ivanov, V. Y. & Fatichi, S. Dry-season greening and water stress in Amazonia: the role of modeling leaf phenology. J. Geophys. Res. Biogeosci. 123, 1909–1926 (2018).
    Google Scholar 
    Guan, K. et al. Photosynthetic seasonality of global tropical forests constrained by hydroclimate. Nat. Geosci. 8, 284–289 (2015).ADS 
    CAS 

    Google Scholar 
    Lopes, A. P. et al. Leaf flush drives dry season green-up of the Central Amazon. Remote Sens. Environ. 182, 90–98 (2016).ADS 

    Google Scholar 
    Smith, M. N. et al. Seasonal and drought-related changes in leaf area profiles depend on height and light environment in an Amazon forest. N. Phytol. 222, 1284–1297 (2019).
    Google Scholar 
    Mitchell Aide, T. Herbivory as a selective agent on the timing of leaf production in a tropical understory community. Nature 336, 574–575 (1988).
    Google Scholar 
    Myneni, R. B. et al. Large seasonal swings in leaf area of Amazon rainforests. Proc. Natl. Acad. Sci. USA 104, 4820–4823 (2007).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Wu, J. et al. Partitioning controls on Amazon forest photosynthesis between environmental and biotic factors at hourly to interannual timescales. Glob. Chang. Biol. 23, 1240–1257 (2017).ADS 
    PubMed 

    Google Scholar 
    Nunes, M. H. et al. Recovery of logged forest fragments in a human-modified tropical landscape during the 2015-16 El Niño. Nat. Commun. 12, 1526 (2021).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Vasconcelos, H. L. & Luizão, F. J. Litter production and litter nutrient concentrations in a fragmented Amazonian landscape. Ecol. Appl. 14, 884–892 (2004).
    Google Scholar 
    Laurance, W. F. et al. Rain forest fragmentation and the proliferation of successional trees. Ecology 87, 469–482 (2006).PubMed 

    Google Scholar 
    Uriarte, M. et al. Impacts of climate variability on tree demography in second growth tropical forests: the importance of regional context for predicting successional trajectories. Biotropica 48, 780–797 (2016).
    Google Scholar 
    Ewers, R. M. & Banks-Leite, C. Fragmentation impairs the microclimate buffering effect of tropical forests. PLoS One 8, e58093 (2013).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Chave, J. et al. Regional and seasonal patterns of litterfall in tropical South America. Biogeosciences 7, 43–55 (2010).ADS 

    Google Scholar 
    Barros, F. et al. Hydraulic traits explain differential responses of Amazonian forests to the 2015 El Niño-induced drought. N. Phytol. 223, 1253–1266 (2019).CAS 

    Google Scholar 
    Brum, M. et al. Hydrological niche segregation defines forest structure and drought tolerance strategies in a seasonal Amazon forest. J. Ecol. 107, 318–333 (2019).
    Google Scholar 
    Signori-Müller, C. et al. Non-structural carbohydrates mediate seasonal water stress across Amazon forests. Nat. Commun. 12, 2310 (2021).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Coelho de Souza, F. et al. Evolutionary heritage influences Amazon tree ecology. Proc. Biol. Sci. https://doi.org/10.1098/rspb.2016.1587 (2016).Hansen, M. C. et al. The fate of tropical forest fragments. Sci. Adv. 6, eaax8574 (2020).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Morton, D. C. et al. Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506, 221–224 (2014).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Draper, F. C. et al. Amazon tree dominance across forest strata. Nat. Ecol. Evol. 5, 757–767 (2020).
    Google Scholar 
    Calders, K. et al. Monitoring spring phenology with high temporal resolution terrestrial LiDAR measurements. Agric. Meteorol. 203, 158–168 (2015).
    Google Scholar 
    Disney, M. Terrestrial LiDAR: a three-dimensional revolution in how we look at trees. N. Phytol. 222, 1736–1741 (2019).
    Google Scholar 
    Tang, H. & Dubayah, R. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl. Acad. Sci. USA 114, 2640–2644 (2017).CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Laurance, W. F. et al. An Amazonian rainforest and its fragments as a laboratory of global change. Biol. Rev. Camb. Philos. Soc. 93, 223–247 (2018).PubMed 

    Google Scholar 
    Correction for Tang and Dubayah, Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. Proc. Natl. Acad. Sci. USA 116, 9137 (2019).Ma, L. et al. Characterizing the three-dimensional spatiotemporal variation of forest photosynthetically active radiation using terrestrial laser scanning data. Agric. Meteorol. 301-302, 108346 (2021).
    Google Scholar 
    Laurans, M., Hérault, B., Vieilledent, G. & Vincent, G. Vertical stratification reduces competition for light in dense tropical forests. Ecol. Manag. 329, 79–88 (2014).
    Google Scholar 
    Garcia, M. N. et al. Importance of hydraulic strategy trade-offs in structuring response of canopy trees to extreme drought in Central Amazon. Oecologia https://doi.org/10.1007/s00442-021-04924-9 (2021).Giardina, F. et al. Tall Amazonian forests are less sensitive to precipitation variability. Nat. Geosci. 11, 405–409 (2018).ADS 
    CAS 

    Google Scholar 
    Brando, P. Tree height matters. Nat. Geosci. 11, 390–391 (2018).ADS 
    CAS 

    Google Scholar 
    Stark, S. C. et al. Amazon forest carbon dynamics predicted by profiles of canopy leaf area and light environment. Ecol. Lett. 15, 1406–1414 (2012).PubMed 

    Google Scholar 
    Pyle, E. H. et al. Dynamics of carbon, biomass, and structure in two Amazonian forests. J. Geophys. Res. https://doi.org/10.1029/2007JG000592 (2008).Gorgens, E. B. et al. Resource availability and disturbance shape maximum tree height across the Amazon. Glob. Chang. Biol. 27, 177–189 (2021).ADS 
    PubMed 

    Google Scholar 
    Oliveira, R. S. et al. Linking plant hydraulics and the fast-slow continuum to understand resilience to drought in tropical ecosystems. N. Phytol. 230, 904–923 (2021).
    Google Scholar 
    Falster, D. S. & Westoby, M. Leaf size and angle vary widely across species: what consequences for light interception? N. Phytol. 158, 509–525 (2003).
    Google Scholar 
    Chavana-Bryant, C. et al. Leaf aging of Amazonian canopy trees as revealed by spectral and physiochemical measurements. N. Phytol. 214, 1049–1063 (2017).CAS 

    Google Scholar 
    Brando, P. M. et al. Drought effects on litterfall, wood production and belowground carbon cycling in an Amazon forest: results of a throughfall reduction experiment. Philos. Trans. R. Soc. Lond. B Biol. Sci. 363, 1839–1848 (2008).PubMed 
    PubMed Central 

    Google Scholar 
    Wang, D., Momo Takoudjou, S. & Casella, E. LeWoS: a universal leaf-wood classification method to facilitate the 3D modelling of large tropical trees using terrestrial LiDAR. Methods Ecol. Evol. 11, 376–389 (2020).
    Google Scholar 
    Grossiord, C. et al. Plant responses to rising vapor pressure deficit. N. Phytol. 226, 1550–1566 (2020).
    Google Scholar 
    Smith, M. N. et al. Empirical evidence for resilience of tropical forest photosynthesis in a warmer world. Nat. Plants 6, 1225–1230 (2020).CAS 
    PubMed 

    Google Scholar 
    Aleixo, I. et al. Amazonian rainforest tree mortality driven by climate and functional traits. Nat. Clim. Chang. 9, 384–388 (2019).ADS 

    Google Scholar 
    Lohbeck, M. et al. Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94, 1211–1216 (2013).PubMed 

    Google Scholar 
    Lambers, H. & Oliveira, R. S. in Plant Physiological Ecology (eds. Lambers, H. & Oliveira, R. S.) 385–449 (Springer International Publishing, 2019).Reich, P. B. Key canopy traits drive forest productivity. Proc. Biol. Sci. 279, 2128–2134 (2012).PubMed 
    PubMed Central 

    Google Scholar 
    Albiero-Júnior, A., Venegas-González, A., Camargo, J. L. C., Roig, F. A. & Tomazello-Filho, M. Amazon forest fragmentation and edge effects temporarily favored understory and midstory tree growth. Trees https://doi.org/10.1007/s00468-021-02172-1 (2021).Doughty, C. E. et al. Drought impact on forest carbon dynamics and fluxes in Amazonia. Nature 519, 78–82 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    San-José, M., Werden, L., Peterson, C. J., Oviedo-Brenes, F. & Zahawi, R. A. Large tree mortality leads to major aboveground biomass decline in a tropical forest reserve. Oecologia https://doi.org/10.1007/s00442-021-05048-w (2021).Qin, Y. et al. Carbon loss from forest degradation exceeds that from deforestation in the Brazilian Amazon. Nat. Clim. Chang. 11, 442–448 (2021).Brinck, K. et al. High resolution analysis of tropical forest fragmentation and its impact on the global carbon cycle. Nat. Commun. 8, 14855 (2017).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Duffy, P. B., Brando, P., Asner, G. P. & Field, C. B. Projections of future meteorological drought and wet periods in the Amazon. Proc. Natl. Acad. Sci. USA 112, 13172–13177 (2015).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Silva Junior, C. H. L. et al. Persistent collapse of biomass in Amazonian forest edges following deforestation leads to unaccounted carbon losses. Sci. Adv. 6, eaaz8360 (2020).Forrest, J. & Miller-Rushing, A. J. Toward a synthetic understanding of the role of phenology in ecology and evolution. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365, 3101–3112 (2010).PubMed 
    PubMed Central 

    Google Scholar 
    Park, J. Y. et al. Quantifying leaf phenology of individual trees and species in a tropical forest using unmanned aerial vehicle (UAV) images. Remote Sens. 11, 1534 (2019).ADS 

    Google Scholar 
    Dubayah, R. et al. The global ecosystem dynamics investigation: high-resolution laser ranging of the Earth’s forests and topography. Egypt. J. Remote Sens. Space Sci. 1, 100002 (2020).
    Google Scholar 
    Coomes, D. A. et al. Area-based vs tree-centric approaches to mapping forest carbon in Southeast Asian forests from airborne laser scanning data. Remote Sens. Environ. 194, 77–88 (2017).ADS 

    Google Scholar 
    Calders, K. et al. Terrestrial laser scanning in forest ecology: expanding the horizon. Remote Sens. Environ. 251, 112102 (2020).ADS 

    Google Scholar 
    Nobre, C. A. et al. Land-use and climate change risks in the Amazon and the need of a novel sustainable development paradigm. Proc. Natl. Acad. Sci. USA 113, 10759–10768 (2016).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Almeida, D. R. A. et al. Persistent effects of fragmentation on tropical rainforest canopy structure after 20 yr of isolation. Ecol. Appl. 29, e01952 (2019).PubMed 

    Google Scholar 
    Wilkes, P. et al. Data acquisition considerations for terrestrial laser scanning of forest plots. Remote Sens. Environ. 196, 140–153 (2017).ADS 

    Google Scholar 
    Vincent, G. et al. Mapping plant area index of tropical evergreen forest by airborne laser scanning. A cross-validation study using LAI2200 optical sensor. Remote Sens. Environ. 198, 254–266 (2017).ADS 

    Google Scholar 
    Pimont, F., Allard, D., Soma, M. & Dupuy, J.-L. Estimators and confidence intervals for plant area density at voxel scale with T-LiDAR. Remote Sens. Environ. 215, 343–370 (2018).ADS 

    Google Scholar 
    Vincent, G., Pimont, F. & Verley, P. A note on PAD/LAD Estimators Implemented in AMAPVox 1.7.https://doi.org/10.23708/1AJNMP (2021)Ross, J. The radiation regime and architecture of plant stands (Springer, 1981).Béland, M., Widlowski, J.-L., Fournier, R. A., Côté, J.-F. & Verstraete, M. M. Estimating leaf area distribution in savanna trees from terrestrial LiDAR measurements. Agric. Meteorol. 151, 1252–1266 (2011).
    Google Scholar 
    Almeida, D. R. Ade et al. Optimizing the remote detection of tropical rainforest structure with airborne LiDAR: leaf area profile sensitivity to pulse density and spatial sampling. Remote Sens. 11, 92 (2019).ADS 

    Google Scholar 
    Qie, L. et al. Long-term carbon sink in Borneo’s forests halted by drought and vulnerable to edge effects. Nat. Commun. 8, 1966 (2017).ADS 
    PubMed 
    PubMed Central 

    Google Scholar 
    Росс, Ю. & Ross, J. The radiation regime and architecture of plant stands (Springer Science & Business Media, 1981).Berry, Z. C. & Goldsmith, G. R. Diffuse light and wetting differentially affect tropical tree leaf photosynthesis. N. Phytol. 225, 143–153 (2020).CAS 

    Google Scholar 
    Mercado, L. M. et al. Impact of changes in diffuse radiation on the global land carbon sink. Nature 458, 1014–1017 (2009).ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 
    USGS. LP DAAC—MCD18A1. https://lpdaac.usgs.gov/products/mcd18a1v006/ (2008).Maeda, E. E. et al. Large-scale commodity agriculture exacerbates the climatic impacts of Amazonian deforestation. Proc. Natl. Acad. Sci. USA 118, e2023787118 (2021).Engelbrecht, B. M. J. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Zellweger, F. et al. Forest microclimate dynamics drive plant responses to warming. Science 368, 772–775 (2020).ADS 
    CAS 
    PubMed 

    Google Scholar 
    Wild, J. et al. Climate at ecologically relevant scales: a new temperature and soil moisture logger for long-term microclimate measurement. Agric. Meteorol. 268, 40–47 (2019).
    Google Scholar 
    Camargo, J. L. C. & Kapos, V. Complex edge effects on oil moisture and microclimate in Central Amazonian forest. J. Trop. Ecol. 11, 205–221 (1995).
    Google Scholar 
    Zuur, A., Ieno, E. N., Walker, N., Saveliev, A. A. & Smith, G. M. Mixed Effects Models and Extensions in Ecology with R (Springer Science & Business Media, 2009).Malhi, Y., Phillips, O. L. & Laurance, W. F. Forest-climate interactions in fragmented tropical landscapes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 359, 345–352 (2004).
    Google Scholar  More