Automating insect monitoring using unsupervised near-infrared sensors
Stork, N. E. How many species of insects and other terrestrial arthropods are there on earth? (2017). https://doi.org/10.1146/annurev-ento-020117.Scudder, G. Insect Biodiversity: Science and Society—Google Books (Wiley-Blackwell, 2009).
Google Scholar
Lami, F., Boscutti, F., Masin, R., Sigura, M. & Marini, L. Seed predation intensity and stability in agro-ecosystems: Role of predator diversity and soil disturbance. Agric. Ecosyst. Environ. 288, 106720 (2020).
Google Scholar
Gallai, N., Salles, J. M., Settele, J. & Vaissière, B. E. Economic valuation of the vulnerability of world agriculture confronted with pollinator decline. Ecol. Econ. 68, 810–821 (2009).
Google Scholar
Consoli, F. L., Parra, J. R. P. & Zucchi, R. A. Egg Parasitoids in Agroecosystems with Emphasis on Trichogramma (Springer Science, 2010).
Google Scholar
Sánchez-Guillén, R. A., Córdoba-Aguilar, A., Hansson, B., Ott, J. & Wellenreuther, M. Evolutionary consequences of climate-induced range shifts in insects. Biol. Rev. 91, 1050–1064 (2016).PubMed
Google Scholar
Zalucki, M. P. et al. Estimating the economic cost of one of the world’s major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): Just how long is a piece of string?. J. Econ. Entomol. 105, 1115–1129 (2012).PubMed
Google Scholar
Dornelas, M. & Daskalova, G. N. Nuanced changes in insect abundance. Science (80-). 368, 368–369 (2020).CAS
ADS
Google Scholar
Didham, R. K. et al. Interpreting insect declines: Seven challenges and a way forward. Insect Conserv. Divers. 13, 103–114 (2020).
Google Scholar
Greenwood, B. M., Bojang, K. & Whitty, C. J. M. Malaria. Lancet 365, 98 (2005).
Google Scholar
Dangles, O. & Casas, J. Ecosystem services provided by insects for achieving sustainable development goals. Ecosyst. Serv. 35, 109–115 (2019).
Google Scholar
Burkholder, W. E. & Ma, M. Pheromones for monitoring and control of stored-product insects. Annu. Rev. Entomol. 30, 257–272 (1985).CAS
Google Scholar
Morris, R. F. Sampling insect populations. Annu. Rev. Entomol. 5, 243–264 (1960).
Google Scholar
Strickland, A. H. Sampling crop pests and their hosts. Annu. Rev. Entomol. 6, 201–220 (1961).
Google Scholar
Bannerman, J. A., Costamagna, A. C., McCornack, B. P. & Ragsdale, D. W. Comparison of relative bias, precision, and efficiency of sampling methods for natural enemies of soybean aphid (Hemiptera: Aphididae). J. Econ. Entomol. 108, 1381–1397 (2015).CAS
PubMed
Google Scholar
Osborne, J. L. et al. Harmonic radar: A new technique for investigating bumblebee and honey bee foraging flight. VII Int. Symp. Pollinat. 437, 159–164 (1996).
Google Scholar
Zink, A. G. & Rosenheim, J. A. State-dependent sampling bias in insects: Implications for monitoring western tarnished plant bugs. Entomol. Exp. Appl. 113, 117–123 (2004).
Google Scholar
Rancourt, B., Vincent, C. & De Oliveira, A. D. Circadian activity of Lygus lineolaris (Hemiptera: Miridae) and effectiveness of sampling techniques in strawberry fields. J. Econ. Entomol 93, 1160–1166 (2000).CAS
PubMed
Google Scholar
Binns, M. R. & Nyrop, J. P. Sampling insect populations for the purpose of IPM decision making. Annu. Rev. Entomol. 37, 427–453. https://doi.org/10.1146/annurev.ento.37.1.427 (1992).Article
Google Scholar
Portman, Z. M., Bruninga-Socolar, B. & Cariveau, D. P. The state of bee monitoring in the United States: A call to refocus away from bowl traps and towards more effective methods. Ann. Entomol. Soc. Am. 113, 337–342 (2020).
Google Scholar
Montgomery, G. A., Belitz, M. W., Guralnick, R. P. & Tingley, M. W. Standards and best practices for monitoring and benchmarking insects. Front. Ecol. Evolut. 8, 579193 (2021).
Google Scholar
Bick, E., Dryden, D. M., Nguyen, H. D. & Kim, H. A novel CO2-based insect sampling device and associated field method evaluated in a strawberry agroecosystem. J. Econ. Entomol. 113, 1037–1042 (2020).CAS
PubMed
Google Scholar
Wen, C. & Guyer, D. Image-based orchard insect automated identification and classification method. Comput. Electron. Agric. 89, 110–115 (2012).
Google Scholar
Chen, Y., Why, A., Batista, G., Mafra-Neto, A. & Keogh, E. Flying insect classification with inexpensive sensors. J. Insect Behav. 27, 657–677 (2014).
Google Scholar
Potamitis, I. & Rigakis, I. Novel noise-robust optoacoustic sensors to identify insects through wingbeats. IEEE Sens. J. 15, 4621–4631 (2015).CAS
ADS
Google Scholar
Eliopoulos, P. A., Potamitis, I., Kontodimas, D. C. & Givropoulou, E. G. Detection of adult beetles inside the stored wheat mass based on their acoustic emissions. J. Econ. Entomol. 108, 2808–2814 (2015).CAS
PubMed
Google Scholar
Ärje, J. et al. Automatic image-based identification and biomass estimation of invertebrates. Methods Ecol. Evol. 11, 922–931 (2020).
Google Scholar
Hobbs, S. E. & Hodges, G. An optical method for automatic classification and recording of a suction trap catch. Bull. Entomol. Res. 83, 47–51 (1993).
Google Scholar
O’Neill, M. A., Gauld, I. D., Gaston, K. J. & Weeks, P. Daisy: An automated invertebrate identification system using holistic vision techniques. in Proceedings of the Inaugural Meeting BioNET-INTERNATIONAL Group for Computer-Aided Taxonomy (BIGCAT) 13–22 (1997).Chesmore, E. D. Methodologies for automating the identification of species. in First BioNet-International Work. Gr. Autom. Taxon. 3–12 (2000).Martineau, M. et al. A survey on image-based insect classification. Pattern Recognit. 65, 273–284 (2017).ADS
Google Scholar
Silva, D. F., De Souza, V. M. A., Batista Geapa, K. E. & Ellis, D. P. W. Applying machine learning and audio analysis techniques to insect recognition in intelligent traps. in Proceedings—2013 12th International Conference on Machine Learning and Applications, ICMLA 2013. (2013).Capinera, J. L. & Walmsley, M. R. Visual responses of some sugarbeet insects to sticky traps and water pan traps of various colors. J. Econ. Entomol., 71(6), 926–927 (1978).
Google Scholar
Moore, A., Miller, J. R., Tabashnik, B. E. & Gage, S. H. Automated identification of flying insects by analysis of wingbeat frequencies. J. Econ. Entomol. 79, 1703–1706 (1986).
Google Scholar
Riley, J. R. Angular and temporal variations in the radar cross-sections of insects. Proc. Inst. Electr. Eng. (IET) 120, 1229–1232 (1973).
Google Scholar
Reed, S. C., Williams, C. M. & Chadwick, L. E. Frequency of wing-beat as a character for separating species races and geographic varieties of Drosophila. Genetics 27, 349 (1942).CAS
PubMed
PubMed Central
Google Scholar
Mankin, R. W., Hagstrum, D. W., Smith, M. T., Roda, A. L. & Kairo, M. T. K. Perspective and promise: a century of insect acoustic detection and monitoring. Am. Entomol. 57(1), 30–44 (2011).
Google Scholar
Drake, V. A. & Reynolds, D. R. Radar Entomology: Observing Insect Flight and Migration (Cabi, 2012).
Google Scholar
Long, T. et al. Entomological radar overview: System and signal processing. IEEE Aerosp. Electron. Syst. Mag. 35, 20–32 (2020).
Google Scholar
Drake, V. A., Hatty, S., Symons, C. & Wang, H. Insect monitoring radar: Maximizing performance and utility. Remote Sens. 12, 596 (2020).ADS
Google Scholar
Brydegaard, M. & Jansson, S. Advances in entomological laser radar. IET Int. Radar Conf. https://doi.org/10.1049/joe.2019.0598 (2018).Article
Google Scholar
Jansson, S. Entomological Lidar: Target Characterization and Field Applications (Department of Physics, Lund University, 2020).
Google Scholar
Malmqvist, E. From Fauna to Flames: Remote Sensing with Scheimpflug-Lidar (Department of Physics, Lund University, 2019).
Google Scholar
Mankin, R. W., Hagstrum, D. W., Smith, M. T., Roda, A. L. & Kairo, M. T. K. Perspective and promise: A century of insect acoustic detection and monitoring. Am. Entomol. 57, 30–44 (2011).
Google Scholar
Miller-Struttmann, N. E., Heise, D., Schul, J., Geib, J. C. & Galen, C. Flight of the bumble bee: Buzzes predict pollination services. PLoS ONE 12, 1–14 (2017).
Google Scholar
Li, Y. et al. Mosquito detection with low-cost smartphones: Data acquisition for malaria research. arXiv:1711.06346 [stat.ML] (2017).Mukundarajan, H., Hol, F. J. H., Castillo, E. A., Newby, C. & Prakash, M. Using mobile phones as acoustic sensors for high-throughput mosquito surveillance. Elife 6, 1–26 (2017).
Google Scholar
Osborne, J. L. et al. A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J. Appl. Ecol. 36, 519–533 (1999).
Google Scholar
Smith, A. D., Riley, J. R. & Gregory, R. D. A method for routine monitoring of the aerial migration of insects by using a vertical-looking radar. Philos. Trans. R. Soc. London. Ser. B Biol. Sci. 340, 393–404 (1993).
Google Scholar
Chapman, J. W., Smith, A. D., Woiwod, I. P., Reynolds, D. R. & Riley, J. R. Development of vertical-looking radar technology for monitoring insect migration. Comput. Electron. Agric. 35(2–3), 95–110 (2002).
Google Scholar
Schaefer, G. W. & Bent, G. A. An infra-red remote sensing system for the active detection and automatic determination of insect flight trajectories (IRADIT). Bull. Entomol. Res. 74, 261–278 (1984).
Google Scholar
Farmery, M. J. Optical studies of insect flight at low altitude. (Doctoral dissertation, University of York, 1981).Farmery, M. J. The effect of air temperature on wingbeat frequency of naturally flying armyworm moth (Spodoptera exempta). Entomol. Exp. Appl. 32, 193–194 (1982).
Google Scholar
Malmqvist, E. & Brydegaard, M. Applications of KHZ-CW lidar in ecological entomology. EPJ Web Conf. 119, 25016. https://doi.org/10.1051/epjconf/2016I11925016 (2016).Article
Google Scholar
Brydegaard, M. et al. Lidar reveals activity anomaly of malaria vectors during pan-African eclipse. Sci. Adv. 6, eaay5487 (2020).PubMed
PubMed Central
ADS
Google Scholar
Malmqvist, E. et al. The bat–bird–bug battle: Daily flight activity of insects and their predators over a rice field revealed by high-resolution Scheimpflug Lidar. Roy. Soc. Open Sci. 5(4), 172303 (2018).ADS
Google Scholar
Fristrup, K. M., Shaw, J. A. & Tauc, M. J. Development of a wing-beat-modulation scanning lidar system for insect studies. Lidar Remote Sens. Environ. Monit. 2017, 15. https://doi.org/10.1117/12.2274656 (2017).Article
Google Scholar
Hoffman, D. S., Nehrir, A. R., Repasky, K. S., Shaw, J. A. & Carlsten, J. L. Range-resolved optical detection of honeybees by use of wing-beat modulation of scattered light for locating land mines. Appl. Opt. 46, 3007–3012 (2007).PubMed
ADS
Google Scholar
Jansson, S., Malmqvist, E. & Mlacha, Y. Real-time dispersal of malaria vectors in rural Africa monitored with lidar. Plos one. 16(3), e0247803 (2021).CAS
PubMed
PubMed Central
Google Scholar
Jansson, S. & Brydegaard, M. Passive kHz lidar for the quantification of insect activity and dispersal. Anim. Biotelemet. 6, 6 (2018).
Google Scholar
Jansson, S. P. & Sørensen, M. B. An optical remote sensing system for detection of aerial and aquatic fauna. U.S. Patent Application No. 16/346,322 (2019).Malmqvist, E., Jansson, S., Török, S. & Brydegaard, M. Effective parameterization of laser radar observations of atmospheric fauna. IEEE J. Sel. Top. Quant. Electron. 22, 1 (2015).
Google Scholar
Drake, V. A., Wang, H. K. & Harman, I. T. Insect Monitoring Radar: Remote and network operation. Comput. Electron. Agric. 35, 77–94 (2002).
Google Scholar
Kirkeby, C. et al. Advances in automatic identification of flying insects using optical sensors and machine learning. Sci. Rep. 11, 1555 (2021).CAS
PubMed
PubMed Central
ADS
Google Scholar
Jacques, S. L. Erratum: Optical properties of biological tissues: A review (Physics in Medicine and Biology (2013) 58). Phys. Med. Biol. 58, 5007–5008 (2013).
Google Scholar
Li, M. et al. Bark beetles as lidar targets and prospects of photonic surveillance. J. Biophoton. https://doi.org/10.1002/jbio.202000420 (2020).Article
Google Scholar
Brydegaard, M. Advantages of shortwave infrared LIDAR entomology. in Laser Applications to Chemical, Security and Environmental Analysis LW2D-6 (Optical Society of America, 2014).
Google Scholar
Brydegaard, M., Jansson, S., Schulz, M. & Runemark, A. Can the narrow red bands of dragonflies be used to perceive wing interference patterns? Ecol. Evol. 8(11), 5369–5384 (2018).PubMed
PubMed Central
Google Scholar
Gebru, A. et al. Multiband modulation spectroscopy for the determination of sex and species of mosquitoes in flight. J. Biophotonics 11(8), e201800014 (2018).PubMed
Google Scholar
Potamitis, I. Classifying insects on the fly. Ecol. Inform. 21, 40–49 (2014).
Google Scholar
Heathcote, G. D. The comparison of yellow cylindrical, flat and water traps, and of Johnson suction traps, for sampling aphids. Ann. Appl. Biol. 45, 133–139 (1957).
Google Scholar
Vaishampayan, S. M., Kogan, M., Waldbauer, G. P. & Woolley, J. Spectral specific responses in the visual behavior of the greenhouse whitefly, Trialeurodes vaporariorum (Homoptera: Aleyrodidae). Entomol. Exp. Appl. 18, 344–356 (1975).
Google Scholar
Mound, L. A. Studies on the olfaction and colour sensitivity of Bemisia tabaci (Genn.) (Homoptera, Aleyrodidae). Entomol. Exp. Appl. 5, 99–104 (1962).
Google Scholar
Virtanen, P. et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 17, 261–272 (2020).CAS
PubMed
PubMed Central
Google Scholar
Van Der Kooi, C. J., Stavenga, D. G., Arikawa, K., Belušič, G. & Kelber, A. Evolution of insect color vision: From spectral sensitivity to visual ecology. Annu. Rev. Entomol. 66, 435–461 (2021).PubMed
Google Scholar More